Science.gov

Sample records for carbon atom wires

  1. Carbon-atom wires: 1-D systems with tunable properties

    NASA Astrophysics Data System (ADS)

    Casari, C. S.; Tommasini, M.; Tykwinski, R. R.; Milani, A.

    2016-02-01

    This review provides a discussion of the current state of research on linear carbon structures and related materials based on sp-hybridization of carbon atoms (polyynes and cumulenes). We show that such systems have widely tunable properties and thus represent an intriguing and mostly unexplored field for both fundamental and applied sciences. We discuss the rich interplay between the structural, vibrational, and electronic properties focusing on recent advances and the future perspectives of carbon-atom wires and novel hybrid sp-sp2-carbon architectures.

  2. Linear carbon allotrope carbon atom wires prepared by pyrolysis of starch

    NASA Astrophysics Data System (ADS)

    Xue, Kuan-Hong; Tao, Fei-Fei; Shen, Wei; He, Chun-Jian; Chen, Qiao-Ling; Wu, Li-Jun; Zhu, Yi-Mei

    2004-02-01

    A new method is reported to produce linear carbon allotrope from the pyrolysis of starch catalyzed by Fe. The pyrolytic product termed as carbon atom wires (CAW) is composed of winding lines with the diameter around 2.0 Å, indicated by magnified HRTEM images. The experimental results of UV and Raman spectra revealed a conjugated sequence of cumulated double bonds (CC) n presented in the hexane extract of CAW. Arguments about the sp hybridization bonding structure of CAW can also be supported by EELS and FT-IR measurements.

  3. Effect of Axial Torsion on sp Carbon Atomic Wires

    NASA Astrophysics Data System (ADS)

    Ravagnan, Luca; Manini, Nicola; Cinquanta, Eugenio; Onida, Giovanni; Sangalli, Davide; Motta, Carlo; Devetta, Michele; Bordoni, Andrea; Piseri, Paolo; Milani, Paolo

    2009-06-01

    Ab initio calculations within density-functional theory combined with experimental Raman spectra on cluster-beam deposited pure-carbon films provide a consistent picture of sp-carbon chains stabilized by sp3 or sp2 terminations, the latter being sensitive to torsional strain. This unexplored effect promises many exciting applications since it allows one to modify the conductive states near the Fermi level and to switch on and off the on-chain π-electron magnetism.

  4. Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires.

    PubMed

    Milani, Alberto; Tommasini, Matteo; Russo, Valeria; Li Bassi, Andrea; Lucotti, Andrea; Cataldo, Franco; Casari, Carlo S

    2015-01-01

    Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single-triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds. PMID:25821689

  5. Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

    PubMed Central

    Milani, Alberto; Tommasini, Matteo; Russo, Valeria; Li Bassi, Andrea; Lucotti, Andrea; Cataldo, Franco

    2015-01-01

    Summary Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single–triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds. PMID:25821689

  6. Realization of a Strained Atomic Wire Superlattice.

    PubMed

    Song, Inkyung; Goh, Jung Suk; Lee, Sung-Hoon; Jung, Sung Won; Shin, Jin Sung; Yamane, Hiroyuki; Kosugi, Nobuhiro; Yeom, Han Woong

    2015-11-24

    A superlattice of strained Au-Si atomic wires is successfully fabricated on a Si surface. Au atoms are known to incorporate into the stepped Si(111) surface to form a Au-Si atomic wire array with both one-dimensional (1D) metallic and antiferromagnetic atomic chains. At a reduced density of Au, we find a regular array of Au-Si wires in alternation with pristine Si nanoterraces. Pristine Si nanoterraces impose a strain on the neighboring Au-Si wires, which modifies both the band structure of metallic chains and the magnetic property of spin chains. This is an ultimate 1D version of a strained-layer superlattice of semiconductors, defining a direction toward the fine engineering of self-assembled atomic-scale wires. PMID:26446292

  7. Preparation of a polyacrylonitrile/multi-walled carbon nanotubes composite by surface-initiated atom transfer radical polymerization on a stainless steel wire for solid-phase microextraction.

    PubMed

    Minet, Isabelle; Hevesi, Laszlo; Azenha, Manuel; Delhalle, Joseph; Mekhalif, Zineb

    2010-04-23

    We report on the fabrication and performances of a solid-phase microextraction (SPME) fiber based on a stainless steel wire coated with a covalently attached polyacrylonitrile (PAN)/multi-walled carbon nanotubes (MWCNTs) composite. This new coating is obtained by atom transfer radical polymerization (ATRP) of acrylonitrile mixed with MWCNTs. ATRP is initiated from 11-(2-bromo-2-methylpropionyloxy)-undecyl-phosphonic acid molecules grafted on the wire surface via the phosphonic acid group. The extraction performances of the fibers are assessed on different classes of compounds (polar, non-polar, aromatic, etc.) from water solutions by headspace extraction. The optimization of the parameters affecting the extraction efficiency of the target compounds was studied as well as the reproducibility and the repeatability of the fiber. The fibers sustain more than 200 extractions during which they remain chemically stable and maintain good performances (detection limits lower than 2 microg/l, repeatability, etc.). Considering their robustness together with their easy and inexpensive fabrication, these fibers could constitute promising alternatives to existing products. PMID:20299016

  8. Formation of atom wires on vicinal silicon.

    PubMed

    González, C; Snijders, P C; Ortega, J; Pérez, R; Flores, F; Rogge, S; Weitering, H H

    2004-09-17

    The feasibility of creating atomic wires on vicinal silicon surfaces via pseudomorphic step-edge decoration has been analyzed for the case of Ga on Si(112). Scanning tunneling microscopy and density functional theory calculations indicate the formation of Ga zigzag chains intersected by quasiperiodic vacancy lines or "misfit dislocations." This structure strikes a balance between the system's drive towards chemical passivation and its need for strain relaxation in the atom chains. Spatially fluctuating disorder, intrinsic to the reconstruction, originates from the two symmetry-degenerate orientations of the zigzag chains on vicinal Si.

  9. Quantum stability and magic lengths of metal atom wires

    NASA Astrophysics Data System (ADS)

    Cui, Ping; Choi, Jin-Ho; Lan, Haiping; Cho, Jun-Hyung; Niu, Qian; Yang, Jinlong; Zhang, Zhenyu

    2016-06-01

    Metal atom wires represent an important class of nanomaterials in the development of future electronic devices and other functional applications. Using first-principles calculations within density functional theory, we carry out a systematic study of the quantum stability of freestanding atom wires consisting of prototypical metal elements with s -, s p -, and s d -valence electrons. We explore how the quantum mechanically confined motion and local bonding of the valence electrons in these different wire systems can dictate their overall structural stability and find that the formation energy of essentially all the wires oscillates with respect to their length measured by the number n of atoms contained in the wires, establishing the existence of highly preferred (or magic) lengths. Furthermore, different wire classes exhibit distinctively different oscillatory characteristics and quantum stabilities. Alkali metal wires possessing an unpaired s valence electron per atom exhibit simple damped even-odd oscillations. In contrast, Al and Ga wires containing three s2p1 valence electrons per atom generally display much larger and undamped even-odd energy oscillations due to stronger local bonding of the p orbitals. Among the noble metals, the s -dominant Ag wires behave similarly to the linear alkali metal wires, while Au and Pt wires distinctly prefer to be structurally zigzagged due to strong relativistic effects. These findings are discussed in connection with existing experiments and should also be instrumental in future experimental realization of different metal atom wires in freestanding or supported environments with desirable functionalities.

  10. A motif for infinite metal atom wires.

    PubMed

    Yin, Xi; Warren, Steven A; Pan, Yung-Tin; Tsao, Kai-Chieh; Gray, Danielle L; Bertke, Jeffery; Yang, Hong

    2014-12-15

    A new motif for infinite metal atom wires with tunable compositions and properties is developed based on the connection between metal paddlewheel and square planar complex moieties. Two infinite Pd chain compounds, [Pd4(CO)4(OAc)4Pd(acac)2] 1 and [Pd4(CO)4(TFA)4Pd(acac)2] 2, and an infinite Pd-Pt heterometallic chain compound, [Pd4(CO)4(OAc)4Pt(acac)2] 3, are identified by single-crystal X-ray diffraction analysis. In these new structures, the paddlewheel moiety is a Pd four-membered ring coordinated by bridging carboxylic ligands and μ2 carbonyl ligands. The planar moiety is either Pd(acac)2 or Pt(acac)2 (acac = acetylacetonate). These moieties are connected by metallophilic interactions. The results showed that these one-dimensional metal wire compounds have photoluminescent properties that are tunable by changing ligands and metal ions. 3 can also serve as a single source precursor for making Pd4Pt bimetallic nanostructures with precise control of metal composition.

  11. Single-molecule conductance in atomically precise germanium wires.

    PubMed

    Su, Timothy A; Li, Haixing; Zhang, Vivian; Neupane, Madhav; Batra, Arunabh; Klausen, Rebekka S; Kumar, Bharat; Steigerwald, Michael L; Venkataraman, Latha; Nuckolls, Colin

    2015-09-30

    While the electrical conductivity of bulk-scale group 14 materials such as diamond carbon, silicon, and germanium is well understood, there is a gap in knowledge regarding the conductivity of these materials at the nano and molecular scales. Filling this gap is important because integrated circuits have shrunk so far that their active regions, which rely so heavily on silicon and germanium, begin to resemble ornate molecules rather than extended solids. Here we unveil a new approach for synthesizing atomically discrete wires of germanium and present the first conductance measurements of molecular germanium using a scanning tunneling microscope-based break-junction (STM-BJ) technique. Our findings show that germanium and silicon wires are nearly identical in conductivity at the molecular scale, and that both are much more conductive than aliphatic carbon. We demonstrate that the strong donor ability of C-Ge σ-bonds can be used to raise the energy of the anchor lone pair and increase conductance. Furthermore, the oligogermane wires behave as conductance switches that function through stereoelectronic logic. These devices can be trained to operate with a higher switching factor by repeatedly compressing and elongating the molecular junction.

  12. Single-molecule conductance in atomically precise germanium wires.

    PubMed

    Su, Timothy A; Li, Haixing; Zhang, Vivian; Neupane, Madhav; Batra, Arunabh; Klausen, Rebekka S; Kumar, Bharat; Steigerwald, Michael L; Venkataraman, Latha; Nuckolls, Colin

    2015-09-30

    While the electrical conductivity of bulk-scale group 14 materials such as diamond carbon, silicon, and germanium is well understood, there is a gap in knowledge regarding the conductivity of these materials at the nano and molecular scales. Filling this gap is important because integrated circuits have shrunk so far that their active regions, which rely so heavily on silicon and germanium, begin to resemble ornate molecules rather than extended solids. Here we unveil a new approach for synthesizing atomically discrete wires of germanium and present the first conductance measurements of molecular germanium using a scanning tunneling microscope-based break-junction (STM-BJ) technique. Our findings show that germanium and silicon wires are nearly identical in conductivity at the molecular scale, and that both are much more conductive than aliphatic carbon. We demonstrate that the strong donor ability of C-Ge σ-bonds can be used to raise the energy of the anchor lone pair and increase conductance. Furthermore, the oligogermane wires behave as conductance switches that function through stereoelectronic logic. These devices can be trained to operate with a higher switching factor by repeatedly compressing and elongating the molecular junction. PMID:26373928

  13. A model of optical trapping cold atoms using a metallic nano wire with surface plasmon effect

    NASA Astrophysics Data System (ADS)

    Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai

    2016-06-01

    In this work, we construct a new model of optical trapping cold atoms with a metallic nano wire by using surface plasmon effect generated by strong field of laser beams. Using the skin effect, we send a strong oscillated electromagnetic filed through the surface of a metallic nano wire. The local field generated by evanescent effect creates an effective attractive potential near the surface of metallic nano wires. The consideration of some possible boundary and frequency conditions might lead to non-trivial bound state solution for a cold atom. We discus also the case of the laser reflection optical trap with shell-core design, and compare our model with another recent schemes of cold atom optical traps using optical fibers and carbon nanotubes.

  14. Reaction and Protection of Electrical Wire Insulators in Atomic-oxygen Environments

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Cantrell, Gidget

    1994-01-01

    Atomic-oxygen erosion on spacecraft in low Earth orbit is an issue which is becoming increasingly important because of the growing number of spacecraft that will fly in the orbits which have high concentrations of atomic oxygen. In this investigation, the atomic-oxygen durability of three types of electrical wire insulation (carbon-based, fluoropolymer, and polysiloxane elastomer) were evaluated. These insulation materials were exposed to thermal-energy atomic oxygen, which was obtained by RF excitation of air at a pressure of 11-20 Pa. The effects of atomic-oxygen exposure on insulation materials indicate that all carbon-based materials erode at about the same rate as polyamide Kapton and, therefore, are not atomic-oxygen durable. However, the durability of fluoropolymers needs to be evaluated on a case by case basis because the erosion rates of fluoropolymers vary widely. For example, experimental data suggest the formation of atomic fluorine during atomic-oxygen amorphous-fluorocarbon reactions. Dimethyl polysiloxanes (silicone) do not lose mass during atomic-oxygen exposure, but develop silica surfaces which are under tension and frequently crack as a result of loss of methyl groups. However, if the silicone sample surfaces were properly pretreated to provide a certain roughness, atomic oxygen exposure resulted in a sturdy, non-cracked atomic-oxygen durable SiO2 layer. Since the surface does not crack during such silicone-atomic oxygen reaction, the crack-induced contamination by silicone can be reduced or completely stopped. Therefore, with proper pretreatment, silicone can be either a wire insulation material or a coating on wire insulation materials to provide atomic-oxygen durability.

  15. Rectification in substituted atomic wires: a theoretical insight.

    PubMed

    Asai, Yoshihiro

    2012-04-25

    Recently, there have been discussions that the giant diode property found experimentally in diblock molecular junctions could be enhanced by the many-body electron correlation effect beyond the mean field theory. In addition, the effect of electron-phonon scattering on an electric current through the diode molecule, measured by inelastic tunneling spectroscopy (IETS), was found to be symmetric with respect to the voltage sign change even though the current is asymmetric. The reason for this behavior is a matter of speculation. In order to clarify whether or not this feature is limited to organic molecules in the off-resonant tunneling region, we discuss the current asymmetry effect on IETS in the resonant region. We introduced heterogeneous atoms into an atomic wire and found that IETS becomes asymmetric in this substituted atomic wire case. Our conclusion gives the other example of intrinsic differences between organic molecules and metallic wires. While the contribution of electron-phonon scattering to IETS is not affected by the current asymmetry in the former case, it is affected in the latter case. The importance of the contribution of the electron-hole excitation to phonon damping in bringing about the current asymmetry effect in IETS in the latter case is discussed. PMID:22466527

  16. Iridium wire grid polarizer fabricated using atomic layer deposition.

    PubMed

    Weber, Thomas; Käsebier, Thomas; Szeghalmi, Adriana; Knez, Mato; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2011-10-25

    In this work, an effective multistep process toward fabrication of an iridium wire grid polarizer for UV applications involving a frequency doubling process based on ultrafast electron beam lithography and atomic layer deposition is presented. The choice of iridium as grating material is based on its good optical properties and a superior oxidation resistance. Furthermore, atomic layer deposition of iridium allows a precise adjustment of the structural parameters of the grating much better than other deposition techniques like sputtering for example. At the target wavelength of 250 nm, a transmission of about 45% and an extinction ratio of 87 are achieved.

  17. Dynamic observation of an atom-sized gold wire by phase electron microscopy.

    PubMed

    Takai, Y; Kawasaki, T; Kimura, Y; Ikuta, T; Shimizu, R

    2001-09-01

    A single-atom-sized gold wire was successfully observed in real time by a newly developed defocus-image modulation processing electron microscope. Because of phase retrieval processing with spherical aberration correction, the single-atom strand wire was observed with high contrast and without contrast blurring. By carefully looking at the atomic distance, the contrast, and the dynamic behavior of the wire, we recognized that there are two stages of the wire. In the first stage the wire maintained the atomic distance in the bulk crystal, but in the second stage the wire showed the atomic distance of the nearest-neighbor atoms with weaker contrast. The gold wire was rather stable for a few seconds under strong electron beam illumination.

  18. Crewmember repairing the Regenerative Carbon Dioxide Removal System wiring.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mission Pilot Ken Bowersox, busy at work on the wiring harness for the Regenerative Carbon Dioxide Removal System located under the mid deck floor. Photo shows Bowersox splicing wires together to 'fool' a faulty sensor that caused the 'air conditioner' to shut down.

  19. Electronic instabilities in self-assembled atom wires

    SciTech Connect

    Snijders, Paul C; Weitering, Harm H

    2010-01-01

    Low dimensional systems have fascinated physicists for a long time due to their unusual properties such as charge fractionalization, semionic statistics, and Luttinger liquid behavior among others. In nature, however, low dimensional systems often suffer from thermal fluctuations that can make these systems structurally unstable. Human beings, however, can trick nature by producing artificial structures which are not naturally produced. This Colloquium reviews the problem of self-assembled atomic wires on solid surfaces from an experimental and theoretical point of view. These materials represent a class of one-dimensional systems with very unusual properties that can open doors to the study of exotic physics that cannot be studied otherwise.

  20. From carbon nanotubes to carbon atomic chains

    NASA Astrophysics Data System (ADS)

    Casillas García, Gilberto; Zhang, Weijia; José-Yacamán, Miguel

    2010-10-01

    Carbyne is a linear allotrope of carbon. It is formed by a linear arrangement of carbon atoms with sp-hybridization. We present a reliable and reproducible experiment to obtain these carbon atomic chains using few-layer-graphene (FLG) sheets and a HRTEM. First the FLG sheets were synthesized from worm-like exfoliated graphite and then drop-casted on a lacey-carbon copper grid. Once in the TEM, two holes are opened near each other in a FLG sheet by focusing the electron beam into a small spot. Due to the radiation, the carbon atoms rearrange themselves between the two holes and form carbon fibers. The beam is concentrated on the carbon fibers in order excite the atoms and induce a tension until multi wall carbon nanotube (MWCNT) is formed. As the radiation continues the MWCNT breaks down until there is only a single wall carbon nanotube (SWCNT). Then, when the SWCNT breaks, an atomic carbon chain is formed, lasts for several seconds under the radiation and finally breaks. This demonstrates the stability of this carbon structure.

  1. Aluminum conducts better than copper at the atomic scale: a first-principles study of metallic atomic wires.

    PubMed

    Simbeck, Adam J; Lanzillo, Nick; Kharche, Neerav; Verstraete, Matthieu J; Nayak, Saroj K

    2012-12-21

    Using a first-principles density functional method, we have studied the electronic structure, electron-phonon coupling, and quantum transport properties of atomic wires of Ag, Al, Au, and Cu. Non-equilibrium Green's function-based transport studies of finite atomic wires suggest that the conductivity of Al atomic wires is higher than that of Ag, Au, and Cu in contrast to the bulk where Al has the lowest conductivity among these systems. This is attributed to the higher number of eigenchannels in Al wires, which becomes the determining factor in the ballistic limit. On the basis of density functional perturbation theory, we find that the electron-phonon coupling constant of the Al atomic wire is lowest among the four metals studied, and more importantly, that the value is reduced by a factor of 50 compared to the bulk. PMID:23083218

  2. Wired up: interconnecting two-dimensional materials with one-dimensional atomic chains.

    PubMed

    Rong, Youmin; Warner, Jamie H

    2014-12-23

    Atomic wires are chains of atoms sequentially bonded together and epitomize the structural form of a one-dimensional (1D) material. In graphene, they form as interconnects between regions when the nanoconstriction eventually becomes so narrow that it is reduced to one atom thick. In this issue of ACS Nano, Cretu et al. extend the discovery of 1D atomic wire interconnects in two-dimensional (2D) materials to hexagonal boron nitride. We highlight recent progress in the area of 1D atomic wires within 2D materials, with a focus on their atomic-level structural analysis using aberration-corrected transmission electron microscopy. We extend this discussion to the formation of nanowires in transition metal dichalcogenides under similar electron-beam irradiation conditions. The future outlook for atomic wires is considered in the context of new 2D materials and hybrids of C, B, and N. PMID:25474120

  3. Wired up: interconnecting two-dimensional materials with one-dimensional atomic chains.

    PubMed

    Rong, Youmin; Warner, Jamie H

    2014-12-23

    Atomic wires are chains of atoms sequentially bonded together and epitomize the structural form of a one-dimensional (1D) material. In graphene, they form as interconnects between regions when the nanoconstriction eventually becomes so narrow that it is reduced to one atom thick. In this issue of ACS Nano, Cretu et al. extend the discovery of 1D atomic wire interconnects in two-dimensional (2D) materials to hexagonal boron nitride. We highlight recent progress in the area of 1D atomic wires within 2D materials, with a focus on their atomic-level structural analysis using aberration-corrected transmission electron microscopy. We extend this discussion to the formation of nanowires in transition metal dichalcogenides under similar electron-beam irradiation conditions. The future outlook for atomic wires is considered in the context of new 2D materials and hybrids of C, B, and N.

  4. Kinetic study on hot-wire-assisted atomic layer deposition of nickel thin films

    SciTech Connect

    Yuan, Guangjie Shimizu, Hideharu; Momose, Takeshi; Shimogaki, Yukihiro

    2014-01-15

    High-purity Ni films were deposited using hot-wire-assisted atomic layer deposition (HW-ALD) at deposition temperatures of 175, 250, and 350 °C. Negligible amount of nitrogen or carbon contamination was detected, even though the authors used NH{sub 2} radical as the reducing agent and nickelocene as the precursor. NH{sub 2} radicals were generated by the thermal decomposition of NH{sub 3} with the assist of HW and used to reduce the adsorbed metal growth precursors. To understand and improve the deposition process, the kinetics of HW-ALD were analyzed using a Langmuir-type model. Unlike remote-plasma-enhanced atomic layer deposition, HW-ALD does not lead to plasma-induced damage. This is a significant advantage, because the authors can supply sufficient NH{sub 2} radicals to deposit high-purity metallic films by adjusting the distance between the hot wire and the substrate. NH{sub 2} radicals have a short lifetime, and it was important to use a short distance between the radical generation site and substrate. Furthermore, the impurity content of the nickel films was independent of the deposition temperature, which is evidence of the temperature-independent nature of the NH{sub 2} radical flux and the reactivity of the NH{sub 2} radicals.

  5. Excited-state hydrogen-atom transfer along solvent wires: water molecules stop the transfer.

    PubMed

    Tanner, Christian; Thut, Markus; Steinlin, Andreas; Manca, Carine; Leutwyler, Samuel

    2006-02-01

    Excited-state hydrogen-atom transfer (ESHAT) along a hydrogen-bonded solvent wire occurs for the supersonically cooled n = 3 ammonia-wire cluster attached to the scaffold molecule 7-hydroxyquinoline (7HQ) [Tanner, C.; et al. Science 2003, 302, 1736]. Here, we study the analogous three-membered solvent-wire clusters 7HQ.(NH3)n.(H2O)m, n + m = 3, using resonant two-photon ionization (R2PI) and UV-UV hole-burning spectroscopies. Substitution of H2O for NH3 has a dramatic effect on the excited-state H-atom transfer: The threshold for the ESHAT reaction is approximately 200 cm(-1) for 7HQ.(NH3)3, approximately 350 cm(-1) for both isomers of the 7HQ.(NH3)2.H2O cluster, and approximately 600 cm(-1) for 7HQ.NH3.(H2O)2 but increases to approximately 2000 cm(-1) for the pure 7HQ.(H2O)3 water-wire cluster. To understand the effect of the chemical composition of the solvent wire on the H-atom transfer, the reaction profiles of the low-lying electronic excited states of the n = 3 pure and mixed solvent-wire clusters are calculated with the configuration interaction singles (CIS) method. For those solvent wires with an NH3 molecule at the first position, injection of the H atom into the wire can occur by tunneling. However, further H-atom transfer is blocked by a high barrier at the first (and second) H2O molecule along the solvent wire. H-atom transfer along the entire length of the solvent wire, leading to formation of the 7-ketoquinoline (7KQ) tautomer, cannot occur for any of the H2O-containing clusters, in agreement with experimentally observed absence of 7KQ fluorescence.

  6. Electron transport in carbon wires in contact with Ag electrodes: a detailed first principles investigation.

    PubMed

    Bonardi, Paolo; Achilli, Simona; Tantardini, Gian Franco; Martinazzo, Rocco

    2015-07-28

    The structure and electronic properties of carbon atom chains Cn in contact with Ag electrodes are investigated in detail with first principles means. The ideal Ag(100) surface is used as a model for binding, and electron transport through the chains is studied as a function of their length, applied bias voltage, presence of capping atoms (Si, S) and adsorption site. It is found that the metal-molecule bond largely influences electronic coupling to the leads. Without capping atoms the quality of the electric contact improves when increasing the carbon atom coordination number to the metal (1, 2 and 4 for adsorption on a top, bridge and hollow position, respectively) and this finding translates almost unchanged in more realistic tip-like contacts which present one, two or four metal atoms at the contact. Current-voltage characteristics show Ohmic behaviour over a wide range of bias voltages and the resulting conductances change only weakly when increasing the wire length. The effect of a capping species is typically drastic, and either largely reduces (S) or largely increases (Si) the coupling of the wire to the electrodes. Comparison of our findings with recent experimental results highlights the limits of the adopted approach, which can be traced back to the known gap problem of density-functional-theory. PMID:26106869

  7. Platinum atomic wire encapsulated in gold nanotubes: A first principle study

    SciTech Connect

    Nigam, Sandeep Majumder, Chiranjib; Sahoo, Suman K.; Sarkar, Pranab

    2014-04-24

    The nanotubes of gold incorporated with platinum atomic wire have been investigated by means of firstprinciples density functional theory with plane wave pseudopotential approximation. The structure with zig-zag chain of Pt atoms in side gold is found to be 0.73 eV lower in energy in comparison to straight chain of platinum atoms. The Fermi level of the composite tube was consisting of d-orbitals of Pt atoms. Further interaction of oxygen with these tubes reveals that while tube with zig-zag Pt prefers dissociative adsorption of oxygen molecule, the gold tube with linear Pt wire favors molecular adsorption.

  8. Characterization of Launched Atoms Leading to Observations of Cold Rydberg Atoms in the Field of a Charged Wire

    NASA Astrophysics Data System (ADS)

    Goodsell, Anne; Erwin, Emma

    2016-05-01

    We are preparing to accelerate and decelerate cold Rydberg atoms in the field of a charged wire. We cool and launch rubidium atoms and observe the distribution of atoms up to 16 mm above the trap location. We report a transverse speed less than 1/10 of the longitudinal launch speed. For Rydberg-atom observations, the cold cloud will be illuminated in mid-flight to promote atoms into the desired Rydberg state (e.g. n = 33-40). With a three-photon sequence we will access nf states and the nearby manifolds with linear Stark shifts. We observed the first two steps of this process using counter-propagating beams of 780 nm and 776 nm in a Rb cell. For cold Rydberg atoms, we will compare states that are strongly accelerated to states that are strongly decelerated by the field around the charged-wire target. We calculate that the displacement during the Rydberg lifetime (e.g. n = 35, τ = 30 μs) will be 200-300 μm farther for extreme attracted states. Detection will occur by spatially-dependent field ionization. Observations of atoms with zero angular momentum around the wire can be extended to atoms with nonzero angular momentum and also to study dynamics of Rydberg atoms with a quadratic Stark shift, building on previous work with ground-state atoms.

  9. Correlating Electronic Transport to Atomic Structures in Self-Assembled Quantum Wires

    SciTech Connect

    Li, An-Ping; Qin, Shengyong; Kim, Tae Hwan; Ouyang, Wenjie; Zhang, Yanning; Weitering, Harm H; Shih, Chih-Kang; Baddorf, Arthur P; Wu, Ruiqian

    2012-01-01

    Quantum wires, as a smallest electronic conductor, are expected to be a fundamental component in all quantum architectures. The electronic conductance in quantum wires, however, is often dictated by structural instabilities and electron localization at the atomic scale. Here we report on the evolutions of electronic transport as a function of temperature and interwire coupling as the quantum wires of GdSi{sub 2} are self-assembled on Si(100) wire-by-wire. The correlation between structure, electronic properties, and electronic transport are examined by combining nanotransport measurements, scanning tunneling microscopy, and density functional theory calculations. A metal-insulator transition is revealed in isolated nanowires, while a robust metallic state is obtained in wire bundles at low temperature. The atomic defects lead to electron localizations in isolated nanowire, and interwire coupling stabilizes the structure and promotes the metallic states in wire bundles. This illustrates how the conductance nature of a one-dimensional system can be dramatically modified by the environmental change on the atomic scale.

  10. Dynamic polarizability of tungsten atoms reconstructed from fast electrical explosion of fine wires in vacuum

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Rosenthal, S. E.; Struve, K. W.

    2016-10-01

    Nanosecond electrical explosion of fine metal wires in vacuum generates calibrated, radially expanded gas cylinders of metal atoms surrounded by a low-density fast expanding plasma corona. An integrated-phase technique, based on laser interferometry, provides the dynamic dipole polarizability of metal atoms. These data were previously unavailable for tungsten atoms. An extremely high melting temperature and significant premelt electronic emission make these measurements particularly complicated for this refractory metal. Most attempts to vaporize tungsten wire by electrical current pulse result in the disintegration of the sample into macro- and microfragments. However, application of a very fast-rising current, ˜1 kA /ns , can vaporize a thin 10-15 μm-diameter tungsten wire and generate a calibrated gas-plasma cylinder. Adding a dielectric coating to the wire leads to increased energy deposition to the wire core and a reduction of the surrounding plasma corona. Employing the integrated-phase technique on a fast-exploding coated tungsten wire, we find that the dynamic dipole polarizability of tungsten atoms at a wavelength of 532 nm equals 15 ±1.3 Å3 .

  11. Atomic Entanglement in Carbon Nanotubes.

    NASA Astrophysics Data System (ADS)

    Bondarev, Igor; Vlahovic, Branislav

    2006-03-01

    The development of materials that may host quantum coherent states is a critical research problem for the nearest future. Recent progress in the growth of centimeter-long small-diameter single-walled carbon nanotubes (CNs)[1] and successful experiments on the encapsulation of single atoms into CNs[2], stimulate the study of dynamical quantum processes in atomically doped CN systems. We have recently shown[3] that atomic states may be strongly coupled to vacuum surface photonic modes in the CN, thus forming quasi-1D cavity polaritons similar to those observed for quantum dots in semiconductor nanocavities[4], which were recently suggested to be a possible way to produce the excitonic qubit entanglement[5]. Here, we show that, being strongly coupled to the (resonator-like) cylindrical nanotube environment, the two atomic quasi-1D polaritons can be easily entangled as well, thus challenging a novel alternative approach towards quantum information transfer over centimeter-long distances. [1]L.X.Zheng et al, Proc. Nanotech 2005 (May 8-12, 2005, Anaheim, CA, USA), vol.3, p.126. [2]G.-H.Jeong et al, Phys. Rev. B68,075410(2003). [3]I.V.Bondarev and Ph.Lambin, in: Trends in Nanotubes Reasearch (NovaScience, NY, 2005); Phys. Rev. B70,035407(2004); Phys. Rev. B72,035451(2005). [4]T.Yoshie et al, Nature 432,200(2004). [5]S.Hughes, Phys. Rev. Lett.94,227402(2005).

  12. Selective silver atom interaction at β-SiC(100) surfaces: From anisotropic diffusion to metal atomic wires and stripes

    NASA Astrophysics Data System (ADS)

    D'Angelo, M.; Aristov, V. Yu.; Soukiassian, P.

    2007-07-01

    Silver (Ag) atom interaction on β-SiC(100) surface reconstructions is investigated by atom-resolved scanning tunneling microscopy. On the 3×2 (Si-rich) reconstruction, the adsorbate-adsorbate interaction is dominant with no surface wetting, leading to Ag cluster formation. In contrast, on the c(4×2) Si-terminated reconstruction, almost equivalent Ag-Ag and Ag-surface interactions allow selective one dimensional nano-object formation including Ag atomic wires and stripes following the substrate registry. Their orientation is mediated by anisotropic Ag atom diffusion occurring along Si-dimer rows at 25°C and perpendicularly to them at elevated temperatures, suggesting dimer flipping as diffusion barrier. These metal nanowires potentially open up cross-wiring capability in massively parallel Si atomic lines network.

  13. Impurity-Mediated Early Condensation of a Charge Density Wave in an Atomic Wire Array.

    PubMed

    Yeom, Han Woong; Oh, Deok Mahn; Wippermann, Stefan; Schmidt, Wolf Gero

    2016-01-26

    We directly show how impurity atoms induce the condensation of a representative electronic phase, the charge density wave (CDW) phase, in atomic scale with scanning tunneling microscopy. Oxygen impurity atoms on the self-assembled metallic atomic wire array on a silicon crystal condense the CDW locally above the pristine transition temperature. More interestingly, the CDW along the wires is induced not by a single atomic impurity but by the cooperation of multiple impurities. First-principles calculations disclose the mechanism of the cooperation as the coherent superposition of the local lattice strain induced by impurities, stressing the coupled electronic and lattice degrees of freedom for the CDW. This opens the possibility of the strain engineering over electronic phases of atomic-scale systems.

  14. Impurity-Mediated Early Condensation of a Charge Density Wave in an Atomic Wire Array.

    PubMed

    Yeom, Han Woong; Oh, Deok Mahn; Wippermann, Stefan; Schmidt, Wolf Gero

    2016-01-26

    We directly show how impurity atoms induce the condensation of a representative electronic phase, the charge density wave (CDW) phase, in atomic scale with scanning tunneling microscopy. Oxygen impurity atoms on the self-assembled metallic atomic wire array on a silicon crystal condense the CDW locally above the pristine transition temperature. More interestingly, the CDW along the wires is induced not by a single atomic impurity but by the cooperation of multiple impurities. First-principles calculations disclose the mechanism of the cooperation as the coherent superposition of the local lattice strain induced by impurities, stressing the coupled electronic and lattice degrees of freedom for the CDW. This opens the possibility of the strain engineering over electronic phases of atomic-scale systems. PMID:26634634

  15. Process for attaching molecular wires and devices to carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2008-01-01

    The present invention is directed towards processes for covalently attaching molecular wires and molecular electronic devices to carbon nanotubes and compositions thereof. Such processes utilize diazonium chemistry to bring about this marriage of wire-like nanotubes with molecular wires and molecular electronic devices.

  16. Wiring-up hydrogenase with single-walled carbon nanotubes.

    PubMed

    McDonald, Timothy J; Svedruzic, Drazenka; Kim, Yong-Hyun; Blackburn, Jeffrey L; Zhang, S B; King, Paul W; Heben, Michael J

    2007-11-01

    Many envision a future where hydrogen is the centerpiece of a sustainable, carbon-free energy supply. For example, the energy in sunlight may be stored by splitting water into H2 and O2 using inorganic semiconductors and photoelectrochemical approaches or with artificial photosynthetic systems that seek to mimic the light absorption, energy transfer, electron transfer, and redox catalysis that occurs in green plants. Unfortunately, large scale deployment of artificial water-splitting technologies may be impeded by the need for the large amounts of precious metals required to catalyze the multielectron water-splitting reactions. Nature provides a variety of microbes that can activate the dihydrogen bond through the catalytic activity of [NiFe] and [FeFe] hydrogenases, and photobiological approaches to water splitting have been advanced. One may also consider a biohybrid approach; however, it is difficult to interface these sensitive, metalloenzymes to other materials and systems. Here we show that surfactant-suspended carbon single-walled nanotubes (SWNTs) spontaneously self-assemble with [FeFe] hydrogenases in solution to form catalytically active biohybrids. Photoluminescence excitation and Raman spectroscopy studies show that SWNTs act as molecular wires to make electrical contact to the biocatalytic region of hydrogenase. Hydrogenase mediates electron injection into nanotubes having appropriately positioned lowest occupied molecular orbital levels when the H2 partial pressure is varied. The hydrogenase is strongly attached to the SWNTs, so mass transport effects are eliminated and the absolute potential of the electronic levels of the nanotubes can be unambiguously measured. Our findings reveal new nanotube physics and represent the first example of "wiring-up" an hydrogenase with another nanoscale material. This latter advance offers a nonprecious metal route to the design of new biohybrid architectures and building blocks for hydrogen-related technologies

  17. Conductance decay of a surface hydrogen tunneling junction fabricated along a Si(001)- (2×1) -H atomic wire

    NASA Astrophysics Data System (ADS)

    Kawai, Hiroyo; Yeo, Yong Kiat; Saeys, Mark; Joachim, Christian

    2010-05-01

    On a Si(001)- (2×1) -H substrate, electrons tunneling through hydrogen atomic junctions fabricated between two surface dangling-bond (DB) wires are theoretically investigated using the elastic-scattering quantum-chemistry method. The surface states introduced in the Si band gap by removing H atoms from a Si(001)- (2×1) -H surface were calculated and also analyzed using a simple tight-binding model. The two-channel surface conductance of a DB wire results from a combination of through-space and through-lattice electronic couplings between DB states. The conductance of the DB wire-H-junction-DB wire structure decreases exponentially with the length of H junction with an inverse decay rate ranging from 0.20 to 0.23Å-1 , depending on the energy. When the DB wire-H-junction-DB wire structure is contacted by Au nanoelectrodes, the transmission resonances corresponding to the DB wire states split, demonstrating a coupling of the DB wires through short surface hydrogen atomic junctions. This splitting decreases with the length of H junction between the DB wires with an inverse decay length ranging from 0.22 to 0.44Å-1 , indicating that such an atomic scale surface tunneling junction is not a very good insulator.

  18. Polyaniline/Carbon Nanotube Composite Fiber-Based Dye-Sensitized Photovoltaic Wire.

    PubMed

    Pan, Shaowu; Yang, Jinhu

    2015-09-01

    Polyaniline/carbon nanotube composite fiber was prepared from aligned multi-walled carbon nano- tube fiber coupling with subsequent electrochemical polymerization of aniline. Novel wire-shaped dye-sensitized solar cells were obtained by using the composite fiber as counter electrode. Photovoltaic wire based on the composite fiber showed a conversion efficiency of 3.8%, which is 63% higher than the pure carbon nanotube fiber. PMID:26716346

  19. Moving-wire device for carbon isotopic analyses of nanogram quantities of nonvolatile organic carbon.

    PubMed

    Sessions, Alex L; Sylva, Sean P; Hayes, John M

    2005-10-15

    We describe a moving-wire analyzer for measuring 13C in dissolved, involatile organic materials. Liquid samples are first deposited and dried on a continuously spooling nickel wire. The residual sample is then combusted as the wire moves through a furnace, and the evolved CO2 is analyzed by continuous-flow isotope ratio mass spectrometry. A typical analysis requires 1 microL of sample solution and produces a CO2 peak approximately 5 s wide. The system can measure "bulk" delta13C values of approximately 10 nmol of organic carbon with precision better than 0.2 per thousand. For samples containing approximately 1 nmol of C, precision is approximately 1 per thousand. Precision and sensitivity are limited mainly by background noise derived from carbon within the wire. Instrument conditions minimizing that background are discussed in detail. Accuracy is better than 0.5 per thousand for nearly all dissolved analytes tested, including lipids, proteins, nucleic acids, sugars, halocarbons, and hydrocarbons. The sensitivity demonstrated here for 13C measurements represents a approximately 1000-fold improvement relative to existing elemental analyzers and should allow the use of many new preparative techniques for collecting and purifying nonvolatile biochemicals for isotopic analysis.

  20. Modeling Ballistic Current Flow in Carbon Nanotube Wires

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Experiments have shown carbon nanotubes (CNT) to be almost perfect conductors at small applied biases. The features of the CNT band structure, large velocity of the crossing subbands and the small number of modes that an electron close to the band center / Fermi energy can scatter into, are the reasons for the near perfect small bias conductance. We show that the CNT band structure does not help at large applied biases - electrons injected into the non crossing subbands can either be Bragg reflected or undergo Zener-type tunneling. This limits the current carrying capacity of CNT. We point out that the current carrying capacity of semiconductor quantum wires in the ballistic limit is different, owing to its band structure. The second aspect addressed is the relationship of nanotube chirality in determining the physics of metal-nanotube coupling. We show that a metallic-zigzag nanotube couples better than an armchair nanotube to a metal contact. This arises because in the case of armchair nanotubes, while the pi band couples well, the pi* band does not couple well to the metal. In the case of zigzag nanotube both crossing modes couple reasonably well to the metal. Many factors such as the role of curvature, strain and defects will play a role in determining the suitability of nanotubes as nanowires. From the limited view point of metal-nanotube coupling, we feel that metallic-zigzag nanotubes are preferable to armchair nanotubes.

