Ruocco, Nadia; Costantini, Susan; Guariniello, Stefano; Costantini, Maria
2016-04-27
Carbohydrates, also called saccharides, are molecules composed of carbon, hydrogen, and oxygen. They are the most abundant biomolecules and essential components of many natural products and have attracted the attention of researchers because of their numerous human health benefits. Among carbohydrates the polysaccharides represent some of the most abundant bioactive substances in marine organisms. In fact, many marine macro- and microorganisms are good resources of carbohydrates with diverse applications due to their biofunctional properties. By acting on cell proliferation and cycle, and by modulating different metabolic pathways, marine polysaccharides (including mainly chitin, chitosan, fucoidan, carrageenan and alginate) also have numerous pharmaceutical activities, such as antioxidative, antibacterial, antiviral, immuno-stimulatory, anticoagulant and anticancer effects. Moreover, these polysaccharides have many general beneficial effects for human health, and have therefore been developed into potential cosmeceuticals and nutraceuticals. In this review we describe current advances in the development of marine polysaccharides for nutraceutical, cosmeceutical and pharmacological applications. Research in this field is opening new doors for harnessing the potential of marine natural products.
Recent Developments in Synthetic Carbohydrate-Based Diagnostics, Vaccines, and Therapeutics.
Fernández-Tejada, Alberto; Cañada, F Javier; Jiménez-Barbero, Jesús
2015-07-20
Glycans are everywhere in biological systems, being involved in many cellular events with important implications for medical purposes. Building upon a detailed understanding of the functional roles of carbohydrates in molecular recognition processes and disease states, glycans are increasingly being considered as key players in pharmacological research. On the basis of the important progress recently made in glycochemistry, glycobiology, and glycomedicine, we provide a complete overview of successful applications and future perspectives of carbohydrates in the biopharmaceutical and medical fields. This review highlights the development of carbohydrate-based diagnostics, exemplified by glycan imaging techniques and microarray platforms, synthetic oligosaccharide vaccines against infectious diseases (e.g., HIV) and cancer, and finally carbohydrate-derived therapeutics, including glycomimetic drugs and glycoproteins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nwose, Ezekiel Uba; Onodu, Bonaventure C.; Anyasodor, Anayochukwu Edward; Sedowo, Mathew O.; Okuzor, John N.; Culas, Richard J.
2017-01-01
Background: Beyond nutritional values are the pharmacological potentials of cassava comparative with other staple carbohydrate plant-based foods such as wheat. The knowledge of applicability to diabetes and its cardiovascular complications management seems not just limited but unacknowledged. As a preliminary study, a community’s knowledge of pharmacological value of cassava is investigated. Methods: Descriptive observational study using questionnaire-based “cross-sectional” survey was conducted. 136 Participants completed the survey and 101 respondents were selected for evaluation. Open-ended questions were used qualitatively to generate experience and view cassava values for diabetes and dyslipidemia. While categorical (yes or no) questions were used quantitatively to generate numerical results for diabetes, critical reanalysis of a report data was performed, especially comparing carbohydrate/fiber and fat/fiber ratios of cassava with wheat in view of dyslipidemia. Result: On the positive side, 42% of the participants believe that cassava has medicinal values. This includes 6% (among the 42) who believes that the plant is useful in treating diabetes and 24% who do not know it may be useful in diabetes management. Critical review showed that cassava may contribute up to sixteen times more fiber and four times less digestible sugar, as well as carbohydrate/fiber and fat/fiber ratios being 14 and 55 times less than wheat. Conclusion: There is evidence that relative to wheat flour meal, for instance, cassava contributes less fat and much more fiber. Since fat is pro-obesity, which in turn is pro-diabetic/metabolic syndrome; and fiber is anti-dyslipidemic; cassava has pharmacological values to be appreciated over some carbohydrate plant-based foods. PMID:28894623
Pharmacological properties of Datura stramonium L. as a potential medicinal tree: An overview
Soni, Priyanka; Siddiqui, Anees Ahmad; Dwivedi, Jaya; Soni, Vishal
2012-01-01
India has a great wealth of various naturally occurring plant drugs which have great potential pharmacological activities. Datura stramonium (D. stramonium) is one of the widely well known folklore medicinal herbs. The troublesome weed, D. stramonium is a plant with both poisonous and medicinal properties and has been proven to have great pharmacological potential with a great utility and usage in folklore medicine. D. stromonium has been scientifically proven to contain alkaloids, tannins, carbohydrates and proteins. This plant has contributed various pharmacological actions in the scientific field of Indian systems of medicines like analgesic and antiasthmatic activities. The present paper presents an exclusive review work on the ethnomedical, phytochemical, pharmacological activities of this plant. PMID:23593583
Pharmacological Potential of Sea Cucumbers
Khotimchenko, Yuri
2018-01-01
This review presents a detailed analysis of published research data focused on the pharmacological activity exerted by biologically active compounds isolated from sea cucumbers belonging to the class of Holothuroidea, phylum Echinodermata. The review contains descriptions of the structure, physico-chemical properties and pharmacological effects of these active substances. Particular attention is given to compounds with anticoagulant, antithrombotic, antioxidant, anticancer, anti-infectious, immune-stimulating and anti-ACE (angiotensin converting enzyme) activities as well as to the substances exerting a regulating influence on lipid and carbohydrate metabolism. All these compounds may be considered as prototypes for development of new pharmaceutical substances and medicines. PMID:29724051
Chothani, Daya L.; Vaghasiya, H. U.
2011-01-01
Balanites aegyptiaca Del. (Zygophyllaceae), known as ‘desert date,’ is spiny shrub or tree up to l0 m tall, widely distributed in dry land areas of Africa and South Asia. It is traditionally used in treatment of various ailments i.e. jaundice, intestinal worm infection, wounds, malaria, syphilis, epilepsy, dysentery, constipation, diarrhea, hemorrhoid, stomach aches, asthma, and fever. It contains protein, lipid, carbohydrate, alkaloid, saponin, flavonoid, and organic acid. Present review summarizes the traditional claims, phytochemistry, and pharmacology of B. aegyptiaca Del reported in scientific literature. PMID:22096319
Carum copticum L.: A Herbal Medicine with Various Pharmacological Effects
Boskabady, Mohammad Hossein; Alitaneh, Saeed; Alavinezhad, Azam
2014-01-01
Carum copticum L. commonly known as “Ajwain” is cultivated in many regions of the world including Iran and India, states of Gujarat and Rajasthan. Traditionally, C. copticum has been used in the past for various therapeutic effects including bloating, fatigue, diarrhea, abdominal tumors, abdominal pain, respiratory distress, and loss of appetite. It has other health benefits such as antifungal, antioxidant, antibacterial, antiparasitic, and hypolipidemic effects. This plant contains different important components such as carbohydrates, glucosides, saponins and phenolic compounds (carvacrol), volatile oils (thymol), terpiene, paracymene and beta-pinene, protein, fat, fiber, and minerals including calcium, phosphorus, iron, and nicotinic acid (niacin). In the previous studies, several pharmacological effects were shown for C. copticum. Therefore, in this paper, the pharmacological effects of the plant were reviewed. PMID:25089273
Mangiferin Modulation of Metabolism and Metabolic Syndrome
Fomenko, Ekaterina Vladimirovna; Chi, Yuling
2016-01-01
The recent emergence of a worldwide epidemic of metabolic disorders, such as obesity and diabetes, demands effective strategy to develop nutraceuticals or pharmaceuticals to halt this trend. Natural products have long been and continue to be an attractive source of nutritional and pharmacological therapeutics. One such natural product is mangiferin (MGF), the predominant constituent of extracts of the mango plant Mangifera indica L. Reports on biological and pharmacological effects of MGF increased exponentially in recent years. MGF has documented antioxidant and anti-inflammatory effects. Recent studies indicate that it modulates multiple biological processes involved in metabolism of carbohydrates and lipids. MGF has been shown to improve metabolic abnormalities and disorders in animal models and humans. This review focuses on the recently reported biological and pharmacological effects of MGF on metabolism and metabolic disorders. PMID:27534809
Torres y Torres, Nimbe; Palacios-González, Berenice; Noriega-López, Lilia; Tovar-Palacio, Armando R
2006-01-01
Consumption of soy has increased in Western countries due to the benefits on health and the attitude of the people to consume natural products as alternative to the use of pharmacological therapies. However, there is no evidence whether the consumption of 25 g of soy protein as recommended by the Food and Drug Administration has some effect on glucose absorption and consequently on insulin secretion. The aim of the present study was to determine glycemic index (GI), insulinemic index (InIn), and glycemic load (GL) of several soy beverages containing low or high concentration of carbohydrates, and compare them with other foods such as peanuts, whole milk, soluble fiber and a mixed meal on GI and InIn. The results showed that soy beverages had low or moderate GI, depending of the presence of other compounds like carbohydrates and fiber. Consumption of soy beverages with low concentration of carbohydrates produced the lowest insulin secretion. Therefore, these products can be recommended in obese and diabetic patients. Finally soy beverages should contain low maltodextrins concentration and be added of soluble fiber.
Constantin-Teodosiu, Dumitru; Constantin, Despina; Stephens, Francis; Laithwaite, David; Greenhaff, Paul L
2012-05-01
High-fat feeding inhibits pyruvate dehydrogenase complex (PDC)-controlled carbohydrate (CHO) oxidation, which contributes to muscle insulin resistance. We aimed to reveal molecular changes underpinning this process in resting and exercising humans. We also tested whether pharmacological activation of PDC overrides these diet-induced changes. Healthy males consumed a control diet (CD) and on two further occasions an isocaloric high-fat diet (HFD). After each diet, subjects cycled for 60 min after intravenous infusion with saline (CD and HFD) or dichloroacetate (HFD+DCA). Quadriceps muscle biopsies obtained before and after 10 and 60 min of exercise were used to estimate CHO use, PDC activation, and mRNAs associated with insulin, fat, and CHO signaling. Compared with CD, HFD increased resting pyruvate dehydrogenase kinase 2 (PDK2), PDK4, forkhead box class O transcription factor 1 (FOXO1), and peroxisome proliferator-activated receptor transcription factor α (PPARα) mRNA and reduced PDC activation. Exercise increased PDC activation and whole-body CHO use in HFD, but to a lower extent than in CD. Meanwhile PDK4 and FOXO1, but not PPARα or PDK2, mRNA remained elevated. HFD+DCA activated PDC throughout and restored whole-body CHO use during exercise. FOXO1 appears to play a role in HFD-mediated muscle PDK4 upregulation and inhibition of PDC and CHO oxidation in humans. Also, pharmacological activation of PDC restores HFD-mediated inhibition of CHO oxidation during exercise.
2017-01-01
Croton macrostachyus is widely used as herbal medicine by the indigenous people of tropical Africa. The potential of C. macrostachyus as herbal medicine, the phytochemistry, and pharmacological properties of its parts used as herbal medicines are reviewed. The extensive literature survey revealed that C. macrostachyus is traditionally used to treat or manage at least 81 human and animal diseases and ailments. The species is used as herbal medicine for diseases and ailments such as abdominal pains, cancer, gastrointestinal disorders, malaria, pneumonia, sexually transmitted infections, skin infections, typhoid, and wounds and as ethnoveterinary medicine. Multiple classes of phytochemicals such as alkaloids, amino acids, anthraquinones, carbohydrates, cardiac glycosides, coumarins, essential oil, fatty acids, flavonoids, phenolic compounds, phlobatannins, polyphenols, phytosteroides, saponins, sterols, tannins, terpenoids, unsaturated sterol, vitamin C, and withanoides have been isolated from the species. Pharmacological studies on C. macrostachyus indicate that it has a wide range of pharmacological activities such as anthelmintic, antibacterial, antimycobacterial, antidiarrhoeal, antifungal, anticonvulsant and sedative, antidiabetic, anti-inflammatory, antileishmanial, antioxidant, antiplasmodial, and larvicidal effects. Croton macrostachyus has potential as a possible source of a wide range of pharmaceutical products for the treatment of a wide range of both human and animal diseases and ailments. PMID:29234365
Analgesic and antipyretic activities of Momordica charantia Linn. fruits
Patel, Roshan; Mahobia, Naveen; Upwar, Nitin; Waseem, Naheed; Talaviya, Hetal; Patel, Zalak
2010-01-01
Plant Momordica charantia Linn. belongs to family Cucurbitaceae. It is known as bitter gourd in English and karela in Hindi. Earlier claims show that the plant is used in stomachic ailments as a carminative tonic; as an antipyretic and antidiabetic agent; and in rheumatoid arthritis and gout. The fruit has been claimed to contain charantin, steroidal saponin, momordium, carbohydrates, mineral matters, ascorbic acid, alkaloids, glucosides, etc. The ethanolic extract of the fruit showed the presence of alkaloids, tannins, glycosides, steroids, proteins, and carbohydrates. The present study was carried out using acetic acid-induced writhing and tail-immersion tests in mice, while yeast-induced pyrexia in rats. The ethanolic extracts (250 and 500 mg/kg, po.) showed an analgesic and antipyretic effect, which was significantly higher than that in the control rats. The observed pharmacological activities provide the scientific basis to support traditional claims as well as explore some new and promising leads. PMID:22247882
Analgesic and antipyretic activities of Momordica charantia Linn. fruits.
Patel, Roshan; Mahobia, Naveen; Upwar, Nitin; Waseem, Naheed; Talaviya, Hetal; Patel, Zalak
2010-10-01
Plant Momordica charantia Linn. belongs to family Cucurbitaceae. It is known as bitter gourd in English and karela in Hindi. Earlier claims show that the plant is used in stomachic ailments as a carminative tonic; as an antipyretic and antidiabetic agent; and in rheumatoid arthritis and gout. The fruit has been claimed to contain charantin, steroidal saponin, momordium, carbohydrates, mineral matters, ascorbic acid, alkaloids, glucosides, etc. The ethanolic extract of the fruit showed the presence of alkaloids, tannins, glycosides, steroids, proteins, and carbohydrates. The present study was carried out using acetic acid-induced writhing and tail-immersion tests in mice, while yeast-induced pyrexia in rats. The ethanolic extracts (250 and 500 mg/kg, po.) showed an analgesic and antipyretic effect, which was significantly higher than that in the control rats. The observed pharmacological activities provide the scientific basis to support traditional claims as well as explore some new and promising leads.
Ethanol preference in Drosophila melanogaster is driven by its caloric value
Pohl, Jascha B.; Baldwin, Brett A.; Dinh, Boingoc L.; Rahman, Pinkey; Smerek, Dustin; Prado, Francisco J.; Sherazee, Nyssa; Atkinson, Nigel S.
2012-01-01
Background Perhaps the most difficult thing to ascertain concerning the behavior of another animal is its motivation. The motivation underlying the preference of Drosophila melanogaster for ethanol-rich food has long been ascribed to its value as a food. A recently introduced idea is that, as in humans, the pharmacological effects of ethanol also motivate the fly to choose ethanol-rich food over non-alcoholic food. Methods Flies are given a choice between pipets that contain liquid food and liquid food supplemented with ethanol. In some experiments, carbohydrates are added to the non-ethanol-containing food to balance the calories for ethanol. Results We confirm that Drosophila melanogaster indeed prefer food that is supplemented with ethanol. However, if the alternative food choice is isocaloric, Drosophila melanogaster usually do not show any preference for a 10% ethanol solution. Even after ethanol preference has been established, it can be completely reversed if the alternative food is calorically supplemented. This occurs even when the carbohydrate solution used to balance calories is not gustatorily attractive. Furthermore, if the alternative food contains more calories than the ethanol food, the flies will prefer the non-ethanol food. We go on to show that during the preference assay that ethanol in the fly does not exceed 4 mM, which in mammals is a non-intoxicating dose. Conclusions We conclude that preference for ethanol in this assay arises not from the pharmacological effects of ethanol but rather because of its nutritive value. PMID:22551215
A review on Insulin plant (Costus igneus Nak).
Hegde, Prakash K; Rao, Harini A; Rao, Prasanna N
2014-01-01
Costus igneus Nak and Costus pictus D. Don, commonly known as Spiral flag, is a member of Costaceae and a newly introduced plant in India from South and Central America. It is a perennial, upright, spreading plant reaching about two feet tall, with spirally arranged leaves and attractive flowers. In southern India, it usually grows as an ornamental plant and its leaves are used as a dietary supplement in the treatment of diabetes mellitus. Recently, a number of researches have been carried out to evaluate the anti-diabetic potential of this plant. Besides, it has been proven to possess various pharmacological activities like hypolipidemic, diuretic, antioxidant, anti-microbial, anti-cancerous. Further, various phytochemical investigations reveal the presence of carbohydrates, triterpenoids, proteins, alkaloids, tannins, saponins, flavonoids, steroid, and appreciable amounts of trace elements. This work is an attempt to compile and explore the different pharmacological and phytochemical studies reported till date.
Cistanches Herba: An overview of its chemistry, pharmacology, and pharmacokinetics property.
Fu, Zhifei; Fan, Xiang; Wang, Xiaoying; Gao, Xiumei
2018-06-12
Cistanches Herba is an Orobanchaceae parasitic plant. As a commonly used Traditional Chinese Medicine (TCM), its traditional functions include treating kidney deficiency, impotence, female infertility and senile constipation. Chemical analysis of Cistanches Herba revealed that phenylethanoid glycosides, iridoids, lignans, oligosaccharides, and polysaccharides were the main constituents. Pharmacological studies demonstrated that Cistanches Herba exhibited neuroprotective, immunomodulatory, hormonal balancing, anti-fatigue, anti-inflammatory, hepatoprotection, anti-oxidative, anti-bacterial, anti-viral, and anti-tumor effects, etc. The aim of this review is to provide updated, comprehensive and categorized information on the phytochemistry, pharmacological research and pharmacokinetics studies of the major constituents of Cistanches Herba. The literature search was conducted by systematic searching multiple electronic databases including SciFinder, ISI Web of Science, PubMed, Google Scholar and CNKI. Information was also collected from journals, local magazines, books, monographs. To date, more than 100 compounds have been isolated from this genus, include phenylethanoid glycosides, carbohydrates, lignans, iridoids, etc. The crude extracts and isolated compounds have exhibited a wide range of in vitro and in vivo pharmacologic effects, such as neuroprotective, immunomodulatory, anti-inflammatory, hepatoprotection, anti-oxidative, anti-bacterial, and anti-tumor effects. The phenylethanoid glycosides, echinacoside and acteoside have attracted the most attention for their significantly neuropharmacology effects. Pharmacokinetic studies of echinacoside and acteoside also have also been summarized. Phenylethanoid glycosides have demonstrated wide pharmacological actions and have great clinical value if challenges such as poor bioavailability, fast and extensive metabolism are addressed. Apart from phenylethanoid glycosides, other constituents of Cistanches Herba, their pharmacological activities and underlying mechanisms are also need to be studied further. Copyright © 2017. Published by Elsevier B.V.
Pharmacological effects of biotin.
Fernandez-Mejia, Cristina
2005-07-01
In the last few decades, more vitamin-mediated effects have been discovered at the level of gene expression. Increasing knowledge on the molecular mechanisms of these vitamins has opened new perspectives that form a connection between nutritional signals and the development of new therapeutic agents. Besides its role as a carboxylase prosthetic group, biotin regulates gene expression and has a wide repertoire of effects on systemic processes. The vitamin regulates genes that are critical in the regulation of intermediary metabolism: Biotin has stimulatory effects on genes whose action favors hypoglycemia (insulin, insulin receptor, pancreatic and hepatic glucokinase); on the contrary, biotin decreases the expression of hepatic phosphoenolpyruvate carboxykinase, a key gluconeogenic enzyme that stimulates glucose production by the liver. The findings that biotin regulates the expression of genes that are critical in the regulation of intermediary metabolism are in agreement with several observations that indicate that biotin supply is involved in glucose and lipid homeostasis. Biotin deficiency has been linked to impaired glucose tolerance and decreased utilization of glucose. On the other hand, the diabetic state appears to be ameliorated by pharmacological doses of biotin. Likewise, pharmacological doses of biotin appear to decrease plasma lipid concentrations and modify lipid metabolism. The effects of biotin on carbohydrate metabolism and the lack of toxic effects of the vitamin at pharmacological doses suggest that biotin could be used in the development of new therapeutics in the treatment of hyperglycemia and hyperlipidemia, an area that we are actively investigating.
Iyer, Abishek; Kauter, Kathleen; Alam, Md Ashraful; Hwang, Sung Hee; Morisseau, Christophe; Hammock, Bruce D; Brown, Lindsay
2012-01-01
The signs of metabolic syndrome following chronic excessive macronutrient intake include body weight gain, excess visceral adipose deposition, hyperglycaemia, glucose and insulin intolerances, hypertension, dyslipidaemia, endothelial damage, cardiovascular hypertrophy, inflammation, ventricular contractile dysfunction, fibrosis, and fatty liver disease. Recent studies show increased activity of soluble epoxide hydrolase (sEH) during obesity and metabolic dysfunction. We have tested whether sEH inhibition has therapeutic potential in a rat model of diet-induced metabolic syndrome. In these high-carbohydrate, high-fat-fed rats, chronic oral treatment with trans-4-[4-(3-adamantan-1-ylureido)-cyclohexyloxy]-benzoic acid (t-AUCB), a potent sEH inhibitor, alleviated the signs of metabolic syndrome in vivo including glucose, insulin, and lipid abnormalities, changes in pancreatic structure, increased systolic blood pressure, cardiovascular structural and functional abnormalities, and structural and functional changes in the liver. The present study describes the pharmacological responses to this selective sEH inhibitor in rats with the signs of diet-induced metabolic syndrome.
Atomoxetine for Orthostatic Hypotension in an Elderly Patient Over 10 Weeks: A Case Report.
Hale, Genevieve M; Brenner, Michael
2015-09-01
Several nonpharmacologic strategies for orthostatic hypotension exist including avoiding large carbohydrate-rich meals; limiting alcohol consumption; maintaining adequate hydration; adding salt to foods; and using compression stockings, tilt-table exercises, or abdominal binders. If these fail, however, only limited evidence-based pharmacologic treatment options are available including the use of fludrocortisone, midodrine, pyridostigmine, and droxidopa as well as pseudoephedrine, ocetreotide, and atomoxetine. This report discusses a case of atomoxetine use for 10 weeks in an elderly patient with primary orthostatic hypotension. An 84-year-old man with long-standing primary orthostatic hypotension presented to our ambulatory cardiology pharmacotherapy clinic after several unsuccessful pharmacologic therapies including fludrocortisone, midodrine, and pyridostigmine. Nonpharmacologic strategies were also implemented. Atomoxetine was initiated, and the patient showed gradual improvements in symptoms and blood pressure control over the course of 10 weeks. Our data suggest that low-dose atomoxetine is an effective and safe agent for symptom improvement and blood pressure control in elderly patients with primary orthostatic hypotension. © 2015 Pharmacotherapy Publications, Inc.
Barazzoni, R; Deutz, N E P; Biolo, G; Bischoff, S; Boirie, Y; Cederholm, T; Cuerda, C; Delzenne, N; Leon Sanz, M; Ljungqvist, O; Muscaritoli, M; Pichard, C; Preiser, J C; Sbraccia, P; Singer, P; Tappy, L; Thorens, B; Van Gossum, A; Vettor, R; Calder, P C
2017-04-01
Growing evidence underscores the important role of glycemic control in health and recovery from illness. Carbohydrate ingestion in the diet or administration in nutritional support is mandatory, but carbohydrate intake can adversely affect major body organs and tissues if resulting plasma glucose becomes too high, too low, or highly variable. Plasma glucose control is especially important for patients with conditions such as diabetes or metabolic stress resulting from critical illness or surgery. These patients are particularly in need of glycemic management to help lessen glycemic variability and its negative health consequences when nutritional support is administered. Here we report on recent findings and emerging trends in the field based on an ESPEN workshop held in Venice, Italy, 8-9 November 2015. Evidence was discussed on pathophysiology, clinical impact, and nutritional recommendations for carbohydrate utilization and management in nutritional support. The main conclusions were: a) excess glucose and fructose availability may exacerbate metabolic complications in skeletal muscle, adipose tissue, and liver and can result in negative clinical impact; b) low-glycemic index and high-fiber diets, including specialty products for nutritional support, may provide metabolic and clinical benefits in individuals with obesity, insulin resistance, and diabetes; c) in acute conditions such as surgery and critical illness, insulin resistance and elevated circulating glucose levels have a negative impact on patient outcomes and should be prevented through nutritional and/or pharmacological intervention. In such acute settings, efforts should be implemented towards defining optimal plasma glucose targets, avoiding excessive plasma glucose variability, and optimizing glucose control relative to nutritional support. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Tan, Xiaoyan; Sun, Junshe; Ning, Huijuan; Qin, Zifang; Miao, Yuxin; Sun, Tian; Zhang, Xiuqing
2018-06-30
Ganoderma lucidum is a valuable basidiomycete with numerous pharmacological compounds, which is widely consumed throughout China. We previously found that the polysaccharide content of Ganoderma lucidum fruiting bodies could be significantly improved by 45.63% with treatment of 42 °C heat stress (HS) for 2 h. To further investigate genes involved in HS response and explore the mechanisms of HS regulating the carbohydrate metabolism in Ganoderma lucidum, high-throughput RNA-Seq was conducted to analyse the difference between control and heat-treated mycelia at transcriptome level. We sequenced six cDNA libraries with three from control group (mycelia cultivated at 28 °C) and three from heat-treated group (mycelia subjected to 42 °C for 2 h). A total of 99,899 transcripts were generated using Trinity method and 59,136 unigenes were annotated by seven public databases. Among them, 2790 genes were identified to be differential expressed genes (DEGs) under HS condition, which included 1991 up-regulated and 799 down-regulated. 176 DEGs were then manually classified into five main responsive-related categories according to their putative functions and possible metabolic pathways. These groups include stress resistance-related factors; protein assembly, transportation and degradation; signal transduction; carbohydrate metabolism and energy provision-related process; other related functions, suggesting that a series of metabolic pathways in Ganoderma lucidum are activated by HS and the response mechanism involves a complex molecular network which needs further study. Remarkably, 48 DEGs were found to regulate carbohydrate metabolism, both in carbohydrate hydrolysis for energy provision and polysaccharide synthesis. In summary, this comprehensive transcriptome analysis will provide enlarged resource for further investigation into the molecular mechanisms of basidiomycete under HS condition. Copyright © 2018 Elsevier B.V. All rights reserved.
Mena, Jesus D.; Sadeghian, Ken; Baldo, Brian A.
2011-01-01
Frontal cortical regions are activated by food-associated stimuli, and this activation appears to be dysregulated in individuals with eating disorders. Nevertheless, frontal control of basic unconditioned feeding responses remains poorly understood. Here we show that hyperphagia can be driven by μ-opioid receptor stimulation in restricted regions of ventral medial prefrontal cortex (vmPFC) and orbitofrontal cortex. In both ad libitum-fed and food-restricted male Sprague-Dawley rats, bilateral infusions of the μ-opioid agonist, DAMGO, markedly increased intake of standard rat chow. When given a choice between palatable fat- versus carbohydrate enriched test diets, intra-vmPFC DAMGO infusions selectively increased carbohydrate intake, even in rats with a baseline fat preference. Rats also exhibited motor hyperactivity characterized by rapid switching between brief bouts of investigatory and ingestive behaviors. Intra-vmPFC DAMGO affected neither water intake nor non-specific oral behavior. Similar DAMGO infusions into neighboring areas of lateral orbital or anterior motor cortex had minimal effects on feeding. Neither stimulation of vmPFC-localized delta-opioid, kappa-opioid, dopaminergic, serotonergic, or noradrenergic receptors, nor antagonism of D1, 5HT1A, or alpha- or beta-adrenoceptors, reproduced the profile of DAMGO effects. Muscimol-mediated inactivation of the vmPFC, and intra-vmPFC stimulation of κ-opioid receptors or blockade of 5HT2A receptors, suppressed motor activity and increased feeding bout duration-a profile opposite to that seen with DAMGO. Hence, μ-opioid-induced hyperphagia and carbohydrate intake can be elicited with remarkable pharmacological and behavioral specificity from discrete subterritories of the frontal cortex. These findings may have implications for understanding affect-driven feeding and loss of restraint in eating disorders. PMID:21368037
Mena, Jesus D; Sadeghian, Ken; Baldo, Brian A
2011-03-02
Frontal cortical regions are activated by food-associated stimuli, and this activation appears to be dysregulated in individuals with eating disorders. Nevertheless, frontal control of basic unconditioned feeding responses remains poorly understood. Here we show that hyperphagia can be driven by μ-opioid receptor stimulation in restricted regions of ventral medial prefrontal cortex (vmPFC) and orbitofrontal cortex. In both ad libitum-fed and food-restricted male Sprague Dawley rats, bilateral infusions of the μ-opioid agonist [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) markedly increased intake of standard rat chow. When given a choice between palatable fat-enriched versus carbohydrate-enriched test diets, intra-vmPFC DAMGO infusions selectively increased carbohydrate intake, even in rats with a baseline fat preference. Rats also exhibited motor hyperactivity characterized by rapid switching between brief bouts of investigatory and ingestive behaviors. Intra-vmPFC DAMGO affected neither water intake nor nonspecific oral behavior. Similar DAMGO infusions into neighboring areas of lateral orbital or anterior motor cortex had minimal effects on feeding. Neither stimulation of vmPFC-localized δ-opioid, κ-opioid, dopaminergic, serotonergic, or noradrenergic receptors, nor antagonism of D1, 5HT1A, or α- or β-adrenoceptors, reproduced the profile of DAMGO effects. Muscimol-mediated inactivation of the vmPFC, and intra-vmPFC stimulation of κ-opioid receptors or blockade of 5-HT2A (5-hydroxytryptamine receptor 2A) receptors, suppressed motor activity and increased feeding bout duration-a profile opposite to that seen with DAMGO. Hence, μ-opioid-induced hyperphagia and carbohydrate intake can be elicited with remarkable pharmacological and behavioral specificity from discrete subterritories of the frontal cortex. These findings may have implications for understanding affect-driven feeding and loss of restraint in eating disorders.
Adkar, Prafulla P.; Bhaskar, V. H.
2014-01-01
Pandanus odoratissimus Linn. (family: Pandanaceae) is traditionally recommended by the Indian Ayurvedic medicines for treatment of headache, rheumatism, spasm, cold/flu, epilepsy, wounds, boils, scabies, leucoderma, ulcers, colic, hepatitis, smallpox, leprosy, syphilis, and cancer and as a cardiotonic, antioxidant, dysuric, and aphrodisiac. It contains phytochemicals, namely, lignans and isoflavones, coumestrol, alkaloids, steroids, carbohydrates, phenolic compounds, glycosides, proteins, amino acids as well as vitamins and nutrients, and so forth. It is having immense importance in nutrition. A 100 g edible Pandanus pericarp is mainly comprised of water and carbohydrates (80 and 17 g, resp.) and protein (1.3 mg), fat (0.7 mg), and fiber (3.5 g). Pandanus fruits paste provides 321 kilocalories, protein (2.2 g), calcium (134 mg), phosphorus (108 mg), iron (5.7 mg), thiamin (0.04 mg), vitamin C (5 mg), and beta-carotene (19 to 19,000 μg) (a carotenoid that is a precursor to vitamin A). Pandanus fruit is an important source of vitamins C, B1, B2, B3, and so forth, usually prepared as a Pandanus floured drink. Traditional claims were scientifically evaluated by the various authors and the phytochemical profile of plant parts was well established. The methods for analytical estimations were developed. However, there is paucity of systematic compilation of scientifically important information about this plant. In the present review we have systematically reviewed and compiled information of pharmacognostic, ethnopharmacology, phytochemistry, pharmacology, nutritional aspects, and analytical methods. This review will enrich knowledge leading the way into the discovery of new therapeutic agents with improved and intriguing pharmacological properties. PMID:25949238
Fleming, Michael F; Anton, Raymond F; Spies, Claudia D
2004-09-01
Carbohydrate-deficient transferrin (CDT) is an alcohol biomarker recently approved by the U.S. Food and Drug Administration. This test is increasingly being used to detect and monitor alcohol use in a variety of health care, legal, and industrial settings. The goal of this study is to review the genetic, biological, pharmacological, and clinical factors that may affect CDT levels. A review of the literature identified 95 research articles that met the authors' criteria and reported potential interactions of a variety of factors on percent and total CDT levels. The review established 12 categories of variables that may affect CDT levels. These categories include (1) alcohol use, (2) genetic factors, (3) race, (4) gender, (5) age, (6) liver disease, (7) iron levels, (8) tobacco use, (9) medication such as estrogen and anticonvulsants, (10) metabolic factors such as body mass index and total body water, (11) chronic medical conditions such as rheumatoid arthritis, and (12) surgical patients. There is evidence that %CDT levels are affected by alcohol use, end-stage liver disease, and genetic variants. In addition to these three factors, total CDT levels (CDTect) are also affected by factors that raise transferrin levels such as iron deficiency, chronic illnesses, and menopausal status. Other potential factors such as tobacco and age appear to be confounded by alcohol use. The roles of female gender, low body mass index, chronic inflammatory diseases, and medication on CDT levels require further study. False negatives are associated with female gender, episodic lower level alcohol use, and acute trauma with blood loss. This review suggests that a number of factors are associated with false-positive CDTect and %CDT levels. CDT offers great promise to assist physicians in the care of patients to detect and monitor heavy alcohol use.
Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients.
Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans
2009-09-01
A number of highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized within the last few years. It is noteworthy that many of these receptors are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids and are expressed in taste tissue, the gastrointestinal tract, endocrine glands, adipose tissue, and/or kidney. These receptors thus hold the potential to act as sensors of food intake, regulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue. The promiscuous tendency in ligand recognition of these receptors is in contrast to the typical specific interaction with one physiological agonist seen for most receptors, which challenges the classic "lock-and-key" concept. We here review the molecular mechanisms of nutrient sensing of the calcium-sensing receptor, the G protein-coupled receptor family C, group 6, subtype A (GPRC6A), and the taste1 receptor T1R1/T1R3, which are sensing L-alpha-amino acids, the carbohydrate-sensing T1R2/T1R3 receptor, the proteolytic degradation product sensor GPR93 (also termed GPR92), and the free fatty acid (FFA) sensing receptors FFA1, FFA2, FFA3, GPR84, and GPR120. The involvement of the individual receptors in sensing of food intake has been validated to different degrees because of limited availability of specific pharmacological tools and/or receptor knockout mice. However, as a group, the receptors represent potential drug targets, to treat, for example, type II diabetes by mimicking food intake by potent agonists or positive allosteric modulators. The ligand-receptor interactions of the promiscuous receptors of organic nutrients thus remain an interesting subject of emerging functional importance.
Sankaranarayanan, Chandrasekaran; Nishanthi, Ramajayam; Pugalendi, Pachaiappan
2018-07-01
Aberrations in the activities of key enzymes of carbohydrate metabolism is well documented in diabetes mellitus. Previous studies have shown that active ingredients in the extracts of Berberis aristata exhibits diverse pharmacological activities in animal models. The present study was undertaken to investigate whether berbamine (BBM), an alkaloid from the roots of Berberis aristata can ameliorate the altered activities of carbohydrate metabolic enzymes in high fat diet (HFD)/streptozotocin (STZ) induced diabetic rats. Supplementation of HFD for 4 weeks followed by intraperitonial administration of single low dose of STZ (40 mg/kg b.w.) to Sprague Dawley rats resulted in significant hyperglycemia with a decline in plasma insulin levels. The rats also exhibited decreased hemoglobin with an increase in glycated hemoglobin levels. The activities of hexokinase, glucose-6-phosphate dehydrogenase were decreased whereas increases in the activities of glucose-6-phosphatase and fructose-1,6-bisphosphatase were observed in the hepatic tissues of diabetic control rats. Glycogen content in the hepatic and skeletal muscle tissues were found to be decreased in diabetic rats. Oral administration of BBM for 56 days, dose dependently (50, 100, 200 mg/kg b.w.) improved insulin secretion in diabetic treated rats. Immunohistochemical studies on pancreas revealed a strong immunoreactivity to insulin in BBM treated rats. At the effective dose of 100 mg/kg b.w., BBM restored the altered activities of carbohydrate metabolic enzymes and also improved glycogen content in insulin dependent tissues. From the biochemical and histochemical data obtained in this study we conclude that BBM ameliorated the activities of metabolic enzymes and maintained glucose homeostasis in HFD/STZ induced diabetic rats and it can be used as a potential phytomedicine for the management of diabetes mellitus. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Cardiopulmonary bypass considerations for pediatric patients on the ketogenic diet.
Melchior, R W; Dreher, M; Ramsey, E; Savoca, M; Rosenthal, T
2015-07-01
There is a population of children with epilepsy that is refractory to anti-epileptic drugs. The ketogenic diet, a high-fat, low-carbohydrate regimen, is one alternative treatment to decrease seizure activity. Special considerations are required for patients on the ketogenic diet undergoing cardiopulmonary bypass (CPB) to prevent exposure to glucose substrates that could alter ketosis, increasing the risk of recurrent seizures. A 2-year-old, 9 kilogram male with a history of infantile spasms with intractable epilepsy, trisomy 21 status post tetralogy of Fallot repair, presented to the cardiac operating room for closure of a residual atrial septal defect. All disciplines of the surgical case minimized the use of carbohydrate-containing and contraindicated medications. Changes to the standard protocol and metabolic monitoring ensured the patient maintained ketosis. All disciplines within cardiac surgery need to be cognizant of patients on the ketogenic diet and prepare a modified protocol. Future monitoring considerations include thromboelastography, electroencephalography and continuous glucose measurement. Key areas of focus with this patient population in the cardiac surgical theater are to maintain a multidisciplinary approach, alter the required CPB prime components, address cardiac pharmacological concerns and limit any abnormal hematological occurrences. © The Author(s) 2014.
Depigmentation and Characterization of Fucoidan from Brown Seaweed Sargassum binderi Sonder
NASA Astrophysics Data System (ADS)
Saepudin, Endang; Sinurat, Ellya; Azmi Suryabrata, Ira
2018-01-01
Fucoidan has many uses in the field of pharmacology, therefore it is necessary to improve the quality of fucoidan by increasing its purity. The objective of this study was to remove brown pigment from seaweed and observe the effect of the result to the activity of isolated fucoidan. In this study, the pigment was removed by organic solvents in the maceration step. The pigment removal using ethanol was found to give a better result than that of the solvent mixture (methanol: chloroform: water) from previous study, indicated by the appearance of fucoidan color. The result showed fucoidan has a better color, total carbohydrate was 89.23% and total sulphate 18.74%.
Larter, Claire Z; Yeh, Matthew M; Van Rooyen, Derrick M; Brooling, John; Ghatora, Kamaljit; Farrell, Geoffrey C
2012-02-01
Lipid accumulation precedes hepatocellular injury and liver inflammation in non-alcoholic steatohepatitis (NASH). The peroxisome proliferator-activated receptor (PPAR)α regulates hepatic lipid disposal. We studied whether pharmacological stimulation of PPARα reverses NASH associated with metabolic syndrome in high-fat (HF)-fed foz/foz obese/diabetic mice. Female foz/foz mice and wildtype (WT) littermates were fed HF diet for 16 weeks to initiate NASH then treated with Wy 14,643 (Wy) for 10 days or 20 days. Liver disease was assessed by histology, serum alanine aminotransferase, genes (real-time polymerase chain reaction) and proteins (Western blot, enzyme-linked immunosorbent assay) of interest and pro-inflammatory signaling pathways were determined. In diabetic foz/foz mice, NASH was associated with elevated serum MCP1 and hepatic activation of nuclear factor (NF)-κB and c-Jun N-terminal kinase, but not oxidative or endoplasmic reticulum stress. Wy treatment decreased steatosis and injury, although induction of PPARα-responsive fatty acid oxidation genes was proportionally less than in WT. The PPARα agonist lowered serum insulin, corrected hyperglycemia, and suppressed the carbohydrate-dependent lipogenic transcription factor, carbohydrate response element binding protein. Steatosis resolution was associated with suppression of NF-κB and JNK activation and decreased hepatic macrophages and neutrophils. Despite this, histology inflammation score remained high, associated with serum monocyte chemoattractant protein (MCP)1 elevation, a pro-inflammatory chemokine related to higher adipose, not liver MCP1 mRNA expression. Pharmacological activation of PPARα improves metabolic milieu, steatosis, ballooning, and combats NF-κB and JNK activation, neutrophil and F4/80 macrophage recruitment in diabetes-related NASH. However, persistent liver inflammation with high serum MCP1 due to unsuppressed adipose inflammation may limit PPARα agonists' efficacy as therapy for NASH. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.
Kotańska, Magdalena; Kulig, Katarzyna; Marcinkowska, Monika; Bednarski, Marek; Malawska, Katarzyna; Zaręba, Paula
2018-05-01
Previous studies have shown that several components of the metabolic syndrome, such as hypertension, obesity or imbalanced lipid and carbohydrate homeostasis, are associated with the sympathetic nervous system overactivity. Therefore, the inhibition of the adrenergic nervous system seems to be a reasonable and appropriate therapeutic approach for the treatment of metabolic disturbances. It has been suggested that non-selective adrenoceptor antagonists could be particularly beneficial, since α 1 -adrenoceptor antagonists can improve disrupted lipid and carbohydrate profiles, while the inhibition of the α 2 -adrenoceptor may contribute to body weight reduction. The aim of the present study was to investigate the metabolic benefits deriving from administration of a non-selective α-adrenoceptor antagonist from the group of pyrrolidin-2-one derivatives. The aim of the present study was to investigate the potential metabolic benefits deriving from chronic administration of a non-selective α-adrenoceptor antagonist, from the group of pyrrolidin-2-one derivatives. The α 1 - and α 2 -adrenoreceptor affinities of the tested compound-1-(3-(4-(o-tolyl)piperazin-1-yl)propyl)pyrrolidin-2-one had been investigated previously by means of the radioligand binding assay. In the present study, we extended the pharmacological profile characteristics of the selected molecule by additional intrinistic activity assays. Next, we investigated the influence of the tested compound on body weight, hyperglycemia, hypertriglyceridemia, blood pressure in the animal model of obesity induced by a high-fat diet, and additionally we measured the spontaneous activity and body temperature. The intrinistic activity studies revealed that the tested compound is a potent, non-selective antagonist of α 1B and α 2A -adrenoceptors. After the chronic administration of the tested compound, we observed reduced level of triglycerides and glucose in the rat plasma. Interestingly, the tested did not reduce the body weight and did not influence the blood pressure in normotensive animals. Additionally, the administration of the tested compound did not change the animals' spontaneous activity and body temperature. Non-selective α-adrenoceptor antagonist seems to carry potential benefits in the improvement of the reduction of elevated glucose and triglyceride level. The lack of influence on blood pressure suggests that compounds with such a pharmacological profile may be particulary beneficial for the patients with disturbed lipid and carbohydrate profile, who do not suffer from hypertension. These results are particulary valuable, since currently there are no safe α 2A -adrenoceptor antagonist drugs available in clinical use with the ability to modulate hyperglycemia that would not affect blood pressure.
Glucokinase activity in the arcuate nucleus regulates glucose intake
Hussain, Syed; Richardson, Errol; Ma, Yue; Holton, Christopher; De Backer, Ivan; Buckley, Niki; Dhillo, Waljit; Bewick, Gavin; Zhang, Shuai; Carling, David; Bloom, Steve; Gardiner, James
2014-01-01
The brain relies on a constant supply of glucose, its primary fuel, for optimal function. A taste-independent mechanism within the CNS that promotes glucose delivery to the brain has been postulated to maintain glucose homeostasis; however, evidence for such a mechanism is lacking. Here, we determined that glucokinase activity within the hypothalamic arcuate nucleus is involved in regulation of dietary glucose intake. In fasted rats, glucokinase activity was specifically increased in the arcuate nucleus but not other regions of the hypothalamus. Moreover, pharmacologic and genetic activation of glucokinase in the arcuate nucleus of rodent models increased glucose ingestion, while decreased arcuate nucleus glucokinase activity reduced glucose intake. Pharmacologic targeting of potential downstream glucokinase effectors revealed that ATP-sensitive potassium channel and P/Q calcium channel activity are required for glucokinase-mediated glucose intake. Additionally, altered glucokinase activity affected release of the orexigenic neurotransmitter neuropeptide Y in response to glucose. Together, our results suggest that glucokinase activity in the arcuate nucleus specifically regulates glucose intake and that appetite for glucose is an important driver of overall food intake. Arcuate nucleus glucokinase activation may represent a CNS mechanism that underlies the oft-described phenomena of the “sweet tooth” and carbohydrate craving. PMID:25485685
Ketogenic diet therapy for epilepsy during pregnancy: A case series.
van der Louw, Elles J T M; Williams, Tanya J; Henry-Barron, Bobbie J; Olieman, Joanne F; Duvekot, Johannes J; Vermeulen, Marijn J; Bannink, Natalja; Williams, Monique; Neuteboom, Rinze F; Kossoff, Eric H; Catsman-Berrevoets, Coriene E; Cervenka, Mackenzie C
2017-02-01
Evaluation of ketogenic diet (KD) therapies for seizure control during pregnancy when safety and appropriate management become considerations. Until now, no information has been available on seizure reduction and human pregnancy related outcomes in women treated with KD therapies. We describe two cases of pregnant women with epilepsy treated with KD therapy either as monotherapy (Case 1) or as adjunctive therapy (Case 2). Case 1: A 27 year old woman, gravida1, started the classic KD with medium chain triglyceride (MCT) emulsion and 75g carbohydrate-restriction, later reduced to 47g. Glucose levels were 4-6mmol/L and blood ketone levels ranged from 0.2 to 1.4mmol/L. Seizure frequency decreased and seizure-free days increased. Mild side effects included intolerance to MCT, reduced serum carnitine and vitamin levels, and mild hyperlipidemia. Fetal and neonatal growth was normal as was growth and development at 12 months. Case 2: A 36 year-old nulliparous woman was treated with a 20 gram carbohydrate-restricted Modified Atkins Diet (MAD) and lamotrigine, resulting in reduction of seizure frequency to once per month prior to pregnancy. Once pregnant, carbohydrates were increased to 30g. When seizures increased, lamotrigine dose was doubled. Urine ketones trended down during second trimester. A male was born with bilateral ear deformities of unknown significance. The child had a normal neurodevelopment at eight months. Non-pharmacological epilepsy therapies like KD and MAD may be effective during human pregnancy. However, safety still has to be established. Further monitoring to identify potential long term side effects is warranted. Copyright © 2017 British Epilepsy Association. All rights reserved.
Straznicky, Nora E; Grima, Mariee T; Sari, Carolina I; Eikelis, Nina; Lambert, Gavin W; Nestel, Paul J; Richards, Katrina; Dixon, John B; Schlaich, Markus P; Lambert, Elisabeth A
2015-07-01
Insulin resistance is associated with blunted sympathetic nervous system (SNS) response to carbohydrate ingestion which may contribute to postprandial hypotension and impaired body weight homeostasis. This study was conducted to examine the effects of pharmacological insulin sensitization on whole-body norepinephrine kinetics during a standard 75-g oral glucose tolerance test (OGTT) in obese, insulin resistant subjects with metabolic syndrome. Un-medicated individuals (n=42, mean age 56±0.8 yrs, body mass index 34±0.6 kg/m(2)) were randomised to 12-weeks pioglitazone (PIO, 15 mg for 6 weeks, then 30 mg daily) or placebo using a double-blind, parallel group design. Whole-body norepinephrine kinetics (arterial norepinephrine concentration, calculated spillover and clearance rates), spontaneous cardiac baroreflex sensitivity, heart rate and blood pressure were measured at times 0, 30, 60, 90 and 120 minutes during OGTT. Insulin sensitivity was assessed by euglycemic hyperinsulinemic clamp (M) and Matsuda index. PIO increased clamp derived glucose utilisation by 35% (P<0.001) and there were concurrent reductions in inflammatory status and plasma triglycerides (P<0.05). Fasting norepinephrine kinetic parameters were unaltered. PIO treatment was associated with lower plasma insulin incursions, greater reduction in diastolic blood pressure and enhanced baroreflex sensitivity during OGTT (P all <0.05). The overall norepinephrine spillover response (AUC(0-120)) increased significantly in the PIO group (group × time interaction, P=0.04), with greatest increment at 30 minutes post-glucose (101±38 ng/min at baseline versus 241±48 ng/min post treatment, P=0.04) and correlated with percent improvement in M. PIO enhances the early postprandial SNS response to carbohydrate ingestion. Copyright © 2015. Published by Elsevier Inc.
Physiology and relevance of human adaptive thermogenesis response.
Celi, Francesco S; Le, Trang N; Ni, Bin
2015-05-01
In homoeothermic organisms, the preservation of core temperature represents a primal function, and its costs in terms of energy expenditure can be considerable. In modern humans, the endogenous thermoregulation mechanisms have been replaced by clothing and environmental control, and the maintenance of thermoneutrality has been successfully achieved by manipulation of the micro- and macroenvironment. The rediscovery of the presence and activity of brown adipose tissue in adult humans has renewed the interest on adaptive thermogenesis (AT) as a means to facilitate weight loss and improve carbohydrate metabolism. The aim of this review is to describe the recent advancements in the study of this function, and to assess the potential and limitations of exploiting AT for environmental/behavioral, and pharmacological interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ganie, Showkat Ahmad; Yadav, Surender Singh
2014-01-01
Holoptelea integrifolia (Ulmaceae) is a versatile medicinal plant used in various indigenous systems of medicine for curing routine healthcare maladies. It is traditionally used in the treatment and prevention of several ailments like leprosy, inflammation, rickets, leucoderma, scabies, rheumatism, ringworm, eczema, malaria, intestinal cancer, and chronic wounds. In vitro and in vivo pharmacological investigations on crude extracts and isolated compounds showed antibacterial, antifungal, analgesic, antioxidant, anti-inflammatory, anthelmintic, antidiabetic, antidiarrhoeal, adaptogenic, anticancer, wound healing, hepatoprotective, larvicidal, antiemetic, CNS depressant, and hypolipidemic activities. Phytochemical analysis showed the presence of terpenoids, sterols, saponins, tannins, proteins, carbohydrates, alkaloids, phenols, flavonoids, glycosides, and quinines. Numerous compounds including Holoptelin-A, Holoptelin-B, friedlin, epifriedlin, β-amyrin, stigmasterol, β-sitosterol, 1, 4-napthalenedione, betulin, betulinic acid, hexacosanol, and octacosanol have been identified and isolated from the plant species. The results of several studies indicated that H. integrifolia may be used as an effective therapeutic remedy in the prevention and treatment of various ailments. However, further studies on chemical constituents and their mechanisms in exhibiting certain biological activities are needed. In addition, study on the toxicity of the crude extracts and the compounds isolated from this plant should be assessed to ensure their eligibility to be used as source of modern medicines. PMID:24949441
Rheum australe D. Don: a review of its botany, ethnobotany, phytochemistry and pharmacology.
Rokaya, Maan Bahadur; Münzbergová, Zuzana; Timsina, Binu; Bhattarai, Krishna Ram
2012-06-14
Rheum australe D. Don (Polygonaceae) has been commonly used in traditional medicine for a wide range of ailments related to the circulatory, digestive, endocrine, respiratory and skeletal systems as well as to infectious diseases. To provide the up-to-date information that is available on the botany, traditional uses, phytochemistry, pharmacology and toxicology of Rheum australe. Additionally, to highlight the possible uses of this species to treat different diseases and to provide a basis for future research. The present review covers the literature available from 1980 to 2011. The information was collected from scientific journals, books, theses and reports via a library and electronic search (Google Scholar, Web of Science and ScienceDirect). Ethnomedical uses of Rheum australe have been recorded from China, India, Nepal and Pakistan for 57 different types of ailments. The phytochemical studies have shown the presence of many secondary metabolites belonging to anthraquinones, stilbenes, anthrones, oxantrone ethers and esters, chromones, flavonoids, carbohydrate, lignans, phenols and sterols. Crude extracts and isolated compounds from Rheum australe show a wide spectrum of pharmacological activities, such as antidiabetic, anti-inflammatory, antifungal, antimicrobial, antioxidant, anticancer, hepatoprotective and immune-enhancing activities, as well as a usefulness for improving renal function. Rheum australe has been widely used source of medicine for years without any adverse effects. Many studies have provided evidence for various traditional uses. However, there is a need for additional studies of the isolated compounds to validate the traditional uses in human models. The present review on the botany, traditional uses, phytochemistry and toxicity has provided preliminary information for further studies and commercial exploitations of the plant. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Mechanisms of lectin and antibody-dependent polymorphonuclear leukocyte-mediated cytolysis.
Tsunawaki, S; Ikenami, M; Mizuno, D; Yamazaki, M
1983-04-01
The mechanisms of tumor lysis by polymorphonuclear leukocytes (PMNs) were investigated. In antibody-dependent PMN-mediated cytolysis (ADPC), sensitized tumor cells were specifically lysed via Fc receptors on PMNs. On the other hand, lectin-dependent PMN-mediated cytolysis (LDPC) caused nonspecific lysis of several murine tumors after recognition of carbohydrate moieties on the cell membrane of both PMNs and tumor cells. Both ADPC and LDPC depended on glycolysis, and cytotoxicity was mediated by reactive oxygen species; LDPC was dependent on superoxide and ADPC on the myeloperoxidase system. The participation of reactive oxygen species in PMN cytotoxicity was also demonstrated by pharmacological triggering with phorbol myristate acetate. These results indicate that reactive oxygen species have an important role In tumor killing by PMNs and that ADPC and LDPC have partly different cytolytic processes as well as different recognition steps.
Pharmacological effects and potential therapeutic targets of DT-13.
Khan, Ghulam Jilany; Rizwan, Mohsin; Abbas, Muhammad; Naveed, Muhammad; Boyang, Yu; Naeem, Muhammad Ahsan; Khan, Sara; Yuan, Shengtao; Baig, Mirza Muhammad Faran Ashraf; Sun, Li
2018-01-01
DT-13 is an isolated compound from Dwarf lillytruf tuber and currently among active research drugs by National Natural Science foundation of China for its several potential effects. The drug has been reported for its multiple pharmacological actions however no thorough review studies are available on it. Our present study is highlighting the pros and cons of DT-13 focusing on its potential pharmacological actions, therapeutic utilization and further exploration for novel targets. The drug possesses very low toxicity profile, quick onset and long duration of action with slow elimination that combinely makes it favorable for the clinical studies. In vivo and in vitro studies show that the drug regulates multiple cellular functions for its several pharmacological effects including, anti-adhesive effects via regulation of tissue factor and transforming growth factor; anti-migratory effects through indirect regulation of NM-IIA in the tumor microenvironment, Tissue factor, down-regulation of CCR5-CCL5 axis and MMP-2/9 inhibition; anti-metastatic effects via regulation of MMPs and tissue factor; pro-apoptotic effects by modulation of endocytosis of EGF receptor; anti-angiogenic effects via regulation of HIF-1α,ERK, Akt signalling and autophagy inducing characteristics by regulating PI3K/Akt/mTOR signalling pathway. In addition to anti-tumor activities, DT-13 has significant anti-inflammatory, cardioprotective, hepatoprotective and immunomodulating effects. Pharmaceutical dosage form and targeted drug delivery system for DT-13 has not been established yet. Moreover, DT-13, has not been studied for its action on brain, colorectal, hepatic, pancreatic, prostate and blood cancers. Similarly the effects of drug on carbohydrate and glucose metabolism is another niche yet to be explored. In some traditional therapies, crude drug from the plant is used against diabetic and neurological disorders that are not reported in scientific literature, however due to profound effects of DT-13 on blood and cerebral ischemic disorders, it is reasonable to hypothesize that there could be an association of DT-13 that require further exploration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Augustin, Katrin; Khabbush, Aziza; Williams, Sophie; Eaton, Simon; Orford, Michael; Cross, J Helen; Heales, Simon J R; Walker, Matthew C; Williams, Robin S B
2018-01-01
High-fat, low-carbohydrate diets, known as ketogenic diets, have been used as a non-pharmacological treatment for refractory epilepsy. A key mechanism of this treatment is thought to be the generation of ketones, which provide brain cells (neurons and astrocytes) with an energy source that is more efficient than glucose, resulting in beneficial downstream metabolic changes, such as increasing adenosine levels, which might have effects on seizure control. However, some studies have challenged the central role of ketones because medium-chain fatty acids, which are part of a commonly used variation of the diet (the medium-chain triglyceride ketogenic diet), have been shown to directly inhibit AMPA receptors (glutamate receptors), and to change cell energetics through mitochondrial biogenesis. Through these mechanisms, medium-chain fatty acids rather than ketones are likely to block seizure onset and raise seizure threshold. The mechanisms underlying the ketogenic diet might also have roles in other disorders, such as preventing neurodegeneration in Alzheimer's disease, the proliferation and spread of cancer, and insulin resistance in type 2 diabetes. Analysing medium-chain fatty acids in future ketogenic diet studies will provide further insights into their importance in modified forms of the diet. Moreover, the results of these studies could facilitate the development of new pharmacological and dietary therapies for epilepsy and other disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mezencev, Roman
2015-01-01
Since the discovery of its anticancer activity in 1970s, cisplatin and its analogs have become widely used in clinical practice, being administered to 40-80% of patients undergoing chemotherapy for solid tumors. The fascinating story of this drug continues to evolve presently, which includes advances in our understanding of complexity of molecular mechanisms involved in its anticancer activity and drug toxicity. While genomic DNA has been generally recognized as the most critical pharmacological target of cisplatin, the results reported across multiple disciplines suggest that other targets and molecular interactions are likely involved in the anticancer mode of action, drug toxicity and resistance of cancer cells to this remarkable anticancer drug. This article reviews interactions of cisplatin with non-DNA targets, including RNAs, proteins, phospholipids and carbohydrates in the context of its pharmacological activity and drug toxicity. Some of these non-DNA targets and associated mechanisms likely act in a highly concerted manner towards the biological outcome in cisplatin-treated tumors; therefore, the understanding of complexity of cisplatin interactome may open new avenues for modulation of its clinical efficacy or for designing more efficient platinum-based anticancer drugs to reproduce the success of cisplatin in the treatment of highly curable testicular germ cell tumors in its therapeutic applications to other cancers.
Diabetic emergencies including hypoglycemia during Ramadan
Ahmad, Jamal; Pathan, Md Faruque; Jaleel, Mohammed Abdul; Fathima, Farah Naaz; Raza, Syed Abbas; Khan, A. K. Azad; Ishtiaq, Osama; Sheikh, Aisha
2012-01-01
Majority of physicians are of the opinion that Ramadan fasting is acceptable for well-balanced type 2 patients conscious of their disease and compliant with their diet and drug intake. Fasting during Ramadan for patients with diabetes carries a risk of an assortment of complications. Islamic rules allow patients not to fast. However, if patient with diabetes wish to fast, it is necessary to advice them to undertake regular monitoring of blood glucose levels several times a day, to reduce the risk of hypoglycemia during day time fasting or hyperglycemia during the night. Patient with type 1 diabetes who fast during Ramadan may be better managed with fast-acting insulin. They should have basic knowledge of carbohydrate metabolism, the standard principles of diabetes care, and pharmacology of various antidiabetic drugs. This Consensus Statement describes the management of the various diabetic emergencies that may occur during Ramadan. PMID:22837906
Cui, Mei-lin; Yang, Huan-yi; He, Guo-qing
2015-01-01
As the main bioactive metabolites of Ganoderma lucidum, triterpenoids have various pharmacological effects. In this paper, the nutritional requirements and culture conditions of a submerged culture of G. lucidum were optimized using the response surface methodology; maximum mycelia biomass and intracellular triterpenoid production reached 1.87 g/100 ml and 93.21 mg/100 ml, respectively, for a culture consisting of wort 4.10% (0.041 g/ml) and yeast extract 1.89% (0.0189 g/ml), pH 5.40. For the first time, we established that wort, which is cheap and abundant, can replace the more commonly used glucose as the sole source of carbohydrate. Using high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS), 10 major ganoderic acids were tentatively identified based on the predominant fragmentation pathways with the elimination of H2O and CO2, as well as cleavage of the D-ring. PMID:26642183
The role of the mitochondrial pyruvate carrier in substrate regulation
Vacanti, Nathaniel M.; Divakaruni, Ajit S.; Green, Courtney R.; Parker, Seth J.; Henry, Robert R.; Ciaraldi, Theodore P.; Murphy, Anne N.; Metallo, Christian M.
2014-01-01
SUMMARY Pyruvate lies at a central biochemical node connecting carbohydrate, amino acid, and fatty acid metabolism, and the regulation of pyruvate flux into mitochondria represents a critical step in intermediary metabolism impacting numerous diseases. To characterize changes in mitochondrial substrate utilization in the context of compromised mitochondrial pyruvate transport, we applied 13C metabolic flux analysis (MFA) to cells after transcriptional or pharmacological inhibition of the mitochondrial pyruvate carrier (MPC). Despite profound suppression of both glucose and pyruvate oxidation, cell growth, oxygen consumption, and tricarboxylic acid (TCA) metabolism were surprisingly maintained. Oxidative TCA flux was achieved through enhanced reliance on glutaminolysis through malic enzyme and pyruvate dehydrogenase (PDH) as well as fatty acid and branched chain amino acid oxidation. Thus, in contrast to inhibition of complex I or PDH, suppression of pyruvate transport induces a form of metabolic flexibility associated with use of lipids and amino acids as catabolic and anabolic fuels. PMID:25458843
Chemical compositions and glycemic responses to banana varieties.
Hettiaratchi, U P K; Ekanayake, S; Welihinda, J
2011-06-01
Chemical compositions and glycemic indices of four varieties of banana (Musa spp.) (kolikuttu-Silk AAB, embul-Mysore AAB, anamalu-Gros Michel AAA, seeni kesel-Pisang Awak ABB) were determined. Silk, Gros Michel, Pisang Awak and Mysore contained the highest percentages of starch (14%), sucrose (38%), free glucose (29%) and fructose (58%) as a percentage of the total available carbohydrate content respectively. Total dietary fiber contents of four varieties ranged from 2.7 to 5.3%. Glycemic indices of Silk, Mysore, Gros Michel and Pisang Awak were 61 ± 5, 61 ± 6, 67 ± 7, 69 ± 9 and can be categorized as low against white bread as the standard. A single banana of the four varieties elicited a low glycemic load. Thus, consumption of a banana from any of these varieties can be recommended as a snack for healthy or diabetic patients who are under dietary management or pharmacological drugs to regulate blood glucose responses in between meals.
NASA Astrophysics Data System (ADS)
Churilov, G.; Ivanycheva, J.; Kiryshin, V.
2015-11-01
When treating the plants seeds with nano-materials there are some quality and quantity changes of polysaccharides, the molecular mass increase and monosaccharides change that leads to the increase of physiological and pharmacological activity of carbohydrates got from medicinal plants. We have got water soluble polysaccharides and nano-metals combinations containing 0.000165-0.000017 mg/dm3 of the metal. In a case of induced anemia the blood composition has practically restored on the 10th day of the treatment with nanocomposites. The use of pectin polysaccharides (that are attributed to modifiers of biological respond) to get nano-structured materials seems to be actual relative to their physiological activity (radio nuclides persorption, heavy metals ions, bacteria cells and their toxins; lipids metabolism normalization; bowels secreting and motor functions activation and modulation of the endocrine system.
Comparative biochemistry of renins and angiotensins in the vertebrates.
Nakajima, T; Khosla, M C; Sakakibara, S
1978-09-01
Comparative biochemistry of renins and angiotensins was discussed. Renin extracted from hog kidney was different from that from mouse submaxillary glands in immunoreactivity and carbohydrate content. Rat kidney renin was also different from hog kidney renin in the amino acid composition. The presence of big and big-big renins was pointed out immunochemically. These big renins were considered to be precursors of kidney renin. Angiotensins in mammalian and nonmammalian species produced by renal or extrarenal renin have been differentiated by some biochemical and pharmacological criteria. Some of these angiotensins were analyzed sequentially. The replacements of amino acid residues at positions 1, 5, and/or 9 of angiotensin I have been demonstrated in nonmammalian species. Specific pressor activities have been determined using synthetic angiotensins by a 4 point assay in rat. Specific pressor activities of various angiotensins were obtained from the dose-blood pressure-response curves using a single angiotensin sample per assay rat.
Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels.
Ma, Weiyuan; Berg, Jim; Yellen, Gary
2007-04-04
A low-carbohydrate ketogenic diet remains one of the most effective (but mysterious) treatments for severe pharmacoresistant epilepsy. We have tested for an acute effect of physiological ketone bodies on neuronal firing rates and excitability, to discover possible therapeutic mechanisms of the ketogenic diet. Physiological concentrations of ketone bodies (beta-hydroxybutyrate or acetoacetate) reduced the spontaneous firing rate of neurons in slices from rat or mouse substantia nigra pars reticulata. This region is thought to act as a "seizure gate," controlling seizure generalization. Consistent with an anticonvulsant role, the ketone body effect is larger for cells that fire more rapidly. The effect of ketone bodies was abolished by eliminating the metabolically sensitive K(ATP) channels pharmacologically or by gene knock-out. We propose that ketone bodies or glycolytic restriction treat epilepsy by augmenting a natural activity-limiting function served by K(ATP) channels in neurons.
NASA Astrophysics Data System (ADS)
Kim, Han-Shin; Cha, Eunji; Kim, Yunhye; Jeon, Young Ho; Olson, Betty H.; Byun, Youngjoo; Park, Hee-Deung
2016-05-01
Biofilm formation on biotic or abiotic surfaces has unwanted consequences in medical, clinical, and industrial settings. Treatments with antibiotics or biocides are often ineffective in eradicating biofilms. Promising alternatives to conventional agents are biofilm-inhibiting compounds regulating biofilm development without toxicity to growth. Here, we screened a biofilm inhibitor, raffinose, derived from ginger. Raffinose, a galactotrisaccharide, showed efficient biofilm inhibition of Pseudomonas aeruginosa without impairing its growth. Raffinose also affected various phenotypes such as colony morphology, matrix formation, and swarming motility. Binding of raffinose to a carbohydrate-binding protein called LecA was the cause of biofilm inhibition and altered phenotypes. Furthermore, raffinose reduced the concentration of the second messenger, cyclic diguanylate (c-di-GMP), by increased activity of a c-di-GMP specific phosphodiesterase. The ability of raffinose to inhibit P. aeruginosa biofilm formation and its molecular mechanism opens new possibilities for pharmacological and industrial applications.
Carbohydrate and exercise performance: the role of multiple transportable carbohydrates.
Jeukendrup, Asker E
2010-07-01
Carbohydrate feeding has been shown to be ergogenic, but recently substantial advances have been made in optimizing the guidelines for carbohydrate intake during prolonged exercise. It was found that limitations to carbohydrate oxidation were in the absorptive process most likely because of a saturation of carbohydrate transporters. By using a combination of carbohydrates that use different intestinal transporters for absorption it was shown that carbohydrate delivery and oxidation could be increased. Studies demonstrated increases in exogenous carbohydrate oxidation rates of up to 65% of glucose: fructose compared with glucose only. Exogenous carbohydrate oxidation rates reach values of 1.75 g/min whereas previously it was thought that 1 g/min was the absolute maximum. The increased carbohydrate oxidation with multiple transportable carbohydrates was accompanied by increased fluid delivery and improved oxidation efficiency, and thus the likelihood of gastrointestinal distress may be diminished. Studies also demonstrated reduced fatigue and improved exercise performance with multiple transportable carbohydrates compared with a single carbohydrate. Multiple transportable carbohydrates, ingested at high rates, can be beneficial during endurance sports in which the duration of exercise is 3 h or more.
Health Effects of Low-Carbohydrate Diets: Where Should New Research Go?
Wylie-Rosett, Judith; Aebersold, Karin; Conlon, Beth; Isasi, Carmen R.; Ostrovsky, Natania W.
2013-01-01
There has been considerable debate about the metabolic effects of restricting carbohydrate intake in weight and diabetes management. However, the American Diabetes Association has noted that weight and metabolic improvements can be achieved with low carbohydrate, low fat (implicitly higher carbohydrate), or a Mediterranean style diet (usually an intermediate level of carbohydrate). Our paper addresses variability in the definition for low or restricted carbohydrate, the effects of carbohydrate restriction on diabetes-related health outcomes, strategies for restricting carbohydrate intake, and potential genetic variability in response to dietary carbohydrate restriction. Issues for future research are also addressed. PMID:23266565
The Treatment of Primary Orthostatic Hypotension.
Hale, Genevieve M; Valdes, Jose; Brenner, Michael
2017-05-01
To review the efficacy and safety of pharmacological and nonpharmacological strategies used to treat primary orthostatic hypotension (OH). A literature review using PubMed and MEDLINE databases searching hypotension, non-pharmacological therapy, midodrine, droxidopa, pyridostigmine, fludrocortisone, atomoxetine, pseudoephedrine, and octreotide was performed. Randomized or observational studies, cohorts, case series, or case reports written in English between January 1970 and November 2016 that assessed primary OH treatment in adult patients were evaluated. Based on the chosen criteria, it was found that OH patients make up approximately 15% of all syncope patients, predominantly as a result of cardiovascular or neurological insults, or offending medication. Nonpharmacological strategies are the primary treatment, such as discontinuing offending medications, switching medication administration to bedtime, avoiding large carbohydrate-rich meals, limiting alcohol, maintaining adequate hydration, adding salt to diet, and so on. If these fail, pharmacotherapy can help ameliorate symptoms, including midodrine, droxidopa, fludrocortisone, pyridostigmine, atomoxetine, sympathomimetic agents, and octreotide. Midodrine and droxidopa possess the most evidence with respect to increasing blood pressure and alleviating symptoms. Pyridostigmine and fludrocortisone can be used in patients who fail to respond to these agents. Emerging evidence with low-dose atomoxetine is promising, especially in those with central autonomic failure, and may prove to be a viable alternative treatment option. Data surrounding other therapies such as sympathomimetic agents or octreotide are minimal. Medication management of primary OH should be guided by patient-specific factors, such as tolerability, adverse effects, and drug-drug and drug-disease interactions.
Whey or Casein Hydrolysate with Carbohydrate for Metabolism and Performance in Cycling.
Oosthuyse, T; Carstens, M; Millen, A M E
2015-07-01
The protein type most suitable for ingestion during endurance exercise is undefined. This study compared co-ingestion of either 15 g/h whey or casein hydrolysate with 63 g/h fructose: maltodextrin (0.8:1) on exogenous carbohydrate oxidation, exercise metabolism and performance. 2 h postprandial, 8 male cyclists ingested either: carbohydrate-only, carbohydrate-whey hydrolysate, carbohydrate-casein hydrolysate or placebo-water in a crossover, double-blind design during 2 h of exercise at 60%W max followed by a 16-km time trial. Data were evaluated by magnitude-based inferential statistics. Exogenous carbohydrate oxidation, measured from (13)CO2 breath enrichment, was not substantially influenced by co-ingestion of either protein hydrolysate. However, only co-ingestion of carbohydrate-casein hydrolysate substantially decreased (98% very likely decrease) total carbohydrate oxidation (mean±SD, 242±44; 258±47; 277±33 g for carbohydrate-casein, carbohydrate-whey and carbohydrate-only, respectively) and substantially increased (93% likely increase) total fat oxidation (92±14; 83±27; 73±19 g) compared with carbohydrate-only. Furthermore, only carbohydrate-casein hydrolysate ingestion resulted in a faster time trial (-3.6%; 90% CI: ±3.2%) compared with placebo-water (95% likely benefit). However, neither protein hydrolysate enhanced time trial performance when compared with carbohydrate-only. Under the conditions of this study, ingesting carbohydrate-casein, but not carbohydrate-whey hydrolysate, favourably alters metabolism during prolonged moderate-strenuous cycling without substantially altering cycling performance compared with carbohydrate-only. © Georg Thieme Verlag KG Stuttgart · New York.
Marran, K J; Davey, B; Lang, A; Segal, D G
2013-04-10
Postprandial glucose excursions contribute significantly to average blood glucose, glycaemic variability and cardiovascular risk. Carbohydrate counting is a method of insulin dosing that balances carbohydrate load to insulin dose using a fixed ratio. Many patients and current insulin pumps calculate insulin delivery for meals based on a linear carbohydrate-to-insulin relationship. It is our hypothesis that a non-linear relationship exists between the amounts of carbohydrate consumed and the insulin required to cover it. To document blood glucose exposure in response to increasing carbohydrate loads on fixed carbohydrate-to-insulin ratios. Five type 1 diabetic subjects receiving insulin pump therapy with good control were recruited. Morning basal rates and carbohydrate- to-insulin ratios were optimised. A Medtronic glucose sensor was used for 5 days to collect data for area-under-the-curve (AUC) analysis, during which standardised meals of increasing carbohydrate loads were consumed. Increasing carbohydrate loads using a fixed carbohydrate-to-insulin ratio resulted in increasing glucose AUC. The relationship was found to be exponential rather than linear. Late postprandial hypoglycaemia followed carbohydrate loads of >60 g and this was often followed by rebound hyperglycaemia that lasted >6 hours. A non-linear relationship exists between carbohydrates consumed and the insulin required to cover them. This has implications for control of postprandial blood sugars, especially when consuming large carbohydrate loads. Further studies are required to look at the optimal ratios, duration and type of insulin boluses required to cover increasing carbohydrate loads.