  1. Limits to metallic conduction in atomic-scale quasi-one-dimensional silicon wires.

    PubMed

    Weber, Bent; Ryu, Hoon; Tan, Y-H Matthias; Klimeck, Gerhard; Simmons, Michelle Y

    2014-12-12

    The recent observation of ultralow resistivity in highly doped, atomic-scale silicon wires has sparked interest in what limits conduction in these quasi-1D systems. Here we present electron transport measurements of gated Si:P wires of widths 4.6 and 1.5 nm. At 4.6 nm we find an electron mobility, μ(el)≃60  cm²/V s, in excellent agreement with that of macroscopic Hall bars. Metallic conduction persists to millikelvin temperatures where we observe Gaussian conductance fluctuations of order δG∼e²/h. In thinner wires (1.5 nm), metallic conduction breaks down at G≲e²/h, where localization of carriers leads to Coulomb blockade. Metallic behavior is explained by the large carrier densities in Si:P δ-doped systems, allowing the occupation of all six valleys of the silicon conduction band, enhancing the number of 1D channels and hence the localization length.

  2. Cooperative interplay between impurities and charge density wave in the phase transition of atomic wires

    NASA Astrophysics Data System (ADS)

    Shim, Hyungjoon; Lee, Geunseop; Hyun, Jung-Min; Kim, Hanchul

    2015-09-01

    Impurities interact with a charge density wave (CDW) and affect the phase transitions in low-dimensional systems. By using scanning tunneling microscopy, we visualize the interaction between oxygen impurities and the CDW in indium atomic wires on Si(111), a prototypical one-dimensional electronic system, and unveil the microscopic mechanism of the intriguing O-induced increase of the transition temperature (Tc). Driven by the fluctuating CDW, the O atoms adopt an asymmetric structure. By adjusting the asymmetry, a pair of O impurities in close distance can pin the one-dimensional CDW, which develops into the two-dimensional domains. First-principles calculations showed that the asymmetric interstitially-incorporated O defects induce shear strains, which assists the formation of hexagon structure of the CDW phase. The cooperative interplay between the O impurities and the CDW is responsible for the enhancement of the CDW condensation and the consequent increase in Tc.

  3. Non-equilibrium 8π Josephson effect in atomic Kitaev wires

    NASA Astrophysics Data System (ADS)

    Laflamme, C.; Budich, J. C.; Zoller, P.; Dalmonte, M.

    2016-08-01

    The identification of fractionalized excitations, such as Majorana quasi-particles, would be a striking signal of the realization of exotic quantum states of matter. While the paramount demonstration of such excitations would be a probe of their non-Abelian statistics via controlled braiding operations, alternative proposals exist that may be easier to access experimentally. Here we identify a signature of Majorana quasi-particles, qualitatively different from the behaviour of a conventional superconductor, which can be detected in cold atom systems using alkaline-earth-like atoms. The system studied is a Kitaev wire interrupted by an extra site, which gives rise to super-exchange coupling between two Majorana-bound states. We show that this system hosts a tunable, non-equilibrium Josephson effect with a characteristic 8π periodicity of the Josephson current. The visibility of the 8π periodicity of the Josephson current is then studied including the effects of dephasing and particle losses.

  4. Non-equilibrium 8π Josephson effect in atomic Kitaev wires

    PubMed Central

    Laflamme, C.; Budich, J. C.; Zoller, P.; Dalmonte, M.

    2016-01-01

    The identification of fractionalized excitations, such as Majorana quasi-particles, would be a striking signal of the realization of exotic quantum states of matter. While the paramount demonstration of such excitations would be a probe of their non-Abelian statistics via controlled braiding operations, alternative proposals exist that may be easier to access experimentally. Here we identify a signature of Majorana quasi-particles, qualitatively different from the behaviour of a conventional superconductor, which can be detected in cold atom systems using alkaline-earth-like atoms. The system studied is a Kitaev wire interrupted by an extra site, which gives rise to super-exchange coupling between two Majorana-bound states. We show that this system hosts a tunable, non-equilibrium Josephson effect with a characteristic 8π periodicity of the Josephson current. The visibility of the 8π periodicity of the Josephson current is then studied including the effects of dephasing and particle losses. PMID:27481540

  5. Detection of gas atoms with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Arash, B.; Wang, Q.

    2013-05-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  6. 75 FR 21658 - Carbon and Certain Alloy Steel Wire Rod From Trinidad and Tobago

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... amended, 67 FR 68036 (Nov. 8, 2002). In accordance with sections 201.16(c) and 207.3 of the Commission's... COMMISSION Carbon and Certain Alloy Steel Wire Rod From Trinidad and Tobago AGENCY: United States... in the antidumping duty Investigation No. 731-TA-961 concerning carbon and certain alloy steel...

  7. Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes.

    PubMed

    Zhang, Sen; Ji, Chunyan; Bian, Zhuqiang; Liu, Runhua; Xia, Xinyuan; Yun, Daqin; Zhang, Luhui; Huang, Chunhui; Cao, Anyuan

    2011-08-10

    Conventional fiber-shaped polymeric or dye-sensitized solar cells (DSSCs) are usually made into a double-wire structure, in which a secondary electrode wire (e.g., Pt) was twisted along the primary core wire consisting of active layers. Here, we report highly flexible DSSCs based on a single wire, by wrapping a carbon nanotube film around Ti wire-supported TiO(2) tube arrays as the transparent electrode. Unlike a twisted Pt electrode, the CNT film ensures full contact with the underlying active layer, as well as uniform illumination along circumference through the entire DSSC. The single-wire DSSC shows a power conversion efficiency of 1.6% under standard illumination (AM 1.5, 100 mW/cm(2)), which is further improved to more than 2.6% assisted by a second conventional metal wire (Ag or Cu). Our DSSC wires are stable and can be bent to large angles up to 90° reversibly without performance degradation. PMID:21766836

  8. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine

    DOE PAGESBeta

    Zestos, Alexander G.; Yang, Cheng; Jacobs, Christopher B.; Hensley, Dale; Venton, B. Jill

    2015-09-14

    Carbon nanomaterials are advantageous as electrodes for neurotransmitter detection, but the difficulty of nanomaterials deposition on electrode substrates limits the reproducibility and future applications. In our study, we used plasma enhanced chemical vapor deposition (PECVD) to directly grow a thin layer of carbon nanospikes (CNS) on cylindrical metal substrates. No catalyst is required and the CNS surface coverage is uniform over the cylindrical metal substrate. We characterized the CNS growth on several metallic substrates including tantalum, niobium, palladium, and nickel wires. Using fast-scan cyclic voltammetry (FSCV), bare metal wires could not detect 1 mu M dopamine while carbon nanospike coatedmore » wires could. Moreover, the highest sensitivity and optimized S/N ratio was recorded from carbon nanospike-tantalum (CNS-Ta) microwires grown for 7.5 minutes, which had a LOD of 8 +/- 2 nM for dopamine with FSCV. CNS-Ta microelectrodes were more reversible and had a smaller Delta E-p for dopamine than carbon-fiber microelectrodes, suggesting faster electron transfer kinetics. The kinetics of dopamine redox were adsorption controlled at CNS-Ta microelectrodes and repeated electrochemical measurements displayed stability for up to ten hours in vitro and over a ten day period as well. The oxidation potential was significantly different for ascorbic acid and uric acid compared to dopamine. Finally, growing carbon nanospikes on metal wires is a promising method to produce uniformly-coated, carbon nanostructured cylindrical microelectrodes for sensitive dopamine detection.« less

  9. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine

    SciTech Connect

    Zestos, Alexander G.; Yang, Cheng; Jacobs, Christopher B.; Hensley, Dale; Venton, B. Jill

    2015-09-14

    Carbon nanomaterials are advantageous as electrodes for neurotransmitter detection, but the difficulty of nanomaterials deposition on electrode substrates limits the reproducibility and future applications. In our study, we used plasma enhanced chemical vapor deposition (PECVD) to directly grow a thin layer of carbon nanospikes (CNS) on cylindrical metal substrates. No catalyst is required and the CNS surface coverage is uniform over the cylindrical metal substrate. We characterized the CNS growth on several metallic substrates including tantalum, niobium, palladium, and nickel wires. Using fast-scan cyclic voltammetry (FSCV), bare metal wires could not detect 1 mu M dopamine while carbon nanospike coated wires could. Moreover, the highest sensitivity and optimized S/N ratio was recorded from carbon nanospike-tantalum (CNS-Ta) microwires grown for 7.5 minutes, which had a LOD of 8 +/- 2 nM for dopamine with FSCV. CNS-Ta microelectrodes were more reversible and had a smaller Delta E-p for dopamine than carbon-fiber microelectrodes, suggesting faster electron transfer kinetics. The kinetics of dopamine redox were adsorption controlled at CNS-Ta microelectrodes and repeated electrochemical measurements displayed stability for up to ten hours in vitro and over a ten day period as well. The oxidation potential was significantly different for ascorbic acid and uric acid compared to dopamine. Finally, growing carbon nanospikes on metal wires is a promising method to produce uniformly-coated, carbon nanostructured cylindrical microelectrodes for sensitive dopamine detection.

  10. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine.

    PubMed

    Zestos, Alexander G; Yang, Cheng; Jacobs, Christopher B; Hensley, Dale; Venton, B Jill

    2015-11-01

    Carbon nanomaterials are advantageous as electrodes for neurotransmitter detection, but the difficulty of nanomaterials deposition on electrode substrates limits the reproducibility and future applications. In this study, we used plasma enhanced chemical vapor deposition (PECVD) to directly grow a thin layer of carbon nanospikes (CNS) on cylindrical metal substrates. No catalyst is required and the CNS surface coverage is uniform over the cylindrical metal substrate. The CNS growth was characterized on several metallic substrates including tantalum, niobium, palladium, and nickel wires. Using fast-scan cyclic voltammetry (FSCV), bare metal wires could not detect 1 μM dopamine while carbon nanospike coated wires could. The highest sensitivity and optimized S/N ratio was recorded from carbon nanospike-tantalum (CNS-Ta) microwires grown for 7.5 minutes, which had a LOD of 8 ± 2 nM for dopamine with FSCV. CNS-Ta microelectrodes were more reversible and had a smaller ΔE(p) for dopamine than carbon-fiber microelectrodes, suggesting faster electron transfer kinetics. The kinetics of dopamine redox were adsorption controlled at CNS-Ta microelectrodes and repeated electrochemical measurements displayed stability for up to ten hours in vitro and over a ten day period as well. The oxidation potential was significantly different for ascorbic acid and uric acid compared to dopamine. Growing carbon nanospikes on metal wires is a promising method to produce uniformly-coated, carbon nanostructured cylindrical microelectrodes for sensitive dopamine detection. PMID:26389138

  11. Atom probe tomography (APT) of carbonate minerals.

    PubMed

    Pérez-Huerta, Alberto; Laiginhas, Fernando; Reinhard, David A; Prosa, Ty J; Martens, Rich L

    2016-01-01

    Atom probe tomography (APT) combines the highest spatial resolution with chemical data at atomic scale for the analysis of materials. For geological specimens, the process of field evaporation and molecular ion formation and interpretation is not yet entirely understood. The objective of this study is to determine the best conditions for the preparation and analysis by APT of carbonate minerals, of great importance in the interpretation of geological processes, focusing on the bulk chemical composition. Results show that the complexity of the mass spectrum is different for calcite and dolomite and relates to dissimilarities in crystalochemical parameters. In addition, APT bulk chemistry of calcite closely matches the expected stoichiometry but fails to provide accurate atomic percentages for elements in dolomite under the experimental conditions evaluated in this work. For both calcite and dolomite, APT underestimates the amount of oxygen based on their chemical formula, whereas it is able to detect small percentages of elemental substitutions in crystal lattices. Overall, our results demonstrate that APT of carbonate minerals is possible, but further optimization of the experimental parameters are required to improve the use of atom probe tomography for the correct interpretation of mineral geochemistry. PMID:26519815

  12. Atom probe tomography (APT) of carbonate minerals.

    PubMed

    Pérez-Huerta, Alberto; Laiginhas, Fernando; Reinhard, David A; Prosa, Ty J; Martens, Rich L

    2016-01-01

    Atom probe tomography (APT) combines the highest spatial resolution with chemical data at atomic scale for the analysis of materials. For geological specimens, the process of field evaporation and molecular ion formation and interpretation is not yet entirely understood. The objective of this study is to determine the best conditions for the preparation and analysis by APT of carbonate minerals, of great importance in the interpretation of geological processes, focusing on the bulk chemical composition. Results show that the complexity of the mass spectrum is different for calcite and dolomite and relates to dissimilarities in crystalochemical parameters. In addition, APT bulk chemistry of calcite closely matches the expected stoichiometry but fails to provide accurate atomic percentages for elements in dolomite under the experimental conditions evaluated in this work. For both calcite and dolomite, APT underestimates the amount of oxygen based on their chemical formula, whereas it is able to detect small percentages of elemental substitutions in crystal lattices. Overall, our results demonstrate that APT of carbonate minerals is possible, but further optimization of the experimental parameters are required to improve the use of atom probe tomography for the correct interpretation of mineral geochemistry.

  13. High strength, low carbon, dual phase steel rods and wires and process for making same

    DOEpatents

    Thomas, Gareth; Nakagawa, Alvin H.

    1986-01-01

    A high strength, high ductility, low carbon, dual phase steel wire, bar or rod and process for making the same is provided. The steel wire, bar or rod is produced by cold drawing to the desired diameter in a single multipass operation a low carbon steel composition characterized by a duplex microstructure consisting essentially of a strong second phase dispersed in a soft ferrite matrix with a microstructure and morphology having sufficient cold formability to allow reductions in cross-sectional area of up to about 99.9%. Tensile strengths of at least 120 ksi to over 400 ksi may be obtained.

  14. Functionalization of Carbon Nanotubes using Atomic Hydrogen

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Cassell, Alan M.; Nguyen, Cattien V.; Meyyappan, M.; Han, Jie; Arnold, Jim (Technical Monitor)

    2001-01-01

    We have investigated the irradiation of multi walled and single walled carbon nanotubes (SWNTs) with atomic hydrogen. After irradiating the SWNT sample, a band at 2940/cm (3.4 microns) that is characteristic of the C-H stretching mode is observed using Fourier transform infrared (FTIR) spectroscopy. Additional confirmation of SWNT functionalization is tested by irradiating with atomic deuterium. A weak band in the region 1940/cm (5.2 micron) to 2450/cm (4.1 micron) corresponding to C-D stretching mode is also observed in the FTIR spectrum. This technique provides a clean gas phase process for the functionalization of SWNTs, which could lead to further chemical manipulation and/or the tuning of the electronic properties of SWNTs for nanodevice applications.

  15. 78 FR 2658 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ...; Opportunity To Request Administrative Review, 77 FR 59894 (October 1, 2012). \\2\\ See Letter from Nucor... Countervailing Duty Administrative Reviews and Request for Revocation in Part, 77 FR 71575 (December 3, 2012). \\4... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Rescission...

  16. Mechanical behavior of ultrahigh strength ultrahigh carbon steel wire and rod

    SciTech Connect

    Lesuer, D.R.; Syn, C.K.; Sberby, O.D.; Whittenherger, W.D.

    1997-07-22

    Ultrahigh-carbon steels (UHCSS) can achieve very high strengths in wire or rod form. These high strengths result from the mechanical work introduced during wire and rod processing. These strengths have been observed to increase with carbon content. In wire form, tensile strengths approaching 6000 MPa are predicted for UHCS containing 1. 8%C. In this paper, we will discuss the influence of processing (including rapid transformation during wire patenting) and micros ct- ure on the mechanical behavior of UHCS wire. The tensile properties of as- extruded rods are described as a function of extrusion temperature and composition. For spheroidized steels, yield and ultimate tensile strength are a function of grain size, interparticle spacing and particle size. For pearlitic steels, yield and ultimate strength were found to be functions of colony size, carbide size and plate spacing and orientation. Alloying additions (such as C, Cr, Si, Al and Co) can influence the effect of processing on these microstructural features. For spheroidized steels, fracture was found to be a function of the size of coarse carbides and of composition.

  17. Influence of severe plastic deformation on the structure and properties of ultrahigh carbon steel wire

    SciTech Connect

    Leseur, D R; Sherby, O D; Syn, C K

    1999-07-01

    Ultrahigh-carbon steel wire can achieve very high strength after severe plastic deformation, because of the fine, stable substructures produce. Tensile strengths approaching 6000 MPa are predicted for UHCS containing 1.8%C. This paper discusses the microstructural evolution during drawing of UHCS wire, the resulting strength produced and the factors influencing fracture. Drawing produces considerable alignment of the pearlite plates. Dislocation cells develop within the ferrite plates and, with increasing strain, the size normal to the axis ({lambda}) decreases. These dislocation cells resist dynamic recovery during wire drawing and thus extremely fine substructures can be developed ({lambda} < 10 nm). Increasing the carbon content reduces the mean free ferrite path in the as-patented wire and the cell size developed during drawing. For UHCS, the strength varies as {lambda}{sup {minus}5}. Fracture of these steels was found to be a function of carbide size and composition. The influence of processing and composition on achieving high strength in these wires during severe plastic deformation is discussed.

  18. A highly sensitive method for the determination of mercury using vapor generation gold wire microextraction and electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Hashemi, Payman; Rahimi, Akram

    2007-04-01

    The study introduces a new simple and highly sensitive method for headspace solid phase microextraction (HS-SPME) coupled with electrothermal atomic absorption spectrometric determination of mercury. In the proposed method, a gold wire, mounted in the headspace of a sample solution in a sealed bottle, is used for collection of mercury vapor generated by addition of sodium tetrahydroborate. The gold wire is then simply inserted in the sample introduction hole of a graphite furnace of an electrothermal atomic absorption spectrometry instrument. By applying an atomization temperature of 600 °C, mercury is rapidly desorbed from the wire and determined with high sensitivity. Factorial design and response surface analysis methods were used for optimization of the effect of five different variables in order to maximize the mercury signal. By using a 0.75 mm diameter gold wire, a sample volume of about 8 ml and an extraction time of 11 min, the sensitivity of mercury determination was enhanced up to 10 4 times in comparison to its ordinary ETAAS determination with direct injection of 10 μl sample solutions. A detection limit of 0.006 ng ml - 1 and a precision better than 4.6% (relative standard deviation) were obtained. The method was successfully applied to the determination of mercury in industrial wastewaters and tuna fish samples.

  19. Bonding Mechanisms in Resistance Microwelding of 316 Low-Carbon Vacuum Melted Stainless Steel Wires

    NASA Astrophysics Data System (ADS)

    Khan, M. I.; Kim, J. M.; Kuntz, M. L.; Zhou, Y.

    2009-04-01

    Resistance microwelding (RMW) is an important joining process used in the fabrication of miniature instruments, such as electrical and medical devices. The excellent corrosion resistance of 316 low-carbon vacuum melted (LVM) stainless steel (SS) wire makes it ideal for biomedical applications. The current study examines the microstructure and mechanical properties of crossed resistance microwelded 316LVM wire. Microtensile and microhardness testing was used to analyze the mechanical performance of welds, and fracture surfaces were examined using scanning electron microscopy. Finally, a bonding mechanism is proposed based on optimum joint breaking force (JBF) using metallurgical observations of weld cross sections. Moreover, comparisons with RMWs of Ni, Au-plated Ni, and SUS304 SS wire are discussed.

  20. High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes.

    PubMed

    Fan, Yu; Zhang, Qing; Lu, Congxiang; Xiao, Qizhen; Wang, Xinghui; Tay, Beng Kang

    2013-02-21

    Core-shell Si nanowires are very promising anode materials. Here, we synthesize vertically aligned carbon nanotubes (CNTs) with relatively large diameters and large inter-wire spacing as core wires and demonstrate a CNT-Si core-shell wire composite as a lithium ion battery (LIB) anode. Owing to the rationally engineered core structure, the composite shows good capacity retention and rate performance. The excellent performance is superior to most core-shell nanowires previously reported.

  1. Carbon nanotube (CNT) fins for enhanced cooling of shape memory alloy wire

    NASA Astrophysics Data System (ADS)

    Pathak, Anupam; AuBuchon, Joseph; Brei, Diann; Shaw, John; Luntz, Jonathan; Jin, Sungho

    2008-03-01

    A commonly noted disadvantage of shape memory alloys is their frequency response which is limited by how fast the material can be cooled. This paper presents a feasibility study of using vertically aligned carbon nanotubes (CNT) as microscopic cooling fins to improve convective heat transfer. Using DC plasma enhanced chemical vapor deposition (PECVD), aligned CNT's were successfully grown directly on ½ of the surface of a 0.38 mm diameter SMA wire, achieving desirable thermal contact. Cooling speeds were measured with a thermal imaging camera, and the effective convective coefficient was extracted from the temperature profiles using a basic cooling model of the wire. From this model, the effective convective coefficient was estimated to have increased by 24% (from 50 W/m2K for untreated SMA wire to 62 W/m2K for the nanotube treated wire), indicating that the deposition of CNT's indeed increased performance. By extrapolating these results to full wire coverage, up to a 46% improvement in frequency response with zero weight or volumetric penalties is predicted. Further improvements in cooling performance are likely to occur with higher CNT densities and longer nanotube lengths, allowing further developments of this technology to benefit many future applications utilizing high-speed miniature/micro-scale SMA actuators.

  2. Semiconductor Nanorod–Carbon Nanotube Biomimetic Films for Wire-Free Photostimulation of Blind Retinas

    PubMed Central

    2014-01-01

    We report the development of a semiconductor nanorod-carbon nanotube based platform for wire-free, light induced retina stimulation. A plasma polymerized acrylic acid midlayer was used to achieve covalent conjugation of semiconductor nanorods directly onto neuro-adhesive, three-dimensional carbon nanotube surfaces. Photocurrent, photovoltage, and fluorescence lifetime measurements validate efficient charge transfer between the nanorods and the carbon nanotube films. Successful stimulation of a light-insensitive chick retina suggests the potential use of this novel platform in future artificial retina applications. PMID:25350365

  3. Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas.

    PubMed

    Bareket, Lilach; Waiskopf, Nir; Rand, David; Lubin, Gur; David-Pur, Moshe; Ben-Dov, Jacob; Roy, Soumyendu; Eleftheriou, Cyril; Sernagor, Evelyne; Cheshnovsky, Ori; Banin, Uri; Hanein, Yael

    2014-11-12

    We report the development of a semiconductor nanorod-carbon nanotube based platform for wire-free, light induced retina stimulation. A plasma polymerized acrylic acid midlayer was used to achieve covalent conjugation of semiconductor nanorods directly onto neuro-adhesive, three-dimensional carbon nanotube surfaces. Photocurrent, photovoltage, and fluorescence lifetime measurements validate efficient charge transfer between the nanorods and the carbon nanotube films. Successful stimulation of a light-insensitive chick retina suggests the potential use of this novel platform in future artificial retina applications.

  4. 78 FR 60850 - Carbon and Certain Alloy Steel Wire Rod From Brazil: Final Results of the Expedited Second Sunset...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... Alloy Steel Wire Rod from Brazil, 67 FR 55805 (August 30, 2002). \\2\\ See Initiation of Five-Year... Industries, Inc., DBA Cascade Steel Rolling Mills, Inc., Evraz Rocky Mountain Steel, Gerdau Ameristeel US Inc... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Brazil: Final Results of...

  5. Carbon nanotube wires and cables: near-term applications and future perspectives.

    PubMed

    Jarosz, Paul; Schauerman, Christopher; Alvarenga, Jack; Moses, Brian; Mastrangelo, Thomas; Raffaelle, Ryne; Ridgley, Richard; Landi, Brian

    2011-11-01

    Wires and cables are essential to modern society, and opportunities exist to develop new materials with reduced resistance, mass, and/or susceptibility to fatigue. This article describes how carbon nanotubes (CNTs) offer opportunities for integration into wires and cables for both power and data transmission due to their unique physical and electronic properties. Macroscopic CNT wires and ribbons are presently shown as viable replacements for metallic conductors in lab-scale demonstrations of coaxial, USB, and Ethernet cables. In certain applications, such as the outer conductor of a coaxial cable, CNT materials may be positioned to displace metals to achieve substantial benefits (e.g. reduction in cable mass per unit length (mass/length) up to 50% in some cases). Bulk CNT materials possess several unique properties which may offer advantages over metallic conductors, such as flexure tolerance and environmental stability. Specifically, CNT wires were observed to withstand greater than 200,000 bending cycles without increasing resistivity. Additionally, CNT wires exhibit no increase in resistivity after 80 days in a corrosive environment (1 M HCl), and little change in resistivity with temperature (<1% from 170-330 K). This performance is superior to conventional metal wires and truly novel for a wiring material. However, for CNTs to serve as a full replacement for metals, the electrical conductivity of CNT materials must be improved. Recently, the conductivity of a CNT wire prepared through simultaneous densification and doping has exceeded 1.3 × 10(6) S/m. This level of conductivity brings CNTs closer to copper (5.8 × 10(7) S/m) and competitive with some metals (e.g. gold) on a mass-normalized basis. Developments in manipulation of CNT materials (e.g. type enrichment, doping, alignment, and densification) have shown progress towards this goal. In parallel with efforts to improve bulk conductivity, integration of CNT materials into cabling architectures will

  6. Carbon nanotube wires and cables: near-term applications and future perspectives.

    PubMed

    Jarosz, Paul; Schauerman, Christopher; Alvarenga, Jack; Moses, Brian; Mastrangelo, Thomas; Raffaelle, Ryne; Ridgley, Richard; Landi, Brian

    2011-11-01

    Wires and cables are essential to modern society, and opportunities exist to develop new materials with reduced resistance, mass, and/or susceptibility to fatigue. This article describes how carbon nanotubes (CNTs) offer opportunities for integration into wires and cables for both power and data transmission due to their unique physical and electronic properties. Macroscopic CNT wires and ribbons are presently shown as viable replacements for metallic conductors in lab-scale demonstrations of coaxial, USB, and Ethernet cables. In certain applications, such as the outer conductor of a coaxial cable, CNT materials may be positioned to displace metals to achieve substantial benefits (e.g. reduction in cable mass per unit length (mass/length) up to 50% in some cases). Bulk CNT materials possess several unique properties which may offer advantages over metallic conductors, such as flexure tolerance and environmental stability. Specifically, CNT wires were observed to withstand greater than 200,000 bending cycles without increasing resistivity. Additionally, CNT wires exhibit no increase in resistivity after 80 days in a corrosive environment (1 M HCl), and little change in resistivity with temperature (<1% from 170-330 K). This performance is superior to conventional metal wires and truly novel for a wiring material. However, for CNTs to serve as a full replacement for metals, the electrical conductivity of CNT materials must be improved. Recently, the conductivity of a CNT wire prepared through simultaneous densification and doping has exceeded 1.3 × 10(6) S/m. This level of conductivity brings CNTs closer to copper (5.8 × 10(7) S/m) and competitive with some metals (e.g. gold) on a mass-normalized basis. Developments in manipulation of CNT materials (e.g. type enrichment, doping, alignment, and densification) have shown progress towards this goal. In parallel with efforts to improve bulk conductivity, integration of CNT materials into cabling architectures will

  7. Carbon nanotube wires and cables: Near-term applications and future perspectives

    NASA Astrophysics Data System (ADS)

    Jarosz, Paul; Schauerman, Christopher; Alvarenga, Jack; Moses, Brian; Mastrangelo, Thomas; Raffaelle, Ryne; Ridgley, Richard; Landi, Brian

    2011-11-01

    Wires and cables are essential to modern society, and opportunities exist to develop new materials with reduced resistance, mass, and/or susceptibility to fatigue. This article describes how carbon nanotubes (CNTs) offer opportunities for integration into wires and cables for both power and data transmission due to their unique physical and electronic properties. Macroscopic CNT wires and ribbons are presently shown as viable replacements for metallic conductors in lab-scale demonstrations of coaxial, USB, and Ethernet cables. In certain applications, such as the outer conductor of a coaxial cable, CNT materials may be positioned to displace metals to achieve substantial benefits (e.g. reduction in cable mass per unit length (mass/length) up to 50% in some cases). Bulk CNT materials possess several unique properties which may offer advantages over metallic conductors, such as flexure tolerance and environmental stability. Specifically, CNT wires were observed to withstand greater than 200,000 bending cycles without increasing resistivity. Additionally, CNT wires exhibit no increase in resistivity after 80 days in a corrosive environment (1 M HCl), and little change in resistivity with temperature (<1% from 170-330 K). This performance is superior to conventional metal wires and truly novel for a wiring material. However, for CNTs to serve as a full replacement for metals, the electrical conductivity of CNT materials must be improved. Recently, the conductivity of a CNT wire prepared through simultaneous densification and doping has exceeded 1.3 × 106 S/m. This level of conductivity brings CNTs closer to copper (5.8 × 107 S/m) and competitive with some metals (e.g. gold) on a mass-normalized basis. Developments in manipulation of CNT materials (e.g. type enrichment, doping, alignment, and densification) have shown progress towards this goal. In parallel with efforts to improve bulk conductivity, integration of CNT materials into cabling architectures will require

  8. Structurally uniform and atomically precise carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Segawa, Yasutomo; Ito, Hideto; Itami, Kenichiro

    2016-01-01

    Nanometre-sized carbon materials consisting of benzene units oriented in unique geometric patterns, hereafter named nanocarbons, conduct electricity, absorb and emit light, and exhibit interesting magnetic properties. Spherical fullerene C60, cylindrical carbon nanotubes and sheet-like graphene are representative forms of nanocarbons, and theoretical simulations have predicted several exotic 3D nanocarbon structures. At present, synthetic routes to nanocarbons mainly lead to mixtures of molecules with a range of different structures and properties, which cannot be easily separated or refined into pure forms. Some researchers believe that it is impossible to synthesize these materials in a precise manner. Obtaining ‘pure’ nanocarbons is a great challenge in the field of nanocarbon science, and the construction of structurally uniform nanocarbons, ideally as single molecules, is crucial for the development of functional materials in nanotechnology, electronics, optics and biomedical applications. This Review highlights the organic chemistry approach — more specifically, bottom-up construction with atomic precision — that is currently the most promising strategy towards this end.

  9. Carbon nanotube-clamped metal atomic chain

    PubMed Central

    Tang, Dai-Ming; Yin, Li-Chang; Li, Feng; Liu, Chang; Yu, Wan-Jing; Hou, Peng-Xiang; Wu, Bo; Lee, Young-Hee; Ma, Xiu-Liang; Cheng, Hui-Ming

    2010-01-01

    Metal atomic chain (MAC) is an ultimate one-dimensional structure with unique physical properties, such as quantized conductance, colossal magnetic anisotropy, and quantized magnetoresistance. Therefore, MACs show great potential as possible components of nanoscale electronic and spintronic devices. However, MACs are usually suspended between two macroscale metallic electrodes; hence obvious technical barriers exist in the interconnection and integration of MACs. Here we report a carbon nanotube (CNT)-clamped MAC, where CNTs play the roles of both nanoconnector and electrodes. This nanostructure is prepared by in situ machining a metal-filled CNT, including peeling off carbon shells by spatially and elementally selective electron beam irradiation and further elongating the exposed metal nanorod. The microstructure and formation process of this CNT-clamped MAC are explored by both transmission electron microscopy observations and theoretical simulations. First-principles calculations indicate that strong covalent bonds are formed between the CNT and MAC. The electrical transport property of the CNT-clamped MAC was experimentally measured, and quantized conductance was observed. PMID:20427743

  10. Carbon based thirty six atom spheres

    DOEpatents

    Piskoti, Charles R.; Zettl, Alex K.; Cohen, Marvin L.; Cote, Michel; Grossman, Jeffrey C.; Louie, Steven G.

    2005-09-06

    A solid phase or form of carbon is based on fullerenes with thirty six carbon atoms (C.sub.36). The C.sub.36 structure with D.sub.6h symmetry is one of the two most energetically favorable, and is conducive to forming a periodic system. The lowest energy crystal is a highly bonded network of hexagonal planes of C.sub.36 subunits with AB stacking. The C.sub.36 solid is not a purely van der Waals solid, but has covalent-like bonding, leading to a solid with enhanced structural rigidity. The solid C.sub.36 material is made by synthesizing and selecting out C.sub.36 fullerenes in relatively large quantities. A C.sub.36 rich fullerene soot is produced in a helium environment arc discharge chamber by operating at an optimum helium pressure (400 torr). The C.sub.36 is separated from the soot by a two step process. The soot is first treated with a first solvent, e.g. toluene, to remove the higher order fullerenes but leave the C.sub.36. The soot is then treated with a second solvent, e.g. pyridine, which is more polarizable than the first solvent used for the larger fullerenes. The second solvent extracts the C.sub.36 from the soot. Thin films and powders can then be produced from the extracted C.sub.36. Other materials are based on C.sub.36 fullerenes, providing for different properties.

  11. Stretchable glucose biofuel cell with wirings made of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fujimagari, Yusuke; Nishioka, Yasushiro

    2015-12-01

    In this study, we fabricated a flexible and stretchable glucose-biofuel cell with wirings made of multi wall carbon nanotube (MWCNTs) on a polydimethylsiloxane substrate. The biofuel cell investigated consists of a porous carbon anode (area of 30 mm2) modified by glucose oxidase and ferrocene, and a cathode (area of 30 mm2) modified by bilirubin oxidase. The anode and the cathode were connected with the MWCNT wirings. The maximum power of 0.31 μW at 76.6 mV, which corresponds to a power density of 1.04 μW/cm2, was realized by immersing the biofuel cell in a phosphate buffer solution with a glucose concentration of 100 mM, at room temperature.

  12. Chains of carbon atoms: A vision or a new nanomaterial?

    PubMed

    Banhart, Florian

    2015-01-01

    Linear strings of sp(1)-hybridized carbon atoms are considered as a possible phase of carbon since decades. Whereas the debate about the stability of the corresponding bulk phase carbyne continues until today, the existence of isolated chains of carbon atoms has meanwhile been corroborated experimentally. Since graphene, as the two-dimensional sp(2)-bonded allotrope of carbon, has become a vast field, the question about the importance of one-dimensional carbon became of renewed interest. The present article gives an overview of the work that has been carried out on chains of carbon atoms in the past one or two decades. The review concentrates on isolated chains of carbon atoms and summarizes the experimental observations to date. While the experimental information is still very limited, many calculations of the physical and chemical properties have been published in the past years. Some of the most important theoretical studies and their importance in the present experimental situation are reviewed.

  13. Carbon black dispersion pre-plating technology for printed wire board manufacturing. Final technology evaluation report

    SciTech Connect

    Folsom, D.W.; Gavaskar, A.R.; Jones, J.A.; Olfenbuttel, R.F.

    1993-10-01

    The project compared chemical use, waste generation, cost, and product quality between electroless copper and carbon-black-based preplating technologies at the printed wire board (PWB) manufacturing facility of McCurdy Circuits in Orange, CA. The carbon-black based preplating technology evaluated is used as an alternative process for electroless copper (EC) plating of through-holes before electrolytic copper plating. The specific process used at McCurdy is the BlackHole (BH) technology process, which uses a dispersion of carbon black in an aqueous solution to provide a conductive surface for subsequent electrolytic copper plating. The carbon-black dispersion technology provided effective waste reduction and long-term cost savings. The economic analysis determined that the new process was cost efficient because chemical use was reduced and the process proved more efficient; the payback period was less than 4 yrs.

  14. Charge-signal multiplication mediated by urea wires inside Y-shaped carbon nanotubes

    SciTech Connect

    Lv, Mei; Liu, Zengrong; He, Bing; Xiu, Peng E-mail: ystu@shu.edu.cn; Tu, Yusong E-mail: ystu@shu.edu.cn

    2014-07-28

    In previous studies, we reported molecular dynamics (MD) simulations showing that single-file water wires confined inside Y-shaped single-walled carbon nanotubes (Y-SWNTs) held strong and robust capability to convert and multiply charge signals [Y. S. Tu, P. Xiu, R. Z. Wan, J. Hu, R. H. Zhou, and H. P. Fang, Proc. Natl. Acad. Sci. U.S.A. 106, 18120 (2009); Y. Tu, H. Lu, Y. Zhang, T. Huynh, and R. Zhou, J. Chem. Phys. 138, 015104 (2013)]. It is fascinating to see whether the signal multiplication can be realized by other kinds of polar molecules with larger dipole moments (which make the experimental realization easier). In this article, we use MD simulations to study the urea-mediated signal conversion and multiplication with Y-SWNTs. We observe that when a Y-SWNT with an external charge of magnitude 1.0 e (the model of a signal at the single-electron level) is solvated in 1 M urea solutions, urea can induce drying of the Y-SWNT and fill its interiors in single-file, forming Y-shaped urea wires. The external charge can effectively control the dipole orientation of the urea wire inside the main channel (i.e., the signal can be readily converted), and this signal can further be multiplied into 2 (or more) output signals by modulating dipole orientations of urea wires in bifurcated branch channels of the Y-SWNT. This remarkable signal transduction capability arises from the strong dipole-induced ordering of urea wires under extreme confinement. We also discuss the advantage of urea as compared with water in the signal multiplication, as well as the robustness and biological implications of our findings. This study provides the possibility for multiplying signals by using urea molecules (or other polar organic molecules) with Y-shaped nanochannels and might also help understand the mechanism behind signal conduction in both physical and biological systems.

  15. Charge-signal multiplication mediated by urea wires inside Y-shaped carbon nanotubes.

    PubMed

    Lv, Mei; He, Bing; Liu, Zengrong; Xiu, Peng; Tu, Yusong

    2014-07-28

    In previous studies, we reported molecular dynamics (MD) simulations showing that single-file water wires confined inside Y-shaped single-walled carbon nanotubes (Y-SWNTs) held strong and robust capability to convert and multiply charge signals [Y. S. Tu, P. Xiu, R. Z. Wan, J. Hu, R. H. Zhou, and H. P. Fang, Proc. Natl. Acad. Sci. U.S.A. 106, 18120 (2009); Y. Tu, H. Lu, Y. Zhang, T. Huynh, and R. Zhou, J. Chem. Phys. 138, 015104 (2013)]. It is fascinating to see whether the signal multiplication can be realized by other kinds of polar molecules with larger dipole moments (which make the experimental realization easier). In this article, we use MD simulations to study the urea-mediated signal conversion and multiplication with Y-SWNTs. We observe that when a Y-SWNT with an external charge of magnitude 1.0 e (the model of a signal at the single-electron level) is solvated in 1 M urea solutions, urea can induce drying of the Y-SWNT and fill its interiors in single-file, forming Y-shaped urea wires. The external charge can effectively control the dipole orientation of the urea wire inside the main channel (i.e., the signal can be readily converted), and this signal can further be multiplied into 2 (or more) output signals by modulating dipole orientations of urea wires in bifurcated branch channels of the Y-SWNT. This remarkable signal transduction capability arises from the strong dipole-induced ordering of urea wires under extreme confinement. We also discuss the advantage of urea as compared with water in the signal multiplication, as well as the robustness and biological implications of our findings. This study provides the possibility for multiplying signals by using urea molecules (or other polar organic molecules) with Y-shaped nanochannels and might also help understand the mechanism behind signal conduction in both physical and biological systems.

  16. Charge-signal multiplication mediated by urea wires inside Y-shaped carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lv, Mei; He, Bing; Liu, Zengrong; Xiu, Peng; Tu, Yusong

    2014-07-01

    In previous studies, we reported molecular dynamics (MD) simulations showing that single-file water wires confined inside Y-shaped single-walled carbon nanotubes (Y-SWNTs) held strong and robust capability to convert and multiply charge signals [Y. S. Tu, P. Xiu, R. Z. Wan, J. Hu, R. H. Zhou, and H. P. Fang, Proc. Natl. Acad. Sci. U.S.A. 106, 18120 (2009); Y. Tu, H. Lu, Y. Zhang, T. Huynh, and R. Zhou, J. Chem. Phys. 138, 015104 (2013)]. It is fascinating to see whether the signal multiplication can be realized by other kinds of polar molecules with larger dipole moments (which make the experimental realization easier). In this article, we use MD simulations to study the urea-mediated signal conversion and multiplication with Y-SWNTs. We observe that when a Y-SWNT with an external charge of magnitude 1.0 e (the model of a signal at the single-electron level) is solvated in 1 M urea solutions, urea can induce drying of the Y-SWNT and fill its interiors in single-file, forming Y-shaped urea wires. The external charge can effectively control the dipole orientation of the urea wire inside the main channel (i.e., the signal can be readily converted), and this signal can further be multiplied into 2 (or more) output signals by modulating dipole orientations of urea wires in bifurcated branch channels of the Y-SWNT. This remarkable signal transduction capability arises from the strong dipole-induced ordering of urea wires under extreme confinement. We also discuss the advantage of urea as compared with water in the signal multiplication, as well as the robustness and biological implications of our findings. This study provides the possibility for multiplying signals by using urea molecules (or other polar organic molecules) with Y-shaped nanochannels and might also help understand the mechanism behind signal conduction in both physical and biological systems.

  17. ATOMIC CARBON IN THE UPPER ATMOSPHERE OF TITAN

    SciTech Connect

    Zhang, X.; Yung, Y. L.; Ajello, J. M.

    2010-01-01

    The atomic carbon emission C I line feature at 1657 A ({sup 3} P {sup 0} {sub J}-{sup 3} P{sub J} ) in the upper atmosphere of Titan is first identified from the airglow spectra obtained by the Cassini Ultra-violet Imaging Spectrograph. A one-dimensional photochemical model of Titan is used to study the photochemistry of atomic carbon on Titan. Reaction between CH and atomic hydrogen is the major source of atomic carbon, and reactions with hydrocarbons (C{sub 2}H{sub 2} and C{sub 2}H{sub 4}) are the most important loss processes. Resonance scattering of sunlight by atomic carbon is the dominant emission mechanism. The emission intensity calculations based on model results show good agreement with the observations.

  18. Formation of InN atomic-size wires by simple N adsorption on the In/Si(111)-(4 × 1) surface

    NASA Astrophysics Data System (ADS)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2016-11-01

    We have carried out first principles total energy calculations to study the formation of InN atomic-size wires on the In/Si(111)-(4 × 1) surface. In its most favorable adsorption site, a single N atom forms InN arrangements. The deposit of 0.25 monolayers (MLs) of N atoms, result in the breaking of one of the original In chains and the formation of an InN atomic size wire. Increasing the coverage up to 0.5 ML of N atoms results in the formation of two of those wires. Calculated surface formation energies show that for N-poor conditions the most stable configuration is the original In/Si(111)-(4 × 1) surface with no N atoms. Increasing the N content, and in a reduced range of chemical potential, the formation of an InN wire is energetically favorable. Instead, from intermediate to N-rich conditions, two InN atomic wires are more stable. Projected density of states calculations have shown a trend to form covalent bonds between the Insbnd p and Nsbnd p orbitals in these stable models.

  19. Mid-Atomic-Number Cylindrical Wire Array Precursor Plasma Studies on Zebra

    SciTech Connect

    Stafford, A; Safronova, A. S.; Kantsyrev, V. L.; Coverdale, Christine Anne; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.; Chuvatin, A. S.

    2014-12-30

    The precursor plasmas from low wire number cylindrical wire arrays (CWAs) were previously shown to radiate at temperatures >300 eV for Ni-60 (94% Cu and 6% Ni) wires in experiments on the 1-MA Zebra generator. Continued research into precursor plasmas has studied additional midatomic-number materials including Cu and Alumel (95% Ni, 2% Al, 2% Mn, and 1% Si) to determine if the >300 eV temperatures are common for midatomic-number materials. Additionally, current scaling effects were observed by performing CWA precursor experiments at an increased current of 1.5 MA using a load current multiplier. Our results show an increase in a linear radiation yield of ~50% (16 versus 10 kJ/cm) for the experiments at increased current. However, plasma conditions inferred through the modeling of X-ray time-gated spectra are very similar for the precursor plasma in both current conditions.

  20. Mid-Atomic-Number Cylindrical Wire Array Precursor Plasma Studies on Zebra

    DOE PAGESBeta

    Stafford, A; Safronova, A. S.; Kantsyrev, V. L.; Coverdale, Christine Anne; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.; Chuvatin, A. S.

    2014-12-30

    The precursor plasmas from low wire number cylindrical wire arrays (CWAs) were previously shown to radiate at temperatures >300 eV for Ni-60 (94% Cu and 6% Ni) wires in experiments on the 1-MA Zebra generator. Continued research into precursor plasmas has studied additional midatomic-number materials including Cu and Alumel (95% Ni, 2% Al, 2% Mn, and 1% Si) to determine if the >300 eV temperatures are common for midatomic-number materials. Additionally, current scaling effects were observed by performing CWA precursor experiments at an increased current of 1.5 MA using a load current multiplier. Our results show an increase in amore » linear radiation yield of ~50% (16 versus 10 kJ/cm) for the experiments at increased current. However, plasma conditions inferred through the modeling of X-ray time-gated spectra are very similar for the precursor plasma in both current conditions.« less

  1. Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids.

    PubMed

    Liu, Xiaoming; Deng, Xuegong; Sciortino, Paul; Buonanno, Mike; Walters, Frank; Varghese, Ron; Bacon, Joel; Chen, Lei; O'Brien, Nada; Wang, Jian Jim

    2006-12-01

    We wrapped 150 nm period aluminum wire grid polarizer (WGP) with AlSiOx by using atomic layer deposition at 250 degrees C. The nanometer precision coating defined the spacer to double the spatial frequency of the 100 mm diameter grating fabricated by using a legacy immersion holography setup at 351 nm wavelength. Half-pitch grating of approximately 38 nm was demonstrated with good pattern uniformity, excellent repeatability, and a wide processing window. We believe 10 nm half-pitch grating over even larger areas are viable, overcoming one major hurdle to commercialize nanoimprint.

  2. Single Particle Transport Through Carbon Nanotube Wires: Effect of Defects and Polyhedral Cap

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Govidan, T. R.

    1999-01-01

    The ability to manipulate carbon nanotubes with increasing precision has enabled a large number of successful electron transport experiments. These studies have primarily focussed on characterizing transport through both metallic and semiconducting wires. Tans et al. demonstrated ballistic transport in single-wall nanotubes for the first time, although the experimental configuration incurred large contact resistance. Subsequently, methods of producing low contact resistances have been developed and two terminal conductances smaller than 50 k-ohms have been repeatably demonstrated in single-wall and multi-wall nanotubes. In multi-wall nanotubes, Frank et al. demonstrated a resistance of approximately h/2e(exp 2) in a configuration where the outermost layer made contact to a liquid metal. This was followed by the work of de Pablo et al. where a resistance of h(bar)/27e(exp 2) (approximately 478 ohms) was measured in a configuration where electrical contact was made to many layers of a multi-wall nanotube. Frank et al. and Pablo et al. note that each conducting layer contributes a conductance of only 2e(exp 2)/h, instead of the 4e(exp 2)/h that a single particle mode counting picture yields. These small resistances have been obtained in microns long nanotubes, making them the best conducting molecular wires to date. The large conductance of nanotube wires stems from the fact that the crossing bands of nanotubes are robust to defect scattering.

  3. Heat Transport in the Precursor of Carbon and Metallic Wire Arrays

    NASA Astrophysics Data System (ADS)

    Hare, Jack; Lebedev, Sergey; Bennett, Matthew; Bland, Simon; Burdiak, Guy; Suttle, Lee; Suzuki-Vidal, Francisco; Swadling, George; Velikovich, Alexander

    2014-10-01

    The complex interplay between the transport of heat and magnetic fields in high- β, magnetised plasmas is crucial to the feasibility of Magnetised Liner Inertial Fusion (MagLIF). We consider using the precursor plasma in a cylindrical wire array to reach the relevant dimensionless parameters for the initial state of the MagLIF plasma. The precursor is a hot, dense, stable plasma formed on the axis by the collision of material ablated from the wires. Simple models show that an axial magnetic field of ~ 5 T could magnetise the precursor (ωeτe ~ 10) at high-beta (β ~ 10). In this regime, the Nernst term may dominate the transport of the magnetic field, affecting the heat transport. The experiments are conducted on MAGPIE (1.4 MA, 250 ns rise time). Metallic wire arrays are standard, but to reduce radiative losses and the electron-ion thermalisation time, we will also consider carbon in the form of 0.3 mm diameter graphite rods. The axial magnetic field can either be provided by external coils or by the drive current. We study the evolution of the plasma density and temperature using laser interferometry and Schlieren imaging, an optical streak camera and Thomson scattering. The magnetic field can be studied using fibre-based polarimetry.

  4. Arc spraying of nano-structured wire on carbon steel: examination of coating microstructures

    SciTech Connect

    Al Askandarani, A.; Hashmi, M. S. J.; Yilbas, B. S.

    2011-01-17

    Arc spraying of nano-structured wire (TAFA 95MX) onto carbon steel is carried out. The workpieces coated were heat treated at temperature similar to the operating temperature of the hot-path components of power gas turbines. The morphological and microstructural changes in the coating are examined using optical and Scanning Electron Microscope (SEM). The surface roughness and microhardness of the resulting coatings are measured. It is found that the formation of dimples like structure at surface increased the surface roughness of the coating. The microhardness of the resulting coating is significantly higher than the base material hardness. Heat treatment does not alter the microstructure and microhardness of the coating.

  5. Angular distribution of photoelectrons from atomic oxygen, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Manson, S. T.; Kennedy, D. J.; Starace, A. F.; Dill, D.

    1974-01-01

    The angular distribution of photoelectrons from atomic oxygen is investigated using Hartree-Fock (HF) wave functions. The correct formulation is used to compare HS and HF results. Agreement between these results is good and the HS calculations have been extended to atomic nitrogen and carbon as well.

  6. Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes.

    PubMed

    Ma, Yanwen; Li, Pan; Sedloff, Jennifer W; Zhang, Xiao; Zhang, Hongbo; Liu, Jie

    2015-02-24

    Graphene fibers are a promising electrode material for wire-shaped supercapacitors (WSSs) that can be woven into textiles for future wearable electronics. However, the main concern is their high linear resistance, which could be effectively decreased by the addition of highly conductive carbon nanotubes (CNTs). During the incorporation process, CNTs are typically preoxidized by acids or dispersed by surfactants, which deteriorates their electrical and mechanical properties. Herein, unfunctionalized few-walled carbon nanotubes (FWNTs) were directly dispersed in graphene oxide (GO) without preoxidation or surfactants, allowing them to maintain their high conductivity and perfect structure, and then used to prepare CNT-reduced GO (RGO) composite fibers by wet-spinning followed by reduction. The pristine FWNTs increased the stress strength of the parent RGO fibers from 193.3 to 385.7 MPa and conductivity from 53.3 to 210.7 S cm(-1). The wire-shaped supercapacitors (WSSs) assembled based on these CNT-RGO fibers presented a high volumetric capacitance of 38.8 F cm(-3) and energy density of 3.4 mWh cm(-3). More importantly, the performance of WSSs was revealed to decrease with increasing length due to increased resistance, revealing a key issue for graphene-based electrodes in WSSs. PMID:25625807

  7. Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes.

    PubMed

    Ma, Yanwen; Li, Pan; Sedloff, Jennifer W; Zhang, Xiao; Zhang, Hongbo; Liu, Jie

    2015-02-24

    Graphene fibers are a promising electrode material for wire-shaped supercapacitors (WSSs) that can be woven into textiles for future wearable electronics. However, the main concern is their high linear resistance, which could be effectively decreased by the addition of highly conductive carbon nanotubes (CNTs). During the incorporation process, CNTs are typically preoxidized by acids or dispersed by surfactants, which deteriorates their electrical and mechanical properties. Herein, unfunctionalized few-walled carbon nanotubes (FWNTs) were directly dispersed in graphene oxide (GO) without preoxidation or surfactants, allowing them to maintain their high conductivity and perfect structure, and then used to prepare CNT-reduced GO (RGO) composite fibers by wet-spinning followed by reduction. The pristine FWNTs increased the stress strength of the parent RGO fibers from 193.3 to 385.7 MPa and conductivity from 53.3 to 210.7 S cm(-1). The wire-shaped supercapacitors (WSSs) assembled based on these CNT-RGO fibers presented a high volumetric capacitance of 38.8 F cm(-3) and energy density of 3.4 mWh cm(-3). More importantly, the performance of WSSs was revealed to decrease with increasing length due to increased resistance, revealing a key issue for graphene-based electrodes in WSSs.

  8. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors.

    PubMed

    Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C

    2015-12-22

    Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level.

  9. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors

    PubMed Central

    Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C.

    2015-01-01

    Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level. PMID:26691537

  10. Enhanced Electrical Conductivity in Extruded Single-Wall Carbon Nanotube Wires from Modified Coagulation Parameters and Mechanical Processing.

    PubMed

    Bucossi, Andrew R; Cress, Cory D; Schauerman, Christopher M; Rossi, Jamie E; Puchades, Ivan; Landi, Brian J

    2015-12-16

    Single-wall carbon nanotubes (SWCNTs) synthesized via laser vaporization have been dispersed using chlorosulfonic acid (CSA) and extruded under varying coagulation conditions to fabricate multifunctional wires. The use of high purity SWCNT material based upon established purification methods yields wires with highly aligned nanoscale morphology and an over 4× improvement in electrical conductivity over as-produced SWCNT material. A series of eight liquids have been evaluated for use as a coagulant bath, and each coagulant yielded unique wire morphology based on its interaction with the SWCNT-CSA dispersion. In particular, dimethylacetamide as a coagulant bath is shown to fabricate highly uniform SWCNT wires, and acetone coagulant baths result in the highest specific conductivity and tensile strength. A 2× improvement in specific conductivity has been measured for SWCNT wires following tensioning induced both during extrusion via increased coagulant bath depth and during solvent evaporation via mechanical strain, over that of as-extruded wires from shallower coagulant baths. Overall, combination of the optimized coagulation parameters has yielded acid-doped wires with the highest reported room temperature electrical conductivities to date of 4.1-5.0 MS/m and tensile strengths of 210-250 MPa. Such improvements in bulk electrical conductivity can impact the adoption of metal-free, multifunctional SWCNT materials for advanced cabling architectures. PMID:26632650

  11. Enhanced Electrical Conductivity in Extruded Single-Wall Carbon Nanotube Wires from Modified Coagulation Parameters and Mechanical Processing.

    PubMed

    Bucossi, Andrew R; Cress, Cory D; Schauerman, Christopher M; Rossi, Jamie E; Puchades, Ivan; Landi, Brian J

    2015-12-16

    Single-wall carbon nanotubes (SWCNTs) synthesized via laser vaporization have been dispersed using chlorosulfonic acid (CSA) and extruded under varying coagulation conditions to fabricate multifunctional wires. The use of high purity SWCNT material based upon established purification methods yields wires with highly aligned nanoscale morphology and an over 4× improvement in electrical conductivity over as-produced SWCNT material. A series of eight liquids have been evaluated for use as a coagulant bath, and each coagulant yielded unique wire morphology based on its interaction with the SWCNT-CSA dispersion. In particular, dimethylacetamide as a coagulant bath is shown to fabricate highly uniform SWCNT wires, and acetone coagulant baths result in the highest specific conductivity and tensile strength. A 2× improvement in specific conductivity has been measured for SWCNT wires following tensioning induced both during extrusion via increased coagulant bath depth and during solvent evaporation via mechanical strain, over that of as-extruded wires from shallower coagulant baths. Overall, combination of the optimized coagulation parameters has yielded acid-doped wires with the highest reported room temperature electrical conductivities to date of 4.1-5.0 MS/m and tensile strengths of 210-250 MPa. Such improvements in bulk electrical conductivity can impact the adoption of metal-free, multifunctional SWCNT materials for advanced cabling architectures.

  12. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    SciTech Connect

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M.

    1996-03-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E{sub c}, below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E{sub c}. These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production.

  13. Dispersion forces between ultracold atoms and a carbon nanotube.

    PubMed

    Schneeweiss, P; Gierling, M; Visanescu, G; Kern, D P; Judd, T E; Günther, A; Fortágh, J

    2012-08-01

    Dispersion forces are long-range interactions between polarizable objects that arise from fluctuations in the electromagnetic field between them. Dispersion forces have been observed between microscopic objects such as atoms and molecules (the van der Waals interaction), between macroscopic objects (the Casimir interaction) and between an atom and a macroscopic object (the Casimir-Polder interaction). Dispersion forces are known to increase the attractive forces between the components in nanomechanical devices, to influence adsorption rates onto nanostructures, and to influence the interactions between biomolecules in biological systems. In recent years, there has been growing interest in studying dispersion forces in nanoscale systems and in exploring the interactions between carbon nanotubes and cold atoms. However, there are considerable difficulties in developing dispersion force theories for general, finite geometries such as nanostructures. Thus, there is a need for new experimental methods that are able to go beyond measurements of planar surfaces and nanoscale gratings and make measurements on isolated nanostructures. Here, we measure the dispersion force between a rubidium atom and a multiwalled carbon nanotube by inserting the nanotube into a cloud of ultracold rubidium atoms and monitoring the loss of atoms from the cloud as a function of time. We perform these experiments with both thermal clouds of ultracold atoms and with Bose-Einstein condensates. The results obtained with this approach will aid the development of theories describing quantum fields near nanostructures, and hybrid cold-atom/solid-state devices may also prove useful for applications in quantum sensing and quantum information.

  14. Quantification of the Rubidium in Beverage Products Micro Samples by Platinum-wire Loop in Flame Atomization Atomic Emission Spectrometry.

    PubMed

    Kékedy-Nagy, Ladislau; Zsigmond, Andreea R; Cordoş, Emil A

    2010-12-01

    The rubidium content in 3 µL of some beverage products (beer, wine, vegetable and fruit juices) atomized from a Ptwire in the methaneair flame has been determined by atomic emission spectrometry. The flame atomization conditions of rubidium were optimized, they are: λ = 780.0 nm, the height of 8 mm over the burner head, gas flow rates of 300 L h-1 air and 34 L h-1 methane. The effect of Na, K, Cs, Sr and acetone on the emission of rubidium was studied too. The limit of quantification (6σ) obtained is of 4.3±1.8 pg in the presence of 50 mg L-1 K and 5% v/v acetone (P = 0.05). The rubidium content of the samples has been determined with continuous nebulization and by atomization from the Ptwire, using the standard calibration curve and the standard addition method. The results of the two procedures agree within the determination errors. PMID:24061895

  15. Reactions of carbon atoms in pulsed molecular beams

    SciTech Connect

    Reisler, H.

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  16. Interpretation of Hund's multiplicity rule for the carbon atom.

    PubMed

    Hongo, Kenta; Maezono, Ryo; Kawazoe, Yoshiyuki; Yasuhara, Hiroshi; Towler, M D; Needs, R J

    2004-10-15

    Hund's multiplicity rule is investigated for the carbon atom using quantum Monte Carlo methods. Our calculations give an accurate account of electronic correlation and obey the virial theorem to high accuracy. This allows us to obtain accurate values for each of the energy terms and therefore to give a convincing explanation of the mechanism by which Hund's rule operates in carbon. We find that the energy gain in the triplet with respect to the singlet state is due to the greater electron-nucleus attraction in the higher spin state, in accordance with Hartree-Fock calculations and studies including correlation. The method used here can easily be extended to heavier atoms.

  17. 77 FR 13545 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Notice of Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Antidumping Duty Administrative Review 76 FR 67407 (November 1, 2011) (Preliminary Results). \\2\\ We determined... Changed Circumstances Review: Carbon and Certain Alloy Steel Wire Rod from Mexico, 76 FR 45509 (July 29...) high nickel steel; (d) ball bearing steel; and (e) concrete reinforcing bars and rods. Also...

  18. 76 FR 34044 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Extension of Time Limits for the Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... Countervailing Duty Administrative Reviews, 75 FR 73036 (November 29, 2010) (``Initiation Notice''). The..., 70 FR 24533 (May 10, 2005). The final results continue to be due 120 days after the publication of... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Extension of Time...

  19. 77 FR 66954 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... of Sales at Less Than Fair Value: Carbon and Certain Alloy Steel Wire Rod From Mexico, 67 FR 55800..., Trinidad and Tobago, and Ukraine, 67 FR 65945 (October 29, 2002), remains dispositive. On October 1, 2012... Rod from Mexico: Affirmative Final Determination of Circumvention of the Antidumping Duty Order, 77...

  20. Trapping cold atoms using surface-grown carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Petrov, P. G.; Machluf, S.; Younis, S.; Macaluso, R.; David, T.; Hadad, B.; Japha, Y.; Keil, M.; Joselevich, E.; Folman, R.

    2009-04-01

    We present a feasibility study for loading cold atomic clouds into magnetic traps created by single-wall carbon nanotubes grown directly onto dielectric surfaces. We show that atoms may be captured for experimentally sustainable nanotube currents, generating trapped clouds whose densities and lifetimes are sufficient to enable detection by simple imaging methods. This opens the way for a different type of conductor to be used in atomchips, enabling atom trapping at submicron distances, with implications for both fundamental studies and for technological applications.

  1. Atomization and particle-jet interactions in the wire-arc spraying process

    NASA Astrophysics Data System (ADS)

    Hussary, N. A.; Heberlein, J. V. R.

    2001-12-01

    The wire-arc spraying process, one of several thermal spray processes, has gained a sizable part of the thermal spray market. However, better control is needed for this process to be used for applications of high precision coatings. This study is aimed at investigating the liquid-metal droplet formation process in order to identify methods for droplet trajectory control. A high speed Kodak imaging system has been used to observe the droplet formation for different operating conditions. Decreasing the upstream pressure and the current levels leads to a reduction in the asymmetric melting of both the anode and cathode. By decreasing the interactions of the large eddy structures with the formed metal agglomerates, one can achieve better control of the particle trajectories and jet divergence. Thus, coatings can be obtained with higher definition and improved reliability.

  2. Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds.

    PubMed

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-01-01

    It was found that carbon atomic emission can be excited in low temperature dielectric barrier discharge (DBD), and an atmospheric pressure, low power consumption, and compact microplasma carbon atomic emission spectrometer (AES) was constructed and used as a universal and sensitive gas chromatographic (GC) detector for detection of volatile carbon-containing compounds. A concentric DBD device was housed in a heating box to increase the plasma operation temperature to 300 °C to intensify carbon atomic emission at 193.0 nm. Carbon-containing compounds directly injected or eluted from GC can be decomposed, atomized, and excited in this heated DBD for carbon atomic emission. The performance of this new optical detector was first evaluated by determination of a series of volatile carbon-containing compounds including formaldehyde, ethyl acetate, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol, and absolute limits of detection (LODs) were found at a range of 0.12-0.28 ng under the optimized conditions. Preliminary experimental results showed that it provided slightly higher LODs than those obtained by GC with a flame ionization detector (FID). Furthermore, it is a new universal GC detector for volatile carbon-containing compounds that even includes those compounds which are difficult to detect by FID, such as HCHO, CO, and CO2. Meanwhile, hydrogen gas used in conventional techniques was eliminated; and molecular optical emission detection can also be performed with this GC detector for multichannel analysis to improve resolution of overlapped chromatographic peaks of complex mixtures. PMID:24328147

  3. Chemical control of electrical contact to sp2 carbon atoms

    PubMed Central

    Frederiksen, Thomas; Foti, Giuseppe; Scheurer, Fabrice; Speisser, Virginie; Schull, Guillaume

    2014-01-01

    Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp2 carbon structures. PMID:24736561

  4. Study on Exploding Wire Compression for Evaluating Electrical Conductivity in Warm-Dense Diamond-Like-Carbon

    NASA Astrophysics Data System (ADS)

    Sasaki, Toru; Takahashi, Kazumasa; Kudo, Takahiro; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.; Fujioka, Shinsuke; Horioka, Kazuhiko

    2016-03-01

    To improve a coupling efficiency for the fast ignition scheme of the inertial confinement fusion, fast electron behaviors as a function of an electrical conductivity are required. To evaluate the electrical conductivity for low-Z materials as a diamond-like-carbon (DLC), we have proposed a concept to investigate the properties of warm dense matter (WDM) by using pulsed-power discharges. The concept of the evaluation of DLC for WDM is a shock compression driven by an exploding wire discharge with confined by a rigid capillary. The qualitatively evaluation of the electrical conductivity for the WDM DLC requires a small electrical conductivity of the exploding wire. To analyze the electrical conductivity of exploding wire, we have demonstrated an exploding wire discharge in water for gold. The results indicated that the electrical conductivity of WDM gold for 5000 K of temperature has an insulator regime. It means that the shock compression driven by the exploding wire discharge with confined by the rigid capillary is applied for the evaluation of electrical conductivity for WDM DLC.

  5. Integrated atom detector based on field ionization near carbon nanotubes

    SciTech Connect

    Gruener, B.; Jag, M.; Stibor, A.; Visanescu, G.; Haeffner, M.; Kern, D.; Guenther, A.; Fortagh, J.

    2009-12-15

    We demonstrate an atom detector based on field ionization and subsequent ion counting. We make use of field enhancement near tips of carbon nanotubes to reach extreme electrostatic field values of up to 9x10{sup 9} V/m, which ionize ground-state rubidium atoms. The detector is based on a carpet of multiwall carbon nanotubes grown on a substrate and used for field ionization, and a channel electron multiplier used for ion counting. We measure the field enhancement at the tips of carbon nanotubes by field emission of electrons. We demonstrate the operation of the field ionization detector by counting atoms from a thermal beam of a rubidium dispenser source. By measuring the ionization rate of rubidium as a function of the applied detector voltage we identify the field ionization distance, which is below a few tens of nanometers in front of nanotube tips. We deduce from the experimental data that field ionization of rubidium near nanotube tips takes place on a time scale faster than 10{sup -10} s. This property is particularly interesting for the development of fast atom detectors suitable for measuring correlations in ultracold quantum gases. We also describe an application of the detector as partial pressure gauge.

  6. Encapsulating "armchair" carbon nanotubes with "zigzag" chains of Fe atoms

    NASA Astrophysics Data System (ADS)

    Boutko, V. G.; Gusev, A. A.; Shevtsova, T. N.; Pashkevich, Yu. G.

    2016-05-01

    Ab initio calculations of structural, electron, and magnetic properties of "armchair" carbon nanotubes (NT) encapsulated by a "zigzag" chain of Fe atoms Fe2@(n,n)m (m = 1, 2; n = 4, 5, 6, 7, 8, 9), are performed within the framework of the density functional theory. It is shown that optimizing the structure along the NT axis can significantly impact the binding energy of the NT and the Fe atom chain. It follows from the calculations that Fe2@(5,5) is the most stable of all the investigated encapsulated nanotubes. A two-fold decrease in the concentration of Fe in an encapsulated NT converts the system from exothermic to endothermic (Fe2@(5,5)m) and vice versa (Fe2@(6,6)m)). For large radii of an encapsulated NT (>4.13 Å) the binding energy of the NT and the Fe atom chain goes to zero, and the magnetic moments of the Fe atoms and the deviation of the Fe atoms from the NT axis go toward analogous values of the free "zigzag" Fe atom chain.

  7. Effect of microalloying on pearlite transformation of high carbon wire steels

    NASA Astrophysics Data System (ADS)

    Miller, Stephanie L.

    Microalloying has been shown to improve strength in eutectoid steels for wire applications, and previous work on vanadium-microalloyed eutectoid steels showed delayed pearlite transformation with additions of niobium and accelerated pearlite transformation with additional nitrogen. This study investigates the origin of the CCT shifts with microalloying additions and whether trends in hardness and microstructural feature sizes observed in continuous cooling tests persist through industrial hot rolling simulations. An industrially hot rolled 1080 wire rod with vanadium additions and three laboratory-prepared alloys were studied. The base alloy, denoted the V steel, had a composition of 0.80C-0.50Mn-0.24Si-0.20Cr-0.079V-0.0059N (wt pct). The V+N steel contained 0.0088 wt pct N, and the V+Nb steel contained an additional 0.010 wt pct Nb. All alloys were subjected to a GleebleRTM 3500 torsion hot rolling simulation based on industrial wire rod hot rolling parameters. Microstructural constituents, Vickers hardness, pearlite colony size, and pearlite interlamellar spacing (ILS) were characterized for each alloy. All alloys exhibited pearlitic microstructures with some proeutectoid ferrite at prior austenite grain boundaries, with no evidence of shear transformation products. The V steel has the lowest overall hardness, while both nitrogen and niobium additions increase hardness by approximately 15 HV, correlating to a 43 MPa increase in yield strength. Niobium additions refined ILS, with an average ILS of 92 +/- 3 nm for the V+Nb steel compared to 113 +/- 5 nm for the V steel and 113 +/- 3 nm for the V+N alloy. Vanadium additions produced precipitation strengthening for all alloys and heat treatments, and additional precipitation strengthening with nitrogen and niobium additions was not apparent based on a Taleff regression analysis. Atom probe tomography of an industrially processed wire rod with vanadium additions revealed vanadium enrichment of cementite, and vanadium

  8. Atomic force microscopy investigation of electrochemically produced carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Miklósi, J.; Póczik, P.; Sytchev, I.; Papp, K.; Kaptay, G.; Nagy, P.; Kálmán, E.

    Carbon nanostructures have been synthesized in NaCl-MgCl2 and in NaCl-CaCl2 salt melts and the extracted material was investigated by tapping-mode atomic force microscopy (TM-AFM) and scanning electron microscopy. Some interesting new nanostructures were found and investigated as torus-shaped carbon structures with a ring diameter of 300-400 nm and 10-15 nm height. These tori are closely related to the wrapped SWNT rings described recently. They are probably formed during the electrolysis. A chain-like structure was also revealed.

  9. Highly flexible, mechanically robust superconducting wire consisting of NbN-carbon-nanotube nanofibril composites

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Gyun; Kang, Haeyong; Kim, Joonggyu; Lee, Young Hee; Suh, Dongseok

    A flexible superconducting fiber is prepared by twisting carbon nanotube (CNT) sheets coated with sputter-deposited niobium nitride (NbN) layer to form the shape of yarn. Twisted CNT yarn, which has been extensively studied due to its high flexibility as well as excellent mechanical properties, and NbN, which is a superconducting material with high transition temperature (Tc) and critical magnetic field (Hc), are combined together by the deposition of NbN layer on free-standing CNT-sheet substrate followed by the biscrolling process. We tried many experimental conditions to investigate the superconducting properties of NbN-CNT yarn as a function of NbN thickness and number of CNT-sheet layers, and found out that the superconducting property of NbN on CNT-sheet can be comparable to that of NbN thin film on the normal solid substrate. In addition, the superconducting property survived even under the condition of severe mechanical deformation such as knotting. These results show the potential application of this technology as a large-scale fabrication method of flexible, mechanically robust, high performance superconducting wire. This work is supported by the Institute for Basic Science (IBS-R011-D1), and by the National Research Foundation (BSR-2013R1A1A1076063) funded by the Ministry of Science, ICT & Future Planning, Republic of Korea.

  10. Interpretation of Hund's multiplicity rule for the carbon atom.

    PubMed

    Hongo, Kenta; Maezono, Ryo; Kawazoe, Yoshiyuki; Yasuhara, Hiroshi; Towler, M D; Needs, R J

    2004-10-15

    Hund's multiplicity rule is investigated for the carbon atom using quantum Monte Carlo methods. Our calculations give an accurate account of electronic correlation and obey the virial theorem to high accuracy. This allows us to obtain accurate values for each of the energy terms and therefore to give a convincing explanation of the mechanism by which Hund's rule operates in carbon. We find that the energy gain in the triplet with respect to the singlet state is due to the greater electron-nucleus attraction in the higher spin state, in accordance with Hartree-Fock calculations and studies including correlation. The method used here can easily be extended to heavier atoms. PMID:15473780

  11. Carbon nanotube forests growth using catalysts from atomic layer deposition

    SciTech Connect

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John; Bhardwaj, Sunil; Cepek, Cinzia

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  12. Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.

    PubMed

    Cui, Liu; Feng, Yanhui; Tan, Peng; Zhang, Xinxin

    2015-07-01

    Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.

  13. Carbon-Isotopic Analysis of Individual Pigments by HPLC-Moving Wire-IRMS

    NASA Astrophysics Data System (ADS)

    Sessions, A. L.; Keely, B. J.; Hayes, J. M.

    2003-12-01

    We have developed a method for directly analyzing the carbon isotope ratios of individual pigments, including chlorophyll (chl) and its derivatives, by coupling a high-performance liquid chromatograph (HPLC) to an isotope-ratio mass spectrometer (IRMS) via a novel `moving-wire' interface. Pigments were separated on a reversed-phase C18 column, using a binary gradient modified from Airs et al. (2001, J. Chrom. A 917, 167-177). The HPLC effluent was dried onto a continuously-spooling nickel wire, and the involatile sample residue was combusted to CO2 and transferred to the IRMS for isotopic analysis. Replicate analyses of a standard solution yield precision for delta13C of better than 0.2‰ for injections containing ~5 μ g of chl-a. A five-fold improvement in sensitivity should be attainable using capillary HPLC to further reduce solvent volumes. The biomarker potential of tetrapyrrole pigments, combined with the geochemical information recorded by isotopic compositions, makes this combination a potent tool for biogeochemical studies. As a demonstration, we analyzed chlorophyll degradation products in sediments from a lake and a salina. First, compounds derived from bacteriochlorophylls (bchl)-c and -d were extracted from sediment cores taken at Kirisjes Lake (Larsmann Hills, Antarctica). These pigments are products of green sulfur bacteria and indicate the presence of an anoxic photic zone. The δ 13C values of bchl-related compounds are near -25‰ . Using published fractionations for Chlorobium species to extrapolate, dissolved CO2 in Kirisjes Lake probably had a δ 13C value of -12 to -21‰ and was strongly influenced by the recycling of organic carbon, possibly including methane. Second, compounds derived from chl-a, bchl-c, and bchl-d were isolated from sediments taken below a living microbial mat in the hypersaline les Salines de la Trinital (South Catalonia, Spain). The sediments contain visible remnants of past microbial mats and pigment distributions

  14. Voronoi analysis of the short–range atomic structure in iron and iron–carbon melts

    SciTech Connect

    Sobolev, Andrey; Mirzoev, Alexander

    2015-08-17

    In this work, we simulated the atomic structure of liquid iron and iron–carbon alloys by means of ab initio molecular dynamics. Voronoi analysis was used to highlight changes in the close environments of Fe atoms as carbon concentration in the melt increases. We have found, that even high concentrations of carbon do not affect short–range atomic order of iron atoms — it remains effectively the same as in pure iron melts.

  15. Voronoi analysis of the short-range atomic structure in iron and iron-carbon melts

    NASA Astrophysics Data System (ADS)

    Sobolev, Andrey; Mirzoev, Alexander

    2015-08-01

    In this work, we simulated the atomic structure of liquid iron and iron-carbon alloys by means of ab initio molecular dynamics. Voronoi analysis was used to highlight changes in the close environments of Fe atoms as carbon concentration in the melt increases. We have found, that even high concentrations of carbon do not affect short-range atomic order of iron atoms — it remains effectively the same as in pure iron melts.

  16. Extremely sharp carbon nanocone probes for atomic force microscopy imaging

    NASA Astrophysics Data System (ADS)

    Chen, I.-Chen; Chen, Li-Han; Ye, Xiang-Rong; Daraio, Chiara; Jin, Sungho; Orme, Christine A.; Quist, Arjan; Lal, Ratnesh

    2006-04-01

    A simple and reliable catalyst patterning technique combined with electric-field-guided growth is utilized to synthesize a sharp and high-aspect-ratio carbon nanocone probe on a tipless cantilever for atomic force microscopy. A single carbon nanodot produced by an electron-beam-induced deposition serves as a convenient chemical etch mask for catalyst patterning, thus eliminating the need for complicated, resist-based, electron-beam lithography for a nanoprobe fabrication. A gradual, sputtering-induced size reduction and eventual removal of the catalyst particle at the probe tip during electric-field-guided growth creates a sharp probe with a tip radius of only a few nanometers. These fabrication processes are amenable for the wafer-scale synthesis of multiple probes. High resolution imaging of three-dimensional features and deep trenches, and mechanical durability enabling continuous operation for many hours without noticeable image deterioration have been demonstrated.

  17. Wire breakage in SLC wire profile monitors

    SciTech Connect

    Field, C.; McCormick, D.; Raimondi, P.; Ross, M.

    1998-12-10

    Wire-scanning beam profile monitors are used at the Stanford Linear Collider (SLC) for emittance preservation control and beam optics optimization. Twenty such scanners have proven most useful for this purpose and have performed a total of 1.5 million scans in the 4 to 6 years since their installation. Most of the essential scanners are equipped with 20 to 40 {mu}m tungsten wires. SLC bunch intensities and sizes often exceed 2x10{sup 7}particles/{mu}m{sup 2} (3C/m{sup 2}). We believe that this has caused a number of tungsten wire failures that appear at the ends of the wire, near the wire support points, after a few hundred scans are accumulated. Carbon fibers, also widely used at SLAC (1), have been substituted in several scanners and have performed well. In this paper, we present theories for the wire failure mechanism and techniques learned in reducing the failures.

  18. Wire breakage in SLC wire profile monitors

    SciTech Connect

    Field, C.; McCormick, D.; Raimondi, P.; Ross, M.

    1998-05-01

    Wire scanning beam profile monitors are used at the Stanford Linear Collider (SLC) for emittance preservation control and beam optics optimization. Twenty such scanners have proven most useful for this purpose and have performed a total of 1.5 million scans in the 4 to 6 years since their installation. Most of the essential scanners are equipped with 20 to 40 {micro}m tungsten wires. SLC bunch intensities and sizes often exceed 2 x 10{sup 7} particles/{micro}m{sup 2} (3C/m{sup 2}). The authors believe that this has caused a number of tungsten wire failures that appear at the ends of the wire, near the wire support points, after a few hundred scans are accumulated. Carbon fibers, also widely used at SLAC, have been substituted in several scanners and have performed well. In this paper, the authors present theories for the wire failure mechanism and techniques learned in reducing the failures.

  19. Sintered wire annode

    DOEpatents

    Falce, Louis R.; Ives, R. Lawrence

    2007-12-25

    A plurality of high atomic number wires are sintered together to form a porous rod that is parted into porous disks which will be used as x-ray targets. A thermally conductive material is introduced into the pores of the rod, and when a stream of electrons impinges on the sintered wire target and generates x-rays, the heat generated by the impinging x-rays is removed by the thermally conductive material interspersed in the pores of the wires.

  20. Influence of nanoparticle size to the electrical properties of naphthalenediimide on single-walled carbon nanotube wiring

    NASA Astrophysics Data System (ADS)

    Tanaka, Hirofumi; Hong, Liu; Fukumori, Minoru; Negishi, Ryota; Kobayashi, Yoshihiro; Tanaka, Daisuke; Ogawa, Takuji

    2012-06-01

    Nanoparticles of N,N‧-bis(n-alkyl)tetracarbonatenaphthalenediimide (NDI) were adsorbed on single-walled carbon nanotube (SWNT) wires dispersed on a SiO2 substrate. The electrical properties were measured along the long axis of the SWNTs, and in all cases through the nanoparticles showed rectification in semiconducting I-V curve. The plateau width of the I-V curve through the NDI nanoparticles on metallic SWNTs decreased as the particle size increased, while the rectification ratio increased. The conduction mechanism was changed from tunneling conduction to Schottky-like conduction and their boundary is at about 3 nm diameter.

  1. 76 FR 78882 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Affirmative Preliminary Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... FR 65945 (October 29, 2002) (Wire Rod Order). DATES: Effective Date: December 20, 2011. FOR FURTHER... Order, 76 FR 33218 (June 8, 2011) (Initiation). On July 22, 2011, Deacero submitted its response to the...; (c) high nickel steel; (d) ball bearing steel; and (e) concrete reinforcing bars and rods....

  2. Observations of neutral atomic carbon at 809 GHz.

    PubMed

    Zmuidzinas, J; Betz, A L; Goldhaber, D M

    1986-08-15

    We have detected the 809 GHz 3P2-3P1 fine-structure line of neutral atomic carbon in four dense molecular clouds: M17, W51, W3, and DR 21(OH). These observations complement the published observations of the 492 GHz 3P1-3P0 line and allow the excitation temperature of the 3P levels along with the line optical depths to be determined. The results indicate excitation temperatures Tx approximately 30-60 K and optical depths of tau 10 < or approximately 1. This implies that the approximately 10(18) cm-2 lower limit to the C I abundance derived from 492 GHz observations is probably the actual abundance, which gives C I/CO approximately 0.1 in dense molecular clouds.