Wang, Yanmao; Zhu, Yu; Lu, Shengdi; Hu, Chengfang; Zhong, Wanrun; Chai, Yimin
2018-04-15
Osteoporosis is linked to reduced bone mineral density (BMD) as a major risk factor for fragility fractures. Recent studies indicated an association between BMD and abnormally elevated lipid levels in blood as common indicators for hyperlipidemia. In this study, we assessed the protective effect of paeoniflorin, a phytochemical compound with multiple pharmacological activities, against hyperlipidemia-induced osteoporosis in rats fed a high-carbohydrate, high-fat diet (HCHF). The special diet-fed rats were subjected to an 8-week treatment with either paeoniflorin (20 mg/kg, daily) or vehicle. The control group received a normal diet during the entire study. At study conclusion, serum markers of lipid metabolism and bone turnover were measured. Bone strength was assessed by biomechanical testing, and femurs were scanned using micro-computed tomography to analyze trabecular and cortical bone structure. Interestingly, paeoniflorin controlled the serum lipid profile by significantly decreasing HCHF-induced high levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol. Paeoniflorin significantly improved trabecular and cortical parameters as well as femur length and width that were negatively affected by HCHF diet. Biomechanical strength testing showed that femurs of HCHF diet-fed rats endured significantly lower force but higher displacement and strain than those of control rats, whereas paeoniflorin reversed the negative effects. Moreover, paeoniflorin rescued osteoblast differentiation and cell spreading activities along with bone turnover markers. In conclusion, HCHF-induced hyperlipidemia caused adverse effects on the bone that were rescued by paeoniflorin treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Toscani, Mariana K; Mario, Fernanda M; Radavelli-Bagatini, Simone; Wiltgen, Denusa; Matos, Maria Cristina; Spritzer, Poli Maria
2011-11-01
The aim of the present study was to assess the effects of a high protein (HP) and a normal protein (NP) diet on patients with polycystic ovary syndrome (PCOS) and body mass index-matched controls in a sample of southern Brazilian women. This 8-week randomized trial was carried out at a university gynecological endocrinology clinic and included 18 patients with PCOS and 22 controls. Changes in weight, body composition, hormone, and metabolic profile were analyzed in women randomized to receive HP (30% protein, 40% carbohydrate, and 30% lipid) or NP (15% protein, 55% carbohydrate, and 30% lipid). The energy content was estimated for each participant at 20-25 kcal/kg current weight/day. Physical activity, blood pressure, homeostasis model assessment (HOMA) index, and fasting and 2-h glucose and insulin remained stable during the intervention in PCOS and controls, even in the presence of weight loss. There were no changes in lipid profile in either group. In contrast, body weight, body mass index (BMI), waist circumference, percent of body fat, and sum of trunk skinfolds decreased significantly after both diets in both groups. Total testosterone also decreased in PCOS and controls regardless of diet. In conclusion, calorie reduction, rather than protein content, seemed to affect body composition and hormonal profile in this short-term study. These findings emphasize the role of non-pharmacological interventions to reduce weight and ameliorate the anthropometric and clinical phenotype in PCOS.
The emerging role of promiscuous 7TM receptors as chemosensors for food intake.
Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans
2010-01-01
In recent years, several highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized of which many are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids (FFAs) and are expressed in taste tissue, the gastrointestinal (GI) tract, endocrine glands, adipose tissue, and/or kidney. This has led to the hypothesis that these receptors may act as sensors of food intake modulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue. In the present review, we describe the molecular mechanisms of nutrient-sensing of the calcium-sensing receptor (CaR), the G protein-coupled receptor family C, group 6, subtype A (GPRC6A), and the taste1 receptor T1R1/T1R3-sensing L-α-amino acids; the carbohydrate-sensing T1R2/T1R3 receptor; the proteolytic degradation product sensor GPR93 (also termed GPR92); and the FFA sensing receptors FFA1, FFA2, FFA3, GPR84, and GPR120. Due to their omnipresent nature, the natural ligands have had limited usability in pharmacological/physiological studies which has hampered the elucidation of the physiological function and therapeutic prospect of their receptors. However, an increasing number of subtype-selective ligands and/or receptor knockout mice are being developed which at least for some of the receptors have validated them as promising drug targets in, for example, type II diabetes. Copyright © 2010 Elsevier Inc. All rights reserved.
Miyashita, Yoh; Koide, Nobukiyo; Ohtsuka, Masaki; Ozaki, Hiroshi; Itoh, Yoshiaki; Oyama, Tomokazu; Uetake, Takako; Ariga, Kiyoko; Shirai, Kohji
2004-09-01
The adequate composition of carbohydrate and fat in low calorie diets for type 2 diabetes mellitus patients with obesity is not fully established. The aim of this study was to investigate the effects of low carbohydrate diet on glucose and lipid metabolism, especially on visceral fat accumulation, and comparing that of a high carbohydrate diet. Obese subjects with type 2 diabetes mellitus were randomly assigned to take a low calorie and low carbohydrate diet (n = 11, 1000 kcal per day, protein:carbohydrate:fat = 25:40:35) or a low calorie and high carbohydrate diet (n = 11, 1000 kcal per day, protein:carbohydrate:fat = 25:65:10) for 4 weeks. Similar decreases in body weight and serum glucose levels were observed in both groups. Fasting serum insulin levels were reduced in the low carbohydrate diet group compared to the high carbohydrate diet group (-30% versus -10%, P < 0.05). Total serum cholesterol and triglyceride levels decreased in both groups, but were not significantly different from each other. High-density lipoprotein-cholesterol (HDL-C) increased in the low carbohydrate diet group but not in the high carbohydrate diet group (+15% versus 0%, P < 0.01). There was a larger decrease in visceral fat area measured by computed tomography in the low carbohydrate diet group compared to the high carbohydrate diet group (-40 cm(2) versus -10 cm(2), P < 0.05). The ratio of visceral fat area to subcutaneous fat area did not change in the high carbohydrate diet group (from 0.70 to 0.68), but it decreased significantly in the low carbohydrate diet group (from 0.69 to 0.47, P < 0.005). These results suggest that, when restrict diet was made isocaloric, a low calorie/low carbohydrate diet might be more effective treatment for a reduction of visceral fat, improved insulin sensitivity and increased in HDL-C levels than low calorie/high carbohydrate diet in obese subjects with type 2 diabetes mellitus.
A systematic study of chemogenomics of carbohydrates.
Gu, Jiangyong; Luo, Fang; Chen, Lirong; Yuan, Gu; Xu, Xiaojie
2014-03-04
Chemogenomics focuses on the interactions between biologically active molecules and protein targets for drug discovery. Carbohydrates are the most abundant compounds in natural products. Compared with other drugs, the carbohydrate drugs show weaker side effects. Searching for multi-target carbohydrate drugs can be regarded as a solution to improve therapeutic efficacy and safety. In this work, we collected 60 344 carbohydrates from the Universal Natural Products Database (UNPD) and explored the chemical space of carbohydrates by principal component analysis. We found that there is a large quantity of potential lead compounds among carbohydrates. Then we explored the potential of carbohydrates in drug discovery by using a network-based multi-target computational approach. All carbohydrates were docked to 2389 target proteins. The most potential carbohydrates for drug discovery and their indications were predicted based on a docking score-weighted prediction model. We also explored the interactions between carbohydrates and target proteins to find the pathological networks, potential drug candidates and new indications.
Isolation of carbohydrate-metabolizing, extremely halophilic bacteria.
NASA Technical Reports Server (NTRS)
Tomlinson, G. A.; Hochstein, L. I.
1972-01-01
Four previously unrecognized strains of extremely halophilic bacteria that utilize carbohydrates have been isolated. Gas production proved an unreliable index of carbohydrate metabolism; therefore, carbohydrate utilization was measured by determining acid formation and sugar disappearance during growth. By these procedures, carbohydrate utilization was readily detected. The results suggest that carbohydrate dissimilation by extremely halophilic bacteria may be more common than previously thought and that the apparent rarity of carbohydrate-metabolizing halophiles may be an artifact of the isolation procedures used.
Carbohydrate-Aromatic Interactions in Proteins.
Hudson, Kieran L; Bartlett, Gail J; Diehl, Roger C; Agirre, Jon; Gallagher, Timothy; Kiessling, Laura L; Woolfson, Derek N
2015-12-09
Protein-carbohydrate interactions play pivotal roles in health and disease. However, defining and manipulating these interactions has been hindered by an incomplete understanding of the underlying fundamental forces. To elucidate common and discriminating features in carbohydrate recognition, we have analyzed quantitatively X-ray crystal structures of proteins with noncovalently bound carbohydrates. Within the carbohydrate-binding pockets, aliphatic hydrophobic residues are disfavored, whereas aromatic side chains are enriched. The greatest preference is for tryptophan with an increased prevalence of 9-fold. Variations in the spatial orientation of amino acids around different monosaccharides indicate specific carbohydrate C-H bonds interact preferentially with aromatic residues. These preferences are consistent with the electronic properties of both the carbohydrate C-H bonds and the aromatic residues. Those carbohydrates that present patches of electropositive saccharide C-H bonds engage more often in CH-π interactions involving electron-rich aromatic partners. These electronic effects are also manifested when carbohydrate-aromatic interactions are monitored in solution: NMR analysis indicates that indole favorably binds to electron-poor C-H bonds of model carbohydrates, and a clear linear free energy relationships with substituted indoles supports the importance of complementary electronic effects in driving protein-carbohydrate interactions. Together, our data indicate that electrostatic and electronic complementarity between carbohydrates and aromatic residues play key roles in driving protein-carbohydrate complexation. Moreover, these weak noncovalent interactions influence which saccharide residues bind to proteins, and how they are positioned within carbohydrate-binding sites.
Separate influence of dietary carbohydrate and fibre on the metabolic control in diabetes.
Riccardi, G; Rivellese, A; Pacioni, D; Genovese, S; Mastranzo, P; Mancini, M
1984-02-01
To clarify the separate influences of digestible carbohydrate and of dietary fibre on blood glucose control and serum lipoproteins, 14 diabetic patients (six Type 1 and eight Type 2) were submitted to three weight-maintaining diets for 10 days each: (1) low carbohydrate/low fibre diet with 42% carbohydrate and 20 g fibre; (2) high carbohydrate/low fibre diet (carbohydrate 53%, fibre 16 g); (3) high carbohydrate/ high fibre diet (carbohydrate 53%, fibre 54 g). In comparison with the low carbohydrate/low fibre diet, the 2-h post-prandial blood glucose and the daily blood glucose profile decreased significantly on the high carbohydrate/high fibre diet, without significant changes during the high carbohydrate/low fibre diet. The diet-induced modifications of blood glucose control were similar in both types of diabetic patients (two-way analysis of variance: F = 5.86, p less than 0.02 for dietary treatment and F = 2.09, NS for type of diabetes). Total and low-density lipoprotein cholesterol were also decreased after the high carbohydrate/high fibre diet in comparison with the low carbohydrate/low fibre diet (p less than 0.001 for both), while they were not significantly modified after the high carbohydrate/low fibre diet. Again the modifications of low density lipoprotein cholesterol induced by diet were similar in both types of diabetic patients (F = 10.02, p less than 0.005 for dietary treatment and F = 0.14 for type of diabetes, NS). High-density lipoprotein cholesterol was lower after the two test diets than after the low carbohydrate/low fibre diet.(ABSTRACT TRUNCATED AT 250 WORDS)
Modified carbohydrate-chitosan compounds, methods of making the same and methods of using the same
Venditti, Richard A; Pawlak, Joel J; Salam, Abdus; El-Tahlawy, Khaled Fathy
2015-03-10
Compositions of matter are provided that include chitosan and a modified carbohydrate. The modified carbohydrate includes a carbohydrate component and a cross linking agent. The modified carbohydrate has increased carboxyl content as compared to an unmodified counterpart carbohydrate. A carboxyl group of the modified carbohydrate is covalently bonded with an amino group of chitosan. The compositions of matter provided herein may include cross linked starch citrate-chitosan and cross linked hemicellulose citrate-chitosan, including foams thereof. These compositions yield excellent absorbency and metal chelation properties. Methods of making cross linked modified carbohydrate-chitosan compounds are also provided.
A step towards personalized sports nutrition: carbohydrate intake during exercise.
Jeukendrup, Asker
2014-05-01
There have been significant changes in the understanding of the role of carbohydrates during endurance exercise in recent years, which allows for more specific and more personalized advice with regard to carbohydrate ingestion during exercise. The new proposed guidelines take into account the duration (and intensity) of exercise and advice is not restricted to the amount of carbohydrate; it also gives direction with respect to the type of carbohydrate. Studies have shown that during exercise lasting approximately 1 h in duration, a mouth rinse or small amounts of carbohydrate can result in a performance benefit. A single carbohydrate source can be oxidized at rates up to approximately 60 g/h and this is the recommendation for exercise that is more prolonged (2-3 h). For ultra-endurance events, the recommendation is higher at approximately 90 g/h. Carbohydrate ingested at such high ingestion rates must be a multiple transportable carbohydrates to allow high oxidation rates and prevent the accumulation of carbohydrate in the intestine. The source of the carbohydrate may be a liquid, semisolid, or solid, and the recommendations may need to be adjusted downward when the absolute exercise intensity is low and thus carbohydrate oxidation rates are also low. Carbohydrate intake advice is independent of body weight as well as training status. Therefore, although these guidelines apply to most athletes, they are highly dependent on the type and duration of activity. These new guidelines may replace the generic existing guidelines for carbohydrate intake during endurance exercise.
Digestion and Absorption of Carbohydrates
USDA-ARS?s Scientific Manuscript database
Carbohydrates are the major dietary sources of energy for humans. While most dietary carbohydrates are derived from multiple botanical sources, lactose and trehalose are the only animal-derived carbohydrates. Digestion of starch, the carbohydrate most abundantly consumed by humans, depends on the c...
Haimoto, Hajime; Watanabe, Shiho; Komeda, Masashi; Wakai, Kenji
2018-01-01
Background Although postprandial glucose levels largely depend on carbohydrate intake, the impact of carbohydrate and its sources on hemoglobin A1c (HbA1c) levels has not been demonstrated in patients with type 2 diabetes (T2DM) probably because, in previous studies, more than 50% of patients were taking anti-diabetic medication, and the researchers used energy percent of carbohydrate as an indicator of carbohydrate intake. Patients and methods We recruited 125 Japanese men (mean age 58±12 years) and 104 women (mean age 62±10 years) with T2DM who were not taking anti-diabetic medication and dietary therapy. We used 3-day dietary records to assess total carbohydrate intake and its sources, computed Spearman’s correlation coefficients, and conducted multiple regression analyses for associations of carbohydrate sources with HbA1c by sex. Results Mean HbA1c and total carbohydrate intake were 8.2%±1.9% and 272.0±84.6 g/day in men and 7.6%±1.3% and 226.7±61.5 g/day in women, respectively. We observed positive correlation of total carbohydrate intake (g/day) with HbA1c in men (rs=0.384) and women (rs=0.251), but no correlation for % carbohydrate in either sex. Regarding carbohydrate sources, we found positive correlations of carbohydrate from noodles (rs=0.231) and drinks (rs=0.325), but not from rice, with HbA1c in men. In women, carbohydrate from rice had a positive correlation (rs=0.317), but there were no correlations for carbohydrate from noodles and drinks. The association of total carbohydrate intake (g/day) and carbohydrate from soft drinks with HbA1c in men remained significant even after adjustment for total energy by multiple regression analyses. Conclusion Our findings warrant interventional studies for moderate low-carbohydrate diets that focus on carbohydrate sources and sex differences in order to efficiently decrease HbA1c in patients with T2DM. PMID:29563823
Di, Li-Jun; Byun, Jung S; Wong, Madeline M; Wakano, Clay; Taylor, Tara; Bilke, Sven; Baek, Songjoon; Hunter, Kent; Yang, Howard; Lee, Maxwell; Zvosec, Cecilia; Khramtsova, Galina; Cheng, Fan; Perou, Charles M; Miller, C Ryan; Raab, Rachel; Olopade, Olufunmilayo I; Gardner, Kevin
2013-01-01
The C-terminal binding protein (CtBP) is a NADH-dependent transcriptional repressor that links carbohydrate metabolism to epigenetic regulation by recruiting diverse histone-modifying complexes to chromatin. Here global profiling of CtBP in breast cancer cells reveals that it drives epithelial-to-mesenchymal transition, stem cell pathways and genome instability. CtBP expression induces mesenchymal and stem cell-like features, whereas CtBP depletion or caloric restriction reverses gene repression and increases DNA repair. Multiple members of the CtBP-targeted gene network are selectively downregulated in aggressive breast cancer subtypes. Differential expression of CtBP-targeted genes predicts poor clinical outcome in breast cancer patients, and elevated levels of CtBP in patient tumours predict shorter median survival. Finally, both CtBP promoter targeting and gene repression can be reversed by small molecule inhibition. These findings define broad roles for CtBP in breast cancer biology and suggest novel chromatin-based strategies for pharmacologic and metabolic intervention in cancer.
Zhang, Ning; Xu, Bin; Mou, Chunyan; Yang, Wenli; Wei, Jianwen; Lu, Liang; Zhu, Junjie; Du, Jingchun; Wu, Xiaokun; Ye, Lanting; Fu, Zhiyan; Lu, Yang; Lin, Jianghai; Sun, Zizi; Su, Jing; Dong, Meiling; Xu, Anlong
2003-08-28
A cDNA library of male Chinese seahorse (Hippocampus kuda Bleeker) was constructed to investigate the molecular profile of seahorse as one of the most famous traditional Chinese medicine materials, and to reveal immunological and physiological mechanisms of seahorse as one of the most primitive vertebrates at molecular level. A total of 3372 expressed sequence tags (ESTs) consisting of 1911 unique genes (345 clusters and 1566 singletons) were examined in the present study. Identification of the genes related to immune system, paternal brooding and physiological regulation provides not only valuable insights into the molecular mechanism of immune system in teleost fish but also plausible explanations for pharmacological activities of Chinese seahorse. Furthermore, the occurrence of high prevalent C-type lectins suggested that a lectin-complement pathway might exert a more dominant function in the innate immune system of teleost than mammal. Carbohydrate recognition domain (CRD) without a collagen-like region in the lectins of seahorse was likely an ancient characteristic of lectins similar to invertebrates.
New potential phytotherapeutics obtained from white mulberry (Morus alba L.) leaves.
Gryn-Rynko, Anna; Bazylak, Grzegorz; Olszewska-Slonina, Dorota
2016-12-01
The present work demonstrates the profound and unique phyto-pharmacological and nutritional profile of white mulberry (Morus alba L.) leaves which containing considerable amounts of easy digestive proteins, carbohydrates, micro- and macronutrients, polyphenols, free amino acids, organic acids. The wide range of significant biopharmaceutical activities of the aqueous and polar organic solvents extracts from mulberry leaves - including antidiabetic, antibacterial, anticancer, cardiovascular, hypolipidemic, antioxidant, antiatherogenic, and anti-inflammatory - have been critically discussed. The main objective was to demonstrate the results of recently published study on the components of white mulberry leaves exhibiting their biological activity in the various pathological and health human ailments. In addition, we intend to drawn the attention of researchers and public health workers for the extended exploration of this deciduous plant leaves as the source of potential indigenous nutraceuticals and functional food products to enable development of alternative prevention and treatment protocols offered in therapy of the common non-communicable diseases and malignances. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Sun, Xiaoping; Wheeler, Charles T.; Yolitz, Jason; Laslo, Mara; Alberico, Thomas; Sun, Yaning; Song, Qisheng; Zou, Sige
2014-01-01
SUMMARY Diet composition is a critical determinant of lifespan and nutrient imbalance is detrimental health. However, how nutrients interact with genetic factors to modulate lifespan remains elusive. We investigated how diet composition influences mitochondrial ATP synthase subunit d (ATPsyn-d) in modulating lifespan in Drosophila. ATPsyn-d knockdown extended lifespan in females fed low carbohydrate-to-protein (C:P) diets, but not the high C:P ratio diet. This extension was associated with increased resistance to oxidative stress, transcriptional changes in metabolism, proteostasis and immune genes, reduced protein damage and aggregation, and reduced phosphorylation of S6K and ERK in TOR and MAPK signaling, respectively. ATPsyn-d knockdown did not extend lifespan in females with reduced TOR signaling induced genetically by Tsc2 overexpression or pharmacologically by rapamycin. Our data reveal a link among diet, mitochondria, MAPK and TOR signaling in aging and stresses the importance of considering genetic background and diet composition in implementing interventions for promoting healthy aging. PMID:25220459
Varieties, production, composition and health benefits of vinegars: A review.
Ho, Chin Wai; Lazim, Azwan Mat; Fazry, Shazrul; Zaki, Umi Kalsum Hj Hussain; Lim, Seng Joe
2017-04-15
Vinegars are liquid products produced from the alcoholic and subsequent acetous fermentation of carbohydrate sources. They have been used as remedies in many cultures and have been reported to provide beneficial health effects when consumed regularly. Such benefits are due to various types of polyphenols, micronutrients and other bioactive compounds found in vinegars that contribute to their pharmacological effects, among them, antimicrobial, antidiabetic, antioxidative, antiobesity and antihypertensive effects. There are many types of vinegars worldwide, including black vinegar, rice vinegar, balsamic vinegar and white wine vinegar. All these vinegars are produced using different raw materials, yeast strains and fermentation procedures, thus giving them their own unique tastes and flavours. The main volatile compound in vinegar is acetic acid, which gives vinegar its strong, sour aroma and flavour. Other volatile compounds present in vinegars are mainly alcohols, acids, esters, aldehydes and ketones. The diversity of vinegars allows extensive applications in food. Copyright © 2016 Elsevier Ltd. All rights reserved.
daf-16/FoxO promotes gluconeogenesis and trehalose synthesis during starvation to support survival
Hibshman, Jonathan D; Doan, Alexander E; Moore, Brad T; Kaplan, Rebecca EW; Hung, Anthony; Webster, Amy K; Bhatt, Dhaval P; Chitrakar, Rojin; Hirschey, Matthew D
2017-01-01
daf-16/FoxO is required to survive starvation in Caenorhabditis elegans, but how daf-16IFoxO promotes starvation resistance is unclear. We show that daf-16/FoxO restructures carbohydrate metabolism by driving carbon flux through the glyoxylate shunt and gluconeogenesis and into synthesis of trehalose, a disaccharide of glucose. Trehalose is a well-known stress protectant, capable of preserving membrane organization and protein structure during abiotic stress. Metabolomic, genetic, and pharmacological analyses confirm increased trehalose synthesis and further show that trehalose not only supports survival as a stress protectant but also serves as a glycolytic input. Furthermore, we provide evidence that metabolic cycling between trehalose and glucose is necessary for this dual function of trehalose. This work demonstrates that daf-16/FoxO promotes starvation resistance by shifting carbon metabolism to drive trehalose synthesis, which in turn supports survival by providing an energy source and acting as a stress protectant. PMID:29063832
daf-16/FoxO promotes gluconeogenesis and trehalose synthesis during starvation to support survival.
Hibshman, Jonathan D; Doan, Alexander E; Moore, Brad T; Kaplan, Rebecca Ew; Hung, Anthony; Webster, Amy K; Bhatt, Dhaval P; Chitrakar, Rojin; Hirschey, Matthew D; Baugh, L Ryan
2017-10-24
daf-16 /FoxO is required to survive starvation in Caenorhabditis elegans , but how daf-16I FoxO promotes starvation resistance is unclear. We show that daf-16 /FoxO restructures carbohydrate metabolism by driving carbon flux through the glyoxylate shunt and gluconeogenesis and into synthesis of trehalose, a disaccharide of glucose. Trehalose is a well-known stress protectant, capable of preserving membrane organization and protein structure during abiotic stress. Metabolomic, genetic, and pharmacological analyses confirm increased trehalose synthesis and further show that trehalose not only supports survival as a stress protectant but also serves as a glycolytic input. Furthermore, we provide evidence that metabolic cycling between trehalose and glucose is necessary for this dual function of trehalose. This work demonstrates that daf-16 /FoxO promotes starvation resistance by shifting carbon metabolism to drive trehalose synthesis, which in turn supports survival by providing an energy source and acting as a stress protectant.
Focus on Nutrition: Cats and carbohydrates: implications for health and disease.
Laflammme, Dottie
2010-01-01
It has been suggested that high-carbohydrate diets contribute to the development of feline diabetes and obesity. The evidence does not support this. Healthy cats efficiently digest and metabolize properly processed starches and complex carbohydrates. Dietary carbohydrate can efficiently meet cats' cellular requirement for carbohydrate (glucose), sparing protein that would otherwise be needed for gluconeogenesis. Excess calories, regardless of source, contribute to obesity and obesity-related problems, but low-carbohydrate, high-fat diets pose a greater risk for obesity. The increasing prevalence of feline diabetes appears to be due to obesity and aging rather than to dietary carbohydrates. However, once cats become diabetic, consumption of a high-protein, low-carbohydrate diet may be beneficial.
Cresswell, Pip; Krebs, Jeremy; Gilmour, Jean; Hanna, Aoife; Parry-Strong, Amber
2015-12-01
Matching carbohydrate intake with insulin dosage is recommended management for people with Type 1 diabetes. However, international interest in restricted carbohydrate diets is growing. General practitioners and practice nurses need to know how to advise people with Type 1 diabetes regarding low-carbohydrate diets. This study aimed to explore the carbohydrate counting experiences of people with Type 1 diabetes in a trial with and without a diet restricted to 75 g of carbohydrate per day. Eight participants were interviewed by focus group or interview 12 weeks after a carbohydrate counting course with individual dietary choice or the same course with information on restricted carbohydrate eating and a daily maximum intake of 75 g of carbohydrate. Data were analysed using a qualitative thematic analysis approach. Themes included the need for insulin management skills, impact of the dietary experience, and need for dietary knowledge. The restricted-carbohydrate group encountered mealtime insulin resistance and difficulty managing insulin dosages when transitioning on and off the low-carbohydrate diet. The diet impacted on mood, feelings of satiety and it was reported that food changed from being 'a pleasure to chemistry'. Both groups described feeling empowered to manage their diabetes as a result of the carbohydrate counting course. Participants reported increased knowledge and challenging insulin management. The restricted-carbohydrate group reported mealtime insulin resistance and a strong dietary impact. Extra health professional support may be required, especially at dietary transition periods. More research is warranted into the reported mealtime insulin resistance.
Tsai, Keng-Chang; Jian, Jhih-Wei; Yang, Ei-Wen; Hsu, Po-Chiang; Peng, Hung-Pin; Chen, Ching-Tai; Chen, Jun-Bo; Chang, Jeng-Yih; Hsu, Wen-Lian; Yang, An-Suei
2012-01-01
Non-covalent protein-carbohydrate interactions mediate molecular targeting in many biological processes. Prediction of non-covalent carbohydrate binding sites on protein surfaces not only provides insights into the functions of the query proteins; information on key carbohydrate-binding residues could suggest site-directed mutagenesis experiments, design therapeutics targeting carbohydrate-binding proteins, and provide guidance in engineering protein-carbohydrate interactions. In this work, we show that non-covalent carbohydrate binding sites on protein surfaces can be predicted with relatively high accuracy when the query protein structures are known. The prediction capabilities were based on a novel encoding scheme of the three-dimensional probability density maps describing the distributions of 36 non-covalent interacting atom types around protein surfaces. One machine learning model was trained for each of the 30 protein atom types. The machine learning algorithms predicted tentative carbohydrate binding sites on query proteins by recognizing the characteristic interacting atom distribution patterns specific for carbohydrate binding sites from known protein structures. The prediction results for all protein atom types were integrated into surface patches as tentative carbohydrate binding sites based on normalized prediction confidence level. The prediction capabilities of the predictors were benchmarked by a 10-fold cross validation on 497 non-redundant proteins with known carbohydrate binding sites. The predictors were further tested on an independent test set with 108 proteins. The residue-based Matthews correlation coefficient (MCC) for the independent test was 0.45, with prediction precision and sensitivity (or recall) of 0.45 and 0.49 respectively. In addition, 111 unbound carbohydrate-binding protein structures for which the structures were determined in the absence of the carbohydrate ligands were predicted with the trained predictors. The overall prediction MCC was 0.49. Independent tests on anti-carbohydrate antibodies showed that the carbohydrate antigen binding sites were predicted with comparable accuracy. These results demonstrate that the predictors are among the best in carbohydrate binding site predictions to date. PMID:22848404
Kong, Na; Shimpi, Manishkumar R; Ramström, Olof; Yan, Mingdi
2015-03-20
Carbohydrate-functionalized single-walled carbon nanotubes (SWNTs) were synthesized using microwave-assisted reaction of perfluorophenyl azide with the nanotubes. The results showed that microwave radiation provides a rapid and effective means to covalently attach carbohydrates to SWNTs, producing carbohydrate-SWNT conjugates for biorecognition. The carbohydrate-functionalized SWNTs were furthermore shown to interact specifically with cognate carbohydrate-specific proteins (lectins), resulting in predicted recognition patterns. The carbohydrate-presenting SWNTs constitute a new platform for sensitive protein- or cell recognition, which pave the way for glycoconjugated carbon nanomaterials in biorecognition applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dietary strategies for the management of cardiovascular risk: role of dietary carbohydrates.
Macdonald, Ian A
2014-05-01
Carbohydrate-rich foods are an essential component of the diet, providing the glucose that is continuously required by the nervous system and some other cells and tissues in the body for normal function. There is some concern that too much carbohydrate or certain types of carbohydrate such as fructose or the high glycaemic index carbohydrate foods that produce large, rapid increases in blood glucose may be detrimental to health. This review considers these issues and also summarises the public health advice currently available in Europe and the USA concerning dietary carbohydrates. The UK Scientific Advisory Committee on Nutrition is currently reviewing carbohydrates and health, and the subsequent report should help clarify some of the concerns regarding carbohydrates and health.
Fu, Qing; Wang, Jun; Liang, Tu; Xu, Xiaoyong; Jin, Yu
2013-11-01
A systematic evaluation of retention behavior of carbohydrates in hydrophilic interaction liquid chromatography (HILIC) was performed. The influences of mobile phase, stationary phase and buffer salt on the retention of carbohydrates were investigated. According to the results, the retention time of carbohydrates decreased as the proportion of acetonitrile in mobile phase decreased. Increased time of carbohydrates was observed as the concentration of buffer salt in mobile phase increased. The retention behavior of carbohydrates was also affected by organic solvent and HILIC stationary phase. Furthermore, an appropriate retention equation was used in HILIC mode. The retention equation lnk = a + blnC(B) + cC(B) could quantitatively describe the retention factors of carbohydrates of plant origin with good accuracy: the relative error of the predicted time to actual time was less than 0.3%. The evaluation results could provide guidance for carbohydrates to optimize the experimental conditions in HILIC method development especially for carbohydrate separation
Cats and Carbohydrates: The Carnivore Fantasy?
Verbrugghe, Adronie; Hesta, Myriam
2017-01-01
The domestic cat’s wild ancestors are obligate carnivores that consume prey containing only minimal amounts of carbohydrates. Evolutionary events adapted the cat’s metabolism and physiology to this diet strictly composed of animal tissues and led to unique digestive and metabolic peculiarities of carbohydrate metabolism. The domestic cat still closely resembles its wild ancestor. Although the carnivore connection of domestic cats is well recognised, little is known about the precise nutrient profile to which the digestive physiology and metabolism of the cat have adapted throughout evolution. Moreover, studies show that domestic cats balance macronutrient intake by selecting low-carbohydrate foods. The fact that cats evolved consuming low-carbohydrate prey has led to speculations that high-carbohydrate diets could be detrimental for a cat’s health. More specifically, it has been suggested that excess carbohydrates could lead to feline obesity and diabetes mellitus. Additionally, the chances for remission of diabetes mellitus are higher in cats that consume a low-carbohydrate diet. This literature review will summarise current carbohydrate knowledge pertaining to digestion, absorption and metabolism of carbohydrates, food selection and macronutrient balancing in healthy, obese and diabetic cats, as well as the role of carbohydrates in prevention and treatment of obesity and diabetes mellitus. PMID:29140289
Multivalent interaction based carbohydrate biosensors for signal amplification
Wang, Yanyan; Chalagalla, Srinivas; Li, Tiehai; Sun, Xue-long; Zhao, Wei; Wang, Peng; Zeng, Xiangqun
2010-01-01
Multivalent interaction between boronic acids immobilized on Quartz Crystal Microbalance (QCM) sensor surface and the carbohydrates modified Au - nanoparticle (AuNP) has been demonstrated for the development of a sensitive carbohydrate biosensor. Briefly, a boronic acid - containing polymer (boropolymer) as multivalent carbohydrate receptor was oriented immobilized on the cysteamine coated electrode through isourea bond formation. Carbohydrates were conjugated to AuNPs to generate a multivalent carbohydrates moiety to amplify the response signal. Thus, the binding of the carbohydrate conjugated AuNPs to the boropolymer surface are multivalent which could simultaneously increase the binding affinity and specificity. We systematically studied the binding between five carbohydrate conjugated AuNPs and the boropolymer. Our studies show that the associate constant (Ka) was in the order of fucose < glucose < mannose < galactose < maltose. A linear response in the range from 23 µM to 3.83 mM was observed for mannose conjugated AuNPs and the boropolymer recognition elements, with the lower detection limit of 1.5 µM for the carbohydrate analytes. Furthermore, the multivalent binding between carbohydrates and boronic acids are reversible and allow the regeneration of boropolymer surface by using 1M acetic acid so as to sequentially capture and release the carbohydrate analytes. PMID:20863680
The use of carbohydrates during exercise as an ergogenic aid.
Cermak, Naomi M; van Loon, Luc J C
2013-11-01
Carbohydrate and fat are the two primary fuel sources oxidized by skeletal muscle tissue during prolonged (endurance-type) exercise. The relative contribution of these fuel sources largely depends on the exercise intensity and duration, with a greater contribution from carbohydrate as exercise intensity is increased. Consequently, endurance performance and endurance capacity are largely dictated by endogenous carbohydrate availability. As such, improving carbohydrate availability during prolonged exercise through carbohydrate ingestion has dominated the field of sports nutrition research. As a result, it has been well-established that carbohydrate ingestion during prolonged (>2 h) moderate-to-high intensity exercise can significantly improve endurance performance. Although the precise mechanism(s) responsible for the ergogenic effects are still unclear, they are likely related to the sparing of skeletal muscle glycogen, prevention of liver glycogen depletion and subsequent development of hypoglycemia, and/or allowing high rates of carbohydrate oxidation. Currently, for prolonged exercise lasting 2-3 h, athletes are advised to ingest carbohydrates at a rate of 60 g·h⁻¹ (~1.0-1.1 g·min⁻¹) to allow for maximal exogenous glucose oxidation rates. However, well-trained endurance athletes competing longer than 2.5 h can metabolize carbohydrate up to 90 g·h⁻¹ (~1.5-1.8 g·min⁻¹) provided that multiple transportable carbohydrates are ingested (e.g. 1.2 g·min⁻¹ glucose plus 0.6 g·min⁻¹ of fructose). Surprisingly, small amounts of carbohydrate ingestion during exercise may also enhance the performance of shorter (45-60 min), more intense (>75 % peak oxygen uptake; VO(₂peak)) exercise bouts, despite the fact that endogenous carbohydrate stores are unlikely to be limiting. The mechanism(s) responsible for such ergogenic properties of carbohydrate ingestion during short, more intense exercise bouts has been suggested to reside in the central nervous system. Carbohydrate ingestion during exercise also benefits athletes involved in intermittent/team sports. These athletes are advised to follow similar carbohydrate feeding strategies as the endurance athletes, but need to modify exogenous carbohydrate intake based upon the intensity and duration of the game and the available endogenous carbohydrate stores. Ample carbohydrate intake is also important for those athletes who need to compete twice within 24 h, when rapid repletion of endogenous glycogen stores is required to prevent a decline in performance. To support rapid post-exercise glycogen repletion, large amounts of exogenous carbohydrate (1.2 g·kg⁻¹·h⁻¹) should be provided during the acute recovery phase from exhaustive exercise. For those athletes with a lower gastrointestinal threshold for carbohydrate ingestion immediately post-exercise, and/or to support muscle re-conditioning, co-ingesting a small amount of protein (0.2-0.4 g·kg⁻¹·h⁻¹) with less carbohydrate (0.8 g·kg⁻¹·h⁻¹) may provide a feasible option to achieve similar muscle glycogen repletion rates.
Carbohydrate–Aromatic Interactions in Proteins
2015-01-01
Protein–carbohydrate interactions play pivotal roles in health and disease. However, defining and manipulating these interactions has been hindered by an incomplete understanding of the underlying fundamental forces. To elucidate common and discriminating features in carbohydrate recognition, we have analyzed quantitatively X-ray crystal structures of proteins with noncovalently bound carbohydrates. Within the carbohydrate-binding pockets, aliphatic hydrophobic residues are disfavored, whereas aromatic side chains are enriched. The greatest preference is for tryptophan with an increased prevalence of 9-fold. Variations in the spatial orientation of amino acids around different monosaccharides indicate specific carbohydrate C–H bonds interact preferentially with aromatic residues. These preferences are consistent with the electronic properties of both the carbohydrate C–H bonds and the aromatic residues. Those carbohydrates that present patches of electropositive saccharide C–H bonds engage more often in CH−π interactions involving electron-rich aromatic partners. These electronic effects are also manifested when carbohydrate–aromatic interactions are monitored in solution: NMR analysis indicates that indole favorably binds to electron-poor C–H bonds of model carbohydrates, and a clear linear free energy relationships with substituted indoles supports the importance of complementary electronic effects in driving protein–carbohydrate interactions. Together, our data indicate that electrostatic and electronic complementarity between carbohydrates and aromatic residues play key roles in driving protein–carbohydrate complexation. Moreover, these weak noncovalent interactions influence which saccharide residues bind to proteins, and how they are positioned within carbohydrate-binding sites. PMID:26561965
USDA-ARS?s Scientific Manuscript database
Grazing animals may require a high or low total nonstructural carbohydrate diet for optimal health and production. Understanding how nonstructural carbohydrates fluctuate in Kentucky pastures and being able to quantify and monitor nonstructural carbohydrates in a timely manner will greatly aid in m...
Beelen, Milou; Cermak, Naomi M; van Loon, Luc J C
2015-01-01
Endogenous carbohydrate availability does not provide sufficient energy for prolonged moderate to high-intensity exercise. Carbohydrate ingestion during high-intensity exercise can therefore enhance performance.- For exercise lasting 1 to 2.5 hours, athletes are advised to ingest 30-60 g of carbohydrates per hour.- Well-trained endurance athletes competing for longer than 2.5 hours at high intensity can metabolise up to 90 g of carbohydrates per hour, provided that a mixture of glucose and fructose is ingested.- Athletes participating in intermittent or team sports are advised to follow the same strategies but the timing of carbohydrate intake depends on the type of sport.- If top performance is required again within 24 hours after strenuous exercise, the advice is to supplement endogenous carbohydrate supplies quickly within the first few hours post-exercise by ingesting large amounts of carbohydrate (1.2 g/kg/h) or a lower amount of carbohydrate (0.8 g/kg/h) with a small amount of protein (0.2-0.4 g/kg/h).
Jovanovski, Elena; Zurbau, Andreea
2015-01-01
Low-carbohydrate diets have become increasingly popular in both media and clinical research settings. Although they may improve some metabolic markers, their effects on arterial function remain unclear. Endothelial dysfunction is the well-established response to cardiovascular risk factors and a pivotal feature that precedes atherosclerotic diseases. It has been demonstrated that a high carbohydrate-induced hyperglycemia and subsequent oxidative stress acutely worsen the efficacy of the endothelial vasodilatory system. Thus, in theory, a carbohydrate restricted diet may preserve the integrity of the arterial system. This review attempts to provide insight on whether low-carbohydrate diets have a favorable or detrimental impact on vascular function, or it is perhaps the quality of carbohydrate that should direct dietary recommendations. Research to date suggests that diets low in carbohydrate amount may negatively impact vascular endothelial function. Conversely, it appears that maintaining recommended carbohydrate intake with utilization of low glycemic index foods generates a more favorable vascular profile. Understanding these relationships will aid in deciphering the diverging role of modulating quantity and quality of carbohydrates on cardiovascular risk. PMID:25954727
Jovanovski, Elena; Zurbau, Andreea; Vuksan, Vladimir
2015-04-01
Low-carbohydrate diets have become increasingly popular in both media and clinical research settings. Although they may improve some metabolic markers, their effects on arterial function remain unclear. Endothelial dysfunction is the well-established response to cardiovascular risk factors and a pivotal feature that precedes atherosclerotic diseases. It has been demonstrated that a high carbohydrate-induced hyperglycemia and subsequent oxidative stress acutely worsen the efficacy of the endothelial vasodilatory system. Thus, in theory, a carbohydrate restricted diet may preserve the integrity of the arterial system. This review attempts to provide insight on whether low-carbohydrate diets have a favorable or detrimental impact on vascular function, or it is perhaps the quality of carbohydrate that should direct dietary recommendations. Research to date suggests that diets low in carbohydrate amount may negatively impact vascular endothelial function. Conversely, it appears that maintaining recommended carbohydrate intake with utilization of low glycemic index foods generates a more favorable vascular profile. Understanding these relationships will aid in deciphering the diverging role of modulating quantity and quality of carbohydrates on cardiovascular risk.
Fabrication of Carbohydrate Microarrays by Boronate Formation.
Adak, Avijit K; Lin, Ting-Wei; Li, Ben-Yuan; Lin, Chun-Cheng
2017-01-01
The interactions between soluble carbohydrates and/or surface displayed glycans and protein receptors are essential to many biological processes and cellular recognition events. Carbohydrate microarrays provide opportunities for high-throughput quantitative analysis of carbohydrate-protein interactions. Over the past decade, various techniques have been implemented for immobilizing glycans on solid surfaces in a microarray format. Herein, we describe a detailed protocol for fabricating carbohydrate microarrays that capitalizes on the intrinsic reactivity of boronic acid toward carbohydrates to form stable boronate diesters. A large variety of unprotected carbohydrates ranging in structure from simple disaccharides and trisaccharides to considerably more complex human milk and blood group (oligo)saccharides have been covalently immobilized in a single step on glass slides, which were derivatized with high-affinity boronic acid ligands. The immobilized ligands in these microarrays maintain the receptor-binding activities including those of lectins and antibodies according to the structures of their pendant carbohydrates for rapid analysis of a number of carbohydrate-recognition events within 30 h. This method facilitates the direct construction of otherwise difficult to obtain carbohydrate microarrays from underivatized glycans.
Treatment of abdominal pain in irritable bowel syndrome.
Vanuytsel, Tim; Tack, Jan F; Boeckxstaens, Guy E
2014-08-01
Functional abdominal pain in the context of irritable bowel syndrome (IBS) is a challenging problem for primary care physicians, gastroenterologists and pain specialists. We review the evidence for the current and future non-pharmacological and pharmacological treatment options targeting the central nervous system and the gastrointestinal tract. Cognitive interventions such as cognitive behavioral therapy and hypnotherapy have demonstrated excellent results in IBS patients, but the limited availability and labor-intensive nature limit their routine use in daily practice. In patients who are refractory to first-line therapy, tricyclic antidepressants (TCA) and selective serotonin reuptake inhibitors are both effective to obtain symptomatic relief, but only TCAs have been shown to improve abdominal pain in meta-analyses. A diet low in fermentable carbohydrates and polyols (FODMAP) seems effective in subgroups of patients to reduce abdominal pain, bloating, and to improve the stool pattern. The evidence for fiber is limited and only isphagula may be somewhat beneficial. The efficacy of probiotics is difficult to interpret since several strains in different quantities have been used across studies. Antispasmodics, including peppermint oil, are still considered the first-line treatment for abdominal pain in IBS. Second-line therapies for diarrhea-predominant IBS include the non-absorbable antibiotic rifaximin and the 5HT3 antagonists alosetron and ramosetron, although the use of the former is restricted because of the rare risk of ischemic colitis. In laxative-resistant, constipation-predominant IBS, the chloride-secretion stimulating drugs lubiprostone and linaclotide, a guanylate cyclase C agonist that also has direct analgesic effects, reduce abdominal pain and improve the stool pattern.
Benefits and hazards of dietary carbohydrate.
Connor, William E; Duell, P Barton; Connor, Sonja L
2005-11-01
Since the dawn of civilization, carbohydrate has comprised the largest source of energy in the diet for most populations. The source of the carbohydrate has been from plants in the form of complex carbohydrate high in fiber. Only in affluent cultures has sugar contributed so much of the total energy. When carbohydrate is consumed as a major component of a plant-based diet, a high-carbohydrate, low-fat diet is associated with low plasma levels of total and low-density lipoprotein cholesterol, less coronary heart disease, less diabetes, and less obesity. Very low-carbohydrate (ketogenic) diets may provide short-term solutions but do not lead to a long-term solution for most people.
Carbohydrates in Supramolecular Chemistry.
Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H
2016-02-24
Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.
Payne, Courtney E.; Wolfrum, Edward J.; Nagle, Nicholas J.; ...
2017-06-22
Cool-season (C3) perennial grasses have a long history of cultivation and use as animal forage. This study evaluated 15 cultivars of C3 grasses, when harvested in late June for increased biomass yield, as biofuel feedstocks using near- infrared spectroscopy (NIR) based partial least square (PLS) analysis. These grasses were grown near Iliff, CO, for three growing seasons (2009-2011). The carbohydrate composition and released carbohydrates (total glucose and xylose released from dilute acid pretreatment and enzymatic hydrolysis [EH]) were predicted for samples from the study using NIR/PLS. The results were analyzed from a biofuels perspective, where composition combined with harvest yieldmore » provided information on the carbohydrate yield available for biomass conversion processes, and released carbohydrate yield provided information on the accessibility of those carbohydrates to conversion methods. The range in harvest yields varied more among cultivars (2900 kg ha-1) than did the range in carbohydrate composition (56.0 g kg-1) or released carbohydrates (60.0 g kg-1). When comparing carbohydrate yield to released carbohydrate yield between cultivars, an efficiency as high as 87% release of available carbohydrates was obtained for pubescent wheatgrass [ Thinopyrum intermedium (Host) Barkworth & D.R. Dewey 'Mansaka'], with a low of 71% for hybrid wheatgrass [Elytrigia repens (L.) nevski pseudoroegneria spicata (PURSH) A. Love 'Newhy']. Though hybrid wheatgrass had the lowest release efficiency, its high harvest yield resulted in release of more total carbohydrates than half the other cultivars analyzed. Furthermore, this suggested that harvest yield, carbohydrate release, and carbohydrate composition, together play significant roles in biofuel feedstock evaluation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Courtney E.; Wolfrum, Edward J.; Nagle, Nicholas J.
Cool-season (C3) perennial grasses have a long history of cultivation and use as animal forage. This study evaluated 15 cultivars of C3 grasses, when harvested in late June for increased biomass yield, as biofuel feedstocks using near- infrared spectroscopy (NIR) based partial least square (PLS) analysis. These grasses were grown near Iliff, CO, for three growing seasons (2009-2011). The carbohydrate composition and released carbohydrates (total glucose and xylose released from dilute acid pretreatment and enzymatic hydrolysis [EH]) were predicted for samples from the study using NIR/PLS. The results were analyzed from a biofuels perspective, where composition combined with harvest yieldmore » provided information on the carbohydrate yield available for biomass conversion processes, and released carbohydrate yield provided information on the accessibility of those carbohydrates to conversion methods. The range in harvest yields varied more among cultivars (2900 kg ha-1) than did the range in carbohydrate composition (56.0 g kg-1) or released carbohydrates (60.0 g kg-1). When comparing carbohydrate yield to released carbohydrate yield between cultivars, an efficiency as high as 87% release of available carbohydrates was obtained for pubescent wheatgrass [ Thinopyrum intermedium (Host) Barkworth & D.R. Dewey 'Mansaka'], with a low of 71% for hybrid wheatgrass [Elytrigia repens (L.) nevski pseudoroegneria spicata (PURSH) A. Love 'Newhy']. Though hybrid wheatgrass had the lowest release efficiency, its high harvest yield resulted in release of more total carbohydrates than half the other cultivars analyzed. Furthermore, this suggested that harvest yield, carbohydrate release, and carbohydrate composition, together play significant roles in biofuel feedstock evaluation.« less
Understanding carbohydrate-carbohydrate interactions by means of glyconanotechnology.
de la Fuente, Jesus M; Penadés, Soledad
2004-01-01
Carbohydrate-carbohydrate interaction is a reliable and versatile mechanism for cell adhesion and recognition. Glycosphingolipid (GSL) clusters at the cell membrane are mainly involved in this interaction. To investigate carbohydrate-carbohydrate interaction an integrated strategy (Glyconanotechnology) was developed. This strategy includes polyvalent tools (gold glyconanoparticles) mimicking GSL clustering at the cell membrane as well as analytical techniques such as AFM, TEM, and SPR to evaluate the interactions. The results obtained by means of this strategy and current status are presented.
CH/π Interactions in Carbohydrate Recognition.
Spiwok, Vojtěch
2017-06-23
Many carbohydrate-binding proteins contain aromatic amino acid residues in their binding sites. These residues interact with carbohydrates in a stacking geometry via CH/π interactions. These interactions can be found in carbohydrate-binding proteins, including lectins, enzymes and carbohydrate transporters. Besides this, many non-protein aromatic molecules (natural as well as artificial) can bind saccharides using these interactions. Recent computational and experimental studies have shown that carbohydrate-aromatic CH/π interactions are dispersion interactions, tuned by electrostatics and partially stabilized by a hydrophobic effect in solvated systems.
Nickols-Richardson, Sharon M; Coleman, Mary Dean; Volpe, Joanne J; Hosig, Kathy W
2005-09-01
The impact of a low-carbohydrate/high-protein diet compared with a high-carbohydrate/low-fat diet on ratings of hunger and cognitive eating restraint were examined. Overweight premenopausal women consumed a low-carbohydrate/high-protein (n=13) or high-carbohydrate/low-fat diet (n=15) for 6 weeks. Fasting body weight (BW) was measured and the Eating Inventory was completed at baseline, weeks 1 to 4, and week 6. All women experienced a reduction in BW (P<.01), although relative BW loss was greater in the low-carbohydrate/high-protein vs high-carbohydrate/low-fat group at week 6 (P<.05). Based on Eating Inventory scores, self-rated hunger decreased (P<.03) in women in the low-carbohydrate/high-protein but not in the high-carbohydrate/low-fat group from baseline to week 6. In both groups, self-rated cognitive eating restraint increased (P<.01) from baseline to week 1 and remained constant to week 6. Both diet groups reported increased cognitive eating restraint, facilitating short-term weight loss; however, the decrease in hunger perception in the low-carbohydrate/high-protein group may have contributed to a greater percentage of BW loss.
Comparing the responses of rumen ciliate protozoa and bacteria to excess carbohydrate.
Teixeira, César R V; Lana, Rogério de Paula; Tao, Junyi; Hackmann, Timothy J
2017-06-01
When given excess carbohydrate, certain microbial species respond by storing energy (synthesizing reserve carbohydrate), but other species respond by dissipating the energy as heat (spilling energy). To determine the importance of these responses in the rumen microbial community, this study quantified the responses of mixed ciliate protozoa vs bacteria to glucose. We hypothesized that ciliates would direct more glucose to synthesis of reserve carbohydrate (and less to energy spilling) than would bacteria. Ciliates and bacteria were isolated from rumen fluid using filtration and centrifugation, resuspended in nitrogen-free buffer to limit growth, and dosed with 5 mM glucose. Compared with bacteria, ciliates consumed glucose >3-fold faster and synthesized reserve carbohydrate 4-fold faster. They incorporated 53% of glucose carbon into reserve carbohydrate-nearly double the value (27%) for bacteria. Energy spilling was not detected for ciliates, as all heat production (104%) was accounted by synthesis of reserve carbohydrate and endogenous metabolism. For bacteria, reserve carbohydrate and endogenous metabolism accounted for only 68% of heat production, and spilling was detected within 11 min of dosing glucose. These results suggest that ciliates alter the course of ruminal carbohydrate metabolism by outcompeting bacteria for excess carbohydrate, maximizing reserve carbohydrate synthesis, and minimizing energy spilling. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
De Curtis, M; Senterre, J; Rigo, J; Putet, G
1986-09-01
Significant production of breath hydrogen has been shown in premature infants, suggesting limited intestinal capacity for digestion of carbohydrate. To evaluate net absorption of carbohydrate 24 three day balance studies were carried out in seven preterm infants fed pasteurised banked human milk and in 17 preterm infants fed a formula containing 75% lactose and 25% glucose polymers. Because carbohydrate reaching the colon may be converted to organic acids by bacterial flora, carbohydrate net absorption was determined by quantitating the faecal excretion of energy derived from carbohydrate. The carbohydrate derived energy content of milk and stools was calculated as the difference between the measured gross energy and the sum of energy related to nitrogen and fat. Faecal loss of carbohydrate derived energy was lower in the group fed formula (1.9 (SD 1.2) kcal/kg/day) than in the group fed human milk (4.0 (SD 1.8) kcal/kg/day). Net absorption of carbohydrate derived energy was 97.0 (SD 1.9)% as opposed to 92.6 (SD 3.9)%, respectively. Within each group there was no significant relation between carbohydrate energy absorption and fat, nitrogen, or gross energy absorption. Thus, although less complete with human milk than with formula, apparent absorption of energy derived from carbohydrate seemed quite satisfactory in these preterm infants.
Glucose deprivation in tuberous sclerosis complex-related tumors
2011-01-01
Background Cancer cells possess unique metabolic phenotypes that are determined by their underlying oncogenic pathways. Activation of the PI3K/Akt/mTOR signaling cascade promotes glycolysis and leads to glucose-dependence in tumors. In particular, cells with constitutive mTORC1 activity secondary to the loss of TSC1/TSC2 function are prone to undergo apoptosis upon glucose withdrawal in vitro, but this concept has not been tested in vivo. This study examines the effects of restricting glucose metabolism by pharmacologic and dietary means in a tuberous sclerosis complex (TSC) tumor xenograft model. Results Tumor-bearing mice were randomly assigned to receive unrestricted carbohydrate-free ("Carb-free") or Western-style diet in the absence or presence of 2-deoxyglucose (2-DG) in one of four treatment groups. After 14 weeks, tumor sizes were significantly different among the four treatment groups with those receiving 2-DG having the smallest tumors. Unexpectedly, the "Carb-free" diet was associated with the largest tumors but they remained responsive to 2-DG. PET imaging showed significant treatment-related changes in tumor 18fluorodeoxyglucose-uptake but the standard uptake values did not correlate with tumor size. Alternative energy substrates such as ketone bodies and monounsaturated oleic acid supported the growth of the Tsc2-/- cells in vitro, whereas saturated palmitic acid was toxic. Correspondingly, tumors in the high-fat, "Carb-free" group showed greater necrosis and liquefaction that contributed to their larger sizes. In contrast, 2-DG treatment significantly reduced tumor cell proliferation, increased metabolic stress (i.e., ketonemia) and AMPK activity, whereas rapamycin primarily reduced cell size. Conclusions Our data support the concept of glycolytic inhibition as a therapeutic approach in TSC whereas dietary withdrawal of carbohydrates was not effective. PMID:22018000
Peptide YY in diabetics treated chronically with an intestinal glucosidase inhibitor.
Füessl, H S; Adrian, T E; Uttenthal, L O; Bloom, S R
1988-10-03
Peptide YY (PYY) is a recently discovered peptide found in the distal ileum and colon. It circulates in plasma and concentrations rise in malabsorptive conditions. The potential of PYY as an indicator of impaired carbohydrate digestion was studied in a pharmacological model of intestinal glucosidase inhibition. Thirteen type-2 diabetics on long-term treatment with the alpha-glucosidase inhibitor acarbose (3 x 100 mg per day) had test meals with and without acarbose 100 mg before and after the treatment period (mean 46 weeks), a test meal with acarbose after 20 weeks of continuous treatment and a final test meal without acarbose 6 weeks after cessation of treatment. Without acarbose mean plasma PYY concentrations rose from a mean basal value of 11.5 +/- 2.9 pmol/l to 19.5 +/- 3.9 pmol/l 120 min postprandially (P less than 0.01). Acarbose treatment did not effect basal plasma PYY concentrations but significantly enhanced food stimulated PYY concentrations acutely, at 20 weeks and at the final treatment test meal. Mean incremental integrated plasma responses (area under curve) rose by 183%, 184% and 169%, respectively (P less than 0.05). After cessation of treatment postprandial responses returned to pretreatment values within 6 weeks. Conversely, the integrated incremetal postprandial plasma responses of glucose and insulin were reversibly reduced by acarbose to 58% +/- 9% and 60% +/- 10% of controls, respectively. Self-assesed side effects of flatulence and more frequent bowel action showed no regular relationship to the PYY response. PYY seems to act as an indicator of the increased carbohydrate load to the distal intestine even in the absence of clinical symptoms. It may contribute to the hypoglycaemic effect of alpha-glucosidase inhibitors by slowing down intestinal transit.
Force fields and scoring functions for carbohydrate simulation.
Xiong, Xiuming; Chen, Zhaoqiang; Cossins, Benjamin P; Xu, Zhijian; Shao, Qiang; Ding, Kai; Zhu, Weiliang; Shi, Jiye
2015-01-12
Carbohydrate dynamics plays a vital role in many biological processes, but we are not currently able to probe this with experimental approaches. The highly flexible nature of carbohydrate structures differs in many aspects from other biomolecules, posing significant challenges for studies employing computational simulation. Over past decades, computational study of carbohydrates has been focused on the development of structure prediction methods, force field optimization, molecular dynamics simulation, and scoring functions for carbohydrate-protein interactions. Advances in carbohydrate force fields and scoring functions can be largely attributed to enhanced computational algorithms, application of quantum mechanics, and the increasing number of experimental structures determined by X-ray and NMR techniques. The conformational analysis of carbohydrates is challengeable and has gone into intensive study in elucidating the anomeric, the exo-anomeric, and the gauche effects. Here, we review the issues associated with carbohydrate force fields and scoring functions, which will have a broad application in the field of carbohydrate-based drug design. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tan, Fen; Wang, Zhi; Zhouyang, Siyu; Li, Heng; Xie, Youping; Wang, Yuanpeng; Zheng, Yanmei; Li, Qingbiao
2016-12-01
In this study, five microalgae strains were cultured for their ability to survive in biogas slurry, remove nitrogen resources and accumulate carbohydrates. It was proved that five microalgae strains adapted in biogas slurry well without ammonia inhibition. Among them, Chlorella vulgaris ESP-6 showed the best performance on carbohydrate accumulation, giving the highest carbohydrate content of 61.5% in biogas slurry and the highest ammonia removal efficiency and rate of 96.3% and 91.7mg/L/d respectively in biogas slurry with phosphorus and magnesium added. Additionally, the absence of phosphorus and magnesium that can be adverse for biomass accumulation resulted in earlier timing of carbohydrate accumulation and magnesium was firstly recognized and proved as the influence factor for carbohydrate accumulation. Microalgae that cultured in biogas slurry accumulated more carbohydrate in cell, making biogas slurry more suitable medium for the improvement of carbohydrate content, thus can be regarded as a new strategy to accumulate carbohydrate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Synthesis of carbohydrate-based surfactants
Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.
2016-11-22
The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.
Low, Julia Y Q; Lacy, Kathleen E; McBride, Robert L; Keast, Russell S J
2017-01-01
Compared to simple sugars, complex carbohydrates have been assumed invisible to taste. However, two recent studies proposed that there may be a perceivable taste quality elicited by complex carbohydrates independent of sweet taste. There is precedent with behavioural studies demonstrating that rats are very attracted to complex carbohydrates, and that complex carbohydrates are preferred to simple sugars at low concentrations. This suggests that rats may have independent taste sensors for simple sugars and complex carbohydrates. The aim of this paper is to investigate oral sensitivities of two different classes of complex carbohydrates (a soluble digestible and a soluble non-digestible complex carbohydrate), and to compare these to other caloric and non-nutritive sweeteners in addition to the prototypical tastes using two commonly used psychophysical measures. There were strong correlations between the detection thresholds and mean intensity ratings for complex carbohydrates (maltodextrin, oligofructose) (r = 0.94, P < 0.001). There were no significant correlations between the detection thresholds of the complex carbohydrates (maltodextrin, oligofructose) and the sweeteners (glucose, fructose, sucralose, Rebaudioside A, erythritol) (all P > 0.05). However, moderate correlations were observed between perceived intensities of complex carbohydrates and sweeteners (r = 0.48-0.61, P < 0.05). These data provide evidence that complex carbohydrates can be sensed in the oral cavity over a range of concentrations independent of sweet taste sensitivity at low concentrations, but with partial overlap with sweet taste intensity at higher concentrations.
Lacy, Kathleen E.; Keast, Russell S. J.
2017-01-01
Compared to simple sugars, complex carbohydrates have been assumed invisible to taste. However, two recent studies proposed that there may be a perceivable taste quality elicited by complex carbohydrates independent of sweet taste. There is precedent with behavioural studies demonstrating that rats are very attracted to complex carbohydrates, and that complex carbohydrates are preferred to simple sugars at low concentrations. This suggests that rats may have independent taste sensors for simple sugars and complex carbohydrates. The aim of this paper is to investigate oral sensitivities of two different classes of complex carbohydrates (a soluble digestible and a soluble non-digestible complex carbohydrate), and to compare these to other caloric and non-nutritive sweeteners in addition to the prototypical tastes using two commonly used psychophysical measures. There were strong correlations between the detection thresholds and mean intensity ratings for complex carbohydrates (maltodextrin, oligofructose) (r = 0.94, P < 0.001). There were no significant correlations between the detection thresholds of the complex carbohydrates (maltodextrin, oligofructose) and the sweeteners (glucose, fructose, sucralose, Rebaudioside A, erythritol) (all P > 0.05). However, moderate correlations were observed between perceived intensities of complex carbohydrates and sweeteners (r = 0.48–0.61, P < 0.05). These data provide evidence that complex carbohydrates can be sensed in the oral cavity over a range of concentrations independent of sweet taste sensitivity at low concentrations, but with partial overlap with sweet taste intensity at higher concentrations. PMID:29281655
Dietary carbohydrates and glucose metabolism in diabetic patients.
Parillo, M; Riccardi, G
1995-12-01
Dietary carbohydrates represent one of the major sources of energy for the human body. However, the main (if not the only) therapy for diabetes since ancient times has been based on reducing dietary carbohydrates drastically because of their effects on blood glucose levels. The introduction of insulin in the 1920s and then of oral hypoglycaemic drugs led to various studies evaluating the biochemical characteristics of carbohydrates and their effects on glucose metabolism in diabetic patients. This review considers the role of dietary carbohydrates in the diet of diabetic patients in the light of the most recent studies and provides a short summary of the biochemistry of carbohydrates and the physiology of carbohydrate digestion.
Kwon, Seok Joon; Lee, Kyung Bok; Solakyildirim, Kemal; Masuko, Sayaka; Ly, Mellisa; Zhang, Fuming; Li, Lingyun; Dordick, Jonathan S.; Linhardt, Robert J.
2012-01-01
Tiny amounts of carbohydrates (ca. 1 zmol) can be detected quantitatively by a real-time method based on the conjugation of carbohydrates with DNA markers (see picture). The proposed method (glyco-qPCR) provides uniform, ultrasensitive detection of carbohydrates, which can be applied to glycobiology, as well as carbohydrate-based drug discovery. PMID:23073897
The role of dietary carbohydrates in organismal aging.
Lee, Dongyeop; Son, Heehwa G; Jung, Yoonji; Lee, Seung-Jae V
2017-05-01
Carbohydrates are essential nutrients that are used as a primary source of energy. Carbohydrate utilization should be properly controlled, as abnormal regulation of carbohydrate metabolism is associated with diseases, such as diabetes, cardiovascular diseases, and stroke. These metabolic syndromes have become a serious problem in developed countries, and there is an increased need for research examining the influence of carbohydrates on animal physiology. Diets enriched in glucose, a major carbohydrate, are also associated with accelerated aging in several model organisms, including yeast and Caenorhabditis elegans (C. elegans). Genetic factors that mediate the effects of high glucose diets on aging have been identified during the last decade, mostly through the use of C. elegans. In this review, we describe studies that determine the effects of carbohydrate-enriched diets on aging by focusing on the mechanisms through which evolutionarily conserved pathways mediate the lifespan-altering effects of glucose in C. elegans. These include the insulin/insulin-like growth factor-1, sterol-regulatory element-binding protein, and AMP-activated protein kinase signaling pathways. We also discuss the effects of various carbohydrates and carbohydrate-derived metabolites on aging in model organisms and cultured mammalian cells. Finally, we discuss how dietary carbohydrates influence health and aging in humans.
Carbohydrate terminology and classification.
Cummings, J H; Stephen, A M
2007-12-01
Dietary carbohydrates are a group of chemically defined substances with a range of physical and physiological properties and health benefits. As with other macronutrients, the primary classification of dietary carbohydrate is based on chemistry, that is character of individual monomers, degree of polymerization (DP) and type of linkage (alpha or beta), as agreed at the Food and Agriculture Organization/World Health Organization Expert Consultation in 1997. This divides carbohydrates into three main groups, sugars (DP 1-2), oligosaccharides (short-chain carbohydrates) (DP 3-9) and polysaccharides (DP> or =10). Within this classification, a number of terms are used such as mono- and disaccharides, polyols, oligosaccharides, starch, modified starch, non-starch polysaccharides, total carbohydrate, sugars, etc. While effects of carbohydrates are ultimately related to their primary chemistry, they are modified by their physical properties. These include water solubility, hydration, gel formation, crystalline state, association with other molecules such as protein, lipid and divalent cations and aggregation into complex structures in cell walls and other specialized plant tissues. A classification based on chemistry is essential for a system of measurement, predication of properties and estimation of intakes, but does not allow a simple translation into nutritional effects since each class of carbohydrate has overlapping physiological properties and effects on health. This dichotomy has led to the use of a number of terms to describe carbohydrate in foods, for example intrinsic and extrinsic sugars, prebiotic, resistant starch, dietary fibre, available and unavailable carbohydrate, complex carbohydrate, glycaemic and whole grain. This paper reviews these terms and suggests that some are more useful than others. A clearer understanding of what is meant by any particular word used to describe carbohydrate is essential to progress in translating the growing knowledge of the physiological properties of carbohydrate into public health messages.
Impact of macronutrient composition and palatability in wet diets on food selection in cats.
Salaun, F; Blanchard, G; Le Paih, L; Roberti, F; Niceron, C
2017-04-01
Cats are obligate carnivores adapted to high-protein diets, but are commonly fed diets rich in carbohydrate. The aim of this study was to examine the food intake choices of cats when diets with different protein and carbohydrate contents were offered. Thirty-nine cats participated in voluntary dietary intake studies. Four foods were formulated to provide between 24% and 53% of metabolizable energy as protein, between 43% and 11% as carbohydrate and holding dietary fat constant with a contribution of approximately 36%. Foods were offered either singly to evaluate voluntary food intake or in pairs to compare food intake between pairs of diets. Cats regulated their macronutrient intake to attain an overall diet composition that provided 53% of metabolizable energy as protein, 11% as carbohydrate and 36% as fat. The protein contribution corresponded to approximately 6 g of protein/kg body weight/day. High-protein/low-carbohydrate diets were always eaten preferentially over low-protein/high-carbohydrate foods. When low-protein/high-carbohydrate diets were offered, cats limited their food intake to limit daily carbohydrate intake to less than 3 g of carbohydrate/kg body weight. This carbohydrate ceiling may limit protein and even energy intake when only low-protein/high-carbohydrate diets were offered. The inclusion of palatability enhancer in the diets increased food intake but did not change protein or carbohydrate intake patterns, indicating that macronutrient intake can be regulated regardless of the use of palatability enhancers in cats. We conclude that cats can discriminate between diets based on macronutrient composition and regulate their intake to maintain maximal protein intake but limit carbohydrate intake. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Carbohydrates and Diabetes (For Parents)
... Staying Safe Videos for Educators Search English Español Carbohydrates and Diabetes KidsHealth / For Parents / Carbohydrates and Diabetes ... many kids with diabetes take to stay healthy. Carbohydrates and Blood Sugar The two main forms of ...
Minimally refined biomass fuel
Pearson, Richard K.; Hirschfeld, Tomas B.
1984-01-01
A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.
Yari, Mojtaba; Valizadeh, Reza; Nnaserian, Abbas Ali; Jonker, Arjan; Yu, Peiqiang
2017-01-01
Objective This study was conducted to determine molecular structures related to carbohydrates and lipid in alfalfa hay cut at early bud, late bud and early flower and in the afternoon and next morning using Fourier transform infrared spectroscopy (FT/IR) and to determine their relationship with alfalfa hay nutrient profile and availability in ruminants. Methods Chemical composition analysis, carbohydrate fractionation, in situ ruminal degradability, and DVE/OEB model were used to measure nutrient profile and availability of alfalfa hay. Univariate analysis, hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify FT/IR spectra differences. Results The FT/IR non-structural carbohydrate (NSCHO) to total carbohydrates and NSCHO to structural carbohydrate ratios decreased (p<0.05), while lignin to NSCHO and lipid CH3 symmetric to CH2 symmetric ratios increased with advancing maturity (p<0.05). The FT/IR spectra related to structural carbohydrates, lignin and lipids were distinguished for alfalfa hay at three maturities by PCA and CLA, while FT/IR molecular structures related to carbohydrates and lipids were similar between alfalfa hay cut in the morning and afternoon when analyzed by PCA and CLA analysis. Positive correlations were found for FT/IR NSCHO to total carbohydrate and NSCHO to structural carbohydrate ratios with non-fiber carbohydrate (by wet chemistry), ruminal fast and intermediately degradable carbohydrate fractions and total ruminal degradability of carbohydrates and predicted intestinal nutrient availability in dairy cows (r≥0.60; p<0.05) whereas FT/IR lignin to NSCHO and CH3 to CH2 symmetric stretching ratio had negative correlation with predicted ruminal and intestinal nutrient availability of alfalfa hay in dairy cows (r≥−0.60; p<0.05). Conclusion FT/IR carbohydrate and lipid molecular structures in alfalfa hay changed with advancing maturity from early bud to early flower, but not during the day, and these molecular structures correlated with predicted nutrient supply of alfalfa hay in ruminants. PMID:28335093
Discovery and design of carbohydrate-based therapeutics.
Cipolla, Laura; Araújo, Ana C; Bini, Davide; Gabrielli, Luca; Russo, Laura; Shaikh, Nasrin
2010-08-01
Till now, the importance of carbohydrates has been underscored, if compared with the two other major classes of biopolymers such as oligonucleotides and proteins. Recent advances in glycobiology and glycochemistry have imparted a strong interest in the study of this enormous family of biomolecules. Carbohydrates have been shown to be implicated in recognition processes, such as cell-cell adhesion, cell-extracellular matrix adhesion and cell-intruder recognition phenomena. In addition, carbohydrates are recognized as differentiation markers and as antigenic determinants. Due to their relevant biological role, carbohydrates are promising candidates for drug design and disease treatment. However, the growing number of human disorders known as congenital disorders of glycosylation that are being identified as resulting from abnormalities in glycan structures and protein glycosylation strongly indicates that a fast development of glycobiology, glycochemistry and glycomedicine is highly desirable. The topics give an overview of different approaches that have been used to date for the design of carbohydrate-based therapeutics; this includes the use of native synthetic carbohydrates, the use of carbohydrate mimics designed on the basis of their native counterpart, the use of carbohydrates as scaffolds and finally the design of glyco-fused therapeutics, one of the most recent approaches. The review covers mainly literature that has appeared since 2000, except for a few papers cited for historical reasons. The reader will gain an overview of the current strategies applied to the design of carbohydrate-based therapeutics; in particular, the advantages/disadvantages of different approaches are highlighted. The topic is presented in a general, basic manner and will hopefully be a useful resource for all readers who are not familiar with it. In addition, in order to stress the potentialities of carbohydrates, several examples of carbohydrate-based marketed therapeutics are given. Carbohydrates are a rich class of natural compounds, possessing an intriguing and still not fully understood biological role. This richness offers several strategies for the design of carbohydrate-based therapeutics.
Heat capacity changes in carbohydrates and protein-carbohydrate complexes.