  3. Atomic nanotube welders: boron interstitials triggering connections in double-walled carbon nanotubes.

    PubMed

    Endo, Morinobu; Muramatsu, Hiroyuki; Hayashi, Takuya; Kim, Yoong-Ahm; Van Lier, Gregory; Charlier, Jean-Christophe; Terrones, Humberto; Terrones, Mauricio; Dresselhaus, Mildred S

    2005-06-01

    Here we demonstrate that the incorporation of boron (B) atoms between double-walled carbon nanotubes (DWNTs) during thermal annealing (1400-1600 degrees C) results in covalent nanotube "Y" junctions, DWNT coalescence, and the formation of flattened multiwalled carbon nanotubes (MWNTs). These processes occur via the merging of adjacent tubes, which is triggered by B interstitial atoms. We observe that B atom interstitials between DWNTs are responsible for the rapid establishment of covalent connections between neighboring tubes (polymerization), thereby resulting in the fast annealing of the carbon cylinders with B atoms embedded in the newly created carbon nanotube network. Once B is in the lattice, tube faceting (polygonization) starts to occur, and the electronic properties are expected to change dramatically. Therefore, B atoms indeed act as atomic nanotube fusers (or welders), and this process could now be used in assembling novel electronic nanotube devices, nanotube networks, carbon nanofoams and heterojunctions exhibiting p-type electronic properties.

  4. Atomic-Scale Investigations of Multiwall Carbon Nanotube Growth

    NASA Astrophysics Data System (ADS)

    Behr, Michael John

    The combination of unique mechanical, thermal, optical, and electronic properties of carbon nanotubes (CNTs) make them a desirable material for use in a wide range of applications. Many of these unique properties are highly sensitive to how carbon atoms are arranged within the graphene nanotube wall. Precise structural control of this arrangement remains the key challenge of CNT growth to realizing their technological potential. Plasma-enhanced chemical vapor deposition (PECVD) from methane-hydrogen gas mixtures using catalytic nanoparticles enables large-scale growth of CNT films and controlled spatial placement of CNTs on a substrate, however, much is still unknown about what happens to the catalyst particle during growth, the atomistic mechanisms involved, and how these dictate the final nanotube structure. To investigate the fundamental processes of CNT growth by PECVD, a suite of characterization techniques were implemented, including attenuated total-reflection Fourier transform infrared spectroscopy (ATR-FTIR), optical emission spectroscopy (OES), Raman spectroscopy, convergent-beam electron diffraction (CBED), high-resolution transmission and scanning-transmission electron microscopy (TEM, STEM), energy dispersive x-ray spectroscopy, and electron energy-loss spectroscopy (EELS). It is found that hydrogen plays a critical role in determining the final CNT structure through controlling catalyst crystal phase and morphology. At low hydrogen concentrations in the plasma iron catalysts are converted to Fe3C, from which high-quality CNTs grow; however, catalyst particles remain as pure iron when hydrogen is in abundance, and produce highly defective CNTs with large diameters. The initially faceted and equiaxed catalyst nanocrystals become deformed and are elongated into a teardrop morphology once a tubular CNT structure is formed around the catalyst particles. Although catalyst particles are single crystalline, they exhibit combinations of small-angle (˜1°-3

  5. Electroanalysis using macro-, micro-, and nanochemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes.

    PubMed

    Dai, Xuan; Wildgoose, Gregory G; Salter, Chris; Crossley, Alison; Compton, Richard G

    2006-09-01

    Gold nanoparticles (approximately 30-60 nm in diameter) were deposited onto the surface of glassy carbon microspheres (10-20 microm) through electroless plating to produce bulk (i.e., gram) quantities of nanoparticle surface-modified microspheres. The gold nanoparticle-modified powder was then characterized by means of scanning electron microscopy and cyclic voltammetry. The voltammetric response of a macroelectrode consisting of a film of gold nanoparticle-modified glassy carbon microspheres, bound together and "wired-up" using multiwalled carbon nanotubes (MWCNTs), was investigated. We demonstrate that by intelligently exploiting both nano- and microchemical architectures and wiring up the electroactive centers using MWCNTs in this way, we can obtain macroelectrode voltammetric behavior while only using approximately 1% by mass of the expensive gold material that would be required to construct the equivalent gold film macrodisk electrode. The potential utility of electrodes constructed using chemical architectures such as this was demonstrated by applying them to the analytical determination of arsenic(III) concentration. An optimized limit of detection of 2.5 ppb was obtained.

  6. Rotational Spectrum and Carbon Atom Structure of Dihydroartemisinic Acid

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks

    2016-06-01

    Dihydroartemisinic acid (DHAA, C15H24O2, five chiral centers) is a precursor in proposed low-cost synthetic routes to the antimalarial drug artemisinin. In one reaction process being considered in pharmaceutical production, DHAA is formed from an enantiopure sample of artemisinic acid through hydrogenation of the alkene. This reaction needs to properly set the stereochemistry of the asymmetric carbon for the synthesis to produce artemisinin. A recrystallization process can purify the diastereomer mixture of the hydrogenation reaction if the unwanted epimer is produced in less than 10% abundance. There is a need in the process analytical chemistry to rapidly (less than 1 min) measure the diastereomer excess and current solutions, such a HPLC, lack the needed measurement speed. The rotational spectrum of DHAA has been measured at 300:1 signal-to-noise ratio in a chirped-pulsed Fourier transform microwave spectrometer operating from 2-8 GHz using simple heating of the compound. The 13C isotope analysis provides a carbon atom structure that confirms the diastereomer. This structure is in excellent agreement with quantum chemistry calculations at the B2PLYPD3/ 6-311++G** level of theory. The DHAA spectrum is expected to be fully resolved from the unwanted diastereomer raising the potential for fast diastereomer excess measurement by rotational spectroscopy in the pharmaceutical production process.

  7. The initial flow dynamics of light atoms through carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cannon, James; Kim, Daejoong; Hess, Ortwin

    2011-04-01

    Carbon nanotubes are becoming increasingly viable as membranes for application in a wide variety of nano-fluidic applications, such as nano-scale nozzles. For potential applications that utilize switching on and off of flow through nanotube nozzles, it is important to understand the initial flow dynamics. Furthermore, when the nanotube interacts strongly with the fluid, the flow may be very different from conventional simulations, which consider atoms (such as argon, for example) that interact only weakly with the nanotube. Therefore, to better understand such flows and explore the potential manipulation of flow that can be achieved, we consider the initial flow dynamics of a light fluid through carbon nanotube nozzles, using non-equilibrium molecular dynamics simulations. Our studies show that if the conditions are controlled carefully, unusual phenomena can be generated, such as pulsed flow and very nonlinear increases in flow rate with nanotube diameter. We detail the physical reasons for such phenomena and describe how the pulsation can be controlled using temperature.

  8. Investigation of lauric acid dopant as a novel carbon source in MgB 2 wire

    NASA Astrophysics Data System (ADS)

    Lee, C. M.; Lee, S. M.; Park, G. C.; Joo, J.; Lim, J. H.; Kang, W. N.; Yi, J. H.; Jun, B.-H.; Kim, C.-J.

    2010-11-01

    We fabricated lauric acid (LA) doped MgB 2 wires and investigated the effects of the LA doping. For the fabrication of the LA-doped MgB 2 wires, B powder was mixed with LA at 0-5 wt.% of the total amount of MgB 2 using an organic solvent, dried, and then the LA-treated B and Mg powders were mixed stoichiometrically. The powder mixture was loaded into an Fe tube and the assemblage was drawn and sintered at 900 °C for 3 h under an argon atmosphere. We observed that the LA doping induced the substitution of C for the B sites in MgB 2 and that the actual content of C increased monotonically with increasing LA doping level. The LA-doped MgB 2 wires exhibited a lower critical temperature ( Tc), but better critical current density ( Jc) behavior in a high magnetic field: the 5 wt.% LA-doped sample had a Jc value of 5.32 × 10 3 A/cm 2, which was 2.17 times higher than that of the pristine sample (2.45 × 10 3 A/cm 2) at 5 K and 6 T, suggesting that LA is an effective C dopant in MgB 2 for enhancing the high-field Jc performance.

  9. Strong enhancement of high-field critical current properties and irreversibility field of MgB2 superconducting wires by coronene active carbon source addition via the new B powder carbon-coating method

    NASA Astrophysics Data System (ADS)

    Ye, Shu Jun; Matsumoto, Akiyoshi; Chao Zhang, Yun; Kumakura, Hiroaki

    2014-08-01

    We report an effective carbon-containing additive, coronene (C24H12), for MgB2 superconducting wires. We used B powder coated with C24H12 to fabricate MgB2 wires using the powder-in-tube (PIT) and internal Mg diffusion (IMD) processes. The in-field critical current properties are strongly enhanced for both PIT- and IMD-processed MgB2 wires. For PIT MgB2 wires, a critical current density (Jc) value of 1.8 × 104 A cm-2 is obtained at 4.2 K and 10 T. For IMD MgB2 wires, we obtained a Jc of 1.07 × 105 A cm-2 and an engineering Jc (Je) of 1.12 × 104 A cm-2 at 4.2 K and 10 T. These Jc and Je values are similar to the highest values reported for MgB2 wires thus far. Furthermore, the irreversibility field, Birr, determined with a current density criterion of 100 A cm-2, is strongly enhanced to 25 T at 4.2 K, which is also the highest value reported for MgB2 superconducting wires thus far. Coronene is an active carbon source for MgB2 superconducting wires because (1) coronene has a high carbon content (96 wt%) with a small amount of hydrogen (impurity), (2) the decomposition temperature for coronene is near the reaction temperature between Mg and B, and (3) uniform dispersion of coronene on the B surface can be obtained due to the melting point of coronene being lower than the decomposition temperature. Carbon substitution for B caused by the coronene active carbon source is mainly responsible for the high field critical current properties and the high Birr obtained in this work.

  10. Dispersion interaction between crossed conducting wires

    SciTech Connect

    Dobson, John F.; Gould, Timothy; Klich, Israel

    2009-07-15

    We compute the T=0 K Van der Waals (nonretarded Casimir) interaction energy E between two infinitely long, crossed conducting wires separated by a minimum distance D much greater than their radius. We find that, up to a logarithmic correction factor, E{proportional_to}-D{sup -1}|sin {theta}|{sup -1}f({theta}), where f({theta}) is a smooth bounded function of the angle {theta} between the wires. We recover a conventional result of the form E{proportional_to}-D{sup -4}|sin {theta}|{sup -1}g({theta}) when we include an electronic energy gap in our calculation. Our prediction of gap-dependent energetics may be observable experimentally for carbon nanotubes either via atomic force microscopy detection of the Van der Waals force or torque or indirectly via observation of mechanical oscillations. This shows that strictly parallel wires, as assumed in previous predictions, are not needed to see a unique effect of this type.

  11. Hot wire production of single-wall and multi-wall carbon nanotubes

    DOEpatents

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  12. Wire Up on Carbon Nanostructures! How To Play a Winning Game.

    PubMed

    Marchesan, Silvia; Melchionna, Michele; Prato, Maurizio

    2015-10-27

    Carbon nanotubes and graphene possess a unique extended π-system that makes them stand out among carbon nanostructures. The resulting electronic properties enable electron or charge flow along one or two directions, respectively, thus offering the opportunity to connect electronically different entities that come into contact, be they living cells or catalytic systems. Using these carbon nanostructures thus holds great promise in providing innovative solutions to address key challenges in the fields of medicine and energy. Here, we discuss how chemical functionalization of these carbon nanostructures is a crucial tool to master their properties and deliver innovation. PMID:26390071

  13. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    SciTech Connect

    Zope, Rajendra R. Baruah, Tunna; Bhusal, Shusil; Basurto, Luis; Jackson, Koblar

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolated C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  14. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    NASA Astrophysics Data System (ADS)

    Zope, Rajendra R.; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  15. Basic Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; And Others

    This module is the first in a series of three wiring publications; it serves as the foundation for students enrolled in a wiring program. It is a prerequisite to either "Residential Wiring" or "Commercial and Industrial Wiring." The module contains 16 instructional units that cover the following topics: occupational introduction; general safety;…

  16. Effect of microalloying on the strength of high carbon wire steels

    NASA Astrophysics Data System (ADS)

    Miller, Stephanie L.

    Microalloying additions of V, Nb, and N were investigated as means of increasing strength of eutectoid steels for wire applications. In order to examine the effects of microalloying additions during several stages of wire processing, continuous cooling experiments with and without deformation as well as patenting simulations were conducted using a Gleeble® 3500 thermomechanical simulator. Continuous cooling was performed from industrial austenitizing (1093 °C) and laying head (950 °C and 880 °C) temperatures, at rates ranging from 1 50 °C/s. Deformation was induced via hot torsion testing, which was followed by continuous cooling from 950 °C at rates of 5, 10, and 25 °C/s. Industrial wire patenting was simulated by austenitizing at 1093 °C or 950 °C for 30 sec, then rapid cooling to isothermal transformation temperatures of 575, 600, 625, and 650 °C for 15 sec before cooling to room temperature. Metallography, Vickers hardness, pearlite colony size and pearlite interlamellar spacing (ILS) measurements were used to examine the effects of these treatments. Continuous cooling transformation (CCT) curves were constructed for four steels: 1080, V, V+N, and V+Nb. In the V-microalloyed steel, additional N accelerated pearlite transformation and Nb delayed pearlite transformation. Observed N effects are in agreement with the theory of VN nucleating grain boundary ferrite and accelerating pearlite transformation, proposed by Han et al. [1995], and also consistent with observations by Brownrigg and Prior [2002]. Delay of transformation temperatures has been observed due to Nb effects [De Ardo, 2009]. A larger delay observed with higher austenitizing temperatures suggests that Nb precipitates may not be as effective at delaying transformation. V strengthening effects were observed in all microalloyed steels using a model that predicted hardness of eutectoid steels by incorporating colony size and ILS measurements, with maximum strengthening observed

  17. Premelting of thin wires

    NASA Astrophysics Data System (ADS)

    Gülseren, O.; Ercolessi, F.; Tosatti, E.

    1995-03-01

    We have investigated the melting behavior of thin lead wires using molecular dynamics. We find that-in analogy with cluster melting-the melting temperature Tm(R) of a wire with radius R is lower than that of a bulk solid Tbm by Tm(R)=Tbm-c/R. Surface melting effects, with formation of a thin skin of highly diffusive atoms at the wire surface, are observed. The diffusivity is lower over (111)-oriented faces, and higher at (110) and (100) rounded areas. The possible relevance to recent results on nonrupturing thin necks between a scanning tunnel microscope tip and a warm surface is addressed.

  18. Carbon Nanotube Atomic Force Microscopy for Proteomics and Biological Forensics

    SciTech Connect

    Noy, A; De Yoreo, J J; Malkin, A J

    2002-01-01

    The Human Genome Project was focused on mapping the complete genome. Yet, understanding the structure and function of the proteins expressed by the genome is the real end game. But there are approximately 100,000 proteins in the human body and the atomic structure has been determined for less than 1% of them. Given the current rate at which structures are being solved, it will take more than one hundred years to complete this task. The rate-limiting step in protein structure determination is the growth of high-quality single crystals for X-ray diffraction. Synthesis of the protein stock solution as well as X-ray diffraction and analysis can now often be done in a matter of weeks, but developing a recipe for crystallization can take years and, especially in the case of membrane proteins, is often completely unsuccessful. Consequently, techniques that can either help to elucidate the factors controlling macromolecular crystallization, increase the amount of structural information obtained from crystallized macromolecules or eliminate the need for crystallization altogether are of enormous importance. In addition, potential applications for those techniques extend well beyond the challenges of proteomics. The global spread of modern technology has brought with it an increasing threat from biological agents such as viruses. As a result, developing techniques for identifying and understanding the operation of such agents is becoming a major area of forensic research for DOE. Previous to this project, we have shown that we can use in situ atomic force microscopy (AFM) to image the surfaces of growing macromolecular crystals with molecular resolution (1-5) In addition to providing unprecedented information about macromolecular nucleation, growth and defect structure, these results allowed us to obtain low-resolution phase information for a number of macromolecules, providing structural information that was not obtainable from X-ray diffraction(3). For some virus systems

  19. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    NASA Astrophysics Data System (ADS)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    , by the purpose to integrate the carbon nanostructures in the carbon fibers by means of chemical vapor deposition (CVD) method, in order to develop the basic substrate of advanced carbon-based nanocomposite for atomic oxygen protection. The nanostructures grown onto the carbon fibers can be used to create multiscale hybrid carbon nanotube/carbon fiber composites where individual carbon fibers, which are several microns in diameter, are surrounded by nanotubes. The present objective is the setting-up of the CVD parameters for a reliable growth of carbon nanostructures on carbon fiber surface; after that, the results of a preliminary characterization related to atomic oxygen effects testing by means of a ground LEO simulation facility are reported and discussed.

  20. Water Desalination with Wires.

    PubMed

    Porada, S; Sales, B B; Hamelers, H V M; Biesheuvel, P M

    2012-06-21

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode pairs in freshwater with and in brine without an applied cell voltage, we create an ion adsorption/desorption cycle. We show experimentally how in six subsequent cycles we can reduce the salinity of 20 mM feed (brackish) water by a factor of 3, while application of a cation exchange membrane on the cathode wires makes the desalination factor increase to 4. Theoretical modeling rationalizes the experimental findings, and predicts that system performance can be significantly enhanced by material modifications. To treat large volumes of water, multiple stacks of wire pairs can be used simultaneously in a "merry-go-round" operational mode.

  1. Local Control of Lung Derived Tumors by Diffusing Alpha-Emitting Atoms Released From Intratumoral Wires Loaded With Radium-224

    SciTech Connect

    Cooks, Tomer; Schmidt, Michael; Bittan, Hadas; Lazarov, Elinor; Arazi, Lior; Kelson, Itzhak; Keisari, Yona

    2009-07-01

    Purpose: Diffusing alpha-emitters radiation therapy (DART) is a new form of brachytherapy enabling the treatment of solid tumors with alpha radiation. The present study examines the antitumoral effects resulting from the release of alpha emitting radioisotopes into solid lung carcinoma (LL2, A427, and NCI-H520). Methods and Materials: An in vitro setup tested the dose-dependent killing of tumor cells exposed to alpha particles. In in vivo studies, radioactive wires (0.3 mm diameter, 5 mm long) with {sup 224}Ra activities in the range of 21-38 kBq were inserted into LL/2 tumors in C57BL/6 mice and into human-derived A427 or NCI-H520 tumors in athymic mice. The efficacy of the short-lived daughters of {sup 224}Ra to produce tumor growth retardation and prolong life was assessed, and the spread of radioisotopes inside tumors was measured using autoradiography. Results: The insertion of a single DART wire into the center of 6- to 7-mm tumors had a pronounced retardation effect on tumor growth, leading to a significant inhibition of 49% (LL2) and 93% (A427) in tumor development and prolongations of 48% (LL2) in life expectancy. In the human model, more than 80% of the treated tumors disappeared or shrunk. Autoradiographic analysis of the treated sectioned tissue revealed the intratumoral distribution of the radioisotopes, and histological analysis showed corresponding areas of necrosis. In vitro experiments demonstrated a dose-dependent killing of tumors cells exposed to alpha particles. Conclusions: Short-lived diffusing alpha-emitters produced tumor growth retardation and increased survival in mice bearing lung tumor implants. These results justify further investigations with improved dose distributions.

  2. Ab initio study of semiconductor atoms impurities in zigzag edge (10,0) carbon nanotubes

    SciTech Connect

    Muttaqien, Fahdzi Suprijadi

    2015-04-16

    The substitutional impurities in zigzag edge (10,0) carbon nanotubes have been studied by using first principles calculations. Silicon (Si), gallium (Ga), and arsenic (As) atom have been chosen as semiconductor based-atom for replacing carbon atoms in CNT’s surface. The silicon atom changes the energy gap of pristine zigzag (10,0) CNT, it is 0.19 eV more narrow than that of pristine CNT. Geometrically, the silicon atom creates sp{sup 3} bond with three adjacent carbon atoms, where the tetrahedral form of its sp{sup 3} bond is consisted of free unoccupied state. The silicon atom does not induce magnetism to zigzag CNT. Due to gallium (Ga) and arsenic (As) atom substitution, the zigzag CNT becomes metallic and has magnetic moment of 1 µ{sub B}. The valance and conduction band are crossed each other, then the energy gap is vanished. The electronic properties of GaAs-doped CNT are dominantly affected by gallium atom and its magnetic properties are dominantly affected by arsenic atom. These results prove that the CNT with desired properties can be obtained with substitutional impurities without any giving structural defect.

  3. Enhancement of electrical conductivity and electrochemical activity of hydrogenated amorphous carbon by incorporating boron atoms

    NASA Astrophysics Data System (ADS)

    Naragino, Hiroshi; Yoshinaga, Kohsuke; Nakahara, Akira; Tanaka, Sakuya; Honda, Kensuke

    2013-06-01

    Conductive boron-doped hydrogenated amorphous carbon (B-DLC) thin films were successfully synthesized with RF plasma-enhanced CVD method. By incorporating boron atoms in amorphous carbon, conduction types were changed from n- to p-type, and volume resistivity was decreased from 30.4 (non-doped) to 6.36 × 10-2 Ω cm (B/C = 2.500 atom%). B-DLC film with sp2/(sp2 + sp3) carbons of 75 atom% exhibited high resistance to electrochemically-induced corrosion in strong acid solution. Furthermore, it was clarified that boron atoms in DLC could enhance kinetics of hydrogen evolution during water electrolysis at B-DLC surface. B-DLC is, therefore, a promising electrode material for hydrogen production by increasing the concentration of boron atoms in B-DLC and enhancing the reactivity of H2 evolution.

  4. A first principles study on the CVD graphene growth on copper surfaces: A carbon atom incorporation to graphene edges

    NASA Astrophysics Data System (ADS)

    Tajima, Nobuo; Kaneko, Tomoaki; Nara, Jun; Ohno, Takahisa

    2016-11-01

    Carbon atom reactions in the chemical vapor deposition (CVD) processes for graphene production on copper surfaces have been studied by first principles molecular dynamics (MD) simulations at a typical CVD growth temperature. This study focuses on the processes of a carbon atom incorporation to graphene edges. The energy barriers of these carbon atom incorporation reactions have been calculated as ~ 1 eV, which are comparable or slightly larger than the barriers of carbon atom dimerization. We have also found that the surface copper atoms form step like structures to terminate the carbon dangling bonds at graphene edges, which are markedly different from the graphene-copper interactions observed in static calculations.

  5. Surface reactions of molecular and atomic oxygen with carbon phosphide films.

    PubMed

    Gorham, Justin; Torres, Jessica; Wolfe, Glenn; d'Agostino, Alfred; Fairbrother, D Howard

    2005-11-01

    The surface reactions of atomic and molecular oxygen with carbon phosphide films have been studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Carbon phosphide films were produced by ion implantation of trimethylphosphine into polyethylene. Atmospheric oxidation of carbon phosphide films was dominated by phosphorus oxidation and generated a carbon-containing phosphate surface film. This oxidized surface layer acted as an effective diffusion barrier, limiting the depth of phosphorus oxidation within the carbon phosphide film to < 3 nm. The effect of atomic oxygen (AO) exposure on this oxidized carbon phosphide layer was subsequently probed in situ using XPS. Initially AO exposure resulted in a loss of carbon atoms from the surface, but increased the surface concentration of phosphorus atoms as well as the degree of phosphorus oxidation. For more prolonged AO exposures, a highly oxidized phosphate surface layer formed that appeared to be inert toward further AO-mediated erosion. By utilizing phosphorus-containing hydrocarbon thin films, the phosphorus oxides produced during exposure to AO were found to desorb at temperatures >500 K under vacuum conditions. Results from this study suggest that carbon phosphide films can be used as AO-resistant surface coatings on polymers.

  6. A simple and clean source of low-energy atomic carbon

    SciTech Connect

    Krasnokutski, S. A.; Huisken, F.

    2014-09-15

    A carbon source emitting low-energy carbon atoms from a thin-walled, sealed tantalum tube via thermal evaporation has been constructed. The tube is made from a 0.05 mm thick tantalum foil and filled with {sup 12}C or {sup 13}C carbon powder. After being sealed, it is heated by direct electric current. The solvated carbon atoms diffuse to the outer surface of the tube and, when the temperature rises over 2200 K, the evaporation of atomic carbon from the surface of the tantalum tube is observed. As the evaporated species have low energy they are well-suited for the incorporation into liquid helium droplets by the pick-up technique. Mass analysis of the incorporated species reveals the dominant presence of atomic carbon and very low abundances of C{sub 2} and C{sub 3} molecules (<1%). This is in striking contrast to the thermal evaporation of pure carbon, where C{sub 3} molecules are found to be the dominant species in the gas phase. Due to the thermal evaporation and the absence of high-energy application required for the dissociation of C{sub 2} and C{sub 3} molecules, the present source provides carbon atoms with rather low energy.

  7. Crossed-Wire Laser Microwelding of Pt-10 Pct Ir to 316 Low-Carbon Vacuum Melted Stainless Steel: Part I. Mechanism of Joint Formation

    NASA Astrophysics Data System (ADS)

    Zou, G. S.; Huang, Y. D.; Pequegnat, A.; Li, X. G.; Khan, M. I.; Zhou, Y.

    2012-04-01

    The excellent biocompatibility and corrosion properties of Pt alloys and 316 low-carbon vacuum melted (LVM) stainless steel (SS) make them attractive for biomedical applications. With the increasing complexity of medical devices and in order to lower costs, the challenge of joining dissimilar materials arises. In this study, laser microwelding (LMW) of crossed Pt-10 pct Ir to 316 LVM SS wires was performed and the weldability of these materials was determined. The joint geometry, joining mechanism, joint breaking force (JBF), and fracture modes were investigated using optical microscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and microtensile testing. It was shown that the mechanisms of joint formation transitioned from (1) brazing, (2) a combination of brazing and fusion welding, and (3) fusion welding with increasing pulsed laser energy. The joints demonstrated various tensile failure modes including (1) interfacial failure below a peak power of 0.24 kW, (2) partial interfacial failure that propagated into the Pt-Ir wire, (3) failure in the Pt-Ir wire, and (4) failure in the SS wire due to porosity and severe undercutting caused by overwelding. During this study, the optimal laser peak power range was identified to produce joints with good joint geometry and 90 pct of the tensile strength of the Pt-10 pct Ir wire.

  8. Dynamics of carbon-hydrogen and carbon-methyl exchanges in the collision of 3P atomic carbon with propene

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Huang; Chen, Wei-Kan; Chin, Chih-Hao; Huang, Wen-Jian

    2013-11-01

    We investigated the dynamics of the reaction of 3P atomic carbon with propene (C3H6) at reactant collision energy 3.8 kcal mol-1 in a crossed molecular-beam apparatus using synchrotron vacuum-ultraviolet ionization. Products C4H5, C4H4, C3H3, and CH3 were observed and attributed to exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3; their translational-energy distributions and angular distributions were derived from the measurements of product time-of-flight spectra. Following the addition of a 3P carbon atom to the C=C bond of propene, cyclic complex c-H2C(C)CHCH3 undergoes two separate stereoisomerization mechanisms to form intermediates E- and Z-H2CCCHCH3. Both the isomers of H2CCCHCH3 in turns decompose to C4H5 + H and C3H3 + CH3. A portion of C4H5 that has enough internal energy further decomposes to C4H4 + H. The three exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3 have average translational energy releases 13.5, 3.2, and 15.2 kcal mol-1, respectively, corresponding to fractions 0.26, 0.41, and 0.26 of available energy deposited to the translational degrees of freedom. The H-loss and 2H-loss channels have nearly isotropic angular distributions with a slight preference at the forward direction particularly for the 2H-loss channel. In contrast, the CH3-loss channel has a forward and backward peaked angular distribution with an enhancement at the forward direction. Comparisons with reactions of 3P carbon atoms with ethene, vinyl fluoride, and vinyl chloride are stated.

  9. Dynamics of carbon-hydrogen and carbon-methyl exchanges in the collision of 3P atomic carbon with propene.

    PubMed

    Lee, Shih-Huang; Chen, Wei-Kan; Chin, Chih-Hao; Huang, Wen-Jian

    2013-11-01

    We investigated the dynamics of the reaction of (3)P atomic carbon with propene (C3H6) at reactant collision energy 3.8 kcal mol(-1) in a crossed molecular-beam apparatus using synchrotron vacuum-ultraviolet ionization. Products C4H5, C4H4, C3H3, and CH3 were observed and attributed to exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3; their translational-energy distributions and angular distributions were derived from the measurements of product time-of-flight spectra. Following the addition of a (3)P carbon atom to the C=C bond of propene, cyclic complex c-H2C(C)CHCH3 undergoes two separate stereoisomerization mechanisms to form intermediates E- and Z-H2CCCHCH3. Both the isomers of H2CCCHCH3 in turns decompose to C4H5 + H and C3H3 + CH3. A portion of C4H5 that has enough internal energy further decomposes to C4H4 + H. The three exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3 have average translational energy releases 13.5, 3.2, and 15.2 kcal mol(-1), respectively, corresponding to fractions 0.26, 0.41, and 0.26 of available energy deposited to the translational degrees of freedom. The H-loss and 2H-loss channels have nearly isotropic angular distributions with a slight preference at the forward direction particularly for the 2H-loss channel. In contrast, the CH3-loss channel has a forward and backward peaked angular distribution with an enhancement at the forward direction. Comparisons with reactions of (3)P carbon atoms with ethene, vinyl fluoride, and vinyl chloride are stated.

  10. CARBON BLACK DISPERSION PRE-PLATING TECHNOLOGY FOR PRINTED WIRE BOARD MANUFACTURING

    EPA Science Inventory

    This evaluation addresses the product quality, waste reduction, and economic issues involved in replacing electroless copper with a carbon black dispersion technology. McCurdy Circuits of Orange County, California, currently has both processes in operation. McCurdy has found that...

  11. Plasmon enhanced Raman scattering effect for an atom near a carbon nanotube.

    PubMed

    Bondarev, I V

    2015-02-23

    Quantum electrodynamics theory of the resonance Raman scattering is developed for an atom in a close proximity to a carbon nanotube. The theory predicts a dramatic enhancement of the Raman intensity in the strong atomic coupling regime to nanotube plasmon near-fields. This resonance scattering is a manifestation of the general electromagnetic surface enhanced Raman scattering effect, and can be used in designing efficient nanotube based optical sensing substrates for single atom detection, precision spontaneous emission control, and manipulation. PMID:25836436

  12. Structure and stability of a silicon cluster on sequential doping with carbon atoms

    NASA Astrophysics Data System (ADS)

    AzeezullaNazrulla, Mohammed; Joshi, Krati; Israel, S.; Krishnamurty, Sailaja

    2016-02-01

    SiC is a highly stable material in bulk. On the other hand, alloys of silicon and carbon at nanoscale length are interesting from both technological as well fundamental view point and are being currently synthesized by various experimental groups (Truong et. al., 2015 [26]). In the present work, we identify a well-known silicon cluster viz., Si10 and dope it sequentially with carbon atoms. The evolution of electronic structure (spin state and the structural properties) on doping, the charge redistribution and structural properties are analyzed. It is interesting to note that the ground state SiC clusters prefer to be in the lowest spin state. Further, it is seen that carbon atoms are the electron rich centres while silicon atoms are electron deficient in every SiC alloy cluster. The carbon-carbon bond lengths in alloy clusters are equivalent to those seen in fullerene molecules. Interestingly, the carbon atoms tend to aggregate together with silicon atoms surrounding them by donating the charge. As a consequence, very few Si-Si bonds are noted with increasing concentrations of C atoms in a SiC alloy. Physical and chemical stability of doped clusters is studied by carrying out finite temperature behaviour and adsorbing O2 molecule on Si9C and Si8C2 clusters, respectively.

  13. Tailoring Thermal Conductivity of Single-stranded Carbon-chain Polymers through Atomic Mass Modification

    PubMed Central

    Liao, Quanwen; Zeng, Lingping; Liu, Zhichun; Liu, Wei

    2016-01-01

    Tailoring the thermal conductivity of polymers is central to enlarge their applications in the thermal management of flexible integrated circuits. Progress has been made over the past decade by fabricating materials with various nanostructures, but a clear relationship between various functional groups and thermal properties of polymers remains to be established. Here, we numerically study the thermal conductivity of single-stranded carbon-chain polymers with multiple substituents of hydrogen atoms through atomic mass modification. We find that their thermal conductivity can be tuned by atomic mass modifications as revealed through molecular dynamics simulations. The simulation results suggest that heavy homogeneous substituents do not assist heat transport and trace amounts of heavy substituents can in fact hinder heat transport substantially. Our analysis indicates that carbon chain has the biggest contribution (over 80%) to the thermal conduction in single-stranded carbon-chain polymers. We further demonstrate that atomic mass modifications influence the phonon bands of bonding carbon atoms, and the discrepancies of phonon bands between carbon atoms are responsible for the remarkable drops in thermal conductivity and large thermal resistances in carbon chains. Our study provides fundamental insight into how to tailor the thermal conductivity of polymers through variable substituents. PMID:27713563

  14. Effects of Atomic-Scale Structure on the Fracture Properties of Amorphous Carbon - Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    The fracture of carbon materials is a complex process, the understanding of which is critical to the development of next generation high performance materials. While quantum mechanical (QM) calculations are the most accurate way to model fracture, the fracture behavior of many carbon-based composite engineering materials, such as carbon nanotube (CNT) composites, is a multi-scale process that occurs on time and length scales beyond the practical limitations of QM methods. The Reax Force Field (ReaxFF) is capable of predicting mechanical properties involving strong deformation, bond breaking and bond formation in the classical molecular dynamics framework. This has been achieved by adding to the potential energy function a bond-order term that varies continuously with distance. The use of an empirical bond order potential, such as ReaxFF, enables the simulation of failure in molecular systems that are several orders of magnitude larger than would be possible in QM techniques. In this work, the fracture behavior of an amorphous carbon (AC) matrix reinforced with CNTs was modeled using molecular dynamics with the ReaxFF reactive forcefield. Care was taken to select the appropriate simulation parameters, which can be different from those required when using traditional fixed-bond force fields. The effect of CNT arrangement was investigated with three systems: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. For each arrangement, covalent bonds are added between the CNTs and AC, with crosslink fractions ranging from 0-25% of the interfacial CNT atoms. The SWNT and MWNT array systems represent ideal cases with evenly spaced CNTs; the SWNT bundle system represents a more realistic case because, in practice, van der Waals interactions lead to the agglomeration of CNTs into bundles. The simulation results will serve as guidance in setting experimental processing conditions to optimize the mechanical properties of CNT

  15. Optimization of the Purification and Processing of Carbon Nanotubes for Strong, Conductive and Lightweight Wires

    NASA Astrophysics Data System (ADS)

    Moses, Brian T.

    Single walled carbon nanotubes are produced using standard synthesis and purification techniques. Bulk materials produced using filtration drying are characterized mechanically and electrically for engineering properties. Modifications to the purification process are explored with consideration given for the effects on electrical conductivity and mechanical strength. Raman spectroscopy, thermal oxidation profiling, and high-temperature vacuum annealing are used to gain further insight on the connection between defects and nanotube oxidation during the purification process. It is observed that the mechanical properties are strongly temperature dependent, while electrical conductivity varies with humidity rather than temperature. The use of a thermal vacuum anneal can improve separation of oxidative processes between nanotubes and carbon in the time domain, allowing further optimization of the thermal processing and improved physical properties of nanotube bulk materials post-processing.

  16. Understanding the Mechanisms Enabling an Ultra-high Efficiency Moving Wire Interface for Real-time Carbon 14 Accelerator Mass Spectrometry Quantitation of Samples Suspended in Solvent

    NASA Astrophysics Data System (ADS)

    Thomas, Avraham Thaler

    Carbon 14 (14C) quantitation by accelerator mass spectrometry (AMS) is a powerfully sensitive and uniquely quantitative tool for tracking labeled carbonaceous molecules in biological systems. This is due to 14C's low natural abundance of 1 ppt, the nominal difference in biological activity between an unlabeled and a 14C-labeled molecule, and the ability of AMS to measure isotopic ratios independently of a sample's other characteristics. To make AMS more broadly accessible, a moving wire interface for real-time coupling of high pressure liquid chromatography (HPLC) to AMS and high throughput AMS quantitation of minute single samples has been developed. Prior to this work, samples needed to be converted to solid carbon before measurement. This conversion process has many steps and requires that the sample size be large enough to allow precise handling of the resulting graphite. These factors make the process susceptible to error and time consuming, as well as requiring 0.5 ug of carbon. Samples which do not contain enough carbon, such as HPLC fractions, must be bulked up. This adds background and increases effort. The moving wire interface overcomes these limitations by automating sample processing. Samples placed on the wire are transported through a solvent removal stage followed by a combustion stage after which the combustion products are directed to a gas accepting ion source. The ion source converts the carbon from the CO2 combustion product into C ions, from which an isotopic ratio can be determined by AMS. Although moving wire interfaces have been implemented for various tasks since 1964, the efficiency of these systems at transferring fluid from an HPLC to the wire was only 3%, the efficiency of transferring combustion products from the combustion oven to ion source was only 30%, the flow and composition of the carrier gas from the combustion oven to the ion source needed to be optimized for coupling to an AMS gas accepting ion source and the drying ovens

  17. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    NASA Astrophysics Data System (ADS)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    In recent years, the emphasis in space research has been shifting from space exploration to commercialization of space. In order to utilize space for commercial purposes it is necessary to understand the low earth orbit (LEO) space environment where most of the activities will be carried out. The studies on the LEO environment are mainly focused towards understanding the effect of atomic oxygen (AO) on spacecraft materials. In the first few shuttle flights, materials looked frosty because they were actually being eroded and textured: AO reacts with organic materials on spacecraft exteriors, gradually damaging them. When a spacecraft travel in LEO (where crewed vehicles and the International Space Station fly), the AO formed from the residual atmosphere can react with the spacecraft surfaces, causing damage to the vehicle. Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The major degradation effects in polymers are due to their exposure to atomic oxygen, vacuum ultraviolet and synergistic effects, which result in different damaging effects by modification of the polymer's chemical properties. In hydrocarbon containing polymers the main AO effect is the surface erosion via chemical reactions and the release of volatile reaction products associated with the mass loss. The application of a thin protective coating to the base materials is one of the most commonly used methods of preventing AO degradation. The purpose is to provide a barrier between base material and AO environment or, in some cases, to alter AO reactions to inhibit its diffusion. The effectiveness of a coating depends on its continuity, porosity, degree of

  18. Atomic carbon emission from photodissociation of CO2. [planetary atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. R.; Phillips, E.; Lee, L. C.; Judge, D. L.

    1978-01-01

    Atomic carbon fluorescence, C I 1561, 1657, and 1931 A, has been observed from photodissociation of CO2, and the production cross sections have been measured. A line emission source provided the primary photons at wavelengths from threshold to 420 A. The present results suggest that the excited carbon atoms are produced by total dissociation of CO2 into three atoms. The cross sections for producing the O I 1304-A fluorescence through photodissociation of CO2 are found to be less than 0.01 Mb in the wavelength region from 420 to 835 A. The present data have implications with respect to photochemical processes in the atmospheres of Mars and Venus.

  19. STEM Imaging of Single Pd Atoms in Activated Carbon Fibers Considered for Hydrogen Storage

    SciTech Connect

    Van Benthem, Klaus; Bonifacio, Cecile S; Contescu, Cristian I; Pennycook, Stephen J; Gallego, Nidia C

    2011-01-01

    Aberration corrected scanning transmission electron microscopy was used to demonstrate the feasibility of imaging individual Pd atoms that are highly dispersed throughout the volume of activated carbon fibers. Simultaneous acquisition of high-angle annular dark-field and bright-field images allows correlation of the location of single Pd atoms with microstructural features of the carbon host material. Sub-Angstrom imaging conditions revealed that 18 wt% of the total Pd content is dispersed as single Pd atoms in three re-occurring local structural arrangements. The identified structural configurations may represent effective storage sites for molecular hydrogen through Kubas complex formation as discussed in detail in the preceding article.

  20. Curvature aided efficient axial field emission from carbon nanofiber-reduced graphene oxide superstructures on tungsten wire substrate

    NASA Astrophysics Data System (ADS)

    Jha, Arunava; Roy, Rajarshi; Sen, Dipayan; Chattopadhyay, Kalyan K.

    2016-03-01

    Field emission characteristics found in reduced graphene oxide (RGO) and RGO based composite systems have always been an area of research interest mainly due to presence of prolific quasi aligned edges working as emitter sites. However, the specific role and extent of edge curvature geometry in RGO systems in regards to the enhancement of field emission has not discussed thoroughly prior to this work. In this work we demonstrate enhanced axial field emission due to top assembly of thin RGO layer over a quasi-vertically aligned carbon nanofiber thin film supported on a tungsten wire substrate. Furthermore, simulation analysis for our RGO based hybrid system using finite element modeling showed that two-stage local field amplification in RGO is responsible for the overall improvement of field emission characteristics. In support of our findings, a tentative explanation has been proposed based on the additional emission from RGO edges in between the CNF network resulting to the enhancement of axial field emission in the nanocomposite superstructure.

  1. EBSD analysis of tungsten-filament carburization during the hot-wire CVD of multi-walled carbon nanotubes.

    PubMed

    Oliphant, Clive J; Arendse, Christopher J; Camagu, Sigqibo T; Swart, Hendrik

    2014-02-01

    Filament condition during hot-wire chemical vapor deposition conditions of multi-walled carbon nanotubes is a major concern for a stable deposition process. We report on the novel application of electron backscatter diffraction to characterize the carburization of tungsten filaments. During the synthesis, the W-filaments transform to W2C and WC. W-carbide growth followed a parabolic behavior corresponding to the diffusion of C as the rate-determining step. The grain size of W, W2C, and WC increases with longer exposure time and increasing filament temperature. The grain size of the recrystallizing W-core and W2C phase grows from the perimeter inwardly and this phenomenon is enhanced at filament temperatures in excess of 1,400°C. Cracks appear at filament temperatures >1,600°C, accompanied by a reduction in the filament operational lifetime. The increase of the W2C and recrystallized W-core grain size from the perimeter inwardly is ascribed to a thermal gradient within the filament, which in turn influences the hardness measurements and crack formation. PMID:24423105

  2. Thermodynamic and kinetic control of the lateral Si wire growth

    SciTech Connect

    Dedyulin, Sergey N. Goncharova, Lyudmila V.

    2014-03-24

    Reproducible lateral Si wire growth has been realized on the Si (100) surface. In this paper, we present experimental evidence showing the unique role that carbon plays in initiating lateral growth of Si wires on a Si (100) substrate. Once initiated in the presence of ≈5 ML of C, lateral growth can be achieved in the range of temperatures, T = 450–650 °C, and further controlled by the interplay of the flux of incoming Si atoms with the size and areal density of Au droplets. Critical thermodynamic and kinetic aspects of the growth are discussed in detail.

  3. Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography.

    PubMed

    Marceau, R K W; Choi, P; Raabe, D

    2013-09-01

    A high-Mn TWIP steel having composition Fe-22Mn-0.6C (wt%) is considered in this study, where the need for accurate and quantitative analysis of clustering and short-range ordering by atom probe analysis requires a better understanding of the detection of carbon in this system. Experimental measurements reveal that a high percentage of carbon atoms are detected as molecular ion species and on multiple hit events, which is discussed with respect to issues such as optimal experimental parameters, correlated field evaporation and directional walk/migration of carbon atoms at the surface of the specimen tip during analysis. These phenomena impact the compositional and spatial accuracy of the atom probe measurement and thus require careful consideration for further cluster-finding analysis.

  4. Synthetic Strategies toward Natural Products Containing Contiguous Stereogenic Quaternary Carbon Atoms.

    PubMed

    Büschleb, Martin; Dorich, Stéphane; Hanessian, Stephen; Tao, Daniel; Schenthal, Kyle B; Overman, Larry E

    2016-03-18

    Strategies for the total synthesis of complex natural products that contain two or more contiguous stereogenic quaternary carbon atoms in their intricate structures are reviewed with 12 representative examples. Emphasis has been put on methods to create quaternary carbon stereocenters, including syntheses of the same natural product by different groups, thereby showcasing the diversity of thought and individual creativity. A compendium of selected natural products containing two or more contiguous stereogenic quaternary carbon atoms and key reactions in their total or partial syntheses is provided in the Supporting Information.

  5. Optically promoted bipartite atomic entanglement in hybrid metallic carbon nanotube systems

    SciTech Connect

    Gelin, M. F.; Bondarev, I. V.; Meliksetyan, A. V.

    2014-02-14

    We study theoretically a pair of spatially separated extrinsic atomic type species (extrinsic atoms, ions, molecules, or semiconductor quantum dots) near a metallic carbon nanotube, that are coupled both directly via the inter-atomic dipole-dipole interactions and indirectly by means of the virtual exchange by resonance plasmon excitations on the nanotube surface. We analyze how the optical preparation of the system by using strong laser pulses affects the formation and evolution of the bipartite atomic entanglement. Despite a large number of possible excitation regimes and evolution pathways, we find a few generic scenarios for the bipartite entanglement evolution and formulate practical recommendations on how to optimize and control the robust bipartite atomic entanglement in hybrid carbon nanotube systems.

  6. A nine-atom rhodium–aluminum oxide cluster oxidizes five carbon monoxide molecules

    PubMed Central

    Li, Xiao-Na; Zhang, Hua-Min; Yuan, Zhen; He, Sheng-Gui

    2016-01-01

    Noble metals can promote the direct participation of lattice oxygen of very stable oxide materials such as aluminum oxide, to oxidize reactant molecules, while the fundamental mechanism of noble metal catalysis is elusive. Here we report that a single atom of rhodium, a powerful noble metal catalyst, can promote the transfer of five oxygen atoms to oxidize carbon monoxide from a nine-atom rhodium–aluminum oxide cluster. This is a sharp improvement in the field of cluster science where the transfer of at most two oxygen atoms from a doped cluster is more commonly observed. Rhodium functions not only as the preferred trapping site to anchor and oxidize carbon monoxide by the oxygen atoms in direct connection with rhodium but also the primarily oxidative centre to accumulate the large amounts of electrons and the polarity of rhodium is ultimately transformed from positive to negative. PMID:27094921

  7. 76 FR 67407 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Notice of Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... Alloy Steel Wire Rod from Mexico, (76 FR 45509 (July 29, 2011)). We preliminarily determine that, during..., Indonesia, Mexico, Moldova, Trinidad and Tobago, and Ukraine, 67 FR 65945 (October 29, 2002) (Wire Rod... FR 60733 (October 1, 2010). On October 29, 2010, in accordance with 19 CFR 351.213(b), the...

  8. Atomic Layer Deposition on Carbon Nanotubes and their Assemblies

    NASA Astrophysics Data System (ADS)

    Stano, Kelly Lynn

    Global issues related to energy and the environment have motivated development of advanced material solutions outside of traditional metals ceramics, and polymers. Taking inspiration from composites, where the combination of two or more materials often yields superior properties, the field of organic-inorganic hybrids has recently emerged. Carbon nanotube (CNT)-inorganic hybrids have drawn widespread and increasing interest in recent years due to their multifunctionality and potential impact across several technologically important application areas. Before the impacts of CNT-inorganic hybrids can be realized however, processing techniques must be developed for their scalable production. Optimization in chemical vapor deposition (CVD) methods for synthesis of CNTs and vertically aligned CNT arrays has created production routes both high throughput and economically feasible. Additionally, control of CVD parameters has allowed for growth of CNT arrays that are able to be drawn into aligned sheets and further processed to form a variety of aligned 1, 2, and 3-dimensional bulk assemblies including ribbons, yarns, and foams. To date, there have only been a few studies on utilizing these bulk assemblies for the production of CNT-inorganic hybrids. Wet chemical methods traditionally used for fabricating CNT-inorganic hybrids are largely incompatible with CNT assemblies, since wetting and drying the delicate structures with solvents can destroy their structure. It is therefore necessary to investigate alternative processing strategies in order to advance the field of CNT-inorganic hybrids. In this dissertation, atomic layer deposition (ALD) is evaluated as a synthetic route for the production of large-scale CNT-metal oxide hybrids as well as pure metal oxide architectures utilizing CNT arrays, ribbons, and ultralow density foams as deposition templates. Nucleation and growth behavior of alumina was evaluated as a function of CNT surface chemistry. While highly graphitic

  9. Study on nitrogen doped carbon atom chains with negative differential resistance effect

    NASA Astrophysics Data System (ADS)

    Shen, Ji-Mei; Liu, Jing; Min, Yi; Zhou, Li-Ping

    2016-05-01

    Recent calculations (Mahmoud and Lugli, 2013, [21]) of gold leads sandwiching carbon chains which are separated by diphenyl-dimethyl demonstrated that the negative differential resistance (NDR) effect appears only for "odd" numbers of carbon atoms. In this paper, according to a first-principles study based on non-equilibrium Green's function combining density functional theory, we find that the NDR effect appears both for "odd" and for "even" numbers of carbon atoms when the chains are doped by nitrogen atom. Our calculations remove the restriction of "odd/even" chains for the NDR effect, which may promise the potential applications of carbon chains in the nano-scale or molecular devices in the future.

  10. Stress-rupture strength and microstructural stability of tungsten-hafnium-carbon-wire reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.

    1974-01-01

    Tungsten-hafnium-carbon - superalloy composites were found to be potentially useful for turbine blade applications on the basis of stress-rupture strength. The 100- and 1000-hr rupture strengths calculated for 70 vol. % fiber composites based on test data at 1090C (2000F) were 420 and 280 MN/m2 (61,000 and 41,000 psi, respectively). The investigation indicated that, with better quality fibers, composites having 100- and 1000-hr rupture strengths of 570 and 370 MN/m2 (82,000 and 54,000 psi, respectively), may be obtained. Metallographic studies indicated sufficient fiber-matrix compatibility for 1000 hr or more at 1090C (2000F).

  11. Migration Mechanism for Atomic Hydrogen in Porous Carbon Materials

    SciTech Connect

    Narayanan, B.; Zhao, Y. F.; Ciobanu, C. V.

    2012-05-14

    To explain the fast kinetics of H in porous carbon, we propose that the migration relies on H hopping from a carbon nanotube (CNT) to another. Using density functional theory, we have found that the barrier for H hopping becomes smaller than that for diffusion along a tube for certain CNT separations, decreasting to less than 0.5 eV for separations of -3.1 {angstrom}. Such significant reduction occurs irrespective of radius, chirality, registry, and orientation of the two CNTs: the diffusion is thus facilitated by the porous nature of the material itself. The mechanism proposed is applicable for any porous carbon-based nanomaterials.

  12. Diamond like carbon coatings: Categorization by atomic number density

    NASA Technical Reports Server (NTRS)

    Angus, John C.

    1986-01-01

    Dense diamond-like hydrocarbon films grown at the NASA Lewis Research Center by radio frequency self bias discharge and by direct ion beam deposition were studied. A new method for categorizing hydrocarbons based on their atomic number density and elemental composition was developed and applied to the diamond-like hydrocarbon films. It was shown that the diamond-like hydrocarbon films are an entirely new class of hydrocarbons with atomic number densities lying between those of single crystal diamond and adamantanes. In addition, a major review article on these new materials was completed in cooperation with NASA Lewis Research Center personnel.

  13. Molecular dynamics simulation for arrangement of nickel atoms filled in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bai, Liu; Lirui, Liu; Zhenyu, Zhao

    2014-08-01

    Carbon Nanotubes (CNTs) filled with metals can be used in capacitors, sensors, rechargeable batteries, and so on. Atomic arrangement of the metals has an important role in the function of the composites. The tips of CNTs were opened, and then nickel was filled by means of hydrothermal oxidation/ultrasonic vibration method. The tests of TEM, HREM, and EDX (energy-dispersive X-ray spectroscopy) analysis showed that Ni was filled in CNTs successfully. The atomic arrangement of nickel filled into single wall carbon nanotubes was investigated by molecular dynamics simulation. The radial distribution function and bond orientation order were established to analyze the atomic arrangement of nickel filled in carbon nanotubes during the cooling process. The results show that nickel atoms became in order gradually and preferably crystallized on the inner wall of carbon nanotubes when the temperature decreased from 1600 K. After it cooled to 100 K, the arrangement of nickel atoms in outermost circle was regular and dense, but there were many defects far from the wall of CNTs. According to the calculation of bond orientation order parameters Q6 and its visualization, the structure of nickel is Face-centered cube (f.c.c). (1,1,1)Ni was close on the inner surface of carbon nanotubes. Radial direction of CNTs was [1,1,1] crystal orientation. Axial direction of CNTs, namely, filling direction, was [1¯, 1¯,2] crystal orientation.

  14. Molecular dynamics simulation for arrangement of nickel atoms filled in carbon nanotubes

    SciTech Connect

    Bai, Liu Zhenyu, Zhao; Lirui, Liu

    2014-08-28

    Carbon Nanotubes (CNTs) filled with metals can be used in capacitors, sensors, rechargeable batteries, and so on. Atomic arrangement of the metals has an important role in the function of the composites. The tips of CNTs were opened, and then nickel was filled by means of hydrothermal oxidation/ultrasonic vibration method. The tests of TEM, HREM, and EDX (energy-dispersive X-ray spectroscopy) analysis showed that Ni was filled in CNTs successfully. The atomic arrangement of nickel filled into single wall carbon nanotubes was investigated by molecular dynamics simulation. The radial distribution function and bond orientation order were established to analyze the atomic arrangement of nickel filled in carbon nanotubes during the cooling process. The results show that nickel atoms became in order gradually and preferably crystallized on the inner wall of carbon nanotubes when the temperature decreased from 1600 K. After it cooled to 100 K, the arrangement of nickel atoms in outermost circle was regular and dense, but there were many defects far from the wall of CNTs. According to the calculation of bond orientation order parameters Q{sub 6} and its visualization, the structure of nickel is Face-centered cube (f.c.c). (1,1,1){sub Ni} was close on the inner surface of carbon nanotubes. Radial direction of CNTs was [1,1,1] crystal orientation. Axial direction of CNTs, namely, filling direction, was [1{sup ¯}, 1{sup ¯},2] crystal orientation.

  15. Designing potentials by sculpturing wires

    SciTech Connect

    Della Pietra, Leonardo; Aigner, Simon; Groth, Soenke; Hagen, Christoph von; Schmiedmayer, Joerg; Bar-Joseph, Israel; Lezec, Henri J.

    2007-06-15

    Magnetic trapping potentials for atoms on atom chips are determined by the current flow in the chip wires. By modifying the shape of the conductor we can realize specialized current flow patterns and therefore microdesign the trapping potentials. We have demonstrated this by nano-machining an atom chip using the focused ion beam technique. We built a trap, a barrier, and using a Bose-Einstein Condensate as a probe we showed that by polishing the conductor edge the potential roughness on the selected wire can be reduced. Furthermore, we give different other designs and discuss the creation of a one-dimensional magnetic lattice on an atom chip.

  16. Anode wire aging tests with selected gases

    SciTech Connect

    Kadyk, J.; Wise, J.; Hess, D.; Williams, M. )

    1990-04-01

    As a continuation of earlier wire aging investigations, additional candidates for wire chamber gas and wire have been tested. These include the gases: argon/ethane, HRS gas, dimethyl ether, carbon dioxide/ethane, and carbon tetrafluoride/isobutane. Wires used were: gold- plated tungsten, Stablohm, Nicotin, and Stainless Steel. Measurements were made of the effects upon wire aging of impurities from plumbing materials or contamination from various types of oil. Attempts were made to induce wire aging by adding measured amounts of oxygen and halogen (methyl chloride) with negative results. In this paper, the possible role of electronegativity in the wire aging process is discussed, and measurements of electronegativity are made with several single carbon Freons, using both an electron capture detector and a wire chamber operating with dimethyl ether.

  17. Integrating Carbon Nanotubes For Atomic Force Microscopy Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi; Cassell, Alan M.; Liu, Hongbing; Han, Jie; Meyyappan, Meyya

    2004-01-01

    Carbon nanotube (CNT) related nanostructures possess remarkable electrical, mechanical, and thermal properties. To produce these nanostructures for real world applications, a large-scale controlled growth of carbon nanotubes is crucial for the integration and fabrication of nanodevices and nanosensors. We have taken the approach of integrating nanopatterning and nanomaterials synthesis with traditional silicon micro fabrication techniques. This integration requires a catalyst or nanomaterial protection scheme. In this paper, we report our recent work on fabricating wafer-scale carbon nanotube AFM cantilever probe tips. We will address the design and fabrication considerations in detail, and present the preliminary scanning probe test results. This work may serve as an example of rational design, fabrication, and integration of nanomaterials for advanced nanodevice and nanosensor applications.

  18. Atomic scale simulations of vapor cooled carbon clusters

    NASA Astrophysics Data System (ADS)

    Bogana, M. P.; Colombo, L.

    2007-03-01

    By means of atomistic simulations we observed the formation of many topologically non-equivalent carbon clusters formed by the condensation of liquid droplets, including: (i) standard fullerenes and onion-like structures, (ii) clusters showing extremely complex surfaces with both positive and negative curvatures and (iii) complex endohedral structures. In this work we offer a thorough structural characterization of the above systems, as well as an attempt to correlate the resulting structure to the actual protocol of growth. The IR and Raman responses of some exotic linear carbon structures have been further investigated, finding good agreement with experimental evidence of carbinoid structures in cluster-assembled films. Towards the aim of fully understanding the process of cluster-to-cluster coalescence dynamics, we further simulated an aerosol of amorphous carbon clusters at controlled temperatures. Various annealing temperatures and times have been observed, identifying different pathways for cluster ripening, ranging from simple coalescence to extensive reconstruction.

  19. Racing carbon atoms. Atomic motion reaction coordinates and structural effects on Newtonian kinetic isotope effects.

    PubMed

    Andujar-De Sanctis, Ivonne L; Singleton, Daniel A

    2012-10-19

    Intramolecular (13)C kinetic isotope effects were determined for the dimerization of methacrolein. Trajectory studies accurately predict the isotope effects and support an origin in Newton's second law of motion, with no involvement of zero-point energy or transition state recrossing. Atomic motion reaction coordinate diagrams are introduced as a way to qualitatively understand the selectivity.

  20. Computational studies of gas phase reactions of carbon chain anions with N and O atoms.

    PubMed

    Yang, Zhibo; Snow, Theodore P; Bierbaum, Veronica M

    2010-10-28

    Experimental studies of gas phase reactions of carbanions with N and O atoms have been reported previously to understand ion chemistry relevant to the interstellar medium. In all cases reactions of anions with O atoms exhibit larger reaction rate constants compared to the corresponding N atom reactions. In addition, the open-shell carbon chain anions exhibit higher reactivities than the corresponding closed-shell species in N atom reactions, whereas similar reactivities were observed for both open and closed-shell anions in O atom reactions. These trends are investigated by the current theoretical study of the reactions of HC(n)(-)(n = 2, 4, and 6) and C(n)(-) (n = 2, 4-7) with N and O atoms. Our results indicate that spin-forbidden processes are the probable pathways in reactions of closed-shell anions HC(n)(-) with N atoms, and spin conversion limits the reaction efficiency. In reactions of open-shell anions C(n)(-) with N atoms, about 50% of the collisions may proceed through spin-allowed barrierless pathways, which results in relatively higher reaction efficiencies than for the closed-shell reactions. For reactions of all anions with O atoms, the spin-allowed barrierless pathways are the only channels, such that all reactions occur with very high efficiencies. This work provides a greater understanding of the influence of spin effects on the reactivities of anion reactions involving N and O atoms that may be important in the interstellar medium.

  1. Atomic migration of carbon in hard turned layers of carburized bearing steel

    DOE PAGESBeta

    Bedekar, Vikram; Poplawsky, Jonathan D.; Guo, Wei; Shivpuri, Rajiv; Scott Hyde, R.

    2016-01-01

    In grain finement and non-equilibrium there is carbon segregation within grain boundaries alters the mechanical performance of hard turning layers in carburized bearing steel. Moreover, an atom probe tomography (APT) study on the nanostructured hard turning layers reveals carbon migration to grain boundaries as a result of carbide decomposition during severe plastic deformation. In addition, samples exposed to different cutting speeds show that the carbon migration rate increases with the cutting speed. For these two effects lead to an ultrafine carbon network structure resulting in increased hardness and thermal stability in the severely deformed surface layer.

  2. Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Senga, Ryosuke; Komsa, Hannu-Pekka; Liu, Zheng; Hirose-Takai, Kaori; Krasheninnikov, Arkady V.; Suenaga, Kazu

    2014-11-01

    Materials with reduced dimensionality have attracted much interest in various fields of fundamental and applied science. True one-dimensional (1D) crystals with single-atom thickness have been realized only for few elemental metals (Au, Ag) or carbon, all of which showed very short lifetimes under ambient conditions. We demonstrate here a successful synthesis of stable 1D ionic crystals in which two chemical elements, one being a cation and the other an anion, align alternately inside carbon nanotubes. Unusual dynamical behaviours for different atoms in the 1D lattice are experimentally corroborated and suggest substantial interactions of the atoms with the nanotube sheath. Our theoretical studies indicate that the 1D ionic crystals have optical properties distinct from those of their bulk counterparts and that the properties can be engineered by introducing atomic defects into the chains.

  3. Atomic Step-Templated Formation of Single-Wall Carbon Nanotube Patterns

    NASA Astrophysics Data System (ADS)

    Joselevich, Ernesto; Jorio, Ado; Son, Hyungbin

    2005-03-01

    Single-wall carbon nanotubes catalytically produced on miscut C-plane sapphire wafers grow along the 0.2nm-high atomic steps of the vicinal α-Al2O3 (0001) surfaces, yielding highly aligned, dense arrays of discrete nanotubes on a dielectric material [1]. The nanotubes reproduce the atomic features of the surface, including steps, facets and kinks. Microscopy, X-ray diffraction and single-nanotube Raman spectroscopy [2] shed light into the possible structure and mechanism of the step-templated carbon nanotube growth. The orientation, density and morphology of the atomic steps can be macroscopically controlled by the crystal cutting process. Hence, these findings open up the possibility of assembling nanotube architectures by atomic-scale surface engineering. [1] A. Ismach, et al., Angew. Chem. Int. Ed. 2004, 43, 6140. [2] M. Souza, et al., Phys. Rev. B 2004, 241403R.

  4. Synthesis of novel amorphous calcium carbonate by sono atomization for reactive mixing.

    PubMed

    Kojima, Yoshiyuki; Kanai, Makoto; Nishimiya, Nobuyuki

    2012-03-01

    Droplets of several micrometers in size can be formed in aqueous solution by atomization under ultrasonic irradiation at 2 MHz. This phenomenon, known as atomization, is capable of forming fine droplets for use as a reaction field. This synthetic method is called SARM (sono atomization for reactive mixing). This paper reports on the synthesis of a novel amorphous calcium carbonate formed by SARM. The amorphous calcium carbonate, obtained at a solution concentration of 0.8 mol/dm(3), had a specific surface area of 65 m(2)/g and a composition of CaCO(3)•0.5H(2)O as determined using thermogravimetric/differential thermal analysis (TG-DTA). Because the ACC had a lower hydrate composition than conventional amorphous calcium carbonate (ACC), the ACC synthesized in this paper was very stable at room temperature.

  5. Carbon nanotube synthesis: from large-scale production to atom-by-atom growth.

    PubMed

    Journet, Catherine; Picher, Matthieu; Jourdain, Vincent

    2012-04-13

    The extraordinary electronic, thermal and mechanical properties of carbon nanotubes (CNTs) closely relate to their structure. They can be seen as rolled-up graphene sheets with their electronic properties depending on how this rolling up is achieved. However, this is not the way they actually grow. Various methods are used to produce carbon nanotubes. They all have in common three ingredients: (i) a carbon source, (ii) catalyst nanoparticles and (iii) an energy input. In the case where the carbon source is provided in solid form, one speaks about 'high temperature methods' because they involve the sublimation of graphite which does not occur below 3200 °C. The first CNTs were synthesized by these techniques. For liquid or gaseous phases, the generic term of 'medium or low temperature methods' is used. CNTs are now commonly produced by these latter techniques at temperatures ranging between 350 and 1000 °C, using metal nanoparticles that catalyze the decomposition of the gaseous carbon precursor and make the growth of nanotubes possible. The aim of this review article is to give a general overview of all these methods and an understanding of the CNT growth process. PMID:22433510

  6. Carbon nanotube synthesis: from large-scale production to atom-by-atom growth

    NASA Astrophysics Data System (ADS)

    Journet, Catherine; Picher, Matthieu; Jourdain, Vincent

    2012-04-01

    The extraordinary electronic, thermal and mechanical properties of carbon nanotubes (CNTs) closely relate to their structure. They can be seen as rolled-up graphene sheets with their electronic properties depending on how this rolling up is achieved. However, this is not the way they actually grow. Various methods are used to produce carbon nanotubes. They all have in common three ingredients: (i) a carbon source, (ii) catalyst nanoparticles and (iii) an energy input. In the case where the carbon source is provided in solid form, one speaks about ‘high temperature methods’ because they involve the sublimation of graphite which does not occur below 3200 °C. The first CNTs were synthesized by these techniques. For liquid or gaseous phases, the generic term of ‘medium or low temperature methods’ is used. CNTs are now commonly produced by these latter techniques at temperatures ranging between 350 and 1000 °C, using metal nanoparticles that catalyze the decomposition of the gaseous carbon precursor and make the growth of nanotubes possible. The aim of this review article is to give a general overview of all these methods and an understanding of the CNT growth process.

  7. Determination of cadmium in the livers and kidneys of puffins by carbon furnace atomic absorption spectrometry.

    PubMed

    Ottaway, J M; Campbell, W C

    1976-01-01

    A carbon furnace atomic absorption procedure is described for the determination of cadmium in the livers and kidneys of puffins, fratercula arctica. Samples are dried and weighed and 2 to 100 mg are dissolved in sulphuric and nitric acids. These solutions are analysed directly in the carbon furnace against aqueous standards and provide accurate results in the range 0-1 to 100 micrograms/g dry weight. The method is simple and rapid and requires much less of the small total sample than would be required for flame atomic absorption. PMID:1030692

  8. Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.

    2015-11-13

    A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100°C and up to 550°C, wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.

  9. Coke formation and carbon atom economy of methanol-to-olefins reaction.

    PubMed

    Wei, Yingxu; Yuan, Cuiyu; Li, Jinzhe; Xu, Shutao; Zhou, You; Chen, Jingrun; Wang, Quanyi; Xu, Lei; Qi, Yue; Zhang, Qing; Liu, Zhongmin

    2012-05-01

    The methanol-to-olefins (MTO) process is becoming the most important non-petrochemical route for the production of light olefins from coal or natural gas. Maximizing the generation of the target products, ethene and propene, and minimizing the production of byproducts and coke, are major considerations in the efficient utilization of the carbon resource of methanol. In the present work, the heterogeneous catalytic conversion of methanol was evaluated by performing simultaneous measurements of the volatile products generated in the gas phase and the confined coke deposition in the catalyst phase. Real-time and complete reaction profiles were plotted to allow the comparison of carbon atom economy of methanol conversion over the catalyst SAPO-34 at varied reaction temperatures. The difference in carbon atom economy was closely related with the coke formation in the SAPO-34 catalyst. The confined coke compounds were determined. A new type of confined organics was found, and these accounted for the quick deactivation and low carbon atom economy under low-reaction-temperature conditions. Based on the carbon atom economy evaluation and coke species determination, optimized operating conditions for the MTO process are suggested; these conditions guarantee high conversion efficiency of methanol.

  10. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis.

    PubMed

    Fan, Lili; Liu, Peng Fei; Yan, Xuecheng; Gu, Lin; Yang, Zhen Zhong; Yang, Hua Gui; Qiu, Shilun; Yao, Xiangdong

    2016-01-01

    Hydrogen production through electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells. Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains as a great challenge. Here we synthesize a nickel-carbon-based catalyst, from carbonization of metal-organic frameworks, to replace currently best-known platinum-based materials for electrocatalytic hydrogen evolution. This nickel-carbon-based catalyst can be activated to obtain isolated nickel atoms on the graphitic carbon support when applying electrochemical potential, exhibiting highly efficient hydrogen evolution performance with high exchange current density of 1.2 mA cm(-2) and impressive durability. This work may enable new opportunities for designing and tuning properties of electrocatalysts at atomic scale for large-scale water electrolysis. PMID:26861684

  11. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis

    PubMed Central

    Fan, Lili; Liu, Peng Fei; Yan, Xuecheng; Gu, Lin; Yang, Zhen Zhong; Yang, Hua Gui; Qiu, Shilun; Yao, Xiangdong

    2016-01-01

    Hydrogen production through electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells. Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains as a great challenge. Here we synthesize a nickel–carbon-based catalyst, from carbonization of metal-organic frameworks, to replace currently best-known platinum-based materials for electrocatalytic hydrogen evolution. This nickel-carbon-based catalyst can be activated to obtain isolated nickel atoms on the graphitic carbon support when applying electrochemical potential, exhibiting highly efficient hydrogen evolution performance with high exchange current density of 1.2 mA cm−2 and impressive durability. This work may enable new opportunities for designing and tuning properties of electrocatalysts at atomic scale for large-scale water electrolysis. PMID:26861684

  12. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  13. Atom-scale insights into carbonate organic-mineral interfaces

    NASA Astrophysics Data System (ADS)

    Branson, O.; Perea, D. E.; Spero, H. J.; Winters, M. A.; Gagnon, A.

    2015-12-01

    Biominerals are formed by the complex interaction between guiding biological structures and the kinetics of inorganic mineral growth. Inorganic crystal growth experiments have advanced our understanding of mineral precipitation in the context of biological systems, but the structure and chemistry of the mineralizing interface between these two systems has remained elusive. We have used laser-pulsed Atom Probe Tomography to reveal the first atom-scale 3D view of an organic-mineral interface in calcite produced by the planktic foraminifera Orbulina universa. We observe elevated Na and Mg throughout the organic, and a 9-fold increase in Na in the surface 2 nm of the organic layer, relative to the adjacent calcite. The surface-specificity of this Na maximum suggests that Na may play an integral role in conditioning the organic layer for calcite nucleation. Na could accomplish this by modifying surface hydration or structure, to modify organic-fluid and/or organic-calcite interfacial energies. Our data constitute the first evidence of the role of 'spectator' ions in facilitating biomineralisation, which could be an overlooked but crucial aspect of the initial steps of skeleton formation in calcifying organisms.

  14. Reaction of matrix-isolated iron atoms with carbon disulfide

    SciTech Connect

    Doeff, M.M.

    1986-07-02

    This study was undertaken to determine the type of bonding, as well as the extent of reactivity between CS/sub 2/ and iron atoms. The results of several matrix isolation experiments in which either pure CS/sub 2/ or SC/sub 2//Ar and CS/sub 2//Kr mixtures were condensed with iron atoms and studied by infrared and Moessbauer spectroscopy are presented. All the spectra indicate the presence of only one product of the reaction between Fe and CS/sub 2/ no matter what the composition of the matrix. Conditions were also such that only monomeric Fe complexes were expected; therefore, it is concluded that the complex formed in these matrices has a composition of Fe(CS/sub 2/). Results of annealing experiments carried out to determine the stability of the complex were interpreted to mean that the Fe(CS/sub 2/) formed in a 100% CS/sub 2/ matrix is stable to at least 60 K, begins to decompose between 60 and 80 K to form a new iron-containing species, and forms a very stable, nonvolatile residue at room temperature. 22 references, 1 figure.

  15. Accurate determination of atomic structure of multiwalled carbon nanotubes by nondestructive nanobeam electron diffraction

    SciTech Connect

    Liu Zejian; Zhang Qi; Qin Luchang

    2005-05-09

    We report a method that allows direct, systematic, and accurate determination of the atomic structure of multiwalled carbon nanotubes by analyzing the scattering intensities on the nonequatorial layer lines in the electron diffraction pattern. Complete structure determination of a quadruple-walled carbon nanotube is described as an example, and it was found that the intertubular distance varied from 0.36 nm to 0.5 nm with a mean value of 0.42 nm.

  16. Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage

    SciTech Connect

    Contescu, Cristian I; van Benthem, Klaus; Li, Sa; Bonifacio, Cecile S; Pennycook, Stephen J; Jena, Puru; Gallego, Nidia C

    2011-01-01

    Palladium-modified activated carbon fibers (Pd-ACF) were synthesized by meltspinning, carbonization and activation of an isotropic pitch carbon precursor premixed with an organometallic Pd compound. The hydrogen uptake at 25 oC and 20 bar on Pd- ACF exceeded the expected capacity based solely on Pd hydride formation and hydrogen physisorption on the microporous carbon support. Aberration-corrected scanning transmission electron microscopy (STEM) with sub- ngstrom spatial resolution provided unambiguous identification of isolated Pd atoms occurring in the carbon matrix that coexist with larger Pd particles. First principles calculations revealed that each single Pd atom can form Kubas-type complexes by binding up to three H2 molecules in the pressure range of adsorption measurements. Based on Pd atom concentration determined from STEM images, the contribution of various mechanisms to the excess hydrogen uptake measured experimentally was evaluated. With consideration of Kubas binding as a viable mechanism (along with hydride formation and physisorption to carbon support) the role of hydrogen spillover in this system may be smaller than previously thought.

  17. Crossed beam study of the atom-radical reaction of ground state carbon atoms (C(3P)) with the vinyl radical (C2H3(X2A')).

    PubMed

    Wilson, Antony V; Parker, Dorian S N; Zhang, Fangtong; Kaiser, Ralf I

    2012-01-14

    The atom-radical reaction of ground state carbon atoms (C((3)P)) with the vinyl radical (C(2)H(3)(X(2)A')) was conducted under single collision conditions at a collision energy of 32.3 ± 2.9 kJ mol(-1). The reaction dynamics were found to involve a complex forming reaction mechanism, which is initiated by the barrier-less addition of atomic carbon to the carbon-carbon-double bond of the vinyl radical forming a cyclic C(3)H(3) radical intermediate. The latter has a lifetime of at least 1.5 times its rotational period and decomposes via a tight exit transition state located about 45 kJ mol(-1) above the separated products through atomic hydrogen loss to the cyclopropenylidene isomer (c-C(3)H(2)) as detected toward cold molecular clouds and in star forming regions.

  18. Atomic scale observation of oxygen delivery during silver–oxygen nanoparticle catalysed oxidation of carbon nanotubes

    PubMed Central

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-01-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars–van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595

  19. The Reception of J. H. van't Hoff's Theory of the Asymmetric Carbon Atom

    ERIC Educational Resources Information Center

    Snelders, H. A. M.

    1974-01-01

    Discusses Jacobus Henricus van't Hoff's revolutionary theory of the asymmetric carbon atom and its early reception among his contemporaries in the Netherlands. Indicates that the extension of the new idea to practical problems gives the impetus to the development of stereochemistry. (CC)

  20. Atomic scale observation of oxygen delivery during silver-oxygen nanoparticle catalysed oxidation of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-07-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars-van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes.

  1. Atomic scale observation of oxygen delivery during silver-oxygen nanoparticle catalysed oxidation of carbon nanotubes.

    PubMed

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-07-13

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars-van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes.

  2. Atomic scale observation of oxygen delivery during silver-oxygen nanoparticle catalysed oxidation of carbon nanotubes.

    PubMed

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-01-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars-van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595

  3. One-Dimensional Confined Motion of Single Metal Atoms inside Double-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Warner, Jamie H.; Ito, Yasuhiro; Rümmeli, Mark H.; Gemming, Thomas; Büchner, Bernd; Shinohara, Hisanori; Briggs, G. Andrew D.

    2009-05-01

    Peapods containing La@C82 metallofullerenes are transformed into double-walled carbon nanotubes (DWNTs) using in situ electron beam irradiation at 80 kV. Using this low accelerating voltage we find no damage to the outer single-walled carbon nanotube (SWNT) within this time period and the complete formation of an inner nanotube within 5-7 min of irradiation. The La metal atoms are restricted to the interior of the inner SWNT and remain trapped. We demonstrate that energy from electron beam irradiation can drive the lateral confined motion of single La atoms. The interplay between two La atoms confined within the interior of a DWNT is examined and we find large La-La separation unique to this 1D environment. We also demonstrate the formation of TWNTs from DWNT peapods.

  4. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2000-08-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation before and/or during carbonation may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (i) its structural and chemical simplicity, (ii) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (iii) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for cost optimization of any lamellar-hydroxide-based mineral carbonation sequestration process.

  5. Spatial Distributions of Metal Atoms During Carbon SWNTs Formation: Measurements and Modelling

    NASA Technical Reports Server (NTRS)

    Cau, M.; Dorval, N.; Attal-Tretout, B.; Cochon, J. L.; Loiseau, A.; Farhat, S.; Hinkov, I.; Scott, C. D.

    2004-01-01

    Experiments and modelling have been undertaken to clarify the role of metal catalysts during single-wall carbon nanotube formation. For instance, we wonder whether the metal catalyst is active as an atom, a cluster, a liquid or solid nanoparticle [1]. A reactor has been developed for synthesis by continuous CO2-laser vaporisation of a carbon-nickel-cobalt target in laminar helium flow. The laser induced fluorescence technique [2] is applied for local probing of gaseous Ni, Co and CZ species throughout the hot carbon flow of the target heated up to 3500 K. A rapid depletion of C2 in contrast to the spatial extent of metal atoms is observed in the plume (Fig. 1). This asserts that C2 condenses earlier than Ni and Co atoms.[3, 4]. The depletion is even faster when catalysts are present. It may indicate that an interaction between metal atoms and carbon dimers takes place in the gas as soon as they are expelled from the target surface. Two methods of modelling are used: a spatially I-D calculation developed originally for the arc process [5], and a zero-D time dependent calculation, solving the chemical kinetics along the streamlines [6]. The latter includes Ni cluster formation. The peak of C2 density is calculated close to the target surface where the temperature is the highest. In the hot region, C; is dominant. As the carbon products move away from the target and mix with the ambient helium, they recombine into larger clusters, as demonstrated by the peak of C5 density around 1 mm. The profile of Ni-atom density compares fairly well with the measured one (Fig. 2). The early increase is due to the drop of temperature, and the final decrease beyond 6 mm results from Ni cluster formation at the eutectic temperature (approx.1600 K).

  6. Chemical control of electrical contact to sp² carbon atoms.

    PubMed

    Frederiksen, Thomas; Foti, Giuseppe; Scheurer, Fabrice; Speisser, Virginie; Schull, Guillaume

    2014-01-01

    Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp(2) carbon structures.

  7. Atoms in carbon cages as a source of interstellar diffuse lines

    NASA Technical Reports Server (NTRS)

    Ballester, J. L.; Antoniewicz, P. R.; Smoluchowski, R.

    1990-01-01

    A model to describe the resonance absorption lines of various atoms trapped in closed carbon cages is presented. These systems may be responsible for some of the as yet unexplained diffuse interstellar bands. Model potentials for possible atom-C60 systems are obtained and used to calculate the resonance lines. The trapped atoms considered are O, N, Si, Mg, Al, Na, and S, and in all cases the resonance lines are shifted toward the red as compared to the isolated atoms. The calculated wavelengths are compared to the range of wavelengths observed for the diffuse interstellar bands, and good agreement is found for Mg and Si resonance lines. Other lines may be caused by other than resonance transitions or by trapped molecules. The oscillator strengths and the abundances are evaluated and compared with observation. Mechanisms to explain the observed band width of the lines and the existence of certain correlated pairs of lines are discussed.

  8. Wire Wise.

    ERIC Educational Resources Information Center

    Swanquist, Barry

    1998-01-01

    Discusses how today's technology is encouraging schools to invest in furnishings that are adaptable to computer use and telecommunications access. Explores issues concerning modularity, wiring management, ergonomics, durability, price, and aesthetics. (GR)

  9. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter; K. Streib

    1999-09-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg(OH){sub 2} carbonation is a leading process candidate, which generates the stable naturally occurring mineral magnesite (MgCO{sub 3}) and water. Key to process cost and viability are the carbonation reaction rate and its degree of completion. This process, which involves simultaneous dehydroxylation and carbonation is very promising, but far from optimized. In order to optimize the dehydroxylation/carbonation process, an atomic-level understanding of the mechanisms involved is needed. Since Mg(OH){sub 2} dehydroxylation is intimately associated with the carbonation process, its mechanisms are also of direct interest in understanding and optimizing the process. In the first project year, our investigations have focused on developing an atomic-level understanding of the dehydroxylation/carbonation reaction mechanisms that govern the overall carbonation reaction process in well crystallized material. In years two and three, we will also explore the roles of crystalline defects and impurities. Environmental-cell, dynamic high-resolution transmission electron microscopy has been used to directly observe the dehydroxylation process at the atomic-level for the first time. These observations were combined with advanced computational modeling studies to better elucidate the atomic-level process. These studies were combined with direct carbonation studies to better elucidate dehydroxylation/carbonation reaction mechanisms. Dehydroxylation follows a lamellar nucleation and growth process involving oxide layer formation. These layers form lamellar oxyhydroxide regions, which can

  10. 78 FR 76653 - Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... reviews were such that full reviews pursuant to section 751(c)(5) of the Act should proceed (78 FR 60316... Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and Tobago, and Ukraine... from Brazil, Indonesia, Mexico, Moldova, Trinidad and Tobago, and Ukraine. AGENCY: United...