Chavelas, Eneas A; García-Hernández, Enrique
2009-05-13
Carbohydrates are crucial for living cells, playing myriads of functional roles that range from being structural or energy-storage devices to molecular labels that, through non-covalent interaction with proteins, impart exquisite selectivity in processes such as molecular trafficking and cellular recognition. The molecular bases that govern the recognition between carbohydrates and proteins have not been fully understood yet. In the present study, we have obtained a surface-area-based model for the formation heat capacity of protein-carbohydrate complexes, which includes separate terms for the contributions of the two molecular types. The carbohydrate model, which was calibrated using carbohydrate dissolution data, indicates that the heat capacity contribution of a given group surface depends on its position in the saccharide molecule, a picture that is consistent with previous experimental and theoretical studies showing that the high abundance of hydroxy groups in carbohydrates yields particular solvation properties. This model was used to estimate the carbohydrate's contribution in the formation of a protein-carbohydrate complex, which in turn was used to obtain the heat capacity change associated with the protein's binding site. The model is able to account for protein-carbohydrate complexes that cannot be explained using a previous model that only considered the overall contribution of polar and apolar groups, while allowing a more detailed dissection of the elementary contributions that give rise to the formation heat capacity effects of these adducts.
De Curtis, M; Senterre, J; Rigo, J; Putet, G
1986-01-01
Significant production of breath hydrogen has been shown in premature infants, suggesting limited intestinal capacity for digestion of carbohydrate. To evaluate net absorption of carbohydrate 24 three day balance studies were carried out in seven preterm infants fed pasteurised banked human milk and in 17 preterm infants fed a formula containing 75% lactose and 25% glucose polymers. Because carbohydrate reaching the colon may be converted to organic acids by bacterial flora, carbohydrate net absorption was determined by quantitating the faecal excretion of energy derived from carbohydrate. The carbohydrate derived energy content of milk and stools was calculated as the difference between the measured gross energy and the sum of energy related to nitrogen and fat. Faecal loss of carbohydrate derived energy was lower in the group fed formula (1.9 (SD 1.2) kcal/kg/day) than in the group fed human milk (4.0 (SD 1.8) kcal/kg/day). Net absorption of carbohydrate derived energy was 97.0 (SD 1.9)% as opposed to 92.6 (SD 3.9)%, respectively. Within each group there was no significant relation between carbohydrate energy absorption and fat, nitrogen, or gross energy absorption. Thus, although less complete with human milk than with formula, apparent absorption of energy derived from carbohydrate seemed quite satisfactory in these preterm infants. PMID:3639729
Association of carbohydrate and fat intake with metabolic syndrome.
Kwon, Yu-Jin; Lee, Hye-Sun; Lee, Ji-Won
2018-04-01
In Asia, dietary pattern has been changed with increased intake of refined carbohydrates, sugar, and saturated fat, while the prevalence of metabolic syndrome (MetS) is on the rise. However, it remains unclear whether a high-carbohydrate or a high-fat diet is more metabolically harmful, and the optimal amount of carbohydrates and fat has not been determined. The aim of our study was to examine the role of carbohydrate and fat intake in MetS in a Korean population. Data were obtained from a large, population-based, cross-sectional study (6737 males and 8845 females). The subjects were divided into nine groups based on carbohydrate and fat proportion, and multiple logistic regression analysis was performed after adjusting for confounding variables. Regardless of fat intake, the risk of MetS significantly increased in males with higher carbohydrate proportions (of total energy intake). In females, the risk of MetS was significantly elevated only in those with both the highest carbohydrate proportion and lowest fat proportion. A high carbohydrate proportion was associated with a higher prevalence of MetS in males, and a high carbohydrate proportion combined with a low fat proportion was associated with MetS in females. Our results indicate that reduction of excessive carbohydrate intake paired with an adequate fat intake, taking into consideration optimal types of fat, is useful for MetS prevention. Longitudinal studies are needed to clarify the optimal types and amounts of carbohydrate and fat proportions as well as the mechanism underlying these relationships. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Gay, L J; Schutz, Y; DiVetta, V; Schneiter, P; Tappy, L; Jéquier, E
1994-09-01
The aim of this study was to determine whether breath 13CO2 measurements could be used to assess the compliance to a diet containing carbohydrates naturally enriched in 13C. The study was divided into two periods: Period 1 (baseline of 4 days) with low 13C/12C ratio carbohydrates. Period 2 (5 days) isocaloric diet with a high 13C/12C ratio (corn, cane sugar, pineapple, millet) carbohydrates. Measurements were made of respiratory gas exchange by indirect calorimetry, urinary nitrogen excretion and breath 13CO2 every morning in post-absorptive conditions, both in resting state and during a 45-min low intensity exercise (walking on a treadmill). The subjects were 10 healthy lean women (BMI 20.4 +/- 1.7 kg/m2, % body fat 24.4 +/- 1.3%), the 13C enrichment of oxidized carbohydrate and breath 13CO2 were compared to the enrichment of exogenous dietary carbohydrates. At rest the enrichment of oxidized carbohydrate increased significantly after one day of 13C carbohydrate enriched diet and reached a steady value (103 +/- 16%) similar to the enrichment of exogenous carbohydrates. During exercise, the 13C enrichment of oxidized carbohydrate remained significantly lower (68 +/- 17%) than that of dietary carbohydrates. The compliance to a diet with a high content of carbohydrates naturally enriched in 13C may be assessed from the measurement of breath 13CO2 enrichment combined with respiratory gas exchange in resting, postabsorptive conditions.
Regulation of low-density lipoprotein subfractions by carbohydrates.
Gerber, Philipp A; Berneis, Kaspar
2012-07-01
This article aims at reviewing the recent findings that have been made concerning the crosstalk of carbohydrate metabolism with the generation of small, dense low-density lipoprotein (LDL) particles, which are known to be associated with an adverse cardiovascular risk profile. Studies conducted during the past few years have quite unanimously shown that the quantity of carbohydrates ingested is associated with a decrease of LDL particle size and an increase in its density. Conversely, diets that aim at a reduction of carbohydrate intake are able to improve LDL quality. Furthermore, a reduction of the glycaemic index without changing the amount of carbohydrates ingested has similar effects. Diseases with altered carbohydrate metabolism, for example, type 2 diabetes, are associated with small, dense LDL particles. Finally, even the kind of monosaccharide the carbohydrate intake consists of is important concerning LDL particle size: fructose has been shown to alter the LDL particle subclass profile more adversely than glucose in many recent studies. LDL particle quality, rather than its quantity, is affected by carbohydrate metabolism, which is of clinical importance, in particular, in the light of increased carbohydrate consumption in today's world.
Parasite Carbohydrate Vaccines.
Jaurigue, Jonnel A; Seeberger, Peter H
2017-01-01
Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases-malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma , and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development.
Parasite Carbohydrate Vaccines
Jaurigue, Jonnel A.; Seeberger, Peter H.
2017-01-01
Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases—malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma, and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development. PMID:28660174
Abuse potential of carbohydrates for overweight carbohydrate cravers
Spring, Bonnie; Schneider, Kristin; Smith, Malaina; Kendzor, Darla; Appelhans, Bradley; Hedeker, Donald; Pagoto, Sherry
2010-01-01
Rationale The long-rejected construct of food addiction is undergoing re-examination. Objectives . To evaluate whether a novel carbohydrate food shows abuse potential for rigorously defined carbohydrate cravers, as evidenced by selective self-administration and mood enhancement during double-blind discrimination testing. Methods Discrete trials choice testing was performed with 61 overweight (BMI m=27.64, SD=2.59) women (ages 18–45; 19.70% African American) whose diet records showed >4 weekly afternoon/evening emotional eating episodes confined to snacks with carbohydrate:protein ≥ 6:1. After being induced into a sad mood, participants were exposed, double-blind and in counterbalanced order, to taste-matched carbohydrate and protein beverages. They were asked to choose and self-administer the drink that made them feel better. Results Women overwhelmingly chose the carbohydrate beverage, even though blinded. Mixed-effects regression modeling, controlling for beverage order, revealed greater liking and greater reduction in dysphoria following the carbohydrate beverage compared to the protein beverage, but no differential effect on vigor. Conclusion For women who crave them, carbohydrates appear to display abuse potential, plausibly contributing to overconsumption and overweight. PMID:18273603
Dynamic Fluctuations of Protein-Carbohydrate Interactions Promote Protein Aggregation
Voynov, Vladimir; Chennamsetty, Naresh; Kayser, Veysel; Helk, Bernhard; Forrer, Kurt; Zhang, Heidi; Fritsch, Cornelius; Heine, Holger; Trout, Bernhardt L.
2009-01-01
Protein-carbohydrate interactions are important for glycoprotein structure and function. Antibodies of the IgG class, with increasing significance as therapeutics, are glycosylated at a conserved site in the constant Fc region. We hypothesized that disruption of protein-carbohydrate interactions in the glycosylated domain of antibodies leads to the exposure of aggregation-prone motifs. Aggregation is one of the main problems in protein-based therapeutics because of immunogenicity concerns and decreased efficacy. To explore the significance of intramolecular interactions between aromatic amino acids and carbohydrates in the IgG glycosylated domain, we utilized computer simulations, fluorescence analysis, and site-directed mutagenesis. We find that the surface exposure of one aromatic amino acid increases due to dynamic fluctuations. Moreover, protein-carbohydrate interactions decrease upon stress, while protein-protein and carbohydrate-carbohydrate interactions increase. Substitution of the carbohydrate-interacting aromatic amino acids with non-aromatic residues leads to a significantly lower stability than wild type, and to compromised binding to Fc receptors. Our results support a mechanism for antibody aggregation via decreased protein-carbohydrate interactions, leading to the exposure of aggregation-prone regions, and to aggregation. PMID:20037630
Brinkworth, Grant D; Buckley, Jonathan D; Noakes, Manny; Clifton, Peter M
2010-04-01
A frequently cited concern of very-low-carbohydrate diets is the potential for increased risk of renal disease associated with a higher protein intake. However, to date, no well-controlled randomized studies have evaluated the long-term effects of very-low-carbohydrate diets on renal function. To study this issue, renal function was assessed in 68 men and women with abdominal obesity (age 51.5+/-7.7 years, body mass index [calculated as kg/m(2)] 33.6+/-4.0) without preexisting renal dysfunction who were randomized to consume either an energy-restricted ( approximately 1,433 to 1,672 kcal/day), planned isocaloric very-low-carbohydrate (4% total energy as carbohydrate [14 g], 35% protein [124 g], 61% fat [99 g]), or high-carbohydrate diet (46% total energy as carbohydrate [162 g], 24% protein [85 g], 30% fat [49 g]) for 1 year. Body weight, serum creatinine, estimated glomerular filtration rate and urinary albumin excretion were assessed before and after 1 year (April 2006-July 2007). Repeated measures analysis of variance was conducted. Weight loss was similar in both groups (very-low-carbohydrate: -14.5+/-9.7 kg, high-carbohydrate: -11.6+/-7.3 kg; P=0.16). By 1 year, there were no changes in either group in serum creatinine levels (very-low-carbohydrate: 72.4+/-15.1 to 71.3+/-13.8 mumol/L, high-carbohydrate: 78.0+/-16.0 to 77.2+/-13.2 mumol/L; P=0.93 time x diet effect) or estimated glomerular filtration rate (very-low-carbohydrate: 90.0+/-17.0 to 91.2+/-17.8 mL/min/1.73 m(2), high-carbohydrate: 83.8+/-13.8 to 83.6+/-11.8 mL/min/1.73 m(2); P=0.53 time x diet effect). All but one participant was classified as having normoalbuminuria at baseline, and for these participants, urinary albumin excretion values remained in the normoalbuminuria range at 1 year. One participant in high-carbohydrate had microalbuminuria (41.8 microg/min) at baseline, which decreased to a value of 3.1 microg/min (classified as normoalbuminuria) at 1 year. This study provides preliminary evidence that long-term weight loss with a very-low-carbohydrate diet does not adversely affect renal function compared with a high-carbohydrate diet in obese individuals with normal renal function. Copyright (c) 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
Newberne, P M
1975-02-01
Results derived from animal experimentation depend to a considerable degree on the health and welfare of the animal from which the results are obtained. This, in turn, reflects the quality of housing, care, and nutrition provided the animal. Most diets designed for a particular species provide a reasonable balance of nutrients in quantities sufficient for normal growth and maintenance and reproduction of that species. Under usual conditions of animal feed manufacture, however, concentrations of essential ingredients may vary appreciably in different batches of a formulation made with different lots of natural ingredients, even though the guaranteed analysis shown on the label remains correct. A feed may also contain intentional or unintentional additives and other biologically active components. Variations in the concentrations of essential dietary components, as well as the presence of extraneous materials, can significantly influence the performance of an experimental animal consuming the diet and can thus lead to a biased interpretation of esperimental results. Investigators must consider factors which can result in efficient or inefficient utilization of energy, the variation in prepared diets whether from natural or purified products, and how these can modify the animal and change the response to a given experimental regimen. Proteins, fat, carbohydrates, vitamins, and minerals can all have pharmacological as well as physiological effects on a biological system. The control of vitamin D metabolism and calcium, parathormone, calcitonin among others are important factors subject to dietary modification. A conditioned marginal or frank deficiency of folic acid can result from oral contraceptives and administration of anticonvulsants; if studies are done in animals using these types of chemicals, dietary folate will be highly significant. Newer information about the role of ascorbic acid in activation of lipase and lipid mobilization is of direct concern to those using research animals requiring a source of dietary ascorbic acid. Trace elements, some amino acids, natural enzyme inducers, and toxic contaminants, all of which can affect the response of experimental animals, are highly important to the quality of animal research in pharmacologic investigations.
Fadda, Elisa; Woods, Robert J
2010-08-01
The characterization of the 3D structure of oligosaccharides, their conjugates and analogs is particularly challenging for traditional experimental methods. Molecular simulation methods provide a basis for interpreting sparse experimental data and for independently predicting conformational and dynamic properties of glycans. Here, we summarize and analyze the issues associated with modeling carbohydrates, with a detailed discussion of four of the most recently developed carbohydrate force fields, reviewed in terms of applicability to natural glycans, carbohydrate-protein complexes and the emerging area of glycomimetic drugs. In addition, we discuss prospectives and new applications of carbohydrate modeling in drug discovery.
The carbohydrate sequence markup language (CabosML): an XML description of carbohydrate structures.
Kikuchi, Norihiro; Kameyama, Akihiko; Nakaya, Shuuichi; Ito, Hiromi; Sato, Takashi; Shikanai, Toshihide; Takahashi, Yoriko; Narimatsu, Hisashi
2005-04-15
Bioinformatics resources for glycomics are very poor as compared with those for genomics and proteomics. The complexity of carbohydrate sequences makes it difficult to define a common language to represent them, and the development of bioinformatics tools for glycomics has not progressed. In this study, we developed a carbohydrate sequence markup language (CabosML), an XML description of carbohydrate structures. The language definition (XML Schema) and an experimental database of carbohydrate structures using an XML database management system are available at http://www.phoenix.hydra.mki.co.jp/CabosDemo.html kikuchi@hydra.mki.co.jp.
Spann, Timothy M; Beede, Robert H; Dejong, Theodore M
2008-02-01
We analyzed annual carbohydrate storage and mobilization of bearing ("on") and non-bearing ("off") 'Kerman' pistachio (Pistacia vera L.) trees growing on three different rootstocks. On all rootstocks, carbohydrate storage in shoots and branches of "on" and "off" trees was lowest following the spring growth flush. In "off" trees, stored carbohydrates increased and remained high after the initial growth flush. In "on" trees, stem carbohydrates increased temporarily in early summer, but were mobilized in mid-season during kernel fill, and then increased again after nut harvest. During the dormant season, the only substantial differences in carbohydrate storage between previously "on" and "off" trees were found in the roots of the weakest rootstock. The annual carbohydrate storage and mobilization pattern in canopy branches of heavily cropped pistachio trees appeared to be driven by carbohydrate demands related to nut development and untempered by tree vigor. Mobilization of carbohydrates from current-season and 1- and 2-year-old stem wood of "on" trees during the primary period of kernel fill corresponded with the period of inflorescence bud abscission. Thus, the alternate bearing pattern associated with inflorescence bud abscission in 'Kerman' pistachio may be a function of mid-season mobilization of stored carbohydrates in current-season stems resulting in stimulation of inflorescence bud abscission.
Da Silva, David; Qin, Liangchun; DeBuse, Carolyn; DeJong, Theodore M
2014-09-01
Developing a conceptual and functional framework for simulating annual long-term carbohydrate storage and mobilization in trees has been a weak point for virtually all tree models. This paper provides a novel approach for solving this problem using empirical field data and details of structural components of simulated trees to estimate the total carbohydrate stored over a dormant season and available for mobilization during spring budbreak. The seasonal patterns of mobilization and storage of non-structural carbohydrates in bark and wood of the scion and rootstock crowns of the trunks of peach (Prunus persica) trees were analysed subsequent to treatments designed to maximize differences in source-sink behaviour during the growing season. Mature peach trees received one of three treatments (defruited and no pruning, severe pruning to 1·0 m, and unthinned with no pruning) in late winter, just prior to budbreak. Selected trees of each treatment were harvested at four times (March, June, August and November) and slices of trunk and root crown tissue above and below the graft union were removed for carbohydrate analysis. Inner bark and xylem tissues from the first to fifth rings were separated and analysed for non-structural carbohydrates. Data from these experiments were then used to estimate the amount of non-structural carbohydrates available for mobilization and to parameterize a carbohydrate storage sub-model in the functional-structural L-PEACH model. The mass fraction of carbohydrates in all sample tissues decreased from March to June, but the decrease was greatest in the severely pruned and unthinned treatments. November carbohydrate mass fractions in all tissues recovered to values similar to those in the previous March, except in the older xylem rings of the severely pruned and unthinned treatment. Carbohydrate storage sink capacity in trunks was empirically estimated from the mean maximum measured trunk non-structural carbohydrate mass fractions. The carbohydrate storage source available for mobilization was estimated from these maximum mass fractions and the early summer minimum mass fractions remaining in these tissues in the severe treatments that maximized mobilization of stored carbohydrates. The L-PEACH sink-source carbohydrate distribution framework was then used along with simulated tree structure to successfully simulate annual carbohydrate storage sink and source behaviour over years. The sink-source concept of carbohydrate distribution within a tree was extended to include winter carbohydrate storage and spring mobilization by considering the storage sink and source as a function of the collective capacity of active xylem and phloem tissue of the tree, and its annual behaviour was effectively simulated using the L-PEACH functional-structural plant model.
Da Silva, David; Qin, Liangchun; DeBuse, Carolyn; DeJong, Theodore M.
2014-01-01
Background and Aims Developing a conceptual and functional framework for simulating annual long-term carbohydrate storage and mobilization in trees has been a weak point for virtually all tree models. This paper provides a novel approach for solving this problem using empirical field data and details of structural components of simulated trees to estimate the total carbohydrate stored over a dormant season and available for mobilization during spring budbreak. Methods The seasonal patterns of mobilization and storage of non-structural carbohydrates in bark and wood of the scion and rootstock crowns of the trunks of peach (Prunus persica) trees were analysed subsequent to treatments designed to maximize differences in source–sink behaviour during the growing season. Mature peach trees received one of three treatments (defruited and no pruning, severe pruning to 1·0 m, and unthinned with no pruning) in late winter, just prior to budbreak. Selected trees of each treatment were harvested at four times (March, June, August and November) and slices of trunk and root crown tissue above and below the graft union were removed for carbohydrate analysis. Inner bark and xylem tissues from the first to fifth rings were separated and analysed for non-structural carbohydrates. Data from these experiments were then used to estimate the amount of non-structural carbohydrates available for mobilization and to parameterize a carbohydrate storage sub-model in the functional–structural L-PEACH model. Key Results The mass fraction of carbohydrates in all sample tissues decreased from March to June, but the decrease was greatest in the severely pruned and unthinned treatments. November carbohydrate mass fractions in all tissues recovered to values similar to those in the previous March, except in the older xylem rings of the severely pruned and unthinned treatment. Carbohydrate storage sink capacity in trunks was empirically estimated from the mean maximum measured trunk non-structural carbohydrate mass fractions. The carbohydrate storage source available for mobilization was estimated from these maximum mass fractions and the early summer minimum mass fractions remaining in these tissues in the severe treatments that maximized mobilization of stored carbohydrates. The L-PEACH sink–source carbohydrate distribution framework was then used along with simulated tree structure to successfully simulate annual carbohydrate storage sink and source behaviour over years. Conclusions The sink–source concept of carbohydrate distribution within a tree was extended to include winter carbohydrate storage and spring mobilization by considering the storage sink and source as a function of the collective capacity of active xylem and phloem tissue of the tree, and its annual behaviour was effectively simulated using the L-PEACH functional–structural plant model. PMID:24674986
Chen, Limei; Zhang, Xuewei; Yu, Peiqiang
2014-06-04
Dried distillers grains with solubles (DDGS) was coproducts from bioethanol and biobrewing industry. It was an excellent resource of protein and energy feedstuff in China. Conventional studies often focus on traditional nutritional profiles. To data, there is little research on molecular structure-nutrition interaction of carbohydrate in coproducts. In this study, five kinds of corn-grain based DDGS and two kinds of barley-grain based DDGS were collected from different manufactures in the north of China. They were coded as "1, 2, 3, 4, 5, 6, and 7", respectively. The primary purposes of this project were to investigate the molecular structure-nutrition interaction of carbohydrate in coproducts, in terms of (1) carbohydrate-related chemical composition and nutrient profiles, (2) predicted values for energy in coproducts for animal, and (3) in situ digestion of dry matter. The result showed that acid detergent fiber content in corn DDGS and barley DDGS had negative correlation with structural carbohydrate peak area, cellulose compounds, and carbohydrate component peaks (first, second, and total peak area), which were measured with molecular spectroscopy. The correlation between carbohydrate peak area (second and total) and digestible fiber (tdNDF) were negative. There were no correlation between carbohydrate spectral intensities and energy values, carbohydrate subfractions partitioned by CNCPS system, and in situ rumen degradation. The results indicate that carbohydrate spectral profiles (functional groups) are associated with the carbohydrate nutritive values in coproducts from biofuel and biobrewing processing.
NASA Technical Reports Server (NTRS)
Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)
1994-01-01
The rate of NO3- uptake by soybean (Glycine max [L.] Merrill) roots generally declines during the night in association with progressive depletion of the nonstructural carbohydrate pool in the shoot as well as the concentration of carbohydrates in roots. To determine if NO3- uptake rate changes in response to variations in translocation rate of carbohydrates from shoot to roots per se or to carbohydrate status of the roots, the night period was interrupted with a low light level from incandescent lamps to alter the diurnal pattern of NO3- uptake by roots and export of carbohydrate from shoots of nonnodulated soybean. Depletion of NO3- from replenished, complete nutrient solutions containing 1 mM NO3- was measured by ion chromatography and rates of NO3- uptake were calculated. Changes in export of carbohydrates from shoot to roots during intervals of the night period were calculated as the differences between rates of disappearance in contents of nonstructural carbohydrates and their estimated rates of utilization in shoot respiration and growth. A positive, significant correlation occurred between changes in calculated rates of carbohydrate export from shoots and NO3- uptake rates. Conversely, there was no significant correlation between concentrations of nonstructural carbohydrates in roots and NO3- uptake rates. These results support the hypothesis that carbohydrate flux from shoot to roots has a direct role in regulation of nitrogen uptake by the whole plant.
Does Carbohydrate Intake During Endurance Running Improve Performance? A Critical Review.
Wilson, Patrick B
2016-12-01
Wilson, PB. Does carbohydrate intake during endurance running improve performance? A critical review. J Strength Cond Res 30(12): 3539-3559, 2016-Previous review articles assessing the effects of carbohydrate ingestion during prolonged exercise have not focused on running. Given the popularity of distance running and the widespread use of carbohydrate supplements, this article reviewed the evidence for carbohydrate ingestion during endurance running. The criteria for inclusion were (a) experimental studies reported in English language including a performance task, (b) moderate-to-high intensity exercise >60 minutes (intermittent excluded), and (c) carbohydrate ingestion (mouth rinsing excluded). Thirty studies were identified with 76 women and 505 men. Thirteen of the 17 studies comparing a carbohydrate beverage(s) with water or a placebo found a between-condition performance benefit with carbohydrate, although heterogeneity in protocols precludes clear generalizations about the expected effect sizes. Additional evidence suggests that (a) performance benefits are most likely to occur during events >2 hours, although several studies showed benefits for tasks lasting 90-120 minutes; (b) consuming carbohydrate beverages above ad libitum levels increases gastrointestinal discomfort without improving performance; (c) carbohydrate gels do not influence performance for events lasting 16-21 km; and (d) multiple saccharides may benefit events >2 hours if intake is ≥1.3 g·min Given that most participants were fasted young men, inferences regarding women, adolescents, older runners, and those competing in fed conditions are hampered. Future studies should address these limitations to further elucidate the role of carbohydrate ingestion during endurance running.
[Carbohydrate metabolism in children with pulmonary tuberculosis].
Tadzhidinova, M G; Aksenova, V A; Fateev, I I; Sevost'ianova, T A; Makinskiĭ, A I
1998-01-01
Examining carbohydrate metabolism in 59 children with pulmonary tuberculosis ascertained that to get tuberculosis naturally resulted in lower tissue sensitivity to insulin and in hyperinsulinemia. Effective treatment of children improves carbohydrate metabolism. However, there is no normalization of carbohydrate metabolism even in clinical cure.
Lai, Chian-Hui; Hütter, Julia; Hsu, Chien-Wei; Tanaka, Hidenori; Varela-Aramburu, Silvia; De Cola, Luisa; Lepenies, Bernd; Seeberger, Peter H
2016-01-13
Protein-carbohydrate binding depends on multivalent ligand display that is even more important for low affinity carbohydrate-carbohydrate interactions. Detection and analysis of these low affinity multivalent binding events are technically challenging. We describe the synthesis of dual-fluorescent sugar-capped silicon nanoparticles that proved to be an attractive tool for the analysis of low affinity interactions. These ultrasmall NPs with sizes of around 4 nm can be used for NMR quantification of coupled sugars. The silicon nanoparticles are employed to measure the interaction between the cancer-associated glycosphingolipids GM3 and Gg3 and the associated kD value by surface plasmon resonance experiments. Cell binding studies, to investigate the biological relevance of these carbohydrate-carbohydrate interactions, also benefit from these fluorescent sugar-capped nanoparticles.
Saris, W H; Astrup, A; Prentice, A M; Zunft, H J; Formiguera, X; Verboeket-van de Venne, W P; Raben, A; Poppitt, S D; Seppelt, B; Johnston, S; Vasilaras, T H; Keogh, G F
2000-10-01
To investigate the long-term effects of changes in dietary carbohydrate/fat ratio and simple vs complex carbohydrates. Randomized controlled multicentre trial (CARMEN), in which subjects were allocated for 6 months either to a seasonal control group (no intervention) or to one of three experimental groups: a control diet group (dietary intervention typical of the average national intake); a low-fat high simple carbohydrate group; or a low-fat high complex carbohydrate group. Three hundred and ninety eight moderately obese adults. The change in body weight was the primary outcome; changes in body composition and blood lipids were secondary outcomes. Body weight loss in the low-fat high simple carbohydrate and low-fat high complex carbohydrate groups was 0.9 kg (P < 0.05) and 1.8 kg (P < 0.001), while the control diet and seasonal control groups gained weight (0.8 and 0.1 kg, NS). Fat mass changed by -1.3kg (P< 0.01), -1.8kg (P< 0.001) and +0.6kg (NS) in the low-fat high simple carbohydrate, low-fat high complex carbohydrate and control diet groups, respectively. Changes in blood lipids did not differ significantly between the dietary treatment groups. Our findings suggest that reduction of fat intake results in a modest but significant reduction in body weight and body fatness. The concomitant increase in either simple or complex carbohydrates did not indicate significant differences in weight change. No adverse effects on blood lipids were observed. These findings underline the importance of this dietary change and its potential impact on the public health implications of obesity.
Manipulation of Muscle Glycogen Concentrations Using High and Low Carbohydrate Diets and Exercise
1987-08-01
high in carbohydrates in the form of simple sugars (i.e., sucrose, fructose , lactose) and complex carbohydrates (i.e., starches, dietary fiber...AD-A 187 732 REPORT NO T32-87 MANIPULATION OF MUSCLE GLYCOGEN CONCENTRATIONS USING HIGH AND LOW CARBOHYDRATE DIETS AND EXERCISE U S ARMY RESEARCH...Muscle Glycogen Concentrations Using High and Low Carbohydrate Diets and Exercise 12. PERSONAL AUTHOR(S) Buchbinder, J., Pocost, J., Hodgess, L., Roche
Singh, Ranee; Rand, Jacquie S; Coradini, Marcia; Morton, John M
2015-10-01
Feeding a low carbohydrate diet is recommended for diabetic cats; however, some cats may require diets containing moderate-to-high carbohydrate and may benefit from the use of therapeutic agents to improve glycemic control. The aim of the study was to determine the effect of the α-glucosidase inhibitor acarbose on postprandial plasma glucose concentration when combined with commercially available feline diets high and low in carbohydrate. Twelve healthy, adult, non-obese, neutered cats were enrolled. Plasma glucose concentrations were assessed over 24 h after feeding high and low carbohydrate diets, with and without acarbose, during single and multiple meal tests, in a crossover study. Commercially available feline diets were used, which were high and low in carbohydrate (providing 51% and 7% of metabolizable energy, respectively). In cats fed the high carbohydrate diet as a single meal, mean 24 h glucose concentrations were lower when acarbose was administered. Mean glucose concentrations were lower in the first 12 h when acarbose was given once daily, whereas no significant difference was observed in mean results from 12-24 h. Acarbose had little effect in cats eating multiple meals. Compared with consumption of the high carbohydrate diet with acarbose, lower mean 24 h and peak glucose concentrations were achieved by feeding the low carbohydrate diet alone. In healthy cats meal-fed diets of similar composition to the diets used in this study, acarbose has minimal effect when a low carbohydrate diet is fed but reduces postprandial glucose concentrations over 24 h when a high carbohydrate diet is fed. However, mean glucose concentrations over 24 h are still higher when a high carbohydrate diet with acarbose is fed relative to the low carbohydrate diet without acarbose. Future studies in diabetic cats are warranted to confirm these findings. © ISFM and AAFP 2014.
Zazpe, I; Santiago, S; Gea, A; Ruiz-Canela, M; Carlos, S; Bes-Rastrollo, M; Martínez-González, M A
2016-11-01
Beyond the quantity of carbohydrate intake, further research is needed to know the relevance of carbohydrate quality following operational indices. No previous longitudinal study has assessed the association between an index for quality of dietary carbohydrate intake and the risk of cardiovascular disease (CVD). Here, we examined the association between a carbohydrate quality index (CQI) and the risk of CVD. We used a validated semi-quantitative 136-item food-frequency questionnaire (FFQ) in a prospective follow-up study of 17,424 middle-aged adults from Spain. The CQI was defined by four criteria: dietary fiber intake, glycemic index, whole-grain/total-grain carbohydrate ratio, and solid/total carbohydrate ratio. We observed 129 incident cases of CVD during 10.1 y of median follow-up. An inverse association for CQI was found (hazard ratio = 0.44, 95% confidence interval (CI): 0.25-0.78 for the highest versus the lowest tertile, p for trend = 0.008). Participants in the highest tertile of the whole-grain/total-grain carbohydrate ratio had 47% lower risk of CVD (95% CI: 0.33-0.85, p for trend = 0.008). Participants with higher baseline CQI and higher baseline energy from carbohydrates had the lowest risk of CVD. In this Mediterranean cohort, a better quality of dietary carbohydrates measured by the CQI, showed a significant inverse association with the incidence of CVD. Specially, a higher proportion of carbohydrates from whole grains was strongly inversely associated with CVD. "Heart-healthy" diets should be focused not only on carbohydrate quantity but also on a multidimensional assessment of the type and quality of carbohydrates. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.
One-step synthesis of carbohydrate esters as antibacterial and antifungal agents.
AlFindee, Madher N; Zhang, Qian; Subedi, Yagya Prasad; Shrestha, Jaya P; Kawasaki, Yukie; Grilley, Michelle; Takemoto, Jon Y; Chang, Cheng-Wei Tom
2018-02-01
Carbohydrate esters are biodegradable, and the degraded adducts are naturally occurring carbohydrates and fatty acids which are environmentally friendly and non-toxic to human. A simple one-step regioselective acylation of mono-carbohydrates has been developed that leads to the synthesis of a wide range of carbohydrate esters. Screening of these acylated carbohydrates revealed that several compounds were active against a panel of bacteria and fungi, including Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Candida albicans, Cryptococcus neoformans, Aspergillus flavus and Fusarium graminearum. Unlike prior studies on carbohydrate esters that focus only on antibacterial applications, our compounds are found to be active against both bacteria and fungi. Furthermore, the synthetic methodology is suitable to scale-up production for a variety of acylated carbohydrates. The identified lead compound, MAN014, can be used as an antimicrobial in applications such as food processing and preservation and for treatment of bacterial and fungal diseases in animals and plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Degradation properties of protein and carbohydrate during sludge anaerobic digestion.
Yang, Guang; Zhang, Panyue; Zhang, Guangming; Wang, Yuanyuan; Yang, Anqi
2015-09-01
Degradation of protein and carbohydrate is vital for sludge anaerobic digestion performance. However, few studies focused on degradation properties of protein and carbohydrate. This study investigated detailed degradation properties of sludge protein and carbohydrate in order to gain insight into organics removal during anaerobic digestion. Results showed that carbohydrate was more efficiently degraded than protein and was degraded prior to protein. The final removal efficiencies of carbohydrate and protein were 49.7% and 32.2%, respectively. The first 3 days were a lag phase for protein degradation since rapid carbohydrate degradation in this phase led to repression of protease formation. Kinetics results showed that, after initial lag phase, protein degradation followed the first-order kinetic with rate constants of 0.0197 and 0.0018 d(-1) during later rapid degradation phase and slow degradation phase, respectively. Carbohydrate degradation also followed the first-order kinetics with a rate constant of 0.007 d(-1) after initial quick degradation phase. Copyright © 2015 Elsevier Ltd. All rights reserved.
Scheuing, Nicole; Thon, Angelika; Konrad, Katja; Bauer, Maria; Karsten, Claudia; Meissner, Thomas; Seufert, Jochen; Schönau, Eckhard; Schöfl, Christof; Woelfle, Joachim; Holl, Reinhard W
2015-08-01
In cystic fibrosis-related diabetes (CFRD), energy needs differ from type 1 (T1D) or type 2 diabetes, and endogenous insulin secretion is not totally absent. We analyzed whether daily carbohydrate intake, its diurnal distribution and insulin requirement per 11 g of carbohydrate differ between CFRD and T1D. Anonymized data of 223 CFRD and 36,780 T1D patients aged from 10 to <30 years from the multicenter diabetes registry DPV were studied. Carbohydrate intake and insulin requirement were analyzed using multivariable regression modeling with adjustment for age and sex. Moreover, carbohydrate intake was compared to the respective recommendations (CFRD: energy intake 130% of general population with 45% carbohydrates; T1D: carbohydrate intake 50% of total energy). After demographic adjustment, carbohydrate intake (238 ± 4 vs. 191 ± 1 g/d, p < 0.001) and meal-related insulin (0.52 ± 0.02 vs. 0.47 ± 0.004 IU/kg*d, p = 0.001) were higher in CFRD, whereas basal insulin (0.27 ± 0.01 vs. 0.38 ± 0.004 IU/kg*d, p < 0.001) and total insulin requirement per 11 g of carbohydrate (1.15 ± 0.06 vs. 1.70 ± 0.01 IU/d, p < 0.001) were lower compared to T1D. CFRD patients achieved 62% [Q1;Q3: 47; 77] of recommended carbohydrate intake and T1D patients 60% [51; 71] of age- and gender-specific recommended intake (p < 0.001). CFRD and T1D patients had a carbohydrate intake below healthy peers (79% [58; 100] and 62% [52; 74], p < 0.001). The circadian rhythm of insulin sensitivity persisted in CFRD and the diurnal distribution of carbohydrates was comparable between groups. In pediatric and young adult patients, carbohydrate intake and insulin requirement differ clearly between CFRD and T1D. However, both CFRD and T1D patients seem to restrict carbohydrates. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Commins, Scott P
2015-01-01
Complex carbohydrates are effective inducers of Th2 responses, and carbohydrate antigens can stimulate the production of glycan-specific antibodies. In instances where the antigen exposure occurs through the skin, the resulting antibody production can contain IgE class antibody. The glycan-stimulated IgE may be non-specific but may also be antigen specific. This review focuses on the production of cross-reactive carbohydrate determinants, the recently identified IgE antibody response to a mammalian oligosaccharide epitope, galactose-alpha-1,3-galactose (alpha-gal), as well as discusses practical implications of carbohydrates in allergy. In addition, the biological effects of carbohydrate antigens are reviewed in setting of receptors and host recognition.
The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci
Shelburne, Samuel A.; Davenport, Michael T.; Keith, David B.; Musser, James M.
2009-01-01
Historically, the study of bacterial catabolism of complex carbohydrates has contributed to understanding basic bacterial physiology. Recently, however, genome-wide screens of streptococcal pathogenesis have identified genes encoding proteins involved in complex carbohydrate catabolism as participating in pathogen infectivity. Subsequent studies have focused on specific mechanisms by which carbohydrate utilization proteins might contribute to the ability of streptococci to colonize and infect the host. Moreover, transcriptome and biochemical analyses have uncovered novel regulatory pathways by which streptococci link environmental carbohydrate availability to virulence factor production. Herein we review new insights into the role of complex carbohydrates in streptococcal host-pathogen interaction. PMID:18508271
Ho, Shih-Hsin; Chen, Chun-Yen; Chang, Jo-Shu
2012-06-01
Engineering strategies were applied to improve the CO(2) fixation rate and carbohydrate/lipid production of a Scenedesmus obliquus CNW-N isolate. The light intensity that promotes cell growth, carbohydrate/lipid productivity, and CO(2) fixation efficiency was identified. Nitrogen starvation was also employed to trigger the accumulation of lipid and carbohydrate. The highest productivity of biomass, lipid, and carbohydrate was 840.57 mg L(-1)d(-1), 140.35 mg L(-1)d(-1). The highest lipid and carbohydrate content was 22.4% (5-day N-starvation) and 46.65% (1-day N-starvation), respectively. The optimal CO(2) consumption rate was 1420.6 mg L(-1)d(-1). This performance is better than that reported in most other studies. Under nitrogen starvation, the microalgal lipid was mainly composed of C16/C18 fatty acid (around 90%), which is suitable for biodiesel synthesis. The carbohydrate present in the biomass was mainly glucose, accounting for 77-80% of total carbohydrates. This carbohydrate composition is also suitable for fermentative biofuels production (e.g., bioethanol and biobutanol). Copyright © 2011 Elsevier Ltd. All rights reserved.
Winham, Donna M; Collins, Courtney B; Hutchins, Andrea M
2009-01-01
Middle-aged women have the highest levels of obesity and comprise the largest group of dieters. Few investigators have examined how women apply weight-loss diet principles in an unsupervised setting. Dietary intakes and attitudes toward carbohydrates were examined in women who were self-reported low carbohydrate dieters (SRLCDs); these intakes and attitudes were compared with those of women who were following their normal diet (non-dieters [NDs]). A convenience sample of 29 postmenopausal women aged 45 to 65 was recruited. Data were obtained by interview, questionnaire, and direct anthropometric measurement. Descriptive statistics, chi-square analysis, and analysis of variance were used to compare groups. Although total energy and protein intakes were similar, SRLCDs consumed significantly more fat and less carbohydrate (expressed as a percentage of total energy) and more cholesterol and less fibre than did NDs. Both groups had unfavourable attitudes toward carbohydrates. The SRLCDs ate more fat than recommended. Women who are considering following a low carbohydrate diet need to know the nutritional risks of unbalanced self-designed low carbohydrate diets. Negative attitudes toward carbohydrates were not confined to dieters. Nutrition education is necessary to help consumers understand basic nutrition principles and to be more skeptical of fad diets.
Hatakeyama, Tomomitsu; Ishimine, Tomohiro; Baba, Tomohiro; Kimura, Masanari; Unno, Hideaki; Goda, Shuichiro
2013-07-01
CEL-I is a Gal/GalNAc-specific C-type lectin isolated from the sea cucumber Cucumaria echinata. This lectin is composed of two carbohydrate-recognition domains (CRDs) with the carbohydrate-recognition motif QPD (Gln-Pro- Asp), which is generally known to exist in galactose-specific C-type CRDs. In the present study, a mutant CEL-I with EPN (Glu-Pro-Asn) motif, which is thought to be responsible for the carbohydrate-recognition of mannose-specific Ctype CRDs, was produced in Escherichia coli, and its effects on the carbohydrate-binding specificity were examined using polyamidoamine dendrimer (PD) conjugated with carbohydrates. Although wild-type CEL-I effectively formed complexes with N-acetylgalactosamine (GalNAc)-PD but not with mannose-PD, the mutant CEL-I showed relatively weak but definite affinity for mannose-PD. These results indicated that the QPD and EPN motifs play a significant role in the carbohydrate-recognition mechanism of CEL-I, especially in the discrimination of galactose and mannose. Additional mutations in the recombinant CEL-I binding site may further increase its specificity for mannose, and should provide insights into designing novel carbohydrate-recognition proteins.
The effect of dietary carbohydrate on gastroesophageal reflux disease.
Wu, Keng-Liang; Kuo, Chung-Mou; Yao, Chih-Chien; Tai, Wei-Chen; Chuah, Seng-Kee; Lim, Chee-Sang; Chiu, Yi-Chun
2018-01-12
Acid changes in gastroesophageal reflux with vary component in the food have less been studied, especially carbohydrate. We plan to clarify the effect of different carbohydrate density on low esophageal acid and reflux symptoms of patients with gastroesophgeal reflux disease. Twelve patients (52 ± 12 years old; five female) with gastroesophageal reflux disease were recruited for the prospective crossover study. Each patient was invited for panendoscope, manometry and 24 h pH monitor. The two formulated liquid meal, test meal A: 500 ml liquid meal (containing 84.8 g carbohydrate) and B: same volume liquid meal (but 178.8 g carbohydrate) were randomized supplied as lunch or dinner. Reflux symptoms were recorded. There are significant statistic differences in more Johnson-DeMeester score (p = 0.019), total reflux time (%) (p = 0.028), number of reflux periods (p = 0.026) and longest reflux (p = 0.015) after high carbohydrate diet than low carbohydrate. Total reflux time and number of long reflux periods more than 5 min are significant more after high carbohydrate diet. More acid reflux symptoms are found after high carbohydrate diet. High carbohydrate diet could induce more acid reflux in low esophagus and more reflux symptoms in patients with gastroesophageal reflux disease. Copyright © 2018. Published by Elsevier B.V.
Yu, Peiqiang; Damiran, Daalkhaijav; Azarfar, Arash; Niu, Zhiyuan
2011-01-01
The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS) from bioethanol processing in comparison with original feedstock (wheat (Triticum), corn (Zea mays)). The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 1485-1188 cm(-1)), A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm(-1) with region and baseline: ca. 1292-1198 cm(-1)), A_CHO (total carbohydrates, peaks region and baseline: ca. 1187-950 cm(-1)), A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm(-1) with region and baseline: ca. 952-910 cm(-1)), A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm(-1) with region and baseline: ca. 880-827 cm(-1)), H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm(-1) with baseline: ca. 1485-1188 cm(-1)), H_1370 (structural carbohydrate, peak height at ca. 1370 cm(-1) with a baseline: ca. 1485-1188 cm(-1)). The study shows that the grains had lower spectral intensity (KM Unit) of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P < 0.05), higher (P < 0.05) intensities of the non-structural carbohydrate of A_928 (17.3 vs. 2.0) and A_860 (20.7 vs. 7.6) than their co-products from bioethanol processing. There were no differences (P > 0.05) in the peak area intensities of A_Cell (structural CHO) at 1292-1198 cm(-1) and A_CHO (total CHO) at 1187-950 cm(-1) with average molecular infrared intensity KM unit of 226.8 and 508.1, respectively. There were no differences (P > 0.05) in the peak height intensities of H_1415 and H_1370 (structural CHOs) with average intensities 1.35 and 1.15, respectively. The multivariate molecular spectral analyses were able to discriminate and classify between the corn and corn DDGS molecular spectra, but not wheat and wheat DDGS. This study indicated that the bioethanol processing changes carbohydrate molecular structural profiles, compared with the original grains. However, the sensitivities of different types of carbohydrates and different grains (corn and wheat) to the processing differ. In general, the bioethanol processing increases the molecular spectral intensities for the structural carbohydrates and decreases the intensities for the non-structural carbohydrates. Further study is needed to quantify carbohydrate related molecular spectral features of the bioethanol co-products in relation to nutrient supply and availability of carbohydrates.
Asao, Shinichi; Ryan, Michael G
2015-06-01
How trees sense source-sink carbon balance remains unclear. One potential mechanism is a feedback from non-structural carbohydrates regulating photosynthesis and removing excess as waste respiration when the balance of photosynthesis against growth and metabolic activity changes. We tested this carbohydrate regulation of photosynthesis and respiration using branch girdling in four tree species in a wet tropical rainforest in Costa Rica. Because girdling severs phloem to stop carbohydrate export while leaving xylem intact to allow photosynthesis, we expected carbohydrates to accumulate in leaves to simulate a carbon imbalance. We varied girdling intensity by removing phloem in increments of one-quarter of the circumference (zero, one--quarter, half, three-quarters, full) and surrounded a target branch with fully girdled ones to create a gradient in leaf carbohydrate content. Light saturated photosynthesis rate was measured in situ, and foliar respiration rate and leaf carbohydrate content were measured after destructive harvest at the end of the treatment. Girdling intensity created no consistent or strong responses in leaf carbohydrates. Glucose and fructose slightly increased in all species by 3.4% per one-quarter girdle, total carbon content and leaf mass per area increased only in one species by 5.4 and 5.5% per one-quarter girdle, and starch did not change. Only full girdling lowered photosynthesis in three of four species by 59-69%, but the decrease in photosynthesis was unrelated to the increase in glucose and fructose content. Girdling did not affect respiration. The results suggest that leaf carbohydrate content remains relatively constant under carbon imbalance, and any changes are unlikely to regulate photosynthesis or respiration. Because girdling also stops the export of hormones and reactive oxygen species, girdling may induce physiological changes unrelated to carbohydrate accumulation and may not be an effective method to study carbohydrate feedback in leaves. In three species, removal of three-quarters of phloem area did not cause leaf carbohydrates to accumulate nor did it change photosynthesis or respiration, suggesting that phloem transport is flexible and transport rate per unit phloem can rapidly increase under an increase in carbohydrate supply relative to phloem area. Leaf carbohydrate content thus may be decoupled from whole plant carbon balance by phloem transport in some species, and carbohydrate regulation of photosynthesis and respiration may not be as common in trees as previous girdling studies suggest. Further studies in carbohydrate regulation should avoid using girdling as girdling can decrease photosynthesis through unintended means without the tested mechanisms of accumulating leaf carbohydrates. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Rakete, Stefan; Glomb, Marcus A
2013-04-24
A novel universal method for the determination of reducing mono-, di-, and oligosaccharides in complex matrices on RP-HPLC using 1-naphthylamine for precolumn derivatization with sodium cyanoborhydride was established to study changes in the carbohydrate profile during beer brewing. Fluorescence and mass spectrometric detection enabled very sensitive analyses of beer-relevant carbohydrates. Mass spectrometry additionally allowed the identification of the molecular weight and thereby the degree of polymerization of unknown carbohydrates. Thus, carbohydrates with up to 16 glucose units were detected. Comparison demonstrated that the novel method was superior to fluorophore-assisted carbohydrate electrophoresis (FACE). The results proved the HPLC method clearly to be more powerful in regard to sensitivity and resolution. Analogous to FACE, this method was designated fluorophore-assisted carbohydrate HPLC (FAC-HPLC).
Ding, Shi-You; Xu, Qi; Ali, Mursheda K; Baker, John O; Bayer, Edward A; Barak, Yoav; Lamed, Raphael; Sugiyama, Junji; Rumbles, Garry; Himmel, Michael E
2006-10-01
The innate binding specificity of different carbohydrate-binding modules (CBMs) offers a versatile approach for mapping the chemistry and structure of surfaces that contain complex carbohydrates. We have employed the distinct recognition properties of a double His-tagged recombinant CBM tagged with semiconductor quantum dots for direct imaging of crystalline cellulose at the molecular level of resolution, using transmission and scanning transmission electron microscopy. In addition, three different types of CBMs from families 3, 6, and 20 that exhibit different carbohydrate specificities were each fused with either green fluorescent protein (GFP) or red fluorescent protein (RFP) and employed for double-labeling fluorescence microscopy studies of primary cell walls and various mixtures of complex carbohydrate target molecules. CBM probes can be used for characterizing both native complex carbohydrates and engineered biomaterials.
Sartorius, Kurt; Sartorius, Benn; Madiba, Thandinkosi E; Stefan, Cristina
2018-01-01
Objectives The present study aimed to test the association between high and low carbohydrate diets and obesity, and second, to test the link between total carbohydrate intake (as a percentage of total energy intake) and obesity. Setting, participants and outcome measures We sought MEDLINE, PubMed and Google Scholar for observation studies published between January 1990 and December 2016 assessing an association between obesity and high-carbohydrate intake. Two independent reviewers selected candidate studies, extracted data and assessed study quality. Results The study identified 22 articles that fulfilled the inclusion and exclusion criteria and quantified an association between carbohydrate intake and obesity. The first pooled strata (high-carbohydrate versus low-carbohydrate intake) suggested a weak increased risk of obesity. The second pooled strata (increasing percentage of total carbohydrate intake in daily diet) showed a weak decreased risk of obesity. Both these pooled strata estimates were, however, not statistically significant. Conclusions On the basis of the current study, it cannot be concluded that a high-carbohydrate diet or increased percentage of total energy intake in the form of carbohydrates increases the odds of obesity. A central limitation of the study was the non-standard classification of dietary intake across the studies, as well as confounders like total energy intake, activity levels, age and gender. Further studies are needed that specifically classify refined versus unrefined carbohydrate intake, as well as studies that investigate the relationship between high fat, high unrefined carbohydrate–sugar diets. PROSPERO registration number CRD42015023257. PMID:29439068
Loman, Abdullah Al; Ju, Lu-Kwang
2016-05-01
Soy protein is a well-known nutritional supplement in proteinaceous food and animal feed. However, soybeans contain complex carbohydrate. Selective carbohydrate removal by enzymes could increase the protein content and remove the indigestibility of soy products for inclusion in animal feed. Complete hydrolysis of soy flour carbohydrates is challenging due to the presence of proteins and different types of non-structural polysaccharides. This study is designed to guide complex enzyme mixture required for hydrolysis of all types of soy flour carbohydrates. Enzyme broths from Aspergillus niger, Aspergillus aculeatus and Trichoderma reesei fermentations were evaluated in this study for soy carbohydrate hydrolysis. The resultant hydrolysate was measured for solubilized carbohydrate by both total carbohydrate and reducing sugar analyses. Conversion data attained after 48h hydrolysis were first fitted with models to determine the maximum fractions of carbohydrate hydrolyzable by each enzyme group, i.e., cellulase, xylanase, pectinase and α-galactosidase. Kinetic models were then developed to describe the increasing conversions over time under different enzyme activities and process conditions. The models showed high fidelity in predicting soy carbohydrate hydrolysis over broad ranges of soy flour loading (5-25%) and enzyme activities: per g soy flour, cellulase, 0.04-30 FPU; xylanase, 3.5-618U; pectinase, 0.03-120U; and α-galactosidase, 0.01-60U. The models are valuable in guiding the development and production of optimal enzyme mixtures toward hydrolysis of all types of carbohydrates present in soy flour and in optimizing the design and operation of hydrolysis reactor and process. Copyright © 2016 Elsevier Inc. All rights reserved.
Sports Nutrition for the Primary Care Physician: The Importance of Carbohydrate.
ERIC Educational Resources Information Center
Wheeler, Keith B.
1989-01-01
Discusses the relationship between nutrition and fatigue and how carbohydrates and timing of carbohydrate consumption can affect fatigued athletes. Nutrition plays a significant role in successful training and competition. Key concerns are the specific needs of athletes for carbohydrates before, during, and after exercise. (Author/SM)
Impact of Dietary Carbohydrate and Protein Levels on Carbohydrate Metabolism
ERIC Educational Resources Information Center
Lasker, Denise Ann
2009-01-01
The goal of this dissertation was to investigate the impact of changing dietary carbohydrate (CARB) intakes within recommended dietary guidelines on metabolic outcomes specifically associated with glycemic regulations and carbohydrate metabolism. This research utilized both human and animal studies to examine changes in metabolism across a wide…
Toshima, Kazunobu
2013-05-01
Proteins and carbohydrates play crucial roles in a wide range of biological processes, including serious diseases. The development of novel and innovative methods for selective control of specific proteins and carbohydrates functions has attracted much attention in the field of chemical biology. In this account article, the development of novel chemical tools, which can degrade target proteins and carbohydrates by irradiation with a specific wavelength of light under mild conditions without any additives, is introduced. This novel class of photochemical agents promise bright prospects for finding not only molecular-targeted bioprobes for understanding of the structure-activity relationships of proteins and carbohydrates but also novel therapeutic drugs targeting proteins and carbohydrates.
Computational modeling of carbohydrate recognition in protein complex
NASA Astrophysics Data System (ADS)
Ishida, Toyokazu
2017-11-01
To understand the mechanistic principle of carbohydrate recognition in proteins, we propose a systematic computational modeling strategy to identify complex carbohydrate chain onto the reduced 2D free energy surface (2D-FES), determined by MD sampling combined with QM/MM energy corrections. In this article, we first report a detailed atomistic simulation study of the norovirus capsid proteins with carbohydrate antigens based on ab initio QM/MM combined with MD-FEP simulations. The present result clearly shows that the binding geometries of complex carbohydrate antigen are determined not by one single, rigid carbohydrate structure, but rather by the sum of averaged conformations mapped onto the minimum free energy region of QM/MM 2D-FES.
Griffith, William Louis; Compere, Alicia Lucille; Leitten, Jr., Carl Frederick
2010-04-20
A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.
Selection of dietary protein and carbohydrate by rats: Changes with maturation
NASA Technical Reports Server (NTRS)
Yokogoshi, Hidehiko; Theall, Cynthia L.; Wurtman, Richard J.
1985-01-01
Weaning (21-day-old; 40-50 g) male rats given simultaneous access to foods, containing 18 percent casein and 15 or 70 percent carbohydrate (dextrin), tended to consume only 29-35 percent as much protein as carbohydrate (i.e., protein/carbohydrate ratios were 0.29-0.35). With maturation, when animals weighed 100 g or more, about half continued this pattern of nutrient choice, but the others abruptly began to consume considerably larger proportions of protein, exhibiting protein/carbohydrate ratios as high as 0.80-1.00. Each adult animal's protein/carbohydrate ratio tended to vary only slightly (s.e. = 3 percent of means). Adult protein/carbohydrate ratios were not correlated with fasting brain 5-HT or 5-HIAA levels. These marked differences among rats in eating behavior would not be observed when--as is usually the case--animals are given access to only one diet.
NASA Astrophysics Data System (ADS)
Bemiller, James N.
Carbohydrates are important in foods as a major source of energy, to impart crucial textural properties, and as dietary fiber which influences physiological processes. Digestible carbohydrates, which are converted into monosaccharides, which are absorbed, provide metabolic energy. Worldwide, carbohydrates account for more than 70% of the caloric value of the human diet. It is recommended that all persons should limit calories from fat (the other significant source) to not more than 30% and that most of the carbohydrate calories should come from starch. Nondigestible polysaccharides (all those other than starch) comprise the major portion of dietary fiber (Sect. 10.5). Carbohydrates also contribute other attributes, including bulk, body, viscosity, stability to emulsions and foams, water-holding capacity, freeze-thaw stability, browning, flavors, aromas, and a range of desirable textures (from crispness to smooth, soft gels). They also provide satiety. Basic carbohydrate structures, chemistry, and terminology can be found in references (1, 2).
Gertsch, Jürg
2017-06-01
The endocannabinoid system (ECS) is a major lipid signalling network that plays important pro-homeostatic (allostatic) roles not only in the nervous system but also in peripheral organs. There is increasing evidence that there is a dietary component in the modulation of the ECS. Cannabinoid receptors in hominids co-evolved with diet, and the ECS constitutes a feedback loop for food selection and energy metabolism. Here, it is postulated that the mismatch of ancient lipid genes of hunter-gatherers and pastoralists with the high-carbohydrate diet introduced by agriculture could be compensated for via dietary modulation of the ECS. In addition to the fatty acid precursors of endocannabinoids, the potential role of dietary cannabimimetic phytochemicals in agriculturist nutrition is discussed. Dietary secondary metabolites from vegetables and spices able to enhance the activity of cannabinoid-type 2 (CB 2 ) receptors may provide adaptive metabolic advantages and counteract inflammation. In contrast, chronic CB 1 receptor activation in hedonic obese individuals may enhance pathophysiological processes related to hyperlipidaemia, diabetes, hepatorenal inflammation and cardiometabolic risk. Food able to modulate the CB 1 /CB 2 receptor activation ratio may thus play a role in the nutrition transition of Western high-calorie diets. In this review, the interplay between diet and the ECS is highlighted from an evolutionary perspective. The emerging potential of cannabimimetic food as a nutraceutical strategy is critically discussed. This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc. © 2016 The British Pharmacological Society.
21 CFR 172.866 - Synthetic glycerin produced by the hydrogenolysis of carbohydrates.
Code of Federal Regulations, 2011 CFR
2011-04-01
... of carbohydrates. 172.866 Section 172.866 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... produced by the hydrogenolysis of carbohydrates. Synthetic glycerin produced by the hydrogenolysis of carbohydrates may be safely used in food, subject to the provisions of this section: (a) It shall contain not in...
21 CFR 172.866 - Synthetic glycerin produced by the hydrogenolysis of carbohydrates.
Code of Federal Regulations, 2010 CFR
2010-04-01
... of carbohydrates. 172.866 Section 172.866 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... produced by the hydrogenolysis of carbohydrates. Synthetic glycerin produced by the hydrogenolysis of carbohydrates may be safely used in food, subject to the provisions of this section: (a) It shall contain not in...
Carbohydrate-Loading: A Safe and Effective Method of Improving Endurance Performance.
ERIC Educational Resources Information Center
Beeker, Richard T.; Israel, Richard G.
Carbohydrate-loading prior to distance events is a common practice among endurance athletes. The purposes of this paper are to review previous research and to clarify misconceptions which may exist concerning carbohydrate-loading. The most effective method of carbohydrate-loading involves a training run of sufficient intensity and duration to…
21 CFR 172.866 - Synthetic glycerin produced by the hydrogenolysis of carbohydrates.
Code of Federal Regulations, 2012 CFR
2012-04-01
... of carbohydrates. 172.866 Section 172.866 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... produced by the hydrogenolysis of carbohydrates. Synthetic glycerin produced by the hydrogenolysis of carbohydrates may be safely used in food, subject to the provisions of this section: (a) It shall contain not in...
21 CFR 172.866 - Synthetic glycerin produced by the hydrogenolysis of carbohydrates.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Synthetic glycerin produced by the hydrogenolysis of carbohydrates. 172.866 Section 172.866 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... carbohydrates. Synthetic glycerin produced by the hydrogenolysis of carbohydrates may be safely used in food...
21 CFR 172.866 - Synthetic glycerin produced by the hydrogenolysis of carbohydrates.
Code of Federal Regulations, 2013 CFR
2013-04-01
... of carbohydrates. 172.866 Section 172.866 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... produced by the hydrogenolysis of carbohydrates. Synthetic glycerin produced by the hydrogenolysis of carbohydrates may be safely used in food, subject to the provisions of this section: (a) It shall contain not in...
Effect of Carbohydrate Ingestion on Ratings of Perceived Exertion during a Marathon.
ERIC Educational Resources Information Center
Utter, Alan C.; Kang, Jie; Robertson, Robert J.; Nieman, David C.; Chaloupka, Edward C.; Suminski, Richard R.; Piccinni, Cristiana R.
2002-01-01
Investigated the effects of carbohydrate substrate availability on ratings of perceived exertion (RPE) and hormonal regulation during a competitive marathon. Data on marathon runners randomly assigned to receive carbohydrate or placebo indicated that those who ingested carbohydrate rather than placebo beverages were able to run at a higher…
Baks, Tim; Janssen, Anja E M; Boom, Remko M
2006-06-20
The effect of the presence of several small carbohydrates on the measurement of the alpha-amylase activity was determined over a broad concentration range. At low carbohydrate concentrations, a distinct maximum in the alpha-amylase activity versus concentration curves was observed in several cases. At higher concentrations, all carbohydrates show a decreasing alpha-amylase activity at increasing carbohydrate concentrations. A general kinetic model has been developed that can be used to describe and explain these phenomena. This model is based on the formation of a carbohydrate-enzyme complex that remains active. It is assumed that this complex is formed when a carbohydrate binds to alpha-amylase without blocking the catalytic site and its surrounding subsites. Furthermore, the kinetic model incorporates substrate inhibition and substrate competition. Depending on the carbohydrate type and concentration, the measured alpha-amylase activity can be 75% lower than the actual alpha-amylase activity. The model that has been developed can be used to correct for these effects in order to obtain the actual amount of active enzyme. 2006 Wiley Periodicals, Inc.
The relationship between carbohydrate and the mealtime insulin dose in type 1 diabetes.
Bell, Kirstine J; King, Bruce R; Shafat, Amir; Smart, Carmel E
2015-01-01
A primary focus of the nutritional management of type 1 diabetes has been on matching prandial insulin therapy with carbohydrate amount consumed. Different methods exist to quantify carbohydrate including counting in one gram increments, 10g portions or 15g exchanges. Clinicians have assumed that counting in one gram increments is necessary to precisely dose insulin and optimize postprandial control. Carbohydrate estimations in portions or exchanges have been thought of as inadequate because they may result in less precise matching of insulin dose to carbohydrate amount. However, studies examining the impact of errors in carbohydrate quantification on postprandial glycemia challenge this commonly held view. In addition it has been found that a single mealtime bolus of insulin can cover a range of carbohydrate intake without deterioration in postprandial control. Furthermore, limitations exist in the accuracy of the nutrition information panel on a food label. This article reviews the relationship between carbohydrate quantity and insulin dose, highlighting limitations in the evidence for a linear association. These insights have significant implications for patient education and mealtime insulin dose calculations. Copyright © 2015 Elsevier Inc. All rights reserved.
Mensink, M A; Šibík, J; Frijlink, H W; van der Voort Maarschalk, K; Hinrichs, W L J; Zeitler, J A
2017-10-02
Protein drugs play an important role in modern day medicine. Typically, these proteins are formulated as liquids requiring cold chain processing. To circumvent the cold chain and achieve better storage stability, these proteins can be dried in the presence of carbohydrates. We demonstrate that thermal gradient mid- and far-infrared spectroscopy (FTIR and THz-TDS, respectively) can provide useful information about solid-state protein carbohydrate formulations regarding mobility and intermolecular interactions. A model protein (BSA) was lyophilized in the presence of three carbohydrates with different size and protein stabilizing capacity. A gradual increase in mobility was observed with increasing temperature in formulations containing protein and/or larger carbohydrates (oligo- or polysaccharides), lacking a clear onset of fast mobility as was observed for smaller molecules. Furthermore, both techniques are able to identify the glass transition temperatures (T g ) of the samples. FTIR provides additional information as it can independently monitor changes in protein and carbohydrate bands at the T g . Lastly, THz-TDS confirms previous findings that protein-carbohydrate interactions decrease with increasing molecular weight of the carbohydrate, which results in decreased protein stabilization.
Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity.
Warda, Alicja K; Siezen, Roland J; Boekhorst, Jos; Wells-Bennik, Marjon H J; de Jong, Anne; Kuipers, Oscar P; Nierop Groot, Masja N; Abee, Tjakko
2016-01-01
We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed.
WURCS 2.0 Update To Encapsulate Ambiguous Carbohydrate Structures.
Matsubara, Masaaki; Aoki-Kinoshita, Kiyoko F; Aoki, Nobuyuki P; Yamada, Issaku; Narimatsu, Hisashi
2017-04-24
Accurate representation of structural ambiguity is important for storing carbohydrate structures containing varying levels of ambiguity in the literature and databases. Although many representations for carbohydrates have been developed in the past, a generalized but discrete representation format did not exist. We had previously developed the Web3 Unique Representation of Carbohydrate Structures (WURCS) in an attempt to define a generalizable and unique linear representation for carbohydrate structures. However, it lacked sufficient rules to uniquely describe ambiguous structures. In this work, we updated WURCS to handle such ambiguous monosaccharide structures. In particular, to handle structural ambiguity around (potential) carbonyl groups incidental to the carbohydrate analysis, we defined a representation of backbone carbons containing atomic-level ambiguity. As a result, we show that WURCS 2.0 can represent a wider variety of carbohydrate structures containing ambiguous monosaccharides, such as those whose ring closure is undefined or whose anomeric information is only known. This new format provides a representation of carbohydrates that was not possible before, and it is currently being used by the International Glycan Structure Repository GlyTouCan.
Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity
Warda, Alicja K.; Siezen, Roland J.; Boekhorst, Jos; Wells-Bennik, Marjon H. J.; de Jong, Anne; Kuipers, Oscar P.; Nierop Groot, Masja N.; Abee, Tjakko
2016-01-01
We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed. PMID:27272929
Vacuum ultraviolet photoionization of carbohydrates and nucleotides
NASA Astrophysics Data System (ADS)
Shin, Joong-Won; Bernstein, Elliot R.
2014-01-01
Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5'-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.
Thongprajukaew, Karun; Yawang, Pinya; Dudae, Lateepah; Bilanglod, Husna; Dumrongrittamatt, Terdtoon; Tantikitti, Chutima; Kovitvadhi, Uthaiwan
2013-12-01
Unavailable carbohydrates are an important limiting factor for utilization of palm kernel meal (PKM) as aquafeed ingredients. The aim of this study was to improve available carbohydrate from PKM. Different physical modifications including water soaking, microwave irradiation, gamma irradiation and electron beam, were investigated in relation to chemical composition, physicochemical properties and in vitro carbohydrate digestibility using digestive enzymes from economic freshwater fish. Modified methods had significant (P < 0.05) effects on chemical composition by decreasing crude fiber and increasing available carbohydrates. Improvements in physicochemical properties of PKM, such as water solubility, microstructure, relative crystallinity and lignocellulosic spectra, were mainly achieved by soaking and microwave irradiation. Carbohydrate digestibility varied among the physical modifications tested (P < 0.05) and three fish species had different abilities to digest PKM. Soaking was the appropriate modification for increasing carbohydrate digestion specifically in Nile tilapia (Oreochromis niloticus), whereas either soaking or microwave irradiation was effective for striped snakehead (Channa striata). For walking catfish (Clarias batrachus), carbohydrate digestibility was similar among raw, soaked and microwave-irradiated PKM. These findings suggest that soaking and microwave irradiation could be practical methods for altering appropriate physicochemical properties of PKM as well as increasing carbohydrate digestibility in select economic freshwater fish. © 2013 Society of Chemical Industry.
Vacuum ultraviolet photoionization of carbohydrates and nucleotides.
Shin, Joong-Won; Bernstein, Elliot R
2014-01-28
Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5(')-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.
Low-carbohydrate diet induces metabolic depression: a possible mechanism to conserve glycogen.
Winwood-Smith, Hugh S; Franklin, Craig E; White, Craig R
2017-10-01
Long-term studies have found that low-carbohydrate diets are more effective for weight loss than calorie-restricted diets in the short term but equally or only marginally more effective in the long term. Low-carbohydrate diets have been linked to reduced glycogen stores and increased feelings of fatigue. We propose that reduced physical activity in response to lowered glycogen explains the diminishing weight loss advantage of low-carbohydrate compared with low-calorie diets over longer time periods. We explored this possibility by feeding adult Drosophila melanogaster a standard or a low-carbohydrate diet for 9 days and measured changes in metabolic rate, glycogen stores, activity, and body mass. We hypothesized that a low-carbohydrate diet would cause a reduction in glycogen stores, which recover over time, a reduction in physical activity, and an increase in resting metabolic rate. The low-carbohydrate diet reduced glycogen stores, which recovered over time. Activity was unaffected by diet, but metabolic rate was reduced, in the low-carbohydrate group. We conclude that metabolic depression could explain the decreased effectiveness of low-carbohydrate diets over time and recommend further investigation of long-term metabolic effects of dietary interventions and a greater focus on physiological plasticity within the study of human nutrition. Copyright © 2017 the American Physiological Society.
Mitchell, Patrick J; O'Grady, Anthony P; Tissue, David T; White, Donald A; Ottenschlaeger, Maria L; Pinkard, Elizabeth A
2013-02-01
Plant survival during drought requires adequate hydration in living tissues and carbohydrate reserves for maintenance and recovery. We hypothesized that tree growth and hydraulic strategy determines the intensity and duration of the 'physiological drought', thereby affecting the relative contributions of loss of hydraulic function and carbohydrate depletion during mortality. We compared patterns in growth rate, water relations, gas exchange and carbohydrate dynamics in three tree species subjected to prolonged drought. Two Eucalyptus species (E. globulus, E. smithii) exhibited high growth rates and water-use resulting in rapid declines in water status and hydraulic conductance. In contrast, conservative growth and water relations in Pinus radiata resulted in longer periods of negative carbon balance and significant depletion of stored carbohydrates in all organs. The ongoing demand for carbohydrates from sustained respiration highlighted the role that duration of drought plays in facilitating carbohydrate consumption. Two drought strategies were revealed, differentiated by plant regulation of water status: plants maximized gas exchange, but were exposed to low water potentials and rapid hydraulic dysfunction; and tight regulation of gas exchange at the cost of carbohydrate depletion. These findings provide evidence for a relationship between hydraulic regulation of water status and carbohydrate depletion during terminal drought. © 2012 CSIRO. New Phytologist © 2012 New Phytologist Trust.
Garg, A; Bonanome, A; Grundy, S M; Unger, R H; Breslau, N A; Pak, C Y
1990-04-01
Transient hypercalciuria has been noted after high carbohydrate meals which is independent of dietary calcium and is probably due to impaired renal calcium reabsorption mediated by an increase in plasma insulin levels. Based on these observations, some investigators believe that long term intake of high carbohydrate diets may increase the risk of nephrolithiasis and possibly osteoporosis. Using a randomized cross-over design, we compared high carbohydrate diets (60% carbohydrate and 25% fat) with high fat diets (50% fat and 35% carbohydrate) for effects on metabolism of calcium and other minerals in eight normal subjects and eight euglycemic patients with noninsulin-dependent diabetes mellitus. All other dietary constituents, such as protein, fiber, fluid, minerals (including Ca, Mg, Na, K, and P), and caffeine intake, were kept constant. Despite higher daylong levels of plasma insulin on the high carbohydrate diets compared to the high fat diet in both normal and noninsulin-dependent diabetic subjects, no changes in daily urinary excretion of calcium or other constituents, associated with renal stone risk, were observed. Furthermore, there was no change in fractional intestinal 47Ca absorption. Although hypercalciuria may ensue transiently after high carbohydrate meals, we conclude that substitution of simple or complex carbohydrates for fats in an isocaloric manner for a longer duration does not result in significant urinary calcium loss, and therefore, high intakes of digestible carbohydrates may not increase the risk of nephrolithiasis or osteoporosis via this mechanism.
Kim, Chang Sup; Seo, Jeong Hyun; Cha, Hyung Joon
2012-08-07
The development of analytical tools is important for understanding the infection mechanisms of pathogenic bacteria or viruses. In the present work, a functional carbohydrate microarray combined with a fluorescence immunoassay was developed to analyze the interactions of Vibrio cholerae toxin (ctx) proteins and GM1-related carbohydrates. Ctx proteins were loaded onto the surface-immobilized GM1 pentasaccharide and six related carbohydrates, and their binding affinities were detected immunologically. The analysis of the ctx-carbohydrate interactions revealed that the intrinsic selectivity of ctx was GM1 pentasaccharide ≫ GM2 tetrasaccharide > asialo GM1 tetrasaccharide ≥ GM3trisaccharide, indicating that a two-finger grip formation and the terminal monosaccharides play important roles in the ctx-GM1 interaction. In addition, whole cholera toxin (ctxAB(5)) had a stricter substrate specificity and a stronger binding affinity than only the cholera toxin B subunit (ctxB). On the basis of the quantitative analysis, the carbohydrate microarray showed the sensitivity of detection of the ctxAB(5)-GM1 interaction with a limit-of-detection (LOD) of 2 ng mL(-1) (23 pM), which is comparable to other reported high sensitivity assay tools. In addition, the carbohydrate microarray successfully detected the actual toxin directly secreted from V. cholerae, without showing cross-reactivity to other bacteria. Collectively, these results demonstrate that the functional carbohydrate microarray is suitable for analyzing toxin protein-carbohydrate interactions and can be applied as a biosensor for toxin detection.
Accumulation of Reserve Carbohydrate by Rumen Protozoa and Bacteria in Competition for Glucose
Denton, Bethany L.; Diese, Leanne E.; Firkins, Jeffrey L.
2014-01-01
The aim of this study was to determine if rumen protozoa could form large amounts of reserve carbohydrate compared to the amounts formed by bacteria when competing for glucose in batch cultures. We separated large protozoa and small bacteria from rumen fluid by filtration and centrifugation, recombined equal protein masses of each group into one mixture, and subsequently harvested (reseparated) these groups at intervals after glucose dosing. This method allowed us to monitor reserve carbohydrate accumulation of protozoa and bacteria individually. When mixtures were dosed with a moderate concentration of glucose (4.62 or 5 mM) (n = 2 each), protozoa accumulated large amounts of reserve carbohydrate; 58.7% (standard error of the mean [SEM], 2.2%) glucose carbon was recovered from protozoal reserve carbohydrate at time of peak reserve carbohydrate concentrations. Only 1.7% (SEM, 2.2%) was recovered in bacterial reserve carbohydrate, which was less than that for protozoa (P < 0.001). When provided a high concentration of glucose (20 mM) (n = 4 each), 24.1% (SEM, 2.2%) of glucose carbon was recovered from protozoal reserve carbohydrate, which was still higher (P = 0.001) than the 5.0% (SEM, 2.2%) glucose carbon recovered from bacterial reserve carbohydrate. Our novel competition experiments directly demonstrate that mixed protozoa can sequester sugar away from bacteria by accumulating reserve carbohydrate, giving protozoa a competitive advantage and stabilizing fermentation in the rumen. Similar experiments could be used to investigate the importance of starch sequestration. PMID:25548053
History of Chemistry in the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Kirk, Kenneth L.; Jacobson, Kenneth A.
2015-01-01
The origins of the Laboratory of Bioorganic Chemistry, NIDDK, NIH can be traced to events that occurred in the early 20th century. From its beginning to the present, as the laboratory evolved through several organizational changes, many important historical contributions to organic chemistry and biochemistry were made. For example, its early precursor, the Division of Chemistry of the Hygienic Laboratory, was assigned the responsibility of safeguarding public health by analyzing environmental and other chemical risks. This review will trace important developments from the early twentieth century to the present. The topics covered in this review include a historical synopsis, early work on receptors, carbohydrates, heterocycles and nucleotides, with specific emphasis on frog skin alkaloids, the NIH shift (a transfer of an aromatic hydrogen atom to a neighboring ring position during ring hydroxylation, important in the biochemical processing of aromatic substrates), the methionine-specific cleavage of proteins using cyanogen bromide (used commercially and in peptide research) as well as other fundamental contributions. Ongoing research in medicinal chemistry, natural products, biochemistry, vaccines and pharmacology, some leading to clinical applications, will be discussed. PMID:26412957
Glucocorticoids as modulators in the control of feeding.
Castonguay, T W
1991-01-01
Three sets of experiments have been conducted that suggest that adrenal glucocorticoids play a role in the long-term control of intake and in dietary preferences. First, obesity is dependent upon glucocorticoid-modulated metabolic pathways. Surgical or pharmacological manipulations in obese animals that eliminate or diminish corticosterone activity result in levels of intake, meal patterns, macronutrient self-selection and weight gain that revert to levels seen in lean controls. Glucocorticoid replacement of adrenalectomized genetically obese Zucker rats restores the phenotypic expression of the obese rat's genetic heritage: increased weight gain, increased fat and total daily caloric intake and adiposity are restored in a dose-dependent fashion. Second, the increased fat intake observed subsequent to fasting in Sprague-Dawley rats is correlated with an increase in circulating corticosterone. Adrenalectomy blocks the fat specific refeeding response, and corticosterone treatment of adrenalectomized rats restores the increase in fat, carbohydrate and protein observed during refeeding. Third, humans suffering from Cushing's Disease have an increased preference for dietary fat. Weight-matched but disease-free obese controls show only slight increases in fat preference when compared to normal weight controls.
Sun, Xiaoping; Wheeler, Charles T; Yolitz, Jason; Laslo, Mara; Alberico, Thomas; Sun, Yaning; Song, Qisheng; Zou, Sige
2014-09-25
Diet composition is a critical determinant of lifespan, and nutrient imbalance is detrimental to health. However, how nutrients interact with genetic factors to modulate lifespan remains elusive. We investigated how diet composition influences mitochondrial ATP synthase subunit d (ATPsyn-d) in modulating lifespan in Drosophila. ATPsyn-d knockdown extended lifespan in females fed low carbohydrate-to-protein (C:P) diets but not the high C:P ratio diet. This extension was associated with increased resistance to oxidative stress; transcriptional changes in metabolism, proteostasis, and immune genes; reduced protein damage and aggregation, and reduced phosphorylation of S6K and ERK in TOR and mitogen-activated protein kinase (MAPK) signaling, respectively. ATPsyn-d knockdown did not extend lifespan in females with reduced TOR signaling induced genetically by Tsc2 overexpression or pharmacologically by rapamycin. Our data reveal a link among diet, mitochondria, and MAPK and TOR signaling in aging and stresses the importance of considering genetic background and diet composition in implementing interventions for promoting healthy aging. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Effects of caffeine and carbohydrate mouth rinses on repeated sprint performance.
Beaven, C Martyn; Maulder, Peter; Pooley, Adrian; Kilduff, Liam; Cook, Christian
2013-06-01
Our purpose was to examine the effectiveness of carbohydrate and caffeine mouth rinses in enhancing repeated sprint ability. Previously, studies have shown that a carbohydrate mouth rinse (without ingestion) has beneficial effects on endurance performance that are related to changes in brain activity. Caffeine ingestion has also demonstrated positive effects on sprint performance. However, the effects of carbohydrate or caffeine mouth rinses on intermittent sprints have not been examined previously. Twelve males performed 5 × 6-s sprints interspersed with 24 s of active recovery on a cycle ergometer. Twenty-five milliliters of either a noncaloric placebo, a 6% glucose, or a 1.2% caffeine solution was rinsed in the mouth for 5 s prior to each sprint in a double-blinded and balanced cross-over design. Postexercise maximal heart rate and perceived exertion were recorded, along with power measures. A second experiment compared a combined caffeine-carbohydrate rinse with carbohydrate only. Compared with the placebo mouth rinse, carbohydrate substantially increased peak power in sprint 1 (22.1 ± 19.5 W; Cohen's effect size (ES), 0.81), and both caffeine (26.9 ± 26.9 W; ES, 0.71) and carbohydrate (39.1 ± 25.8 W; ES, 1.08) improved mean power in sprint 1. Experiment 2 demonstrated that a combination of caffeine and carbohydrate improved sprint 1 power production compared with carbohydrate alone (36.0 ± 37.3 W; ES, 0.81). We conclude that carbohydrate and (or) caffeine mouth rinses may rapidly enhance power production, which could have benefits for specific short sprint exercise performance. The ability of a mouth-rinse intervention to rapidly improve maximal exercise performance in the absence of fatigue suggests a central mechanism.
Van Rompay, Maria I; McKeown, Nicola M; Castaneda-Sceppa, Carmen; Ordovás, José M; Tucker, Katherine L
2013-02-01
Puerto Rican adults have a greater prevalence of type 2 diabetes (T2D) and lower HDL-cholesterol (HDL-C) than the general U.S. population. Carbohydrate nutrition may play a role in this disparity. Cross-sectional analyses included data from 1219 Puerto Ricans aged 45-75 y enrolled in the Boston Puerto Rican Health Study. Using the Pearson chi-square test and ANCOVA, lifestyle characteristics and dietary intake, as assessed by semiquantitative FFQ, were compared by T2D status based on fasting plasma glucose concentration and medication use. Food source rankings for carbohydrate, dietary glycemic load (GL), and fiber were obtained using the SAS procedure PROC RANK. Geometric mean plasma HDL-C and TG concentrations were compared across quintiles of dietary carbohydrate, glycemic index (GI), GL, and fiber by using ANCOVA and tests for linear trend. In multivariable analyses, individuals with T2D (39.5%) had lower dietary carbohydrate, GL, and total sugar intake from lower intake of sugar, fruit drinks, and soda compared with those without T2D. In individuals without T2D, dietary carbohydrate and GL were inversely associated with HDL-C (P < 0.0001). Associations between dietary fiber and HDL-C were confounded by carbohydrate intake, apparently from concurrent consumption of legumes with white rice, a refined carbohydrate food. No associations were observed between carbohydrate, dietary GI, GL, or fiber and TG. In conclusion, individuals with T2D showed evidence of dietary modification. Among those without diabetes, a high intake of refined carbohydrates was associated with decreased HDL-C. Longitudinal research on carbohydrate nutrition in relation to diabetes risk factors and blood lipids in Puerto Ricans is warranted.
Low-carbohydrate diets: what are the potential short- and long-term health implications?
Bilsborough, Shane A; Crowe, Timothy C
2003-01-01
Low-carbohydrate diets for weight loss are receiving a lot of attention of late. Reasons for this interest include a plethora of low-carbohydrate diet books, the over-sensationalism of these diets in the media and by celebrities, and the promotion of these diets in fitness centres and health clubs. The re-emergence of low-carbohydrate diets into the spotlight has lead many people in the general public to question whether carbohydrates are inherently 'bad' and should be limited in the diet. Although low-carbohydrate diets were popular in the 1970s they have resurged again yet little scientific fact into the true nature of how these diets work or, more importantly, any potential for serious long-term health risks in adopting this dieting practice appear to have reached the mainstream literature. Evidence abounds that low-carbohydrate diets present no significant advantage over more traditional energy-restricted, nutritionally balanced diets both in terms of weight loss and weight maintenance. Studies examining the efficacy of using low-carbohydrate diets for long-term weight loss are few in number, however few positive benefits exist to promote the adoption of carbohydrate restriction as a realistic, and more importantly, safe means of dieting. While short-term carbohydrate restriction over a period of a week can result in a significant loss of weight (albeit mostly from water and glycogen stores), of serious concern is what potential exists for the following of this type of eating plan for longer periods of months to years. Complications such as heart arrhythmias, cardiac contractile function impairment, sudden death, osteoporosis, kidney damage, increased cancer risk, impairment of physical activity and lipid abnormalities can all be linked to long-term restriction of carbohydrates in the diet. The need to further explore and communicate the untoward side-effects of low-carbohydrate diets should be an important public health message from nutrition professionals.
Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance
Baker, Lindsay B.; Rollo, Ian; Stein, Kimberly W.; Jeukendrup, Asker E.
2015-01-01
Intermittent sports (e.g., team sports) are diverse in their rules and regulations but similar in the pattern of play; that is, intermittent high-intensity movements and the execution of sport-specific skills over a prolonged period of time (~1–2 h). Performance during intermittent sports is dependent upon a combination of anaerobic and aerobic energy systems, both of which rely on muscle glycogen and/or blood glucose as an important substrate for energy production. The aims of this paper are to review: (1) potential biological mechanisms by which carbohydrate may impact intermittent sport performance; (2) the acute effects of carbohydrate ingestion on intermittent sport performance, including intermittent high-intensity exercise capacity, sprinting, jumping, skill, change of direction speed, and cognition; and (3) what recommendations can be derived for carbohydrate intake before/during exercise in intermittent sports based on the available evidence. The most researched intermittent sport is soccer but some sport-specific studies have also been conducted in other sports (e.g., rugby, field hockey, basketball, American football, and racquet sports). Carbohydrate ingestion before/during exercise has been shown in most studies to enhance intermittent high-intensity exercise capacity. However, studies have shown mixed results with regards to the acute effects of carbohydrate intake on sprinting, jumping, skill, change of direction speed, and cognition. In most of these studies the amount of carbohydrate consumed was ~30–60 g/h in the form of a 6%–7% carbohydrate solution comprised of sucrose, glucose, and/or maltodextrin. The magnitude of the impact that carbohydrate ingestion has on intermittent sport performance is likely dependent on the carbohydrate status of the individual; that is, carbohydrate ingestion has the greatest impact on performance under circumstances eliciting fatigue and/or hypoglycemia. Accordingly, carbohydrate ingestion before and during a game seems to have the greatest impact on intermittent sports performance towards the end of the game. PMID:26184303
Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance.
Baker, Lindsay B; Rollo, Ian; Stein, Kimberly W; Jeukendrup, Asker E
2015-07-14
Intermittent sports (e.g., team sports) are diverse in their rules and regulations but similar in the pattern of play; that is, intermittent high-intensity movements and the execution of sport-specific skills over a prolonged period of time (~1-2 h). Performance during intermittent sports is dependent upon a combination of anaerobic and aerobic energy systems, both of which rely on muscle glycogen and/or blood glucose as an important substrate for energy production. The aims of this paper are to review: (1) potential biological mechanisms by which carbohydrate may impact intermittent sport performance; (2) the acute effects of carbohydrate ingestion on intermittent sport performance, including intermittent high-intensity exercise capacity, sprinting, jumping, skill, change of direction speed, and cognition; and (3) what recommendations can be derived for carbohydrate intake before/during exercise in intermittent sports based on the available evidence. The most researched intermittent sport is soccer but some sport-specific studies have also been conducted in other sports (e.g., rugby, field hockey, basketball, American football, and racquet sports). Carbohydrate ingestion before/during exercise has been shown in most studies to enhance intermittent high-intensity exercise capacity. However, studies have shown mixed results with regards to the acute effects of carbohydrate intake on sprinting, jumping, skill, change of direction speed, and cognition. In most of these studies the amount of carbohydrate consumed was ~30-60 g/h in the form of a 6%-7% carbohydrate solution comprised of sucrose, glucose, and/or maltodextrin. The magnitude of the impact that carbohydrate ingestion has on intermittent sport performance is likely dependent on the carbohydrate status of the individual; that is, carbohydrate ingestion has the greatest impact on performance under circumstances eliciting fatigue and/or hypoglycemia. Accordingly, carbohydrate ingestion before and during a game seems to have the greatest impact on intermittent sports performance towards the end of the game.
Effects of quality of energy on substrate oxidation in enterally fed, low-birth-weight infants.
Kashyap, S; Towers, H M; Sahni, R; Ohira-Kist, K; Abildskov, K; Schulze, K F
2001-09-01
Carbohydrate and fat may differ in their ability to support energy-requiring physiologic processes, such as protein synthesis and growth. If so, varying the constituents of infant formula might be therapeutically advantageous. We tested the hypothesis that low-birth-weight infants fed a diet containing 65% of nonprotein energy as carbohydrate oxidize relatively more carbohydrate and relatively less protein than do infants fed an isoenergetic, isonitrogenous diet containing 35% of nonprotein energy as carbohydrate. Sixty-two low-birth-weight infants weighing from 750 to 1600 g at birth were assigned randomly and blindly to receive 1 of 5 formulas that differed only in the quantity and quality of nonprotein energy. Formula containing 544 kJ x kg(-1) x d(-1) with either 50%, 35%, or 65% of nonprotein energy as carbohydrate was administered to control subjects, group 1, and group 2, respectively. Groups 3 and 4 received gross energy intakes of 648 kJ x kg(-1) x d(-1) with 35% and 65% of nonprotein energy as carbohydrate. Protein intake was targeted at 4 g x kg(-1) x d(-1). Substrate oxidation was estimated from biweekly, 6-h measurements of gas exchange and 24-h urinary nitrogen excretion. Carbohydrate oxidation was positively (r = 0.71, P < 0.0001) and fat oxidation was negatively (r = -0.46, P < 0.001) correlated with carbohydrate intake. Protein oxidation was negatively correlated with carbohydrate oxidation (r = -0.42, P < 0.001). Fat oxidation was not correlated with protein oxidation. Protein oxidation was less in infants receiving 65% of nonprotein energy as carbohydrate than in groups receiving 35% nonprotein energy as carbohydrate. These data support the hypothesis that energy supplied as carbohydrate is more effective than energy supplied as fat in sparing protein oxidation in enterally fed low-birth-weight infants.
Jenkins, David J A; Wong, Julia M W; Kendall, Cyril W C; Esfahani, Amin; Ng, Vivian W Y; Leong, Tracy C K; Faulkner, Dorothea A; Vidgen, Ed; Paul, Gregory; Mukherjea, Ratna; Krul, Elaine S; Singer, William
2014-02-05
Low-carbohydrate diets may be useful for weight loss. Diets high in vegetable proteins and oils may reduce the risk of coronary heart disease. The main objective was to determine the longer term effect of a diet that was both low-carbohydrate and plant-based on weight loss and low-density lipoprotein cholesterol (LDL-C). A parallel design study of 39 overweight hyperlipidaemic men and postmenopausal women conducted at a Canadian university-affiliated hospital nutrition research centre from April 2005 to November 2006. Participants were advised to consume either a low-carbohydrate vegan diet or a high-carbohydrate lacto-ovo vegetarian diet for 6 months after completing 1-month metabolic (all foods provided) versions of these diets. The prescribed macronutrient intakes for the low-carbohydrate and high-carbohydrate diets were: 26% and 58% of energy from carbohydrate, 31% and 16% from protein and 43% and 25% from fat, respectively. Change in body weight. 23 participants (50% test, 68% control) completed the 6-month ad libitum study. The approximate 4 kg weight loss on the metabolic study was increased to -6.9 kg on low-carbohydrate and -5.8 kg on high-carbohydrate 6-month ad libitum treatments (treatment difference (95% CI) -1.1 kg (-2.1 to 0.0), p=0.047). The relative LDL-C and triglyceride reductions were also greater on the low-carbohydrate treatment (treatment difference (95% CI) -0.49 mmol/L (-0.70 to -0.28), p<0.001 and -0.34 mmol/L (-0.57 to -0.11), p=0.005, respectively), as were the total cholesterol:HDL-C and apolipoprotein B:A1 ratios (-0.57 (-0.83, -0.32), p<0.001 and -0.05 (-0.09, -0.02), p=0.003, respectively). A self-selected low-carbohydrate vegan diet, containing increased protein and fat from gluten and soy products, nuts and vegetable oils, had lipid lowering advantages over a high-carbohydrate, low-fat weight loss diet, thus improving heart disease risk factors. clinicaltrials.gov (http://www.clinicaltrials.gov/), #NCT00256516.
Yu, Peiqiang; Damiran, Daalkhaijav; Azarfar, Arash; Niu, Zhiyuan
2011-01-01
The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS) from bioethanol processing in comparison with original feedstock (wheat (Triticum), corn (Zea mays)). The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 1485–1188 cm−1), A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm−1 with region and baseline: ca. 1292–1198 cm−1), A_CHO (total carbohydrates, peaks region and baseline: ca. 1187–950 cm−1), A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm−1 with region and baseline: ca. 952–910 cm−1), A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm−1 with region and baseline: ca. 880–827 cm−1), H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm−1 with baseline: ca. 1485–1188 cm−1), H_1370 (structural carbohydrate, peak height at ca. 1370 cm−1 with a baseline: ca. 1485–1188 cm−1). The study shows that the grains had lower spectral intensity (KM Unit) of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P < 0.05), higher (P < 0.05) intensities of the non-structural carbohydrate of A_928 (17.3 vs. 2.0) and A_860 (20.7 vs. 7.6) than their co-products from bioethanol processing. There were no differences (P > 0.05) in the peak area intensities of A_Cell (structural CHO) at 1292–1198 cm−1 and A_CHO (total CHO) at 1187–950 cm−1 with average molecular infrared intensity KM unit of 226.8 and 508.1, respectively. There were no differences (P > 0.05) in the peak height intensities of H_1415 and H_1370 (structural CHOs) with average intensities 1.35 and 1.15, respectively. The multivariate molecular spectral analyses were able to discriminate and classify between the corn and corn DDGS molecular spectra, but not wheat and wheat DDGS. This study indicated that the bioethanol processing changes carbohydrate molecular structural profiles, compared with the original grains. However, the sensitivities of different types of carbohydrates and different grains (corn and wheat) to the processing differ. In general, the bioethanol processing increases the molecular spectral intensities for the structural carbohydrates and decreases the intensities for the non-structural carbohydrates. Further study is needed to quantify carbohydrate related molecular spectral features of the bioethanol co-products in relation to nutrient supply and availability of carbohydrates. PMID:21673931
Accuracy of Carbohydrate Counting in Adults
Rushton, Wanda E.
2016-01-01
In Brief This study investigates carbohydrate counting accuracy in patients using insulin through a multiple daily injection regimen or continuous subcutaneous insulin infusion. The average accuracy test score for all patients was 59%. The carbohydrate test in this study can be used to emphasize the importance of carbohydrate counting to patients and to provide ongoing education. PMID:27621531
[Specific problems posed by carbohydrate utilization in the rainbow trout].
Bergot, F
1979-01-01
Carbohydrate incorporation in trout diets arises problems both at digestive and metabolic levels. Digestive utilization of carbohydrate closely depends on their molecular weight. In addition, in the case of complex carbohydrates (starches), different factors such as the level of incorporation, the amount consumed and the physical state of starch influence the digestibility. The measurement of digestibility in itself is confronted with methodological difficulties. The way the feces are collected can affect the digestion coefficient. Dietary carbohydrates actually serve as a source of energy. Nevertheless, above a certain level in the diet, intolerance phenomena may appear. The question that arises now is to establish the optimal part that carbohydrates can take in the metabolizable energy of a given diet.
... include sugars added during food processing and refining. Complex carbohydrates include whole grain breads and cereals, starchy vegetables and legumes. Many of the complex carbohydrates are good sources of fiber. For a healthy ...
[Current concepts of digestion and absorption of carbohydrates].
Luz, S dos S; de Campos, P L; Ribeiro, S M; Tirapegui, J
1997-01-01
The aim of this paper is to review recent aspects of digestion and absorption of carbohydrates that are the main source of energy in human diets. Recent researches have found that starch is not largely hydrolysed and absorbed in the small bowel but one part of it is resistant to digestion. Several food factors may be responsible for digestion and absorption velocity and totality of carbohydrates. Therefore, carbohydrate classification must be based not only on molecular size to express the real carbohydrates utilization as an energy source by humans. In agreement with molecular size of carbohydrate, its classification can be: a) monosaccharides; b) disaccharides; c) oligosaccharides; d) polysaccharides. In agreement with carbohydrate digestibility or availability, its classification can be: a) digestible carbohydrates; b) undigestable carbohydrates (NSP). Carbohydrate digestibility can be altered by several factors like: Intrinsic factors: a) physical structure; b) molecular physical distribution; c) physical state of food; d) food antinutrients. Extrinsics factors: a) chewing; b) transit time of food; c) amount of starch present; d) diet antinutrients. Under influence of this factors, process of digestion happen by enzymatic activity a long the gastrointestinal tract. Salivary and pancreatic amylase; glycosidases of the duodenal enterocyte brush border (lactase, sacarase and maltase), whose activity happen by close interaction of digestive breakdown with transport. The summarized pathways of the absorptive process: 1. movement from the bulk phase of the lumenal or mucosal fluid to enterocyte surface; 2. movement across the brush border membrane through specific transporters: a) SGLT1; b) GLUT 5; c) passive diffusion. 3. movement across the basolateral membrane by the GLUT 2.
Li, Yu-Teh; Li, Su-Chen; Kiso, Makoto; Ishida, Hideharu; Mauri, Laura; Raimondi, Laura; Bernardi, Anna; Sonnino, Sandro
2008-03-01
The effect of inter-molecular carbohydrate-to-carbohydrate interaction on basic cell biological processes has been well documented and appreciated. In contrast, very little is known about the intra-molecular carbohydrate-to-carbohydrate interaction. The presence of an interaction between the GalNAc and the Neu5Ac in GM2 detected by NMR spectroscopy represents a well-defined intra-molecular carbohydrate-to-carbohydrate interaction. This intriguing interaction is responsible for the GM2-epitope, GalNAcbeta1-->4(Neu5Acalpha2-->3)Gal-, to exhibit a rigid and compact conformation. We hypothesized that this compact conformation may be the cause for both the GalNAc and the Neu5Ac in GM2 to be refractory to enzymatic hydrolysis and the GM2 activator protein is able to interact with the compact trisaccharide GM2-epitope, rendering the GalNAc and the Neu5Ac accessible to beta-hexosaminidase A and sialidase. We have used a series of structurally modified GM2 to study the effect of modifications of sugar chains on the conformation and enzymatic susceptibility of this ganglioside. Our hypothesis was borne out by the fact that when the GalNAcbeta1-->4Gal linkage in GM2 was converted to the GalNAcbeta1-->6Gal, both the GalNAc and the Neu5Ac became susceptible to beta-hexosaminidase A and sialidase, respectively, without GM2 activator protein. We hope our work will engender interest in identifying other intra-molecular carbohydrate-to-carbohydrate interactions in glycoconjugates.
Low carbohydrate diets may increase risk of neural tube defects.
Desrosiers, Tania A; Siega-Riz, Anna Maria; Mosley, Bridget S; Meyer, Robert E
2018-01-25
Folic acid fortification significantly reduced the prevalence of neural tube defects (NTDs) in the United States. The popularity of "low carb" diets raises concern that women who intentionally avoid carbohydrates, thereby consuming fewer fortified foods, may not have adequate dietary intake of folic acid. To assess the association between carbohydrate intake and NTDs, we analyzed data from the National Birth Defects Prevention Study from 1,740 mothers of infants, stillbirths, and terminations with anencephaly or spina bifida (cases), and 9,545 mothers of live born infants without a birth defect (controls) conceived between 1998 and 2011. Carbohydrate and folic acid intake before conception were estimated from food frequency questionnaire responses. Restricted carbohydrate intake was defined as ≤5th percentile among controls. Odds ratios were estimated with logistic regression and adjusted for maternal race/ethnicity, education, alcohol use, folic acid supplement use, study center, and caloric intake. Mean dietary intake of folic acid among women with restricted carbohydrate intake was less than half that of other women (p < .01), and women with restricted carbohydrate intake were slightly more likely to have an infant with an NTD (AOR = 1.30, 95% CI: 1.02, 1.67). This is the first study to examine the association between carbohydrate intake and NTDs among pregnancies conceived postfortification. We found that women with restricted carbohydrate intake were 30% more likely to have an infant with anencephaly or spina bifida. However, more research is needed to understand the pathways by which restricted carbohydrate intake might increase the risk of NTDs. © 2018 Wiley Periodicals, Inc.
Accumulation of reserve carbohydrate by rumen protozoa and bacteria in competition for glucose.
Denton, Bethany L; Diese, Leanne E; Firkins, Jeffrey L; Hackmann, Timothy J
2015-03-01
The aim of this study was to determine if rumen protozoa could form large amounts of reserve carbohydrate compared to the amounts formed by bacteria when competing for glucose in batch cultures. We separated large protozoa and small bacteria from rumen fluid by filtration and centrifugation, recombined equal protein masses of each group into one mixture, and subsequently harvested (reseparated) these groups at intervals after glucose dosing. This method allowed us to monitor reserve carbohydrate accumulation of protozoa and bacteria individually. When mixtures were dosed with a moderate concentration of glucose (4.62 or 5 mM) (n = 2 each), protozoa accumulated large amounts of reserve carbohydrate; 58.7% (standard error of the mean [SEM], 2.2%) glucose carbon was recovered from protozoal reserve carbohydrate at time of peak reserve carbohydrate concentrations. Only 1.7% (SEM, 2.2%) was recovered in bacterial reserve carbohydrate, which was less than that for protozoa (P < 0.001). When provided a high concentration of glucose (20 mM) (n = 4 each), 24.1% (SEM, 2.2%) of glucose carbon was recovered from protozoal reserve carbohydrate, which was still higher (P = 0.001) than the 5.0% (SEM, 2.2%) glucose carbon recovered from bacterial reserve carbohydrate. Our novel competition experiments directly demonstrate that mixed protozoa can sequester sugar away from bacteria by accumulating reserve carbohydrate, giving protozoa a competitive advantage and stabilizing fermentation in the rumen. Similar experiments could be used to investigate the importance of starch sequestration. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Association between Carbohydrate Intake and Serum Lipids
Ma, Yunsheng; Chiriboga, David E.; Olendzki, Barbara C.; Li, Wenjun; Leung, Katherine; Hafner, Andrea R.; Li, Youfu; Ockene, Ira S.; Hebert, James R.
2006-01-01
Background The effect of dietary carbohydrate on blood lipids has received considerable attention in light of the current trend in lowering carbohydrate intake for weight loss. Objectives To evaluate the association between carbohydrate intake and serum lipids. Methods Blood samples and 24-hour dietary and physical activity recall interviews were obtained from each subject at quarterly intervals for five consecutive quarters between 1994 and 1998 from 574 healthy adults in Central Massachusetts. Relationships between serum lipids and dietary carbohydrate factors were assessed using linear mixed models and adjusting for other risk factors known to be related to blood lipids. Both cross-sectional and longitudinal results were reported. Results Cross-sectional analysis results from this study suggest that higher total carbohydrate intake, percentage of calories from carbohydrate, glycemic index (GI) and/or glycemic load (GL) are related to lower high-density lipoprotein cholesterol (HDL-C) and higher serum triacylglycerol levels, while higher total carbohydrate intake and/or GL are related to lower total and low-density lipoprotein cholesterol (LDL-C) levels. In a one-year longitudinal analysis, GL was positively associated with total and LDL-C levels, and there was an inverse association between percentage of calories from carbohydrate and HDL-C levels. Conclusions Results suggest that there is a complex and predominantly unfavorable effect of increased intake of highly processed carbohydrate on lipid profile, which may have implications for metabolic syndrome, diabetes, and coronary heart disease. Further studies in the form of randomized controlled trials are required to investigate these associations and determine the implications for lipid management. PMID:16582033
Montero-Alejo, Vivian; Perdomo-Morales, Rolando; García-Galano, Tsai; Martínez-Rodríguez, Gonzalo; Mancera, Juan M.
2017-01-01
As other spiny lobsters, Panulirus argus is supposed to use preferentially proteins and lipids in energy metabolism, while carbohydrates are well digested but poorly utilized. The aim of this study was to evaluate the effect of dietary carbohydrate level on digestion and metabolism in the spiny lobster P. argus. We used complementary methodologies such as post-feeding flux of nutrients and metabolites, as well as measurements of α-amylase expression and activity in the digestive tract. Lobsters readily digested and absorbed carbohydrates with a time-course that is dependent on their content in diet. Lobster showed higher levels of free glucose and stored glycogen in different tissues as the inclusion of wheat flour increased. Modifications in intermediary metabolism revealed a decrease in amino acids catabolism coupled with a higher use of free glucose as carbohydrates rise up to 20%. However, this effect seems to be limited by the metabolic capacity of lobsters to use more than 20% of carbohydrates in diets. Lobsters were not able to tightly regulate α-amylase expression according to dietary carbohydrate level but exhibited a marked difference in secretion of this enzyme into the gut. Results are discussed to highlight the limitations to increasing carbohydrate utilization by lobsters. Further growout trials are needed to link the presented metabolic profiles with phenotypic outcomes. PMID:29114440
Arana, Yanina; Verastegui, Manuela; Tuero, Iskra; Grandjean, Louis; Garcia, Hector H; Gilman, Robert H
2013-10-01
This study examines the carbohydrate composition of Taenia solium whole oncosphere antigens (WOAs), in order to improve the understanding of the antigenicity of the T. solium. Better knowledge of oncosphere antigens is crucial to accurately diagnose previous exposure to T. solium eggs and thus predict the development of neurocysticercosis. A set of seven lectins conjugates with wide carbohydrate specificity were used on parasite fixations and somatic extracts. Lectin fluorescence revealed that D-mannose, D-glucose, D-galactose and N-acetyl-D-galactosamine residues were the most abundant constituents of carbohydrate chains on the surface of T. solium oncosphere. Lectin blotting showed that posttranslational modification with N-glycosylation was abundant while little evidence of O-linked carbohydrates was observed. Chemical oxidation and enzymatic deglycosylation in situ were performed to investigate the immunoreactivity of the carbohydrate moieties. Linearizing or removing the carbohydrate moieties from the protein backbones did not diminish the immunoreactivity of these antigens, suggesting that a substantial part of the host immune response against T. solium oncosphere is directed against the peptide epitopes on the parasite antigens. Finally, using carbohydrate probes, we demonstrated for the first time that the presence of several lectins on the surface of the oncosphere was specific to carbohydrates found in intestinal mucus, suggesting a possible role in initial attachment of the parasite to host cells.
Rodríguez-Viera, Leandro; Perera, Erick; Montero-Alejo, Vivian; Perdomo-Morales, Rolando; García-Galano, Tsai; Martínez-Rodríguez, Gonzalo; Mancera, Juan M
2017-01-01
As other spiny lobsters, Panulirus argus is supposed to use preferentially proteins and lipids in energy metabolism, while carbohydrates are well digested but poorly utilized. The aim of this study was to evaluate the effect of dietary carbohydrate level on digestion and metabolism in the spiny lobster P. argus . We used complementary methodologies such as post-feeding flux of nutrients and metabolites, as well as measurements of α-amylase expression and activity in the digestive tract. Lobsters readily digested and absorbed carbohydrates with a time-course that is dependent on their content in diet. Lobster showed higher levels of free glucose and stored glycogen in different tissues as the inclusion of wheat flour increased. Modifications in intermediary metabolism revealed a decrease in amino acids catabolism coupled with a higher use of free glucose as carbohydrates rise up to 20%. However, this effect seems to be limited by the metabolic capacity of lobsters to use more than 20% of carbohydrates in diets. Lobsters were not able to tightly regulate α-amylase expression according to dietary carbohydrate level but exhibited a marked difference in secretion of this enzyme into the gut. Results are discussed to highlight the limitations to increasing carbohydrate utilization by lobsters. Further growout trials are needed to link the presented metabolic profiles with phenotypic outcomes.
Dietary carbohydrates, components of energy balance, and associated health outcomes.
Smith, Harry A; Gonzalez, Javier T; Thompson, Dylan; Betts, James A
2017-10-01
The role of dietary carbohydrates in the development of obesity and associated metabolic dysfunction has recently been questioned. Within the last decade, the Scientific Advisory Committee on Nutrition carried out a comprehensive evaluation of the role of dietary carbohydrates in human health. The current review aims to complement and extend this report by providing specific consideration of the effects of the component parts of energy balance, their interactions, and their culmination on energy storage and health. PubMed was searched for all published trials that had a minimum follow-up period of 3 months and were designed to manipulate dietary carbohydrate intake, irrespective of resultant differences in absolute carbohydrate dose (grams per day). Dietary carbohydrate manipulation has little effect on the individual components of energy balance that have been assessed. However, the role of dietary carbohydrates in influencing physical activity has yet to be assessed using gold-standard measurement tools. Moreover, adherence to a diet of modified carbohydrate content has not been found to result in a consistent pattern of changes in weight or indirect measures of metabolic health. However, certain markers of cardiovascular disease risk (ie, blood triglycerides and high-density lipoprotein cholesterol) may respond positively to a reduction in dietary carbohydrates. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Arana, Yanina; Verastegui, Manuela; Tuero, Iskra; Grandjean, Louis; Garcia, Hector H.; Gilman, Robert H.
2015-01-01
This study examines the carbohydrate composition of Taenia solium whole oncosphere antigens (WOAs), in order to improve the understanding of the antigenicity of the T. solium. Better knowledge of oncosphere antigens is crucial to accurately diagnose previous exposure to T. solium eggs and thus predict the development of neurocysticercosis. A set of seven lectins conjugates with wide carbohydrate specificity were used on parasite fixations and somatic extracts. Lectin fluorescence revealed that D-mannose, D-glucose, D-galactose and N-acetyl-D-galactosamine residues were the most abundant constituents of carbohydrate chains on the surface of T. solium oncosphere. Lectin blotting showed that post-translational modification with N-glycosylation was abundant while little evidence of O-linked carbohydrates was observed. Chemical oxidation and enzymatic deglycosylation in situ were performed to investigate the immunoreactivity of the carbohydrate moieties. Linearizing or removing the carbohydrate moieties from the protein backbones did not diminish the immunoreactivity of these antigens, suggesting that a substantial part of the host immune response against T. solium oncosphere is directed against the peptide epitopes on the parasite antigens. Finally, using carbohydrate probes, we demonstrated for the first time that the presence of several lectins on the surface of the oncosphere was specific to carbohydrates found in intestinal mucus, suggesting a possible role in initial attachment of the parasite to host cells. PMID:23982308
Vacuum ultraviolet photoionization of carbohydrates and nucleotides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Joong-Won, E-mail: jshin@govst.edu; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872; Bernstein, Elliot R., E-mail: erb@lamar.colostate.edu
Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate,more » rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.« less
Pérez-Jiménez, Amalia; Abellán, Emilia; Arizcun, Marta; Cardenete, Gabriel; Morales, Amalia E; Hidalgo, M Carmen
2015-06-01
The present study was aimed to evaluate the capacity of common dentex (Dentex dentex) to efficiently use dietary carbohydrates. So, the effects of different type and levels of carbohydrates on growth performance, feed utilization, fish composition, plasma metabolites and key metabolic pathways in liver and white muscle of common dentex are presented. Nine isonitrogenous (43%) and isoenergetic (22 MJ kg(-1)) diets were formulated combining three types, pregelatinized starch (PS), dextrin (Dx) and maltodextrin (Mx), and three levels (12, 18 and 24%) of carbohydrates. Growth performance was not significantly influenced by treatments. The best feed utilization was observed in 18% Mx group. Higher hepatic lipid content was found in fish fed lower dietary carbohydrate levels. PS induced higher liver and white muscle hexokinase and pyruvate kinase activities compared to the lower values observed for Mx. Malic enzyme and glucose 6-phosphate dehydrogenase in liver and white muscle were lower in Mx group. The influence of dietary carbohydrates source was more noticeable than those induced by the carbohydrate level, when glycolysis and lipogenesis pathways were considered. Common dentex is able to use properly dietary carbohydrates, although optimal dietary inclusion levels are below 24%. The greater protein-sparing effect was promoted by the less complex carbohydrate (maltodextrin) and the best feed utilization indices were obtained at intermediate levels of inclusion (18%). Copyright © 2015 Elsevier Inc. All rights reserved.
Xianjun Li; Zhiyong Cai; Eric Horn; Jerrold E. Winandy
2011-01-01
This study was conducted to evaluate the effect of oxalic acid (OA) pretreatment on carbohydrates released from rice straw particles and wood chips. The results showed that OA treatment accelerated carbohydrates extraction from rice straw particles and wood chips. OA pretreatment dramatically increased the amount of carbohydrates extracted, up to 24 times for wood...
Imai, Saeko; Fukui, Michiaki; Kajiyama, Shizuo
2014-01-01
The aim of this review was to evaluate whether eating vegetables before carbohydrates could reduce the postprandial glucose, insulin, and improve long-term glycemic control in Japanese patients with type 2 diabetes. We studied the effect of eating vegetables before carbohydrates on postprandial plasma glucose, insulin, and glycemic control for 2.5 y in patients with type 2 diabetes. The postprandial glucose and insulin levels decreased significantly when the patients ate vegetables before carbohydrates compared to the reverse regimen, and the improvement of glycemic control was observed for 2.5 y. We also compared the postprandial glucose and glucose fluctuations assessed by continuous glucose monitoring system for 72-h in patients with type 2 diabetes and subjects with normal glucose tolerance when subjects ate vegetables before carbohydrates and carbohydrates before vegetables in a randomized crossover design. The glycemic excursions and incremental glucose peak were significantly lower when the subjects ate vegetables before carbohydrates compared to the reverse regimen. This evidence supports the effectiveness of eating vegetables before carbohydrates on glucose excursions in the short-term and glycemic control in the long-term in patients with type 2 diabetes. PMID:24426184
Imai, Saeko; Fukui, Michiaki; Kajiyama, Shizuo
2014-01-01
The aim of this review was to evaluate whether eating vegetables before carbohydrates could reduce the postprandial glucose, insulin, and improve long-term glycemic control in Japanese patients with type 2 diabetes. We studied the effect of eating vegetables before carbohydrates on postprandial plasma glucose, insulin, and glycemic control for 2.5 y in patients with type 2 diabetes. The postprandial glucose and insulin levels decreased significantly when the patients ate vegetables before carbohydrates compared to the reverse regimen, and the improvement of glycemic control was observed for 2.5 y. We also compared the postprandial glucose and glucose fluctuations assessed by continuous glucose monitoring system for 72-h in patients with type 2 diabetes and subjects with normal glucose tolerance when subjects ate vegetables before carbohydrates and carbohydrates before vegetables in a randomized crossover design. The glycemic excursions and incremental glucose peak were significantly lower when the subjects ate vegetables before carbohydrates compared to the reverse regimen. This evidence supports the effectiveness of eating vegetables before carbohydrates on glucose excursions in the short-term and glycemic control in the long-term in patients with type 2 diabetes.
VARIATION IN THE GROUP-SPECIFIC CARBOHYDRATE OF GROUP A STREPTOCOCCI
McCarty, Maclyn
1956-01-01
Soil organisms have been isolated which elaborate induced enzymes capable of attacking group A and variant (V) streptococcal carbohydrates. The V enzyme hydrolyzes V carbohydrate extensively to dialyzable split products with resultant total loss of precipitating activity with homologous antisera. The split products inhibit the reaction between intact V carbohydrate and its antiserum: evidence is presented which indicates that rhamnose oligosaccharides are responsible for the inhibitory effect. The serological specificity of the V carbohydrate thus appears to be primarily dependent on a rhamnose-rhamnose linkage. The effect of the A enzyme on A carbohydrate is characterized by the removal of 50 to 70 per cent of the total glucosamine in the form of free N-acetyl-glucosamine. As a result of this treatment, the residual carbohydrate loses its reactivity with specific group A antisera and at the same time develops markedly increased cross-reactivity with V antisera. This cross-reactivity is in turn eliminated by treatment with V enzyme. The evidence suggests that the specificity of group A carbohydrate is determined to a large extent by side chains of N-acetyl-glucosamine which also serve to mask underlying rhamnose-rhamnose linkages with V specificity. PMID:13367334
Biologically-Inspired Peptide Reagents for Enhancing IMS-MS Analysis of Carbohydrates
NASA Astrophysics Data System (ADS)
Bohrer, Brian C.; Clemmer, David E.
2011-09-01
The binding properties of a peptidoglycan recognition protein are translated via combinatorial chemistry into short peptides. Non-adjacent histidine, tyrosine, and arginine residues in the protein's binding cleft that associate specifically with the glycan moiety of a peptidoglycan substrate are incorporated into linear sequences creating a library of 27 candidate tripeptide reagents (three possible residues permutated across three positions). Upon electrospraying the peptide library and carbohydrate mixtures, some noncovalent complexes are observed. The binding efficiencies of the peptides vary according to their amino acid composition as well as the disaccharide linkage and carbohydrate ring-type. In addition to providing a charge-carrier for the carbohydrate, peptide reagents can also be used to differentiate carbohydrate isomers by ion mobility spectrometry. The utility of these peptide reagents as a means of enhancing ion mobility analysis of carbohydrates is illustrated by examining four glucose-containing disaccharide isomers, including a pair that is not resolved by ion mobility alone. The specificity and stoichiometry of the peptide-carbohydrate complexes are also investigated. Trihistidine demonstrates both suitable binding efficiency and successful resolution of disaccharides isomers, suggesting it may be a useful reagent in IMS analyses of carbohydrates.
Validation of lignocellulosic biomass carbohydrates determination via acid hydrolysis.
Zhou, Shengfei; Runge, Troy M
2014-11-04
This work studied the two-step acid hydrolysis for determining carbohydrates in lignocellulosic biomass. Estimation of sugar loss based on acid hydrolyzed sugar standards or analysis of sugar derivatives was investigated. Four model substrates (starch, holocellulose, filter paper and cotton) and three levels of acid/material ratios (7.8, 10.3 and 15.4, v/w) were studied to demonstrate the range of test artifacts. The method for carbohydrates estimation based on acid hydrolyzed sugar standards having the most satisfactory carbohydrate recovery and relative standard deviation. Raw material and the acid/material ratio both had significant effect on carbohydrate hydrolysis, suggesting the acid to have impacts beyond a catalyst in the hydrolysis. Following optimal procedures, we were able to reach a carbohydrate recovery of 96% with a relative standard deviation less than 3%. The carbohydrates recovery lower than 100% was likely due to the incomplete hydrolysis of substrates, which was supported by scanning electron microscope (SEM) images. Copyright © 2014 Elsevier Ltd. All rights reserved.
Carbohydrates as T-cell antigens with implications in health and disease.
Sun, Lina; Middleton, Dustin R; Wantuch, Paeton L; Ozdilek, Ahmet; Avci, Fikri Y
2016-10-01
Glycosylation is arguably the most ubiquitous post-translational modification on proteins in microbial and mammalian cells. During the past few years, there has been intensive research demonstrating that carbohydrates, either in pure forms or in conjunction with proteins or lipids, evoke and modulate adaptive immune responses. We now know that carbohydrates can be directly recognized by T cells or participate in T-cell stimulation as components of T-cell epitopes. T-cell recognition of carbohydrate antigens takes place via their presentation by major histocompatibility complex pathways on antigen-presenting cells. In this review, we summarize studies on carbohydrates as T-cell antigens modulating adaptive immune responses. Through discussion of glycan-containing antigens, such as glycoproteins, glycolipids, zwitterionic polysaccharides and carbohydrate-based glycoconjugate vaccines, we will illustrate the key molecular and cellular interactions between carbohydrate antigens and T cells and the implications of these interactions in health and disease. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Premenstrual Syndrome (PMS) FAQ
... symptoms of PMS: Eat a diet rich in complex carbohydrates. A complex carbohydrate-rich diet may reduce mood symptoms and food cravings. Complex carbohydrates are found in foods made with whole grains, ...
Carbohydrate CuAAC click chemistry for therapy and diagnosis.
He, Xiao-Peng; Zeng, Ya-Li; Zang, Yi; Li, Jia; Field, Robert A; Chen, Guo-Rong
2016-06-24
Carbohydrates are important as signaling molecules and for cellular recognition events, therefore offering scope for the development of carbohydrate-mimetic diagnostics and drug candidates. As a consequence, the construction of carbohydrate-based bioactive compounds and sensors has become an active research area. While the advent of click chemistry has greatly accelerated the progress of medicinal chemistry and chemical biology, recent literature has seen an extensive use of such approaches to construct functionally diverse carbohydrate derivatives. Here we summarize some of the progress, covering the period 2010 to mid-2015, in Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition CuAAC "click chemistry" of carbohydrate derivatives, in the context of potential therapeutic and diagnostic tool development. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Enzyme-based processing of soybean carbohydrate: Recent developments and future prospects.
Al Loman, Abdullah; Ju, Lu-Kwang
2017-11-01
Soybean is well known for its high-value oil and protein. Carbohydrate is, however, an underutilized major component, representing almost 26-30% (w/w) of the dried bean. The complex soybean carbohydrate is not easily hydrolyzable and can cause indigestibility when included in food and feed. Enzymes can be used to hydrolyze the carbohydrate for improving soybean processing and value of soybean products. Here the enzyme-based processing developed for the following purposes is reviewed: hydrolysis of different carbohydrate-rich by/products from soybean processing, improvement of soybean oil extraction, and increase of nutritional value of soybean-based food and animal feed. Once hydrolyzed into fermentable sugars, soybean carbohydrate can find more value-added applications and further improve the overall economics of soybean processing. Copyright © 2017 Elsevier Inc. All rights reserved.
Feng, Yingang
2017-01-01
The use of NMR methods to determine the three-dimensional structures of carbohydrates and glycoproteins is still challenging, in part because of the lack of standard protocols. In order to increase the convenience of structure determination, the topology and parameter files for carbohydrates in the program Crystallography & NMR System (CNS) were investigated and new files were developed to be compatible with the standard simulated annealing protocols for proteins and nucleic acids. Recalculating the published structures of protein-carbohydrate complexes and glycosylated proteins demonstrates that the results are comparable to the published structures which employed more complex procedures for structure calculation. Integrating the new carbohydrate parameters into the standard structure calculation protocol will facilitate three-dimensional structural study of carbohydrates and glycosylated proteins by NMR spectroscopy.
2017-01-01
The use of NMR methods to determine the three-dimensional structures of carbohydrates and glycoproteins is still challenging, in part because of the lack of standard protocols. In order to increase the convenience of structure determination, the topology and parameter files for carbohydrates in the program Crystallography & NMR System (CNS) were investigated and new files were developed to be compatible with the standard simulated annealing protocols for proteins and nucleic acids. Recalculating the published structures of protein-carbohydrate complexes and glycosylated proteins demonstrates that the results are comparable to the published structures which employed more complex procedures for structure calculation. Integrating the new carbohydrate parameters into the standard structure calculation protocol will facilitate three-dimensional structural study of carbohydrates and glycosylated proteins by NMR spectroscopy. PMID:29232406
Wang, Huibin; Zhang, Yiming; Yuan, Xun; Chen, Yi; Yan, Mingdi
2010-01-01
A universal photochemical method has been established for the immobilization of intact carbohydrates and their analogues, and for the fabrication of carbohydrate microarrays. The method features the use of perfluorophenyl azide (PFPA)-modified substrates and the photochemical reaction of surface azido groups with printed carbohydrates. Various aldoses, ketoses, non-reducing sugars such as alditols and their derivatives can be directly arrayed on the PFPA-modified chips. The lectin-recognition ability of arrayed mannose, glucose and their oligo- and polysaccharides were confirmed using surface plasmon resonance imaging and laser-induced fluorescence imaging. PMID:21138274
The effects of marine carbohydrates and glycosylated compounds on human health.
Kang, Hee-Kyoung; Seo, Chang Ho; Park, Yoonkyung
2015-03-16
Marine organisms have been recognized as a valuable source of bioactive compounds with industrial and nutraceutical potential. Recently, marine-derived carbohydrates, including polysaccharides and low molecular weight glycosylated oligosaccharides, have attracted much attention because of their numerous health benefits. Moreover, several studies have reported that marine carbohydrates exhibit various biological activities, including antioxidant, anti-infection, anticoagulant, anti-inflammatory, and anti-diabetic effects. The present review discusses the potential industrial applications of bioactive marine carbohydrates for health maintenance and disease prevention. Furthermore, the use of marine carbohydrates in food, cosmetics, agriculture, and environmental protection is discussed.
Carbohydrate Analysis: Can We Control the Ripening of Bananas?
NASA Astrophysics Data System (ADS)
Deal, S. Todd; Farmer, Catherine E.; Cerpovicz, Paul F.
2002-04-01
We have developed an experiment for nutritional/introductory biochemistry courses that focuses on carbohydrate analysis--specifically, the carbohydrates found in bananas and the change in carbohydrate composition as the banana ripens. Pairs of students analyze the starch and reducing sugar content of green, ripe, and overripe bananas. Using the techniques and knowledge gained from these analyses, they then investigate the influence of various storage methods on the ripening process. While this experiment was developed for an introductory-level biochemistry lab, it can easily be adapted for use in other laboratory programs that seek to teach the fundamentals of carbohydrate analysis.
Physicochemical Characterization of Iron Carbohydrate Colloid Drug Products.
Zou, Peng; Tyner, Katherine; Raw, Andre; Lee, Sau
2017-09-01
Iron carbohydrate colloid drug products are intravenously administered to patients with chronic kidney disease for the treatment of iron deficiency anemia. Physicochemical characterization of iron colloids is critical to establish pharmaceutical equivalence between an innovator iron colloid product and generic version. The purpose of this review is to summarize literature-reported techniques for physicochemical characterization of iron carbohydrate colloid drug products. The mechanisms, reported testing results, and common technical pitfalls for individual characterization test are discussed. A better understanding of the physicochemical characterization techniques will facilitate generic iron carbohydrate colloid product development, accelerate products to market, and ensure iron carbohydrate colloid product quality.
Wang, Huibin; Zhang, Yiming; Yuan, Xun; Chen, Yi; Yan, Mingdi
2011-01-19
A universal photochemical method has been established for the immobilization of intact carbohydrates and their analogues, and for the fabrication of carbohydrate microarrays. The method features the use of perfluorophenyl azide (PFPA)-modified substrates and the photochemical reaction of surface azido groups with printed carbohydrates. Various aldoses, ketoses, nonreducing sugars such as alditols, and their derivatives can be directly arrayed on the PFPA-modified chips. The lectin-recognition ability of arrayed mannose, glucose, and their oligo- and polysaccharides were confirmed using surface plasmon resonance imaging and laser-induced fluorescence imaging.
The Effects of Marine Carbohydrates and Glycosylated Compounds on Human Health
Kang, Hee-Kyoung; Seo, Chang Ho; Park, Yoonkyung
2015-01-01
Marine organisms have been recognized as a valuable source of bioactive compounds with industrial and nutraceutical potential. Recently, marine-derived carbohydrates, including polysaccharides and low molecular weight glycosylated oligosaccharides, have attracted much attention because of their numerous health benefits. Moreover, several studies have reported that marine carbohydrates exhibit various biological activities, including antioxidant, anti-infection, anticoagulant, anti-inflammatory, and anti-diabetic effects. The present review discusses the potential industrial applications of bioactive marine carbohydrates for health maintenance and disease prevention. Furthermore, the use of marine carbohydrates in food, cosmetics, agriculture, and environmental protection is discussed. PMID:25785562
Carbohydrate Recognition by Boronolectins, Small Molecules, and Lectins
Jin, Shan; Cheng, Yunfeng; Reid, Suazette; Li, Minyong; Wang, Binghe
2009-01-01
Carbohydrates are known to mediate a large number of biological and pathological events. Small and macromolecules capable of carbohydrate recognition have great potentials as research tools, diagnostics, vectors for targeted delivery of therapeutic and imaging agents, and therapeutic agents. However, this potential is far from being realized. One key issue is the difficulty in the development of “binders” capable of specific recognition of carbohydrates of biological relevance. This review discusses systematically the general approaches that are available in developing carbohydrate sensors and “binders/receptors,” and their applications. The focus is on discoveries during the last five years. PMID:19291708
... of toxic waste products. Increasing your intake of carbohydrates to be in proportion with the amount of ... severe liver disease include: Eat large amounts of carbohydrate foods. Carbohydrates should be the major source of ...
Yancy, William S; Olsen, Maren K; Guyton, John R; Bakst, Ronna P; Westman, Eric C
2004-05-18
Low-carbohydrate diets remain popular despite a paucity of scientific evidence on their effectiveness. To compare the effects of a low-carbohydrate, ketogenic diet program with those of a low-fat, low-cholesterol, reduced-calorie diet. Randomized, controlled trial. Outpatient research clinic. 120 overweight, hyperlipidemic volunteers from the community. Low-carbohydrate diet (initially, <20 g of carbohydrate daily) plus nutritional supplementation, exercise recommendation, and group meetings, or low-fat diet (<30% energy from fat, <300 mg of cholesterol daily, and deficit of 500 to 1000 kcal/d) plus exercise recommendation and group meetings. Body weight, body composition, fasting serum lipid levels, and tolerability. A greater proportion of the low-carbohydrate diet group than the low-fat diet group completed the study (76% vs. 57%; P = 0.02). At 24 weeks, weight loss was greater in the low-carbohydrate diet group than in the low-fat diet group (mean change, -12.9% vs. -6.7%; P < 0.001). Patients in both groups lost substantially more fat mass (change, -9.4 kg with the low-carbohydrate diet vs. -4.8 kg with the low-fat diet) than fat-free mass (change, -3.3 kg vs. -2.4 kg, respectively). Compared with recipients of the low-fat diet, recipients of the low-carbohydrate diet had greater decreases in serum triglyceride levels (change, -0.84 mmol/L vs. -0.31 mmol/L [-74.2 mg/dL vs. -27.9 mg/dL]; P = 0.004) and greater increases in high-density lipoprotein cholesterol levels (0.14 mmol/L vs. -0.04 mmol/L [5.5 mg/dL vs. -1.6 mg/dL]; P < 0.001). Changes in low-density lipoprotein cholesterol level did not differ statistically (0.04 mmol/L [1.6 mg/dL] with the low-carbohydrate diet and -0.19 mmol/L [-7.4 mg/dL] with the low-fat diet; P = 0.2). Minor adverse effects were more frequent in the low-carbohydrate diet group. We could not definitively distinguish effects of the low-carbohydrate diet and those of the nutritional supplements provided only to that group. In addition, participants were healthy and were followed for only 24 weeks. These factors limit the generalizability of the study results. Compared with a low-fat diet, a low-carbohydrate diet program had better participant retention and greater weight loss. During active weight loss, serum triglyceride levels decreased more and high-density lipoprotein cholesterol level increased more with the low-carbohydrate diet than with the low-fat diet.
NASA Astrophysics Data System (ADS)
Lønborg, Christian; Doyle, Jason; Furnas, Miles; Menendez, Patricia; Benthuysen, Jessica A.; Carreira, Cátia
2017-04-01
Organic matter (OM) plays a fundamental role in sustaining the high productivity of coral reef ecosystems. Carbohydrates and proteins constitute two of the major chemical classes identified in the OM pool and are used as indicators of bioavailability due to their fast turn-over. We conducted three cruises across the southern shelf of the Great Barrier Reef (GBR) during the early dry, late dry and wet seasons in 2009-2010 to 1) assess the relative bioavailability of particulate (POM) and dissolved (DOM) organic matter, 2) track the temporal and spatial variability in the carbohydrate and protein contribution to the OM pool, and 3) assess factors influencing protein and carbohydrate fractions of the OM pool. Generally, higher concentrations of particulate carbohydrates were found during the wet season, while similar concentrations of particulate protein were found during the three seasons. Both the dissolved carbohydrates and proteins had highest levels during the early dry season and lowest during the wet season, suggesting seasonal variations in the chemical composition of the DOM pool. Spatially, carbohydrates showed higher concentrations at the inshore stations, while no clear spatial pattern was found for the protein concentrations. On average carbohydrates and proteins accounted for a similar fraction (13±5 and 12±6% respectively) of POM, while carbohydrates accounted for a smaller fraction of the DOM than the proteins (6±3 and 13±10%). This suggests that the POM bioavailability was similar between seasons, while the DOM bioavailability varied seasonally with highest levels during the early dry season. This demonstrates that carbohydrates and proteins in the GBR have temporal and spatial variations. Our statistical analysis showed that 1) both carbohydrates and proteins were related with the POM and DOM C:N:P stoichiometry, demonstrating that both bulk estimates (stoichiometry) and specific compounds (CHO and Prot) provide useful measures of OM bioavailability in the GBR and 2) the carbohydrates and proteins levels were controlled by the amount of nutrients and POM, which in this system is mainly of plankton origin. Overall this study shows that the POM and DOM pools contain highly bioavailable compounds and that carbohydrate and proteins could play an important role in sustaining the productivity of the GBR.
Jenkins, David J A; Wong, Julia M W; Kendall, Cyril W C; Esfahani, Amin; Ng, Vivian W Y; Leong, Tracy C K; Faulkner, Dorothea A; Vidgen, Ed; Paul, Gregory; Mukherjea, Ratna; Krul, Elaine S; Singer, William
2014-01-01
Objective Low-carbohydrate diets may be useful for weight loss. Diets high in vegetable proteins and oils may reduce the risk of coronary heart disease. The main objective was to determine the longer term effect of a diet that was both low-carbohydrate and plant-based on weight loss and low-density lipoprotein cholesterol (LDL-C). Design, setting, participants A parallel design study of 39 overweight hyperlipidaemic men and postmenopausal women conducted at a Canadian university-affiliated hospital nutrition research centre from April 2005 to November 2006. Intervention Participants were advised to consume either a low-carbohydrate vegan diet or a high-carbohydrate lacto-ovo vegetarian diet for 6 months after completing 1-month metabolic (all foods provided) versions of these diets. The prescribed macronutrient intakes for the low-carbohydrate and high-carbohydrate diets were: 26% and 58% of energy from carbohydrate, 31% and 16% from protein and 43% and 25% from fat, respectively. Primary outcome Change in body weight. Results 23 participants (50% test, 68% control) completed the 6-month ad libitum study. The approximate 4 kg weight loss on the metabolic study was increased to −6.9 kg on low-carbohydrate and −5.8 kg on high-carbohydrate 6-month ad libitum treatments (treatment difference (95% CI) −1.1 kg (−2.1 to 0.0), p=0.047). The relative LDL-C and triglyceride reductions were also greater on the low-carbohydrate treatment (treatment difference (95% CI) −0.49 mmol/L (−0.70 to −0.28), p<0.001 and −0.34 mmol/L (−0.57 to −0.11), p=0.005, respectively), as were the total cholesterol:HDL-C and apolipoprotein B:A1 ratios (−0.57 (−0.83, −0.32), p<0.001 and −0.05 (−0.09, −0.02), p=0.003, respectively). Conclusions A self-selected low-carbohydrate vegan diet, containing increased protein and fat from gluten and soy products, nuts and vegetable oils, had lipid lowering advantages over a high-carbohydrate, low-fat weight loss diet, thus improving heart disease risk factors. Trial Registration clinicaltrials.gov (http://www.clinicaltrials.gov/), #NCT00256516. PMID:24500611
Role of Carbohydrate in Glycoprotein Traffic and Secretion
1988-01-01
synthesized in normal amounts but accumu- lated intracellularly, with transport to the cell surface being greatly de - layed. Glycoprotein E2 isolated from...UNcLA ,F E 2 Role of Carbohydrate in Glycoprotein Traffic and Secretion JAMES B. PARENT I. Introduction I!. Evidence for Intracellular Transport Signals...Ill. Oligosaccharide Biosynthesis IV. Role of Carbohydrate in Protein Solubility. Structure, and Stability V. Evidence for Carbohydrate Transport
USASOC Injury Prevention/Performance Optimization Musculoskeletal Screening Initiative
2013-11-01
beverage following physical training should contain fluid, carbohydrate, electrolytes and a small amount of protein . For example, low fat chocolate milk ...adequate calories, carbohydrate and protein in the diet. Once carbohydrate and protein needs are met, the balance of calories can be supplied by fat ...training program, carbohydrate and protein needs are determined first and then the remaining calories are designated to fat which typically ranges from
Bao, Wei; Bowers, Katherine; Tobias, Deirdre K; Olsen, Sjurdur F; Chavarro, Jorge; Vaag, Allan; Kiely, Michele; Zhang, Cuilin
2014-01-01
Background: Low-carbohydrate diets (LCDs) have been vastly popular for weight loss. The association between a low-carbohydrate dietary pattern and risk of gestational diabetes mellitus (GDM) remains unknown. Objective: We aimed to prospectively examine the association of 3 prepregnancy low-carbohydrate dietary patterns with risk of GDM. Design: We included 21,411 singleton pregnancies in the Nurses’ Health Study II. Prepregnancy LCD scores were calculated from validated food-frequency questionnaires, including an overall LCD score on the basis of intakes of carbohydrate, total protein, and total fat; an animal LCD score on the basis of intakes of carbohydrate, animal protein, and animal fat; and a vegetable LCD score on the basis of intakes of carbohydrate, vegetable protein, and vegetable fat. A higher score reflected a higher intake of fat and protein and a lower intake of carbohydrate, and it indicated closer adherence to a low-carbohydrate dietary pattern. RRs and 95% CIs were estimated by using generalized estimating equations with log-binomial models. Results: We documented 867 incident GDM pregnancies during 10 y follow-up. Multivariable-adjusted RRs (95% CIs) of GDM for comparisons of highest with lowest quartiles were 1.27 (1.06, 1.51) for the overall LCD score (P-trend = 0.03), 1.36 (1.13, 1.64) for the animal LCD score (P-trend = 0.003), and 0.84 (0.69, 1.03) for the vegetable LCD score (P-trend = 0.08). Associations between LCD scores and GDM risk were not significantly modified by age, parity, family history of diabetes, physical activity, or overweight status. Conclusions: A prepregnancy low-carbohydrate dietary pattern with high protein and fat from animal-food sources is positively associated with GDM risk, whereas a prepregnancy low-carbohydrate dietary pattern with high protein and fat from vegetable food sources is not associated with the risk. Women of reproductive age who follow a low-carbohydrate dietary pattern may consider consuming vegetable rather than animal sources of protein and fat to minimize their risk of GDM. PMID:24717341
O'Brien, Wendy J; Rowlands, David S
2011-01-01
Solutions containing multiple carbohydrates utilizing different intestinal transporters (glucose and fructose) show enhanced absorption, oxidation, and performance compared with single-carbohydrate solutions, but the impact of the ratio of these carbohydrates on outcomes is unknown. In a randomized double-blind crossover, 10 cyclists rode 150 min at 50% peak power, then performed an incremental test to exhaustion, while ingesting artificially sweetened water or one of three carbohydrate-salt solutions comprising fructose and maltodextrin in the respective following concentrations: 4.5 and 9% (0.5-Ratio), 6 and 7.5% (0.8-Ratio), and 7.5 and 6% (1.25-Ratio). The carbohydrates were ingested at 1.8 g/min and naturally (13)C-enriched to permit evaluation of oxidation rate by mass spectrometry and indirect calorimetry. Mean exogenous carbohydrate oxidation rates were 1.04, 1.14, and 1.05 g/min (coefficient of variation 20%) in 0.5-, 0.8-, and 1.25-Ratios, respectively, representing likely small increases in 0.8-Ratio of 11% (90% confidence limits; ± 4%) and 10% (± 4%) relative to 0.5- and 1.25-Ratios, respectively. Comparisons of fat and total and endogenous carbohydrate oxidation rates between solutions were unclear. Relative to 0.5-Ratio, there were moderate improvements to peak power with 0.8- (3.6%; 99% confidence limits ± 3.5%) and 1.25-Ratio (3.0%; ± 3.7%) but unclear with water (0.4%; ± 4.4%). Increases in stomach fullness, abdominal cramping, and nausea were lowest with the 0.8- followed by the 1.25-Ratio solution. At high carbohydrate-ingestion rate, greater benefits to endurance performance may result from ingestion of 0.8- to 1.25-Ratio fructose-maltodextrin solutions. Small perceptible improvements in gut comfort favor the 0.8-Ratio and provide a clearer suggestion of mechanism than the relationship with exogenous carbohydrate oxidation.
James, Mariel L; Green, Louisa; Amiel, Stephanie A; Choudhary, Pratik
2016-11-01
It has been suggested that dietary freedom in functional insulin therapy may be detrimental to glycemic control in type 1 diabetes. This study evaluates the effect of carbohydrate intake on glycemic control and postprandial blood glucose concentrations. Insulin pump data from 148 adults with type 1 diabetes, trained in functional insulin therapy, using pumps for ≥6 months, with ≥2 weeks of consecutive downloaded data, ≥80% use of a bolus calculator, ≥3 capillary blood glucose tests/day, and a concurrent HbA1C, were analyzed. More detailed periprandial data (pre- and postmeal glucose, carbohydrate intake, insulin bolus) were collected from a subset of 105 downloads (3495 meals). Mean (± SD) age of contributors was 43 ± 13 years, HbA1C 7.84% ± 0.93 (62.19 mmol/mol); daily carbohydrate intake 166 ± 71 g. HbA1C reduced with increased meals/day (r = -.370, P < .0005) and increased with mean carbohydrate content/meal (r = .198, P = .043). However, total daily carbohydrate intake had a weak but significant negative association with HbA1C (r = -.181, P = .027). There was no association between standard deviation of carbohydrate intake and HbA1C (r = .021, P = .802) or between meal carbohydrate content and postprandial change in blood glucose (r = -.004, P = .939) for meals with early postprandial (1-3 hours; n = 390) readings. There was a weak positive correlation (r = .184, P = .008) between meal carbohydrate content and late (4-7 hours; n = 390) postprandial readings. With appropriate training, patients using insulin pumps can accommodate a flexible diet with variable carbohydrate intake, without detriment to glycemic control. However, large carbohydrate meals may contribute to poorer outcomes, through impact on late postprandial glycemia. © 2016 Diabetes Technology Society.
Jenkins, David J A; Wong, Julia M W; Kendall, Cyril W C; Esfahani, Amin; Ng, Vivian W Y; Leong, Tracy C K; Faulkner, Dorothea A; Vidgen, Ed; Greaves, Kathryn A; Paul, Gregory; Singer, William
2009-06-08
Low-carbohydrate, high-animal protein diets, which are advocated for weight loss, may not promote the desired reduction in low-density lipoprotein cholesterol (LDL-C) concentration. The effect of exchanging the animal proteins and fats for those of vegetable origin has not been tested. Our objective was to determine the effect on weight loss and LDL-C concentration of a low-carbohydrate diet high in vegetable proteins from gluten, soy, nuts, fruits, vegetables, cereals, and vegetable oils compared with a high-carbohydrate diet based on low-fat dairy and whole grain products. A total of 47 overweight hyperlipidemic men and women consumed either (1) a low-carbohydrate (26% of total calories), high-vegetable protein (31% from gluten, soy, nuts, fruit, vegetables, and cereals), and vegetable oil (43%) plant-based diet or (2) a high-carbohydrate lacto-ovo vegetarian diet (58% carbohydrate, 16% protein, and 25% fat) for 4 weeks each in a parallel study design. The study food was provided at 60% of calorie requirements. Of the 47 subjects, 44 (94%) (test, n = 22 [92%]; control, n = 22 [96%]) completed the study. Weight loss was similar for both diets (approximately 4.0 kg). However, reductions in LDL-C concentration and total cholesterol-HDL-C and apolipoprotein B-apolipoprotein AI ratios were greater for the low-carbohydrate compared with the high-carbohydrate diet (-8.1% [P = .002], -8.7% [P = .004], and -9.6% [P = .001], respectively). Reductions in systolic and diastolic blood pressure were also seen (-1.9% [P = .052] and -2.4% [P = .02], respectively). A low-carbohydrate plant-based diet has lipid-lowering advantages over a high-carbohydrate, low-fat weight-loss diet in improving heart disease risk factors not seen with conventional low-fat diets with animal products.
Looman, Moniek; Schoenaker, Danielle A J M; Soedamah-Muthu, Sabita S; Geelen, Anouk; Feskens, Edith J M; Mishra, Gita D
2018-05-22
Carbohydrate quantity and quality affect postprandial glucose response, glucose metabolism and risk of type 2 diabetes. The aim of this study was to examine the association of pre-pregnancy dietary carbohydrate quantity and quality with the risk of developing gestational diabetes mellitus (GDM). We used data from the Australian Longitudinal Study on Women's Health that included 3607 women aged 25-30 years without diabetes who were followed up between 2003 and 2015. We examined carbohydrate quantity (total carbohydrate intake and a low-carbohydrate diet (LCD) score) and carbohydrate subtypes indicating quality (fibre, total sugar intake, glycaemic index, glycaemic load and intake of carbohydrate-rich food groups). Relative risks (RR) for development of GDM were estimated using multivariable regression models with generalised estimating equations. During 12 years of follow-up, 285 cases of GDM were documented in 6263 pregnancies (4·6 %). The LCD score, reflecting relatively high fat and protein intake and low carbohydrate intake, was positively associated with GDM risk (RR 1·54; 95 % CI 1·10, 2·15), highest quartile v. lowest quartile). Women in the quartile with highest fibre intake had a 33 % lower risk of GDM (RR 0·67; 95 % CI 0·45, 0·96)). Higher intakes of fruit (0·95 per 50 g/d; 95 % CI 0·90, 0·99) and fruit juice (0·89 per 100 g/d; 95 % CI 0·80, 1·00)) were inversely associated with GDM, whereas cereal intake was associated with a higher risk of GDM (RR 1·05 per 20 g/d; 95 % CI 1·01, 1·07)). Thus, a relatively low carbohydrate and high fat and protein intake may increase the risk of GDM, whereas higher fibre intake could decrease the risk of GDM. It is especially important to take the source of carbohydrates into account.