  11. 78 FR 60316 - Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... both that the domestic interested party group response to its notice of institution (78 FR 33103, June... Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and Tobago, and Ukraine..., Indonesia, Mexico, Moldova, Trinidad and Tobago, and Ukraine would be likely to lead to continuation...

  12. 78 FR 33103 - Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ... (``Commerce'') issued a countervailing duty order on imports of wire rod from Brazil (67 FR 64871). On October..., Mexico, Moldova, Trinidad and Tobago, and Ukraine (67 FR 65944-65947). Following the five-year reviews by..., Mexico, Moldova, Trinidad and Tobago, and Ukraine (73 FR 44218). The Commission is now conducting...

  13. 76 FR 33218 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Initiation of Anti-Circumvention Inquiry of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... and Tobago, and Ukraine, 67 FR 65945 (October 29, 2002) (Wire Rod Order). Alternatively, petitioners... steel; and (e) concrete reinforcing bars and rods. Also excluded are (f) free machining steel products... lead, 0.05 percent or more of bismuth, 0.08 percent or more of sulfur, more than 0.04 percent...

  14. 78 FR 28190 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Certain Alloy Steel Wire Rod From Mexico, 67 FR 55800 (August 30, 2002). Notification to Importers This... Antidumping Duty Administrative Review; 2010- 2011, 77 FR 66954 (November 8, 2012) (Preliminary Results... Ukraine, 67 FR 65945 (October 29, 2002), remains dispositive. On October 1, 2012, the Department...

  15. Atomic-layer-deposition-assisted formation of carbon nanoflakes on metal oxides and energy storage application.

    PubMed

    Guan, Cao; Zeng, Zhiyuan; Li, Xianglin; Cao, Xiehong; Fan, Yu; Xia, Xinhui; Pan, Guoxiang; Zhang, Hua; Fan, Hong Jin

    2014-01-29

    Nanostructured carbon is widely used in energy storage devices (e.g., Li-ion and Li-air batteries and supercapacitors). A new method is developed for the generation of carbon nanoflakes on various metal oxide nanostructures by combining atomic layer deposition (ALD) and glucose carbonization. Various metal oxide@nanoflake carbon (MO@f-C) core-branch nanostructures are obtained. For the mechanism, it is proposed that the ALD Al2 O3 and glucose form a composite layer. Upon thermal annealing, the composite layer becomes fragmented and moves outward, accompanied by carbon deposition on the alumina skeleton. When tested as electrochemical supercapacitor electrode, the hierarchical MO@f-C nanostructures exhibit better properties compared with the pristine metal oxides or the carbon coating without ALD. The enhancement can be ascribed to increased specific surface areas and electric conductivity due to the carbon flake coating. This peculiar carbon coating method with the unique hierarchical nanostructure may provide a new insight into the preparation of 'oxides + carbon' hybrid electrode materials for energy storage applications.

  16. Theoretical realization of cluster-assembled hydrogen storage materials based on terminated carbon atomic chains.

    PubMed

    Liu, Chun-Sheng; An, Hui; Guo, Ling-Ju; Zeng, Zhi; Ju, Xin

    2011-01-14

    The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.

  17. Confinement induced binding in noble gas atoms within a BN-doped carbon nanotube

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2015-02-01

    Confinement induced binding interaction patterns for noble gas atoms (Hen/m, Arn, Krn; n = 2, m = 3) atoms inside pristine and -BN doped (3, 3) single walled carbon nanotube (SWCNT) have been studied through density functional theory calculations. The kinetic stability for He dimer and trimer has been investigated at 100 K and 300 K through an ab initio molecular dynamics simulation. The positive role of doping in SWCNT in enhancing the nature of interaction as well as the kinetic stability of the said systems has been found.

  18. Transfer impedance measurements of the space shuttle Solid Rocket Motor (SRM) joints, wire meshes and a carbon graphite motor case

    NASA Technical Reports Server (NTRS)

    Papazian, Peter B.; Perala, Rodney A.; Curry, John D.; Lankford, Alan B.; Keller, J. David

    1988-01-01

    Using three different current injection methods and a simple voltage probe, transfer impedances for Solid Rocket Motor (SRM) joints, wire meshes, aluminum foil, Thorstrand and a graphite composite motor case were measured. In all cases, the surface current distribution for the particular current injection device was calculated analytically or by finite difference methods. The results of these calculations were used to generate a geometric factor which was the ratio of total injected current to surface current density. The results were validated in several ways. For wire mesh measurements, results showed good agreement with calculated results for a 14 by 18 Al screen. SRM joint impedances were independently verified. The filiment wound case measurement results were validated only to the extent that their curve shape agrees with the expected form of transfer impedance for a homogeneous slab excited by a plane wave source.

  19. Angular distribution of photoelectrons from atomic oxygen, nitrogen and carbon. [in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Manson, S. J.; Kennedy, D. J.; Starace, A. F.; Dill, D.

    1974-01-01

    The angular distributions of photoelectrons from atomic oxygen, nitrogen, and carbon are calculated. Both Hartree-Fock and Hartree-Slater (Herman-Skillman) wave functions are used for oxygen, and the agreement is excellent; thus only Hartree-Slater functions are used for carbon and nitrogen. The pitch-angle distribution of photoelectrons is discussed, and it is shown that previous approximations of energy-independent isotropic or sin squared theta distributions are at odds with the authors' results, which vary with energy. This variation with energy is discussed, as is the reliability of these calculations.

  20. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  1. The interaction between Boron-carbon-nitride heteronanotubes and lithium atoms: Role of composition proportion

    NASA Astrophysics Data System (ADS)

    Zhong, Rong-Lin; Xu, Hong-Liang; Su, Zhong-Min

    2016-08-01

    A series of Li@BCN models were systematically investigated to explore the physical origin of the interaction between lithium atoms and BCNs. Theoretical results show that the crucial electron population in the BCNs of Li@B-BCN and Li@N-BCN series is dramatically different. As results, the first hyperpolarizability of Li@B-BCN series increases with the increase of carbon proportion whereas that of Li@N-BCN series significantly decreases with the increase of carbon proportion. The results indicate that the physical properties of Li@BCN models are significantly dependent on the different chemical environment of the tube termination.

  2. A Molecular Dynamics of Cold Neutral Atoms Captured by Carbon Nanotube Under Electric Field and Thermal Effect as a Selective Atoms Sensor.

    PubMed

    Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C

    2015-05-01

    Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor.

  3. Interaction of scandium and titanium atoms with a carbon surface containing five- and seven-membered rings

    SciTech Connect

    Krasnov, P. O.; Eliseeva, N. S.; Kuzubov, A. A.

    2012-01-15

    The use of carbon nanotubes coated by atoms of transition metals to store molecular hydrogen is associated with the problem of the aggregation of these atoms, which leads to the formation of metal clusters. The quantum-chemical simulation of cluster models of the carbon surface of a graphene type with scandium and titanium atoms has been performed. It has been shown that the presence of five- and seven-membered rings, in addition to six-membered rings, in these structures makes it possible to strongly suppress the processes of the migration of metal atoms over the surface, preventing their clustering.

  4. Atomic configuration of nitrogen-doped single-walled carbon nanotubes.

    PubMed

    Arenal, Raul; March, Katia; Ewels, Chris P; Rocquefelte, Xavier; Kociak, Mathieu; Loiseau, Annick; Stéphan, Odile

    2014-10-01

    Having access to the chemical environment at the atomic level of a dopant in a nanostructure is crucial for the understanding of its properties. We have performed atomically resolved electron energy-loss spectroscopy to detect individual nitrogen dopants in single-walled carbon nanotubes and compared with first-principles calculations. We demonstrate that nitrogen doping occurs as single atoms in different bonding configurations: graphitic-like and pyrrolic-like substitutional nitrogen neighboring local lattice distortion such as Stone-Thrower-Wales defects. We also show that the largest fraction of nitrogen amount is found in poly aromatic species that are adsorbed on the surface of the nanotube walls. The stability under the electron beam of these nanotubes has been studied in two different cases of nitrogen incorporation content and configuration. These findings provide key information for the applications of these nanostructures.

  5. Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization.

    PubMed

    Farmer, Damon B; Gordon, Roy G

    2006-04-01

    Alternating exposures of nitrogen dioxide gas and trimethylaluminum vapor are shown to functionalize the surfaces of single-walled carbon nanotubes with a self-limited monolayer. Functionalized nanotube surfaces are susceptible to atomic layer deposition of continuous, radially isotropic material. This allows for the creation of coaxial nanotube structures of multiple materials with precisely controlled diameters. Functionalization involves only weak physical bonding, avoiding covalent modification, which should preserve the unique optical, electrical, and mechanical properties of the nanotubes. PMID:16608267

  6. Controlled fabrication of theophylline imprinted polymers on multiwalled carbon nanotubes via atom transfer radical polymerization.

    PubMed

    Xu, Jianxiong; Gao, Yong; Li, Huaming

    2011-02-01

    Theophylline imprinted polymers were synthesized on the surface of multiwalled carbon nanotubes via atom transfer radical polymerization using brominated multiwalled carbon nanotubes as an initiator. The nanotube-based initiator was prepared by directly reacting acyl chloride-modified multiwalled carbon nanotubes with 2-hydroxylethyl-2'-bromoisobutyrate. The grafting copolymerization of 2-hydroxyethyl-2-methyl-2-propenoate and ethylene glycol dimethacrylate in the presence of template theophylline led to thin molecularly imprinted polymer films coating multiwalled carbon nanotubes. The thickness of molecularly imprinted polymer films prepared in this study was about 5 nm as determined by transmission electron microscopy. Fourier-transform infrared spectroscopy was utilized to follow the introduction of initiator groups as well as polymers on the carbon nanotube surfaces. Thermogravimetric analysis indicated that the molecularly imprinted polymers were successfully grown from the carbon nanotube surfaces, with the final products having a polymer weight percentage of ca. 50 wt%. The adsorption properties, such as adsorption dynamics, special binding and selective recognition capacity, of the as-prepared molecularly imprinted polymer films were evaluated. The results demonstrated that the composite of molecularly imprinted polymers and multiwalled carbon nanotubes not only possessed a rapid dynamics but also exhibited a good selectivity toward theophylline, compared to caffeine.

  7. Miniaturized dielectric barrier discharge carbon atomic emission spectrometry with online microwave-assisted oxidation for determination of total organic carbon.

    PubMed

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-07-01

    A simple, rapid, and portable system consisted of a laboratory-built miniaturized dielectric barrier discharge atomic emission spectrometer and a microwave-assisted persulfate oxidation reactor was developed for sensitive flow injection analysis or continuous monitoring of total organic carbon (TOC) in environmental water samples. The standard/sample solution together with persulfate was pumped to the reactor to convert organic compounds to CO2, which was separated from liquid phase and transported to the spectrometer for detection of the elemental specific carbon atomic emission at 193.0 nm. The experimental parameters were systematically investigated. A limit of detection of 0.01 mg L(-1) (as C) was obtained based on a 10 mL sample injection volume, and the precision was better than 6.5% (relative standard deviation, RSD) at 0.1 mg L(-1). The system was successfully applied for TOC analysis of real environmental water samples. The obtained TOC value of 30 test samples agreed well with those by the standard high-temperature combustion coupled nondispersive infrared absorption method. Most importantly, the system showed good capability of in situ continuous monitoring of total organic carbon in environmental water.

  8. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2002-11-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation, before and/or during carbonation, may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (1) its structural and chemical simplicity, (2) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (3) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for minimizing the cost of any lamellar-hydroxide-based mineral carbonation sequestration process. This final report covers the overall progress of this grant.

  9. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2001-10-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation, before and/or during carbonation, may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (i) its structural and chemical simplicity, (ii) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (iii) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for minimizing the cost of any lamellar-hydroxide-based mineral carbonation sequestration process. This report covers the third year progress of this grant, as well as providing an integrated overview of the progress in years 1-3, as we have been granted a one-year no-cost extension to wrap up a few studies and publications to optimize project impact.

  10. Development of carbon electrodes for electrochemistry, solid-state electronics and multimodal atomic force microscopy imaging

    NASA Astrophysics Data System (ADS)

    Morton, Kirstin Claire

    Carbon is one of the most remarkable elements due to its wide abundance on Earth and its many allotropes, which include diamond and graphite. Many carbon allotropes are conductive and in recent decades scientists have discovered and synthesized many new forms of carbon, including graphene and carbon nanotubes. The work in this thesis specifically focuses on the fabrication and characterization of pyrolyzed parylene C (PPC), a conductive pyrocarbon, as an electrode material for diodes, as a conductive coating for atomic force microscopy (AFM) probes and as an ultramicroelectrode (UME) for the electrochemical interrogation of cellular systems in vitro. Herein, planar and three-dimensional (3D) PPC electrodes were microscopically, spectroscopically and electrochemically characterized. First, planar PPC films and PPC-coated nanopipettes were utilized to detect a model redox species, Ru(NH3) 6Cl3. Then, free-standing PPC thin films were chemically doped, with hydrazine and concentrated nitric acid, to yield p- and n-type carbon films. Doped PPC thin films were positioned in conjunction with doped silicon to create Schottky and p-n junction diodes for use in an alternating current half-wave rectifier circuit. Pyrolyzed parylene C has found particular merit as a 3D electrode coating of AFM probes. Current sensing-atomic force microscopy imaging in air of nanoscale metallic features was undertaken to demonstrate the electronic imaging applicability of PPC AFM probes. Upon further insulation with parylene C and modification with a focused ion beam, a PPC UME was microfabricated near the AFM probe apex and utilized for electrochemical imaging. Subsequently, scanning electrochemical microscopy-atomic force microscopy imaging was undertaken to electrochemically quantify and image the spatial location of dopamine exocytotic release, elicited mechanically via the AFM probe itself, from differentiated pheochromocytoma 12 cells in vitro.

  11. Investigation of the Interactions and Bonding between Carbon and Group VIII Metals at the Atomic Scale.

    PubMed

    Zoberbier, Thilo; Chamberlain, Thomas W; Biskupek, Johannes; Suyetin, Mikhail; Majouga, Alexander G; Besley, Elena; Kaiser, Ute; Khlobystov, Andrei N

    2016-03-23

    The nature and dynamics of bonding between Fe, Ru, Os, and single-walled carbon nanotubes (SWNTs) is studied by aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM). The metals catalyze a wide variety of different transformations ranging from ejection of carbon atoms from the nanotube sidewall to the formation of hollow carbon shells or metal carbide within the SWNT, depending on the nature of the metal. The electron beam of AC-HRTEM serves the dual purpose of providing energy to the specimen and simultaneously enabling imaging of chemical transformations. Careful control of the electron beam parameters, energy, flux, and dose allowed direct comparison between the metals, demonstrating that their chemical reactions with SWNTs are determined by a balance between the cohesive energy of the metal particles and the strength of the metal-carbon σ- or π-bonds. The pathways of transformations of a given metal can be drastically changed by applying different electron energies (80, 40, or 20 keV), thus demonstrating AC-HRTEM as a new tool to direct and study chemical reactions. The understanding of interactions and bonding between SWNT and metals revealed by AC-HRTEM at the atomic level has important implications for nanotube-based electronic devices and catalysis.

  12. Effect of cooling rate after hot rolling and of multistage strain aging on the drawability of low-carbon-steel wire rod

    NASA Astrophysics Data System (ADS)

    Taheri, A. Karimi; Maccagno, T. M.; Jonas, J. J.

    1995-05-01

    Tensile testing was used to simulate the multistage strain aging occurring in low-C steel during the relatively short intervals between dies in a multiple-die wire-drawing machine. The effects were examined of three simulated post-hot-rolling cooling rates and three thermal treatments on the strain-aging susceptibility of a high- and a low-N steel. This was measured by applying a 6 pct tensile strain, followed by aging at either 65° or 100 °C for 20 seconds, and then pulling the specimen to failure at room temperature. Increases in flow stress and decreases in the elongation to fracture both indicated high susceptibility to strain aging. It was found that the nitrogen content, the cooling rate from the hot-rolling temperature to about 300 °C, as well as the cooling rate below 300 °C, all have dramatic effects on the strain-aging behavior. Moreover, multistage strain aging is more severe than single-stage strain aging. The implications of these observations on increasing the drawability of low-carbon-steel wire are discussed.

  13. Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries

    PubMed Central

    Chen, Yu Ming; Yu, Xin Yao; Li, Zhen; Paik, Ungyu; Lou, Xiong Wen (David)

    2016-01-01

    Molybdenum disulfide (MoS2), a typical two-dimensional material, is a promising anode material for lithium-ion batteries because it has three times the theoretical capacity of graphite. The main challenges associated with MoS2 anodes are the structural degradation and the low rate capability caused by the low intrinsic electric conductivity and large strain upon cycling. Here, we design hierarchical MoS2 tubular structures internally wired by carbon nanotubes (CNTs) to tackle these problems. These porous MoS2 tubular structures are constructed from building blocks of ultrathin nanosheets, which are believed to benefit the electrochemical reactions. Benefiting from the unique structural and compositional characteristics, these CNT-wired MoS2 tubular structures deliver a very high specific capacity of ~1320 mAh g−1 at a current density of 0.1 A g−1, exceptional rate capability, and an ultralong cycle life of up to 1000 cycles. This work may inspire new ideas for constructing high-performance electrodes for electrochemical energy storage. PMID:27453938

  14. Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries.

    PubMed

    Chen, Yu Ming; Yu, Xin Yao; Li, Zhen; Paik, Ungyu; Lou, Xiong Wen David

    2016-07-01

    Molybdenum disulfide (MoS2), a typical two-dimensional material, is a promising anode material for lithium-ion batteries because it has three times the theoretical capacity of graphite. The main challenges associated with MoS2 anodes are the structural degradation and the low rate capability caused by the low intrinsic electric conductivity and large strain upon cycling. Here, we design hierarchical MoS2 tubular structures internally wired by carbon nanotubes (CNTs) to tackle these problems. These porous MoS2 tubular structures are constructed from building blocks of ultrathin nanosheets, which are believed to benefit the electrochemical reactions. Benefiting from the unique structural and compositional characteristics, these CNT-wired MoS2 tubular structures deliver a very high specific capacity of ~1320 mAh g(-1) at a current density of 0.1 A g(-1), exceptional rate capability, and an ultralong cycle life of up to 1000 cycles. This work may inspire new ideas for constructing high-performance electrodes for electrochemical energy storage. PMID:27453938

  15. Artificial neural network approach for atomic coordinate prediction of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Acı, Mehmet; Avcı, Mutlu

    2016-07-01

    In this paper, four artificial neural network (ANN) models [i.e., feed-forward neural network (FFNN), function fitting neural network (FITNET), cascade-forward neural network (CFNN) and generalized regression neural network] have been developed for atomic coordinate prediction of carbon nanotubes (CNTs). The research reported in this study has two primary objectives: (1) to develop ANN prediction models that calculate atomic coordinates of CNTs instead of using any simulation software and (2) to use results of the ANN models as an initial value of atomic coordinates for reducing number of iterations in calculation process. The dataset consisting of 10,721 data samples was created by combining the atomic coordinates of elements and chiral vectors using BIOVIA Materials Studio CASTEP (CASTEP) software. All prediction models yield very low mean squared normalized error and mean absolute error rates. Multiple correlation coefficient (R) results of FITNET, FFNN and CFNN models are close to 1. Compared with CASTEP, calculation times decrease from days to minutes. It would seem possible to predict CNTs' atomic coordinates using ANN models can be successfully used instead of mathematical calculations.

  16. No Wires.

    ERIC Educational Resources Information Center

    DeLoughry, Thomas J.

    1995-01-01

    The University of California at Santa Cruz has completed a successful test of a wireless computer network that would enable students and professors to get on line from anywhere on campus. The network, linked by radio waves, could save millions of dollars in campus wiring costs and would better meet student and faculty information needs. (MSE)

  17. First principles study of foreign interstitial atom (carbon, nitrogen) interactions with intrinsic defects in tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Shan; You, Yu-Wei; Song, Chi; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.; Liu, C. S.

    2012-11-01

    We performed a series of first-principles calculations to investigate the foreign interstitial atom (FIA) interactions with intrinsic defects in tungsten. We found the following: (i) The introduction of the FIA reduces the vacancy formation energy, resulting in the increase of the equilibrium concentration of vacancies. (ii) The positive binding energy between two FIAs suggests that the FIA can attract other FIAs. (iii) The FIA is easily trapped by the vacancy, and a single vacancy can accommodate up to 4 and 6 atoms in a stable manner for carbon and nitrogen, respectively. (iv) There is an attraction interaction between the FIA and the self-interstitial atom (SIA), and the FIA can reduce the SIA jump frequency and enhance the formation of SIA clusters in tungsten. Moreover, the difference between carbon and nitrogen are also discussed with respect to the formation of FIA-FIA covalent bond and the accumulation around the saturated -, where d is the ith nearest-neighbor (inn) solute-tungsten distance before relaxation and ▵di=(di-d) is the change in distance due to relaxation. The calculated relaxations are presented in Table 3. The relaxations of 1nn of octahedral interstitial carbon and nitrogen atoms are 23.30% and 22.42%, respectively, which are greatly larger than the relaxations of other nearest-neighbor atoms (0.1-2%). These results indicate that the influence range of FIA is very local. The lattice distortions introduced by the octahedral interstitial carbon or nitrogen atom can be characterized by determining the dipolar tensor from Kanzaki forces. Here, to obtain the dipolar tensor, we adopt a similar calculation procedure as used in Ref. [14], where the dipolar tensor P is calculated from the Kanzaki forces on all the tungsten atoms. The detailed procedure could be found in Ref. [14]. Due to the symmetry of the configuration, the dipolar tensor has two independent values: P11 and P33, which are listed in Table 3. Similarly with Ref. [14], approximate

  18. Design-atom approach for the quantum mechanical/molecular mechanical covalent boundary: a design-carbon atom with five valence electrons.

    PubMed

    Xiao, Chuanyun; Zhang, Yingkai

    2007-09-28

    A critical issue underlying the accuracy and applicability of the combined quantum mechanical/molecular mechanical (QM/MM) methods is how to describe the QM/MM boundary across covalent bonds. Inspired by the ab initio pseudopotential theory, here we introduce a novel design atom approach for a more fundamental and transparent treatment of this QM/MM covalent boundary problem. The main idea is to replace the boundary atom of the active part with a design atom, which has a different number of valence electrons but very similar atomic properties. By modifying the Troullier-Martins scheme, which has been widely employed to construct norm-conserving pseudopotentials for density functional calculations, we have successfully developed a design-carbon atom with five valence electrons. Tests on a series of molecules yield very good structural and energetic results and indicate its transferability in describing a variety of chemical bonds, including double and triple bonds.

  19. Bridged single-walled carbon nanotube-based atomic-scale mass sensors

    NASA Astrophysics Data System (ADS)

    Ali-Akbari, H. R.; Shaat, M.; Abdelkefi, A.

    2016-08-01

    The potentials of carbon nanotubes (CNTs) as mechanical resonators for atomic-scale mass sensing are presented. To this aim, a nonlocal continuum-based model is proposed to study the dynamic behavior of bridged single-walled carbon nanotube-based mass nanosensors. The carbon nanotube (CNT) is considered as an elastic Euler-Bernoulli beam with von Kármán type geometric nonlinearity. Eringen's nonlocal elastic field theory is utilized to model the interatomic long-range interactions within the structure of the CNT. This developed model accounts for the arbitrary position of the deposited atomic-mass. The natural frequencies and associated mode shapes are determined based on an eigenvalue problem analysis. An atom of xenon (Xe) is first considered as a specific case where the results show that the natural frequencies and mode shapes of the CNT are strongly dependent on the location of the deposited Xe and the nonlocal parameter of the CNT. It is also indicated that the first vibrational mode is the most sensitive when the mass is deposited at the middle of a single-walled carbon nanotube. However, when deposited in other locations, it is demonstrated that the second or third vibrational modes may be more sensitive. To investigate the sensitivity of bridged single-walled CNTs as mass sensors, different noble gases are considered, namely Xe, argon (Ar), and helium (He). It is shown that the sensitivity of the single-walled CNT to the Ar and He gases is much lower than the Xe gas due to the significant decrease in their masses. The derived model and performed analysis are so needed for mass sensing applications and particularly when the detected mass is randomly deposited.

  20. Influence of atomic vacancies on the dynamic characteristics of nanoresonators based on double walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Patel, Ajay M.; Joshi, Anand Y.

    2015-06-01

    The dynamic analysis of double walled carbon nanotubes (DWCNTs) with different boundary conditions has been performed using atomistic finite element method. The double walled carbon nanotube is modeled considering it as a space frame structure similar to a three dimensional beam. The elastic properties of beam element are calculated by considering mechanical characteristics of covalent bonds between the carbon atoms in the hexagonal lattice. Spring elements are used to describe the interlayer interactions between the inner and outer tubes caused due to the van der Waals forces. The mass of each beam element is assumed as point mass at nodes coinciding with carbon atoms at inner and outer wall of DWCNT. It has been reported that atomic vacancies are formed during the manufacturing process in DWCNT which tend to migrate leading to a change in the mechanical characteristics of the same. Simulations have been carried out to visualize the behavior of such defective DWCNTs subjected to different boundary conditions and when used as mass sensing devices. The variation of such atomic vacancies in outer wall of Zigzag and Armchair DWCNT is performed along the length and the change in response is noted. Moreover, as CNTs have been used as mass sensors extensively, the present approach is focused to explore the use of zigzag and armchair DWCNT as sensing device with a mono-atomic vacancy in it. The results clearly state that the dynamic characteristics are greatly influenced by defects like vacancies in it. A higher frequency shift is observed when the vacancy is located away from the fixed end for both Armchair as well as zigzag type of CNTs. A higher frequency shift is reported for armchair CNT for a mass of 10-22 g which remains constant for 10-21 g and then decreases gradually. Comparison with the other experimental and theoretical studies exhibits good association which suggests that defective DWCNTs can further be explored for mass sensing. This investigation is helpful

  1. Oxidized carbon nitrides: water-dispersible, atomically thin carbon nitride-based nanodots and their performances as bioimaging probes.

    PubMed

    Oh, Junghoon; Yoo, Ran Ji; Kim, Seung Yeon; Lee, Yong Jin; Kim, Dong Wook; Park, Sungjin

    2015-04-13

    Three-dimensional (3D) carbon nitride (C3 N4 )-based materials show excellent performance in a wide range of applications because of their suitable band structures. To realize the great promise of two-dimensional (2D) allotropes of various 3D materials, it is highly important to develop routes for the production of 2D C3 N4 materials, which are one-atom thick, in order to understand their intrinsic properties and identify their possible applications. In this work, water-dispersible, atomically thin, and small carbon nitride nanodots were produced using the chemical oxidation of graphitic C3 N4 . Various analyses, including X-ray diffraction, X-ray photoelectron, Fourier-transform infrared spectroscopy, and combustion-based elemental analysis, and thermogravimetric analysis, confirmed the production of 3D oxidized C3 N4 materials. The 2D C3 N4 nanodots were successfully exfoliated as individual single layers; their lateral dimension was several tens of nanometers. They showed strong photoluminescence in the visible region as well as excellent performances as cell-imaging probes in an in vitro study using confocal fluorescence microscopy.

  2. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface

    SciTech Connect

    Erikat, I. A.; Hamad, B. A.

    2013-11-07

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir–C and Ir–Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  3. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface.

    PubMed

    Erikat, I A; Hamad, B A

    2013-11-01

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  4. Atomic layer deposition encapsulated activated carbon electrodes for high voltage stable supercapacitors.

    PubMed

    Hong, Kijoo; Cho, Moonkyu; Kim, Sang Ouk

    2015-01-28

    Operating voltage enhancement is an effective route for high energy density supercapacitors. Unfortunately, widely used activated carbon electrode generally suffers from poor electrochemical stability over 2.5 V. Here we present atomic layer deposition (ALD) encapsulation of activated carbons for high voltage stable supercapacitors. Two-nanometer-thick Al2O3 dielectric layers are conformally coated at activated carbon surface by ALD, well-maintaining microporous morphology. Resultant electrodes exhibit excellent stability at 3 V operation with 39% energy density enhancement from 2.5 V operation. Because of the protection of surface functional groups and reduction of electrolyte degradation, 74% of initial voltage was maintained 50 h after full charge, and 88% of capacitance was retained after 5000 cycles at 70 °C accelerated test, which correspond to 31 and 17% improvements from bare activated carbon, respectively. This ALD-based surface modification offers a general method to enhance electrochemical stability of carbon materials for diverse energy and environmental applications.

  5. Atomic scale enhancement of the adhesion of beryllium films to carbon substrates

    SciTech Connect

    Musket, R.G.; Wirtenson, G.R.

    1995-12-01

    We have used 200 keV carbon ions to enhance the adhesion of 240-nm thick Be films to polished, vitreous carbon substrates. Adhesion of the as-deposited films was below that necessary to pass the scotch-tape test. Carbon ion fluences less than 1.6x10{sup 14} C/cm{sup 2} were sufficient to ensure the passage of the tape test without affecting the optical properties of the films. Adhesion failure of the as-deposited film was attributed to an inner oxide layer between the Be and the carbon. Because this oxide ({approximately}5 nm of BeO) was not measurably changed by the irradiation process, these results are consistent with adhesion enhancement occurring on the atomic scale at the interface between the inner oxide and the carbon substrate. This conclusion was supported by Rutherford backscattering (RBS) data, and potential adhesion mechanisms are discussed with consideration of relative contributions from electronic and nuclear stopping.

  6. Tetragonality and the distribution of carbon atoms in the Fe-C martensite: Molecular-dynamics simulation

    NASA Astrophysics Data System (ADS)

    Chirkov, P. V.; Mirzoev, A. A.; Mirzaev, D. A.

    2016-01-01

    In the statistical theory of the ordering of carbon atoms in the z sublattice of martensite, the most important role is played by the parameter of the strain interaction of carbon atoms λ0, which determines the critical temperature of the bcc-bct transition. The values of this parameter (6-11 eV/atom) obtained in recent years by the methods of computer simulation differ significantly from the value λ0 = 2.73 eV/atom obtained by A. G. Khachaturyan. In this article, we calculated the value of λ0 by two methods based on the molecular-dynamics simulation of the ordering of carbon atoms in the lattice of martensite at temperatures of 500, 750, 900, and 1000 K in a wide range of carbon concentrations, which includes c crit. No tails of ordering below c crit have been revealed. It has been shown analytically that there is an inaccuracy in the Khachaturyan theory of ordering for the crystal in an elastic environment. After eliminating this inaccuracy, no tails of the order parameter appear; the tetragonality changes jumpwise from η = 0 to ηcrit = 0.75 at c crit = 2.9 kT/λ0 instead of ηcrit = 0.5 and c crit= 2.77 kT/λ0 for an isolated crystal. Upon the simulation, clustering of carbon atoms was revealed in the form of platelike pileups along {102} planes separated by flat regions where no carbon atoms were present. The influence of short-range order in the arrangement of neighboring carbon atoms on the thermodynamics of ordering is discussed.

  7. Inelastic and reactive scattering of hyperthermal atomic oxygen from amorphous carbon

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.; Nelson, Christine M.; Brinza, David E.; Liang, Ranty H.

    1991-01-01

    The reaction of hyperthermal oxygen atoms with an amorphous carbon-13 surface was studied using a modified universal crossed molecular beams apparatus. Time-of-flight distributions of inelastically scattered O-atoms and reactively scattered CO-13 and CO2-13 were measured with a rotatable mass spectrometer detector. Two inelastic scattering channels were observed, corresponding to a direct inelastic process in which the scattered O-atoms retain 20 to 30 percent of their initial kinetic energy and to a trapping desorption process whereby O-atoms emerge from the surface at thermal velocities. Reactive scattering data imply the formation of two kinds of CO products, slow products whose translational energies are determined by the surface temperature and hyperthermal (Approx. 3 eV) products with translational energies comprising roughly 30 percent of the total available energy (E sub avl), where E sub avl is the sum of the collision energy and the reaction exothermicity. Angular data show that the hyperthermal CO is scattered preferentially in the specular direction. CO2 product was also observed, but at much lower intensities than CO and with only thermal velocities.

  8. First Analysis of Radiative Properties of Moderate-atomic-number Planar Wire Arrays on Zebra at UNR at Higher Current of 1.7 MA*

    NASA Astrophysics Data System (ADS)

    Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Astanovitskiy, A.; Legalloudec, B.; Presura, R.; Shrestha, I.; Williamson, K. M.; Shlyaptseva, V.; Weller, M. E.; Ouart, N. D.; Keim, S. F.; Osborne, G. C.; Chuvatin, A. S.; Coverdale, C. A.

    2010-11-01

    The analysis of implosions of Cu and Ag planar wire array (PWA) loads recently performed at the enhanced 1.7 MA Zebra generator at UNR is presented. Experiments were performed with a Load Current Multiplier with a 1cm anode-cathode gap (twice shorter than in a standard 1 MA mode). A full diagnostic set included more than ten different beam-lines with the major focus on time-gated and time-integrated x-ray imaging and spectra, total radiation yields, and fast, filtered x-ray detector data. In particular, the experimental results for a double PWA load consisting of twelve 10μm Cu wires in each row (total mass M ˜ 175 μg) and a much heavier single PWA load consisting of ten 30μm Ag wires (M ˜ 750 μg) were analyzed using a set of theoretical codes. The effects of both a decreased a-c gap and an increased current on radiative properties of these loads are discussed. * This work was supported by NNSA/DOE Coop. Agr. DE-FC52-06NA27588, 27586, and 27616. Sandia is a multi-program laboratory operated by Sandia Co., a LMC, for the US DOE under Contract DE-AC04-94AL85000.

  9. Imaging the elastic properties of coiled carbon nanotubes with atomic force microscopy

    PubMed

    Volodin; Ahlskog; Seynaeve; Van Haesendonck C; Fonseca; Nagy

    2000-04-10

    Coiled carbon nanotubes were produced catalytically by thermal decomposition of hydrocarbon gas. After deposition on a silicon substrate, the three-dimensional structure of the helix-shaped multiwalled nanotubes can be visualized with atomic force microscopy. Helical structures of both chiralities are present in the nanotube deposits. For larger coil diameters ( >170 nm), force modulation microscopy allows one to probe the local elasticity along the length of the coil. Our results agree with the classical theory of elasticity. Similar to the case of straight nanotubes, the Young modulus of coiled multiwalled nanotubes remains comparable to the very high Young modulus of hexagonal graphene sheets.

  10. STM Images of Atomic-Scale Carbon Nanotube Defects Produced by Ar+ Irradiation

    SciTech Connect

    Osvath, Z.; Vertesy, G.; Tapaszto, L.; Weber, F.; Horvath, Z.E.; Gyulai, J.; Biro, L.P.

    2005-09-27

    Multi-wall carbon nanotubes (MWCNTs) dispersed on graphite (HOPG) substrate were irradiated with Ar+ ions of 30 keV, using a low-dose of D 5x1011 ions/cm2. The irradiated samples were investigated by scanning tunneling microscopy (STM) under ambient conditions. Atomic resolution STM images reveal individual nanotube defects, which appear as hillocks of 1-2 angstroms in height, due to the locally changed electronic structure. After annealing at 450 deg. C in nitrogen atmosphere, the irradiated MWCNTs were investigated again by STM. The effect of the heat treatment on the irradiation-induced nanotube defects is also discussed.

  11. Fabrication process of carbon nanotube field effect transistors using atomic layer deposition passivation for biosensors.

    PubMed

    Nakashima, Yasuhiro; Ohno, Yutaka; Kishimoto, Shigeru; Okochi, Mina; Honda, Hiroyuki; Mizutani, Takashi

    2010-06-01

    Fabrication process of the carbon nanotube (CNT) field effect transistors (FETs) for biosensors was studied. Atomic layer deposition (ALD) of HfO2 was applied to the deposition of the passivation/gate insulator film. The CNT-FETs did not show the drain current degradation after ALD passivation even though the passivation by Si3N4 deposited by plasma-enhanced chemical vapor deposition (PECVD) resulted in a significant drain current decrease. This indicates the advantage of the present ALD technique in terms of the damage suppression. The biosensing operation was confirmed using thus fabricated CNT-FETs. PMID:20355371

  12. Synthesis and characterization of carbon fibers functionalized with poly (glycidyl methacrylate) via atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Wu, Yongwei; Xiong, Lei; Qin, Xiaokang; Wang, Zhengyue; Ding, Bei; Ren, Huan; Pi, Xiaolong

    2015-07-01

    In this work, polyacrylonitrile (PAN)-based carbon fibers (CF) were chemically modified with poly (glycidyl methacrylate) (PGMA) via atom transfer radical polymerization (ATRP) to improve the interaction between the CF and polymer matrix. The FT-IR, TGA, and XPS were used to determine the chemical structure of the resulting products and the quantities of PGMA chains grafted from the CF surface. The experimental results confirm that the CF surface was functionalized and glycidyl methacrylate was graft-polymerized onto the CF, and the grafting content of polymer could reach 10.2%.

  13. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.

    1992-01-01

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  14. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  15. Branched aliphatic alkanes with quaternary substituted carbon atoms in modern and ancient geologic samples

    PubMed Central

    Kenig, Fabien; Simons, Dirk-Jan H.; Crich, David; Cowen, James P.; Ventura, Gregory T.; Rehbein-Khalily, Tatiana; Brown, Todd C.; Anderson, Ken B.

    2003-01-01

    A pseudohomologous series of branched aliphatic alkanes with a quaternary substituted carbon atom (BAQCs, specifically 2,2-dimethylalkanes and 3,3- and 5,5-diethylalkanes) were identified in warm (65°C) deep-sea hydrothermal waters and Late Cretaceous black shales. 5,5-Diethylalkanes were also observed in modern and Holocene marine shelf sediments and in shales spanning the last 800 million years of the geological record. The carbon number distribution of BAQCs indicates a biological origin. These compounds were observed but not identified in previous studies of 2.0 billion- to 2.2 billion-year-old metasediments and were commonly misidentified in other sediment samples, indicating that BAQCs are widespread in the geological record. The source organisms of BAQCs are unknown, but their paleobiogeographic distribution suggests that they have an affinity for sulfides and might be nonphotosynthetic sulfide oxidizers. PMID:14551322

  16. Branched aliphatic alkanes with quaternary substituted carbon atoms in modern and ancient geologic samples.

    PubMed

    Kenig, Fabien; Simons, Dirk-Jan H; Crich, David; Cowen, James P; Ventura, Gregory T; Rehbein-Khalily, Tatiana; Brown, Todd C; Anderson, Ken B

    2003-10-28

    A pseudohomologous series of branched aliphatic alkanes with a quaternary substituted carbon atom (BAQCs, specifically 2,2-dimethylalkanes and 3,3- and 5,5-diethylalkanes) were identified in warm (65 degrees C) deep-sea hydrothermal waters and Late Cretaceous black shales. 5,5-Diethylalkanes were also observed in modern and Holocene marine shelf sediments and in shales spanning the last 800 million years of the geological record. The carbon number distribution of BAQCs indicates a biological origin. These compounds were observed but not identified in previous studies of 2.0 billion- to 2.2 billion-year-old metasediments and were commonly misidentified in other sediment samples, indicating that BAQCs are widespread in the geological record. The source organisms of BAQCs are unknown, but their paleobiogeographic distribution suggests that they have an affinity for sulfides and might be nonphotosynthetic sulfide oxidizers. PMID:14551322

  17. Branched aliphatic alkanes with quaternary substituted carbon atoms in modern and ancient geologic samples.

    SciTech Connect

    Kenig, F.; Simons, D.-J. H.; Crich, D.; Cowen, J. P.; Ventura, G. T.; Rehbein-Khalily, T.; Brown, T. C.; Anderson, K. B.; Chemistry; Univ. of Illinois at Chicago; Univ. of Hawaii

    2003-01-01

    A pseudohomologous series of branched aliphatic alkanes with a quaternary substituted carbon atom (BAQCs, specifically 2,2-di-methylalkanes and 3,3- and 5,5-diethylalkanes) were identified in warm (65{sup o}C) deep-sea hydrothermal waters and Late Cretaceous black shales. 5,5-Diethylalkanes were also observed in modern and Holocene marine shelf sediments and in shales spanning the last 800 million years of the geological record. The carbon number distribution of BAQCs indicates a biological origin. These compounds were observed but not identified in previous studies of 2.0 billion- to 2.2 billion-year-old metasediments and were commonly misidentified in other sediment samples, indicating that BAQCs are widespread in the geological record. The source organisms of BAQCs are unknown, but their paleobiogeographic distribution suggests that they have an affinity for sulfides and might be nonphotosynthetic sulfide oxidizers.