Sartorius, B; Sartorius, K; Aldous, C; Madiba, T E; Stefan, C; Noakes, T
2016-01-01
Introduction Linkages between carbohydrates, obesity and cancer continue to demonstrate conflicting results. Evidence suggests inconclusive direct linkages between carbohydrates and specific cancers. Conversely, obesity has been strongly linked to a wide range of cancers. The purpose of the study is to explore linkages between carbohydrate intake and cancer types using a two-step approach. First the study will evaluate the linkages between carbohydrate intake and obesity, potentially stratified by metabolic syndrome status. Second, the estimated attributable fraction of obesity ascribed to carbohydrate intake will be multiplied against obesity attributable fractions for cancer types to give estimated overall attributable fraction for carbohydrate versus cancer type. Methods and analysis We will perform a comprehensive search to identify all possible published and unpublished studies that have assessed risk factors for obesity including dietary carbohydrate intake. Scientific databases, namely PubMed MEDLINE, EMBASE, EBSCOhost and ISI Web of Science will be searched. Following study selection, paper/data acquisition, and data extraction and synthesis, we will appraise the quality of studies and risk of bias, as well as assess heterogeneity. Meta-weighted attributable fractions of obesity due to carbohydrate intake will be estimated after adjusting for other potential confounding factors (eg, physical inactivity, other dietary intake). Furthermore, previously published systematic reviews assessing the cancer-specific risk associated with obesity will also be drawn. These estimates will be linked with the attributability of carbohydrate intake in part 1 to estimate the cancer-specific burden that can be attributed to dietary carbohydrates. This systematic review protocol has been developed according to the ‘Preferred Reporting Items for Systematic review and Meta-Analysis Protocols (PRISMA-P) 2015’. Ethics and dissemination The current study will be based on published literature and data, and, as such, ethics approval is not required. The final results of this two part systematic review (plus multiplicative calculations) will be published in a relevant international peer-reviewed journal. Trial registration number PROSPERO CRD42015023257. PMID:26729382
Granfeldt, Y; Wu, X; Björck, I
2006-01-01
To determine the possible differences in glycaemic index (GI) depending on (1) the analytical method used to calculate the 'available carbohydrate' load, that is, using carbohydrates by difference (total carbohydrate by difference, minus dietary fibre (DF)) as available carbohydrates vs available starch basis (total starch minus resistant starch (RS)) of a food rich in intrinsic RS and (2) the effect of GI characteristics and/or the content of indigestible carbohydrates (RS and DF) of the evening meal prior to GI testing the following morning. Blood glucose and serum insulin responses were studied after subjects consuming (1) two levels of barley kernels rich in intrinsic RS (15.2%, total starch basis) and (2) after a standard breakfast following three different evening meals varying in GI and/or indigestible carbohydrates: pasta, barley kernels and white wheat bread, respectively. Healthy adults with normal body mass index. (1) Increasing the portion size of barley kernels from 79.6 g (50 g 'available carbohydrates') to 93.9 g (50 g available starch) to adjust for its RS content did not significantly affect the GI or insulin index (11). (2) The low GI barley evening meal, as opposed to white wheat bread and pasta evening meals, reduced the postprandial glycaemic and insulinaemic (23 and 29%, respectively, P < 0.05) areas under the curve at a standardized white bread breakfast fed the following morning. (1) Increasing portion size to compensate for the considerable portion of RS in a low GI barley product had no significant impact on GI or II. However, for GI testing, it is recommended to base carbohydrate load on specific analyses of the available carbohydrate content. (2) A low GI barley evening meal containing high levels of indigestible carbohydrates (RS and DF) substantially reduced the GI and II of white wheat bread determined at a subsequent breakfast meal.
... added sugar and doesn't contain important nutrients. Complex carbohydrates: These are also called starches. Starches include grain ... pasta, and rice. As with simple sugars, some complex carbohydrate foods are better choices than others. Refined (say: ...
High Carbohydrate-Fiber Nutrition for Running and Health.
ERIC Educational Resources Information Center
Battinelli, Thomas
1983-01-01
The roles of carbohydrates, fats, proteins, and fiber in producing energy for health and exercise are discussed. Long-distance runners should have a high intake of complex carbohydrates and fiber. (PP)
Shapira, Gali; Yodfat, Ofer; HaCohen, Arava; Feigin, Paul; Rubin, Richard
2010-01-01
Background Optimal continuous subcutaneous insulin infusion (CSII) therapy emphasizes the relationship between insulin dose and carbohydrate consumption. One widely used tool (bolus calculator) requires the user to enter discrete carbohydrate values; however, many patients might not estimate carbohydrates accurately. This study assessed carbohydrate estimation accuracy in type 1 diabetes CSII users and compared simulated blood glucose (BG) outcomes using the bolus calculator and the “bolus guide,” an alternative system based on ranges of carbohydrate load. Methods Patients (n = 60) estimated the carbohydrate load of a representative sample of meals of known carbohydrate value. The estimated error distribution [coefficient of variation (CV)] was the basis for a computer simulation (n = 1.6 million observations) of insulin recommendations for the bolus guide and bolus calculator, translated into outcome blood glucose (OBG) ranges (≤60, 61–200, >201 mg/dl). Patients (n = 30) completed questionnaires assessing satisfaction with the bolus guide. Results The CV of typical meals ranged from 27.9% to 44.5%. The percentage of simulated OBG for the calculator and the bolus guide in the <60 mg/dl range were 20.8% and 17.2%, respectively, and 13.8% and 15.8%, respectively, in the >200 mg/dl range. The mean and median scores of all bolus guide satisfaction items and ease of learning and use were 4.17 and 4.2, respectively (of 5.0). Conclusion The bolus guide recommendation based on carbohydrate range selection is substantially similar to the calculator based on carbohydrate point estimation and appears to be highly accepted by type 1 diabetes insulin pump users. PMID:20663453
Li, Yu-Teh; Li, Su-Chen; Kiso, Makoto; Ishida, Hideharu; Mauri, Laura; Raimondi, Laura; Bernardi, Anna; Sonnino, Sandro
2008-01-01
Summary The effect of inter-molecular carbohydrate-to-carbohydrate interaction on basic cell biological processes has been well documented and appreciated. In contrast, very little is known about the intra-molecular carbohydrate-to-carbohydrate interaction. The presence of an interaction between the GalNAc and the Neu5Ac in GM2 detected by NMR spectroscopy represents a well-defined intra-molecular carbohydrate-to-carbohydrate interaction. This intriguing interaction is responsible for the GM2-epitope, GalNAcβ1Π4(Neu5Acα2Π3)Gal-, to exhibit a rigid and compact conformation. We hypothesized that this compact conformation may be the cause for both the GalNAc and the Neu5Ac in GM2 to be refractory to enzymatic hydrolysis and the GM2 activator protein is able to interact with the compact trisaccharide GM2-epitope, rendering the GalNAc and the Neu5Ac accessible to β-hexosaminidase A and sialidase. We have used a series of structurally modified GM2 to study the effect of modifications of sugar chains on the conformation and enzymatic susceptibility of this ganglioside. Our hypothesis was borne out by the fact that when the GalNAcβ1Π4Gal linkage in GM2 was converted to the GalNAcβ1Π6Gal, both the GalNAc and the Neu5Ac became susceptible to β-hexosaminidase A and sialidase, respectively, without GM2 activator protein. We hope our work will engender interest in identifying other intra-molecular carbohydrate-to-carbohydrate interactions in glycoconjugates. PMID:17967427
Atkins and other low-carbohydrate diets: hoax or an effective tool for weight loss?
Astrup, Arne; Meinert Larsen, Thomas; Harper, Angela
The Atkins diet books have sold more than 45 million copies over 40 years, and in the obesity epidemic this diet and accompanying Atkins food products are popular. The diet claims to be effective at producing weight loss despite ad-libitum consumption of fatty meat, butter, and other high-fat dairy products, restricting only the intake of carbohydrates to under 30 g a day. Low-carbohydrate diets have been regarded as fad diets, but recent research questions this view. A systematic review of low-carbohydrate diets found that the weight loss achieved is associated with the duration of the diet and restriction of energy intake, but not with restriction of carbohydrates. Two groups have reported longer-term randomised studies that compared instruction in the low-carbohydrate diet with a low-fat calorie-reduced diet in obese patients (N Engl J Med 2003; 348: 2082-90; Ann Intern Med 2004; 140: 778-85). Both trials showed better weight loss on the low-carbohydrate diet after 6 months, but no difference after 12 months. WHERE NEXT?: The apparent paradox that ad-libitum intake of high-fat foods produces weight loss might be due to severe restriction of carbohydrate depleting glycogen stores, leading to excretion of bound water, the ketogenic nature of the diet being appetite suppressing, the high protein-content being highly satiating and reducing spontaneous food intake, or limited food choices leading to decreased energy intake. Long-term studies are needed to measure changes in nutritional status and body composition during the low-carbohydrate diet, and to assess fasting and postprandial cardiovascular risk factors and adverse effects. Without that information, low-carbohydrate diets cannot be recommended.
Genomic Reconstruction of Carbohydrate Utilization Capacities in Microbial-Mat Derived Consortia
Leyn, Semen A.; Maezato, Yukari; Romine, Margaret F.; Rodionov, Dmitry A.
2017-01-01
Two nearly identical unicyanobacterial consortia (UCC) were previously isolated from benthic microbial mats that occur in a heliothermal saline lake in northern Washington State. Carbohydrates are a primary source of carbon and energy for most heterotrophic bacteria. Since CO2 is the only carbon source provided, the cyanobacterium must provide a source of carbon to the heterotrophs. Available genomic sequences for all members of the UCC provide opportunity to investigate the metabolic routes of carbon transfer between autotroph and heterotrophs. Here, we applied a subsystem-based comparative genomics approach to reconstruct carbohydrate utilization pathways and identify glycohydrolytic enzymes, carbohydrate transporters and pathway-specific transcriptional regulators in 17 heterotrophic members of the UCC. The reconstructed metabolic pathways include 800 genes, near a one-fourth of which encode enzymes, transporters and regulators with newly assigned metabolic functions resulting in discovery of novel functional variants of carbohydrate utilization pathways. The in silico analysis revealed the utilization capabilities for 40 carbohydrates and their derivatives. Two Halomonas species demonstrated the largest number of sugar catabolic pathways. Trehalose, sucrose, maltose, glucose, and beta-glucosides are the most commonly utilized saccharides in this community. Reconstructed regulons for global regulators HexR and CceR include central carbohydrate metabolism genes in the members of Gammaproteobacteria and Alphaproteobacteria, respectively. Genomics analyses were supplemented by experimental characterization of metabolic phenotypes in four isolates derived from the consortia. Measurements of isolate growth on the defined medium supplied with individual carbohydrates confirmed most of the predicted catabolic phenotypes. Not all consortia members use carbohydrates and only a few use complex polysaccharides suggesting a hierarchical carbon flow from cyanobacteria to each heterotroph. In summary, the genomics-based identification of carbohydrate utilization capabilities provides a basis for future experimental studies of carbon flow in UCC. PMID:28751880
Hession, M; Rolland, C; Kulkarni, U; Wise, A; Broom, J
2009-01-01
There are few studies comparing the effects of low-carbohydrate/high-protein diets with low-fat/high-carbohydrate diets for obesity and cardiovascular disease risk. This systematic review focuses on randomized controlled trials of low-carbohydrate diets compared with low-fat/low-calorie diets. Studies conducted in adult populations with mean or median body mass index of > or =28 kg m(-2) were included. Thirteen electronic databases were searched and randomized controlled trials from January 2000 to March 2007 were evaluated. Trials were included if they lasted at least 6 months and assessed the weight-loss effects of low-carbohydrate diets against low-fat/low-calorie diets. For each study, data were abstracted and checked by two researchers prior to electronic data entry. The computer program Review Manager 4.2.2 was used for the data analysis. Thirteen articles met the inclusion criteria. There were significant differences between the groups for weight, high-density lipoprotein cholesterol, triacylglycerols and systolic blood pressure, favouring the low-carbohydrate diet. There was a higher attrition rate in the low-fat compared with the low-carbohydrate groups suggesting a patient preference for a low-carbohydrate/high-protein approach as opposed to the Public Health preference of a low-fat/high-carbohydrate diet. Evidence from this systematic review demonstrates that low-carbohydrate/high-protein diets are more effective at 6 months and are as effective, if not more, as low-fat diets in reducing weight and cardiovascular disease risk up to 1 year. More evidence and longer-term studies are needed to assess the long-term cardiovascular benefits from the weight loss achieved using these diets.
Bowman, Shanthy A; Spence, Joseph T
2002-06-01
To evaluate free-living adults' diets that ranged from very low to high amounts of carbohydrate for their energy content, nutritional quality and correlation to Body Mass Index. Adults ages 19 years and older, who had complete dietary intake data on day-1 of the USDA's 1994 to 1996 Continuing Survey of Food Intakes by Individuals (CSFII 1994-1996), were divided into four groups--very low, low, moderate and high carbohydrate--based on the percent total energy from carbohydrate. Mean energy, nutrient, food intakes and Body Mass Index values were compared among the groups. SUDAAN software package was used for the data analysis and pair-wise mean comparisons (p < 0.05). The high-carbohydrate diet was lower in energy and energy density (number of kilocalories per gram of total amount of food consumed) than the other three diets. Macronutrient composition varied significantly among all the four groups. Nutrient density (amount of nutrient per 1,000 kilocalories of energy consumed) of vitamin A, carotene, vitamin C, folate, calcium, magnesium and iron increased and that of vitamin B12 and zinc decreased with an increase in the percent total energy from carbohydrate. The high-carbohydrate group ate more of low-fat foods, grain products and fruits. This group also had the lowest sodium intake. Adults eating a high-carbohydrate diet are more likely to have Body Mass Index values below 25. A study of diets of free-living adults in the U.S. showed that diets high in carbohydrate were both energy restrictive and nutritious and may be adopted for successful weight management.
Ooi, Cheow Peng; Loke, Seng Cheong; Yassin, Zaitun; Hamid, Tengku-Aizan
2011-04-13
Mild cognitive impairment (MCI) is an intermediate state between normal cognition and dementia in which daily function is largely intact. This condition may present an opportunity for research into the prevention of dementia. Carbohydrate is an essential and easily accessible macronutrient which influences cognitive performance. A better understanding of carbohydrate-driven cognitive changes in normal cognition and mild cognitive impairment may suggest ways to prevent or reduce cognitive decline. To assess the effectiveness of carbohydrates in improving cognitive function in older adults. We searched ALOIS, the Cochrane Dementia and Cognitive Improvement Group Specialized Register on 22 June 2010 using the terms: carbohydrates OR carbohydrate OR monosaccharides OR disaccharides OR oligosaccharides OR polysaccharides OR CARBS. ALOIS contains records from all major healthcare databases (The Cochrane Library, MEDLINE, EMBASE, PsycINFO, CINAHL, LILACS) as well as from many trial databases and grey literature sources. All randomised controlled trials (RCT) that have examined the efficacy of any form of carbohydrates in normal cognition and MCI. One review author selected and retrieved relevant articles for further assessment. The remaining authors independently assessed whether any of the retrieved trials should be included. Disagreements were resolved by discussion. There is no suitable RCT of any form of carbohydrates involving independent-living older adults with normal cognition or mild cognitive impairment. There are no suitable RCTs on which to base any recommendations about the use of any form of carbohydrate for enhancing cognitive performance in older adults with normal cognition or mild cognitive impairment. More studies of many different carbohydrates are needed to tease out complex nutritional issues and further evaluate memory improvement.
Lehmann, Marco M; Fischer, Maria; Blees, Jan; Zech, Michael; Siegwolf, Rolf T W; Saurer, Matthias
2016-01-15
The oxygen isotope ratio (δ(18)O) of carbohydrates derived from animals, plants, sediments, and soils provides important information about biochemical and physiological processes, past environmental conditions, and geographical origins, which are otherwise not available. Nowadays, δ(18)O analyses are often performed on carbohydrate bulk material, while compound-specific δ(18)O analyses remain challenging and methods for a wide range of individual carbohydrates are rare. To improve the δ(18)O analysis of individual carbohydrates by gas chromatography/pyrolysis-isotope ratio mass spectrometry (GC/Pyr-IRMS) we developed a new methylation derivatization method. Carbohydrates were fully methylated within 24 h in an easy-to-handle one-pot reaction in acetonitrile, using silver oxide as proton acceptor, methyl iodide as methyl group carrier, and dimethyl sulfide as catalyst. The precision of the method ranged between 0.12 and 1.09‰ for the δ(18)O values of various individual carbohydrates of different classes (mono-, di-, and trisaccharides, alditols), with an accuracy of a similar order of magnitude, despite high variation in peak areas. Based on the δ(18)O values of the main isomers, important monosaccharides such as glucose and fructose could also be precisely analyzed for the first time. We tested the method on standard mixtures, honey samples, and leaf carbohydrates extracted from Pinus sylvestris, showing that the method is also applicable to different carbohydrate mixtures. The new methylation method shows unrivalled accuracy and precision for δ(18)O analysis of various individual carbohydrates; it is fast and easy-to-handle, and may therefore find wide-spread application. Copyright © 2015 John Wiley & Sons, Ltd.
... Staying Safe Videos for Educators Search English Español Carbohydrates and Diabetes KidsHealth / For Teens / Carbohydrates and Diabetes ... Los carbohidratos y la diabetes Carbs and Blood Sugar Keeping your blood sugar levels on track means ...
Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging.
Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda
2016-07-25
Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes.
Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging
Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda
2016-01-01
Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes. PMID:27453176
Maximizing efficiency of rumen microbial protein production
Hackmann, Timothy J.; Firkins, Jeffrey L.
2015-01-01
Rumen microbes produce cellular protein inefficiently partly because they do not direct all ATP toward growth. They direct some ATP toward maintenance functions, as long-recognized, but they also direct ATP toward reserve carbohydrate synthesis and energy spilling (futile cycles that dissipate heat). Rumen microbes expend ATP by vacillating between (1) accumulation of reserve carbohydrate after feeding (during carbohydrate excess) and (2) mobilization of that carbohydrate thereafter (during carbohydrate limitation). Protozoa account for most accumulation of reserve carbohydrate, and in competition experiments, protozoa accumulated nearly 35-fold more reserve carbohydrate than bacteria. Some pure cultures of bacteria spill energy, but only recently have mixed rumen communities been recognized as capable of the same. When these communities were dosed glucose in vitro, energy spilling could account for nearly 40% of heat production. We suspect that cycling of glycogen (a major reserve carbohydrate) is a major mechanism of spilling; such cycling has already been observed in single-species cultures of protozoa and bacteria. Interconversions of short-chain fatty acids (SCFA) may also expend ATP and depress efficiency of microbial protein production. These interconversions may involve extensive cycling of intermediates, such as cycling of acetate during butyrate production in certain butyrivibrios. We speculate this cycling may expend ATP directly or indirectly. By further quantifying the impact of reserve carbohydrate accumulation, energy spilling, and SCFA interconversions on growth efficiency, we can improve prediction of microbial protein production and guide efforts to improve efficiency of microbial protein production in the rumen. PMID:26029197
Yabe, Daisuke; Iwasaki, Masahiro; Kuwata, Hitoshi; Haraguchi, Takuya; Hamamoto, Yoshiyuki; Kurose, Takeshi; Sumita, Kiminobu; Yamazato, Hitoshi; Kanada, Shigeto; Seino, Yutaka
2017-05-01
This study investigated the safety and efficacy of the sodium-glucose co-transporter-2 (SGLT2) inhibitor luseogliflozin with differing carbohydrate intakes in Japanese individuals with type 2 diabetes (T2D). Participants were randomly assigned to 3 carbohydrate-adjusted meals for 14 days (days 1-14; a high carbohydrate [HC; 55% total energy carbohydrate] and high glycaemic index [HGI] meal; an HC [55% total energy carbohydrate] and low glycaemic index [LGI] meal; or a low carbohydrate [LC; 40% total energy carbohydrate] and HGI meal). All participants received luseogliflozin for the last 7 days (days 8-14), continuous glucose monitoring (CGM) before and after luseogliflozin treatment (days 5-8 and days 12-15) and blood tests on days 1, 8 and 15. Luseogliflozin significantly decreased the area under the curve and mean of CGM values in all 3 groups similarly. Fasting plasma glucose, insulin and glucagon were similar at all time points. Ketone bodies on day 15 were significantly higher in the LC-HGI group compared with the HC-HGI and HC-LGI groups. In conclusion, luseogliflozin has similar efficacy and safety in Japanese people with T2D when meals contain 40% to 55% total energy carbohydrate, but a strict LC diet on this class of drug should be avoided to prevent SGLT2 inhibitor-associated diabetic ketoacidosis. © 2016 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.
Sensitive Carbohydrate Detection using Surface Enhanced Raman Tagging
Vangala, Karthikeshwar; Yanney, Michael; Hsiao, Cheng-Te; Wu, Wells W.; Shen, Rong-Fong; Zou, Sige; Sygula, Andrzej; Zhang, Dongmao
2010-01-01
Glycomic analysis is an increasingly important field in biological and biomedical research as glycosylation is one of the most important protein post-translational modifications. We have developed a new technique to detect carbohydrates using surface enhanced Raman spectroscopy (SERS) by designing and applying a Rhodamine B derivative as the SERS tag. Using a reductive amination reaction, the Rhodamine-based tag (RT) was successfully conjugated to three model carbohydrates (glucose, lactose and glucuronic acid). SERS detection limits obtained with 632 nm HeNe laser were ~1 nM in concentration for all the RT-carbohydrate conjugates and ~10 fmol in total sample consumption. The dynamic range of the SERS method is about 4 orders of magnitude, spanning from 1 nM to 5 µM. Ratiometric SERS quantification using isotope-substituted SERS internal references also allows comparative quantifications of carbohydrates labeled with RT and deuterium/hydrogen substituted RT tags, respectively. In addition to enhancing the SERS detection of the tagged carbohydrates, the Rhodamine tagging facilitates fluorescence and mass spectrometric detection of carbohydrates. Current fluorescence sensitivity of RT-carbohydrates is ~ 3 nM in concentration while the mass spectrometry (MS) sensitivity is about 1 fmol that was achieved with linear ion trap electrospray ionization (ESI)-MS instrument. Potential applications that take advantage of the high SERS, fluorescence and MS sensitivity of this SERS tagging strategy are discussed for practical glycomic analysis where carbohydrates may be quantified with a fluorescence and SERS technique, and then identified with ESI-MS techniques. PMID:21082777
Identification of carbohydrate anomers using ion mobility-mass spectrometry.
Hofmann, J; Hahm, H S; Seeberger, P H; Pagel, K
2015-10-08
Carbohydrates are ubiquitous biological polymers that are important in a broad range of biological processes. However, owing to their branched structures and the presence of stereogenic centres at each glycosidic linkage between monomers, carbohydrates are harder to characterize than are peptides and oligonucleotides. Methods such as nuclear magnetic resonance spectroscopy can be used to characterize glycosidic linkages, but this technique requires milligram amounts of material and cannot detect small amounts of coexisting isomers. Mass spectrometry, on the other hand, can provide information on carbohydrate composition and connectivity for even small amounts of sample, but it cannot be used to distinguish between stereoisomers. Here, we demonstrate that ion mobility-mass spectrometry--a method that separates molecules according to their mass, charge, size, and shape--can unambiguously identify carbohydrate linkage-isomers and stereoisomers. We analysed six synthetic carbohydrate isomers that differ in composition, connectivity, or configuration. Our data show that coexisting carbohydrate isomers can be identified, and relative concentrations of the minor isomer as low as 0.1 per cent can be detected. In addition, the analysis is rapid, and requires no derivatization and only small amounts of sample. These results indicate that ion mobility-mass spectrometry is an effective tool for the analysis of complex carbohydrates. This method could have an impact on the field of carbohydrate synthesis similar to that of the advent of high-performance liquid chromatography on the field of peptide assembly in the late 1970s.
Identification of carbohydrate anomers using ion mobility-mass spectrometry
NASA Astrophysics Data System (ADS)
Hofmann, J.; Hahm, H. S.; Seeberger, P. H.; Pagel, K.
2015-10-01
Carbohydrates are ubiquitous biological polymers that are important in a broad range of biological processes. However, owing to their branched structures and the presence of stereogenic centres at each glycosidic linkage between monomers, carbohydrates are harder to characterize than are peptides and oligonucleotides. Methods such as nuclear magnetic resonance spectroscopy can be used to characterize glycosidic linkages, but this technique requires milligram amounts of material and cannot detect small amounts of coexisting isomers. Mass spectrometry, on the other hand, can provide information on carbohydrate composition and connectivity for even small amounts of sample, but it cannot be used to distinguish between stereoisomers. Here, we demonstrate that ion mobility-mass spectrometry--a method that separates molecules according to their mass, charge, size, and shape--can unambiguously identify carbohydrate linkage-isomers and stereoisomers. We analysed six synthetic carbohydrate isomers that differ in composition, connectivity, or configuration. Our data show that coexisting carbohydrate isomers can be identified, and relative concentrations of the minor isomer as low as 0.1 per cent can be detected. In addition, the analysis is rapid, and requires no derivatization and only small amounts of sample. These results indicate that ion mobility-mass spectrometry is an effective tool for the analysis of complex carbohydrates. This method could have an impact on the field of carbohydrate synthesis similar to that of the advent of high-performance liquid chromatography on the field of peptide assembly in the late 1970s.
Bisschop, P H; De Sain-Van Der Velden, M G M; Stellaard, F; Kuipers, F; Meijer, A J; Sauerwein, H P; Romijn, J A
2003-08-01
Because insulin is an important regulator of protein metabolism, we hypothesized that physiological modulation of insulin secretion, by means of extreme variations in dietary carbohydrate content, affects postabsorptive protein metabolism. Therefore, we studied the effects of three isocaloric diets with identical protein content and low-carbohydrate/high-fat (2% and 83% of total energy, respectively), intermediate-carbohydrate/intermediate-fat (44% and 41% of total energy, respectively), and high-carbohydrate/low-fat (85% and 0% of total energy, respectively) content in six healthy men. Whole body protein metabolism was assessed by 24-h urinary nitrogen excretion, postabsorptive leucine kinetics, and fibrinogen and albumin synthesis by infusion of [1-(13)C]leucine and [1-(13)C]valine. The low-carbohydrate/high-fat diet resulted in lower absorptive and postabsorptive plasma insulin concentrations, and higher rates of nitrogen excretion compared with the other two diets: 15.3 +/- 0.9 vs. 12.1 +/- 1.1 (P = 0.03) and 10.8 +/- 0.5 g/24 h (P = 0.005), respectively. Postabsorptive rates of appearance of leucine and of leucine oxidation were not different among the three diets. In addition, dietary carbohydrate content did not affect the synthesis rates of fibrinogen and albumin. In conclusion, eucaloric carbohydrate deprivation increases 24-h nitrogen loss but does not affect postabsorptive protein metabolism at the hepatic and whole body level. By deduction, dietary carbohydrate is required for an optimal regulation of absorptive, rather than postabsorptive, protein metabolism.
Renewable Hydrogen Carrier - Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy
2011-01-31
temperature. High fructose corn syrup , low-cost sucrose replacement, is made by stabilized glucose isomerase, which can work at ~60 °C for even about two...sustainable production, high -density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high -density...100% selectivity of enzymes, modest reaction conditions, and high -purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end
Yan, Gengwei; Yamaguchi, Takumi; Suzuki, Tatsuya; Yanaka, Saeko; Sato, Sota; Fujita, Makoto; Kato, Koichi
2017-05-04
Hybridization of a self-assembled, spherical complex with oligosaccharides containing Lewis X, a functional trisaccharide displayed on various cell surfaces, yielded well-defined glycoclusters. The self-assembled glycoclusters exhibited homophilic hyper-assembly in aqueous solution in a Ca 2+ -dependent manner through specific carbohydrate-carbohydrate interactions, offering a structural scaffold for functional biomimetic systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Different allocation of carbohydrates and phenolics in dehydrated leaves of triticale.
Hura, Tomasz; Dziurka, Michał; Hura, Katarzyna; Ostrowska, Agnieszka; Dziurka, Kinga
2016-09-01
Carbohydrates are used in plant growth processes, osmotic regulation and secondary metabolism. A study of the allocation of carbohydrates to a target set of metabolites during triticale acclimation to soil drought was performed. The study included a semi-dwarf cultivar 'Woltario' and a long-stemmed cultivar 'Moderato', differing in the activity of the photosynthetic apparatus under optimum growth conditions. Differences were found in the quantitative and qualitative composition of individual carbohydrates and phenolic compounds, depending on the developmental stage and water availability. Soluble carbohydrates in the semi-dwarf 'Woltario' cv. under soil drought were utilized for synthesis of starch, soluble phenolic compounds and an accumulation of cell wall carbohydrates. In the typical 'Moderato' cv., soluble carbohydrates were primarily used for the synthesis of phenolic compounds that were then incorporated into cell wall structures. Increased content of cell wall-bound phenolics in 'Moderato' cv. improved the cell wall tightness and reduced the rate of leaf water loss. In 'Woltario' cv., the increase in cell osmotic potential due to an enhanced concentration of carbohydrates and proline was insufficient to slow down the rate of leaf water loss. The mechanism of cell wall tightening in response to leaf desiccation may be the main key in the process of triticale acclimation to soil drought. Copyright © 2016 Elsevier GmbH. All rights reserved.
Houser, Josef; Kozmon, Stanislav; Mishra, Deepti; Mishra, Sushil K; Romano, Patrick R; Wimmerová, Michaela; Koča, Jaroslav
2017-01-01
Protein-carbohydrate interactions are very often mediated by the stacking CH-π interactions involving the side chains of aromatic amino acids such as tryptophan (Trp), tyrosine (Tyr) or phenylalanine (Phe). Especially suitable for stacking is the Trp residue. Analysis of the PDB database shows Trp stacking for 265 carbohydrate or carbohydrate like ligands in 5 208 Trp containing motives. An appropriate model system to study such an interaction is the AAL lectin family where the stacking interactions play a crucial role and are thought to be a driving force for carbohydrate binding. In this study we present data showing a novel finding in the stacking interaction of the AAL Trp side chain with the carbohydrate. High resolution X-ray structure of the AAL lectin from Aleuria aurantia with α-methyl-l-fucoside ligand shows two possible Trp side chain conformations with the same occupation in electron density. The in silico data shows that the conformation of the Trp side chain does not influence the interaction energy despite the fact that each conformation creates interactions with different carbohydrate CH groups. Moreover, the PDB data search shows that the conformations are almost equally distributed across all Trp-carbohydrate complexes, which would suggest no substantial preference for one conformation over another.
Fueling strategies to optimize performance: training high or training low?
Burke, L M
2010-10-01
Availability of carbohydrate as a substrate for the muscle and central nervous system is critical for the performance of both intermittent high-intensity work and prolonged aerobic exercise. Therefore, strategies that promote carbohydrate availability, such as ingesting carbohydrate before, during and after exercise, are critical for the performance of many sports and a key component of current sports nutrition guidelines. Guidelines for daily carbohydrate intakes have evolved from the "one size fits all" recommendation for a high-carbohydrate diets to an individualized approach to fuel needs based on the athlete's body size and exercise program. More recently, it has been suggested that athletes should train with low carbohydrate stores but restore fuel availability for competition ("train low, compete high"), based on observations that the intracellular signaling pathways underpinning adaptations to training are enhanced when exercise is undertaken with low glycogen stores. The present literature is limited to studies of "twice a day" training (low glycogen for the second session) or withholding carbohydrate intake during training sessions. Despite increasing the muscle adaptive response and reducing the reliance on carbohydrate utilization during exercise, there is no clear evidence that these strategies enhance exercise performance. Further studies on dietary periodization strategies, especially those mimicking real-life athletic practices, are needed. © 2010 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Eid, Sameh; Saleh, Noureldin; Zalewski, Adam; Vedani, Angelo
2014-12-01
Carbohydrates play a key role in a variety of physiological and pathological processes and, hence, represent a rich source for the development of novel therapeutic agents. Being able to predict binding mode and binding affinity is an essential, yet lacking, aspect of the structure-based design of carbohydrate-based ligands. We assembled a diverse data set comprising 273 carbohydrate-protein crystal structures with known binding affinity and evaluated the prediction accuracy of a large collection of well-established scoring and free-energy functions, as well as combinations thereof. Unfortunately, the tested functions were not capable of reproducing binding affinities in the studied complexes. To simplify the complex free-energy surface of carbohydrate-protein systems, we classified the studied proteins according to the topology and solvent exposure of the carbohydrate-binding site into five distinct categories. A free-energy model based on the proposed classification scheme reproduced binding affinities in the carbohydrate data set with an r 2 of 0.71 and root-mean-squared-error of 1.25 kcal/mol ( N = 236). The improvement in model performance underlines the significance of the differences in the local micro-environments of carbohydrate-binding sites and demonstrates the usefulness of calibrating free-energy functions individually according to binding-site topology and solvent exposure.
Pinus sylvestris switches respiration substrates under shading but not during drought.
Fischer, Sarah; Hanf, Stefan; Frosch, Torsten; Gleixner, Gerd; Popp, Jürgen; Trumbore, Susan; Hartmann, Henrik
2015-08-01
Reduced carbon (C) assimilation during prolonged drought forces trees to rely on stored C to maintain vital processes like respiration. It has been shown, however, that the use of carbohydrates, a major C storage pool and apparently the main respiratory substrate in plants, strongly declines with decreasing plant hydration. Yet no empirical evidence has been produced to what degree other C storage compounds like lipids and proteins may fuel respiration during drought. We exposed young scots pine trees to C limitation using either drought or shading and assessed respiratory substrate use by monitoring the respiratory quotient, δ(13) C of respired CO2 and concentrations of the major storage compounds, that is, carbohydrates, lipids and amino acids. Only shaded trees shifted from carbohydrate-dominated to lipid-dominated respiration and showed progressive carbohydrate depletion. In drought trees, the fraction of carbohydrates used in respiration did not decline but respiration rates were strongly reduced. The lower consumption and potentially allocation from other organs may have caused initial carbohydrate content to remain constant during the experiment. Our results suggest that respiratory substrates other than carbohydrates are used under carbohydrate limitation but not during drought. Thus, respiratory substrate shift cannot provide an efficient means to counterbalance C limitation under natural drought. © 2015 The Authors New Phytologist © 2015 New Phytologist Trust.
Energy utilization of a low carbohydrate diet fed genetically obese rats and mice.
Thenen, S W; Mayer, J
1977-02-01
Genetically obese Zucker rats, ob/ob mice and non-obese littermates were fed low carbohydrate (2%, 48%, and 50% of energy as carbohydrate, protein, and fat, respectively) and control (60%, 19%, and 21%, as carobhydrate, protein, and fat) diets. The oxidation of the energy components of these diets was measured by adding D-[U-14C]glucose, L-[U-14C]glutamic acid, and glyceryl tri-[1-14C]oleate to test meals given intragastrically and collecting respiratory CO2 for 4 hours. The animals responded to the low carbohydrate diet by oxidizing less glucose and more glutamic acid, but these amounts were proportional to dietary carbohydrate and protein composition, In contrast, the animals oxidized both higher amounts and percentages of glyceryl trioleate when fed the low carbohydrate diet. Obese Zucker rats oxidized less fat than non-obese rats when fed both diets, while obese mice oxidized fat to the same extent as non-obese mice. Feeding the low carbohydrate diet significantly increased body weight in the obese mice, but not in obese rats and non-obese mice and rats. The effect of obesity and the low carbohydrate diet on food intake, serum glucose and lipid values and CO2 production are also reported.
Fadda, Elisa; Woods, Robert J.
2014-01-01
The characterization of the 3D structure of oligosaccharides, their conjugates and analogs is particularly challenging for traditional experimental methods. Molecular simulation methods provide a basis for interpreting sparse experimental data and for independently predicting conformational and dynamic properties of glycans. Here, we summarize and analyze the issues associated with modeling carbohydrates, with a detailed discussion of four of the most recently developed carbohydrate force fields, reviewed in terms of applicability to natural glycans, carbohydrate–protein complexes and the emerging area of glycomimetic drugs. In addition, we discuss prospectives and new applications of carbohydrate modeling in drug discovery. PMID:20594934
Carbohydrate Strategies for Injury Prevention
Schlabach, Gretchen
1994-01-01
Prevention of injury involves identifying risk factors that would predispose one to injury and developing strategies to attenuate or eliminate their presence. Because muscle glycogen depletion is associated with fatigue and injury, it should be treated as a possible risk factor. Muscle glycogen stores are derived almost entirely from carbohydrate intake. Because there is a limited capacity to store muscle glycogen, and because muscle glycogen is the predominant fuel in exercise of moderate to severe intensity, the nutritional focus should be on carbohydrate consumption. Easy-to-follow nutritional strategies should be employed that will maximize muscle glycogen stores and delay the onset of fatigue. Individuals involved in activities lasting less than 60 minutes need to consume an adequate amount of carbohydrate daily and a pre-event meal before the start of the activity. However, individuals participating in activities longer than 60 minutes or participating in activities requiring repeated bouts of high intensity exercise need to: 1) consume an adequate amount of carbohydrate daily, 2) practice carbohydrate loading, 3) consume the pre-event meal, and 4) ingest carbohydrates immediately before, during, and after the activity. PMID:16558287
NASA Astrophysics Data System (ADS)
He, Zhen; Wang, Qi; Yang, Gui-Peng; Gao, Xian-Chi; Wu, Guan-Wei
2015-10-01
Carbohydrates are the largest identified fraction of dissolved organic carbon and play an important role in biogeochemical cycling in the ocean. Seawater samples were collected from the East China Sea (ECS) during June and October 2012 to study the spatiotemporal distributions of total dissolved carbohydrates (TCHOs) constituents, including dissolved monosaccharides (MCHOs) and polysaccharides (PCHOs). The concentrations of TCHOs, MCHOs and PCHOs showed significant differences between summer and autumn 2012, and exhibited an evident diurnal variation, with high values occurring in the daytime. Phytoplankton biomass was identified as the primary factor responsible for seasonal and diurnal variations of dissolved carbohydrates in the ECS. The TCHOs, MCHOs and PCHOs distributions in the study area displayed similar distribution patterns, with high concentrations appearing in the coastal water. The influences of chlorophyll-a, salinity and nutrients on the distributions of these carbohydrates were examined. A carbohydrate enrichment in the near-bottom water was found at some stations, implying that there might be an important source of carbohydrate in the deep water or bottom sediment.
Computational carbohydrate chemistry: what theoretical methods can tell us
Woods, Robert J.
2014-01-01
Computational methods have had a long history of application to carbohydrate systems and their development in this regard is discussed. The conformational analysis of carbohydrates differs in several ways from that of other biomolecules. Many glycans appear to exhibit numerous conformations coexisting in solution at room temperature and a conformational analysis of a carbohydrate must address both spatial and temporal properties. When solution nuclear magnetic resonance data are used for comparison, the simulation must give rise to ensemble-averaged properties. In contrast, when comparing to experimental data obtained from crystal structures a simulation of a crystal lattice, rather than of an isolated molecule, is appropriate. Molecular dynamics simulations are well suited for such condensed phase modeling. Interactions between carbohydrates and other biological macromolecules are also amenable to computational approaches. Having obtained a three-dimensional structure of the receptor protein, it is possible to model with accuracy the conformation of the carbohydrate in the complex. An example of the application of free energy perturbation simulations to the prediction of carbohydrate-protein binding energies is presented. PMID:9579797
Chuang, Yen-Jun; Zhou, Xichun; Pan, Zhengwei; Turchi, Craig
2009-01-01
Carbohydrate functionalized nanoparticles, i.e., the glyconanoparticles, have wide application ranging from studies of carbohydrate-protein interactions, in vivo cell imaging, biolabeling, etc. Currently reported methods for preparation of glyconanoaprticles require multi-step modifications of carbohydrates moieties to conjugate to nanoparticle surface. However, the required synthetic manipulations are difficult and time consuming. We report herewith a simple and versatile method for preparing glyconanoparticles. This method is based on the utilization of clean and convenient microwave irradiation energy for one-step, site-specific conjugation of unmodified carbohydrates onto hydrazide-functionalized Au nanoparticles. A colorimetric assay that utilizes the ensemble of gold glyconanoparticles and Concanavalin A (ConA) was also presented. This feasible assay system was developed to analyze multivalent interactions and to determine the dissociation constant (Kd) for five kind of Au glyconanoparticles with lectin. Surface plasmon changes of the Au glyconanparticles as a function of lectin-carbohydrate interactions were measured and the dissociation constants were determined based on non-linear curve fitting. The strength of the interaction of carbohydrates with ConA was found to be as follows: Maltose > Mannose > Glucose > Lactose > MAN5. PMID:19698698
Simulation of carbohydrates, from molecular docking to dynamics in water.
Sapay, Nicolas; Nurisso, Alessandra; Imberty, Anne
2013-01-01
Modeling of carbohydrates is particularly challenging because of the variety of structures resulting for the high number of monosaccharides and possible linkages and also because of their intrinsic flexibility. The development of carbohydrate parameters for molecular modeling is still an active field. Nowadays, main carbohydrates force fields are GLYCAM06, CHARMM36, and GROMOS 45A4. GLYCAM06 includes the largest choice of compounds and is compatible with the AMBER force fields and associated. Furthermore, AMBER includes tools for the implementation of new parameters. When looking at protein-carbohydrate interaction, the choice of the starting structure is of importance. Such complex can be sometimes obtained from the Protein Data Bank-although the stereochemistry of sugars may require some corrections. When no experimental data is available, molecular docking simulation is generally used to the obtain protein-carbohydrate complex coordinates. As molecular docking parameters are not specifically dedicated to carbohydrates, inaccuracies should be expected, especially for the docking of polysaccharides. This issue can be addressed at least partially by combining molecular docking with molecular dynamics simulation in water.
Wang, Hai-Tao; Yao, Chang-Hong; Ai, Jiang-Ning; Cao, Xu-Peng; Xue, Song; Wang, Wei-liang
2014-11-01
Microalgae represent a potential feedstock for biofuel production. During cultivation under nitrogen-depleted conditions, carbohydrates, rather than neutral lipids, were the major carbon sink of the marine microalga Isochrysis zhangjiangensis (Haptophyta). Carbohydrates reached maximum levels of 21.2 pg cell(-1) on day 5, which was an increase of more than 7-fold from day 1, while neutral lipids simultaneously increased 1.9-fold from 4.0 to 7.6 pg cell(-1) during the ten-day nitrogen-depleted cultivation. The carbohydrate productivity of I. zhangjiangensis was improved by optimization of the nitrate supply mode. The maximum carbohydrate concentration was 0.95 g L(-1) under batch cultivation, with an initial nitrogen concentration of 31.0 mg L(-1), which was 2.4-fold greater than that achieved under nitrogen-depleted conditions. High performance liquid chromatography (HPLC) analysis showed that the accumulated carbohydrate in I. zhangjiangensis was composed of glucose. These results show that I. zhangjiangensis represents an ideal carbohydrate-enriched bioresource for biofuel production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Low-Carb Diet: Could It Help You Lose Weight?
... body uses carbohydrates as its main fuel source. Complex carbohydrates (starches) are broken down into simple sugars during ... known as blood sugar (glucose). In general, natural complex carbohydrates are digested more slowly and they have less ...
Carbohydrate recognition: A minimalistic approach to binding
NASA Astrophysics Data System (ADS)
Kubik, Stefan
2012-09-01
Synthetic receptors with properties resembling those of carbohydrate-binding proteins are known, but they are structurally rather complex. Elaborate structures are, however, not always required to bind carbohydrates in water -- much simpler compounds can be just as effective.
USASOC Injury Prevention/Performance Optimization Musculoskeletal Screening Initiative
2015-09-01
following physical training should contain fluid, carbohydrate, electrolytes and a small amount of protein . For example, low fat chocolate milk , fruit...carbohydrate and protein in the diet. Once carbohydrate and protein needs are met, the balance of calories can be supplied by fat in the range of...carbohydrate and protein needs are determined first and then the remaining calories are designated to fat which typically ranges from 0.8-2.0 g fat /kg
Hernandez, Teri L
2016-05-01
IN BRIEF Restriction of dietary carbohydrate has been the cornerstone for treatment of gestational diabetes mellitus (GDM). However, there is evidence that a balanced liberalization of complex carbohydrate as part of an overall eating plan in GDM meets treatment goals and may mitigate maternal adipose tissue insulin resistance, both of which may promote optimal metabolic outcomes for mother and offspring.
Characterization of biomaterials using FT-Raman spectroscopy
NASA Astrophysics Data System (ADS)
Söderholm, S.; Roos, Y. H.; Meinander, N.; Hotokka, M.
1998-06-01
Carbohydrates play an important role in the quality and preservation of pharmaceutical and food materials. The storage temperature and water content is very critical in storage and, therefore, it is very important to understand how the physical state of carbohydrates is affected by water. Carbohydrates in foods and pharmaceuticals are usually present in the amorphous form even if other substances present affect the physical properties of carbohydrates it is mainly temperature and water content that determine the physical state. Amorphous carbohydrates show a second order phase transition, the glass transition, that is critical for stability. When carbohydrates are stored above their glass transition temperature they loose stability. Crystallization above the glass transition temperature may result in loss of quality. Raman spectroscopy offers a useful tool in the characterization of phase transitions and effects of temperature and water content on material properties at a molecular level.
Bioinformatics and molecular modeling in glycobiology
Schloissnig, Siegfried
2010-01-01
The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein–carbohydrate interaction are reviewed. PMID:20364395
Francois, Monique E; Gillen, Jenna B; Little, Jonathan P
2017-01-01
Lifestyle interventions incorporating both diet and exercise strategies remain cornerstone therapies for treating metabolic disease. Carbohydrate-restriction and high-intensity interval training (HIIT) have independently been shown to improve cardiovascular and metabolic health. Carbohydrate-restriction reduces postprandial hyperglycemia, thereby limiting potential deleterious metabolic and cardiovascular consequences of excessive glucose excursions. Additionally, carbohydrate-restriction has been shown to improve body composition and blood lipids. The benefits of exercise for improving insulin sensitivity are well known. In this regard, HIIT has been shown to rapidly improve glucose control, endothelial function, and cardiorespiratory fitness. Here, we report the available evidence for each strategy and speculate that the combination of carbohydrate-restriction and HIIT will synergistically maximize the benefits of both approaches. We hypothesize that this lifestyle strategy represents an optimal intervention to treat metabolic disease; however, further research is warranted in order to harness the potential benefits of carbohydrate-restriction and HIIT for improving cardiometabolic health.
Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus.
Jurak, Edita; Kabel, Mirjam A; Gruppen, Harry
2014-01-30
Changes of plant cell wall carbohydrate structures occurring during the process to make suitable compost for growth of Agaricus bisporus are unknown. In this paper, composition and carbohydrate structures in compost samples collected during composting and mycelium growth were analyzed. Furthermore, different extracts of compost samples were prepared with water, 1M and 4M alkali and analyzed. At the beginning of composting, 34% and after 16 days of mycelium growth 27% of dry matter was carbohydrates. Carbohydrate composition analysis showed that mainly cellulose and poorly substituted xylan chains with similar amounts and ratios of xylan building blocks were present in all phases studied. Nevertheless, xylan solubility increased 20% over the period of mycelium growth indicating partial degradation of xylan backbone. Apparently, degradation of carbohydrates occurred over the process studied by both bacteria and fungi, mainly having an effect on xylan-chain length and solubility. Copyright © 2013 Elsevier Ltd. All rights reserved.
Defined presentation of carbohydrates on a duplex DNA scaffold.
Schlegel, Mark K; Hütter, Julia; Eriksson, Magdalena; Lepenies, Bernd; Seeberger, Peter H
2011-12-16
A new method for the spatially defined alignment of carbohydrates on a duplex DNA scaffold is presented. The use of an N-hydroxysuccinimide (NHS)-ester phosphoramidite along with carbohydrates containing an alkylamine linker allows for on-column labeling during solid-phase oligonucleotide synthesis. This modification method during solid-phase synthesis only requires the use of minimal amounts of complex carbohydrates. The covalently attached carbohydrates are presented in the major groove of the B-form duplex DNA as potential substrates for murine type II C-type lectin receptors mMGL1 and mMGL2. CD spectroscopy and thermal melting revealed only minimal disturbance of the overall helical structure. Surface plasmon resonance and cellular uptake studies with bone-marrow-derived dendritic cells were used to assess the capability of these carbohydrate-modified duplexes to bind to mMGL receptors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A method for assessing carbohydrate energy absorption and its application to premature infants.
Kien, C L; Sumners, J E; Stetina, J S; Heimler, R; Grausz, J P
1982-11-01
A method was developed for assessing indirectly the fecal excretion of carbohydrate-derived energy. Then, eight healthy premature infants (28 to 32 wk gestation, postnatal age 12 to 30 days) were randomly assigned to receive one of two formulas that differed only in the carbohydrate source: 100% lactose or 50% lactose: 50% glucose polymer (lactose + glucose polymer). Excreta collections were analyzed for total nitrogen, urea nitrogen, ammonia, fat, and total energy. Carbohydrate energy absorption was calculated. The formulas were well tolerated and stool frequency, energy intake, weight gain, and nitrogen balance were not different in the two formula groups. Also, there were no significant intergroup (lactose versus lactose + glucose polymer) differences in the coefficients (%) (x +/- SD) of fat absorption (90 +/- 6 versus 93 +/- 5) or carbohydrate energy absorption (96 +/- 1 versus 95 +/- 3). Thus, net carbohydrate-energy absorption appeared normal in these premature infants who showed no clinical formula intolerance.
Gower, Barbara A; Goss, Amy M
2015-01-01
Obesity, particularly visceral and ectopic adiposity, increases the risk of type 2 diabetes. The aim of this study was to determine if restriction of dietary carbohydrate is beneficial for body composition and metabolic health. Two studies were conducted. In the first, 69 overweight/obese men and women, 53% of whom were European American (EA) and 47% of whom were African American (AA), were provided with 1 of 2 diets (lower-fat diet: 55%, 18%, and 27% of energy from carbohydrate, protein, and fat, respectively; lower-carbohydrate diet: 43%, 18%, and 39%, respectively) for 8 wk at a eucaloric level and 8 wk at a hypocaloric level. In the second study, 30 women with polycystic ovary syndrome (PCOS) were provided with 2 diets (lower-fat diet: 55%, 18%, and 27% of energy from carbohydrate, protein, and fat, respectively; lower-carbohydrate diet: 41%, 19%, and 40%, respectively) at a eucaloric level for 8 wk in a random-order crossover design. As previously reported, among overweight/obese adults, after the eucaloric phase, participants who consumed the lower-carbohydrate vs. the lower-fat diet lost more intra-abdominal adipose tissue (IAAT) (11 ± 3% vs. 1 ± 3%; P < 0.05). After weight loss, participants who consumed the lower-carbohydrate diet had 4.4% less total fat mass. Original to this report, across the entire 16-wk study, AAs lost more fat mass with a lower-carbohydrate diet (6.2 vs. 2.9 kg; P < 0.01), whereas EAs showed no difference between diets. As previously reported, among women with PCOS, the lower-carbohydrate arm showed decreased fasting insulin (-2.8 μIU/mL; P < 0.001) and fasting glucose (-4.7 mg/dL; P < 0.01) and increased insulin sensitivity (1.06 arbitrary units; P < 0.05) and "dynamic" β-cell response (96.1 · 10(9); P < 0.001). In the lower-carbohydrate arm, women lost both IAAT (-4.8 cm(2); P < 0.01) and intermuscular fat (-1.2 cm(2); P < 0.01). In the lower-fat arm, women lost lean mass (-0.6 kg; P < 0.05). Original to this report, after the lower-carbohydrate arm, the change in IAAT was positively associated with the change in tumor necrosis factor α (P < 0.05). A modest reduction in dietary carbohydrate has beneficial effects on body composition, fat distribution, and glucose metabolism. This trial was registered at clinicaltrials.gov as NCT00726908 and NCT01028989. © 2015 American Society for Nutrition.
AMP-Activated Protein Kinase β-Subunit Requires Internal Motion for Optimal Carbohydrate Binding
Bieri, Michael; Mobbs, Jesse I.; Koay, Ann; Louey, Gavin; Mok, Yee-Foong; Hatters, Danny M.; Park, Jong-Tae; Park, Kwan-Hwa; Neumann, Dietbert; Stapleton, David; Gooley, Paul R.
2012-01-01
AMP-activated protein kinase interacts with oligosaccharides and glycogen through the carbohydrate-binding module (CBM) containing the β-subunit, for which there are two isoforms (β1 and β2). Muscle-specific β2-CBM, either as an isolated domain or in the intact enzyme, binds carbohydrates more tightly than the ubiquitous β1-CBM. Although residues that contact carbohydrate are strictly conserved, an additional threonine in a loop of β2-CBM is concurrent with an increase in flexibility in β2-CBM, which may account for the affinity differences between the two isoforms. In contrast to β1-CBM, unbound β2-CBM showed microsecond-to-millisecond motion at the base of a β-hairpin that contains residues that make critical contacts with carbohydrate. Upon binding to carbohydrate, similar microsecond-to-millisecond motion was observed in this β-hairpin and the loop that contains the threonine insertion. Deletion of the threonine from β2-CBM resulted in reduced carbohydrate affinity. Although motion was retained in the unbound state, a significant loss of motion was observed in the bound state of the β2-CBM mutant. Insertion of a threonine into the background of β1-CBM resulted in increased ligand affinity and flexibility in these loops when bound to carbohydrate. However, these mutations indicate that the additional threonine is not solely responsible for the differences in carbohydrate affinity and protein dynamics. Nevertheless, these results suggest that altered protein dynamics may contribute to differences in the ligand affinity of the two naturally occurring CBM isoforms. PMID:22339867
Training of carbohydrate estimation for people with diabetes using mobile augmented reality.
Domhardt, Michael; Tiefengrabner, Martin; Dinic, Radomir; Fötschl, Ulrike; Oostingh, Gertie J; Stütz, Thomas; Stechemesser, Lars; Weitgasser, Raimund; Ginzinger, Simon W
2015-05-01
Imprecise carbohydrate counting as a measure to guide the treatment of diabetes may be a source of errors resulting in problems in glycemic control. Exact measurements can be tedious, leading most patients to estimate their carbohydrate intake. In the presented pilot study a smartphone application (BE(AR)), that guides the estimation of the amounts of carbohydrates, was used by a group of diabetic patients. Eight adult patients with diabetes mellitus type 1 were recruited for the study. At the beginning of the study patients were introduced to BE(AR) in sessions lasting 45 minutes per patient. Patients redraw the real food in 3D on the smartphone screen. Based on a selected food type and the 3D form created using BE(AR) an estimation of carbohydrate content is calculated. Patients were supplied with the application on their personal smartphone or a loaner device and were instructed to use the application in real-world context during the study period. For evaluation purpose a test measuring carbohydrate estimation quality was designed and performed at the beginning and the end of the study. In 44% of the estimations performed at the end of the study the error reduced by at least 6 grams of carbohydrate. This improvement occurred albeit several problems with the usage of BE(AR) were reported. Despite user interaction problems in this group of patients the provided intervention resulted in a reduction in the absolute error of carbohydrate estimation. Intervention with smartphone applications to assist carbohydrate counting apparently results in more accurate estimations. © 2015 Diabetes Technology Society.
Huang, Yuting; Dodds, Eric D
2013-10-15
Carbohydrates play numerous critical roles in biological systems. Characterization of oligosaccharide structures is essential to a complete understanding of their functions in biological processes; nevertheless, their structural determination remains challenging in part due to isomerism. Ion mobility spectrometry provides the means to resolve gas phase ions on the basis of their shape-to-charge ratios, thus providing significant potential for separation and differentiation of carbohydrate isomers. Here, we report on the determination of collisional cross sections for four groups of isomeric carbohydrates (including five isomeric disaccharides, four isomeric trisaccharides, two isomeric pentasaccharides, and two isomeric hexasaccharides) as their group I metal ion adducts (i.e., [M + Li](+), [M + Na](+), [M + K](+), [M + Rb](+), and [M + Cs](+)). In all, 65 collisional cross sections were measured, the great majority of which have not been previously reported. As anticipated, the collisional cross sections of the carbohydrate metal ion adducts generally increase with increasing metal ion radius; however, the collisional cross sections were found to scale with the group I cation size in isomer specific manners. Such measurements are of substantial analytical value, as they illustrate how the selection of charge carrier influences carbohydrate ion mobility determinations. For example, certain pairs of isomeric carbohydrates assume unique collisional cross sections upon binding one metal ion, but not another. On the whole, these data suggest a role for the charge carrier as a probe of carbohydrate structure and thus have significant implications for the continued development and application of ion mobility spectrometry for the distinction and resolution of isomeric carbohydrates.
Effects of a Carbohydrate-Electrolyte Drink on Specific Soccer Tests and Performance
Ostojic, Sergej M.; Mazic, Sanja
2002-01-01
The aim of this study was to examine the effects of a carbohydrate-electrolyte drink on specific soccer tests and performance. Twenty-two professional male soccer players volunteered to participate in the study. The players were allocated to two assigned trials ingesting carbohydrate-electrolyte drink (7% carbohydrates, sodium 24 mmol.l-1, chloride 12 mmol.l-1, potassium 3 mmol.l-1) or placebo during a 90 min on-field soccer match. The trials were matched for subjects’ age, weight, height and maximal oxygen uptake. Immediately after the match, players completed four soccer-specific skill tests. Blood glucose concentration [mean (SD)] was higher at the end of the match-play in the carbohydrate-electrolyte trial than in the placebo trial (4.4 (0.3) vs. 4.0 (0.3) mmol.l-1, P < 0.05). Subjects in the carbohydrate-electrolyte trial finished the specific dribble test faster in comparison with subjects in the placebo trial (12.9 (0.4) vs. 13.6 (0.5) s, P < 0.05). Ratings of the precision test were higher in the carbohydrate-electrolyte trial as compared to the placebo trial (17.2 (4.8) vs. 15.1 (5.2), P < 0.05) but there were no differences in coordination test and power test results between trials. The main finding of the present study indicates that supplementation with carbohydrate-electrolyte solution improved soccer-specific skill performance and recovery after an on-field soccer match compared with ingestion of placebo. This suggests that soccer players should consume carbohydrate-electrolyte fluid throughout a game to help prevent deterioration in specific skill performance. PMID:24688270
Browning, Jeffrey D.; Weis, Brian; Davis, Jeannie; Satapati, Santhosh; Merritt, Matthew; Malloy, Craig R.; Burgess, Shawn C.
2009-01-01
Carbohydrate-restriction is a common weight-loss approach that modifies hepatic metabolism by increasing gluconeogenesis and ketosis. Because little is known regarding the effect of carbohydrate-restriction on the origin of gluconeogenic precursors (gluconeogenesis from glycerol (GNGglycerol) and lactate/amino acids (GNGPEP)) or its consequence to hepatic energy homeostasis, we studied these parameters in a group of overweight/obese subjects undergoing weight-loss via dietary restriction. We used 2H and 13C tracers and nuclear magnetic resonance spectroscopy to measure the sources of hepatic glucose and TCA cycle flux in weight-stable subjects(n=7) and subjects following carbohydrate-(n=7) or calorie-restriction(n=7). The majority of hepatic glucose production in carbohydrate-restricted subjects came from GNGPEP. The contribution of glycerol to gluconeogenesis was similar in all groups despite evidence of increased fat oxidation in carbohydrate-restricted subjects. A strong correlation between TCA cycle flux and GNGPEP was found, though the reliance on TCA cycle energy production for gluconeogenesis was attenuated in subjects undergoing carbohydrate restriction. Together, these data imply that the TCA cycle is the energetic patron of gluconeogenesis. However, the relationship between these two pathways is modified by carbohydrate restriction, suggesting an increased reliance of the hepatocyte on energy generated outside of the TCA cycle when GNGPEP is maximal. In conclusion, carbohydrate-restriction modifies hepatic gluconeogenesis by increasing reliance on substrates like lactate or amino acids but not glycerol. This modification is associated with a reorganization of hepatic energy metabolism suggestive of enhanced hepatic β-oxidation. PMID:18925642
Nuttall, Frank Q; Almokayyad, Rami M; Gannon, Mary C
2015-02-01
Hyperglycemia improves when patients with type 2 diabetes are placed on a weight-loss diet. Improvement typically occurs soon after diet implementation. This rapid response could result from low fuel supply (calories), lower carbohydrate content of the weight-loss diet, and/or weight loss per se. To differentiate these effects, glucose, insulin, C-peptide and glucagon were determined during the last 24 h of a 3-day period without food (severe calorie restriction) and a calorie-sufficient, carbohydrate-free diet. Seven subjects with untreated type 2 diabetes were studied. A randomized-crossover design with a 4-week washout period between arms was used. Results from both the calorie-sufficient, carbohydrate-free diet and the 3-day fast were compared with the initial standard diet consisting of 55% carbohydrate, 15% protein and 30% fat. The overnight fasting glucose concentration decreased from 196 (standard diet) to 160 (carbohydrate-free diet) to 127 mg/dl (fasting). The 24 h glucose and insulin area responses decreased by 35% and 48% on day 3 of the carbohydrate-free diet, and by 49% and 69% after fasting. Overnight basal insulin and glucagon remained unchanged. Short-term fasting dramatically lowered overnight fasting and 24 h integrated glucose concentrations. Carbohydrate restriction per se could account for 71% of the reduction. Insulin could not entirely explain the glucose responses. In the absence of carbohydrate, the net insulin response was 28% of the standard diet. Glucagon did not contribute to the metabolic adaptations observed. Published by Elsevier Inc.
Jang, Eun Chul; Jun, Dae Won; Lee, Seung Min; Cho, Yong Kyun; Ahn, Sang Bong
2018-02-01
Composition of macronutrients is important in non-alcoholic fatty liver disease (NAFLD). Diet education programs that mainly emphasize reducing fat consumption have been used for NAFLD patients. We compared the efficacy of conventional low-fat diet education with low-carbohydrate diet education in Korean NAFLD patients. One hundred and six NAFLD patients were randomly allocated to low-fat diet education or low-carbohydrate education groups for 8 weeks. Liver chemistry, liver / spleen ratio, and visceral fat using abdominal tomography were measured. Intrahepatic fat accumulation decreased significantly in the low-carbohydrate group compared to low-fat group (liver/spleen 0.85 vs. 0.92, P < 0.05). Normalization of ALT activity at week 8 was 38.5% for the low-carbohydrate and 16.7% for the low-fat group (P = 0.016). Not only liver enzyme, but also low density lipoprotein cholesterol and blood pressure levels significantly decreased in the low-carbohydrate group. Total energy intake was also further decreased in the low-carbohydrate group compared to the low-fat group. Although body weight changes were not different between the two groups, the carbohydrate group had a lower total abdominal fat amount. A low-carbohydrate diet program is more realistic and effective in reducing total energy intake and hepatic fat content in Korean NAFLD patients. This trial is registered with the National Research Institute of Health: KCT0000970 (https://cris.nih.go.kr/cris/index.jsp). © 2017 The Japan Society of Hepatology.
Mangravite, Lara M; Chiu, Sally; Wojnoonski, Kathleen; Rawlings, Robin S; Bergeron, Nathalie; Krauss, Ronald M
2011-12-01
Previous studies have shown that multiple features of atherogenic dyslipidemia are improved by replacement of dietary carbohydrate with mixed sources of protein and that these lipid and lipoprotein changes are independent of dietary saturated fat content. Because epidemiological evidence suggests that red meat intake may adversely affect cardiovascular disease risk, we tested the effects of replacing dietary carbohydrate with beef protein in the context of high- vs. low-saturated fat intake in 40 healthy men. After a 3-wk baseline diet [50% daily energy (E) as carbohydrate, 13% E as protein, 15% E as saturated fat], participants consumed for 3 wk each in a randomized crossover design two high-beef diets in which protein replaced carbohydrate (31% E as carbohydrate, 31% E as protein, with 10% E as beef protein). The high-beef diets differed in saturated fat content (8% E vs. 15% E with exchange of saturated for monounsaturated fat). Two-week washout periods were included following the baseline diet period and between the randomized diets periods. Plasma TG concentrations were reduced after the 2 lower carbohydrate dietary periods relative to after the baseline diet period and these reductions were independent of saturated fat intake. Plasma total, LDL, and non-HDL cholesterol as well as apoB concentrations were lower after the low-carbohydrate, low-saturated fat diet period than after the low-carbohydrate, high-saturated fat diet period. Given our previous observations with mixed protein diets, the present findings raise the possibility that dietary protein source may modify the effects of saturated fat on atherogenic lipoproteins.
Substrate Metabolism During Ironman Triathlon: Different Horses on the Same Courses.
Maunder, Ed; Kilding, Andrew E; Plews, Daniel J
2018-05-18
Ironman triathlons are ultra-endurance events of extreme duration. The performance level of those competing varies dramatically, with elite competitors finishing in ~ 8:00:00, and lower performing amateurs finishing in ~ 14-15:00:00. When applying appropriate values for swimming, cycling and running economies to these performance times, it is demonstrated that the absolute energy cost of these events is high, and the rate of energy expenditure increases in proportion with the athlete's competitive level. Given the finite human capacity for endogenous carbohydrate storage, minimising the endogenous carbohydrate cost associated with performing exercise at competitive intensities should be a goal of Ironman preparation. A range of strategies exist that may help to achieve this goal, including, but not limited to, adoption of a low-carbohydrate diet, exogenous carbohydrate supplementation and periodised training with low carbohydrate availability. Given the diverse metabolic stimuli evoked by Ironman triathlons at different performance levels, it is proposed that the performance level of the Ironman triathlete is considered when adopting metabolic strategies to minimise the endogenous carbohydrate cost associated with exercise at competitive intensities. Specifically, periodised training with low carbohydrate availability combined with exogenous carbohydrate supplementation during competition might be most appropriate for elite and top-amateur Ironman triathletes who elicit very high rates of energy expenditure. Conversely, the adoption of a low-carbohydrate or ketogenic diet might be appropriate for some lower performance amateurs (> 12 h), in whom associated high rates of fat oxidation may be almost completely sufficient to match the energy demands required.
Maki, Kevin C; Phillips-Eakley, Alyssa K; Smith, Kristen N
2016-05-01
Findings from epidemiologic studies indicate that there are associations between breakfast consumption and a lower risk of type 2 diabetes mellitus (T2DM) and metabolic syndrome, prompting interest in the influence of breakfast on carbohydrate metabolism and indicators of T2DM risk. The objective of this review was to summarize the available evidence from randomized controlled trials assessing the impact of breakfast on variables related to carbohydrate metabolism and metabolic wellness. Consuming compared with skipping breakfast appeared to improve glucose and insulin responses throughout the day. Breakfast composition may also be important. Dietary patterns high in rapidly available carbohydrate were associated with elevated T2DM risk. Therefore, partial replacement of rapidly available carbohydrate with other dietary components, such as whole grains and cereal fibers, proteins, and unsaturated fatty acids (UFAs), at breakfast may be a useful strategy for producing favorable metabolic outcomes. Consumption of fermentable and viscous dietary fibers at breakfast lowers glycemia and insulinemia. Fermentable fibers likely act through enhancing insulin sensitivity later in the day, and viscous fibers have an acute effect to slow the rate of carbohydrate absorption. Partially substituting protein for rapidly available carbohydrate enhances satiety and diet-induced thermogenesis, and also favorably affects lipoprotein lipids and blood pressure. Partially substituting UFA for carbohydrate has been associated with improved insulin sensitivity, lipoprotein lipids, and blood pressure. Overall, the available evidence suggests that consuming breakfast foods high in whole grains and cereal fiber, while limiting rapidly available carbohydrate, is a promising strategy for metabolic health promotion. © 2016 American Society for Nutrition.
Selecting and Effectively Using Sports Drinks, Carbohydrate Gels and Energy Bars
... and Effectively Using Sports Drinks, Carbohydrate Gels and Energy Bars Depending upon the length of your workout ... can hinder performance. Sports drinks, carbohydrate gels and energy bars can help restore your body’s fluids and ...
Lin, Po-Ju; Borer, Katarina T
2016-01-01
Postprandial hyperinsulinemia, hyperglycemia, and insulin resistance increase the risk of type 2 diabetes (T2D) and cardiovascular disease mortality. Postprandial hyperinsulinemia and hyperglycemia also occur in metabolically healthy subjects consuming high-carbohydrate diets particularly after evening meals and when carbohydrate loads follow acute exercise. We hypothesized the involvement of dietary carbohydrate load, especially when timed after exercise, and mediation by the glucose-dependent insulinotropic peptide (GIP) in this phenomenon, as this incretin promotes insulin secretion after carbohydrate intake in insulin-sensitive, but not in insulin-resistant states. Four groups of eight metabolically healthy weight-matched postmenopausal women were provided with three isocaloric meals (a pre-trial meal and two meals during the trial day) containing either 30% or 60% carbohydrate, with and without two-hours of moderate-intensity exercise before the last two meals. Plasma glucose, insulin, glucagon, GIP, glucagon-like peptide 1 (GLP-1), free fatty acids (FFAs), and D-3-hydroxybutyrate concentrations were measured during 4-h postprandial periods and 3-h exercise periods, and their areas under the curve (AUCs) were analyzed by mixed-model ANOVA, and insulin resistance during fasting and meal tolerance tests within each diet was estimated using homeostasis-model assessment (HOMA-IR). The third low-carbohydrate meal, but not the high-carbohydrate meal, reduced: (1) evening insulin AUC by 39% without exercise and by 31% after exercise; (2) GIP AUC by 48% without exercise and by 45% after exercise, and (3) evening insulin resistance by 37% without exercise and by 24% after exercise. Pre-meal exercise did not alter insulin-, GIP- and HOMA-IR- lowering effects of low-carbohydrate diet, but exacerbated evening hyperglycemia. Evening postprandial insulin and GIP responses and insulin resistance declined by over 30% after three meals that limited daily carbohydrate intake to 30% compared to no such changes after three 60%-carbohydrate meals, an effect that was independent of pre-meal exercise. The parallel timing and magnitude of postprandial insulin and GIP changes suggest their dependence on a delayed intestinal adaptation to a low-carbohydrate diet. Pre-meal exercise exacerbated glucose intolerance with both diets most likely due to impairment of insulin signaling by pre-meal elevation of FFAs.
Diet composition and the performance of high-intensity exercise.
Maughan, R J; Greenhaff, P L; Leiper, J B; Ball, D; Lambert, C P; Gleeson, M
1997-06-01
The crucial role of muscle glycogen as a fuel during prolonged exercise is well established, and the effects of acute changes in dietary carbohydrate intake on muscle glycogen content and on endurance capacity are equally well known. More recently, it has been recognized that diet can also affect the performance of high-intensity exercise of short (2-7 min) duration. If the muscle glycogen content is lowered by prolonged (1-1.5 h) exhausting cycle exercise, and is subsequently kept low for 3-4 days by consumption of a diet deficient in carbohydrate (< 5% of total energy intake), there is a dramatic (approximately 10-30%) reduction in exercise capacity during cycling sustainable for about 5 min. The same effect is observed if exercise is preceded by 3-4 days on a carbohydrate-restricted diet or by a 24 h total fast without prior depletion of the muscle glycogen. Consumption of a diet high in carbohydrate (70% of total energy intake from carbohydrate) for 3-4 days before exercise improves exercise capacity during high-intensity exercise, although this effect is less consistent. The blood lactate concentration is always lower at the point of fatigue after a diet low in carbohydrate and higher after a diet high in carbohydrate than after a normal diet. Even when the duration of the exercise task is kept constant, the blood lactate concentration is higher after exercise on a diet high in carbohydrate than on a diet low in carbohydrate. Consumption of a low-carbohydrate isoenergetic diet is achieved by an increased intake of protein and fat. A high-protein diet, particularly when combined with a low carbohydrate intake, results in metabolic acidosis, which ensues within 24 h and persists for at least 4 days. This appears to be the result of an increase in the circulating concentrations of strong organic acids, particularly free fatty acids and 3-hydroxybutyrate, together with an increase in the total plasma protein concentration. This acidosis, rather than any decrease in the muscle glycogen content, may be responsible for the reduced exercise capacity in high-intensity exercise; this may be due to a reduced rate of efflux of lactate and hydrogen ions from the working muscles. Alternatively, the accumulation of acetyl groups in the carbohydrate-deprived state may reduce substrate flux through the pyruvate dehydrogenase complex, thus reducing aerobic energy supply and accelerating the onset of fatigue.
Separation of negatively charged carbohydrates by capillary electrophoresis.
Linhardt, R J; Pervin, A
1996-01-12
Capillary electrophoresis (CE) has recently emerged as a highly promising technique consuming an extremely small amount of sample and capable of the rapid, high-resolution separation, characterization, and quantitation of analytes. CE has been used for the separation of biopolymers, including acidic carbohydrates. Since CE is basically an analytical method for ions, acidic carbohydrates that give anions in weakly acid, neutral, or alkaline media are often the direct objects of this method. The scope of this review is limited to the use of CE for the analysis of carbohydrates containing carboxylate, sulfate, and phosphate groups as well as neutral carbohydrates that have been derivatized to incorporate strongly acidic functionality, such as sulfonate groups.
Chiral reagents in glycosylation and modification of carbohydrates.
Wang, Hao-Yuan; Blaszczyk, Stephanie A; Xiao, Guozhi; Tang, Weiping
2018-02-05
Carbohydrates play a significant role in numerous biological events, and the chemical synthesis of carbohydrates is vital for further studies to understand their various biological functions. Due to the structural complexity of carbohydrates, the stereoselective formation of glycosidic linkages and the site-selective modification of hydroxyl groups are very challenging and at the same time extremely important. In recent years, the rapid development of chiral reagents including both chiral auxiliaries and chiral catalysts has significantly improved the stereoselectivity for glycosylation reactions and the site-selectivity for the modification of carbohydrates. These new tools will greatly facilitate the efficient synthesis of oligosaccharides, polysaccharides, and glycoconjugates. In this tutorial review, we will summarize these advances and highlight the most recent examples.
Carbohydrates as indicators of biogeochemical processes
NASA Astrophysics Data System (ADS)
Lazareva, E. V.; Romankevich, E. A.
2012-05-01
A method is presented to study the carbohydrate composition of marine objects involved into sedimento- and diagenesis (plankton, particulate matter, benthos, and bottom sediments). The analysis of the carbohydrates is based upon the consecutive separation of their fractions with different solvents (water, alkali, and acid). The ratio of the carbohydrate fractions allows one to evaluate the lability of the carbohydrate complex. It is also usable as an indicator of the biogeochemical processes in the ocean, as well of the genesis and the degree of conversion of organic matter in the bottom sediments and nodules. The similarity in the monosaccharide composition is shown for dissolved organic matter and aqueous and alkaline fractions of seston and particulate matter.
NASA Astrophysics Data System (ADS)
Zhao, Weidong; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda
2013-03-01
The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells.The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c3nr00553d
Effect of diet on serotonergic neurotransmission in depression.
Shabbir, Faisal; Patel, Akash; Mattison, Charles; Bose, Sumit; Krishnamohan, Raathathulaksi; Sweeney, Emily; Sandhu, Sarina; Nel, Wynand; Rais, Afsha; Sandhu, Ranbir; Ngu, Nguasaah; Sharma, Sushil
2013-02-01
Depression is characterized by sadness, purposelessness, irritability, and impaired body functions. Depression causes severe symptoms for several weeks, and dysthymia, which may cause chronic, low-grade symptoms. Treatment of depression involves psychotherapy, medications, or phototherapy. Clinical and experimental evidence indicates that an appropriate diet can reduce symptoms of depression. The neurotransmitter, serotonin (5-HT), synthesized in the brain, plays an important role in mood alleviation, satiety, and sleep regulation. Although certain fruits and vegetables are rich in 5-HT, it is not easily accessible to the CNS due to blood brain barrier. However the serotonin precursor, tryptophan, can readily pass through the blood brain barrier. Tryptophan is converted to 5-HT by tryptophan hydroxylase and 5-HTP decarboxylase, respectively, in the presence of pyridoxal phosphate, derived from vitamin B(6). Hence diets poor in tryptophan may induce depression as this essential amino acid is not naturally abundant even in protein-rich foods. Tryptophan-rich diet is important in patients susceptible to depression such as certain females during pre and postmenstrual phase, post-traumatic stress disorder, chronic pain, cancer, epilepsy, Parkinson's disease, Alzheimer's disease, schizophrenia, and drug addiction. Carbohydrate-rich diet triggers insulin response to enhance the bioavailability of tryptophan in the CNS which is responsible for increased craving of carbohydrate diets. Although serotonin reuptake inhibitors (SSRIs) are prescribed to obese patients with depressive symptoms, these agents are incapable of precisely regulating the CNS serotonin and may cause life-threatening adverse effects in the presence of monoamine oxidase inhibitors. However, CNS serotonin synthesis can be controlled by proper intake of tryptophan-rich diet. This report highlights the clinical significance of tryptophan-rich diet and vitamin B(6) to boost serotonergic neurotransmission in depression observed in various neurodegenerative diseases. However pharmacological interventions to modulate serotonergic neurotransmission in depression, remains clinically significant. Depression may involve several other molecular mechanisms as discussed briefly in this report. Copyright © 2012 Elsevier Ltd. All rights reserved.
Baena-Monroy, Tania; Moreno-Maldonado, Víctor; Franco-Martínez, Fernando; Aldape-Barrios, Beatriz; Quindós, Guillermo; Sánchez-Vargas, Luis Octavio
2005-04-01
Denture stomatitis is associated to Candida albicans, different bacteria and other co-factors such as an acid pH, a carbohydrate ingestion increase, different systemic illnesses and pharmacological treatments. The aim of this study was to determine Candida albicans, Staphylococcus aureus and Streptococcus mutans prevalence in the mucous membrane and prosthesis of patients with and without atrophic denture stomatitis and its relationship with other potential clinical co-factors. Saliva was collected from 105 patients (62 female and 43 male) wearing dental prosthesis in order to measure their pH. Oral samples of the mucous membrane and the internal surface of dental prosthesis were taken with sterile cotton to proceed with the microbiological study. The identification of the isolated microorganisms was performed using conventional microbiological methods. Diabetes and Hypertension were the most frequent systemic illnesses. High carbohydrate ingestion was observed in numerous patients. Atrophic denture stomatitis was reported in 50 patients and the pH average in saliva was of 5.2. The presence of C albicans, S. aureus and S. mutans in the mucous membrane and prosthesis was of 51.4%, 52.4% and 67.6%, respectively. C. albicans was isolated in 66.7% from the prosthesis, whereas S. aureus and S. mutans were isolated in 49.5% of those same prosthesis. C. albicans was isolated in 86% of the patients with atrophic denture stomatitis and S. aureus was isolated in a similar percentage (84% of patients). The isolation of S. mutans was less frequent, and it was observed in 16% of the oral samples of these patients. C. albicans, S. aureus and S. mutans frequently colonize the oral mucous of patients wearing dental prosthesis. This illness-bearing condition is more frequent in patients with denture stomatitis, even though dental prosthesis colonization is lower than in the oral mucous.
Wierucka-Rybak, M; Wolak, M; Bojanowska, E
2014-08-01
High intake of fats and sugars has prompted a rapid growth in the number of obese individuals worldwide. To further investigate whether simultaneous pharmacological intervention in the leptin and cannabinoid system might change food and water intake, preferences for palatable foods, and body weight, we have examined the effects of concomitant intraperitoneal administration of leptin and AM 251, a cannabinoid 1 (CB1) receptor antagonist, or cannabidiol (CBD), a plant cannabinoid, in rats maintained on either a high-fat (HF) diet (45% energy from fat) or free-choice (FC) diet consisting of high-sucrose and normal rat chow (83% and 61% energy from carbohydrates, respectively). Leptin at a dose of 100 μg/kg injected individually for 3 subsequent days to rats fed a HF diet reduced significantly the daily caloric intake and inhibited body weight gain. The hormone had no significant effects, however, on either caloric intake, body weight or food preferences in rats fed an FC diet. Co-injection of leptin and 1 mg/kg AM 251 resulted in a further significant decrease in HF diet intake and a profound reduction in body weight gain both in HF diet- and FC diet-fed rats. This drug combination, however, had no effect on the consumption of high-sucrose chow. In contrast, 3mg/kg of CBD co-injected with leptin did not modify leptin effects on food intake in rats maintained on an FC or HF diet. None of the drug combinations affected water consumption. It is concluded that the concomitant treatment with leptin and AM 251 attenuated markedly body weight gain in rats maintained on high-calorie diets rich in fat and carbohydrates but did not affect preferences for sweet food.
Nakajima, Kazuki; Kinoshita, Mitsuhiro; Oda, Yasuo; Masuko, Takashi; Kaku, Hanae; Shibuya, Naoto; Kakehi, Kazuaki
2004-09-01
We developed capillary affinity electrophoresis (CAE) to analyze the molecular interaction between carbohydrate chains and proteins in solution state. A mixture of oligosaccharides derived from a glycoprotein was labeled with 8-aminopyrene-1,3,6-trisulfonate (APTS), and used as glycan library without isolation. Interaction of a carbohydrate-binding protein with each oligosaccharide in the mixture could be simultaneously observed, and relative affinities of oligosaccharides toward the protein were accurately determined. In this study, we applied CAE to detect the presence of lectins in some plants (Japanese elderberry bark and tulip bulb). In the crude extract of the elderberry bark, binding activity toward sialo-carbohydrate chains could be easily detected. We also examined the presence of lectins in the crude extract of tulip bulbs and determined the detailed carbohydrate-binding specificity of Tulipa gesneriana agglutinin (TGA), one of the lectins from tulip bulbs. Kinetic studies demonstrated that TGA showed novel carbohydrate-binding specificity and preferentially recognized triantennary oligosaccharides with Gal residues at nonreducing termini and a Fuc residue linked through alpha(1-6) linkage at chitobiose portion of the reducing termini but not tetraantennary carbohydrates. The results described here indicate that CAE will be a valuable method for both screening of lectins in natural sources and determination of their detailed carbohydrate-binding specificities.
Carbohydrate Polymers for Nonviral Nucleic Acid Delivery
Sizovs, Antons; McLendon, Patrick M.; Srinivasachari, Sathya
2014-01-01
Carbohydrates have been investigated and developed as delivery vehicles for shuttling nucleic acids into cells. In this review, we present the state of the art in carbohydrate-based polymeric vehicles for nucleic acid delivery, with the focus on the recent successes in preclinical models, both in vitro and in vivo. Polymeric scaffolds based on the natural polysaccharides chitosan, hyaluronan, pullulan, dextran, and schizophyllan each have unique properties and potential for modification, and these results are discussed with the focus on facile synthetic routes and favorable performance in biological systems. Many of these carbohydrates have been used to develop alternative types of biomaterials for nucleic acid delivery to typical polyplexes, and these novel materials are discussed. Also presented are polymeric vehicles that incorporate copolymerized carbohydrates into polymer backbones based on polyethylenimine and polylysine and their effect on transfection and biocompatibility. Unique scaffolds, such as clusters and polymers based on cyclodextrin (CD), are also discussed, with the focus on recent successes in vivo and in the clinic. These results are presented with the emphasis on the role of carbohydrate and charge on transfection. Use of carbohydrates as molecular recognition ligands for cell-type specific delivery is also briefly reviewed. We contend that carbohydrates have contributed significantly to progress in the field of non-viral DNA delivery, and these new discoveries are impactful for developing new vehicles and materials for treatment of human disease. PMID:21504102
Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P
2016-05-01
Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbohydrates and sports practice: a Twitter virtual ethnography
Rodríguez-Martín, Beatriz; Castillo, Carlos Alberto
2017-02-01
Introduction: Although carbohydrates consumption is a key factor to enhance sport performance, intake levels seem questioned by some amateur athletes, leading to develop an irrational aversion to carbohydrate known as “carbophobia”. On the other hand, food is the origin of virtual communities erected as a source of knowledge and a way to exchange information. Despite this, very few studies have analysed the influence of social media in eating behaviours. Objectives: To know the conceptualizations about carbohydrates intake and eating patterns related to carbophobia expressed in amateur athletes’ Twitter accounts. Methods: Qualitative research designed from Hine’s Virtual Ethnography. Virtual immersion was used for data collection in Twitter open accounts in a theoretical sample of tweets from amateur athletes. Discourse analysis of narrative information of tweets was carried out through open, axial and selective coding process and the constant comparison method. Results: Data analysis revealed four main categories that offered a picture of conceptualizations of carbohydrates: carbohydrates as suspects or guilty from slowing down training, carbophobia as a lifestyle, carbophobia as a religion and finally the love/hate relationship with carbohydrates. Conclusions: Low-carbohydrate diet is considered a healthy lifestyle in some amateur athletes. The results of this study show the power of virtual communication tools such as Twitter to support, promote and maintain uncommon and not necessarily healthy eating behaviours. Future studies should focus on the context in which these practices appear.
Characterizing carbohydrate-protein interactions by NMR
Bewley, Carole A.; Shahzad-ul-Hussan, Syed
2013-01-01
Interactions between proteins and soluble carbohydrates and/or surface displayed glycans are central to countless recognition, attachment and signaling events in biology. The physical chemical features associated with these binding events vary considerably, depending on the biological system of interest. For example, carbohydrate-protein interactions can be stoichiometric or multivalent, the protein receptors can be monomeric or oligomeric, and the specificity of recognition can be highly stringent or rather promiscuous. Equilibrium dissociation constants for carbohydrate binding are known to vary from micromolar to millimolar, with weak interactions being far more prevalent; and individual carbohydrate binding sites can be truly symmetrical or merely homologous, and hence, the affinities of individual sites within a single protein can vary, as can the order of binding. Several factors, including the weak affinities with which glycans bind their protein receptors, the dynamic nature of the glycans themselves, and the non-equivalent interactions among oligomeric carbohydrate receptors, have made NMR an especially powerful tool for studying and defining carbohydrate-protein interactions. Here we describe those NMR approaches that have proven to be the most robust in characterizing these systems, and explain what type of information can (or cannot) be obtained from each. Our goal is to provide to the reader the information necessary for selecting the correct experiment or sets of experiments to characterize their carbohydrate-protein interaction of interest. PMID:23784792
The case for low carbohydrate diets in diabetes management.
Arora, Surender K; McFarlane, Samy I
2005-07-14
A low fat, high carbohydrate diet in combination with regular exercise is the traditional recommendation for treating diabetes. Compliance with these lifestyle modifications is less than satisfactory, however, and a high carbohydrate diet raises postprandial plasma glucose and insulin secretion, thereby increasing risk of CVD, hypertension, dyslipidemia, obesity and diabetes. Moreover, the current epidemic of diabetes and obesity has been, over the past three decades, accompanied by a significant decrease in fat consumption and an increase in carbohydrate consumption. This apparent failure of the traditional diet, from a public health point of view, indicates that alternative dietary approaches are needed. Because carbohydrate is the major secretagogue of insulin, some form of carbohydrate restriction is a prima facie candidate for dietary control of diabetes. Evidence from various randomized controlled trials in recent years has convinced us that such diets are safe and effective, at least in short-term. These data show low carbohydrate diets to be comparable or better than traditional low fat high carbohydrate diets for weight reduction, improvement in the dyslipidemia of diabetes and metabolic syndrome as well as control of blood pressure, postprandial glycemia and insulin secretion. Furthermore, the ability of low carbohydrate diets to reduce triglycerides and to increase HDL is of particular importance. Resistance to such strategies has been due, in part, to equating it with the popular Atkins diet. However, there are many variations and room for individual physician planning. Some form of low carbohydrate diet, in combination with exercise, is a viable option for patients with diabetes. However, the extreme reduction of carbohydrate of popular diets (<30 g/day) cannot be recommended for a diabetic population at this time without further study. On the other hand, the dire objections continually raised in the literature appear to have very little scientific basis. Whereas it is traditional to say that more work needs to be done, the same is true of the assumed standard low fat diets which have an ambiguous record at best. We see current trends in the national dietary recommendations as a positive sign and an appropriate move in the right direction.
Song, Xuerong; Marandel, Lucie; Dupont-Nivet, Mathilde; Quillet, Edwige; Geurden, Inge; Panserat, Stephane
2018-06-05
Rainbow trout ( Oncorhynchus mykiss ) was recognized as a typical 'glucose-intolerant' fish and poor dietary carbohydrate user. Our first objective was to test the effect of dietary carbohydrates themselves (without modification of dietary protein intake) on hepatic glucose gene expression (taking into account the paralogs). The second aim was to research if two isogenic trout lines had different responses to carbohydrate intake, showing one with a better use dietary carbohydrates. Thus, we used two isogenic lines of rainbow trout (named A32h and AB1h) fed with either a high carbohydrate diet or a low carbohydrate diet for 12 weeks. We analysed the zootechnical parameters, the plasma metabolites, the hepatic glucose metabolism at the molecular level and the hormonal-nutrient sensing pathway. Globally, dietary carbohydrate intake was associated with hyperglycaemia and down regulation of the energy sensor Ampk, but also with atypical regulation of glycolysis and gluconeogenesis in the liver. Indeed, the first steps of glycolysis and gluconeogenesis catalysed by the glucokinase and the phospenolpyruvate carboxykinase are regulated at the molecular level by dietary carbohydrates as expected (i.e. induction of the glycolytic gck and repression of the gluconeogenic pck ); by contrast, and surprisingly, for two other key glycolytic enzymes (phosphofructokinase enzyme - pfk l and pyruvate kinase - p k ) some of the paralogs ( pfklb and pklr ) are inhibited by carbohydrates whereas some of the genes coding gluconeogenic enzymes (the glucose-6-phosphatase enzyme g6pcb1b and g6pcb2a gene and the fructose1-6 biphosphatase paralog fbp1a ) are induced. On the other hand, some differences for the zootechnical parameters and metabolic genes were also found between the two isogenic lines, confirming the existence of genetic polymorphisms for nutritional regulation of intermediary metabolism in rainbow trout. In conclusion, our study determines some new and unexpected molecular regulations of the glucose metabolism in rainbow trout which may partly lead to the poor utilization of dietary carbohydrates and it underlines the existence of differences in molecular regulation of glucose metabolism between two isogenic lines which provides arguments for future selection of rainbow trout. © 2018. Published by The Company of Biologists Ltd.
André, A; Leriche, I; Chaix, G; Thorin, C; Burger, M; Nguyen, P
2017-06-01
This study investigated the effects of an experimental high-protein medium-carbohydrate diet (protein level, 46% metabolizable energy, ME). First, postprandial plasma glucose and insulin kinetics were determined in steady-state overweight/obese Beagle dogs (28%-41% excess body weight) for an experimental high-protein medium-carbohydrate diet (protein level, 46% ME) and a commercial high-carbohydrate medium-protein diet (protein level, 24%ME) in obese dogs. Secondly, all the dogs were included in a weight loss programme. They were fed the high-protein medium-carbohydrate diet, and the energy allocation was gradually reduced until they reached their optimal body weight. Insulin sensitivity and body composition were evaluated before and after weight loss using a euglycaemic-hyperinsulinaemic clamp and the deuterium oxide dilution technique respectively. For statistical analysis, linear mixed effect models were used with a significance level of 5%. Postprandial plasma glucose and insulin concentrations were substantially lower with the high-protein medium-carbohydrate diet than the high-carbohydrate medium-protein diet. These differences can be explained mainly by the difference in carbohydrate content between the two diets. Energy restriction (35% lower energy intake than in the obese state) resulted in a 2.23 ± 0.05% loss in body weight/week, and the dogs reached their optimal body weight in 12-16 weeks. Weight loss was associated with a significant increase in insulin sensitivity. The high-protein medium-carbohydrate diet allowed fat-free mass preservation despite a relatively high rate of weekly weight loss. The increase in insulin sensitivity indicated improved control of carbohydrate metabolism, possible due to weight loss and to the nature of the diet. Thus, a high-protein medium-carbohydrate diet is a good nutritional solution for managing the weight of overweight dogs. This diet may improve glycaemic control, which could be beneficial for preventing or managing impaired glucose tolerance in obese dogs and for safe and successful weight loss while preserving lean body mass. Journal of Animal Physiology and Animal Nutrition © 2017 Blackwell Verlag GmbH.
Snorgaard, Ole; Poulsen, Grith M; Andersen, Henning K; Astrup, Arne
2017-01-01
Objective Nutrition therapy is an integral part of self-management education in patients with type 2 diabetes. Carbohydrates with a low glycemic index are recommended, but the ideal amount of carbohydrate in the diet is unclear. We performed a meta-analysis comparing diets containing low to moderate amounts of carbohydrate (LCD) (energy percentage below 45%) to diets containing high amounts of carbohydrate (HCD) in subjects with type 2 diabetes. Research design and methods We systematically reviewed Cochrane library databases, EMBASE, and MEDLINE in the period 2004–2014 for guidelines, meta-analyses, and randomized trials assessing the outcomes HbA1c, BMI, weight, LDL cholesterol, quality of life (QoL), and attrition. Results We identified 10 randomized trials comprising 1376 participants in total. In the first year of intervention, LCD was followed by a 0.34% lower HbA1c (3.7 mmol/mol) compared with HCD (95% CI 0.06 (0.7 mmol/mol), 0.63 (6.9 mmol/mol)). The greater the carbohydrate restriction, the greater the glucose-lowering effect (R=−0.85, p<0.01). At 1 year or later, however, HbA1c was similar in the 2 diet groups. The effect of the 2 types of diet on BMI/body weight, LDL cholesterol, QoL, and attrition rate was similar throughout interventions. Limitations Glucose-lowering medication, the nutrition therapy, the amount of carbohydrate in the diet, glycemic index, fat and protein intake, baseline HbA1c, and adherence to the prescribed diets could all have affected the outcomes. Conclusions Low to moderate carbohydrate diets have greater effect on glycemic control in type 2 diabetes compared with high-carbohydrate diets in the first year of intervention. The greater the carbohydrate restriction, the greater glucose lowering, a relationship that has not been demonstrated earlier. Apart from this lowering of HbA1c over the short term, there is no superiority of low-carbohydrate diets in terms of glycemic control, weight, or LDL cholesterol. PMID:28316796
Carbohydrate and fat: considerations for energy and more
USDA-ARS?s Scientific Manuscript database
Historically, carbohydrates and fats were valued on their caloric contributions to diets. Feeding recommendations for these feed fractions now address inclusion levels, as well as consideration of the positive and negative effects of specific types of these nutrients. Feed carbohydrate characterizat...
Wood adhesives containing proteins and carbohydrates
USDA-ARS?s Scientific Manuscript database
In recent years there has been resurgent interest in using biopolymers as sustainable and environmentally friendly ingredients in wood adhesive formulations. Among them, proteins and carbohydrates are the most commonly used. In this chapter, an overview is given of protein-based and carbohydrate-...
NASA Astrophysics Data System (ADS)
Wang, Yangzhong; Chen, Zhuhai; Liu, Yang; Li, Jinghong
2013-07-01
A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 1010. The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes.A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 1010. The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes. Electronic supplementary information (ESI) available: Experimental details; characterization of probes; the influence of electrolyte pH; probe concentration and glucose concentration on the electrode ECL effect. See DOI: 10.1039/c3nr01598j
Multiple-Transportable Carbohydrate Effect on Long-Distance Triathlon Performance.
Rowlands, David S; Houltham, Stuart D
2017-08-01
The ingestion of multiple (2:1 glucose-fructose) transportable carbohydrate in beverages at high rates (>78 g·h) during endurance exercise enhances exogenous carbohydrate oxidation, fluid absorption, gut comfort, and performance relative to glucose alone. However, during long-distance endurance competition, athletes prefer a solid-gel-drink format, and the effect size of multiple-transportable carbohydrate is unknown. This study aimed to determine the effect of multiple-transportable carbohydrate on triathlon competition performance when ingested within bars, gels, and drinks. A double-blind randomized controlled trial was conducted within two national-body sanctioned half-ironman triathlon races held 3 wk apart in 74 well-trained male triathletes (18-60 yr; >2 yr competition experience). Carbohydrate comprising glucose/maltodextrin-fructose (2:1 ratio) or standard isocaloric carbohydrate (glucose/maltodextrin only) was ingested before (94 g) and during the cycle (2.5 g·km) and run (7.8 g·km) sections, averaging 78.6 ± 6.6 g·h, partitioned to bars (25%), gels (35%), and drink (40%). Postrace, 0- to 10-unit Likert-type scales were completed to assess gut comfort and energy. The trial returned low dropout rate (9%), high compliance, and sensitivity (typical error 2.2%). The effect of multiple-transportable carbohydrate on performance time was -0.53% (95% confidence interval = -1.30% to 0.24%; small benefit threshold = -0.54%), with likelihood-based risk analysis supporting adoption (benefit-harm ratio = 48.9%:0.3%; odds ratio = 285:1). Covariate adjustments for preexercise body weight and heat stress had negligible impact performance. Multiple-transportable carbohydrate possibly lowered nausea during the swim and bike; otherwise, effects on gut comfort and perceived energy were negligible. Multiple-transportable (2:1 maltodextrin/glucose-fructose) compared with single-transportable carbohydrate ingested in differing format provided a small benefit to long-distance triathlon performance, inferred as adoption worthy. Large sample in-competition randomized trials offer ecological validity, high participant throughput, compliance, and sensitivity for evaluation of health and performance interventions in athletes.
Skiba-Cassy, Sandrine; Panserat, Stéphane; Larquier, Mélanie; Dias, Karine; Surget, Anne; Plagnes-Juan, Elisabeth; Kaushik, Sadasivam; Seiliez, Iban
2013-04-28
The rainbow trout (Oncorhynchus mykiss) exhibits high dietary amino acid requirements and an apparent inefficiency to use dietary carbohydrates. Using this species, we investigated the metabolic consequences of long-term high carbohydrates/low protein feeding. Fish were fed two experimental diets containing either 20% carbohydrates/50% proteins (C20P50), or high levels of carbohydrates at the expense of proteins (35% carbohydrates/35% proteins--C35P35). The expression of genes related to hepatic and muscle glycolysis (glucokinase (GK), pyruvate kinase and hexokinase) illustrates the poor utilisation of carbohydrates irrespective of their dietary levels. The increased postprandial GK activity and the absence of inhibition of the gluconeogenic enzyme glucose-6-phosphatase activity support the hypothesis of the existence of a futile cycle around glucose phosphorylation extending postprandial hyperglycaemia. After 9 weeks of feeding, the C35P35-fed trout displayed lower body weight and feed efficiency and reduced protein and fat gains than those fed C20P50. The reduced activation of eukaryotic translation initiation factor 4-E binding protein 1 (4E-BP1) in the muscle in this C35P35 group suggests a reduction in protein synthesis, possibly contributing to the reduction in N gain. An increase in the dietary carbohydrate:protein ratio decreased the expression of genes involved in amino acid catabolism (serine dehydratase and branched-chain α-keto acid dehydrogenase E1α and E1β), and increased that of carnitine palmitoyltransferase 1, suggesting a higher reliance on lipids as energy source in fish fed high-carbohydrate and low-protein diets. This probably also contributes to the lower fat gain. Together, these results show that different metabolic pathways are affected by a high-carbohydrate/low-protein diet in rainbow trout.
Taylor, Harry L.; Wu, Ching-Lin; Chen, Yung-Chih; Wang, Pin-Ging; Betts, James A.
2018-01-01
The carbohydrate deficit induced by exercise is thought to play a key role in increased post-exercise insulin action. However, the effects of replacing carbohydrate utilized during exercise on postprandial glycaemia and insulin sensitivity are yet to be determined. This study therefore isolated the extent to which the insulin-sensitizing effects of exercise are dependent on the carbohydrate deficit induced by exercise, relative to other exercise-mediated mechanisms. Fourteen healthy adults performed a 90-min run at 70% V˙O2max starting at 1600–1700 h before ingesting either a non-caloric artificially-sweetened placebo solution (CHO-DEFICIT) or a 15% carbohydrate solution (CHO-REPLACE; 221.4 ± 59.3 g maltodextrin) to precisely replace the measured quantity of carbohydrate oxidized during exercise. The alternate treatment was then applied one week later in a randomized, placebo-controlled, and double-blinded crossover design. A standardized low-carbohydrate evening meal was consumed in both trials before overnight recovery ahead of a two-hour oral glucose tolerance test (OGTT) the following morning to assess glycemic and insulinemic responses to feeding. Compared to the CHO-DEFICIT condition, CHO-REPLACE increased the incremental area under the plasma glucose curve by a mean difference of 68 mmol·L−1 (95% CI: 4 to 132 mmol·L−1; p = 0.040) and decreased the Matsuda insulin sensitivity index by a mean difference of −2 au (95% CI: −1 to −3 au; p = 0.001). This is the first study to demonstrate that post-exercise feeding to replaceme the carbohydrate expended during exercise can attenuate glucose tolerance and insulin sensitivity the following morning. The mechanism through which exercise improves insulin sensitivity is therefore (at least in part) dependent on carbohydrate availability and so the day-to-day metabolic health benefits of exercise might be best attained by maintaining a carbohydrate deficit overnight. PMID:29370143
Roth, Marla; Hussain, Altaf; Cale, Jonathan A; Erbilgin, Nadir
2018-02-01
Lodgepole pine (Pinus contorta) forests have experienced severe mortality from mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North America for the last several years. Although the mechanisms by which beetles kill host trees are unclear, they are likely linked to pine defense monoterpenes that are synthesized from carbohydrate reserves. However, how carbohydrates and monoterpenes interact in response to MPB colonization is unknown. Understanding this relationship could help to elucidate how pines succumb to bark beetle attack. We compared concentrations of individual and total monoterpenes and carbohydrates in the phloem of healthy pine trees with those naturally colonized by MPB. Trees attacked by MPB had nearly 300% more monoterpenes and 40% less carbohydrates. Total monoterpene concentrations were most strongly associated with the concentration of sugars in the phloem. These results suggest that bark beetle colonization likely depletes carbohydrate reserves by increasing the production of carbon-rich monoterpenes, and other carbon-based secondary compounds. Bark beetle attacks also reduce water transport causing the disruption of carbon transport between tree foliage and roots, which restricts carbon assimilation. Reduction in carbohydrate reserves likely contributes to tree mortality.
Ishak, Sairatul Dahlianis; Kamarudin, Mohd Salleh; Ramezani-Fard, Ehsan; Saad, Che Roos; Yusof, Yus Aniza
2016-07-01
We investigated the effects of four iso-nitrogenous (40% crude protein) and iso-caloric (17.6 kJ g(-1)) diets with different dietary carbohydrate levels (15%, 20%, 25% and 30%) on the growth performance, feed utilization efficiency, body composition and liver histology of Malaysian mahseer (Tor tambroides) fingerlings in a 10-week feeding trial. Fish (initial weight of 0.8?0.1 g; initial total length 4.2?0.1 cm) were fed twice daily at 4% body mass. Dietary carbohydrate level had significant effects (P<0.05) on weight gain, SGR (specific growth rate), FCR (feed conversion rate), PER (protein efficiency rate), survival percentage and all nutrient retention values (PRV, LRV, CRV, ERV). Protein, carbohydrate and gross energy composition of the fish body were also significantly differed (P<0.05) among treatments. Liver histology showed mild hepatic steatosis and hypertrophy for fishes receiving a higher dietary carbohydrate inclusion. In general, treatments with 20% and 25% dietary carbohydrate levels produced better growth results compared to the rest of the treatments. Using a second-order polynomial regression analysis model, the optimal dietary carbohydrate level of 23.4% was estimated for mahseer fingerlings. ?
Wright, A; Sato, Y; Okada, T; Chang, K; Endo, T; Morrison, S
2000-12-01
We have now produced mouse-human chimeric IgG1 in wild-type Chinese hamster ovary (CHO) cell lines Pro-5 as well as in the glycosylation mutants Lec 2, Lec 8, and Lec 1. Analysis of the attached carbohydrates shows those present on IgG1-Lec 1 were mannose terminated. Carbohydrate present on IgG1-Lec8 was uniformly biantennary terminating in N-acetylglucosamine. The glycosylation profiles of IgG1-Lec 2 and IgG1-Pro-5 were heterogeneous. Only IgG1-Pro-5 was sialylated with sialic acid present on only a small percentage of the carbohydrate structures. When the in vivo fate of antibodies labeled with (125)I-lactotyramine was determined, it was found that the majority of all of the antibodies, irrespective of the structure of their attached carbohydrate, is catabolized in the skin and muscle. However, the attached carbohydrate structure does influence the amount that is catabolized in the liver and the liver serves as a major site for the catabolism of proteins bearing carbohydrate with the Lec2 (with terminal galactose) or Lec1(with terminal mannose) structure.
Liu, Bing; Zhang, Zehui
2016-08-23
Recently, there has been growing interest in the transformation of renewable biomass into value-added fuels and chemicals. The catalytic conversion of naturally abundant carbohydrates can generate two-important furan chemicals: 5-hydroxymethylfurfural (HMF) from C6 carbohydrates and furfural from C5 carbohydrates. Both HMF and furfural have received great interest as precursors in the synthesis of commodity chemicals and liquid fuels. In recent years, a trend has emerged to integrate sequential catalytic processes involving multistep reactions for the direct one-pot transformation of carbohydrates into the aimed fuels and chemicals. One-pot reactions have remarkably unique and environmentally friendly benefits, including the fact that isolation and purification of intermediate compounds can be avoided. Herein, the present article aims to review recent advances in the one-pot conversion of carbohydrates into furan derivatives via furfural and HMF as intermediates. Special attention will be paid to the catalytic systems, mechanistic insight, reaction pathways, and catalyst stability. It is expected that this review will guide researchers to develop effective catalytic systems for the one-pot transformation of carbohydrates into furan derivatives. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vendrig, J C; Coffeng, L E; Fink-Gremmels, J
2012-12-01
Increasing evidence suggests that reactions to lipopolysaccharide (LPS), particularly in the gut, can be partly or completely mitigated by colostrum- and milk-derived oligosaccharides. Confirmation of this hypothesis could lead to the development of new therapeutic concepts. To demonstrate the influence of equine colostral carbohydrates on the inflammatory response in an in vitro model with equine peripheral blood mononuclear cells (PBMCs). Carbohydrates were extracted from mare colostrum, and then evaluated for their influence on LPS-induced inflammatory responses in PBMCs isolated from the same mares, mRNA expression of tumour necrosis factor-alpha, interleukin-6 and interleukin-10 was measured as well as the protein levels of tumour necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10). Equine colostral carbohydrates significantly reduced LPS-induced TNF-alpha protein at both times measured and significantly reduced LPS-induced TNF-alpha, IL-6 and IL-10 mRNA expression by PBMCs. Moreover, cell viability significantly increased in the presence of high concentrations of colostral carbohydrates. Carbohydrates derived from equine colostrum reduce LPS-induced inflammatory responses of equine PBMCs. Colostrum and milk-derived carbohydrates are promising candidates for new concepts in preventive and regenerative medicine.
Bates, A.L.; Hatcher, P.G.
1992-01-01
Isolated lignin with a low carbohydrate content was spiked with increasing amounts of alpha-cellulose, and then analysed by solid-state 13C nuclear magnetic resonance (NMR) using cross-polarization with magic angle spinning (CPMAS) and dipolar dephasing methods in order to assess the quantitative reliability of CPMAS measurement of carbohydrate content and to determine how increasingly intense resonances for carbohydrate carbons affect calculations of the degree of lignin's aromatic ring substitution and methoxyl carbon content. Comparisons were made of the carbohydrate content calculated by NMR with carbohydrate concentrations obtained by phenol-sulfuric acid assay and by the calculation from the known amounts of cellulose added. The NMR methods used in this study yield overestimates for carbohydrate carbons due to resonance area overlap from the aliphatic side chain carbons of lignin. When corrections are made for these overlapping resonance areas, the NMR results agree very well with results obtained by other methods. Neither the calculated methoxyl carbon content nor the degree of aromatic ring substitution in lignin, both calculated from dipolar dephasing spectra, change with cellulose content. Likewise, lignin methoxyl content does not correlate with cellulose abundance when measured by integration of CPMAS spectra. ?? 1992.
Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin.
McLaughlin, Heather P; Motherway, Mary O'Connell; Lakshminarayanan, Bhuvaneswari; Stanton, Catherine; Paul Ross, R; Brulc, Jennifer; Menon, Ravi; O'Toole, Paul W; van Sinderen, Douwe
2015-06-16
Because increased proportions of particular commensal bacteria such as bifidobacteria and lactobacilli have been linked to human health through a variety of mechanisms, there is corresponding interest in identifying carbohydrates that promote growth and metabolic activity of these bacteria. We evaluated the ability of 20 carbohydrates, including several commercially available carbohydrates that are sold as prebiotic ingredients, to support growth of 32 human-derived isolates belonging to the genera Bifidobacterium and Lactobacillus, including those isolated from healthy elderly subjects. In general, bifidobacterial strains were shown to display more diverse carbohydrate utilization profiles compared to the tested Lactobacillus species, with several bifidobacterial strains capable of metabolizing xylo-oligosaccharide (XOS), arabinoxylan, maltodextrin, galactan and carbohydrates containing fructo-oligosaccharide (FOS) components. In contrast, maltodextrin, galactan, arabinogalactan and galactomannan did not support robust growth (≥0.8 OD600 nm) of any of the Lactobacillus strains assessed. Carbohydrate fermentation was variable among strains tested of the same species for both genera. This study advances our knowledge of polysaccharide utilization by human gut commensals, and provides information for the rational design of selective prebiotic food ingredients. Copyright © 2015 Elsevier B.V. All rights reserved.
Carbohydrate-based vaccine adjuvants - discovery and development.
Hu, Jing; Qiu, Liying; Wang, Xiaoli; Zou, Xiaopeng; Lu, Mengji; Yin, Jian
2015-10-01
The addition of a suitable adjuvant to a vaccine can generate significant effective adaptive immune responses. There is an urgent need for the development of novel po7tent and safe adjuvants for human vaccines. Carbohydrate molecules are promising adjuvants for human vaccines due to their high biocompatibility and good tolerability in vivo. The present review covers a few promising carbohydrate-based adjuvants, lipopolysaccharide, trehalose-6,6'-dibehenate, QS-21 and inulin as examples, which have been extensively studied in human vaccines in a number of preclinical and clinical studies. The authors discuss the current status, applications and strategies of development of each adjuvant and different adjuvant formulation systems. This information gives insight regarding the exciting prospect in the field of carbohydrate-based adjuvant research. Carbohydrate-based adjuvants are promising candidates as an alternative to the Alum salts for human vaccines development. Furthermore, combining two or more adjuvants in one formulation is one of the effective strategies in adjuvant development. However, further research efforts are needed to study and develop novel adjuvants systems, which can be more stable, potent and safe. The development of synthetic carbohydrate chemistry can improve the study of carbohydrate-based adjuvants.
A carbohydrate-anion recognition system in aprotic solvents.
Ren, Bo; Dong, Hai; Ramström, Olof
2014-05-01
A carbohydrate-anion recognition system in nonpolar solvents is reported, in which complexes form at the B-faces of β-D-pyranosides with H1-, H3-, and H5-cis patterns similar to carbohydrate-π interactions. The complexation effect was evaluated for a range of carbohydrate structures; it resulted in either 1:1 carbohydrate-anion complexes, or 1:2 complex formation depending on the protection pattern of the carbohydrate. The interaction was also evaluated with different anions and solvents. In both cases it resulted in significant binding differences. The results indicate that complexation originates from van der Waals interactions or weak CH⋅⋅⋅A(-) hydrogen bonds between the binding partners and is related to electron-withdrawing groups of the carbohydrates as well as increased hydrogen-bond-accepting capability of the anions. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Effects of carbohydrates on satiety: differences between liquid and solid food.
Pan, An; Hu, Frank B
2011-07-01
To examine the satiety effect of carbohydrates with a focus on the comparison of liquid and solid food and their implications for energy balance and weight management. A number of studies have examined the role of dietary fiber, whole grains, and glycemic index or glycemic load on satiety and subsequent energy intake, but results remain inconclusive. Intake of liquid carbohydrates, particularly sugar-sweetened beverages, has increased considerably across the globe in recent decades in both adolescents and adults. In general, liquid carbohydrates produce less satiety compared with solid carbohydrates. Some energy from liquids may be compensated for at subsequent meals but because the compensation is incomplete, it leads to an increase in total long-term energy intake. Recent studies also suggest some potential differential responses of satiety by characteristics of the patients (e.g., race, sex, and body weight status). These differences warrant further research. Satiety is a complex process influenced by a number of properties in food. The physical form (solid vs. liquid) of carbohydrates is an important component that may affect the satiety process and energy intake. Accumulating evidence suggests that liquid carbohydrates generally produce less satiety than solid forms.
Zhang, Genyi; Hasek, Like Y; Lee, Byung-Hoo; Hamaker, Bruce R
2015-04-01
Glycemic carbohydrates in foods are an important macronutrient providing the biological fuel of glucose for a variety of physiological processes. A classification of glycemic carbohydrates into rapidly digestible carbohydrate (RDC) and slowly digestible carbohydrate (SDC) has been used to specify their nutritional quality related to glucose homeostasis that is essential to normal functioning of the brain and critical to life. Although there have been many studies and reviews on slowly digestible starch (SDS) and SDC, the mechanisms of their slow digestion and absorption were mostly investigated from the material side without considering the physiological processes of their in vivo digestion, absorption, and most importantly interactions with other food components and the gastrointestinal tract. In this article, the physiological processes modulating the bioavailability of carbohydrates, specifically the rate and extent of their digestion and absorption as well as the related locations, in a whole food context, will be discussed by focusing on the activities of the gastrointestinal tract including glycolytic enzymes and glucose release, sugar sensing, gut hormones, and neurohormonal negative feedback mechanisms. It is hoped that a deep understanding of these physiological processes will facilitate the development of innovative dietary approaches to achieve desired carbohydrate or glucose bioavailability for improved health.
Reading Food Labels: Tips If You Have Diabetes
... the grams of total carbohydrates — which includes sugar, complex carbohydrates and fiber — rather than only the grams of ... 18, 2016. How to use and understand the nutrition facts label. U.S. ... of carbohydrates. American Diabetes Association. http://www.diabetes.org/food- ...
Radioiodinated branched carbohydrates
Goodman, Mark M.; Knapp, Jr., Furn F.
1989-01-01
A radioiodinated branched carbohydrate for tissue imaging. Iodine-123 is stabilized in the compound by attaching it to a vinyl functional group that is on the carbohydrate. The compound exhibits good uptake and retention and is promising in the development of radiopharmaceuticals for brain, heart and tumor imaging.
Transcriptional switches in the control of macronutrient metabolism.
Wise, Alan
2008-06-01
This review shows how some transcription factors respond to alterations in macronutrients. Carbohydrates induce enzymes for their metabolism and fatty acid synthesis. Fatty acids reduce carbohydrate processing, induce enzymes for their metabolism, and increase both gluconeogenesis and storage of fat. Fat stores help control carbohydrate uptake by other cells. The following main transcription factors are discussed: carbohydrate response element-binding protein; sterol regulatory element-binding protein-1c, cyclic AMP response element-binding protein, peroxisome proliferator-activated receptor-alpha, and peroxisome proliferator-activated receptor-gamma.
Cacciarini, Martina; Nativi, Cristina; Norcini, Martina; Staderini, Samuele; Francesconi, Oscar; Roelens, Stefano
2011-02-21
The contribution from several H-bonding groups and the impact of geometric requirements on the binding ability of benzene-based tripodal receptors toward carbohydrates have been investigated by measuring the affinity of a set of structures toward octyl β-D-glucopyranoside, selected as a representative monosaccharide. The results reported in the present study demonstrate that a judicious choice of correct geometry and appropriate functional groups is critical to achieve the complementary hydrogen bonding interactions required for an effective carbohydrate recognition.
NASA Astrophysics Data System (ADS)
Wang, Xuri; Cai, Yihua; Guo, Laodong
2013-07-01
Riverine export of dissolved and particulate organic matter to the sea is one of the major components in marine carbon cycles, affecting biogeochemical processes in estuarine and coastal regions. However, the detailed composition of organic material and the relative partitioning among the dissolved, colloidal, and particulate phases are poorly quantified. The abundance of carbohydrate species and their partitioning among dissolved, colloidal, and particulate phases were examined in the waters from the lower Mississippi River (MR), the lower Pearl River (PR), and the Bay of St. Louis (BSL). Particulate carbohydrates (PCHO) represented a small fraction of the particulate organic carbon (POC) pool, with 4.7 ± 3.1%, 4.5 ± 2.4% and 1.8 ± 0.83% in the MR, PR, and BSL, respectively. Dissolved carbohydrates (DCHO) were a major component of the bulk dissolved organic carbon (DOC) pool, comprising 23%, 35%, and 18% in the MR, PR, and BSL, respectively. Differences in the DCHO/DOC ratio between the MR, PR, and BSL were related to their distinct characteristics in drainage basins, anthropogenic impacts, and hydrological conditions, reflecting differences in sources and composition of organic matter in different aquatic environments. Within the total carbohydrates (TCHO) pool, the high-molecular-weight carbohydrates (HMW-CHO, 1 kDa-0.45 μm) were the dominant species, representing 52-71% of the TCHO pool, followed by the low-molecular-weight carbohydrates (LMW-CHO, <1 kDa), representing 14-44% of the TCHO. The PCHO accounted for 4-16% of the bulk TCHO. Variations in the size distribution of carbohydrates among the MR, PR, and BSL were closely linked to the cycling pathway of organic matter and the interactions between different size fractions of the carbohydrates.
Harsten, Andreas; Hjartarson, Hjörtur; Toksvig-Larsen, Sören
2012-06-01
Perioperative oral carbohydrate intake is beneficial to general surgery patients. Total hip arthroplasty is a common surgical procedure, and even a moderate improvement in patient outcome could have a significant effect on the resources needed for these patients. However, few studies have focused on the effects of carbohydrate intake on orthopaedic patients. The purpose of this study was to investigate if perioperative oral carbohydrate intake alters the postoperative course for patients undergoing total hip arthroplasty. The primary hypothesis was that pain scores would be lower in patients treated with carbohydrate. A randomised, double-blind, controlled trial. This study was carried out between September 2009 and April 2011 at a district Swedish hospital that specialises in orthopaedic surgery. Sixty ASA physical status I-III patients scheduled for elective total hip arthroplasty were included. Exclusion criteria were obesity, diabetes, prior hip surgery to the same hip, ongoing infection, immunological deficiency or age less than 50 or more than 80 years. Patients were given 400 ml of either an oral 12.5% carbohydrate solution or a placebo beverage (flavoured water) 1.5 h before and 2 h after surgery. Visual analogue scales were used to score six discomfort parameters. Immediately prior to surgery, the carbohydrate-treated patients were less hungry (median score 9.5 vs. 22 mm) and experienced less nausea (0 vs. 1.5 mm) (P< 0.05). Postoperatively, patients in the carbohydrate group experienced less pain at 12, 16 and 20 h (median scores 20, 30 and 34 vs. 7, 5 and 0 mm; P<0.05). This study shows that there is limited benefit from administering oral carbohydrate prior to total hip arthroplasty.
Xin, Hangshu; Ding, Xue; Zhang, Liyang; Sun, Fang; Wang, Xiaofan; Zhang, Yonggen
2017-05-24
The objectives of this study were to investigate (1) nutritive values and biodegradation characteristics and (2) mid-IR spectroscopic features within the regions associated with carbohydrate functional groups (including cellulosic component (CELC), structural carbohydrate (STCHO), and total carbohydrate (CHO)) in different morphological fractions of corn stover. Furthermore, correlation and regression analyses were also applied to determine the relationship between nutritional values and spectroscopic parameters. The results showed that different morphological sections of corn stover had different nutrient supplies, in situ biodegradation characteristics, and spectral structural features within carbohydrate regions. The stem rind and ear husk were both high in fibrous content, which led to the lowest effective degradabilities (ED) among these stalk fractions. The ED values of NDF were ranked ear husk > stem pith > leaf blade > leaf sheath > whole plant > stem rind. Intensities of peak height and area within carbohydrate regions were relatively more stable compared with spectral ratio profiles. Significant difference was found only in peak area intensity of CELC, which was at the highest level for stem rind, followed by stem pith, leaf sheath, whole plant, leaf blade, and ear husk. Correlation results showed that changes in some carbohydrate spectral ratios were highly associated with carbohydrate chemical profiles and in situ rumen degradation kinetics. Among the various carbohydrate molecular spectral parameters that were tested in multiple regression analysis, CHO height ratios, and area ratios of CELC:CHO and CELC:STCHO as well as CELC area were mostly sensitive to nutrient supply and biodegradation characteristics in different morphological fractions of corn stover.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kappes, E.M.
1986-01-01
Carbohydrate production, export and use were studied for different organs of sour cherry (Prunus cerasus L. Montmorency). Gross carbohydrate (/sup 14/CO/sub 2/) export started between 27.2 and 77.6% of full leaf expansion. The 10th leaf developing started export later than the 7th leaf, suggesting that higher carbohydrate availability during leaf expansion delays export initiation. In support of this, gross export started earlier (44.4-52.4% full expansion) after source leaf removal, than in the control (77.6%). Translocation was primarily vertical (following orthostichies). Most leaves of fruiting shoots exported bidirectionally to the apex and fruits, only leaves closest to fruits exported exclusively tomore » fruits during rapid cell division (Stage I) and rapid cell expansion (Stage III). Net export, determined from carbohydrate balance models started at 17 and 51% expansion for the 7th and terminal leaf, and at 26.5% of shoot elongation. Cumulative carbohydrate production of the 7th and terminal leaves during the first 9 and 11 days after emergence, exceeded carbohydrate accumulated at final size, 464.2 and 148.9 mg. A fruit carbohydrate balance was developed to determine contributions by fruit photosynthesis and fruit respiration, and to identify periods of greatest carbohydrate import. Fruit photosynthesis during development was characterized under different environmental conditions. Gross photosynthesis and chlorophyll content per fruit increased to a maximum during stage II and decreased thereafter. Gross photosynthesis approached a maximum at 40/sub 0/C. Since dark respiration increased exponentially over the same temperature range, net photosynthesis reached a maximum at 18/sup 0/C. Photorespiration was not detected.« less
Souto, Débora Lopes; Zajdenverg, Lenita; Rodacki, Melanie; Rosado, Eliane Lopes
2014-03-01
Diets based on carbohydrate counting remain a key strategy for improving glycemic control in patients with type 1 diabetes. However, these diets may promote weight gain because of the flexibility in food choices. The aim of this study was to compare carbohydrate counting methods regarding anthropometric, biochemical, and dietary variables in individuals with type 1 diabetes, as well as to evaluate their knowledge about nutrition. Participants were allocated in basic or advanced groups. After 3 mo of the nutritional counseling, dietary intake, anthropometric variables, lipemia, and glycemic control were compared between groups. A questionnaire regarding carbohydrate counting, sucrose intake, nutritional knowledge, and diabetes and nutrition taboos also was administered. Ten (30%) participants had already used advanced carbohydrate counting before the nutritional counseling and these individuals had a higher body mass index (BMI) (P < 0.01) and waist circumference (WC) (P = 0.01) than others (n = 23; 69.7%). After 3 mo of follow-up, although participants in the advanced group (n = 17; 51.52%) presented higher BMI (P < 0.01) and WC (P = 0.03), those in the basic group (n = 16; 48.48%) showed a higher fat intake (P < 0.01). The majority of participants reported no difficulty in following carbohydrate counting (62.5% and 88% for basic and advanced groups, respectively) and a greater flexibility in terms of food choices (>90% with both methods). Advanced carbohydrate counting did not affect lipemic and glycemic control in individuals with type 1 diabetes, however, it may increase food intake, and consequently the BMI and WC, when compared to basic carbohydrate counting. Furthermore, carbohydrate counting promoted greater food flexibility. Copyright © 2014 Elsevier Inc. All rights reserved.
Refined carbohydrate intake in relation to non-verbal intelligence among Tehrani schoolchildren.
Abargouei, Amin Salehi; Kalantari, Naser; Omidvar, Nasrin; Rashidkhani, Bahram; Rad, Anahita Houshiar; Ebrahimi, Azizeh Afkham; Khosravi-Boroujeni, Hossein; Esmaillzadeh, Ahmad
2012-10-01
Nutrition has long been considered one of the most important environmental factors affecting human intelligence. Although carbohydrates are the most widely studied nutrient for their possible effects on cognition, limited data are available linking usual refined carbohydrate intake and intelligence. The present study was conducted to examine the relationship between long-term refined carbohydrate intake and non-verbal intelligence among schoolchildren. Cross-sectional study. Tehran, Iran. In this cross-sectional study, 245 students aged 6-7 years were selected from 129 elementary schools in two western regions of Tehran. Anthropometric measurements were carried out. Non-verbal intelligence and refined carbohydrate consumption were determined using Raven's Standard Progressive Matrices test and a modified sixty-seven-item FFQ, respectively. Data about potential confounding variables were collected. Linear regression analysis was applied to examine the relationship between non-verbal intelligence scores and refined carbohydrate consumption. Individuals in top tertile of refined carbohydrate intake had lower mean non-verbal intelligence scores in the crude model (P < 0.038). This association remained significant after controlling for age, gender, birth date, birth order and breast-feeding pattern (P = 0.045). However, further adjustments for mother's age, mother's education, father's education, parental occupation and BMI made the association statistically non-significant. We found a significant inverse association between refined carbohydrate consumption and non-verbal intelligence scores in regression models (β = -11.359, P < 0.001). This relationship remained significant in multivariate analysis after controlling for potential confounders (β = -8.495, P = 0.038). The study provides evidence indicating an inverse relationship between refined carbohydrate consumption and non-verbal intelligence among Tehrani children aged 6-7 years. Prospective studies are needed to confirm our findings.
Histo-blood group carbohydrates as facilitators for infection by Helicobacter pylori.
Brandão de Mattos, Cinara Cássia; de Mattos, Luiz Carlos
2017-09-01
Helicobacter pylori infect millions of people around the world. It occupies a niche in the human gastrointestinal tract characterized by high expression of a repertoire of carbohydrates. ABO and Lewis histo-blood group systems are controlled by genes coding for functional glycosyltransferases which synthesize great diversity of related fucosylated carbohydrate in different tissues, including gastrointestinal mucosa, and exocrine secretions. The structural diversity of histo-blood group carbohydrates is highly complex and depends on epistatic interactions among gene-encoding glycosyltransferases. The histo-blood group glycosyltransferases act in the glycosylation of proteins and lipids in the human gastrointestinal tract allowing the expression of a variety of potential receptors in which H. pylori can adhere. These oligosaccharide molecules are part of the gastrointestinal repertoire of carbohydrates which act as potential receptors for microorganisms, including H. pylori. This Gram-negative bacillus is one of the main causes of the gastrointestinal diseases such as chronic active gastritis, peptic ulcer, and cancer of stomach. Previous reports showed that some H. pylori strains use carbohydrates as receptors to adhere to the gastric and duodenal mucosa. Since some histo-blood group carbohydrates are highly expressed in one but not in others histo-blood group phenotypes it has pointed out that quantitative differences among them influence the susceptibility to diseases caused by H. pylori. Additionally, some experiments using animal model are helping us to understand how this bacillus explore histo-blood group carbohydrates as potential receptors, offering possibility to explore new strategies of management of infection, disease treatment, and prevention. This text highlights the importance of structural diversity of ABO and Lewis histo-blood group carbohydrates as facilitators for H. pylori infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Shikata, Y; Ohe, H; Mano, N; Kuwada, M; Asakawa, N
1998-06-01
The structure of the N-linked carbohydrate chains of peptide isomerase from the venom of the funnel web spider (Agelenopsis aperta) has been analyzed. Carbohydrates were released from peptide isomerase by hydrazinolysis and reductively aminated with 2-aminopyridine. The fluorescent derivatives were purified by phenol/chloroform extraction, followed by size-exclusion HPLC. The structure of the purified pyridylamino (PA-) carbohydrate chains were analyzed by a combination of two-dimensional HPLC mapping, sugar composition analysis, sequential exoglycosidase digestions, and mass spectrometry. The peptide isomerase contains six kinds of N-linked carbohydrate chains of truncated high-mannose type, with a fucose alpha 1-6 linked to the reducing N-acetylglucosamine in approximately 80% of them.
Data mining the PDB for glyco-related data.
Lütteke, Thomas; von der Lieth, Claus W
2009-01-01
The 3D structural data of glycoprotein or protein-carbohydrate complexes that are found in the Protein Data Bank (PDB) are an interesting data source for glycobiologists. Unfortunately, carbohydrate components are difficult to find with the means provided by the PDB. The GLYCOSCIENCES.de internet portal offers a variety of tools and databases to locate and analyze these structures. This chapter describes how to find PDB entries that feature a specific carbohydrate structure and how to locate carbohydrate residues in a 3D structure file and to check their consistency. In addition to this, methods to statistically analyze torsion angles and the abundance of amino acids both in the neighborhood of glycosylation sites and in the spatial vicinity of non-covalently bound carbohydrate chains are summarized.
Carbohydrate binding properties of the stinging nettle (Urtica dioica) rhizome lectin.
Shibuya, N; Goldstein, I J; Shafer, J A; Peumans, W J; Broekaert, W F
1986-08-15
The interaction of the stinging nettle rhizome lectin (UDA) with carbohydrates was studied by using the techniques of quantitative precipitation, hapten inhibition, equilibrium dialysis, and uv difference spectroscopy. The Carbohydrate binding site of UDA was determined to be complementary to an N,N',N"-triacetylchitotriose unit and proposed to consist of three subsites, each of which has a slightly different binding specificity. UDA also has a hydrophobic interacting region adjacent to the carbohydrate binding site. Equilibrium dialysis and uv difference spectroscopy revealed that UDA has two carbohydrate binding sites per molecule consisting of a single polypeptide chain. These binding sites either have intrinsically different affinities for ligand molecules, or they may display negative cooperativity toward ligand binding.
Characterization of Protein-Carbohydrate Interactions by NMR Spectroscopy.
Grondin, Julie M; Langelaan, David N; Smith, Steven P
2017-01-01
Solution-state nuclear magnetic resonance (NMR) spectroscopy can be used to monitor protein-carbohydrate interactions. Two-dimensional 1 H- 15 N heteronuclear single quantum coherence (HSQC)-based techniques described in this chapter can be used quickly and effectively to screen a set of possible carbohydrate binding partners, to quantify the dissociation constant (K d ) of any identified interactions, and to map the carbohydrate binding site on the structure of the protein. Here, we describe the titration of a family 32 carbohydrate binding module from Clostridium perfringens (CpCBM32) with the monosaccharide N-acetylgalactosamine (GalNAc), in which we calculate the apparent dissociation of the interaction, and map the GalNAc binding site onto the structure of CpCBM32.
Sensitive determination of carbohydrates by fluorimetric method with Ce(IV) and sodium triphosphate.
Yang, Jinghe; Cao, Xihui; Sun, Changxia; Wu, Xia; Li, Lei
2004-05-01
A new simple and sensitive fluorimetric method for the determination of carbohydrates is described. The method is based on the reaction between carbohydrates and Ce(IV) in the presence of sulfuric acid. All the reductive carbohydrates can be detected indirectly by the fluorescence of Ce(III) produced. The addition of sodium triphate enhances the sensitivity of the method by more than 10-folds. Under optimum conditions, an excellent linear relationship was obtained between the fluorescence intensity and the concentration of carbohydrates. The limits of detection lie in the range of 9.3 x 10(-10) - 1.3 x 10(-9) mol/L. As compared to the normal fluorimetric method, the proposed method is faster and more sensitive.
Recent progress in chemical and chemoenzymatic synthesis of carbohydrates.
Muthana, Saddam; Cao, Hongzhi; Chen, Xi
2009-12-01
The important roles that carbohydrates play in biological processes and their potential application in diagnosis, therapeutics, and vaccine development have made them attractive synthetic targets. Despite ongoing challenges, tremendous progresses have been made in recent years for the synthesis of carbohydrates. The chemical glycosylation methods have become more sophisticated and the synthesis of oligosaccharides has become more predictable. Simplified one-pot glycosylation strategy and automated synthesis are increasingly used to obtain biologically important glycans. On the other hand, chemoenzymatic synthesis continues to be a powerful alternative for obtaining complex carbohydrates. This review highlights recent progress in chemical and chemoenzymatic synthesis of carbohydrates with a particular focus on the methods developed for the synthesis of oligosaccharides, polysaccharides, glycolipids, and glycosylated natural products.
Chemoselective Reactions for the Synthesis of Glycoconjugates from Unprotected Carbohydrates.
Villadsen, Klaus; Martos-Maldonado, Manuel C; Jensen, Knud J; Thygesen, Mikkel B
2017-04-04
Glycobiology is the comprehensive biological investigation of carbohydrates. The study of the role and function of complex carbohydrates often requires the attachment of carbohydrates to surfaces, their tagging with fluorophores, or their conversion into natural or non-natural glycoconjugates, such as glycopeptides or glycolipids. Glycobiology and its "omics", glycomics, require easy and robust chemical methods for the construction of these glycoconjugates. This review gives an overview of the rapidly expanding field of chemical reactions that selectively convert unprotected carbohydrates into glycoconjugates through the anomeric position. The discussion is divided in terms of the anomeric bond type of the newly formed glycoconjugates, including O-, N-, S-, and C-glycosides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumesic, James A.; Alonso, David Martin; Gurbuz, Elif I.
A method to make levulinic acid (LA), furfural, or gamma-valerolactone (GVL). React cellulose (and/or other C.sub.6 carbohydrates) or xylose (and/or other C.sub.5 carbohydrates) or combinations thereof in a monophasic reaction medium comprising GVL and an acid; or (ii) a biphasic reaction system comprising an organic layer comprising GVL, and a substantially immiscible aqueous layer. At least a portion of the cellulose (and/or other C.sub.6 carbohydrates), if present, is converted to LA and at least a portion of the xylose (and/or other C.sub.5 carbohydrates), if present, is converted into furfural.
Recent Progress in Chemical and Chemoenzymatic Synthesis of Carbohydrates
Muthana, Saddam; Cao, Hongzhi; Chen, Xi
2011-01-01
Summary The important roles that carbohydrates play in biological processes and their potential application in diagnosis, therapeutics, and vaccine development have made them attractive synthetic targets. Despite ongoing challenges, tremendous progresses have been made in recent years for the synthesis of carbohydrates. The chemical glycosylation methods have become more sophisticated and the synthesis of oligosaccharides has become more predictable. Simplified one-pot glycosylation strategy and automated synthesis are increasingly used to obtain biologically important glycans. On the other hand, chemoenzymatic synthesis continues to be a powerful alternative for obtaining complex carbohydrates. This review highlights recent progress in chemical and chemoenzymatic synthesis of carbohydrates with a particular focus on the methods developed for the synthesis of oligosaccharides, polysaccharides, glycolipids, and glycosylated natural products. PMID:19833544
Animal Productivity and Health Responses to Hind-Gut Acidosis
USDA-ARS?s Scientific Manuscript database
Microbial fermentation of carbohydrates in the large intestine of dairy cattle is responsible for 5 to 10% of total tract carbohydrate digestion. When dietary, animal, and/or environmental factors contribute to abnormal, excessive flow of fermentable carbohydrates to the large intestine, hind-gut ac...
USDA-ARS?s Scientific Manuscript database
Background: For biofuel production processes to be economically efficient, it is essential to maximize the production of monomeric carbohydrates from the structural carbohydrates of feedstocks. One strategy for maximizing carbohydrate production is to identify less recalcitrant feedstock cultivars b...
Chemical Changes in Carbohydrates Produced by Thermal Processing.
ERIC Educational Resources Information Center
Hoseney, R. Carl
1984-01-01
Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)
21 CFR 163.124 - White chocolate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... section and one or more optional nutritive carbohydrate sweeteners and may contain one or more of the... this section, and not more than 55 percent by weight nutritive carbohydrate sweetener. (b) Optional ingredients. The following safe and suitable ingredients may be used: (1) Nutritive carbohydrate sweeteners...
21 CFR 163.124 - White chocolate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... section and one or more optional nutritive carbohydrate sweeteners and may contain one or more of the... this section, and not more than 55 percent by weight nutritive carbohydrate sweetener. (b) Optional ingredients. The following safe and suitable ingredients may be used: (1) Nutritive carbohydrate sweeteners...
21 CFR 163.124 - White chocolate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... section and one or more optional nutritive carbohydrate sweeteners and may contain one or more of the... this section, and not more than 55 percent by weight nutritive carbohydrate sweetener. (b) Optional ingredients. The following safe and suitable ingredients may be used: (1) Nutritive carbohydrate sweeteners...
One strike against low-carbohydrate diets
USDA-ARS?s Scientific Manuscript database
There is intense controversy over whether low-carbohydrate or low-fat diets are more efficacious for weight management. Using precise methodology, Hall et al. (2015) demonstrated that a low-carbohydrate diet promoted greater fat oxidation than an isocaloric low-fat diet but, in contrast to popular s...
USDA-ARS?s Scientific Manuscript database
The structural analysis of complex carbohydrates typically requires the assignment of three parameters: monosaccharide composition, the position of glycosidic linkages between monosaccharides, and the position and nature of non-carbohydrate substituents. The glycosidic linkage positions are often de...
27 CFR 24.246 - Materials authorized for the treatment of wine and juice.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (alpha-Amylase): To convert starches to fermentable carbohydrates The amylase enzyme activity shall be... 184.1027. Carbohydrase (beta-Amylase): To convert starches to fermentable carbohydrates The amylase... (Glucoamylase, Amylogluco-sidase): To convert starches to fermentable carbohydrates The amylase enzyme activity...
27 CFR 24.246 - Materials authorized for the treatment of wine and juice.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (alpha-Amylase): To convert starches to fermentable carbohydrates The amylase enzyme activity shall be... 184.1027. Carbohydrase (beta-Amylase): To convert starches to fermentable carbohydrates The amylase... (Glucoamylase, Amylogluco-sidase): To convert starches to fermentable carbohydrates The amylase enzyme activity...
27 CFR 24.246 - Materials authorized for the treatment of wine and juice.
Code of Federal Regulations, 2014 CFR
2014-04-01
... (alpha-Amylase): To convert starches to fermentable carbohydrates The amylase enzyme activity shall be... 184.1027. Carbohydrase (beta-Amylase): To convert starches to fermentable carbohydrates The amylase... (Glucoamylase, Amylogluco-sidase): To convert starches to fermentable carbohydrates The amylase enzyme activity...
27 CFR 24.246 - Materials authorized for the treatment of wine and juice.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (alpha-Amylase): To convert starches to fermentable carbohydrates The amylase enzyme activity shall be... 184.1027. Carbohydrase (beta-Amylase): To convert starches to fermentable carbohydrates The amylase... (Glucoamylase, Amylogluco-sidase): To convert starches to fermentable carbohydrates The amylase enzyme activity...
de la Fuente, Jesús M; Eaton, Peter; Barrientos, Africa G; Menéndez, Margarita; Penadés, Soledad
2005-05-04
Thermodynamic evidence for the selective Ca(2+)-mediated self-aggregation via carbohydrate-carbohydrate interactions of gold glyconanoparticles functionalized with the disaccharides lactose (lacto-Au) and maltose (malto-Au), or the biologically relevant trisaccharide Lewis X (Le(X)-Au), was obtained by isothermal titration calorimetry. The aggregation process was also directly visualized by atomic force microscopy. It was shown in the case of the trisaccharide Lewis X that the Ca(2+)-mediated aggregation is a slow process that takes place with a decrease in enthalpy of 160 +/- 30 kcal mol(-)(1), while the heat evolved in the case of lactose and maltose glyconanoparticles was very low and thermal equilibrium was quickly achieved. Measurements in the presence of Mg(2+) and Na(+) cations confirm the selectivity for Ca(2+) of Le(X)-Au glyconanoparticles. The relevance of this result to cell-cell adhesion process mediated by carbohydrate-carbohydrate interactions is discussed.
Pańkowska, Ewa
2010-01-01
In this issue of Journal of Diabetes Science and Technology, Shapira and colleagues present new concepts of carbohydrate load estimation in intensive insulin therapy. By using a mathematical model, they attempt to establish how accurately carbohydrate food content should be maintained in order to keep postprandial blood glucose levels in the recommended range. Their mathematical formula, the “bolus guide” (BG), is verified by simulating prandial insulin dosing and responding to proper blood glucose levels. Different variants such as insulin sensitivity factor, insulin-to-carbohydrate ratio, and target blood glucose were taken into this formula in establishing the calculated proper insulin dose. The new approach presented here estimates the carbohydrate content by rearranging the carbohydrate load instead of the simple point estimation that the current bolus calculators (BCs) use. Computerized estimations show that the BG directives, as compared to a BC, result in more glucose levels above 200 mg/dl and thus indicate less hypoglycemia readings. PMID:20663454
Inquiry-Based Approach to a Carbohydrate Analysis Experiment
NASA Astrophysics Data System (ADS)
Senkbeil, Edward G.
1999-01-01
The analysis of an unknown carbohydrate in an inquiry-based learning format has proven to be a valuable and interesting undergraduate biochemistry laboratory experiment. Students are given a list of carbohydrates and a list of references for carbohydrate analysis. The references contain a variety of well-characterized wet chemistry and instrumental techniques for carbohydrate identification, but the students must develop an appropriate sequential protocol for unknown identification. The students are required to provide a list of chemicals and procedures and a flow chart for identification before the lab. During the 3-hour laboratory period, they utilize their accumulated information and knowledge to classify and identify their unknown. Advantages of the inquiry-based format are (i) students must be well prepared in advance to be successful in the laboratory, (ii) students feel a sense of accomplishment in both designing and carrying out a successful experiment, and (iii) the carbohydrate background information digested by the students significantly decreases the amount of lecture time required for this topic.
Sweet Polymers: Poly(2-ethyl-2-oxazoline) Glycopolymers by Reductive Amination.
Mees, Maarten A; Effenberg, Christiane; Appelhans, Dietmar; Hoogenboom, Richard
2016-12-12
Carbohydrates are important in signaling, energy storage, and metabolism. Depending on their function, carbohydrates can be part of larger structures, such as glycoproteins, glycolipids, or other functionalities (glycoside). To this end, polymers can act as carriers of carbohydrates in so-called glycopolymers, which mimic the multivalent carbohydrate functionalities. We chose a biocompatible poly(2-ethyl-2-oxazoline) (PEtOx) as the basis for making glycopolymers. Via the partial hydrolysis of PEtOx, a copolymer of PEtOx and polyethylenimine (PEI) was obtained; the subsequent reductive amination with the linear forms of glucose and maltose yielded the glycopolymers. The ratios of PEtOx and carbohydrates were varied systematically, and the solution behaviors of the resulting glycoconjugates are discussed. Dynamic light scattering (DLS) revealed that, depending on the carbohydrate ratio, the glycopolymers were either fully water-soluble or formed agglomerates in a temperature-dependent manner. Finally, these polymers were tested for their biological availability by studying their lectin binding ability with Concanavalin A.
[Diet and civilization diseases--carbohydrate aspects].
Haslbeck, M
1990-01-01
Carbohydrates are a major component of our food, they are important as body energy stores and they play an important role in cellular structures. In the present paper a classification of food carbohydrates, of dietary fibers and sweeteners is presented and the major physiological effects are discussed. Furthermore, the significance of carbohydrates for the etiology and the treatment of nutrition related diseases which are closely related to the development of arteriosclerosis is outlined. Carbohydrates are beside fat the major determinants of the daily caloric intake. This illustrates their impact on the development of obesity with its predominant role as a risk factor for the development of cardiovascular disease. Furthermore, the role of sugar consumption in the relation to dental caries is stressed. Also the central role of carbohydrate consumption for the treatment of diabetes mellitus is described. Problems of the diabetes diet, the role of the dietary fiber in the treatment of different diseases and the necessity of sweetness in nutrition are discussed in greater detail.
[Carbohydrates and mental performance--the role of glycemic index of food products].
Ciok, Janusz; Dolna, Agnieszka
2006-03-01
The role of carbohydrates in proper functioning of central nervous system measured by parameters of cognitive performance was described. The only source of energy for the brain is glucose, which stimulates the production and secretion of acetylocholine. Important are also enough high blood level of insulin and the level of insulin growth factor (IGF). Many studies had showed that breakfast intake improves the ability of concentration, reaction time, learning ability, mood and memory. Not sufficient amount of nutritional carbohydrates may in opposite be negative for the results of some tests measuring cognitive performance. The results of studies showing that the disturbances in utilization of carbohydrates, present in the patients with diabetes, increase the risk of abnormalities of cognitive performance. There is some evidence that the kind of ingested carbohydrates is important. Several studies suggest that the intake of carbohydrates characterized by low glycemic index (GI) may be favorable for some parameters of cognitive performance, because of prolonged time of stable glicaemia after food ingestion.
Impact of Carbohydrate Restriction on Healthy Adolescent Development.
Richmond, Hannah M; Duriancik, David M
2017-09-01
Carbohydrate-restricted diets are known for their impact on weight loss; however, research is still required to determine if low-carbohydrate diets are safe for adolescents. Carbohydrates directly stimulate an insulin response, and studies have recently shown that insulin and binding to respective insulin receptors (IRs) are critical in Kisspeptin (Kiss1) neuronal development. These neurons directly stimulate gonadotropin-releasing hormone, which activates the pituitary-gonadal axis during puberty. This information suggests that carbohydrate restriction may delay pubertal development in adolescents due to the impact on insulin and Kiss1 transcription. Studies have observed disturbed insulin metabolism in Type I Diabetics leading to delayed puberty, along with overfeeding stimulating early pubertal onset. Additionally, recent clinical trials bred female mice with IR deletions on Kiss1 neurons and observed delayed vaginal opening and estrus. Current animal research suggests low carbohydrate intake may delay pubertal onset, however additional research is required to determine outcome in human subjects. Copyright© of YS Medical Media ltd.
Ahlstrøm, Øystein; Fuglei, Eva; Mydland, Liv Torunn
2003-01-01
Arctic foxes from Svalbard (n=4) and farmed blue foxes (n=4) was used in a digestibility experiment with a high-carbohydrate feed to add more information to the nutritional physiology of the arctic fox, and to compare its digestive capacity with that of the farmed blue fox. The arctic fox has a diet containing mainly protein and fat from mammals and birds, while farmed blue foxes have been exposed to an omnivorous dietary regime for more than 80 generations. The experiment showed in general no difference in digestive capacity for protein and fat between the foxes (P>0.05), but for carbohydrates, including starch and glucose, the blue fox revealed higher digestibility values. The superior digestive capacity for carbohydrates in blue fox might be a result of a long-term selection of animals digesting dietary carbohydrates more efficiently, or that an early age exposition to dietary carbohydrates has given permanent improvement of the carbohydrate digestion in the gut.
Potential effect of ultrasound on carbohydrates.