  18. Sc3CH@C80: selective (13)C enrichment of the central carbon atom.

    PubMed

    Junghans, Katrin; Rosenkranz, Marco; Popov, Alexey A

    2016-05-01

    Sc3CH@C80 is synthesized and characterized by (1)H, (13)C, and (45)Sc NMR. A large negative chemical shift of the proton, -11.73 ppm in the Ih and -8.79 ppm in the D5h C80 cage isomers, is found. (13)C satellites in the (1)H NMR spectrum enabled indirect determination of the (13)C chemical shift for the central carbon at 173 ± 1 ppm. Intensity of the satellites allowed determination of the (13)C content for the central carbon atom. This unique possibility is applied to analyze the cluster/cage (13)C distribution in mechanistic studies employing either (13)CH4 or (13)C powder to enrich Sc3CH@C80 with (13)C. PMID:27109443

  19. Vibration measurements of a wire scanner - Experimental setup and models

    NASA Astrophysics Data System (ADS)

    Herranz, Juan; Barjau, Ana; Dehning, Bernd

    2016-03-01

    In the next years the luminosity of the LHC will be significantly increased. This will require a much higher accuracy of beam profile measurement than actually achievable by the current wire scanner. The new performance demands a wire travelling speed up to 20 m s-1 and a position measurement accuracy of the order of 1 μm. The vibrations of the mechanical parts of the system and particularly the vibrations of the thin carbon wire have been identified as the major error sources of wire position uncertainty. Therefore the understanding of the wire vibrations has been given high priority for the design and operation of the new device. This article presents a new strategy to measure the wire vibrations based on the piezoresistive effect of the wire itself. An electronic readout system based on a Wheatstone bridge is used to measure the variation of the carbon wire resistance, which is directly proportional to the wire elongation caused by the oscillations.

  20. Stretchable Wire-Shaped Asymmetric Supercapacitors Based on Pristine and MnO2 Coated Carbon Nanotube Fibers.

    PubMed

    Xu, Ping; Wei, Bingqing; Cao, Zeyuan; Zheng, Jie; Gong, Ke; Li, Faxue; Yu, Jianyong; Li, Qingwen; Lu, Weibang; Byun, Joon-Hyung; Kim, Byung-Sun; Yan, Yushan; Chou, Tsu-Wei

    2015-06-23

    While the emerging wire-shaped supercapacitors (WSS) have been demonstrated as promising energy storage devices to be implemented in smart textiles, challenges in achieving the combination of both high mechanical stretchability and excellent electrochemical performance still exist. Here, an asymmetric configuration is applied to the WSS, extending the potential window from 0.8 to 1.5 V, achieving tripled energy density and doubled power density compared to its asymmetric counterpart while accomplishing stretchability of up to 100% through the prestrainning-then-buckling approach. The stretchable asymmetric WSS constituted of MnO2/CNT hybrid fiber positive electrode, aerogel CNT fiber negative electrode and KOH-PVA electrolyte possesses a high specific capacitance of around 157.53 μF cm(-1) at 50 mV s(-1) and a high energy density varying from 17.26 to 46.59 nWh cm(-1) with the corresponding power density changing from 7.63 to 61.55 μW cm(-1). Remarkably, a cyclic tensile strain of up to 100% exerts negligible effects on the electrochemical performance of the stretchable asymmetric WSS. Moreover, after 10,000 galvanostatic charge-discharge cycles, the specific capacitance retains over 99%, demonstrating a long cyclic stability.

  1. Stretchable Wire-Shaped Asymmetric Supercapacitors Based on Pristine and MnO2 Coated Carbon Nanotube Fibers.

    PubMed

    Xu, Ping; Wei, Bingqing; Cao, Zeyuan; Zheng, Jie; Gong, Ke; Li, Faxue; Yu, Jianyong; Li, Qingwen; Lu, Weibang; Byun, Joon-Hyung; Kim, Byung-Sun; Yan, Yushan; Chou, Tsu-Wei

    2015-06-23

    While the emerging wire-shaped supercapacitors (WSS) have been demonstrated as promising energy storage devices to be implemented in smart textiles, challenges in achieving the combination of both high mechanical stretchability and excellent electrochemical performance still exist. Here, an asymmetric configuration is applied to the WSS, extending the potential window from 0.8 to 1.5 V, achieving tripled energy density and doubled power density compared to its asymmetric counterpart while accomplishing stretchability of up to 100% through the prestrainning-then-buckling approach. The stretchable asymmetric WSS constituted of MnO2/CNT hybrid fiber positive electrode, aerogel CNT fiber negative electrode and KOH-PVA electrolyte possesses a high specific capacitance of around 157.53 μF cm(-1) at 50 mV s(-1) and a high energy density varying from 17.26 to 46.59 nWh cm(-1) with the corresponding power density changing from 7.63 to 61.55 μW cm(-1). Remarkably, a cyclic tensile strain of up to 100% exerts negligible effects on the electrochemical performance of the stretchable asymmetric WSS. Moreover, after 10,000 galvanostatic charge-discharge cycles, the specific capacitance retains over 99%, demonstrating a long cyclic stability. PMID:25961131

  2. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suit Gas Processing System (GPS) Carbon Dioxide Scrubber

    NASA Technical Reports Server (NTRS)

    Gundersen, Cynthia; Hoffman, Christopher; Munoz, Bruno; Steohenson, Timothy; Thomas, Walter

    2008-01-01

    In support of the GPS for the SAM instrument suite built by GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr wire, 0.0056 inches in diameter, for use as a heater element for the carbon dioxide scrubber. The wire would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The wire also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni-20Cr in low pressure CO2, together with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the wire reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  3. Carbon-, sulfur-, and phosphorus-based charge transfer reactions in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.

    2016-01-01

    In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

  4. Conformal atomic layer deposition of alumina on millimeter tall, vertically-aligned carbon nanotube arrays.

    PubMed

    Stano, Kelly L; Carroll, Murphy; Padbury, Richard; McCord, Marian; Jur, Jesse S; Bradford, Philip D

    2014-11-12

    Atomic layer deposition (ALD) can be used to coat high aspect ratio and high surface area substrates with conformal and precisely controlled thin films. Vertically aligned arrays of multiwalled carbon nanotubes (MWCNTs) with lengths up to 1.5 mm were conformally coated with alumina from base to tip. The nucleation and growth behaviors of Al2O3 ALD precursors on the MWCNTs were studied as a function of CNT surface chemistry. CNT surfaces were modified through a series of post-treatments including pyrolytic carbon deposition, high temperature thermal annealing, and oxygen plasma functionalization. Conformal coatings were achieved where post-treatments resulted in increased defect density as well as the extent of functionalization, as characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. Using thermogravimetric analysis, it was determined that MWCNTs treated with pyrolytic carbon and plasma functionalization prior to ALD coating were more stable to thermal oxidation than pristine ALD coated samples. Functionalized and ALD coated arrays had a compressive modulus more than two times higher than a pristine array coated for the same number of cycles. Cross-sectional energy dispersive X-ray spectroscopy confirmed that Al2O3 could be uniformly deposited through the entire thickness of the vertically aligned MWCNT array by manipulating sample orientation and mounting techniques. Following the ALD coating, the MWCNT arrays demonstrated hydrophilic wetting behavior and also exhibited foam-like recovery following compressive strain.

  5. Effects of ions and atomic hydrogen in plasma-assisted growth of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Denysenko, I.; Ostrikov, K.; Yu, M. Y.; Azarenkov, N. A.

    2007-10-01

    The growth of single-walled carbon nanotubes (SWCNTs) in plasma-enhanced chemical vapor deposition (PECVD) is studied using a surface diffusion model. It is shown that at low substrate temperatures (⩽1000K), the atomic hydrogen and ion fluxes from the plasma can strongly affect nanotube growth. The ion-induced hydrocarbon dissociation can be the main process that supplies carbon atoms for SWCNT growth and is responsible for the frequently reported higher (compared to thermal chemical vapor deposition) nanotube growth rates in plasma-based processes. On the other hand, excessive deposition of plasma ions and atomic hydrogen can reduce the diffusion length of the carbon-bearing species and their residence time on the nanotube lateral surfaces. This reduction can adversely affect the nanotube growth rates. The results here are in good agreement with the available experimental data and can be used for optimizing SWCNT growth in PECVD.

  6. Three-wire magnetic trap for direct forced evaporative cooling

    NASA Astrophysics Data System (ADS)

    Du, Shengwang; Oh, Eun

    2009-01-01

    We propose a simple three-wire-based magnetic trap potential for direct forced evaporative cooling of neutral atoms without using induced spin-flip technologies. We have devised a method for controlling the trap depth without sacrificing its frequencies by only varying wire currents and external magnetic fields. By having multiples of these wires on different levels integrated into an atom chip, it is possible to attain Bose-Einstein condensation without the conventional forced evaporation technique.

  7. DFT study of Fe-Ni core-shell nanoparticles: Stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth

    SciTech Connect

    Yang, Zhimin; Wang, Qiang Shan, Xiaoye; Zhu, Hongjun; Li, Wei-qi; Chen, Guang-hui

    2015-02-21

    Metal catalysts play an important role in the nucleation and growth of single-walled carbon nanotubes (SWCNTs). It is essential for probing the nucleation and growth mechanism of SWCNTs to fundamentally understand the properties of the metal catalysts and their interaction with carbon species. In this study, we systematically studied the stability of 13- and 55-atom Fe and Fe-Ni core-shell particles as well as these particles interaction with the carbon atoms using the density functional theory calculations. Icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stability than the corresponding monometallic Fe and Ni particles. Opposite charge transfer (or distribution) in these particles leads to the Fe surface-shell displays a positive charge, while the Ni surface-shell exhibits a negative charge. The opposite charge transfer would induce different chemical activities. Compared with the monometallic Fe and Ni particles, the core-shell bimetallic particles have weaker interaction with C atoms. More importantly, C atoms only prefer staying on the surface of the bimetallic particles. In contrast, C atoms prefer locating into the subsurface of the monometallic particles, which is more likely to form stable metal carbides. The difference of the mono- and bimetallic particles on this issue may result in different nucleation and growth mechanism of SWCNTs. Our findings provide useful insights for the design of bimetallic catalysts and a better understanding nucleation and growth mechanism of SWCNTs.

  8. DFT study of Fe-Ni core-shell nanoparticles: Stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Yang, Zhimin; Wang, Qiang; Shan, Xiaoye; Li, Wei-qi; Chen, Guang-hui; Zhu, Hongjun

    2015-02-01

    Metal catalysts play an important role in the nucleation and growth of single-walled carbon nanotubes (SWCNTs). It is essential for probing the nucleation and growth mechanism of SWCNTs to fundamentally understand the properties of the metal catalysts and their interaction with carbon species. In this study, we systematically studied the stability of 13- and 55-atom Fe and Fe-Ni core-shell particles as well as these particles interaction with the carbon atoms using the density functional theory calculations. Icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stability than the corresponding monometallic Fe and Ni particles. Opposite charge transfer (or distribution) in these particles leads to the Fe surface-shell displays a positive charge, while the Ni surface-shell exhibits a negative charge. The opposite charge transfer would induce different chemical activities. Compared with the monometallic Fe and Ni particles, the core-shell bimetallic particles have weaker interaction with C atoms. More importantly, C atoms only prefer staying on the surface of the bimetallic particles. In contrast, C atoms prefer locating into the subsurface of the monometallic particles, which is more likely to form stable metal carbides. The difference of the mono- and bimetallic particles on this issue may result in different nucleation and growth mechanism of SWCNTs. Our findings provide useful insights for the design of bimetallic catalysts and a better understanding nucleation and growth mechanism of SWCNTs.

  9. Selective determination of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by atomic-absorption spectrometry with a carbon-tube atomizer.

    PubMed

    Kamada, T; Yamamoto, Y

    1977-05-01

    The extraction behaviour of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of frameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of antimony(III) and differential determination of antimony(III) and antimony(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone, when the aqueous phase/solvent volume ratio is 50 ml/10 ml and the injection volume in the carbon tube is 20 mul, the sensitivity for antimony is 0.2 ng/ml for 1% absorption. The relative standard deviations are ca. 2%. Interferences by many metal ions can be prevented by masking with EDTA. The proposed methods have been applied satisfactorily to determination of antimony(III) and antimony(V) in various types of water. PMID:18962096

  10. Atomic force microscopy of silica nanoparticles and carbon nanohorns in macrophages and red blood cells

    SciTech Connect

    Tetard, Laurene; Passian, Ali; Farahi, R H; Thundat, Thomas George

    2010-01-01

    The emerging interest in understanding the interactions of nanomaterial with biological systems necessitates imaging tools that capture the spatial and temporal distributions and attributes of the resulting nano-bil amalgam. Studies targeting organ specific response and/ot nanoparticle-specific system toxicity would be profoundly benefited from tools that would allow imaging and tracking of in-vivo or in-vitro processes and particle-fate studies. Recently we demonstrated that mode systhesizing atomic force microscopy (MSAFM) can provide subsurface nanoscale informations on the mechanical properties of materials at the nanoscale. However, the underlying mechanism of this imaging methodology is currently subject to theoretical and experimental investigation. In this paper we present further analysis by investigating tip-sample excitation forces associated with nanomechanical image formation. Images and force curves acquired under various operational frequencies and amplitudes are presented. We examine samples of mouse cells, where buried distributions of single-walled carbon nanohorns and silica nanoparticles are visualized.

  11. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes.

    PubMed

    Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa; Park, Hyung Gyu; Utke, Ivo

    2014-01-01

    Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.

  12. Influence of Force Acting on Side Face of Carbon Nanotube in Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Akita, Seiji; Nishijima, Hidehiro; Kishida, Takayoshi; Nakayama, Yoshikazu

    2000-06-01

    We have examined the nanomechanics of a carbon nanotube by a manipulation technique using a scanning electron microscope. Young’s modulus of the nanotube, estimated from the buckling under force acting on the axial direction of the nanotube, agrees well with the value estimated from the bending under force acting on the side face. This indicates that the nanotube can be treated as an isotropic material in conventional mechanics. The adhesion force between the side face of the nanotube and a pit wall in a 4.7 GB digital versatile disk is estimated to be ˜10 nN using atomic force microscopy. This value is 160 times less than the value estimated using force curve measurement. This discrepancy is due to the finding that the value estimated from the force curve includes not only the adhesion but also the friction force.

  13. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes

    PubMed Central

    Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa

    2014-01-01

    Summary Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays. PMID:24778944

  14. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes.

    PubMed

    Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa; Park, Hyung Gyu; Utke, Ivo

    2014-01-01

    Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays. PMID:24778944

  15. FORMATION OF FORMALDEHYDE AND CARBON DIOXIDE ON AN ICY GRAIN ANALOG USING FAST HYDROGEN ATOMS

    SciTech Connect

    Madzunkov, S. M.; MacAskill, J. A.; Chutjian, A.; Darrach, M. R.; Vidali, G.; Shortt, B. J.

    2009-05-20

    Formaldehyde (H{sub 2}CO) and carbon dioxide (CO{sub 2}) were produced in collisions of a superthermal, 3 eV beam of H({sup 2}S) atoms with CO molecules adsorbed on a gold surface at 4.8 K. The reaction-generated products were detected and analyzed using the techniques of temperature programmed desorption (TPD), quadrupole mass spectrometry, and a novel application of the Metropolis algorithm, random-walk procedure to identify the unique fractionation patterns of H{sub 2}CO and CO{sub 2} from the patterns of other species such as N{sub 2}, CO, and H{sub 2}O embedded in the CO blanket and devolved in the TPD/mass spectrometry process. Reaction sequences are given to account for the formation of H{sub 2}CO and CO{sub 2}.

  16. Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels.

    PubMed

    King, Jeffrey S; Wittstock, Arne; Biener, Juergen; Kucheyev, Sergei O; Wang, Yinmin M; Baumann, Theodore F; Giri, Sandeep K; Hamza, Alex V; Baeumer, Marcus; Bent, Stacey F

    2008-08-01

    Using atomic layer deposition (ALD), we show that Pt nanoparticles can be deposited on the inner surfaces of carbon aerogels (CA). The resultant Pt-loaded materials exhibit high catalytic activity for the oxidation of CO even at loading levels as low as approximately 0.05 mg Pt/cm2. We observe a conversion efficiency of nearly 100% in the 150-250 degrees C temperatures range, and the total conversion rate seems to be limited only by the thermal stability of the CA support in ambient oxygen. The ALD approach described here is universal in nature, and can be applied to the design of new catalytic materials for a variety of applications, including fuel cells, hydrogen storage, pollution control, green chemistry, and liquid fuel production.

  17. High density harp or wire scanner for particle beam diagnostics

    DOEpatents

    Fritsche, C.T.; Krogh, M.L.

    1996-05-21

    Disclosed is a diagnostic detector head harp used to detect and characterize high energy particle beams using an array of closely spaced detector wires, typically carbon wires, spaced less than 0.1 cm (0.040 inch) connected to a hybrid microcircuit formed on a ceramic substrate. A method to fabricate harps to obtain carbon wire spacing and density not previously available utilizing hybrid microcircuit technology. The hybrid microcircuit disposed on the ceramic substrate connects electrically between the detector wires and diagnostic equipment which analyzes pulses generated in the detector wires by the high energy particle beams. 6 figs.

  18. High density harp or wire scanner for particle beam diagnostics

    DOEpatents

    Fritsche, Craig T.; Krogh, Michael L.

    1996-05-21

    A diagnostic detector head harp (23) used to detect and characterize high energy particle beams using an array of closely spaced detector wires (21), typically carbon wires, spaced less than 0.1 cm (0.040 inch) connected to a hybrid microcircuit (25) formed on a ceramic substrate (26). A method to fabricate harps (23) to obtain carbon wire spacing and density not previously available utilizing hybrid microcircuit technology. The hybrid microcircuit (25) disposed on the ceramic substrate (26) connects electrically between the detector wires (21) and diagnostic equipment (37) which analyzes pulses generated in the detector wires (21) by the high energy particle beams.

  19. In situ study of erosion and deposition of amorphous hydrogenated carbon films by exposure to a hydrogen atom beam

    SciTech Connect

    Markelj, Sabina; Pelicon, Primoz; Cadez, Iztok; Schwarz-Selinger, Thomas; Jacob, Wolfgang

    2012-07-15

    This paper reports on the first dual-beam experiment employing a hydrogen atom beam for sample exposure and an ion beam for analysis, enabling in situ and real-time studies of hydrogen atom interaction with materials. The erosion of an amorphous hydrogenated carbon (a-C:H) layer by deuterium atoms at 580 K sample temperature was studied and the uptake of deuterium during the erosion process was measured in real time. The deuterium areal density increased at the beginning to 7.3 Multiplication-Sign 10{sup 15} D cm{sup -2}, but then stabilized at a constant value of 5.5 Multiplication-Sign 10{sup 15} D cm{sup -2}. Formation of a polymer-like deposit on an a-C:H layer held at room temperature and subjected to the deuterium atom beam was observed and also studied in situ. For both erosion and deposition studies an a-{sup 13}C:H layer on top of an Si substrate was used as a sample, making the experiments isotopically fully specified and thereby differentiating the deposited from the original layer and the interacting D atoms from H atoms present in the layer and in the residual vacuum. From the deposition study it was shown that carbon in the deposited layer originates from carbon-carrying species in the background vacuum that interact with hydrogen atoms. The areal density of the carbon at the surface was determined from the energy shift of the Si edge in the Rutherford backscattering spectrum. The cross section for {sup 7}Li on D at 4.3 MeV Li ion energy and at a recoil angle of 30 Degree-Sign was also determined to be (236 {+-} 16) Multiplication-Sign 10{sup -27} cm{sup 2}/sr. This is a factor of 3 {+-} 0.2 times higher than the Rutherford elastic cross section.

  20. Self-trapping of carbon atoms in α'-Fe during the martensitic transformation: A qualitative picture from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ruban, A. V.

    2014-10-01

    Strain-induced and chemical interactions of interstitial carbon atoms in bcc or α-Fe are obtained in first-principles calculations. Subsequent Monte Carlo simulations show that at low temperatures, carbon atoms prefer to occupy at least two different octahedral sublattices, which is due to quite strong attractive interactions of carbon atoms at the corresponding coordination shells. The direct total-energy calculations of one of the obtained ordered structures with composition Fe16C2, show that it is more stable than the predicted earlier structure with the same composition but carbon atoms occupying only one octahedral sublattice. This indicates that the long-existing thermodynamic mean-field theory of ordering of carbon in α-Fe assuming strong preference of carbon atoms to occupy only one octahedral sublattice is deficient. It is shown that the presence of carbon atoms only at one octahedral sublattice in the experimentally observed martensitic phase, α'-Fe, is a self-trapping effect. It occurs during a displacive martensitic transformation from γ- to α-Fe, which kinematically transfers the carbon atoms from a single fcc octahedral sublattice to one of three octahedral sublattices, where they appear to be locked by a consequent tetragonal distortion minimizing elastic energy of the phase. The latter creates a strong preference for carbon atoms to be only at one already occupied octahedral sublattice preventing them from further distribution over the other sublattices.

  1. Torsional Deformations in Subnanometer MoS Interconnecting Wires.

    PubMed

    Koh, Ai Leen; Wang, Shanshan; Ataca, Can; Grossman, Jeffrey C; Sinclair, Robert; Warner, Jamie H

    2016-02-10

    We use aberration-corrected transmission electron microscopy to track the real time atomic level torsional dynamics of subnanometer wires of MoS interconnecting monolayer regions of MoS2. An in situ heating holder is used inside the transmission electron microscope to raise the temperature of the sample to 400 °C to increase crystallization rates of the wires and reduce contamination effects. Frequent rotational twisting of the MoS wire is captured, demonstrating elastic torsional deformation of the MoS wires. We show that torsional rotations of the crystal structure of the MoS wires depend upon the specific atomic structure of the anchored sections of the suspended wire and the number of unit cells that make up the wire length. Elastic torsional flexibility of the MoS wires is revealed to help their self-adapting connectivity during the structural changes. Plastic torsional deformation is also seen for MoS wires that contain defects in their crystal structure, which produce small scale rotational disorder within the wires. Upon removal of the defects, the wire returns back to pristine form. These results provide detailed insights into how the atomic structure of the anchoring site significantly influences the nanowire configurations relative to the monolayered MoS2. PMID:26785319

  2. Aligned Carbon Nanotube Array Functionalization for Enhanced Atomic Layer Deposition of Platinum Electrocatalysts

    SciTech Connect

    Dameron, A. A.; Pylypenko, S.; Bult, J. B.; Neyerlin, K. C.; Engtrakul, C.; Bochert, C.; Leong, G. J.; Frisco, S. L.; Simpson, L.; Dinh, H. N.; Pivovar, B.

    2012-04-15

    Uniform metal deposition onto high surface area supports is a key challenge of developing successful efficient catalyst materials. Atomic layer deposition (ALD) circumvents permeation difficulties, but relies on gas-surface reactions to initiate growth. Our work demonstrates that modified surfaces within vertically aligned carbon nanotube (CNT) arrays, from plasma and molecular precursor treatments, can lead to improved catalyst deposition. Gas phase functionalization influences the number of ALD nucleation sites and the onset of ALD growth and, in turn, affects the uniformity of the coating along the length of the CNTs within the aligned arrays. The induced chemical changes for each functionalization route are identified by X-ray photoelectron and Raman spectroscopies. The most effective functionalization routes increase the prevalence of oxygen moieties at defect sites on the carbon surfaces. The striking effects of the functionalization are demonstrated with ALD Pt growth as a function of surface treatment and ALD cycles examined by electron microscopy of the arrays and the individual CNTs. Finally, we demonstrate applicability of these materials as fuel cell electrocatalysts and show that surface functionalization affects their performance towards oxygen reduction reaction.

  3. Windows: Life after Wire.

    ERIC Educational Resources Information Center

    Razwick, Jerry

    2003-01-01

    Although wired glass is extremely common in school buildings, the International Building Code adopted new standards that eliminate the use of traditional wired glass in K-12 schools, daycare centers, and athletic facilities. Wired glass breaks easily, and the wires can cause significant injuries by forming dangerous snags when the glass breaks.…

  4. In vitro comparison of the hemocompatibility of diamond-like carbon and carbon nitride coatings with different atomic percentages of N.

    PubMed

    Zhao, Mengli; Li, Dejun; Zhang, Yiteng; Guo, Meixian; Deng, Xiangyun; Gu, Hanqing; Wan, Rongxin

    2012-04-01

    Carbon nitride (CN( x )) and diamond-like carbon (DLC) coatings were prepared by dc magnetron sputtering at room temperature. Different partial pressures of N(2) were used to synthesize CN( x ) to evaluate the relationship between the atomic percentage of nitrogen and hemocompatibility. Auger electron spectroscopy and atomic force microscopy indicated atomic percentages of N of 0.12 and 0.22 and that the CN( x ) coatings were smooth. An in vitro study of the hemocompatibility of the coatings revealed that both CN( x ) coatings had better anticoagulant properties and lower platelet adhesion than DLC. Compared with CN(0.12), the CN(0.22) coating showed longer dynamic clotting time (about 42 min), static clotting time (23.6 min) and recalcification time (45.6 s), as well as lower platelet adhesion (102 cells μm(-2)), aggregation, and activation. The presence of nitrogen in the CN( x ) coatings induced their enhanced hemocompatibility compared with DLC.

  5. Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition

    SciTech Connect

    Lushington, Andrew; Liu, Jian; Tang, Yongji; Li, Ruying; Sun, Xueliang

    2014-01-15

    The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10 wt. % ozone at temperatures of 150, 250, and 300 °C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTs was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.

  6. Dynamics of carbon-hydrogen and carbon-methyl exchanges in the collision of {sup 3}P atomic carbon with propene

    SciTech Connect

    Lee, Shih-Huang Chen, Wei-Kan; Chin, Chih-Hao; Huang, Wen-Jian

    2013-11-07

    We investigated the dynamics of the reaction of {sup 3}P atomic carbon with propene (C{sub 3}H{sub 6}) at reactant collision energy 3.8 kcal mol{sup −1} in a crossed molecular-beam apparatus using synchrotron vacuum-ultraviolet ionization. Products C{sub 4}H{sub 5}, C{sub 4}H{sub 4}, C{sub 3}H{sub 3}, and CH{sub 3} were observed and attributed to exit channels C{sub 4}H{sub 5} + H, C{sub 4}H{sub 4} + 2H, and C{sub 3}H{sub 3} + CH{sub 3}; their translational-energy distributions and angular distributions were derived from the measurements of product time-of-flight spectra. Following the addition of a {sup 3}P carbon atom to the C=C bond of propene, cyclic complex c-H{sub 2}C(C)CHCH{sub 3} undergoes two separate stereoisomerization mechanisms to form intermediates E- and Z-H{sub 2}CCCHCH{sub 3}. Both the isomers of H{sub 2}CCCHCH{sub 3} in turns decompose to C{sub 4}H{sub 5} + H and C{sub 3}H{sub 3} + CH{sub 3}. A portion of C{sub 4}H{sub 5} that has enough internal energy further decomposes to C{sub 4}H{sub 4} + H. The three exit channels C{sub 4}H{sub 5} + H, C{sub 4}H{sub 4} + 2H, and C{sub 3}H{sub 3} + CH{sub 3} have average translational energy releases 13.5, 3.2, and 15.2 kcal mol{sup −1}, respectively, corresponding to fractions 0.26, 0.41, and 0.26 of available energy deposited to the translational degrees of freedom. The H-loss and 2H-loss channels have nearly isotropic angular distributions with a slight preference at the forward direction particularly for the 2H-loss channel. In contrast, the CH{sub 3}-loss channel has a forward and backward peaked angular distribution with an enhancement at the forward direction. Comparisons with reactions of {sup 3}P carbon atoms with ethene, vinyl fluoride, and vinyl chloride are stated.

  7. Activation of extended red emission photoluminescence in carbon solids by exposure to atomic hydrogen and UV radiation

    NASA Technical Reports Server (NTRS)

    Furton, Douglas G.; Witt, Adolf N.

    1993-01-01

    We report on new laboratory results which relate directly to the observation of strongly enhanced extended red emission (ERE) by interstellar dust in H2 photodissociation zones. The ERE has been attributed to photoluminescence by hydrogenated amorphous carbon (HAC). We are demonstrating that exposure to thermally dissociated atomic hydrogen will restore the photoluminescence efficiency of previously annealed HAC. Also, pure amorphous carbon (AC), not previously photoluminescent, can be induced to photoluminesce by exposure to atomic hydrogen. This conversion of AC into HAC is greatly enhanced by the presence of UV irradiation. The presence of dense, warm atomic hydrogen and a strong UV radiation field are characteristic environmental properties of H2 dissociation zones. Our results lend strong support to the HAC photoluminescence explanation for ERE.

  8. Comparison of DC and AC Transport in 1.5-7.5 nm Oligophenylene Imine Molecular Wires across Two Junction Platforms: Eutectic Ga-In versus Conducting Probe Atomic Force Microscope Junctions.

    PubMed

    Sangeeth, C S Suchand; Demissie, Abel T; Yuan, Li; Wang, Tao; Frisbie, C Daniel; Nijhuis, Christian A

    2016-06-15

    We have utilized DC and AC transport measurements to measure the resistance and capacitance of thin films of conjugated oligophenyleneimine (OPI) molecules ranging from 1.5 to 7.5 nm in length. These films were synthesized on Au surfaces utilizing the imine condensation chemistry between terephthalaldehyde and 1,4-benzenediamine. Near edge X-ray absorption fine structure (NEXAFS) spectroscopy yielded molecular tilt angles of 33-43°. To probe DC and AC transport, we employed Au-S-OPI//GaOx/EGaIn junctions having contact areas of 9.6 × 10(2) μm(2) (10(9) nm(2)) and compared to previously reported DC results on the same OPI system obtained using Au-S-OPI//Au conducting probe atomic force microscopy (CP-AFM) junctions with 50 nm(2) areas. We found that intensive observables agreed very well across the two junction platforms. Specifically, the EGaIn-based junctions showed: (i) a crossover from tunneling to hopping transport at molecular lengths near 4 nm; (ii) activated transport for wires >4 nm in length with an activation energy of 0.245 ± 0.008 eV for OPI-7; (iii) exponential dependence of conductance with molecular length with a decay constant β = 2.84 ± 0.18 nm(-1) (DC) and 2.92 ± 0.13 nm(-1) (AC) in the tunneling regime, and an apparent β = 1.01 ± 0.08 nm(-1) (DC) and 0.99 ± 0.11 nm(-1) (AC) in the hopping regime; (iv) previously unreported dielectric constant of 4.3 ± 0.2 along the OPI wires. However, the absolute resistances of Au-S-OPI//GaOx/EGaIn junctions were approximately 100 times higher than the corresponding CP-AFM junctions due to differences in metal-molecule contact resistances between the two platforms.

  9. Engineering the atomic structure of carbon nanotubes by a focused electron beam: new morphologies at the sub-nanometer scale.

    PubMed

    Rodríguez-Manzo, Julio A; Krasheninnikov, Arkady V; Banhart, Florian

    2012-07-16

    Carbon atoms are displaced in pre-selected locations of carbon nanotubes by using a focused electron beam in a scanning transmission electron microscope. Sub-nanometer-sized holes are created that change the morphology of double and triple-walled carbon nanotubes and connect the shells in a unique way. By combining in situ transmission electron microscopy experiments with atomistic simulations, we study the bonding between defective shells in the new structures which are reminiscent of the shape of a flute. We demonstrate that in double-walled nanotubes the shells locally merge by forming nanoarches while atoms with dangling bonds can be preserved in triple-walled carbon nanotubes. In the latter system, nanoarches are formed between the inner- and outermost shells, shielding small graphenic islands with open edges between the neighboring shells. Our results indicate that arrays of quantum dots may be produced in carbon nanotubes by spatially localized electron irradiation, generating atoms with dangling bonds that may give rise to localized magnetic moments. PMID:22407751

  10. The atomic scale structure of CXV carbon: wide-angle x-ray scattering and modeling studies.

    PubMed

    Hawelek, L; Brodka, A; Dore, J C; Honkimaki, V; Burian, A

    2013-11-13

    The disordered structure of commercially available CXV activated carbon produced from finely powdered wood-based carbon has been studied using the wide-angle x-ray scattering technique, molecular dynamics and density functional theory simulations. The x-ray scattering data has been converted to the real space representation in the form of the pair correlation function via the Fourier transform. Geometry optimizations using classical molecular dynamics based on the reactive empirical bond order potential and density functional theory at the B3LYP/6-31g* level have been performed to generate nanoscale models of CXV carbon consistent with the experimental data. The final model of the structure comprises four chain-like and buckled graphitic layers containing a small percentage of four-fold coordinated atoms (sp(3) defects) in each layer. The presence of non-hexagonal rings in the atomic arrangement has been also considered. PMID:24140935

  11. The atomic scale structure of CXV carbon: wide-angle x-ray scattering and modeling studies

    NASA Astrophysics Data System (ADS)

    Hawelek, L.; Brodka, A.; Dore, J. C.; Honkimaki, V.; Burian, A.

    2013-11-01

    The disordered structure of commercially available CXV activated carbon produced from finely powdered wood-based carbon has been studied using the wide-angle x-ray scattering technique, molecular dynamics and density functional theory simulations. The x-ray scattering data has been converted to the real space representation in the form of the pair correlation function via the Fourier transform. Geometry optimizations using classical molecular dynamics based on the reactive empirical bond order potential and density functional theory at the B3LYP/6-31g* level have been performed to generate nanoscale models of CXV carbon consistent with the experimental data. The final model of the structure comprises four chain-like and buckled graphitic layers containing a small percentage of four-fold coordinated atoms (sp3 defects) in each layer. The presence of non-hexagonal rings in the atomic arrangement has been also considered.

  12. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, James W.

    1994-01-01

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest.

  13. Direct determination and speciation of mercury compounds in environmental and biological samples by carbon bed atomic absorption spectroscopy

    SciTech Connect

    Skelly, E.M.

    1982-01-01

    A method was developed for the direct determination of mercury in water and biological samples using a unique carbon bed atomizer for atomic absorption spectroscopy. The method avoided sources of error such as loss of volatile mercury during sample digestion and contamination of samples through added reagents by eliminating sample pretreatment steps. The design of the atomizer allowed use of the 184.9 nm mercury resonance line in the vacuum ultraviolet region, which increased sensitivity over the commonly used spin-forbidden 253.7 nm line. The carbon bed atomizer method was applied to a study of mercury concentrations in water, hair, sweat, urine, blood, breath and saliva samples from a non-occupationally exposed population. Data were collected on the average concentration, the range and distribution of mercury in the samples. Data were also collected illustrating individual variations in mercury concentrations with time. Concentrations of mercury found were significantly higher than values reported in the literature for a ''normal'' population. This is attributed to the increased accuracy gained by eliminating pretreatment steps and increasing atomization efficiency. Absorption traces were obtained for various solutions of pure and complexed mercury compounds. Absorption traces of biological fluids were also obtained. Differences were observed in the absorption-temperatures traces of various compounds. The utility of this technique for studying complexation was demonstrated.

  14. Merging Single-Atom-Dispersed Silver and Carbon Nitride to a Joint Electronic System via Copolymerization with Silver Tricyanomethanide.

    PubMed

    Chen, Zupeng; Pronkin, Sergey; Fellinger, Tim-Patrick; Kailasam, Kamalakannan; Vilé, Gianvito; Albani, Davide; Krumeich, Frank; Leary, Rowan; Barnard, Jon; Thomas, John Meurig; Pérez-Ramírez, Javier; Antonietti, Markus; Dontsova, Dariya

    2016-03-22

    Herein, we present an approach to create a hybrid between single-atom-dispersed silver and a carbon nitride polymer. Silver tricyanomethanide (AgTCM) is used as a reactive comonomer during templated carbon nitride synthesis to introduce both negative charges and silver atoms/ions to the system. The successful introduction of the extra electron density under the formation of a delocalized joint electronic system is proven by photoluminescence measurements, X-ray photoelectron spectroscopy investigations, and measurements of surface ζ-potential. At the same time, the principal structure of the carbon nitride network is not disturbed, as shown by solid-state nuclear magnetic resonance spectroscopy and electrochemical impedance spectroscopy analysis. The synthesis also results in an improvement of the visible light absorption and the development of higher surface area in the final products. The atom-dispersed AgTCM-doped carbon nitride shows an enhanced performance in the selective hydrogenation of alkynes in comparison with the performance of other conventional Ag-based materials prepared by spray deposition and impregnation-reduction methods, here exemplified with 1-hexyne. PMID:26863408

  15. Merging Single-Atom-Dispersed Silver and Carbon Nitride to a Joint Electronic System via Copolymerization with Silver Tricyanomethanide.

    PubMed

    Chen, Zupeng; Pronkin, Sergey; Fellinger, Tim-Patrick; Kailasam, Kamalakannan; Vilé, Gianvito; Albani, Davide; Krumeich, Frank; Leary, Rowan; Barnard, Jon; Thomas, John Meurig; Pérez-Ramírez, Javier; Antonietti, Markus; Dontsova, Dariya

    2016-03-22

    Herein, we present an approach to create a hybrid between single-atom-dispersed silver and a carbon nitride polymer. Silver tricyanomethanide (AgTCM) is used as a reactive comonomer during templated carbon nitride synthesis to introduce both negative charges and silver atoms/ions to the system. The successful introduction of the extra electron density under the formation of a delocalized joint electronic system is proven by photoluminescence measurements, X-ray photoelectron spectroscopy investigations, and measurements of surface ζ-potential. At the same time, the principal structure of the carbon nitride network is not disturbed, as shown by solid-state nuclear magnetic resonance spectroscopy and electrochemical impedance spectroscopy analysis. The synthesis also results in an improvement of the visible light absorption and the development of higher surface area in the final products. The atom-dispersed AgTCM-doped carbon nitride shows an enhanced performance in the selective hydrogenation of alkynes in comparison with the performance of other conventional Ag-based materials prepared by spray deposition and impregnation-reduction methods, here exemplified with 1-hexyne.

  16. A vortex line for K-shell ionization of a carbon atom by electron impact

    NASA Astrophysics Data System (ADS)

    Ward, S. J.; Macek, J. H.

    2014-10-01

    We obtained using the Coulomb-Born approximation a deep minimum in the TDCS for K-shell ionization of a carbon atom by electron impact for the electron ejected in the scattering plane. The minimum is obtained for the kinematics of the energy of incident electron Ei = 1801.2 eV, the scattering angle θf = 4°, the energy of the ejected electron Ek = 5 . 5 eV, and the angle for the ejected electron θk = 239°. This minimum is due to a vortex in the velocity field. At the position of the vortex, the nodal lines of Re [ T ] and Im [ T ] intersect. We decomposed the CB1 T-matrix into its multipole components for the kinematics of a vortex, taking the z'-axis parallel to the direction of the momentum transfer vector. The m = +/- 1 dipole components are necessary to obtain a vortex. We also considered the electron to be ejected out of the scattering plane and obtained the positions of the vortex for different values of the y-component of momentum of the ejected electron, ky. We constructed the vortex line for the kinematics of Ei = 1801.2 eV and θf = 4°. S.J.W. and J.H.M. acknowledge support from NSF under Grant No. PHYS- 0968638 and from D.O.E. under Grant Number DE-FG02-02ER15283, respectively.

  17. Study of adhesion of vertically aligned carbon nanotubes to a substrate by atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Ageev, O. A.; Blinov, Yu. F.; Il'ina, M. V.; Il'in, O. I.; Smirnov, V. A.; Tsukanova, O. G.

    2016-02-01

    The adhesion to a substrate of vertically aligned carbon nanotubes (VA CNT) produced by plasmaenhanced chemical vapor deposition has been experimentally studied by atomic-force microscopy in the current spectroscopy mode. The longitudinal deformation of VA CNT by applying an external electric field has been simulated. Based on the results, a technique of determining VA CNT adhesion to a substrate has been developed that is used to measure the adhesion strength of connecting VA CNT to a substrate. The adhesion to a substrate of VA CNT 70-120 nm in diameter varies from 0.55 to 1.19 mJ/m2, and the adhesion force from 92.5 to 226.1 nN. When applying a mechanical load, the adhesion strength of the connecting VA CNT to a substrate is 714.1 ± 138.4 MPa, and the corresponding detachment force increases from 1.93 to 10.33 μN with an increase in the VA CNT diameter. As an external electric field is applied, the adhesion strength is almost doubled and is 1.43 ± 0.29 GPa, and the corresponding detachment force is changed from 3.83 to 20.02 μN. The results can be used in the design of technological processes of formation of emission structures, VA CNT-based elements for vacuum microelectronics and micro- and nanosystem engineering, and also the methods of probe nanodiagnostics of VA CNT.