Bera, Smritilekha; Mondal, Dhananjoy; Martin, Jacob T; Singh, Man
2015-06-17
The use of ultrasound has emerged as one of the most useful alternative energy sources for the synthesis of carbohydrate-derived biologically and pharmaceutically potential compounds. Spectacular advances have been made in the field of sonication-assisted organic reactions, which are known for producing superior yields, enhanced reactivity of the reactant, improved stereoselectivity, and shortened reaction times. Orthogonal protection-deprotection reactions and/or modification and manipulation of functional groups in carbohydrates are common synthetic steps in carbohydrate chemistry. These reaction steps can be driven by the ultrasonic energy generated by acoustic cavitation via the formation and subsequent collapse of ultrasound-induced bubbles. The ultrasound-assisted synthesis of differently functionalised monosaccharides is useful in a wide variety of applications of carbohydrate chemistry such as the glycosylation of oligosaccharides, one pot domino reactions, thioglycoside syntheses, azidoglycoside syntheses, 1,3-dipolar cycloaddition reactions, and syntheses of natural products. This review article covers ultrasound-mediated reactions on carbohydrates that have been described in the literature since 2000. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bilyeu, Kristin D; Wiebold, William J
2016-02-10
Soybean [Glycine max (L.) Merr.] is important for the high protein meal used for livestock feed formulations. Carbohydrates contribute positively or negatively to the potential metabolizable energy in soybean meal. The positive carbohydrate present in soybean meal consists primarily of sucrose, whereas the negative carbohydrate components are the raffinose family of oligosaccharides (RFOs), raffinose and stachyose. Increasing sucrose and decreasing raffinose and stachyose are critical targets to improve soybean. In three recently characterized lines, variant alleles of the soybean raffinose synthase 2 (RS2) gene were associated with increased sucrose and decreased RFOs. The objective of this research was to compare the environmental stability of seed carbohydrates in soybean lines containing wild-type or variant alleles of RS2 utilizing a field location study and a date of planting study. The results define the carbohydrate variation in distinct regional and temporal environments using soybean lines with different alleles of the RS2 gene.
Gardener, Samantha L; Rainey-Smith, Stephanie R; Sohrabi, Hamid R; Weinborn, Michael; Verdile, Giuseppe; Fernando, W M A D Binosha; Lim, Yen Ying; Harrington, Karra; Burnham, Samantha; Taddei, Kevin; Masters, Colin L; Macaulay, Stuart L; Rowe, Christopher C; Ames, David; Maruff, Paul; Martins, Ralph N
2017-01-01
Evidence suggests that a diet low in carbohydrates can impact on cognitive performance among those with Alzheimer's disease (AD). However, there is a lack of data assessing this relationship among cognitively normal (CN) older adults at increased future risk of developing AD due to carriage of the apolipoprotein E (APOE) ɛ4 allele. We assessed the cross-sectional association between carbohydrate intake, cognitive performance, and cerebral amyloid-β (Aβ) load in CN older adults, genotyped for APOEɛ4 allele carrier status. Greater carbohydrate intake was associated with poorer performance in verbal memory in APOEɛ4 allele non-carriers, and poorer performance in attention in APOEɛ4 allele carriers. There were no associations between carbohydrate intake and cerebral Aβ load. These results provide support to the idea that decreasing carbohydrate intake may offer neurocognitive benefits, with specific cognitive domains affected in an APOE genotype-dependent manner. These findings warrant further investigation utilizing a longitudinal study design.
Egorova, K.S.; Kondakova, A.N.; Toukach, Ph.V.
2015-01-01
Carbohydrates are biological blocks participating in diverse and crucial processes both at cellular and organism levels. They protect individual cells, establish intracellular interactions, take part in the immune reaction and participate in many other processes. Glycosylation is considered as one of the most important modifications of proteins and other biologically active molecules. Still, the data on the enzymatic machinery involved in the carbohydrate synthesis and processing are scattered, and the advance on its study is hindered by the vast bulk of accumulated genetic information not supported by any experimental evidences for functions of proteins that are encoded by these genes. In this article, we present novel instruments for statistical analysis of glycomes in taxa. These tools may be helpful for investigating carbohydrate-related enzymatic activities in various groups of organisms and for comparison of their carbohydrate content. The instruments are developed on the Carbohydrate Structure Database (CSDB) platform and are available freely on the CSDB web-site at http://csdb.glycoscience.ru. Database URL: http://csdb.glycoscience.ru PMID:26337239
Lignocentric analysis of a carbohydrate-producing lignocellulosic biorefinery process.
Narron, Robert H; Han, Qiang; Park, Sunkyu; Chang, Hou-Min; Jameel, Hasan
2017-10-01
A biologically-based lignocellulosic biorefinery process for obtaining carbohydrates from raw biomass was investigated across six diverse biomasses (three hardwoods & three nonwoods) for the purpose of decoding lignin's influence on sugar production. Acknowledging that lignin could positively alter the economics of an entire process if valorized appropriately, we sought to correlate the chemical properties of lignin within the process to the traditional metrics associated with carbohydrate production-cellulolytic digestibility and total sugar recovery. Based on raw carbohydrate, enzymatic recovery ranged from 40 to 64% w/w and total recovery ranged from 70 to 87% w/w. Using nitrobenzene oxidation to quantify non-condensed lignin structures, it was found that raw hardwoods bearing increasing non-condensed S/V ratios (2.5-5.1) render increasing total carbohydrate recovery from hardwood biomasses. This finding indicates that the chemical structure of hardwood lignin influences the investigated biorefinery process' ability to generate carbohydrates from a given raw hardwood feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hall, Kevin D.; Bemis, Thomas; Brychta, Robert; Chen, Kong Y.; Courville, Amber; Crayner, Emma J.; Goodwin, Stephanie; Guo, Juen; Howard, Lilian; Knuth, Nicolas D.; Miller, Bernard V.; Prado, Carla M.; Siervo, Mario; Skarulis, Monica C.; Walter, Mary; Walter, Peter J.; Yannai, Laura
2015-01-01
Summary Dietary carbohydrate restriction has been purported to cause endocrine adaptations that promote body fat loss more than dietary fat restriction. We selectively restricted dietary carbohydrate versus fat for 6 days following a 5 day baseline diet in 19 adults with obesity confined to a metabolic ward where they exercised daily. Subjects received both isocaloric diets in random order during each of two inpatient stays. Body fat loss was calculated as the difference between daily fat intake and net fat oxidation measured while residing in a metabolic chamber. Whereas carbohydrate restriction led to sustained increases in fat oxidation and loss of 53±6 g/d of body fat, fat oxidation was unchanged by fat restriction leading to 89±6 g/d of fat loss and was significantly greater than carbohydrate restriction (p=0.002). Mathematical model simulations agreed with these data, but predicted that the body acts to minimize body fat differences with isocaloric diets varying in carbohydrate and fat. PMID:26278052
Nestor, Gustav; Anderson, Taigh; Oscarson, Stefan; Gronenborn, Angela M
2017-05-03
NMR of a uniformly 13 C-labeled carbohydrate was used to elucidate the atomic details of a sugar-protein complex. The structure of the 13 C-labeled Manα(1-2)Manα(1-2)ManαOMe trisaccharide ligand, when bound to cyanovirin-N (CV-N), was characterized and revealed that in the complex the glycosidic linkage torsion angles between the two reducing-end mannoses are different from the free trisaccharide. Distances within the carbohydrate were employed for conformational analysis, and NOE-based distance mapping between sugar and protein revealed that Manα(1-2)Manα(1-2)ManαOMe is bound more intimately with its two reducing-end mannoses into the domain A binding site of CV-N than with the nonreducing end unit. Taking advantage of the 13 C spectral dispersion of 13 C-labeled carbohydrates in isotope-filtered experiments is a versatile means for a simultaneous mapping of the binding interactions on both, the carbohydrate and the protein.
(1)H NMR spectroscopy for profiling complex carbohydrate mixtures in non-fractionated beer.
Petersen, Bent O; Nilsson, Mathias; Bøjstrup, Marie; Hindsgaul, Ole; Meier, Sebastian
2014-05-01
A plethora of biological and biotechnological processes involve the enzymatic remodelling of carbohydrates in complex mixtures whose compositions affect both the processes and products. In the current study, we employed high-resolution (1)H NMR spectroscopy for the analysis of cereal-derived carbohydrate mixtures as exemplified on six beer samples of different styles. Structural assignments of more than 50 carbohydrate moieties were obtained using (1)H1-(1)H2 groups as structural reporters. Spectroscopically resolved carbohydrates include more than ''20 different'' small carbohydrates with more than 38 isomeric forms in addition to cereal polysaccharide fragments with suspected organoleptic and prebiotic function. Structural motifs at the cleavage sites of starch, β-glucan and arabinoxylan fragments were identified, showing different extent and specificity of enzymatic polysaccharide cleavage during the production of different beer samples. Diffusion ordered spectroscopy supplied independent size information for the characterisation and identification of polysaccharide fragments, indicating the presence especially of high molecular weight arabinoxylan fragments in the final beer. Copyright © 2013 Elsevier Ltd. All rights reserved.
Laforin, a dual specificity phosphatase that dephosphorylates complex carbohydrates.
Worby, Carolyn A; Gentry, Matthew S; Dixon, Jack E
2006-10-13
Laforin is the only phosphatase in the animal kingdom that contains a carbohydrate-binding module. Mutations in the gene encoding laforin result in Lafora disease, a fatal autosomal recessive neurodegenerative disorder, which is diagnosed by the presence of intracellular deposits of insoluble complex carbohydrates known as Lafora bodies. We demonstrate that laforin interacts with proteins known to be involved in glycogen metabolism and rule out several of these proteins as potential substrates. Surprisingly, we find that laforin displays robust phosphatase activity against a phosphorylated complex carbohydrate. Furthermore, this activity is unique to laforin, since several other phosphatases are unable to dephosphorylate polysaccharides. Finally, fusing the carbohydrate-binding module of laforin to the dual specific phosphatase VHR does not result in the ability of this phosphatase to dephosphorylate polysaccharides. Therefore, we hypothesize that laforin is unique in its ability to utilize a phosphorylated complex carbohydrate as a substrate and that this function may be necessary for the maintenance of normal cellular glycogen.
Protozoa lectins and their role in host-pathogen interactions.
Singh, Ram Sarup; Walia, Amandeep Kaur; Kanwar, Jagat Rakesh
2016-01-01
Lectins are proteins/glycoproteins of non-immune origin that agglutinate red blood cells, lymphocytes, fibroblasts, etc., and bind reversibly to carbohydrates present on the apposing cells. They have at least two carbohydrate binding sites and their binding can be inhibited by one or more carbohydrates. Owing to carbohydrate binding specificity of lectins, they mediate cell-cell interactions and play role in protozoan adhesion and host cell cytotoxicity, thus are central to the pathogenic property of the parasite. Several parasitic protozoa possess lectins which mediate parasite adherence to host cells based on their carbohydrate specificities. These interactions could be exploited for development of novel therapeutics, targeting the adherence and thus helpful in eradicating wide spread of protozoan diseases. The current review highlights the present state knowledge with regard to protozoal lectins with an emphasis on their haemagglutination activity, carbohydrate specificity, characteristics and also their role in pathogenesis notably as adhesion molecules, thereby aiding the pathogen in disease establishment. Copyright © 2016 Elsevier Inc. All rights reserved.
Francois, Monique E.; Gillen, Jenna B.; Little, Jonathan P.
2017-01-01
Lifestyle interventions incorporating both diet and exercise strategies remain cornerstone therapies for treating metabolic disease. Carbohydrate-restriction and high-intensity interval training (HIIT) have independently been shown to improve cardiovascular and metabolic health. Carbohydrate-restriction reduces postprandial hyperglycemia, thereby limiting potential deleterious metabolic and cardiovascular consequences of excessive glucose excursions. Additionally, carbohydrate-restriction has been shown to improve body composition and blood lipids. The benefits of exercise for improving insulin sensitivity are well known. In this regard, HIIT has been shown to rapidly improve glucose control, endothelial function, and cardiorespiratory fitness. Here, we report the available evidence for each strategy and speculate that the combination of carbohydrate-restriction and HIIT will synergistically maximize the benefits of both approaches. We hypothesize that this lifestyle strategy represents an optimal intervention to treat metabolic disease; however, further research is warranted in order to harness the potential benefits of carbohydrate-restriction and HIIT for improving cardiometabolic health. PMID:29075629
Gower, Barbara A; Goss, Amy M
2015-01-01
Background: Obesity, particularly visceral and ectopic adiposity, increases the risk of type 2 diabetes. Objective: The aim of this study was to determine if restriction of dietary carbohydrate is beneficial for body composition and metabolic health. Methods: Two studies were conducted. In the first, 69 overweight/obese men and women, 53% of whom were European American (EA) and 47% of whom were African American (AA), were provided with 1 of 2 diets (lower-fat diet: 55%, 18%, and 27% of energy from carbohydrate, protein, and fat, respectively; lower-carbohydrate diet: 43%, 18%, and 39%, respectively) for 8 wk at a eucaloric level and 8 wk at a hypocaloric level. In the second study, 30 women with polycystic ovary syndrome (PCOS) were provided with 2 diets (lower-fat diet: 55%, 18%, and 27% of energy from carbohydrate, protein, and fat, respectively; lower-carbohydrate diet: 41%, 19%, and 40%, respectively) at a eucaloric level for 8 wk in a random-order crossover design. Results: As previously reported, among overweight/obese adults, after the eucaloric phase, participants who consumed the lower-carbohydrate vs. the lower-fat diet lost more intra-abdominal adipose tissue (IAAT) (11 ± 3% vs. 1 ± 3%; P < 0.05). After weight loss, participants who consumed the lower-carbohydrate diet had 4.4% less total fat mass. Original to this report, across the entire 16-wk study, AAs lost more fat mass with a lower-carbohydrate diet (6.2 vs. 2.9 kg; P < 0.01), whereas EAs showed no difference between diets. As previously reported, among women with PCOS, the lower-carbohydrate arm showed decreased fasting insulin (−2.8 μIU/mL; P < 0.001) and fasting glucose (−4.7 mg/dL; P < 0.01) and increased insulin sensitivity (1.06 arbitrary units; P < 0.05) and “dynamic” β-cell response (96.1 · 109; P < 0.001). In the lower-carbohydrate arm, women lost both IAAT (−4.8 cm2; P < 0.01) and intermuscular fat (−1.2 cm2; P < 0.01). In the lower-fat arm, women lost lean mass (−0.6 kg; P < 0.05). Original to this report, after the lower-carbohydrate arm, the change in IAAT was positively associated with the change in tumor necrosis factor α (P < 0.05). Conclusion: A modest reduction in dietary carbohydrate has beneficial effects on body composition, fat distribution, and glucose metabolism. This trial was registered at clinicaltrials.gov as NCT00726908 and NCT01028989. PMID:25527677
The role and requirements of digestible dietary carbohydrates in infants and toddlers
Stephen, A; Alles, M; de Graaf, C; Fleith, M; Hadjilucas, E; Isaacs, E; Maffeis, C; Zeinstra, G; Matthys, C; Gil, A
2012-01-01
Digestible carbohydrates are one of the main sources of dietary energy in infancy and childhood and are essential for growth and development. The aim of this narrative review is to outline the intakes of digestible carbohydrates and their role in health and disease, including the development of food preferences, as well the consequences of excess carbohydrate. Key experts in these fields provided up-to-date reviews of the literature. A search of available information on dietary intakes of children below the age of 4 years was conducted from 1985 up to 2010. Articles and reports including information about sugars and/or starch intakes were selected. A number of factors limit the ability to obtain an overall picture of carbohydrate intakes and food sources in this age group. These include small numbers of intake studies, differing approaches to analysing carbohydrate, a variety of terms used to describe sugars intakes and a dearth of information about starch intakes. Data suggest that sweet taste is preferred in infancy and later food choices. There are few established adverse consequences of high intakes of digestible carbohydrate for young children. The greatest evidence is for dental caries, although this is influenced by high intake frequency and poor oral hygiene. Evidence for detrimental effects on nutrient dilution, obesity, diabetes or cognition is limited. In infants, minimum carbohydrate (mainly lactose) intake should be 40% of total energy, gradually increasing to 55% energy by the age of 2 years. PMID:22473042
Yadav, Rupali; Verma, Kuldeep; Chandra, Mintu; Mukherjee, Madhumita; Datta, Sunando
2016-09-01
Entamoeba histolytica, an enteric parasite expresses a Gal/GalNAc-specific lectin that contributes to its virulence by establishing adhesion to host cell. In this study, carbohydrate recognition domain of Hgl (EhCRD) was purified and biophysical studies were conducted to understand the thermodynamic basis of its binding to carbohydrate and Ca(++) Here, we show that carbohydrate recognition domain (CRD) of the lectin binds to calcium through DPN motif. To decipher the role of calcium in carbohydrate binding and host cell adhesion, biophysical and cell-based studies were carried out. We demonstrated that the presence of the cation neither change the affinity of the lectin for carbohydrates nor alters its conformation. Mutation of the calcium-binding motif in EhCRD resulted in complete loss of ability to bind calcium but retained its affinity for carbohydrates. Purified EhCRD significantly diminished adhesion of the amebic trophozoites to Chinese Hamster Ovary (CHO) cells as well as triggered red blood cell agglutination. The calcium-binding defective mutant abrogated amebic adhesion to CHO cells similar to the wild-type protein, but it failed to agglutinate RBCs suggesting a differential role of the cation in these two processes. This study provides the first molecular description of the role of calcium in Gal/GalNAc mediated host cell adhesion. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Slewinski, Thomas L
2012-08-01
A dramatic change in agricultural crops is needed in order to keep pace with the demands of an increasing human population, exponential need for renewable fuels, and uncertain climatic changes. Grasses make up the vast majority of agricultural commodities. How these grasses capture, transport, and store carbohydrates underpins all aspects of crop productivity. Sink-source dynamics within the plant direct how much, where, and when carbohydrates are allocated, as well as determine the harvestable tissue. Carbohydrate partitioning can limit the yield capacity of these plants, thus offering a potential target for crop improvement. Grasses have the ability to buffer this sink-source interaction by transiently storing carbohydrates in stem tissue when production from the source is greater than whole-plant demand. These reserves improve yield stability in grain crops by providing an alternative source when photosynthetic capacity is reduced during the later phases of grain filling, or during periods of environmental and biotic stresses. Domesticated grasses such as sugarcane and sweet sorghum have undergone selection for high accumulation of stem carbohydrates, which serve as the primary sources of sugars for human and animal consumption, as well as ethanol production for fuel. With the enormous expectations placed on agricultural production in the near future, research into carbohydrate partitioning in grasses is essential for maintaining and increasing yields in grass crops. This review highlights the current knowledge of non-structural carbohydrate dynamics in grass stems and discusses the impacts of stem reserves in essential agronomic grasses.
Change in food cravings, food preferences, and appetite during a low-carbohydrate and low-fat diet
Martin, C. K.; Rosenbaum, D.; Han, H.; Geiselman, P.; Wyatt, H.; Hill, J.; Brill, C.; Bailer, B.; Miller, B. V.; Stein, R.; Klein, S.; Foster, Gard D.
2011-01-01
The study objective was to evaluate the effect of prescribing a low-carbohydrate diet (LCD) and a low-fat diet (LFD) on food cravings, food preferences, and appetite. Obese adults were randomly assigned to a LCD (n=134) or a LFD (n=136) for two years. Cravings for specific types of foods (sweets, high-fats, fast-food fats, carbohydrates/starches); preferences for high-sugar, high-carbohydrate, and low-carbohydrate/high-protein foods; and appetite were measured during the trial and evaluated during this secondary analysis of trial data. Differences between the LCD and LFD on change in outcome variables were examined with mixed linear models. Compared to the LFD, the LCD had significantly larger decreases in cravings for carbohydrates/starches and preferences for high-carbohydrate and high-sugar foods. The LCD group reported being less bothered by hunger compared to the LFD group. Compared to the LCD group, the LFD group had significantly larger decreases in cravings for high-fat foods and preference for low-carbohydrate/high-protein foods. Men had larger decreases in appetite ratings compared to women. Prescription of diets that promoted restriction of specific types of foods resulted in decreased cravings and preferences for the foods that were targeted for restriction. The results also indicate that the LCD group was less bothered by hunger compared to the LFD group and that men had larger reductions in appetite compared to women. PMID:21494226
Chandler-Laney, Paula C.; Morrison, Shannon A.; Goree, Laura Lee T.; Ellis, Amy C.; Casazza, Krista; Desmond, Renee; Gower, Barbara A
2014-01-01
Objective To test the hypothesis that a breakfast meal with high carbohydrate/ low fat results in an earlier increase in postprandial glucose and insulin, a greater decrease below baseline in postprandial glucose, and an earlier return of appetite, compared to a low carbohydrate/high fat meal. Design Overweight but otherwise healthy adults (n=64) were maintained on one of two eucaloric diets: high carbohydrate/low fat (HC/LF; 55:27:18% kcals from carbohydrate: fat: protein) versus low carbohydrate/high fat (LC/HF; 43:39:18% kcals from carbohydrate: fat: protein). After 4 weeks of acclimation to the diets, participants underwent a meal test during which circulating glucose and insulin and self-reported hunger and fullness, were measured before and after consumption of breakfast from their assigned diets. Results The LC/HF meal resulted in a later time at the highest and lowest recorded glucose, higher glucose concentrations at 3 and 4 hours post-meal, and lower insulin incremental area under the curve. Participants consuming the LC/HF meal reported lower appetite 3 and 4 hours following the meal, a response that was associated with the timing of the highest and lowest recorded glucose. Conclusions Modest increases in meal carbohydrate content at the expense of fat content may facilitate weight gain over the long-term by contributing to an earlier rise and fall of postprandial glucose concentrations and an earlier return of appetite. PMID:24819342
Klimešová, Jitka; Janecek, Štepán; Bartušková, Alena; Bartoš, Michael; Altman, Jan; Doležal, Jirí; Lanta, Vojtech; Latzel, Vít
2017-11-28
Below-ground carbohydrate storage is considered an adaptation of plants aimed at regeneration after disturbance. A theoretical model by Iwasa and Kubo was empirically tested which predicted (1) that storage of carbohydrates scales allometrically with leaf biomass and (2) when the disturbance regime is relaxed, the ratio of storage to leaf biomass increases, as carbohydrates are not depleted by disturbance. These ideas were tested on nine herbaceous species from a temperate meadow and the disturbance regime was manipulated to create recently abandoned and mown plots. Just before mowing in June and at the end of the season in October, plants with below-ground organs were sampled. The material was used to assess the pool of total non-structural carbohydrates and leaf biomass. In half of the cases, a mostly isometric relationship between below-ground carbohydrate storage and leaf biomass in meadow plants was found. The ratio of below-ground carbohydrate storage to leaf biomass did not change when the disturbance regime was less intensive than that for which the plants were adapted. These findings (isometric scaling relationship between below-ground carbohydrate storage and leaf biomass; no effect of a relaxed disturbance regime) imply that storage in herbs is probably governed by factors other than just the disturbance regime applied once in a growing season. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hwang, Eun Young; Jeong, Mi Suk; Park, Sang Kyun; Ha, Sung Chul; Yu, Hak Sun; Jang, Se Bok
2016-01-01
Toxascaris leonina galectin (Tl-gal) is a galectin-9 homologue protein isolated from an adult worm of the canine gastrointestinal nematode parasite, and Tl-gal-vaccinated challenge can inhibit inflammation in inflammatory bowel disease-induced mice. We determined the first X-ray structures of full-length Tl-gal complexes with carbohydrates (lactose, N-acetyllactosamine, lacto-N-tetraose, sialyllactose, and glucose). Bonds were formed on concave surfaces of both carbohydrate recognition domains (CRDs) in Tl-gal. All binding sites were found in the HXXXR and WGXEER motifs. Charged Arg61/Arg196 and Glu80/Glu215 on the conserved motif of Tl-gal N-terminal CRD and C-terminal CRD are critical amino acids for recognizing carbohydrate binding, and the residues can affect protein folding and structure. The polar amino acids His, Asn, and Trp are also important residues for the interaction with carbohydrates through hydrogen bonding. Hemagglutination activities of Tl-gal were inhibited by interactions with carbohydrates and mutations. We found that the mutation of Tl-gal (E80A/E215A) at the carbohydrate binding region induced protein aggregation and could be caused in many diseases. The short linker region between the N-terminal and C-terminal CRDs of Tl-gal was very stable against proteolysis and maintained its biological activity. This structural information is expected to elucidate the carbohydrate recognition mechanism of Tl-gal and improve our understanding of anti-inflammatory mediators and modulators of immune response. PMID:27742836
Thompson, S N; Borchardt, D B; Wang, L-W
2003-03-01
This study examined the effects of dietary casein and sucrose levels on nutrient intake, and distinguished the effects of carbohydrate and protein consumption on growth, fat content, pyruvate metabolism and blood trehalose level of 5th instar Manduca sexta larvae. Growth increased with increasing casein consumption but was unaffected by carbohydrate intake. Fat content also increased with carbohydrate consumption, but on carbohydrate-free diets fat content increased with increased protein consumption. Blood trehalose level and pyruvate metabolism were examined by nuclear magnetic resonance spectroscopy analysis of blood following administration of (3-(13)C)pyruvate. On diets containing sucrose, blood trehalose increased with increasing carbohydrate intake, and on most diets trehalose was synthesized entirely from dietary sucrose. Pyruvate cycling, indicated by the alanine C2/C3 (13)C enrichment ratio, increased with carbohydrate consumption reflecting increased glycolysis, and pyruvate decarboxylation exceeded carboxylation on all sucrose diets. Larvae that consumed <75 mg/day sucrose were gluconeogenic, based on the [2 (trehalose C6)(Glx C3/C2)]/alanine C2] (13)C enrichment ratio. On carbohydrate-free diets, blood trehalose levels were low and maintained entirely by gluconeogenesis. Blood trehalose level increased with increasing protein intake. Pyruvate cycling was very low, although many insects displayed higher levels of pyruvate decarboxylation than carboxylation. All gluconeogenic larvae displayed alanine (13)C enrichment ratios <0.35 and had blood trehalose levels <50 mM.
Why use DFT methods in the study of carbohydrates?
USDA-ARS?s Scientific Manuscript database
The recent advances in density functional theory (DFT) and computer technology allow us to study systems with more than 100 atoms routinely. This makes it feasible to study large carbohydrate molecules via quantum mechanical methods, whereas in the past, studies of carbohydrates were restricted to ...
USDA-ARS?s Scientific Manuscript database
Glycosylation often mediates important biological processes through the interaction of carbohydrates with complementary proteins. Most chemical tools for the functional analysis of glycans are highly dependent upon various linkage chemistries that involve the reducing-terminus of carbohydrates. Ho...
Dietary carbohydrates and cardiovascular disease risk factors in the Framingham Offspring Cohort
USDA-ARS?s Scientific Manuscript database
Evidence from observational studies has suggested that carbohydrate quality rather than absolute intake is associated with greater risk of chronic diseases. The aim of this study was to examine the relationship between carbohydrate intake and dietary glycemic index and several cardiovascular disease...
Glycan complexity dictates microbial resource allocation in the large intestine
USDA-ARS?s Scientific Manuscript database
The structure of the human gut microbiota, which impacts on the health of the host, is controlled by complex dietary carbohydrates and members of the Bacteroidetes phylum are the major contributors to the degradation of complex dietary carbohydrates. The extent to which complex dietary carbohydrates...
Reinforcement effect of soy protein/carbohydrate ratio in styrene-butadiene polymer
USDA-ARS?s Scientific Manuscript database
Soy protein and carbohydrate at different ratios were blended with latex to form composites. The variation of protein to carbohydrate ratio has a sifnificant effect on the composite properties and the results from dynamic mechanical method showed a substantial reinforcement effect. The composites ...
Family differences related to carbohydrate utilization in rainbow trout Oncorhynchus mykiss
USDA-ARS?s Scientific Manuscript database
Rainbow trout utilize protein as an energy source much more efficiently than carbohydrates. Alternative diets utilizing plant material typically contain higher levels of carbohydrate than standard fish meal diets. The goal of this study was to determine if there are molecular and physiological diffe...
27 CFR 24.247 - Materials authorized for the treatment of distilling material.
Code of Federal Regulations, 2014 CFR
2014-04-01
... fermentable carbohydrates The amylase enzyme activity shall be derived from Aspergillus niger, Aspergillus... convent starches to fermentable carbohydrates The amylase enzyme activity shall be derived from barley... starches to fermentable carbohydrates The amylase enzyme actvity shall be derived from Aspergillus niger or...
27 CFR 24.247 - Materials authorized for the treatment of distilling material.
Code of Federal Regulations, 2011 CFR
2011-04-01
... fermentable carbohydrates The amylase enzyme activity shall be derived from Aspergillus niger, Aspergillus... convent starches to fermentable carbohydrates The amylase enzyme activity shall be derived from barley... starches to fermentable carbohydrates The amylase enzyme actvity shall be derived from Aspergillus niger or...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-06
... Using Carbohydrate-Functionalized Biosensors AGENCY: Department of the Army, DoD. ACTION: Notice. SUMMARY: The invention provides extraction and detection of pathogens using carbohydrate-functionalized... ``Extraction and Detection of Pathogens Using Carbohydrate- Functionalized Biosensors,'' filed on August 30...
27 CFR 24.247 - Materials authorized for the treatment of distilling material.
Code of Federal Regulations, 2012 CFR
2012-04-01
... fermentable carbohydrates The amylase enzyme activity shall be derived from Aspergillus niger, Aspergillus... convent starches to fermentable carbohydrates The amylase enzyme activity shall be derived from barley... starches to fermentable carbohydrates The amylase enzyme actvity shall be derived from Aspergillus niger or...
27 CFR 24.247 - Materials authorized for the treatment of distilling material.
Code of Federal Regulations, 2013 CFR
2013-04-01
... fermentable carbohydrates The amylase enzyme activity shall be derived from Aspergillus niger, Aspergillus... convent starches to fermentable carbohydrates The amylase enzyme activity shall be derived from barley... starches to fermentable carbohydrates The amylase enzyme actvity shall be derived from Aspergillus niger or...
Soil amino compound and carbohydrate contents influenced by organic amendments
USDA-ARS?s Scientific Manuscript database
Amino compounds (i. e. amino acids and sugars), and carbohydrates are labile organic components and contribute to the improvement of soil fertility and quality. Animal manure and other organic soil amendments are rich in both amino compounds and carbohydrates, hence organic soil amendments might af...
Obesity and Cancer Mechanisms: Cancer Metabolism
Hopkins, Benjamin D.; Goncalves, Marcus D.
2016-01-01
Obesity is a risk factor for cancer development and is associated with poor prognosis in multiple tumor types. The positive energy balance linked with obesity induces a variety of systemic changes including altered levels of insulin, insulin-like growth factor-1, leptin, adiponectin, steroid hormones, and cytokines. Each of these factors alters the nutritional milieu and has the potential to create an environment that favors tumor initiation and progression. Although the complete ramifications of obesity as it relates to cancer are still unclear, there is convincing evidence that reducing the magnitude of the systemic hormonal and inflammatory changes has significant clinical benefits. This review will examine the changes that occur in the obese state and review the biologic mechanisms that connect these changes to increased cancer risk. Understanding the metabolic changes that occur in obese individuals may also help to elucidate more effective treatment options for these patients when they develop cancer. Moving forward, targeted clinical trials examining the effects of behavioral modifications such as reduced carbohydrate intake, caloric restriction, structured exercise, and/or pharmacologic interventions such as the use of metformin, in obese populations may help to reduce their cancer risk. PMID:27903152
The use of herbal medicine in cancer-related anorexia/ cachexia treatment around the world.
Cheng, Kai-Chun; Li, Ying-Xiao; Cheng, Juei-Tang
2012-01-01
Cancer-related cachexia, a condition in which the body is consumed by deranged carbohydrate, lipid and protein metabolism that is induced by inflammatory cytokines. Cachexia is associated with poor treatment outcome, fatigue and poor quality of life. Pharmacological intervention in the treatment and/or prevention of cachexia has been mainly aimed at the use of appetite enhancers to increase oral nutritional intake so far. Herbal remedies are part of traditional and folk healing methods with long histories of use. In this report, we have assessed which herbal approaches have had associated cancer cachexia case reports. Commonly used herbal medicines in western countries include essiac, iscador, pau d'arco tea, cannabinoids and so on. Some Kampo herbs and formulations are commonly used by cancer patients reduce the side effects and complications during the antitumor therapy. The relevant herbal medicines include ginseng, C. rhizome and radix astragali, and the related herbal remedies, such as TJ-48, TJ-41, PHY906 and Rikkunshito. However, there still have some adverse effects caused or amplified by herb and drug interactions that are difficult to separate. However, randomized effectiveness of herbal medicines shall be further identified in controlled clinical trials involving cancer patients with cachexia.
Animal models of addiction: fat and sugar.
Morgan, Drake; Sizemore, Glen M
2011-01-01
The concept of "food addiction" is gaining acceptance among the scientific community, and much is known about the influence of various components of food (e.g. high-fat, sugar, carbohydrate, salt) on behavior and physiology. Most of the studies to date have studied these consequences following relatively long-term diet manipulations and/or relatively free access to the food of interest. It is suggested that these types of studies are primarily tapping into the energy regulation and homeostatic processes that govern food intake and consumption. More recently, the overlap between the neurobiology of "reward-related" or hedonic effects of food ingestion and other reinforcers such as drugs of abuse has been highlighted, contributing to the notion that "food addiction" exists and that various components of food may be the substance of abuse. Based on preclinical animal models of drug addiction, a new direction for this field is using self-administration procedures and identifying an addiction-like behavioral phenotype in animals following various environmental, genetic, pharmacological, and neurobiological manipulations. Here we provide examples from this research area, with a focus on fat and sugar self-administration, and how the sophisticated animal models of drug addiction can be used to study the determinants and consequences of food addiction.
Does alpha 1-acid glycoprotein act as a non-functional receptor for alpha 1-adrenergic antagonists?
Qin, M; Oie, S
1994-11-01
The ability of a variety of alpha 1-acid glycoproteins (AAG) to affect the intrinsic activity of the alpha 1-adrenergic antagonist prazosin was studied in rabbit aortic strip preparations. From these studies, the activity of AAG appears to be linked to their ability to bind the antagonist. However, a capability to bind prazosin was not the only requirement for this effect. The removal of sialic acid and partial removal of the galactose and mannose residues by periodate oxidation of human AAG all but eliminated the ability of AAG to affect the intrinsic pharmacologic activity of prazosin, although the binding of prazosin was not significantly affected. The presence of bovine AAG, a protein that has a low ability to bind prazosin, reduced the effect of human AAG on prazosin activity. Based upon these results, we propose that AAG is able to bind in the vicinity of the alpha 1-adrenoceptors, therefore extending the binding region for antagonists in such a way as to decrease the ability of the antagonist to interact with the receptor. The carbohydrate side-chains are important for the binding of AAG in the region of the adrenoceptor.
Bojanowska, Ewa; Ciosek, Joanna
2016-01-01
Excessive intake of food, especially palatable and energy-dense carbohydrates and fats, is largely responsible for the growing incidence of obesity worldwide. Although there are a number of candidate antiobesity drugs, only a few of them have been proven able to inhibit appetite for palatable foods without the concurrent reduction in regular food consumption. In this review, we discuss the interrelationships between homeostatic and hedonic food intake control mechanisms in promoting overeating with palatable foods and assess the potential usefulness of systemically administered pharmaceuticals that impinge on the endogenous cannabinoid, opioid, aminergic, cholinergic, and peptidergic systems in the modification of food preference behavior. Also, certain dietary supplements with the potency to reduce specifically palatable food intake are presented. Based on human and animal studies, we indicate the most promising therapies and agents that influence the effectiveness of appetite-modifying drugs. It should be stressed, however, that most of the data included in our review come from preclinical studies; therefore, further investigations aimed at confirming the effectiveness and safety of the aforementioned medications in the treatment of obese humans are necessary.
Expression of Lectins in Heterologous Systems
Martínez-Alarcón, Dania; Blanco-Labra, Alejandro
2018-01-01
Lectins are proteins that have the ability to recognize and bind in a reversible and specific way to free carbohydrates or glycoconjugates of cell membranes. For these reasons, they have been extensively used in a wide range of industrial and pharmacological applications. Currently, there is great interest in their production on a large scale. Unfortunately, conventional techniques do not provide the appropriate platform for this purpose and therefore, the heterologous production of lectins in different organisms has become the preferred method in many cases. Such systems have the advantage of providing better yields as well as more homogeneous and better-defined properties for the resultant products. However, an inappropriate choice of the expression system can cause important structural alterations that have repercussions on their biological activity since the specificity may lay in their post-translational processing, which depends largely on the producing organism. The present review aims to examine the most representative studies in the area, exposing the four most frequently used systems (bacteria, yeasts, plants and animal cells), with the intention of providing the necessary information to determine the strategy to follow in each case as well as their respective advantages and disadvantages. PMID:29466298
Bojanowska, Ewa; Ciosek, Joanna
2016-01-01
Excessive intake of food, especially palatable and energy-dense carbohydrates and fats, is largely responsible for the growing incidence of obesity worldwide. Although there are a number of candidate antiobesity drugs, only a few of them have been proven able to inhibit appetite for palatable foods without the concurrent reduction in regular food consumption. In this review, we discuss the interrelationships between homeostatic and hedonic food intake control mechanisms in promoting overeating with palatable foods and assess the potential usefulness of systemically administered pharmaceuticals that impinge on the endogenous cannabinoid, opioid, aminergic, cholinergic, and peptidergic systems in the modification of food preference behavior. Also, certain dietary supplements with the potency to reduce specifically palatable food intake are presented. Based on human and animal studies, we indicate the most promising therapies and agents that influence the effectiveness of appetite-modifying drugs. It should be stressed, however, that most of the data included in our review come from preclinical studies; therefore, further investigations aimed at confirming the effectiveness and safety of the aforementioned medications in the treatment of obese humans are necessary. PMID:26549651
Park, Hye Min; Hwang, Eunson; Lee, Kwang Gill; Han, Sang-Mi; Cho, Yunhi; Kim, Sun Yeou
2011-09-01
Royal jelly (RJ) is a honeybee product containing proteins, carbohydrates, fats, free amino acids, vitamins, and minerals. As its principal unsaturated fatty acid, RJ contains 10-hydroxy-2-decenoic acid (10-HDA), which may have antitumor and antibacterial activity and a capacity to stimulate collagen production. RJ has attracted interest in various parts of the world for its pharmacological properties. However, the effects of RJ on ultraviolet (UV)-induced photoaging of the skin have not been reported. In this study we measured the 10-HDA content of RJ by high-performance liquid chromatography and tested the effects of RJ on UVB-induced skin photoaging in normal human dermal fibroblasts. The effects of RJ and 10-HDA on UVB-induced photoaging were tested by measuring procollagen type I, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)-1 after UVB irradiation. The RJ contained about 0.211% 10-HDA. The UVB-irradiated human skin fibroblasts treated with RJ and 10-HDA had increased procollagen type I and TGF-β1 productions, but the level of MMP-1 was not changed. Thus RJ may potentially protect the skin from UVB-induced photoaging by enhancing collagen production.
Hypoglycemic and Hypolipidemic Effects of Aloe vera Extract Preparations: A Review.
Pothuraju, Ramesh; Sharma, Raj Kumar; Onteru, Suneel Kumar; Singh, Satvinder; Hussain, Shaik Abdul
2016-02-01
Obesity is considered to be an epidemic disease, and it is associated with several metabolic disorders. Pharmacological treatments currently available are not effective for prolonged treatment duration. So, people are looking toward new therapeutic approach such as herbal ingredients. Since ancient periods, different herbs have been used for remedy purposes such as anti-obesity, antidiabetes, and antiinflammatory. Among the several herbal ingredients, Aloe vera (Aloe barbadensis Miller) is widely used to curb the metabolic complications. Till date, reports are not available for the side effects of A. vera. Several researchers are used to different solvents such as aqueous solution, alcohol, ethanol, and chloroform for the A. vera extract preparations and studied their hypoglycemic and hypolipidemic effects in animal and human studies. Furthermore, little information was recorded with the active compounds extracted from the A. vera and their anti-obesity and antidiabetic effects in clinical studies. In this review, we made an attempt to compile all the available literature by using different search engines (PubMed, Scopus, and Google Scholar) on the A. vera extract preparations and the possible mechanism of action involved in carbohydrate and lipid metabolism. Copyright © 2015 John Wiley & Sons, Ltd.
Khan, Muhammad Imran; Shin, Jin Hyuk; Kim, Jong Deog
2018-03-05
Microalgae have recently attracted considerable interest worldwide, due to their extensive application potential in the renewable energy, biopharmaceutical, and nutraceutical industries. Microalgae are renewable, sustainable, and economical sources of biofuels, bioactive medicinal products, and food ingredients. Several microalgae species have been investigated for their potential as value-added products with remarkable pharmacological and biological qualities. As biofuels, they are a perfect substitute to liquid fossil fuels with respect to cost, renewability, and environmental concerns. Microalgae have a significant ability to convert atmospheric CO 2 to useful products such as carbohydrates, lipids, and other bioactive metabolites. Although microalgae are feasible sources for bioenergy and biopharmaceuticals in general, some limitations and challenges remain, which must be overcome to upgrade the technology from pilot-phase to industrial level. The most challenging and crucial issues are enhancing microalgae growth rate and product synthesis, dewatering algae culture for biomass production, pretreating biomass, and optimizing the fermentation process in case of algal bioethanol production. The present review describes the advantages of microalgae for the production of biofuels and various bioactive compounds and discusses culturing parameters.
How to select basis sets and computational methods for carbohydrate modeling
USDA-ARS?s Scientific Manuscript database
In the last decade there have been significant improvements in computer hardware but also in development of quantum mechanical methods. This makes it more feasible to study large carbohydrate molecules via quantum mechanical methods whereas in the past studies of carbohydrates were restricted to em...
USDA-ARS?s Scientific Manuscript database
PURPOSE: In vitro and in vivo animal studies suggest that dietary carbohydrates play a role in cataractogenesis. Few epidemiologic studies have been conducted to evaluate this association. The objective of this study was to examine the cross-sectional associations between total carbohydrate intake, ...
Stereochemical Control in Carbohydrate Chemistry
ERIC Educational Resources Information Center
Batchelor, Rhys; Northcote, Peter T.; Harvey, Joanne E.; Dangerfield, Emma M.; Stocker, Bridget L.
2008-01-01
Carbohydrates, in the form of glycoconjugates, have recently been shown to control a wide range of cellular processes. Accordingly, students interested in the study of organic chemistry and biomedical sciences should be exposed to carbohydrate chemistry. To this end, we have developed a sequence of experiments that leads the student from the…
NIR calibration of soluble stem carbohydrates for predicting drought tolerance in spring wheat
USDA-ARS?s Scientific Manuscript database
Soluble stem carbohydrates are a component of drought response in wheat (Triticum aestivum L.) and other grasses. Near-infrared spectroscopy (NIR) can rapidly assay for soluble carbohydrates indirectly, but this requires a statistical model for calibration. The objectives of this study were: (i) to ...
21 CFR 101.80 - Health claims: dietary noncariogenic carbohydrate sweeteners and dental caries.
Code of Federal Regulations, 2012 CFR
2012-04-01
... sweeteners and dental caries. 101.80 Section 101.80 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Requirements for Health Claims § 101.80 Health claims: dietary noncariogenic carbohydrate sweeteners and dental caries. (a) Relationship between dietary carbohydrates and dental caries. (1) Dental caries, or tooth...
21 CFR 101.80 - Health claims: dietary noncariogenic carbohydrate sweeteners and dental caries.
Code of Federal Regulations, 2013 CFR
2013-04-01
... sweeteners and dental caries. 101.80 Section 101.80 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Requirements for Health Claims § 101.80 Health claims: dietary noncariogenic carbohydrate sweeteners and dental caries. (a) Relationship between dietary carbohydrates and dental caries. (1) Dental caries, or tooth...
21 CFR 101.80 - Health claims: dietary noncariogenic carbohydrate sweeteners and dental caries.
Code of Federal Regulations, 2011 CFR
2011-04-01
... sweeteners and dental caries. 101.80 Section 101.80 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Requirements for Health Claims § 101.80 Health claims: dietary noncariogenic carbohydrate sweeteners and dental caries. (a) Relationship between dietary carbohydrates and dental caries. (1) Dental caries, or tooth...
21 CFR 101.80 - Health claims: dietary noncariogenic carbohydrate sweeteners and dental caries.
Code of Federal Regulations, 2014 CFR
2014-04-01
... sweeteners and dental caries. 101.80 Section 101.80 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Requirements for Health Claims § 101.80 Health claims: dietary noncariogenic carbohydrate sweeteners and dental caries. (a) Relationship between dietary carbohydrates and dental caries. (1) Dental caries, or tooth...
21 CFR 101.80 - Health claims: dietary noncariogenic carbohydrate sweeteners and dental caries.
Code of Federal Regulations, 2010 CFR
2010-04-01
... sweeteners and dental caries. 101.80 Section 101.80 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Requirements for Health Claims § 101.80 Health claims: dietary noncariogenic carbohydrate sweeteners and dental caries. (a) Relationship between dietary carbohydrates and dental caries. (1) Dental caries, or tooth...
ERIC Educational Resources Information Center
Csernus, Marilyn
Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…
Seasonal changes in carbohydrate levels in roots of sugar maple
Philip M. Wargo; Philip M. Wargo
1971-01-01
This study was done to determine the normal complement of individual carbohydrates present in roots of sugar maples duringthe year and to obtain, as a basis for future comparison, an estimate of the normal variation and range of concentrations of individual carbohydrates in the roots during the year.
Smit, G P; Ververs, M T; Belderok, B; Van Rijn, M; Berger, R; Fernandes, J
1988-07-01
Carbohydrates with digestion characteristics between those of lente uncooked starches and rapidly digestible oligosaccharides were administered in a dose of 1.5 g/kg body weight to five patients with glycogenosis from glucose-6-phosphatase deficiency. Postprandial duration of normoglycemia and concentrations of blood insulin and lactate were determined. Uncooked barley groats in water, or incorporated in a meal turned out to behave as lente carbohydrates. Uncooked couscous in water, couscous incorporated in a meal, and partially cooked macaroni given as a meal behaved as semilente carbohydrates as compared with uncooked cornstarch and glucose. The in vitro determination of the digestibility index along with the in vivo tolerance test enables us to choose and incorporate semilente carbohydrates in the day-time treatment of patients.
Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome
Kunieda, T; Fujiyuki, T; Kucharski, R; Foret, S; Ament, S A; Toth, A L; Ohashi, K; Takeuchi, H; Kamikouchi, A; Kage, E; Morioka, M; Beye, M; Kubo, T; Robinson, G E; Maleszka, R
2006-01-01
Carbohydrate-metabolizing enzymes may have particularly interesting roles in the honey bee, Apis mellifera, because this social insect has an extremely carbohydrate-rich diet, and nutrition plays important roles in caste determination and socially mediated behavioural plasticity. We annotated a total of 174 genes encoding carbohydrate-metabolizing enzymes and 28 genes encoding lipid-metabolizing enzymes, based on orthology to their counterparts in the fly, Drosophila melanogaster, and the mosquito, Anopheles gambiae. We found that the number of genes for carbohydrate metabolism appears to be more evolutionarily labile than for lipid metabolism. In particular, we identified striking changes in gene number or genomic organization for genes encoding glycolytic enzymes, cellulase, glucose oxidase and glucose dehydrogenases, glucose-methanol-choline (GMC) oxidoreductases, fucosyltransferases, and lysozymes. PMID:17069632
Danne, Reinis; Poojari, Chetan; Martinez-Seara, Hector; Rissanen, Sami; Lolicato, Fabio; Róg, Tomasz; Vattulainen, Ilpo
2017-10-23
Carbohydrates constitute a structurally and functionally diverse group of biological molecules and macromolecules. In cells they are involved in, e.g., energy storage, signaling, and cell-cell recognition. All of these phenomena take place in atomistic scales, thus atomistic simulation would be the method of choice to explore how carbohydrates function. However, the progress in the field is limited by the lack of appropriate tools for preparing carbohydrate structures and related topology files for the simulation models. Here we present tools that fill this gap. Applications where the tools discussed in this paper are particularly useful include, among others, the preparation of structures for glycolipids, nanocellulose, and glycans linked to glycoproteins. The molecular structures and simulation files generated by the tools are compatible with GROMACS.
Photoswitchable carbohydrate-based fluorosurfactants as tuneable ice recrystallization inhibitors.
Adam, Madeleine K; Hu, Yingxue; Poisson, Jessica S; Pottage, Matthew J; Ben, Robert N; Wilkinson, Brendan L
2017-02-01
Cryopreservation is an important technique employed for the storage and preservation of biological tissues and cells. The limited effectiveness and significant toxicity of conventionally-used cryoprotectants, such as DMSO, have prompted efforts toward the rational design of less toxic alternatives, including carbohydrate-based surfactants. In this paper, we report the modular synthesis and ice recrystallization inhibition (IRI) activity of a library of variably substituted, carbohydrate-based fluorosurfactants. Carbohydrate-based fluorosurfactants possessed a variable mono- or disaccharide head group appended to a hydrophobic fluoroalkyl-substituted azobenzene tail group. Light-addressable fluorosurfactants displayed weak-to-moderate IRI activity that could be tuned through selection of carbohydrate head group, position of the trifluoroalkyl group on the azobenzene ring, and isomeric state of the azobenzene tail fragment. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xuan, Trinh Anh; Trung, Phan Nghia; Dinh, Bui Long; Yamaguchi, Takumi; Kato, Koichi
2014-05-01
Oligosaccharide chains of glycoconjugates are important biopolymers not only as carriers of information in cell-cell interactions but also as markers of cellular differentiation, aging, and malignant alteration. Molecular interactions where carbohydrates are involved are usually considered as weak interactions, so the study and evaluation of these interactions is still in its infancy. The evidences and studies of carbohydrate-carbohydrate interactions (CCI) will be confirming the importance of this mechanism for specific cell adhesion and communication. Their development will go hand in hand with the development of new and more sensitive techniques to study weak interactions. Recently, synthetic glycopolymers with functions similar to those of such natural carbohydrates and with specific pendant saccharide moieties were used as a solution for enhancement CCI when forming polyvalent interactions. Carbohydrates are ubiquitous components of cell wall membranes and occur as glycolipids, glycoproteins, proteoglycans, and capsular polysaccharides. As such they can participate in forefront intramolecular and intracellular events. Apart from their recognized roles in the physicochemical properties of glycolipids and glycoproteins. In this study, we designed trisaccharide monomers for free radical polymerization. Subsequently, the trisaccharide unit for chemical conjugation was synthesized from galactosamine in good yield. For further NMR analyses of CCI, glycopolymers composed of these sugar derivatives will be provided.
Highly sensitive and selective sugar detection by terahertz nano-antennas
NASA Astrophysics Data System (ADS)
Lee, Dong-Kyu; Kang, Ji-Hun; Lee, Jun-Seok; Kim, Hyo-Seok; Kim, Chulki; Hun Kim, Jae; Lee, Taikjin; Son, Joo-Hiuk; Park, Q.-Han; Seo, Minah
2015-10-01
Molecular recognition and discrimination of carbohydrates are important because carbohydrates perform essential roles in most living organisms for energy metabolism and cell-to-cell communication. Nevertheless, it is difficult to identify or distinguish various carbohydrate molecules owing to the lack of a significant distinction in the physical or chemical characteristics. Although there has been considerable effort to develop a sensing platform for individual carbohydrates selectively using chemical receptors or an ensemble array, their detection and discrimination limits have been as high in the millimolar concentration range. Here we show a highly sensitive and selective detection method for the discrimination of carbohydrate molecules using nano-slot-antenna array-based sensing chips which operate in the terahertz (THz) frequency range (0.5-2.5 THz). This THz metamaterial sensing tool recognizes various types of carbohydrate molecules over a wide range of molecular concentrations. Strongly localized and enhanced terahertz transmission by nano-antennas can effectively increase the molecular absorption cross sections, thereby enabling the detection of these molecules even at low concentrations. We verified the performance of nano-antenna sensing chip by both THz spectra and images of transmittance. Screening and identification of various carbohydrates can be applied to test even real market beverages with a high sensitivity and selectivity.
Health promotion when the 'vaccine' does not work.
Wortman, Jay
2006-08-01
The epidemics of obesity, metabolic syndrome and type 2 diabetes have worsened over the past decades. During this time our preventive and therapeutic approach (the 'vaccine'), consisting of a low-fat diet and exercise, has remained fundamentally unchanged. A case is made that these conditions are inter-related and may be caused by a single underlying factor related to the carbohydrate content of diet. The validity of the present approach is challenged when those most knowledgeable in its application succumb to diseases it is meant to prevent. Others argue against the status quo that a low-carbohydrate diet may be more beneficial. A strong belief in the present approach discouraged research into low-carbohydrate diets until recently. Several studies have now demonstrated their benefits and are refuting old claims that they cause harm. Aboriginal people suffer more acutely from the epidemics in question and their dietary history suggests that a sudden increase in carbohydrates is to blame. Recent studies and a case history demonstrate that carbohydrate consumption can drive appetite and over-eating while carbohydrate restriction leads to weight loss and improvement in the markers for metabolic syndrome and type 2 diabetes. The growing evidence in support of low-carbohydrate diets will encounter resistance from economic interests threatened by changes in consumption patterns.
Influence of carbohydrates on the interaction of procyanidin B3 with trypsin.
Gonçalves, Rui; Mateus, Nuno; De Freitas, Victor
2011-11-09
The biological properties of procyanidins, in particular their inhibition of digestive enzymes, have received much attention in the past few years. Dietary carbohydrates are an environmental factor that is known to affect the interaction of procyanidins with proteins. This work aimed at understanding the effect of ionic food carbohydrates (polygalacturonic acid, arabic gum, pectin, and xanthan gum) on the interaction between procyanidins and trypsin. Physical-chemical techniques such as saturation transfer difference-NMR (STD-NMR) spectroscopy, fluorescence quenching, and nephelometry were used to evaluate the interaction process. Using STD-NMR, it was possible to identify the binding of procyanidin B3 to trypsin. The tested carbohydrates prevented the association of procyanidin B3 and trypsin by a competition mechanism in which the ionic character of carbohydrates and their ability to encapsulate procyanidins seem crucial leading to a reduction in STD signal and light scattering and to a recovery of the proteins intrinsic fluorescence. On the basis of these results, it was possible to grade the carbohydrates in their aggregation inhibition ability: XG > PA > AG ≫ PC. These effects may be relevant since the coingestion of procyanidins and ionic carbohydrates are frequent and furthermore since these might negatively affect the antinutritional properties ascribed to procyanidins in the past.
Mirhashemi, Farshad; Kluth, Oliver; Scherneck, Stephan; Vogel, Heike; Kluge, Reinhart; Schurmann, Annette; Joost, Hans-Georg; Neschen, Susanne
2008-01-01
We have previously reported that a high-fat, carbohydrate-free diet prevents diabetes and beta-cell destruction in the New Zealand Obese (NZO) mouse strain. Here we investigated the effect of diets with and without carbohydrates on obesity and development of beta-cell failure in a second mouse model of type 2 diabetes, the db/db mouse. When kept on a carbohydrate-containing standard (SD; with (w/w) 5.1, 58.3, and 17.6% fat, carbohydrates and protein, respectively) or high-fat diet (HFD; 14.6, 46.7 and 17.1%), db/db mice developed severe diabetes (blood glucose >20 mmol/l, weight loss, polydipsia and polyurea) associated with a selective loss of pancreatic beta-cells, reduced GLUT2 expression in the remaining beta-cells, and reduced plasma insulin levels. In contrast, db/db mice kept on a high-fat, carbohydrate-free diet (CFD; with 30.2 and 26.4% (w/w) fat or protein) did not develop diabetes and exhibited near-normal, hyperplastic islets in spite of a morbid obesity (fat content >60%) associated with hyperinsulinaemia. These data indicate that in genetically different mouse models of obesity-associated diabetes, obesity and dietary fat are not sufficient, and dietary carbohydrates are required, for beta-cell destruction.
Gonçalves, Gabriel Ramos Ferreira; Gandolfi, Olga Reinert Ramos; Santos, Leandro Soares; Bonomo, Renata Cristina Ferreira; Veloso, Cristiane Martins; Veríssimo, Lizzy Ayra Alcântara; Fontan, Rafael da Costa Ilhéu
2017-11-15
Lectins are glycoproteins that bind to carbohydrates or glycoconjugates by specific interactions. The specificity of lectins to various carbohydrates is a determinant factor in the choice of ligand for the chromatographic matrix when using chromatography as a lectin purification technique. In this work, the immobilization of three different aminated carbohydrates on the surface of macroporous polymeric cryogels was evaluated. Carbohydrates were immobilized on cryogel surfaces via the glutaraldehyde method to create spacer arms, reducing steric hindrance. The immobilized N-acetyl-d-glucosamine and N-acetyl-d-mannosamine concentrations contained approximately 130mg of carbohydrate/g dehydrated cryogel, while the N-acetyl-d-galactosamine contained 105mg of carbohydrate/g dehydrated cryogel. Scanning electron microscopy showed that the physical structure and porosity of the chromatographic columns were not affected by the immobilization process, maintaining an elevated hydration capacity and the macroporous structure of the cryogels. Adsorption of concanavalin A on cryogels functionalized with N-acetyl-d-glucosamine (cryo-d-GlcNAc) was tested, as well as its reuse capability. After 5 cycles of use, cryo-d-GlcNAc was shown to be stable, with an adsorptive capacity of around 50mg/g. Carbohydrate immobilization in polyacrylamide cryogels was satisfactory, with promise for applications in lectin purification processes. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colburn, Heather A.; Wunschel, David S.; Kreuzer-Martin, Helen W.
2010-07-15
One challenge in the forensic analysis of ricin samples is determining the method and extent of sample preparation. Ricin purification from the source castor seeds is essentially a protein purification through removal of the non-protein fractions of the seed. Two major, non-protein constituents in the seed are the castor oil and carbohydrates. Ricinoleic acid is a relatively unique fatty acid in nature and is the most abundant component of castor oil, which comprises roughly half the seed weight. The carbohydrate component comprises roughly half of the remaining “mash” left after oil and hull removal. We used derivatization of carbohydrate andmore » fatty acid markers followed by identification and quantification using gas chromatography/mass spectrometry (GC/MS) to assess compositional changes in ricin samples purified by different methods. The loss of ricinoleic acid indicated steps for oil removal had occurred. Changes to the carbohydrate content of the sample were also observed following protein precipitation. The differential loss of arabinose relative to mannose indicated removal of the major carbohydrate fraction of the seed and enrichment of the protein content. Taken together, these changes in fatty acid and carbohydrate abundance are indicative of the preparation method used for each sample.« less
Fad diets in the treatment of diabetes.
Feinman, Richard D
2011-04-01
Use of the term "fad diet" reflects the contentious nature of the debate in the treatment of diabetes and generally targets diets based on carbohydrate restriction, the major challenge to traditional dietary therapy. Although standard low-fat diets more accurately conform to the idea of a practice supported by social pressure rather than scientific data, it is suggested that we might want to give up altogether unscientific terms like "fad" and "healthy." Far from faddish, diets based on carbohydrate restriction have been the historical treatment for diabetes and are still supported by basic biochemistry, and it is argued that they should be considered the "default" diet, the one to try first, in diseases of carbohydrate intolerance or insulin resistance. The barrier to acceptance of low-carbohydrate diets in the past has been concern about saturated fat, which might be substituted for the carbohydrate that is removed. However, recent re-analysis of much old data shows that replacing carbohydrate with saturated fat is, if anything, beneficial. The dialectic of impact of continued hemoglobin A(1c) versus effect of dietary saturated fat in the risk of cardiovascular disease is resolved in direction of glycemic control. Putting biased language behind us and facing the impact of recent results that point to the value of low-carbohydrate diets would offer patients the maximum number of options.
Carbohydrate malabsorption in acutely malnourished children and infants: a systematic review
Kvissberg, Matilda A.; Dalvi, Prasad S.; Kerac, Marko; Voskuijl, Wieger; Berkley, James A.; Priebe, Marion G.
2016-01-01
Context: Severe acute malnutrition (SAM) accounts for approximately 1 million child deaths per year. High mortality is linked with comorbidities, such as diarrhea and pneumonia. Objective: The aim of this systematic review was to determine the extent to which carbohydrate malabsorption occurs in children with SAM. Data Sources: The PubMed and Embase databases were searched. Reference lists of selected articles were checked. Data Extraction: All observational and controlled intervention studies involving children with SAM in which direct or indirect measures of carbohydrate absorption were analyzed were eligible for inclusion. A total of 20 articles were selected for this review. Data Synthesis: Most studies reported carbohydrate malabsorption, particularly lactose malabsorption, and suggested an increase in diarrhea and reduced weight gain in children on a lactose-containing diet. As most studies reviewed were observational, there was no conclusive scientific evidence of a causal relationship between lactose malabsorption and a worse clinical outcome among malnourished children. Conclusion: The combined data indicate that carbohydrate malabsorption is prevalent in children with SAM. Additional well-designed intervention studies are needed to determine whether outcomes of SAM complicated by carbohydrate malabsorption could be improved by altering the carbohydrate/lactose content of therapeutic feeds and to elucidate the precise mechanisms involved. PMID:26578625
Carbohydrates for Soccer: A Focus on Skilled Actions and Half-Time Practices
Hills, Samuel P.; Russell, Mark
2017-01-01
Carbohydrate consumption is synonymous with soccer performance due to the established effects on endogenous energy store preservation, and physical capacity maintenance. For performance-enhancement purposes, exogenous energy consumption (in the form of drinks, bars, gels and snacks) is recommended on match-day; specifically, before and during match-play. Akin to the demands of soccer, limited opportunities exist to consume carbohydrates outside of scheduled breaks in competition, such as at half-time. The link between cognitive function and blood glucose availability suggests that carbohydrates may influence decision-making and technical proficiency (e.g., soccer skills). However, relatively few reviews have focused on technical, as opposed to physical, performance while also addressing the practicalities associated with carbohydrate consumption when limited in-play feeding opportunities exist. Transient physiological responses associated with reductions in activity prevalent in scheduled intra-match breaks (e.g., half-time) likely have important consequences for practitioners aiming to optimize match-day performance. Accordingly, this review evaluated novel developments in soccer literature regarding (1) the ergogenic properties of carbohydrates for skill performance; and (2) novel considerations concerning exogenous energy provision during half-time. Recommendations are made to modify half-time practices in an aim to enhance subsequent performance. Viable future research opportunities exist regarding a deeper insight into carbohydrate provision on match-day. PMID:29295583
Highly sensitive and selective sugar detection by terahertz nano-antennas
Lee, Dong-Kyu; Kang, Ji-Hun; Lee, Jun-Seok; Kim, Hyo-Seok; Kim, Chulki; Hun Kim, Jae; Lee, Taikjin; Son, Joo-Hiuk; Park, Q-Han; Seo, Minah
2015-01-01
Molecular recognition and discrimination of carbohydrates are important because carbohydrates perform essential roles in most living organisms for energy metabolism and cell-to-cell communication. Nevertheless, it is difficult to identify or distinguish various carbohydrate molecules owing to the lack of a significant distinction in the physical or chemical characteristics. Although there has been considerable effort to develop a sensing platform for individual carbohydrates selectively using chemical receptors or an ensemble array, their detection and discrimination limits have been as high in the millimolar concentration range. Here we show a highly sensitive and selective detection method for the discrimination of carbohydrate molecules using nano-slot-antenna array-based sensing chips which operate in the terahertz (THz) frequency range (0.5–2.5 THz). This THz metamaterial sensing tool recognizes various types of carbohydrate molecules over a wide range of molecular concentrations. Strongly localized and enhanced terahertz transmission by nano-antennas can effectively increase the molecular absorption cross sections, thereby enabling the detection of these molecules even at low concentrations. We verified the performance of nano-antenna sensing chip by both THz spectra and images of transmittance. Screening and identification of various carbohydrates can be applied to test even real market beverages with a high sensitivity and selectivity. PMID:26494203
Histochemistry of lectin-binding sites in Halicryptus spinulosus (Priapulida).
Busch, A; Schumacher, U; Storch, V
2001-02-01
Priapulida represent one of the phylogenetically oldest multicellular animal groups. In multicellular animals (Metazoa) cell-to-cell and cell-to-matrix interactions are often mediated by carbohydrate residues of glycoconjugates. To analyze the carbohydrate composition of a phylogenetically old species, lectin histochemistry was employed on 5 specimens of the priapulid Halicryptus spinulosus. Many lectins bound to the chitin-containing cuticle, including those specific for carbohydrates other than N-acetylglucosamine, the principle building block of chitin. The connective tissue of the animals contained both N-acetylglucosamine and N-acetylgalactosamine. Mannose residues were widely distributed with the exception of the cuticle, but complex type carbohydrates were not present in the entire animal. Sialic acid residues were only detected in the cuticle and brush border of the intestinal epithelium, while fucose was limited to the cuticle. Thus, the lectin-binding pattern indicated that sugars typical for the linking region of both N- and O-glycoproteins in mammals are also present in H. spinulosus. Carbohydrate residues that are typical for the complex type of N-linked glycans in vertebrates are not present as are carbohydrate residues typical for the termination of O-linked carbohydrate chains. Hence, a truncated form of both N- and O-linked glycosylation is present in H. spinulosus indicating that more complex patterns of glycosylation developed later during evolution.
Pinus sylvestris switches respiration substrates under shading but not during drought
NASA Astrophysics Data System (ADS)
Hartmann, Henrik; Fischer, Sarah; Hanf, Stefan; Frosch, Torsten; Poppp, Jürgen; Trumbore, Susan
2015-04-01
Reduced carbon assimilation during prolonged drought forces trees to rely on stored carbon to maintain vital processes like respiration. It has been shown, however, that the use of carbohydrates, a major carbon storage pool and main respiratory substrate in plants, strongly declines with deceasing plant hydration. Yet, no empirical evidence has been produced to what degree other carbon storage compounds like lipids and proteins may fuel respiration during drought. We exposed young scots pine trees to carbon limitation using either drought or shading and assessed respiratory substrate use by monitoring the respiratory quotient, δ13C of respired CO2and concentrations of the major storage compounds, i.e. carbohydrates (COH), lipids and amino acids. Generally, respiration was dominated by the most abundant substrate. Only shaded trees shifted from carbohydrate-dominated to lipid-dominated respiration and showed progressive carbohydrate depletion. In drought trees respiration was strongly reduced and fueled with carbohydrates from also strongly reduced carbon assimilation. Initial COH content was maintained during drought probably due to reduced COH mobilization and use and the maintained COH content may have prevented lipid catabolism via sugar signaling. Our results suggest that respiratory substrates other than carbohydrates are used under carbohydrate limitation but not during drought. Thus, respiratory substrate change cannot provide an efficient means to counterbalance carbon limitation under natural drought.
Rebello, Salome A; Koh, Hiromi; Chen, Cynthia; Naidoo, Nasheen; Odegaard, Andrew O; Koh, Woon-Puay; Butler, Lesley M; Yuan, Jian-Min; van Dam, Rob M
2014-07-01
The relation between carbohydrate intake and risk of ischemic heart disease (IHD) has not been fully explored in Asian populations known to have high-carbohydrate diets. We assessed whether intakes of total carbohydrates, different types of carbohydrates, and their food sources were associated with IHD mortality in a Chinese population. We prospectively examined the association of carbohydrate intake and IHD mortality in 53,469 participants in the Singapore Chinese Health Study with an average follow-up of 15 y. Diet was assessed by using a semiquantitative food-frequency questionnaire. HRs and 95% CIs were calculated by using a Cox proportional hazards analysis. We documented 1660 IHD deaths during 804,433 person-years of follow-up. Total carbohydrate intake was not associated with IHD mortality risk [men: HR per 5% of energy, 0.97 (95% CI: 0.92, 1.03); women: 1.06 (95% CI: 0.99, 1.14)]. When types of carbohydrates were analyzed individually, starch intake was associated with higher risk [men: 1.03 (95% CI: 0.99, 1.08); women: 1.08, (95% CI: 1.02, 1.14)] and fiber intake with lower risk of IHD mortality [men: 0.94 (95% CI: 0.82, 1.08); women: 0.71 (95% CI: 0.60, 0.84)], with stronger associations in women than men (both P-interaction < 0.01). In substitution analyses, the replacement of one daily serving of rice with one daily serving of noodles was associated with higher risk (difference in HR: 26.11%; 95% CI: 10.98%, 43.30%). In contrast, replacing one daily serving of rice with one of vegetables (-23.81%; 95% CI: -33.12%, -13.20%), fruit (-11.94%; 95% CI: -17.49%, -6.00%), or whole-wheat bread (-19.46%; 95% CI: -34.28%, -1.29%) was associated with lower risk of IHD death. In this Asian population with high carbohydrate intake, the total amount of carbohydrates consumed was not substantially associated with IHD mortality. In contrast, the shifting of food sources of carbohydrates toward a higher consumption of fruit, vegetables, and whole grains was associated with lower risk of IHD death. © 2014 American Society for Nutrition.
NASA Astrophysics Data System (ADS)
Thoms, Ronny; Muhr, Jan; Keitel, Claudia; Kayler, Zachary; Gavrichkova, Olga; Köhler, Michael; Gessler, Arthur; Gleixner, Gerd
2016-04-01
Transport mechanisms of soluble carbohydrates and diurnal CO2 efflux from tree stems and surrounding soil are well studied. However, the effect of transport carbohydrates on respiration and their interaction with storage processes is largely unknown. Therefore, we performed a set of 13CO2 pulse labeling experiments on young trees of European beech (Fagus sylvatica f. purpurea). We labeled the whole tree crowns in a closed transparent plastic chamber with 99% 13CO2 for 30 min. In one experiment, only a single branch was labeled and removed 36 hours after labeling. In all experiments, we continuously measured the 13CO2 efflux from stem, branch and soil and sampled leaf and stem material every 3 h for 2 days, followed by a daily sampling of leaves in the successive 5 days. The compound specific δ 13C value of extracted soluble carbohydrates from leaf and stem material was measured by high-performance liquid chromatography linked with an isotope ratio mass spectrometer (HPLC-IRMS). The 13CO2 signal from soil respiration occurred only few hours after labeling indicating a very high transport rate of carbohydrates from leaf to roots and to the rhizosphere. The label was continuously depleted within the next 5 days. In contrast, we observed a remarkable oscillating pattern of 13CO2 efflux from the stem with maximum 13CO2 enrichment at noon and minima at night time. This oscillation suggests that enriched carbohydrates are respired during the day, whereas in the night the enriched sugars are not respired. The observed oscillation in stem 13CO2 enrichment remained unchanged even when only single branches were labelled and cut right afterwards. Thus, storage and conversion of carbohydrates only occurred within the stem. The δ13C patterns of extracted soluble carbohydrates showed, that a transformation of transitory starch to carbohydrates and vice versa was no driver of the oscillating 13CO2 efflux from the stem. Carbohydrates might have been transported in the phloem to the location of biosynthesis further to a storage pool from which they are respired during the day. Keywords: 13CO2 efflux, oscillating pattern, carbohydrates, transitory starch
Transcriptomes of Arbuscular Mycorrhizal Fungi and Litchi Host Interaction after Tree Girdling
Shu, Bo; Li, Weicai; Liu, Liqin; Wei, Yongzan; Shi, Shengyou
2016-01-01
Trunk girdling can increase carbohydrate content above the girdling site and is an important strategy for inhibiting new shoot growth to promote flowering in cultivated litchi (Litchi chinensis Sonn.). However, girdling inhibits carbohydrate transport to the root in nearly all of the fruit development periods and consequently decreases root absorption. The mechanism through which carbohydrates regulate root development in arbuscular mycorrhiza (AM) remains largely unknown. Carbohydrate content, AM colonization, and transcriptome in the roots were analyzed to elucidate the interaction between host litchi and AM fungi when carbohydrate content decreases. Girdling decreased glucose, fructose, sucrose, quebrachitol, and starch contents in the litchi mycorrhizal roots, thereby reducing AM colonization. RNA-seq achieved approximately 60 million reads of each sample, with an average length of reads reaching 100 bp. Assembly of all the reads of the 30 samples produced 671,316 transcripts and 381,429 unigenes, with average lengths of 780 and 643 bp, respectively. Litchi (54,100 unigenes) and AM fungi unigenes (33,120 unigenes) were achieved through sequence annotation during decreased carbohydrate content. Analysis of differentially expressed genes (DEG) showed that flavonoids, alpha-linolenic acid, and linoleic acid are the main factors that regulate AM colonization in litchi. However, flavonoids may play a role in detecting the stage at which carbohydrate content decreases; alpha-linolenic acid or linoleic acid may affect AM formation under the adaptation process. Litchi trees stimulated the expression of defense-related genes and downregulated symbiosis signal-transduction genes to inhibit new AM colonization. Moreover, transcription factors of the AP2, ERF, Myb, WRKY, bHLH families, and lectin genes altered maintenance of litchi mycorrhizal roots in the post-symbiotic stage for carbohydrate starvation. Similar to those of the litchi host, the E3 ubiquitin ligase complex SCF subunit scon-3 and polyubiquitin of AM fungi were upregulated at the perceived stages. This occurrence suggested that ubiquitination plays an important role in perceiving carbohydrate decrease in AM fungi. The transcription of cytochrome b-245 and leucine-rich repeat was detected in the DEG database, implying that the transcripts were involved in AM fungal adaptation under carbohydrate starvation. The transcriptome data might suggest novel functions of unigenes in carbohydrate shortage of mycorrhizal roots. PMID:27065972
Transcriptomes of Arbuscular Mycorrhizal Fungi and Litchi Host Interaction after Tree Girdling.
Shu, Bo; Li, Weicai; Liu, Liqin; Wei, Yongzan; Shi, Shengyou
2016-01-01
Trunk girdling can increase carbohydrate content above the girdling site and is an important strategy for inhibiting new shoot growth to promote flowering in cultivated litchi (Litchi chinensis Sonn.). However, girdling inhibits carbohydrate transport to the root in nearly all of the fruit development periods and consequently decreases root absorption. The mechanism through which carbohydrates regulate root development in arbuscular mycorrhiza (AM) remains largely unknown. Carbohydrate content, AM colonization, and transcriptome in the roots were analyzed to elucidate the interaction between host litchi and AM fungi when carbohydrate content decreases. Girdling decreased glucose, fructose, sucrose, quebrachitol, and starch contents in the litchi mycorrhizal roots, thereby reducing AM colonization. RNA-seq achieved approximately 60 million reads of each sample, with an average length of reads reaching 100 bp. Assembly of all the reads of the 30 samples produced 671,316 transcripts and 381,429 unigenes, with average lengths of 780 and 643 bp, respectively. Litchi (54,100 unigenes) and AM fungi unigenes (33,120 unigenes) were achieved through sequence annotation during decreased carbohydrate content. Analysis of differentially expressed genes (DEG) showed that flavonoids, alpha-linolenic acid, and linoleic acid are the main factors that regulate AM colonization in litchi. However, flavonoids may play a role in detecting the stage at which carbohydrate content decreases; alpha-linolenic acid or linoleic acid may affect AM formation under the adaptation process. Litchi trees stimulated the expression of defense-related genes and downregulated symbiosis signal-transduction genes to inhibit new AM colonization. Moreover, transcription factors of the AP2, ERF, Myb, WRKY, bHLH families, and lectin genes altered maintenance of litchi mycorrhizal roots in the post-symbiotic stage for carbohydrate starvation. Similar to those of the litchi host, the E3 ubiquitin ligase complex SCF subunit scon-3 and polyubiquitin of AM fungi were upregulated at the perceived stages. This occurrence suggested that ubiquitination plays an important role in perceiving carbohydrate decrease in AM fungi. The transcription of cytochrome b-245 and leucine-rich repeat was detected in the DEG database, implying that the transcripts were involved in AM fungal adaptation under carbohydrate starvation. The transcriptome data might suggest novel functions of unigenes in carbohydrate shortage of mycorrhizal roots.
Spiegel, Gail; Bortsov, Andrey; Bishop, Franziska K; Owen, Darcy; Klingensmith, Georgeanna J; Mayer-Davis, Elizabeth J; Maahs, David M
2012-11-01
Youth with type 1 diabetes do not count carbohydrates accurately, yet it is an important strategy in blood glucose control. The study objective was to determine whether a nutrition education intervention would improve carbohydrate counting accuracy and glycemic control. We conducted a randomized, controlled nutrition intervention trial that was recruited from February 2009 to February 2010. Youth (12 to 18 years of age, n = 101) with type 1 diabetes were screened to identify those with poor carbohydrate counting accuracy, using a previously developed carbohydrate counting accuracy test covering commonly consumed foods and beverage items presented in six mixed meals and two snacks. All participants (n = 66, age = 15 ± 3 years, 41 male, diabetes duration = 6 ± 4 years, hemoglobin A1c [HbA1c] = 8.3% ± 1.1%) were randomized to the control or intervention group at the baseline visit. The intervention group attended a 90-minute class with a registered dietitian/certified diabetes educator and twice kept 3-day food records, which were used to review carbohydrate counting progress. Carbohydrate counting accuracy (measured as described) and HbA1c were evaluated at baseline and 3 months to determine the effectiveness of the intervention. t Tests, Spearman correlations, and repeated measures models were used. At baseline, carbohydrate content was over- and underestimated in 16 and 5 of 29 food items, respectively. When foods were presented as mixed meals, participants either significantly over- or underestimated 10 of the 9 meals and 4 snacks. After 3 months of follow-up, HbA1c decreased in both the intervention and control groups by -0.19% ± 0.12% (P = 0.12) and -0.08% ± 0.11% (P = 0.51), respectively; however, the overall intervention effect was not statistically significant for change in HbA1c or carbohydrate counting accuracy. More intensive intervention might be required to improve adolescents' carbohydrate counting accuracy and nutrition management of type 1 diabetes. Additional research is needed to translate nutrition education into improved health outcomes. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Bernstein, Adam M.; Ley, Sylvia H.; Wang, Dong D.; Chiuve, Stephanie E.; Sampson, Laura; Rexrode, Kathryn M.; Rimm, Eric B.; Willett, Walter C.; Hu, Frank B.
2015-01-01
Background The associations between dietary saturated fat and risk of coronary heart disease (CHD) remain controversial, but few studies have compared saturated with unsaturated fats and sources of carbohydrates in relation to CHD risk. Objective This study sought to investigate associations of saturated fats as compared with unsaturated fats and different sources of carbohydrates in relation to CHD risk. Methods We followed 84,628 women (Nurses’ Health Study, 1980 to 2010), and 42,908 men (Health Professionals Follow-up Study, 1986 to 2010) who were free of diabetes, cardiovascular disease, and cancer at baseline. Diet was assessed by semiquantitative food frequency questionnaire every 4 years. Results During 24 to 30 years of follow-up, we documented 7,667 incident cases of CHD. Higher intakes of polyunsaturated fatty acids (PUFAs) and carbohydrates from whole grains were significantly associated with lower risk of CHD (hazard ratios [HR] (95% confidence intervals [CI]) comparing the highest to the lowest quintile for PUFA: 0.80 [0.73 to 0.88], p trend <0.0001; and for carbohydrates from whole grains: 0.90 [0.83 to 0.98], p trend = 0.003). In contrast, carbohydrates from refined starches/added sugars were positively associated with risk of CHD (1.10 [1.00 to 1.21], p trend = 0.04). Replacing 5% of energy intake from saturated fats with equivalent energy intake from either PUFAs, monounsaturated fats (MUFAs), or carbohydrates from whole grains was associated with 25%, 15%, and 9% lower risk of CHD, respectively (PUFAs: 0.75 [0.67 to 0.84]; p < 0.0001; MUFAs: 0.85 [0.74 to 0.97]; p = 0.02; carbohydrates from whole grains (0.91 [0.85 to 0.98]; p = 0.01). Replacing saturated fat with carbohydrates from refined starches/added sugars was not significantly associated with CHD risk (p > 0.10). Conclusions Our findings indicate that unsaturated fats, especially PUFAs, and/or high-quality carbohydrates should replace dietary saturated fats to reduce CHD risk. PMID:26429077
Baroreflex sensitivity in acute hypoxia and carbohydrate loading.
Klemenc, Matjaž; Golja, Petra
2011-10-01
Hypoxia decreases baroreflex sensitivity (BRS) and can be a sufficient cause for syncope in healthy individuals. Carbohydrate loading enhances efferent sympathetic activity, which affects cardiac contractility, heart rate and vascular resistance, the main determinants of blood pressure. Thus, in both normoxia and hypoxia, carbohydrate loading may be more than simply metabolically beneficial, as it may affect blood pressure regulation. We hypothesised that carbohydrate loading will, in both normoxia and hypoxia, alter the regulation of blood pressure, as reflected in a change in baroreflex sensitivity. Fourteen subjects participated in two experiments, composed of a 15-min normoxic period, after which the subjects ingested water or an equal amount of water with carbohydrates. A 30-min rest period was then followed by a 10-min second normoxic and a 30-min hypoxic period. Blood pressure and heart rate were monitored continuously during the experiment to determine BRS. Despite an increased sympathetic activation, reflected in increased heart rate (P < 0.001) BRS was lower (P < 0.01) after carbohydrate loading, as compared to the water experiment, in both normoxic [23.7 (12.4) versus 28.8 (13.8) ms/mmHg] and hypoxic [16.8 (11.0) versus 24.3 (12.3) ms/mmHg] phases of the present study. As BRS was decreased in acute hypoxic exposure, the results confirm that hypoxia interferes with blood pressure regulation. However, although oral carbohydrate loading induced sympathoexcitation, it did not improve blood pressure regulation in hypoxia, as evident from the BRS data. Baroreflex effects of other forms of carbohydrate loading, not causing postprandial blood shifts to digestive system, should therefore be investigated.
Payne, Christina M.; Bomble, Yannick J.; Taylor, Courtney B.; McCabe, Clare; Himmel, Michael E.; Crowley, Michael F.; Beckham, Gregg T.
2011-01-01
Proteins employ aromatic residues for carbohydrate binding in a wide range of biological functions. Glycoside hydrolases, which are ubiquitous in nature, typically exhibit tunnels, clefts, or pockets lined with aromatic residues for processing carbohydrates. Mutation of these aromatic residues often results in significant activity differences on insoluble and soluble substrates. However, the thermodynamic basis and molecular level role of these aromatic residues remain unknown. Here, we calculate the relative ligand binding free energy by mutating tryptophans in the Trichoderma reesei family 6 cellulase (Cel6A) to alanine. Removal of aromatic residues near the catalytic site has little impact on the ligand binding free energy, suggesting that aromatic residues immediately upstream of the active site are not directly involved in binding, but play a role in the glucopyranose ring distortion necessary for catalysis. Removal of aromatic residues at the entrance and exit of the Cel6A tunnel, however, dramatically impacts the binding affinity, suggesting that these residues play a role in chain acquisition and product stabilization, respectively. The roles suggested from differences in binding affinity are confirmed by molecular dynamics and normal mode analysis. Surprisingly, our results illustrate that aromatic-carbohydrate interactions vary dramatically depending on the position in the enzyme tunnel. As aromatic-carbohydrate interactions are present in all carbohydrate-active enzymes, these results have implications for understanding protein structure-function relationships in carbohydrate metabolism and recognition, carbon turnover in nature, and protein engineering strategies for biomass utilization. Generally, these results suggest that nature employs aromatic-carbohydrate interactions with a wide range of binding affinities for diverse functions. PMID:21965672
Persson, Elna; Sjöholm, Ingegerd; Nyman, Margareta; Skog, Kerstin
2004-12-15
The influence of the addition of carbohydrates with different physicochemical properties on weight loss and formation of heterocyclic amines (HAs) during the frying of beef burgers was examined. Furthermore, the capability of carbohydrates to bind HAs was tested. Beef burgers containing 1.5% NaCl and 0.3% tripolyphosphate (reference), with the addition of 1.5% carbohydrate, were fried for 5 min at 200 degrees C in a double-sided pan fryer. The beef burgers were analyzed for HAs with solid phase extraction and liquid chromatography/mass spectrometry. 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP), and 9H-pyrido[3,4-b]indole (Norharman) were detected in all of the beef burgers. The addition of carbohydrates affected both the weight loss and the formation of HAs during cooking. The formation of HAs could be correlated to depend on both the weight loss and the type of the added carbohydrate. Of the 11 different carbohydrates tested, raw potato starch was most capable of inhibiting the formation of HAs, while potato fiber gave the lowest weight loss and a comparably low amount of PhIP. Wheat bran and potato fiber were found to reversibly bind HAs. It is concluded that adding small amounts of certain carbohydrates may be a simple and effective way of reducing the amount of HAs and can easily be applied in households and commercial preparations of beef burgers.
A critical review of low-carbohydrate diets in people with Type 2 diabetes.
van Wyk, H J; Davis, R E; Davies, J S
2016-02-01
The efficacy of low-carbohydrate diets (LCD) in people with Type 2 diabetes has divided the nutrition community. This review seeks to re-examine the available data to clarify understanding. A comprehensive search of databases was used to identify meta-analyses of LCD in Type 2 diabetes. To improve the quality of the studies analysed, the following inclusion criteria were applied: randomized control trials ≥ 4 weeks in people aged > 18 years with Type 2 diabetes; a carbohydrate intake ≤ 45% of total energy intake per day; and a dietary intake assessment at the end of the study. The resulting studies were subjected to a thematic analysis. Nine meta-analyses were identified containing 153 studies. Twelve studies met our amended inclusion criteria. There were no significant differences in metabolic markers, including glycaemic control, between the two diets, although weight loss with a LCD was greater in one study. Carbohydrate intake at 1 year in very LCD (< 50 g of carbohydrates) ranged from 132 to 162 g. In some studies, the difference between diets was as little as 8 g/day of carbohydrates. Total energy intake remains the dietary predictor of body weight. A LCD appears no different from a high-carbohydrate diet in terms of metabolic markers and glycaemic control. Very LCDs may not be sustainable over a medium to longer term as carbohydrate intake in diets within studies often converged toward a more moderate level. The variable quality of studies included in earlier meta-analyses likely explains the previous inconsistent findings between meta-analyses. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.
Valente, E. E. L.; Paulino, M. F.; Barros, L. V.; Almeida, D. M.; Martins, L. S.; Cabral, C. H. A.
2014-01-01
The objective of this work was to evaluate the nutritional parameters of young bulls supplemented with different ratios of protein: carbohydrate on tropical pastures from 4 until 18 months old. Fifty-five non-castrated beef calves (138.3±3.4 kg, 90 to 150 d of age) were used. The calves (young bulls) were subjected to a 430-d experimental period encompassing 4 seasons. The treatments were as follows: control, only mineral mixture; HPHC, high protein and high carbohydrate supplement; HPLC, high protein and low carbohydrate supplement; LPHC, low protein and high carbohydrate supplement; and LPLC, low protein and low carbohydrate supplement. The amount of supplement was adjusted every 28 d. Dry matter (DM) intake was higher in the dry-to-rainy transition and rainy seasons for all nutritional plans. Non-supplemented animals had lower intakes of DM and total digestible nutrients (TDN) than supplemented young bulls in all seasons. Although differences in DM intake were not observed between supplemented animals, the supplements with high carbohydrate (HPHC and LPHC) had lower forage intake during suckling (rainy-to-dry transition season) and in the rainy season. However, the HPHC treatment animals had higher intake and digestibility of neutral detergent fiber. It can be concluded that supplementation with high protein levels (supplying 50% of the crude protein requirement) provide the best nutritional parameters for grazing young bulls in most seasons, increasing intake and digestibility of diet, and these effects are more intense when associated with high carbohydrate levels level (supplying 30% TDN requirement). PMID:25178297
Wills, Bill D.; Chong, Cody D.; Wilder, Shawn M.; Eubanks, Micky D.; Holway, David A.; Suarez, Andrew V.
2015-01-01
Resource availability can determine an organism’s investment strategies for growth and reproduction. When nutrients are limited, there are potential tradeoffs between investing into offspring number versus individual offspring size. In social insects, colony investment in offspring size and number may shift in response to colony needs and the availability of food resources. We experimentally manipulated the diet of a polymorphic ant species (Solenopsis invicta) to test how access to the carbohydrate and amino acid components of nectar resources affect colony investment in worker number, body size, size distributions, and individual percent fat mass. We reared field-collected colonies on one of four macronutrient treatment supplements: water, amino acids, carbohydrates, and amino acid and carbohydrates. Having access to carbohydrates nearly doubled colony biomass after 60 days. This increase in biomass resulted from an increase in worker number and mean worker size. Access to carbohydrates also altered worker body size distributions. Finally, we found a negative relationship between worker number and size, suggesting a tradeoff in colony investment strategies. This tradeoff was more pronounced for colonies without access to carbohydrate resources. The monopolization of plant-based resources has been implicated in the ecological success of ants. Our results shed light on a possible mechanism for this success, and also have implications for the success of introduced species. In addition to increases in colony size, our results suggest that having access to plant-based carbohydrates can also result in larger workers that may have better individual fighting ability, and that can withstand greater temperature fluctuations and periods of food deprivation. PMID:26196147
Preoperative oral carbohydrates and postoperative insulin resistance.
Nygren, J; Soop, M; Thorell, A; Sree Nair, K; Ljungqvist, O
1999-04-01
Infusions of carbohydrates before surgery have been shown to reduce postoperative insulin resistance. Presently, we investigated the effects of a carbohydrate drink, given shortly before surgery, on postoperative insulin sensitivity. Insulin sensitivity and glucose turnover ([6, 6,(2)H(2)]-D-glucose) were measured using hyper-insulinemic, normoglycemic clamps before and after elective surgery. Sixteen patients undergoing total hip replacement were randomly assigned to preoperative oral carbohydrate administration (CHO-H, n = 8) or the same amount of a placebo drink (placebo, n = 8) before surgery. Insulin sensitivity was measured before and immediately after surgery. Patients undergoing elective colorectal surgery were studied before surgery and 24 h postoperatively (CHO-C (n = 7), and fasted (n = 7), groups). The fasted group underwent surgery after an overnight fast. In both studies, the CHO groups received 800 ml of an isoosmolar carbohydrate rich beverage the evening before the operation (100g carbohydrates), as well as another 400 ml (50g carbohydrates) 2 h before the initiation of anesthesia. Immediately after surgery, insulin sensitivity was reduced 37% in the placebo group (P < 0.05 vs. preoperatively) while no significant change was found in the CHO-H group (-16%, p = NS). During clamps performed 24h postoperatively, insulin sensitivity and whole-body glucose disposal was reduced in both groups, but the reduction was greater compared to that in the CHO-C group (-49 +/- 6% vs. -26 +/- 8%, P> 0.05 fasted vs. CHO-C). Patients given a carbohydrate drink shortly before elective surgery displayed less reduced insulin sensitivity after surgery as compared to patients undergoing surgery after an overnight fast. Copyright 1999 Harcourt Publishers Ltd.
Studies on chemical modification of cold agglutinin from the snail Achatina fulica.
Sarkar, M; Mitra, D; Sen, A K
1987-01-01
The cold agglutinin isolated from the albumin gland of the snail Achatina fulica was modified with various chemical reagents in order to detect the amino acids and/or carbohydrate residues present in its carbohydrate-binding sites. Treatment with reagents considered specific for modification of lysine, arginine and tryptophan residues of the cold agglutinin did not affect the carbohydrate-binding activity of the agglutinin. Modification of tyrosine residues showed some change. However, modification with carbodiimide followed by alpha-aminobutyric acid methyl ester causes almost complete loss of its binding activity, indicating the involvement of aspartic acid and glutamic acid in its carbohydrate-binding activity. The carbohydrate residues of the cold agglutinin were removed by beta-elimination reaction, indicating that the sugars are O-glycosidically linked to protein part of the molecule. Removal of galactose residues from the cold agglutinin by the action of beta-galactosidase indicated that the galactose molecules are beta-linked. These carbohydrate-modified glycoproteins showed a marked change in agglutination property, i.e. they agglutinated rabbit erythrocytes at both 10 degrees C and 25 degrees C, indicating that the galactose residues of the glycoprotein play an important role in the cold-agglutination property of the glycoprotein. The c.d. data showed the presence of an almost identical type of random-coil conformation in the native cold agglutinin at 10 degrees C and in the carbohydrate-modified glycoprotein at 10 degrees C and 25 degrees C. This particular random-coil conformation is essential for carbohydrate-binding property of the agglutinin. Images Fig. 1. PMID:3118867
Allick, Gideon; Bisschop, Peter H; Ackermans, Mariette T; Endert, Erik; Meijer, Alfred J; Kuipers, Folkert; Sauerwein, Hans P; Romijn, Johannes A
2004-12-01
The aim of this study was to examine the mechanisms by which dietary carbohydrate and fat modulate fasting glycemia. We compared the effects of an eucaloric high-carbohydrate (89% carbohydrate) and high-fat (89% fat) diet on fasting glucose metabolism and insulin sensitivity in seven obese patients with type 2 diabetes using stable isotopes and euglycemic hyperinsulinemic clamps. At basal insulin levels glucose concentrations were 148 +/- 11 and 123 +/- 11 mg/dl (8.2 +/- 0.6 and 6.8 +/- 0.6 mmol/liter) on the high-carbohydrate and high-fat diet, respectively (P < 0.001), with insulin concentrations of 12 +/- 2 and 10 +/- 1 microIU/ml (82 +/- 11 and 66 +/- 10 pmol/liter) (P = 0.08). Glucose production was higher on the high-carbohydrate diet (1.88 +/- 0.06 vs. 1.55 +/- 0.05 mg/kg.min (10.44 +/- 0.33 vs. 8.61 +/- 0.28 micromol/kg.min) (P < 0.001) because of higher glycogenolysis. Gluconeogenic rates were not different between the diets. During the use of hyperinsulinemic euglycemic clamps, insulin-mediated suppression of glucose production and stimulation of glucose disposal were not different between the diets. Free fatty concentrations were suppressed by 89 and 62% (P < 0.0001) on the high-carbohydrate and high-fat diet, respectively. We conclude that short-term variations in dietary carbohydrate to fat ratios affect basal glucose metabolism in people with type 2 diabetes merely through modulation of the rate of glycogenolysis, without affecting insulin sensitivity of glucose metabolism.
Hwang, Eun Young; Jeong, Mi Suk; Park, Sang Kyun; Ha, Sung Chul; Yu, Hak Sun; Jang, Se Bok
2016-12-02
Toxascaris leonina galectin (Tl-gal) is a galectin-9 homologue protein isolated from an adult worm of the canine gastrointestinal nematode parasite, and Tl-gal-vaccinated challenge can inhibit inflammation in inflammatory bowel disease-induced mice. We determined the first X-ray structures of full-length Tl-gal complexes with carbohydrates (lactose, N-acetyllactosamine, lacto-N-tetraose, sialyllactose, and glucose). Bonds were formed on concave surfaces of both carbohydrate recognition domains (CRDs) in Tl-gal. All binding sites were found in the HXXXR and WGXEER motifs. Charged Arg 61 /Arg 196 and Glu 80 /Glu 215 on the conserved motif of Tl-gal N-terminal CRD and C-terminal CRD are critical amino acids for recognizing carbohydrate binding, and the residues can affect protein folding and structure. The polar amino acids His, Asn, and Trp are also important residues for the interaction with carbohydrates through hydrogen bonding. Hemagglutination activities of Tl-gal were inhibited by interactions with carbohydrates and mutations. We found that the mutation of Tl-gal (E80A/E215A) at the carbohydrate binding region induced protein aggregation and could be caused in many diseases. The short linker region between the N-terminal and C-terminal CRDs of Tl-gal was very stable against proteolysis and maintained its biological activity. This structural information is expected to elucidate the carbohydrate recognition mechanism of Tl-gal and improve our understanding of anti-inflammatory mediators and modulators of immune response. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Jensen, Kristian K; Previs, Stephen F; Zhu, Lei; Herath, Kithsiri; Wang, Sheng-Ping; Bhat, Gowri; Hu, Guanghui; Miller, Paul L; McLaren, David G; Shin, Myung K; Vogt, Thomas F; Wang, Liangsu; Wong, Kenny K; Roddy, Thomas P; Johns, Douglas G; Hubbard, Brian K
2012-01-15
The liver is a crossroad for metabolism of lipid and carbohydrates, with acetyl-CoA serving as an important metabolic intermediate and a precursor for fatty acid and cholesterol biosynthesis pathways. A better understanding of the regulation of these pathways requires an experimental approach that provides both quantitative metabolic flux measurements and mechanistic insight. Under conditions of high carbohydrate availability, excess carbon is converted into free fatty acids and triglyceride for storage, but it is not clear how excessive carbohydrate availability affects cholesterol biosynthesis. To address this, C57BL/6J mice were fed either a low-fat, high-carbohydrate diet or a high-fat, carbohydrate-free diet. At the end of the dietary intervention, the two groups received (2)H(2)O to trace de novo fatty acid and cholesterol synthesis, and livers were collected for gene expression analysis. Expression of lipid and glucose metabolism genes was determined using a custom-designed pathway focused PCR-based gene expression array. The expression analysis showed downregulation of cholesterol biosynthesis genes and upregulation of fatty acid synthesis genes in mice receiving the high-carbohydrate diet compared with the carbohydrate-free diet. In support of these findings, (2)H(2)O tracer data showed that fatty acid synthesis was increased 10-fold and cholesterol synthesis was reduced by 1.6-fold in mice fed the respective diets. In conclusion, by applying gene expression analysis and tracer methodology, we show that fatty acid and cholesterol synthesis are differentially regulated when the carbohydrate intake in mice is altered.
Sacks, Frank M.; Carey, Vincent J.; Anderson, Cheryl A. M.; Miller, Edgar R.; Copeland, Trisha; Charleston, Jeanne; Harshfield, Benjamin J.; Laranjo, Nancy; McCarron, Phyllis; Swain, Janis; White, Karen; Yee, Karen; Appel, Lawrence J.
2015-01-01
IMPORTANCE Foods that have similar carbohydrate content can differ in the amount they raise blood glucose. The effects of this property, called the glycemic index, on risk factors for cardiovascular disease and diabetes are not well understood. OBJECTIVE To determine the effect of glycemic index and amount of total dietary carbohydrate on risk factors for cardiovascular disease and diabetes. DESIGN, SETTING, AND PARTICIPANTS Randomized crossover-controlled feeding trial conducted in research units in academic medical centers, in which 163 overweight adults (systolic blood pressure, 120–159 mm Hg) were given 4 complete diets that contained all of their meals, snacks, and calorie-containing beverages, each for 5 weeks, and completed at least 2 study diets. The first participant was enrolled April 1, 2008; the last participant finished December 22, 2010. For any pair of the 4 diets, there were 135 to 150 participants contributing at least 1 primary outcome measure. INTERVENTIONS (1) A high–glycemic index (65% on the glucose scale), high-carbohydrate diet (58% energy); (2) a low–glycemic index (40%), high-carbohydrate diet; (3) a high–glycemic index, low-carbohydrate diet (40% energy); and (4) a low–glycemic index, low-carbohydrate diet. Each diet was based on a healthful DASH-type diet. MAIN OUTCOMES AND MEASURES The 5 primary outcomes were insulin sensitivity, determined from the areas under the curves of glucose and insulin levels during an oral glucose tolerance test; levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides; and systolic blood pressure. RESULTS At high dietary carbohydrate content, the low– compared with high–glycemic index level decreased insulin sensitivity from 8.9 to 7.1 units (−20%, P = .002); increased LDL cholesterol from 139 to 147 mg/dL (6%, P ≤ .001); and did not affect levels of HDL cholesterol, triglycerides, or blood pressure. At low carbohydrate content, the low– compared with high–glycemic index level did not affect the outcomes except for decreasing triglycerides from 91 to 86 mg/dL (−5%, P = .02). In the primary diet contrast, the low–glycemic index, low-carbohydrate diet, compared with the high–glycemic index, high-carbohydrate diet, did not affect insulin sensitivity, systolic blood pressure, LDL cholesterol, or HDL cholesterol but did lower triglycerides from 111 to 86 mg/dL (−23%, P ≤ .001). CONCLUSIONS AND RELEVANCE In this 5-week controlled feeding study, diets with low glycemic index of dietary carbohydrate, compared with high glycemic index of dietary carbohydrate, did not result in improvements in insulin sensitivity, lipid levels, or systolic blood pressure. In the context of an overall DASH-type diet, using glycemic index to select specific foods may not improve cardiovascular risk factors or insulin resistance. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00608049 PMID:25514303
Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees
Andrew D. Richardson; Mariah S. Carbone; Trevor F. Keenan; Claudia I. Czimczik; David Y. Hollinger; Paula Murakami; Paul G. Schaberg; Xiaomei Xu
2013-01-01
Nonstructural carbohydrate reserves support tree metabolism and growth when current photosynthates are insufficient, offering resilience in times of stress. We monitored stemwood nonstructural carbohydrate (starch and sugars) concentrations of the dominant tree species at three sites in the northeastern United States. We estimated the mean age of the starch and sugars...
USDA-ARS?s Scientific Manuscript database
The intake of carbohydrates has been evaluated cross-sectionally, but not longitudinally in an ageing American adult population. The aim of the present study was to examine trends in the intake of dietary carbohydrates and their major food sources among the Framingham Heart Study Offspring (FOS) coh...
Dietary management of D-lactic acidosis in short bowel syndrome.
Mayne, A J; Handy, D J; Preece, M A; George, R H; Booth, I W
1990-01-01
Manipulation of carbohydrate intake was used to treat severe, recurrent D-lactic acidosis in a patient with short bowel syndrome. Dietary carbohydrate composition was determined after assessment of D-lactic acid production from various carbohydrate substrates by faecal flora in vitro. This approach may be preferable to repeated courses of antibiotics. PMID:2317072
USDA-ARS?s Scientific Manuscript database
In the present study, carbohydrate composition of high fructose corn syrups (HFCS) from commercial manufacturers as well as from beekeepers was deeply characterised by GC-MS. Sucrose syryps (SS) were also included in this work for comparison. Fructosyl-fructoses and some unknown carbohydrates prob...
USDA-ARS?s Scientific Manuscript database
Reducing sugar (RSA) and phenol–sulfuric acid (PSA) assays are commonly used to analyze water-soluble carbohydrates. However, questions have arisen as to their accuracy for measurement of feedstuffs with diverse carbohydrate profiles. This study evaluated the efficacy of RSA and PSA as they would co...
Seasonal patterns of reserve and soluble carbohydrates in mature sugar maple (Acer saccharum)
B.L. Wong; K.L. Baggett; A.H. Rye
2003-01-01
Sugar maple (Acer saccharum Marsh.) trees exhibit seasonal patterns of production, accumulation, and utilization of nonstructural carbohydrates that are closely correlated with phenological events and (or) physiological processes. The simultaneous seasonal patterns of both reserve and soluble carbohydrates in the leaves, twigs, branches, and trunks of healthy mature...
USDA-ARS?s Scientific Manuscript database
Bio-based micro scale materials are increasingly used in functional food and pharmaceutical applications. The present study produced carbohydrate-based micro scale tubular materials from sugar beet (Beta vulgaris L.) pulp (SBP), a by-product of sugar beet processing. The isolated carbohydrates wer...
Choix, Francisco J; de-Bashan, Luz E; Bashan, Yoav
2012-10-10
The effect of the microalgae-growth promoting bacterium Azospirillum brasilense on accumulation of total carbohydrates and starch in two species of Chlorella (Chlorella vulgaris and Chlorella sorokiniana), when the bacterium and each microalga were jointly immobilized in alginate beads was studied under autotrophic conditions for 144 h in synthetic medium. The interaction of the bacterium with the microalgae enhanced accumulation of total carbohydrate and starch. Cells of Chlorella accumulated the highest amounts of carbohydrate after incubation for 24h. Yet, this did not coincide with the highest affinity and volumetric productivity measured in these cultures. However, after incubation for 72 h, mainly in jointly immobilized treatments of both microalgae species, the cultures reached their highest total carbohydrate content (mainly as starch) and also the highest affinity and volumetric productivity. These results demonstrate the potential of A. brasilense to affect carbohydrates and starch accumulation in Chlorella spp. when both microorganisms are co-cultured, which can be an important tool for applications of microalgae. Copyright © 2012. Published by Elsevier Inc.
Neurobiologic basis of craving for carbohydrates.
Ventura, Tamara; Santander, Jaime; Torres, Rafael; Contreras, Ana María
2014-03-01
There is a relationship between emotional disorders, obesity, and craving for carbohydrates. This relationship complicates the success of treatments aimed at combatting obesity, which is considered to be the epidemic of the twenty-first century. We conducted a review of the neurobiologic basis for carbohydrate craving, with the hope that this understanding will enable the design of more efficient therapeutic strategies. We conducted a non-systematic literature search in PubMed using MeSH. Research on the basis of carbohydrate craving is varied, but may be grouped into five main areas: the serotonergic system, palatability and hedonic response, the motivational system, stress response systems, and gene-environment interaction. The models that integrate motivational systems with palatability and hedonic response studies are the ones that we believe can best explain both craving for carbohydrates and related addictive phenomena. Research has contributed to a greater understanding of the neurobiologic basis of carbohydrate craving. The latter, in turn, contributes to an understanding of the implications, challenges, and possible therapies that might be put in place to cope with this phenomenon. Copyright © 2014 Elsevier Inc. All rights reserved.
Chen, Jien-Lian; Lee, Chuping; Lu, I-Chung; Chien, Chia-Lung; Lee, Yuan-Tseh; Hu, Wei-Ping; Ni, Chi-Kung
2016-12-01
Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mainly generate protonated ions from peptides and proteins but sodiated (or potassiated) ions from carbohydrates. The ion intensities of sodiated (or potassiated) carbohydrates generated by ESI and MALDI are generally lower than those of protonated peptides and proteins. Ab initio calculations and transition state theory were used to investigate the reasons for the low detection sensitivity for underivatized carbohydrates. We used glucose and cellobiose as examples and showed that the low detection sensitivity is partly attributable to the following factors. First, glucose exhibits a low proton affinity. Most protons generated by ESI or MALDI attach to water clusters and matrix molecules. Second, protonated glucose and cellobiose can easily undergo dehydration reactions. Third, the sodiation affinities of glucose and cellobiose are small. Some sodiated glucose and cellobiose dissociate into the sodium cations and neutral carbohydrates during ESI or MALDI process. The increase of detection sensitivity of carbohydrates in mass spectrometry by various methods can be rationalized according to these factors. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Hall, Kevin D; Bemis, Thomas; Brychta, Robert; Chen, Kong Y; Courville, Amber; Crayner, Emma J; Goodwin, Stephanie; Guo, Juen; Howard, Lilian; Knuth, Nicolas D; Miller, Bernard V; Prado, Carla M; Siervo, Mario; Skarulis, Monica C; Walter, Mary; Walter, Peter J; Yannai, Laura
2015-09-01
Dietary carbohydrate restriction has been purported to cause endocrine adaptations that promote body fat loss more than dietary fat restriction. We selectively restricted dietary carbohydrate versus fat for 6 days following a 5-day baseline diet in 19 adults with obesity confined to a metabolic ward where they exercised daily. Subjects received both isocaloric diets in random order during each of two inpatient stays. Body fat loss was calculated as the difference between daily fat intake and net fat oxidation measured while residing in a metabolic chamber. Whereas carbohydrate restriction led to sustained increases in fat oxidation and loss of 53 ± 6 g/day of body fat, fat oxidation was unchanged by fat restriction, leading to 89 ± 6 g/day of fat loss, and was significantly greater than carbohydrate restriction (p = 0.002). Mathematical model simulations agreed with these data, but predicted that the body acts to minimize body fat differences with prolonged isocaloric diets varying in carbohydrate and fat. Copyright © 2015 Elsevier Inc. All rights reserved.
Nutritional guidance to soccer players for training and competition.
Clark, K
1994-01-01
Strategies for a nutrition education as applied to individual soccer players provide a key to guiding them towards appropriate food selection. Scientific investigations have associated energy requirements, composition of the diet and carbohydrate intake with muscle glycogen storage, and adequacy of fluids with optimal athletic performance. In general, soccer players appear to consume adequate energy but low carbohydrate diets. The training diet should be comprised of 55-65% carbohydrate, 12-15% protein and less than 30% fat. The goal of the training diet is to provide adequate energy for weight maintenance, and 7-10 g of carbohydrate per kg body weight for maximizing glycogen storage. Nutritional needs for competition include eating prior to and after matches. Consumption of carbohydrate-rich foods for energy needs and glycogen resynthesis are key behaviours soccer players need to focus on daily. Qualified dietitians should be on hand to provide personal nutrition counselling, carbohydrate resource lists and education on food labels as simple and quick nutrition education strategies to guide soccer players, their parents, coaches and trainers towards improved food selections.
Knight, Christine
2011-09-01
Low-carbohydrate diets, notably the Atkins Diet, were particularly popular in Britain and North America in the late 1990s and early 2000s. On the basis of a discourse analysis of bestselling low-carbohydrate diet books, I examine and critique genetic and evolutionary explanations for obesity and diabetes as they feature in the low-carbohydrate literature. Low-carbohydrate diet books present two distinct neo-Darwinian explanations of health and body-weight. First, evolutionary nutrition is based on the premise that the human body has adapted to function best on the diet eaten in the Paleolithic era. Second, the thrifty gene theory suggests that feast-or-famine conditions during human evolutionary development naturally selected for people who could store excess energy as body fat for later use. However, the historical narratives and scientific arguments presented in the low-carbohydrate literature are beset with generalisations, inconsistencies and errors. These result, I argue, from the use of the primitive as a discursive "blank slate" onto which to project ideals perceived to be lacking in contemporary industrialised life.
Bello-Gil, Daniel; Khasbiullina, Nailya; Shilova, Nadezhda; Bovin, Nicolai; Mañez, Rafael
2017-01-01
One of the most common genetic backgrounds for mice used as a model to investigate human diseases is the inbred BALB/c strain. This work is aimed to characterize the pattern of natural anti-carbohydrate antibodies present in the serum of 20 BALB/c mice by printed glycan array technology and to compare their binding specificities with that of human natural anti-carbohydrate antibodies. Natural antibodies (NAbs) from the serum of BALB/c mice interacted with 71 glycans from a library of 419 different carbohydrate structures. However, only seven of these glycans were recognized by the serum of all the animals studied, and other five glycans by at least 80% of mice. The pattern of the 12 glycans mostly recognized by the circulating antibodies of BALB/c mice differed significantly from that observed with natural anti-carbohydrate antibodies in humans. This lack of identical repertoires of natural anti-carbohydrate antibodies between individual inbred mice, and between mice and humans, should be taken into consideration when mouse models are intended to be used for investigation of NAbs in biomedical research. PMID:29163519
Gaucher, Catherine; Gougeon, Sébastien; Mauffette, Yves; Messier, Christian
2005-01-01
We investigated seasonal patterns of biomass and carbohydrate partitioning in relation to shoot growth phenology in two age classes of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.) seedlings growing in the understory of a partially harvested forest. The high root:shoot biomass ratio and carbohydrate concentration of sugar maple are characteristic of species with truncated growth patterns (i.e., cessation of aboveground shoot growth early in the growing season), a conservative growth strategy and high shade tolerance. The low root:shoot biomass ratio and carbohydrate concentration of yellow birch are characteristic of species with continuous growth patterns, an opportunistic growth strategy and low shade tolerance. In both species, starch represented up to 95% of total nonstructural carbohydrates and was mainly found in the roots. Contrary to our hypothesis, interspecific differences in shoot growth phenology (i.e., continuous versus truncated) did not result in differences in seasonal patterns of carbohydrate partitioning. Our results help explain the niche differentiation between sugar maple and yellow birch in temperate, deciduous understory forests.
Morita, Tomotaka; Kita, Takashi; Masada, Kyoko; Nagata, Takako; Sasaki, Shigeta
2016-06-01
After introducing preoperative oral carbohydrate as a part of enhanced recovery after surgery (ERAS) protocols, we assessed the influence of carbohydrate administration on the perioperative blood sugar levels (BS), the variation of vital signs and patients' satisfaction. After IRB's approval and obtaining patients' consent, patients were divided into two groups; taking carbohydrate (Group AW) or not (Group NAW). Anesthesia was induced and maintained with total intravenous anesthesia using propofol, remifentanil and rocuronium. We measured BS six times during perioperative period. We also compared blood pressures and heart rates during induction of anesthesia. Moreover, we carried out questionnaire surveys about degree of satisfaction for ERAS among patients and nurses. Heart rates were significantly higher in Group AW (P < 0.05), but there were no significant difference in blood pressures or BS between the groups. Patients in Group AW had more anxiety for surgeries (P = 0.003), but more than 85% of patients and nurses were satisfied with carbohydrates. The carbohydrate administration had little influence on the perioperative vital signs. However, we gained high reputations from patients and paramedics.
Role of preoperative carbohydrate loading: a systematic review.
Bilku, D K; Dennison, A R; Hall, T C; Metcalfe, M S; Garcea, G
2014-01-01
Surgical stress in the presence of fasting worsens the catabolic state, causes insulin resistance and may delay recovery. Carbohydrate rich drinks given preoperatively may ameliorate these deleterious effects. A systematic review was undertaken to analyse the effect of preoperative carbohydrate loading on insulin resistance, gastric emptying, gastric acidity, patient wellbeing, immunity and nutrition following surgery. All studies identified through PubMed until September 2011 were included. References were cross-checked to ensure capture of cited pertinent articles. Overall, 17 randomised controlled trials with a total of 1,445 patients who met the inclusion criteria were identified. Preoperative carbohydrate drinks significantly improved insulin resistance and indices of patient comfort following surgery, especially hunger, thirst, malaise, anxiety and nausea. No definite conclusions could be made regarding preservation of muscle mass. Following ingestion of carbohydrate drinks, no adverse events such as apparent or proven aspiration during or after surgery were reported. Administration of oral carbohydrate drinks before surgery is probably safe and may have a positive influence on a wide range of perioperative markers of clinical outcome. Further studies are required to determine its cost effectiveness.
Does preoperative oral carbohydrate reduce hospital stay? A randomized trial.
Webster, Joan; Osborne, Sonya Ranee; Gill, Richard; Chow, Carina Faran Kalan; Wallin, Siobhan; Jones, Lee; Tang, Annie
2014-02-01
Oral carbohydrate-rich fluids are used preoperatively to improve postoperative recovery, but their effectiveness for reducing length of hospital stay is uncertain. We assessed the effectiveness of preoperative loading with carbohydrates on the postoperative outcomes of 44 patients scheduled for elective colorectal surgery who were randomly allocated to a carbohydrate-rich fluid group or a usual care group during their preadmission clinic visit. Our primary outcome was the time patients required to be ready for discharge. Patients in the control group spent an average of 4.3 days (95% confidence interval [CI], 3.2-5.7) in the hospital and patients in the carbohydrate-rich fluid group spent 4.1 days (95% CI, 3.2-5.4) in the hospital until they met discharge criteria (P = .824). We found that the safety of administering preoperative oral carbohydrate-rich fluids is supported, but we were unable to confirm or refute the benefit of this treatment regimen for contributing to shorter hospital stays after elective colorectal surgery. Copyright © 2014 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover.
Geng, Wenhui; Jin, Yongcan; Jameel, Hasan; Park, Sunkyu
2015-01-01
Three strategies were presented to achieve high solids loading while maximizing carbohydrate conversion, which are fed-batch, splitting/thickening, and clarifier processes. Enzymatic hydrolysis was performed at water insoluble solids (WIS) of 15% using washed dilute-acid pretreated corn stover. The carbohydrate concentration increased from 31.8 to 99.3g/L when the insoluble solids content increased from 5% to 15% WIS, while the final carbohydrate conversion was decreased from 78.4% to 73.2%. For the fed-batch process, a carbohydrate conversion efficiency of 76.8% was achieved when solid was split into 60:20:20 ratio, with all enzymes added first. For the splitting/thickening process, a carbohydrate conversion of 76.5% was realized when the filtrate was recycled to simulate a steady-state process. Lastly, the clarifier process was evaluated and the highest carbohydrate conversion of 81.4% was achieved. All of these results suggests the possibility of enzymatic hydrolysis at high solids to make the overall conversion cost-competitive. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carbohydrates and T cells: A sweet twosome
Avci, Fikri Y.; Li, Xiangming; Tsuji, Moriya; Kasper, Dennis L.
2013-01-01
Carbohydrates as T cell-activating antigens have been generating significant interest. For many years, carbohydrates were thought of as T-independent antigens, however, more recent research had demonstrated that mono- or oligosaccharides glycosidically-linked to peptides can be recognized by T cells. T cell recognition of these glycopeptides depends on the structure of both peptide and glycan portions of the antigen. Subsequently, it was discovered that natural killer T cells recognized glycolipids when presented by the antigen presenting molecule CD1d. A transformative insight into glycan-recognition by T cells occurred when zwitterionic polysaccharides were discovered to bind to and be presented by MHCII to CD4+ T cells. Based on this latter observation, the role that carbohydrate epitopes generated from glycoconjugate vaccines had in activating helper T cells was explored and it was found that these epitopes are presented to specific carbohydrate recognizing T cells through a unique mechanism. Here we review the key interactions between carbohydrate antigens and the adaptive immune system at the molecular, cellular and systems levels exploring the significant biological implications in health and disease. PMID:23757291
Lucas, Ricardo; Peñalver, Pablo; Gómez-Pinto, Irene; Vengut-Climent, Empar; Mtashobya, Lewis; Cousin, Jonathan; Maldonado, Olivia S; Perez, Violaine; Reynes, Virginie; Aviñó, Anna; Eritja, Ramón; González, Carlos; Linclau, Bruno; Morales, Juan C
2014-03-21
Carbohydrate-aromatic interactions are highly relevant for many biological processes. Nevertheless, experimental data in aqueous solution relating structure and energetics for sugar-arene stacking interactions are very scarce. Here, we evaluate how structural variations in a monosaccharide including carboxyl, N-acetyl, fluorine, and methyl groups affect stacking interactions with aromatic DNA bases. We find small differences on stacking interaction among the natural carbohydrates examined. The presence of fluorine atoms within the pyranose ring slightly increases the interaction with the C-G DNA base pair. Carbohydrate hydrophobicity is the most determinant factor. However, gradual increase in hydrophobicity of the carbohydrate does not translate directly into a steady growth in stacking interaction. The energetics correlates better with the amount of apolar surface buried upon sugar stacking on top of the aromatic DNA base pair.
Kawai, Shigeyuki; Murata, Kousaku
2016-01-01
Marine macroalgae (green, red and brown macroalgae) have attracted attention as an alternative source of renewable biomass for producing both fuels and chemicals due to their high content of suitable carbohydrates and to their advantages over terrestrial biomass. However, except for green macroalgae, which contain relatively easily-fermentable glucans as their major carbohydrates, practical utilization of red and brown macroalgae has been regarded as difficult due to the major carbohydrates (alginate and mannitol of brown macroalgae and 3,6-anhydro-l-galactose of red macroalgae) not being easily fermentable. Recently, several key biotechnologies using microbes have been developed enabling utilization of these brown and red macroalgal carbohydrates as carbon sources for the production of fuels (ethanol). In this review, we focus on these recent developments with emphasis on microbiological biotechnologies. PMID:26861307
Fa, Yun; Yang, Haiyan; Ji, Chengshuai; Cui, He; Zhu, Xinshu; Du, Juan; Gao, Jun
2013-10-10
An improved method for the simultaneous determination of 20 amino acids and 7 carbohydrates using one-valve switching after injection, ion chromatography, and integrated pulsed amperometric detection is proposed. The resolution of the amino acids and carbohydrates in the cation trap column was investigated. In addition, parameters including flow liquid type, flow rate, concentration, and valve-switch timing were optimized. The method is time-saving, effective, and accurate for the simultaneous separation of amino acids and carbohydrates, with a mean correlation coefficient of >0.99 and repeatability of 0.5-4.6% for eight replicates. The method was successfully applied in the analysis of amino acids and carbohydrates in aseptic media and in extracellular culture media of three phenotypes of Clostridium thermocellum. Copyright © 2013 Elsevier B.V. All rights reserved.
IRMPD Spectroscopy Sheds New (Infrared) Light on the Sulfate Pattern of Carbohydrates.
Schindler, B; Barnes, L; Gray, C J; Chambert, S; Flitsch, S L; Oomens, J; Daniel, R; Allouche, A R; Compagnon, I
2017-03-16
IR spectroscopy of gas-phase ions is proposed to resolve positional isomers of sulfated carbohydrates. Mass spectrometric fingerprints and gas-phase vibrational spectra in the near and mid-IR regions were obtained for sulfated monosaccharides, yielding unambiguous signatures of sulfated isomers. We report the first systematic exploration of the biologically relevant but notoriously challenging deprotonated state in the near IR region. Remarkably, anions displayed very atypical vibrational profiles, which challenge the well-established DFT (Density Functionnal Theory) modeling. The proposed approach was used to elucidate the sulfate patterns in glycosaminoglycans, a ubiquitous class of mammalian carbohydrates, which is regarded as a major challenge in carbohydrate structural analysis. Isomeric glycosaminoglycan disaccharides from heparin and chondroitin sources were resolved, highlighting the potential of infrared multiple photon dissociation spectroscopy as a novel structural tool for carbohydrates.
Zhou, Xichun; Turchi, Craig; Wang, Denong
2009-01-01
We reported here a novel, ready-to-use bioarray platform and methodology for construction of sensitive carbohydrate cluster microarrays. This technology utilizes a 3-dimensional (3-D) poly(amidoamine) starburst dendrimer monolayer assembled on glass surface, which is functionalized with terminal aminooxy and hydrazide groups for site-specific coupling of carbohydrates. A wide range of saccharides, including monosaccharides, oligosaccharides and polysaccharides of diverse structures, are applicable for the 3-D bioarray platform without prior chemical derivatization. The process of carbohydrate coupling is effectively accelerated by microwave radiation energy. The carbohydrate concentration required for microarray fabrication is substantially reduced using this technology. Importantly, this bioarray platform presents sugar chains in defined orientation and cluster configurations. It is, thus, uniquely useful for exploration of the structural and conformational diversities of glyco-epitope and their functional properties. PMID:19791771
2017-01-01
Carbohydrates constitute a structurally and functionally diverse group of biological molecules and macromolecules. In cells they are involved in, e.g., energy storage, signaling, and cell–cell recognition. All of these phenomena take place in atomistic scales, thus atomistic simulation would be the method of choice to explore how carbohydrates function. However, the progress in the field is limited by the lack of appropriate tools for preparing carbohydrate structures and related topology files for the simulation models. Here we present tools that fill this gap. Applications where the tools discussed in this paper are particularly useful include, among others, the preparation of structures for glycolipids, nanocellulose, and glycans linked to glycoproteins. The molecular structures and simulation files generated by the tools are compatible with GROMACS. PMID:28906114
Vinke, Petra C.; El Aidy, Sahar; van Dijk, Gertjan
2017-01-01
Dietary supplementation with complex carbohydrates is known to alter the composition of gut microbiota, and optimal implementation of the use of these so called “prebiotics” could be of great potential in prevention and possibly treatment of obesity and associated cardiometabolic and inflammatory diseases via changes in the gut microbiota. An alternative to this “microbiocentric view” is the idea that health-promoting effects of certain complex carbohydrates reside in the host, and could secondarily affect the diversity and abundance of gut microbiota. To circumvent this potential interpretational problem, we aimed at providing an overview about whether and how dietary supplementation of different complex carbohydrates changes the gut microbiome in healthy non-obese individuals. We then reviewed whether the reported changes in gut bacterial members found to be established by complex carbohydrates would benefit or harm the cardiometabolic and immunological health of the host taking into account the alterations in the microbiome composition and abundance known to be associated with obesity and its associated disorders. By combining these research areas, we aimed to give a better insight into the potential of (foods containing) complex carbohydrates in the treatment and prevention of above-mentioned diseases. We conclude that supplemental complex carbohydrates that increase Bifidobacteria and Lactobacilli, without increasing the deleterious Bacteroides, are most likely promoting cardiometabolic and immunological health in obese subjects. Because certain complex carbohydrates also affect the host’s immunity directly, it is likely that host–microbiome interactions in determination of health and disease characteristics are indeed bidirectional. Overall, this review article shows that whereas it is relatively clear in which direction supplemental fermentable carbohydrates can alter the gut microbiome, the relevance of these changes regarding health remains controversial. Future research should take into account the different causes of obesity and its adverse health conditions, which in turn have drastic effects on the microbiome balance. PMID:28791292
NASA Technical Reports Server (NTRS)
Yokogoshi, Hidehiko; Wurtman, Richard J.
1986-01-01
The effects of meals containing various proteins and carbohydrates, and of those containing various proportions of protein (0 percent to 20 percent of a meal, by weight) or of carbohydrate (0 percent to 75 percent), on plasma levels of certain large neutral amino acids (LNAA) in rats previously fasted for 19 hours were examined. Also the plasma tryptophan ratios (the ratio of the plasma trytophan concentration to the summed concentrations of the other large neutral amino acids) and other plasma amino acid ratios were calculated. (The plasma tryptophan ratio has been shown to determine brain tryptophan levels and, thereby, to affect the synthesis and release of the neurotransmitter serotonin). A meal containing 70 percent to 75 percent of an insulin-secreting carbohydrate (dextrose or dextrin) increased plasma insulin levels and the tryptophan ratio; those containing 0 percent or 25 percent carbohydrate failed to do so. Addition of as little as 5 percent casein to a 70 percent carbohydrate meal fully blocked the increase in the plasma tryptophan ratio without affecting the secretion of insulin - probably by contributing much larger quantities of the other LNAA than of tryptophan to the blood. Dietary proteins differed in their ability to suppress the carbohydrate-induced rise in the plasma tryptophan ratio. Addition of 10 percent casein, peanut meal, or gelatin fully blocked this increase, but lactalbumin failed to do so, and egg white did so only partially. (Consumption of the 10 percent gelatin meal also produced a major reduction in the plasma tyrosine ratio, and may thereby have affected brain tyrosine levels and catecholamine synthesis.) These observations suggest that serotonin-releasing neurons in brains of fasted rats are capable of distinguishing (by their metabolic effects) between meals poor in protein but rich in carbohydrates that elicit insulin secretion, and all other meals. The changes in brain serotonin caused by carbohydrate-rich, protein-poor meals may affect subsequent food choice and various serotonin-mediated behaviors.
Lieberman, Harris R; Falco, Christina M; Slade, Steven S
2002-07-01
The brain requires a continuous supply of glucose to function adequately. During aerobic exercise, peripheral glucose requirements increase and carbohydrate supplementation improves physical performance. The brain's utilization of glucose also increases during aerobic exercise. However, the effects of energy supplementation on cognitive function during sustained aerobic exercise are not well characterized. The effects of energy supplementation, as liquid carbohydrate, on cognitive function during sustained aerobic activity were examined. A double-blind, placebo-controlled, between-subjects design was used. Young, healthy men (n = 143) were randomly assigned to 1 of 3 treatment groups. The groups received either a 6% (by vol) carbohydrate (35.1 kJ/kg), 12% (by vol) carbohydrate (70.2 kJ/kg), or placebo beverage in 6 isovolumic doses, and all groups consumed 2 meals (3200 kJ). Over the 10-h study, the subjects performed physically demanding tasks, including a 19.3-km road march and two 4.8-km runs, interspersed with rest and other activities. Wrist-worn vigilance monitors, which emitted auditory stimuli (20/h) to which the subjects responded as rapidly as possible, and a standardized self-report mood questionnaire were used to assess cognitive function. Vigilance consistently improved with supplemental carbohydrates in a dose-related manner; the 12% carbohydrate group performed the best and the placebo group the worst (P < 0.001). Mood-questionnaire results corroborated the results from the monitors; the subjects who received carbohydrates reported less confusion (P = 0.040) and greater vigor (P = 0.025) than did those who received the placebo. Supplemental carbohydrate beverages enhance vigilance and mood during sustained physical activity and interspersed rest. In addition, ambulatory monitoring devices can continuously assess the effects of nutritional factors on cognition as individuals conduct their daily activities or participate in experiments.
Postprandial Glucose Surges after Extremely Low Carbohydrate Diet in Healthy Adults.
Kanamori, Koji; Ihana-Sugiyama, Noriko; Yamamoto-Honda, Ritsuko; Nakamura, Tomoka; Sobe, Chie; Kamiya, Shigemi; Kishimoto, Miyako; Kajio, Hiroshi; Kawano, Kimiko; Noda, Mitsuhiko
2017-09-01
Carbohydrate-restricted diets are prevalent not only in obese people but also in the general population to maintain appropriate body weight. Here, we report that extreme carbohydrate restriction for one day affects the subsequent blood glucose levels in healthy adults. Ten subjects (median age 30.5 years, BMI 21.1 kg/m 2 , and HbA1c 5.5%), wearing with a continuous glucose monitoring device, were given isoenergetic test meals for 4 consecutive days. On day 1, day 2 (D2), and day 4 (D4), they consumed normal-carbohydrate (63-66% carbohydrate) diet, while on day 3, they took low-carbohydrate/high-fat (5% carbohydrate) diet. The daily energy intake was 2,200 kcal for males and 1,700 kcal for females. On D2 and D4, we calculated the mean 24-hr blood glucose level (MEAN/24h) and its standard deviation (SD/24h), the area under the curve (AUC) for glucose over 140 mg/dL within 4 hours after each meal (AUC/4h/140), the mean amplitude of the glycemic excursions (MAGE), the incremental AUC of 24-hr blood glucose level above the mean plus one standard deviation (iAUC/MEAN+SD). Indexes for glucose fluctuation on D4 were significantly greater than those on D2 (SD/24h; p = 0.009, MAGE; p = 0.013, AUC/4h/140 after breakfast and dinner; p = 0.006 and 0.005, and iAUC/MEAN+SD; p = 0.007). The value of MEAN/24h and AUC/4h/140 after lunch on D4 were greater than those on D2, but those differences were not statistically significant. In conclusion, consumption of low-carbohydrate/high-fat diet appears to cause higher postprandial blood glucose on subsequent normal-carbohydrate diet particularly after breakfast and dinner in healthy adults.
Oliver, Jonathan M.; Almada, Anthony L.; Van Eck, Leighsa E.; Shah, Meena; Mitchell, Joel B.; Jones, Margaret T.; Jagim, Andrew R.; Rowlands, David S.
2016-01-01
Athletes in sports demanding repeat maximal work outputs frequently train concurrently utilizing sequential bouts of intense endurance and resistance training sessions. On a daily basis, maximal work within subsequent bouts may be limited by muscle glycogen availability. Recently, the ingestion of a unique high molecular weight (HMW) carbohydrate was found to increase glycogen re-synthesis rate and enhance work output during subsequent endurance exercise, relative to low molecular weight (LMW) carbohydrate ingestion. The effect of the HMW carbohydrate, however, on the performance of intense resistance exercise following prolonged-intense endurance training is unknown. Sixteen resistance trained men (23±3 years; 176.7±9.8 cm; 88.2±8.6 kg) participated in a double-blind, placebo-controlled, randomized 3-way crossover design comprising a muscle-glycogen depleting cycling exercise followed by ingestion of placebo (PLA), or 1.2 g•kg•bw-1 of LMW or HMW carbohydrate solution (10%) with blood sampling for 2-h post-ingestion. Thereafter, participants performed 5 sets of 10 maximal explosive repetitions of back squat (75% of 1RM). Compared to PLA, ingestion of HMW (4.9%, 90%CI 3.8%, 5.9%) and LMW (1.9%, 90%CI 0.8%, 3.0%) carbohydrate solutions substantially increased power output during resistance exercise, with the 3.1% (90% CI 4.3, 2.0%) almost certain additional gain in power after HMW-LMW ingestion attributed to higher movement velocity after force kinematic analysis (HMW-LMW 2.5%, 90%CI 1.4, 3.7%). Both carbohydrate solutions increased post-exercise plasma glucose, glucoregulatory and gut hormones compared to PLA, but differences between carbohydrates were unclear; thus, the underlying mechanism remains to be elucidated. Ingestion of a HMW carbohydrate following prolonged intense endurance exercise provides superior benefits to movement velocity and power output during subsequent repeated maximal explosive resistance exercise. This study was registered with clinicaltrials.gov (NCT02778373). PMID:27636206
A low-carbohydrate as compared with a low-fat diet in severe obesity.
Samaha, Frederick F; Iqbal, Nayyar; Seshadri, Prakash; Chicano, Kathryn L; Daily, Denise A; McGrory, Joyce; Williams, Terrence; Williams, Monica; Gracely, Edward J; Stern, Linda
2003-05-22
The effects of a carbohydrate-restricted diet on weight loss and risk factors for atherosclerosis have been incompletely assessed. We randomly assigned 132 severely obese subjects (including 77 blacks and 23 women) with a mean body-mass index of 43 and a high prevalence of diabetes (39 percent) or the metabolic syndrome (43 percent) to a carbohydrate-restricted (low-carbohydrate) diet or a calorie- and fat-restricted (low-fat) diet. Seventy-nine subjects completed the six-month study. An analysis including all subjects, with the last observation carried forward for those who dropped out, showed that subjects on the low-carbohydrate diet lost more weight than those on the low-fat diet (mean [+/-SD], -5.8+/-8.6 kg vs. -1.9+/-4.2 kg; P=0.002) and had greater decreases in triglyceride levels (mean, -20+/-43 percent vs. -4+/-31 percent; P=0.001), irrespective of the use or nonuse of hypoglycemic or lipid-lowering medications. Insulin sensitivity, measured only in subjects without diabetes, also improved more among subjects on the low-carbohydrate diet (6+/-9 percent vs. -3+/-8 percent, P=0.01). The amount of weight lost (P<0.001) and assignment to the low-carbohydrate diet (P=0.01) were independent predictors of improvement in triglyceride levels and insulin sensitivity. Severely obese subjects with a high prevalence of diabetes or the metabolic syndrome lost more weight during six months on a carbohydrate-restricted diet than on a calorie- and fat-restricted diet, with a relative improvement in insulin sensitivity and triglyceride levels, even after adjustment for the amount of weight lost. This finding should be interpreted with caution, given the small magnitude of overall and between-group differences in weight loss in these markedly obese subjects and the short duration of the study. Future studies evaluating long-term cardiovascular outcomes are needed before a carbohydrate-restricted diet can be endorsed. Copyright 2003 Massachusetts Medical Society
A randomized trial of a low-carbohydrate diet for obesity.
Foster, Gary D; Wyatt, Holly R; Hill, James O; McGuckin, Brian G; Brill, Carrie; Mohammed, B Selma; Szapary, Philippe O; Rader, Daniel J; Edman, Joel S; Klein, Samuel
2003-05-22
Despite the popularity of the low-carbohydrate, high-protein, high-fat (Atkins) diet, no randomized, controlled trials have evaluated its efficacy. We conducted a one-year, multicenter, controlled trial involving 63 obese men and women who were randomly assigned to either a low-carbohydrate, high-protein, high-fat diet or a low-calorie, high-carbohydrate, low-fat (conventional) diet. Professional contact was minimal to replicate the approach used by most dieters. Subjects on the low-carbohydrate diet had lost more weight than subjects on the conventional diet at 3 months (mean [+/-SD], -6.8+/-5.0 vs. -2.7+/-3.7 percent of body weight; P=0.001) and 6 months (-7.0+/-6.5 vs. -3.2+/-5.6 percent of body weight, P=0.02), but the difference at 12 months was not significant (-4.4+/-6.7 vs. -2.5+/-6.3 percent of body weight, P=0.26). After three months, no significant differences were found between the groups in total or low-density lipoprotein cholesterol concentrations. The increase in high-density lipoprotein cholesterol concentrations and the decrease in triglyceride concentrations were greater among subjects on the low-carbohydrate diet than among those on the conventional diet throughout most of the study. Both diets significantly decreased diastolic blood pressure and the insulin response to an oral glucose load. The low-carbohydrate diet produced a greater weight loss (absolute difference, approximately 4 percent) than did the conventional diet for the first six months, but the differences were not significant at one year. The low-carbohydrate diet was associated with a greater improvement in some risk factors for coronary heart disease. Adherence was poor and attrition was high in both groups. Longer and larger studies are required to determine the long-term safety and efficacy of low-carbohydrate, high-protein, high-fat diets. Copyright 2003 Massachusetts Medical Society
Nielsen, Jørgen Vesti; Joensson, Eva
2006-01-01
Background Low-carbohydrate diets in the management of obese patients with type 2 diabetes seem intuitively attractive due to their potent antihyperglycemic effect. We previously reported that a 20 % carbohydrate diet was significantly superior to a 55–60 % carbohydrate diet with regard to bodyweight and glycemic control in 2 non-randomised groups of obese diabetes patients observed closely over 6 months. The effect beyond 6 months of reduced carbohydrate has not been previously reported. The objective of the present study, therefore, was to determine to what degree the changes among the 16 patients in the low-carbohydrate diet group at 6-months were preserved or changed 22 months after start, even without close follow-up. In addition, we report that, after the 6 month observation period, two thirds of the patients in the high-carbohydrate changed their diet. This group also showed improvement in bodyweight and glycemic control. Method Retrospective follow-up of previously studied subjects on a low carbohydrate diet. Results The mean bodyweight at the start of the initial study was 100.6 ± 14.7 kg. At six months it was 89.2 ± 14.3 kg. From 6 to 22 months, mean bodyweight had increased by 2.7 ± 4.2 kg to an average of 92.0 ± 14.0 kg. Seven of the 16 patients (44%) retained the same bodyweight from 6 to 22 months or reduced it further; all but one had lower weight at 22 months than at the beginning. Initial mean HbA1c was 8.0 ± 1.5 %. After 6 and 12 months it was 6.6 ± 1.0 % and 7.0 ± 1.3 %, respectively. At 22 months, it was still 6.9 ± 1.1 %. Conclusion Advice on a 20 % carbohydrate diet with some caloric restriction to obese patients with type 2 diabetes has lasting effect on bodyweight and glycemic control. PMID:16774674
Baker, Lindsay B; Heaton, Lisa E; Nuccio, Ryan P; Stein, Kimberly W
2014-04-01
Sports nutrition experts recommend that team-sport athletes participating in intermittent high-intensity exercise for ≥1 hr consume 1-4 g carbohydrate/kg 1-4 hr before, 30-60 g carbohydrate/hr during, and 1-1.2 g carbohydrate/kg/hr and 20-25 g protein as soon as possible after exercise. The study objective was to compare observed vs. recommended macronutrient intake of competitive athletes under free-living conditions. The dietary intake of 29 skill/team-sport athletes (14-19 y; 22 male, 7 female) was observed at a sports training facility by trained registered dietitians for one 24-hr period. Dietitians accompanied subjects to the cafeteria and field/court to record their food and fluid intake during meals and practices/competitions. Other dietary intake within the 24-hr period (e.g., snacks during class) was accounted for by having the subject take a picture of the food/fluid and completing a log. For male and female athletes, respectively, the mean ± SD (and percent of athletes meeting recommended) macronutrient intake around exercise was 1.4 ± 0.6 (73%) and 1.4 ± 1.0 (57%) g carbohydrate/kg in the 4 hr before exercise, 21.1 ± 17.2 (18%) and 18.6 ± 13.2 (29%) g carbohydrate/hrr during exercise, 1.4±1.1 (68%) and 0.9± 1.0 (43%) g carbohydrate/kg and 45.2 ± 36.9 (73%) and 18.0 ± 21.2 (43%) g protein in the 1 hr after exercise. The male athletes' carbohydrate and protein intake more closely approximated recommendations overall than that of the female athletes. The most common shortfall was carbohydrate intake during exercise, as only 18% of male and 29% of female athletes consumed 3060 g carbohydrate/hr during practice/competition.
Oliver, Jonathan M; Almada, Anthony L; Van Eck, Leighsa E; Shah, Meena; Mitchell, Joel B; Jones, Margaret T; Jagim, Andrew R; Rowlands, David S
2016-01-01
Athletes in sports demanding repeat maximal work outputs frequently train concurrently utilizing sequential bouts of intense endurance and resistance training sessions. On a daily basis, maximal work within subsequent bouts may be limited by muscle glycogen availability. Recently, the ingestion of a unique high molecular weight (HMW) carbohydrate was found to increase glycogen re-synthesis rate and enhance work output during subsequent endurance exercise, relative to low molecular weight (LMW) carbohydrate ingestion. The effect of the HMW carbohydrate, however, on the performance of intense resistance exercise following prolonged-intense endurance training is unknown. Sixteen resistance trained men (23±3 years; 176.7±9.8 cm; 88.2±8.6 kg) participated in a double-blind, placebo-controlled, randomized 3-way crossover design comprising a muscle-glycogen depleting cycling exercise followed by ingestion of placebo (PLA), or 1.2 g•kg•bw-1 of LMW or HMW carbohydrate solution (10%) with blood sampling for 2-h post-ingestion. Thereafter, participants performed 5 sets of 10 maximal explosive repetitions of back squat (75% of 1RM). Compared to PLA, ingestion of HMW (4.9%, 90%CI 3.8%, 5.9%) and LMW (1.9%, 90%CI 0.8%, 3.0%) carbohydrate solutions substantially increased power output during resistance exercise, with the 3.1% (90% CI 4.3, 2.0%) almost certain additional gain in power after HMW-LMW ingestion attributed to higher movement velocity after force kinematic analysis (HMW-LMW 2.5%, 90%CI 1.4, 3.7%). Both carbohydrate solutions increased post-exercise plasma glucose, glucoregulatory and gut hormones compared to PLA, but differences between carbohydrates were unclear; thus, the underlying mechanism remains to be elucidated. Ingestion of a HMW carbohydrate following prolonged intense endurance exercise provides superior benefits to movement velocity and power output during subsequent repeated maximal explosive resistance exercise. This study was registered with clinicaltrials.gov (NCT02778373).
Vinke, Petra C; El Aidy, Sahar; van Dijk, Gertjan
2017-01-01
Dietary supplementation with complex carbohydrates is known to alter the composition of gut microbiota, and optimal implementation of the use of these so called "prebiotics" could be of great potential in prevention and possibly treatment of obesity and associated cardiometabolic and inflammatory diseases via changes in the gut microbiota. An alternative to this "microbiocentric view" is the idea that health-promoting effects of certain complex carbohydrates reside in the host, and could secondarily affect the diversity and abundance of gut microbiota. To circumvent this potential interpretational problem, we aimed at providing an overview about whether and how dietary supplementation of different complex carbohydrates changes the gut microbiome in healthy non-obese individuals. We then reviewed whether the reported changes in gut bacterial members found to be established by complex carbohydrates would benefit or harm the cardiometabolic and immunological health of the host taking into account the alterations in the microbiome composition and abundance known to be associated with obesity and its associated disorders. By combining these research areas, we aimed to give a better insight into the potential of (foods containing) complex carbohydrates in the treatment and prevention of above-mentioned diseases. We conclude that supplemental complex carbohydrates that increase Bifidobacteria and Lactobacilli, without increasing the deleterious Bacteroides , are most likely promoting cardiometabolic and immunological health in obese subjects. Because certain complex carbohydrates also affect the host's immunity directly, it is likely that host-microbiome interactions in determination of health and disease characteristics are indeed bidirectional. Overall, this review article shows that whereas it is relatively clear in which direction supplemental fermentable carbohydrates can alter the gut microbiome, the relevance of these changes regarding health remains controversial. Future research should take into account the different causes of obesity and its adverse health conditions, which in turn have drastic effects on the microbiome balance.
Tam, Roger Y; Ferreira, Sandra S; Czechura, Pawel; Chaytor, Jennifer L; Ben, Robert N
2008-12-24
Several simple mono- and disaccharides have been assessed for their ability to inhibit ice recrystallization. Two carbohydrates were found to be effective recrystallization inhibitors. D-galactose (1) was the best monosaccharide and D-melibiose (5) was the most active disaccharide. The ability of each carbohydrate to inhibit ice growth was correlated to its respective hydration number reported in the literature. A hydration number reflects the number of tightly bound water molecules to the carbohydrate and is a function of carbohydrate stereochemistry. It was discovered that using the absolute hydration number of a carbohydrate does not allow one to accurately predict its ability to inhibit ice recrystallization. Consequently, we have defined a hydration index in which the hydration number is divided by the molar volume of the carbohydrate. This new parameter not only takes into account the number of water molecules tightly bound to a carbohydrate but also the size or volume of a particular solute and ultimately the concentration of hydrated water molecules. The hydration index of both mono- and disaccharides correlates well with experimentally measured RI activity. C-Linked derivatives of the monosaccharides appear to have RI activity comparable to that of their O-linked saccharides but a more thorough investigation is required. The relationship between carbohydrate concentration and RI activity was shown to be noncolligative and a 0.022 M solution of D-galactose (1) and C-linked galactose derivative (10) inhibited recrystallization as well as a 3% DMSO solution. The carbohydrates examined in this study did not possess any thermal hysteresis activity (selective depression of freezing point relative to melting point) or dynamic ice shaping. As such, we propose that they are inhibiting recrystallization at the interface between bulk water and the quasi liquid layer (a semiordered interface between ice and bulk water) by disrupting the preordering of water.
Carbohydrate intake and tennis: are there benefits?
Kovacs, M S
2006-01-01
Carbohydrate supplementation in prolonged aerobic exercise has been shown to be effective in improving performance and deferring fatigue. However, there is confounding evidence with regard to carbohydrate supplementation and tennis performance, which may be due to the limited number of studies on this topic. This evidence based review, using database searches of Medline and SPORTDiscus, summarises the limited relevant literature to determine if carbohydrate supplementation benefits tennis performance, and, if so, the appropriate amounts and timing. Although more research is required, it appears that it may be beneficial in tennis sessions lasting more than 90 minutes. PMID:16632561
Decarbonylation and dehydrogenation of carbohydrates
Andrews, Mark A.; Klaeren, Stephen A.
1991-01-01
Carbohydrates, especially aldose or ketose sugars, including those whose carbonyl group is masked by hemi-acetal or hemi-ketal formation, are decarbonylated by heating the feed carbohydrate together with a transition metal complex in a suitable solvent. Also, primary alcohols, including sugar alditols are simultaneously dehydrogenated and decarbonylated by heating a mixture of rhodium and ruthenium complexes and the alcohol and optionally a hydrogen acceptor in an acceptable solvent. Such defarbonylation and/or dehydrogenation of sugars provides a convenient procedure for the synthesis of certain carbohydrates and may provide a means for the conversion of biomass into useful products.