  18. Quantitative Conductive Atomic Force Microscopy on Single-Walled Carbon Nanotube-Based Polymer Composites.

    PubMed

    Bârsan, Oana A; Hoffmann, Günter G; van der Ven, Leendert G J; de With, Gijsbertus

    2016-08-01

    Conductive atomic force microscopy (C-AFM) is a valuable technique for correlating the electrical properties of a material with its topographic features and for identifying and characterizing conductive pathways in polymer composites. However, aspects such as compatibility between tip material and sample, contact force and area between the tip and the sample, tip degradation and environmental conditions render quantifying the results quite challenging. This study aims at finding the suitable conditions for C-AFM to generate reliable, reproducible, and quantitative current maps that can be used to calculate the resistance in each point of a single-walled carbon nanotube (SWCNT) network, nonimpregnated as well as impregnated with a polymer. The results obtained emphasize the technique's limitation at the macroscale as the resistance of these highly conductive samples cannot be distinguished from the tip-sample contact resistance. Quantitative C-AFM measurements on thin composite sections of 150-350 nm enable the separation of sample and tip-sample contact resistance, but also indicate that these sections are not representative for the overall SWCNT network. Nevertheless, the technique was successfully used to characterize the local electrical properties of the composite material, such as sample homogeneity and resistance range of individual SWCNT clusters, at the nano- and microscale. PMID:27404764

  19. Atomic carbon near the molecular cloud/H II region interface in S 140

    NASA Astrophysics Data System (ADS)

    Hernichel, J.; Krause, D.; Roehrig, R.; Stutzki, J.; Winnewisser, G.

    1992-06-01

    We have observed the (CI) 3P1 - 3P0 fine structure line of atomic carbon at 492 GHz in the edge-on interface between the molecular cloud L 1204 and the S 140 H II region with the KOSMA telescope on Gornergrat, Switzerland. We find that the (CI)-emission near the interface consists of a narrow velocity component with position and line width similar to that of the ambient molecular cloud material, superimposed on a wider component (FWHM is approximately equal to 15 km/s) exhibiting a line profile similar to that of the higher velocity material visible in CO and carrying most of the CI column density. The velocity integrated (CI) emission peaks near the edge of the cloud facing the exciting star. This finding is in contrast to earlier results by Keene et al. (1985) who missed the wide velocity component in their observations. The relative CI/CO abundance is strongly enhanced in the high velocity material (100 percent) relative to the ambient cloud material (11 percent).

  20. Atomic layer deposition of aluminum oxide films for carbon nanotube network transistor passivation.

    PubMed

    Grigoras, Kestutis; Zavodchikova, Marina Y; Nasibulin, Albert G; Kauppinen, Esko I; Ermolov, Vladimir; Franssila, Sami

    2011-10-01

    Ultra-thin (2-5 nm thick) aluminum oxide layers were grown on non-functionalized individual single walled carbon nanotubes (SWCNT) and their bundles by atomic layer deposition (ALD) technique in order to investigate the mechanism of the coating process. Transmission electron microscopy (TEM) was used to examine the uniformity and conformality of the coatings grown at different temperatures (80 degrees C or 220 degrees C) and with different precursors for oxidation (water and ozone). We found that bundles of SWCNTs were coated continuously, but at the same time, bare individual nanotubes remained uncoated. The successful coating of bundles was explained by the formation of interstitial pores between the individual SWCNTs constituting the bundle, where the precursor molecules can adhere, initiating the layer growth. Thicker alumina layers (20-35 nm thick) were used for the coating of bottom-gated SWCNT-network based field effect transistors (FETs). ALD layers, grown at different conditions, were found to influence the performance of the SWCNT-network FETs: low temperature ALD layers caused the ambipolarity of the channel and pronounced n-type conduction, whereas high temperature ALD processes resulted in hysteresis suppression in the transfer characteristics of the SWCNT transistors and preserved p-type conduction. Fixed charges in the ALD layer have been considered as the main factor influencing the conduction change of the SWCNT network based transistors.

  1. Sub-5 nm nanostructures fabricated by atomic layer deposition using a carbon nanotube template

    NASA Astrophysics Data System (ADS)

    Woo, Ju Yeon; Han, Hyo; Kim, Ji Weon; Lee, Seung-Mo; Ha, Jeong Sook; Shim, Joon Hyung; Han, Chang-Soo

    2016-07-01

    The fabrication of nanostructures having diameters of sub-5 nm is very a important issue for bottom-up nanofabrication of nanoscale devices. In this work, we report a highly controllable method to create sub-5 nm nano-trenches and nanowires by combining area-selective atomic layer deposition (ALD) with single-walled carbon nanotubes (SWNTs) as templates. Alumina nano-trenches having a depth of 2.6 ∼ 3.0 nm and SiO2 nano-trenches having a depth of 1.9 ∼ 2.2 nm fully guided by the SWNTs have been formed on SiO2/Si substrate. Through infilling ZnO material by ALD in alumina nano-trenches, well-defined ZnO nanowires having a thickness of 3.1 ∼ 3.3 nm have been fabricated. In order to improve the electrical properties of ZnO nanowires, as-fabricated ZnO nanowires by ALD were annealed at 350 °C in air for 60 min. As a result, we successfully demonstrated that as-synthesized ZnO nanowire using a specific template can be made for various high-density resistive components in the nanoelectronics industry.

  2. Recrystallization of tungsten wire for fabrication of sharp and stable nanoprobe and field-emitter tips.

    PubMed

    Greiner, M; Kruse, P

    2007-02-01

    Atomically sharp tungsten tips made from single crystal tungsten wire are superior to those made from cold-drawn polycrystalline wire but are rarely used due to their high price. We have devised a method of obtaining highly crystalline tungsten wire by recrystallizing cold-drawn wire. The effect of various heat treatments on the wire microstructure was observed using scanning electron microscopy and x-ray diffraction. A dramatic difference in the shapes of tips etched from cold-drawn and recrystallized wires was observed using transmission electron microscopy. The described annealing process is an inexpensive alternative to using single crystal wires.

  3. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  4. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1999-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  5. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  6. Atomic Scale Interface Manipulation, Structural Engineering, and Their Impact on Ultrathin Carbon Films in Controlling Wear, Friction, and Corrosion.

    PubMed

    Dwivedi, Neeraj; Yeo, Reuben J; Yak, Leonard J K; Satyanarayana, Nalam; Dhand, Chetna; Bhat, Thirumaleshwara N; Zhang, Zheng; Tripathy, Sudhiranjan; Bhatia, Charanjit S

    2016-07-13

    Reducing friction, wear, and corrosion of diverse materials/devices using <2 nm thick protective carbon films remains challenging, which limits the developments of many technologies, such as magnetic data storage systems. Here, we present a novel approach based on atomic scale interface manipulation to engineer and control the friction, wear, corrosion, and structural characteristics of 0.7-1.7 nm carbon-based films on CoCrPt:oxide-based magnetic media. We demonstrate that when an atomically thin (∼0.5 nm) chromium nitride (CrNx) layer is sandwiched between the magnetic media and an ultrathin carbon overlayer (1.2 nm), it modifies the film-substrate interface, creates various types of interfacial bonding, increases the interfacial adhesion, and tunes the structure of carbon in terms of its sp(3) bonding. These contribute to its remarkable functional properties, such as stable and lowest coefficient of friction (∼0.15-0.2), highest wear resistance and better corrosion resistance despite being only ∼1.7 nm thick, surpassing those of ∼2.7 nm thick current commercial carbon overcoat (COC) and other overcoats in this work. While this approach has direct implications for advancing current magnetic storage technology with its ultralow thickness, it can also be applied to advance the protective and barrier capabilities of other ultrathin materials for associated technologies.

  7. Enantioselective Nucleophilic β-Carbon-Atom Amination of Enals: Carbene-Catalyzed Formal [3+2] Reactions.

    PubMed

    Wu, Xingxing; Liu, Bin; Zhang, Yuexia; Jeret, Martin; Wang, Honglin; Zheng, Pengcheng; Yang, Song; Song, Bao-An; Chi, Yonggui Robin

    2016-09-26

    An enantioselective β-carbon amination for enals is disclosed. The nitrogen atom from a protected hydrazine with suitable electronic properties readily behaves as a nucleophile. Addition of the nitrogen nucleophile to a catalytically generated N-heterocyclic-carbene-bound α,β-unsaturated acyl azolium intermediate constructs a new carbon-nitrogen bond asymmetrically. The pyrazolidinone products from our catalytic reactions are common scaffolds in bioactive molecules, and can be easily transformed into useful compounds such as β(3) -amino-acid derivatives. PMID:27596365

  8. Wire harness twisting aid

    NASA Technical Reports Server (NTRS)

    Casey, E. J.; Commadore, C. C.; Ingles, M. E.

    1980-01-01

    Long wire bundles twist into uniform spiral harnesses with help of simple apparatus. Wires pass through spacers and through hand-held tool with hole for each wire. Ends are attached to low speed bench motor. As motor turns, operator moves hand tool away forming smooth twists in wires between motor and tool. Technique produces harnesses that generate less radio-frequency interference than do irregularly twisted cables.

  9. Patterned forest-assembly of single-wall carbon nanotubes and carbon nanotube atomic force microscopy nanoprobes

    NASA Astrophysics Data System (ADS)

    Wei, Haoyan

    Single-wall carbon nanotubes (SWNTs) are envisioned to greatly impact future science and technology particularly in the nanoscale range due to their unique one dimensional structure with tunable electrical conductivity. Thus they have received considerable attention in the development of nanodevices, field emitters and biosensors. The ability to place carbon nanotubes (CNTs) with controlled orientation at desired sites presents one major challenge in assembling these remarkable nanostructures into useful functional devices. In this dissertation a metal-assisted self-assembly technique was utilized in which dense rope-lattice-like SWNT forests with upright direction were obtained by immobilizing carboxylated nanotubes from dimethylformamide (DMF) nonaqueous media onto the underlying substrates with the linkage of FeO(OH)/FeOCl crystallites. In comparison with growing CNTs by chemical vapor deposition (CVD) on patterned catalyst pads, this self-assembly approach can take advantage of post-synthesis SWNT separation according to length and type (met allic versus semiconducting). Since FeO(OH)/FeOCl crystallites acted as linkers to bridge CNTs onto the substrates, the appropriate placement of these iron deposits was pivotal to realize the desired SWNT patterns. To assist in localizing these FeO(OH)/FeOCl crystallites, three approaches on diverse substrates including Nafion, Si/SiO x and Au were investigated with the aid of low-energy electron-beam direct writing (on Nafion and Si/SiOx) and photolithography (on Au) by creating preferential precipitation sites for FeO(OH)/FeOCl crystallites. Such differential deposition of FeO(OH)/FeOCl crystallites provided the basis for the patterned site-specific self-assembly of SWNT forests as demonstrated by atomic force microscopy (AFM) and resonance Raman spectroscopy. A second part of this dissertation resulted in CNT nanoprobes on conductive AFM probes fabricated with the help of a positive dielectrophoretic (DEP) process. Under

  10. Regioselective Dichlorination of a Non-Activated Aliphatic Carbon Atom and Phenolic Bismethylation by a Multifunctional Fungal Flavoenzyme.

    PubMed

    Chankhamjon, Pranatchareeya; Tsunematsu, Yuta; Ishida-Ito, Mie; Sasa, Yuzuka; Meyer, Florian; Boettger-Schmidt, Daniela; Urbansky, Barbara; Menzel, Klaus-Dieter; Scherlach, Kirstin; Watanabe, Kenji; Hertweck, Christian

    2016-09-19

    The regioselective functionalization of non-activated carbon atoms such as aliphatic halogenation is a major synthetic challenge. A novel multifunctional enzyme catalyzing the geminal dichlorination of a methyl group was discovered in Aspergillus oryzae (Koji mold), an important fungus that is widely used for Asian food fermentation. A biosynthetic pathway encoded on two different chromosomes yields mono- and dichlorinated polyketides (diaporthin derivatives), including the cytotoxic dichlorodiaporthin as the main product. Bioinformatic analyses and functional genetics revealed an unprecedented hybrid enzyme (AoiQ) with two functional domains, one for halogenation and one for O-methylation. AoiQ was successfully reconstituted in vivo and in vitro, unequivocally showing that this FADH2 -dependent enzyme is uniquely capable of the stepwise gem-dichlorination of a non-activated carbon atom on a freestanding substrate. Genome mining indicated that related hybrid enzymes are encoded in cryptic gene clusters in numerous ecologically relevant fungi. PMID:27559694

  11. Insights in the plasma-assisted growth of carbon nanotubes through atomic scale simulations: effect of electric field.

    PubMed

    Neyts, Erik C; van Duin, Adri C T; Bogaerts, Annemie

    2012-01-18

    Carbon nanotubes (CNTs) are nowadays routinely grown in a thermal CVD setup. State-of-the-art plasma-enhanced CVD (PECVD) growth, however, offers advantages over thermal CVD. A lower growth temperature and the growth of aligned freestanding single-walled CNTs (SWNTs) makes the technique very attractive. The atomic scale growth mechanisms of PECVD CNT growth, however, remain currently entirely unexplored. In this contribution, we employed molecular dynamics simulations to focus on the effect of applying an electric field on the SWNT growth process, as one of the effects coming into play in PECVD. Using sufficiently strong fields results in (a) alignment of the growing SWNTs, (b) a better ordering of the carbon network, and (c) a higher growth rate relative to thermal growth rate. We suggest that these effects are due to the small charge transfer occurring in the Ni/C system. These simulations constitute the first study of PECVD growth of SWNTs on the atomic level. PMID:22126536

  12. Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide.

    PubMed

    Gao, Guoping; Jiao, Yan; Waclawik, Eric R; Du, Aijun

    2016-05-18

    Reducing carbon dioxide to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single atoms of palladium and platinum supported on graphitic carbon nitride (g-C3N4), i.e., Pd/g-C3N4 and Pt/g-C3N4, respectively, acting as photocatalysts for CO2 reduction were investigated by density functional theory calculations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from the hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, deposition of atom catalysts on g-C3N4 significantly enhances the visible-light absorption, rendering them ideal for visible-light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply. PMID:27116595

  13. Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide.

    PubMed

    Gao, Guoping; Jiao, Yan; Waclawik, Eric R; Du, Aijun

    2016-05-18

    Reducing carbon dioxide to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single atoms of palladium and platinum supported on graphitic carbon nitride (g-C3N4), i.e., Pd/g-C3N4 and Pt/g-C3N4, respectively, acting as photocatalysts for CO2 reduction were investigated by density functional theory calculations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from the hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, deposition of atom catalysts on g-C3N4 significantly enhances the visible-light absorption, rendering them ideal for visible-light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply.

  14. EMF wire code research

    SciTech Connect

    Jones, T.

    1993-11-01

    This paper examines the results of previous wire code research to determines the relationship with childhood cancer, wire codes and electromagnetic fields. The paper suggests that, in the original Savitz study, biases toward producing a false positive association between high wire codes and childhood cancer were created by the selection procedure.

  15. Laser Wire Stripper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.

  16. Protection of Diamond-like Carbon Films from Energetic Atomic Oxygen Degradation Through Si-doping Technology

    SciTech Connect

    Yokota, Kumiko; Tagawa, Masahito; Kitamura, Akira; Matsumoto, Koji; Yoshigoe, Akitaka; Teraoka, Yuden; Fontaine, Julien; Belin, Michel

    2009-01-05

    The effect of hyperthermal atomic oxygen (AO) exposure on the surface properties of Si-doped diamond-like carbon (DLC) was investigated. Two types of DLC were tested that contain approximately 10 at% and 20 at% of Si atoms. Surface analytical results of high-resolution x-ray photoelectron spectroscopy using synchrotron radiation (synchrotron radiation photoemission spectroscopy; SR-PES) as well as Rutherford backscattering spectroscopy (RBS) have been used for characterization of the AO-exposed Si-doped DLC. It was identified by SR-PES that a SiO{sub 2} layer was formed by the hyperthermal AO exposure at the Si-doped DLC surface. RBS data indicates that AO exposure leads to severe thickness loss on the undopedd DLC. In contrast, a SiO{sub 2} layer formed by the hyperthermal atomic oxygen reaction of Si-doped DLC protects the DLC underneath the SiO{sub 2} layer.

  17. Permeation of low-Z atoms through carbon sheets: Density functional theory study on energy barriers and deformation effects

    SciTech Connect

    Huber, Stefan E. E-mail: Michael.probst@uibk.ac.at; Mauracher, Andreas; Probst, Michael E-mail: Michael.probst@uibk.ac.at

    2013-12-15

    Energetic and geometric aspects of the permeation of the atoms hydrogen to neon neutral atoms through graphene sheets are investigated by investigating the associated energy barriers and sheet deformations. Density functional theory calculations on cluster models, where graphene is modeled by planar polycyclic aromatic hydrocarbons (PAHs), provide the energies and geometries. Particularities of our systems, such as convergence of both energy barriers and deformation curves with increasing size of the PAHs, are discussed. Three different interaction regimes, adiabatic, planar and vertical, are investigated by enforcing different geometrical constraints. The adiabatic energy barriers range from 5 eV for hydrogen to 20 eV for neon. We find that the permeation of oxygen and carbon into graphene is facilitated by temporary chemical bonding while for other, in principle reactive atoms, it is not. We discuss implications of our results for modeling chemical sputtering of graphite.

  18. Permeation of low-Z atoms through carbon sheets: Density functional theory study on energy barriers and deformation effects

    NASA Astrophysics Data System (ADS)

    Huber, Stefan E.; Mauracher, Andreas; Probst, Michael

    2013-12-01

    Energetic and geometric aspects of the permeation of the atoms hydrogen to neon neutral atoms through graphene sheets are investigated by investigating the associated energy barriers and sheet deformations. Density functional theory calculations on cluster models, where graphene is modeled by planar polycyclic aromatic hydrocarbons (PAHs), provide the energies and geometries. Particularities of our systems, such as convergence of both energy barriers and deformation curves with increasing size of the PAHs, are discussed. Three different interaction regimes, adiabatic, planar and vertical, are investigated by enforcing different geometrical constraints. The adiabatic energy barriers range from 5 eV for hydrogen to 20 eV for neon. We find that the permeation of oxygen and carbon into graphene is facilitated by temporary chemical bonding while for other, in principle reactive atoms, it is not. We discuss implications of our results for modeling chemical sputtering of graphite.

  19. Atom probe tomography investigation of assisted precipitation of secondary hardening carbides in a medium carbon martensitic steels.

    PubMed

    Danoix, F; Danoix, R; Akre, J; Grellier, A; Delagnes, D

    2011-12-01

    A medium carbon martensitic steel containing nanometer scale secondary hardening carbides and intermetallic particles is investigated by field ion microscopy and atom probe tomography. The interaction between the concomitant precipitations of both types of particles is investigated. It is shown that the presence of the intermetallic phase affects the nucleation mechanism and the spatial distribution of the secondary hardening carbides, which shifts from heterogeneous on dislocations to heterogeneous on the intermetallic particles.

  20. Atomic-scale wear of amorphous hydrogenated carbon during intermittent contact: a combined study using experiment, simulation, and theory.

    PubMed

    Vahdat, Vahid; Ryan, Kathleen E; Keating, Pamela L; Jiang, Yijie; Adiga, Shashishekar P; Schall, J David; Turner, Kevin T; Harrison, Judith A; Carpick, Robert W

    2014-07-22

    In this study, we explore the wear behavior of amplitude modulation atomic force microscopy (AM-AFM, an intermittent-contact AFM mode) tips coated with a common type of diamond-like carbon, amorphous hydrogenated carbon (a-C:H), when scanned against an ultra-nanocrystalline diamond (UNCD) sample both experimentally and through molecular dynamics (MD) simulations. Finite element analysis is utilized in a unique way to create a representative geometry of the tip to be simulated in MD. To conduct consistent and quantitative experiments, we apply a protocol that involves determining the tip-sample interaction geometry, calculating the tip-sample force and normal contact stress over the course of the wear test, and precisely quantifying the wear volume using high-resolution transmission electron microscopy imaging. The results reveal gradual wear of a-C:H with no sign of fracture or plastic deformation. The wear rate of a-C:H is consistent with a reaction-rate-based wear theory, which predicts an exponential dependence of the rate of atom removal on the average normal contact stress. From this, kinetic parameters governing the wear process are estimated. MD simulations of an a-C:H tip, whose radius is comparable to the tip radii used in experiments, making contact with a UNCD sample multiple times exhibit an atomic-level removal process. The atomistic wear events observed in the simulations are correlated with under-coordinated atomic species at the contacting surfaces.

  1. Computational insights into the effect of carbon structures at the atomic level for non-aqueous sodium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Jiang, H. R.; Wu, M. C.; Zhou, X. L.; Yan, X. H.; Zhao, T. S.

    2016-09-01

    Carbon materials have been widely used to form air cathodes for non-aqueous sodium-oxygen (Nasbnd O2) batteries due to their large specific surface area, high conductivity and low cost. However, the effect of carbon structures at the atomic level remains poorly understood. In this work, a first-principles study is conducted to investigate how representative carbon structures, including graphite (0001) surface, point defects and fractured edge, influence the discharge and charge processes of non-aqueous Nasbnd O2 batteries. It is found that the single vacancy (SV) defect has the largest adsorption energy (5.81 eV) to NaO2 molecule among the structures studied, even larger than that of the NaO2 molecule on NaO2 crystal (2.81 eV). Such high adsorption energy is attributed to two factors: the dangling atoms in SV defects decrease the distance from NaO2 molecules, and the attachment through oxygen atoms increases the electrons transfer. The findings suggest that SV defects can act as the nucleation sites for NaO2 in the discharge process, and increasing the number of SV defects can facilitate the uniform formation of small-sized particles. The uniformly distributed discharge products lower the possibility for pore clogging, leading to an increased discharge capacity and improved cyclability for non-aqueous Nasbnd O2 batteries.

  2. Structural modifications of graphyne layers consisting of carbon atoms in the sp- and sp{sup 2}-hybridized states

    SciTech Connect

    Belenkov, E. A.; Mavrinskii, V. V.; Belenkova, T. E.; Chernov, V. M.

    2015-05-15

    A model scheme is proposed for obtaining layered compounds consisting of carbon atoms in the sp- and (vnsp){sup 2}-hybridized states. This model is used to find the possibility of existing the following seven basic structural modifications of graphyne: α-, β1-, β2-, β3-, γ1-, γ2-, and γ3-graphyne. Polymorphic modifications β3 graphyne and γ3 graphyne are described. The basic structural modifications of graphyne contain diatomic polyyne chains and consist only of carbon atoms in two different crystallographically equivalent states. Other nonbasic structural modifications of graphyne can be formed via the elongation of the carbyne chains that connect three-coordinated carbon atoms and via the formation of graphyne layers with a mixed structure consisting of basic layer fragments, such as α-β-graphyne, α-γ-graphyne, and β-γ-graphyne. The semiempirical quantum-mechanical MNDO, AM1, and PM3 methods and ab initio STO6-31G basis calculations are used to find geometrically optimized structures of the basic graphyne layers, their structural parameters, and energies of their sublimation. The energy of sublimation is found to be maximal for γ2-graphyne, which should be the most stable structural modification of graphyne.

  3. Torsional behaviors of polymer-infiltrated carbon nanotube yarn muscles studied with atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kwon, Cheong Hoon; Chun, Kyoung-Yong; Kim, Shi Hyeong; Lee, Jae-Hyeok; Kim, Jae-Ho; Lima, Márcio D.; Baughman, Ray H.; Kim, Seon Jeong

    2015-01-01

    Torsional behaviors of polymer-infiltrated carbon nanotube (CNT) yarn muscles have been investigated in relation to molecular architecture by using atomic force microscopy (AFM). Two polymers with different stiffnesses, polystyrene (PS) and poly(styrene-b-isoprene-b-styrene) (SIS), were uniformly infiltrated into CNT yarns for electrothermal torsional actuation. The torsional behaviors of hybrid yarn muscles are completely explained by the volume change of each polymer, based on the height and full width at half maximum profiles from the AFM morphological images. The volume expansion of the PS yarn muscle (1.7 nm of vertical change and 22 nm of horizontal change) is much larger than that of the SIS yarn muscle (0.3 nm and 11 nm change in vertical and horizontal directions) at 80 °C, normalized by their values at 25 °C. We demonstrate that their maximum rotations are consequently 29.7 deg mm-1 for the PS-infiltrated CNT yarn muscle (relatively larger rotation) and 14.4 deg mm-1 for the SIS-infiltrated CNT yarn muscle (smaller rotation) at 0.75 V m-1. These hybrid yarn muscles could be applied in resonant controllers or damping magnetoelectric sensors.Torsional behaviors of polymer-infiltrated carbon nanotube (CNT) yarn muscles have been investigated in relation to molecular architecture by using atomic force microscopy (AFM). Two polymers with different stiffnesses, polystyrene (PS) and poly(styrene-b-isoprene-b-styrene) (SIS), were uniformly infiltrated into CNT yarns for electrothermal torsional actuation. The torsional behaviors of hybrid yarn muscles are completely explained by the volume change of each polymer, based on the height and full width at half maximum profiles from the AFM morphological images. The volume expansion of the PS yarn muscle (1.7 nm of vertical change and 22 nm of horizontal change) is much larger than that of the SIS yarn muscle (0.3 nm and 11 nm change in vertical and horizontal directions) at 80 °C, normalized by their values at 25

  4. The warm ISM in the Sgr A region: mid-J CO, atomic carbon, ionized atomic carbon, and ionized nitrogen line observations with the Herschel/HIFI and NANTEN2/SMART Telescopes

    NASA Astrophysics Data System (ADS)

    García, Pablo; Simon, Robert; Stutzki, Jürgen; Requena-Torres, Miguel; Güsten, Rolf; Fukui, Yasuo; Yamamoto, Hiroaki; Bertoldi, Frank; Burton, Michael; Bronfman, Leonardo; Ogawa, Hideo

    2014-05-01

    We present Herschel/HIFI sub-mm atomic carbon ([Ci] 3 P 1 - 3 P 0 and [Ci] 3 P 2 - 3 P 1), ionized carbon ([Cii] 2 P 3/2 - 2 P 1/2), and ionized nitrogen ([Nii] 3 P 1 - 3 P 0) line observations obtained in the frame of the Herschel Guaranteed Time HEXGAL (Herschel EXtraGALactic) key program (P. I. Rolf Güsten, MPIfR), and NANTEN2/SMART carbon monoxide (CO(J = 4 - 3)) observations of the warm gas around the Sgr A region. The spectrally resolved emission from all lines, and the corresponding line intensity ratios, show a very complex morphology. The determination of spatial and spectral (anti)correlation with known sources in the Sgr A region such as the Arched Filaments, NTF filaments, the Sickle, Quintuplet cluster, CND clouds, is ongoing work.

  5. Force-controlled lifting of molecular wires

    NASA Astrophysics Data System (ADS)

    Fournier, N.; Wagner, C.; Weiss, C.; Temirov, R.; Tautz, F. S.

    2011-07-01

    Lifting a single molecular wire off the surface with a combined frequency-modulated atomic force and tunneling microscope it is possible to monitor the evolution of both the wire configuration and the contacts simultaneously with the transport conductance experiment. In particular, critical points where individual bonds to the surface are broken and instabilities where the wire is prone to change its contact configuration can be identified in the force gradient and dissipation responses of the junction. This additional mechanical information can be used to unambiguously determine the conductance of a true molecular wire, that is, of a molecule that is contacted via a pointlike “crocodile clip” to each of the electrodes but is otherwise free.

  6. Probing the Role of an Atomically Thin SiNx Interlayer on the Structure of Ultrathin Carbon Films

    PubMed Central

    Dwivedi, Neeraj; Rismani-Yazdi, Ehsan; Yeo, Reuben J.; Goohpattader, Partho S.; Satyanarayana, Nalam; Srinivasan, Narasimhan; Druz, Boris; Tripathy, S.; Bhatia, C. S.

    2014-01-01

    Filtered cathodic vacuum arc (FCVA) processed carbon films are being considered as a promising protective media overcoat material for future hard disk drives (HDDs). However, at ultrathin film levels, FCVA-deposited carbon films show a dramatic change in their structure in terms of loss of sp3 bonding, density, wear resistance etc., compared to their bulk counterpart. We report for the first time how an atomically thin (0.4 nm) silicon nitride (SiNx) interlayer helps in maintaining/improving the sp3 carbon bonding, enhancing interfacial strength/bonding, improving oxidation/corrosion resistance, and strengthening the tribological properties of FCVA-deposited carbon films, even at ultrathin levels (1.2 nm). We propose the role of the SiNx interlayer in preventing the catalytic activity of Co and Pt in media, leading to enhanced sp3C bonding (relative enhancement ~40%). These findings are extremely important in view of the atomic level understanding of structural modification and the development of high density HDDs. PMID:24846506

  7. Probing the role of an atomically thin SiNx interlayer on the structure of ultrathin carbon films.

    PubMed

    Dwivedi, Neeraj; Rismani-Yazdi, Ehsan; Yeo, Reuben J; Goohpattader, Partho S; Satyanarayana, Nalam; Srinivasan, Narasimhan; Druz, Boris; Tripathy, S; Bhatia, C S

    2014-01-01

    Filtered cathodic vacuum arc (FCVA) processed carbon films are being considered as a promising protective media overcoat material for future hard disk drives (HDDs). However, at ultrathin film levels, FCVA-deposited carbon films show a dramatic change in their structure in terms of loss of sp3 bonding, density, wear resistance etc., compared to their bulk counterpart. We report for the first time how an atomically thin (0.4 nm) silicon nitride (SiNx) interlayer helps in maintaining/improving the sp3 carbon bonding, enhancing interfacial strength/bonding, improving oxidation/corrosion resistance, and strengthening the tribological properties of FCVA-deposited carbon films, even at ultrathin levels (1.2 nm). We propose the role of the SiNx interlayer in preventing the catalytic activity of Co and Pt in media, leading to enhanced sp3C bonding (relative enhancement~40%). These findings are extremely important in view of the atomic level understanding of structural modification and the development of high density HDDs. PMID:24846506

  8. Voltage-pulsed and laser-pulsed atom probe tomography of a multiphase high-strength low-carbon steel.

    PubMed

    Mulholland, Michael D; Seidman, David N

    2011-12-01

    The differences in artifacts associated with voltage-pulsed and laser-pulsed (wavelength = 532 or 355 nm) atom-probe tomographic (APT) analyses of nanoscale precipitation in a high-strength low-carbon steel are assessed using a local-electrode atom-probe tomograph. It is found that the interfacial width of nanoscale Cu precipitates increases with increasing specimen apex temperatures induced by higher laser pulse energies (0.6-2 nJ pulse(-1) at a wavelength of 532 nm). This effect is probably due to surface diffusion of Cu atoms. Increasing the specimen apex temperature by using pulse energies up to 2 nJ pulse(-1) at a wavelength of 532 nm is also found to increase the severity of the local magnification effect for nanoscale M2C metal carbide precipitates, which is indicated by a decrease of the local atomic density inside the carbides from 68 ± 6 nm(-3) (voltage pulsing) to as small as 3.5 ± 0.8 nm(-3). Methods are proposed to solve these problems based on comparisons with the results obtained from voltage-pulsed APT experiments. Essentially, application of the Cu precipitate compositions and local atomic density of M2C metal carbide precipitates measured by voltage-pulsed APT to 532 or 355 nm wavelength laser-pulsed data permits correct quantification of precipitation.

  9. ATOMIC-LEVEL MODELING OF CO2 DISPOSAL AS A CARBONATE MINERAL: A SYNERGETIC APPROACH TO OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    A.V.G. Chizmeshya; M.J. McKelvy; J.B. Adams

    2001-11-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar hydroxide mineral carbonation is a leading process candidate, which generates the stable naturally occurring mineral magnesite (MgCO{sub 3}) and water. Key to process cost and viability are the carbonation reaction rate and its degree of completion. This process, which involves simultaneous dehydroxylation and carbonation is very promising, but far from optimized. In order to optimize the dehydroxylation/carbonation process, an atomic-level understanding of the mechanisms involved is needed. In this investigation Mg(OH){sub 2} was selected as a model Mg-rich lamellar hydrocide carbonation feedstock material due to its chemical and structural simplicity. Since Mg(OH){sub 2} dehydroxylation is intimately associated with the carbonation process, its mechanisms are also of direct interest in understanding and optimizing the process. The aim of the current innovative concepts project is to develop a specialized advanced computational methodology to complement the ongoing experimental inquiry of the atomic level processes involved in CO{sub 2} mineral sequestration. The ultimate goal is to integrate the insights provided by detailed predictive simulations with the data obtained from optical microscopy, FESEM, ion beam analysis, SIMS, TGA, Raman, XRD, and C and H elemental analysis. The modeling studies are specifically designed to enhance the synergism with, and complement the analysis of, existing mineral-CO{sub 2} reaction process studies being carried out under DOE UCR Grant DE-FG2698-FT40112. Direct contact between the simulations and the experimental

  10. Field Ionization of Cold Atoms near the Wall of a Single Carbon Nanotube

    SciTech Connect

    Goodsell, Anne; Ristroph, Trygve; Golovchenko, J. A.; Hau, Lene Vestergaard

    2010-04-02

    We observe the capture and field ionization of individual atoms near the side wall of a single suspended nanotube. Extremely large cross sections for ionization from an atomic beam are observed at modest voltages due to the nanotube's small radius and extended length. The effects of the field strength on both the atomic capture and the ionization process are clearly distinguished in the data, as are prompt and delayed ionizations related to the locations at which they occur. Efficient and sensitive neutral atom detectors can be based on the nanotube capture and wall ionization processes.

  11. Measurement of the resistance induced by a single atomic impurity on a (7,6) semiconducting carbon nanotube: scattering strength of individual potassium atoms as a function of gate voltage

    NASA Astrophysics Data System (ADS)

    Tsuchikawa, Ryuichi; Ahmadi, Amin; Heligman, Daniel; Zhang, Zhengyi; Mucciolo, Eduardo; Hone, James; Ishigami, Masa

    2015-03-01

    Despite many years of research, no measurements have been performed to determine resistance induced by impurities in carbon nanotubes. Over the last few years, we have developed a capability to measure the resistance induced by a single impurity atom on nanotubes with known chirality. Using this capability, we measured the resistance induced by an individual potassium atom on a (7,6) semiconducting carbon nanotube. The ``atomic'' resistance of potassium is found to be in the kohm range and has a strong dependence on the applied gate voltage. The scattering strength of the p-type (valence band) channel is approximately 20 times greater than that of the n-type (conduction band) channel. We integrate our atomically-controlled experimental result to a numerical recursive Green's function technique, which can precisely model the experiment, to understand the measured ``atomic'' resistance and the asymmetry. This work is based upon research supported by the National Science Foundation under Grant No. 0955625 and 1006230.

  12. Selected developments in laser wire stripping. [cutting insulation from aerospace-type wires and cables

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The operation of mechanical and thermal strippers and the early development of laser wire strippers are reviewed. NASA sponsored development of laser wire stripping for space shuttle includes bench-type strippers as well as an advanced portable hand-held stripper which incorporates a miniaturized carbon dioxide laser and a rotating optics unit with a gas-jet assist and debris exhaust. Drives and controls girdle the wire and slit the remaining slug without manual assistance. This unit can strip wire sizes 26 through 12 gage. A larger-capacity hand-held unit for wire sizes through 1/0 gage was built using a neodynium-doped yttrium aluminum garnet (Nd:YAG) laser. The hand-held units have a flexible umbilical cable to an accompanying cart that carries the power supply, gas supply, cooling unit, and the controls.

  13. NASA Wiring for Space Applications Program test results

    SciTech Connect

    Vaughn, J.A.

    1995-11-01

    The objectives of the NASA Wiring for Space Applications program were to investigate the effects of atomic oxygen (AO), ultraviolet (UV) radiation, and AO with UV synergistic effects on wire insulation materials. The AO exposure was on the order of 10(exp 21) atoms/sq cm and the vacuum UV radiation was on the order of 10,000 ESH. The results of these tests are presented in this document.

  14. Carbon nanotubes randomly decorated with gold clusters: from nano2hybrid atomic structures to gas sensing prototypes.

    PubMed

    Charlier, J-C; Arnaud, L; Avilov, I V; Delgado, M; Demoisson, F; Espinosa, E H; Ewels, C P; Felten, A; Guillot, J; Ionescu, R; Leghrib, R; Llobet, E; Mansour, A; Migeon, H-N; Pireaux, J-J; Reniers, F; Suarez-Martinez, I; Watson, G E; Zanolli, Z

    2009-09-16

    Carbon nanotube surfaces, activated and randomly decorated with metal nanoclusters, have been studied in uniquely combined theoretical and experimental approaches as prototypes for molecular recognition. The key concept is to shape metallic clusters that donate or accept a fractional charge upon adsorption of a target molecule, and modify the electron transport in the nanotube. The present work focuses on a simple system, carbon nanotubes with gold clusters. The nature of the gold-nanotube interaction is studied using first-principles techniques. The numerical simulations predict the binding and diffusion energies of gold atoms at the tube surface, including realistic atomic models for defects potentially present at the nanotube surface. The atomic structure of the gold nanoclusters and their effect on the intrinsic electronic quantum transport properties of the nanotube are also predicted. Experimentally, multi-wall CNTs are decorated with gold clusters using (1) vacuum evaporation, after activation with an RF oxygen plasma and (2) colloid solution injected into an RF atmospheric plasma; the hybrid systems are accurately characterized using XPS and TEM techniques. The response of gas sensors based on these nano(2)hybrids is quantified for the detection of toxic species like NO(2), CO, C(2)H(5)OH and C(2)H(4). PMID:19706940

  15. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  16. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  17. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  18. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  19. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  20. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  1. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  2. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  3. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  4. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  5. a Proposal for a General Method for Determining Semi-Experimental Equilibrium Structures of Carbon Atom Backbones

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.

    2010-06-01

    Semi-experimental equilibrium structures are determined from ground state rotational constants derived from the analysis of rotational transitions in high-resolution spectra and from the quantum chemical calculation of spectroscopic alphas. In the full application of this method, spectra of numerous isotopic species must be investigated. Most of these isotopic species require specialized synthesis. We now propose focusing on the carbon atoms, for which microwave spectroscopy routinely yields spectra for polar molecules with 13C substitution in natural abundance. Needed spectroscopic alphas can be computed with Gaussian software. Application of the Kraitchman substitution relationships gives Cartesian coordinates for the carbon atoms and thence bond parameters for the carbon backbone. This method will be evaluated with ethylene, 1,1-difluoroethylene, 1,1-difluorocyclopropane, propene, and butadiene. The method will then be applied to cis-hexatriene and the two conformers of glycidol. R. D. Suenram, B. H. Pate, A. Lessari, J. L. Neill, S. Shipman, R. A. Holmes, M. C. Leyden, and N. C. Craig, J. Phys. Chem. A 113, 1864-1868 (2009). A. R. Conrad, N. H. Teumelsan, P. E. Wang, and M. J. Tubergen, J. Phys. Chem. A 114, 336-342 (2010).

  6. 78 FR 75547 - Prestressed Concrete Steel Rail Tie Wire From Thailand: Preliminary Determination of Sales at Not...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... International Trade Administration Prestressed Concrete Steel Rail Tie Wire From Thailand: Preliminary... concrete steel rail tire wire (``PC tie wire'') from Thailand is not being, or likely to be, sold in the... prestressed tendons in concrete railroad ties (``PC tie wire''). High carbon steel is defined as steel...

  7. Lingual straight wire method.

    PubMed

    Takemoto, Kyoto; Scuzzo, Giuseppe; Lombardo, L U C A; Takemoto, Y U I

    2009-12-01

    The mushroom arch-wire is mainly used in lingual orthodontic treatment but the complicated wire bending it requires affects both the treatment results and the time spent at the chair. The author proposes a new lingual straight wire method (LSW) in order to facilitate arch coordination and simplify the mechanics. The attention paid to the set-up model and bracket positioning and bonding plus the use of the new LSW method will also improve patient comfort.

  8. Three-dimensional bicomponent supramolecular nanoporous self-assembly on a hybrid all-carbon atomically flat and transparent platform.

    PubMed

    Li, Juan; Wieghold, Sarah; Öner, Murat Anil; Simon, Patrick; Hauf, Moritz V; Margapoti, Emanuela; Garrido, Jose A; Esch, Friedrich; Palma, Carlos-Andres; Barth, Johannes V

    2014-08-13

    Molecular self-assembly is a versatile nanofabrication technique with atomic precision en route to molecule-based electronic components and devices. Here, we demonstrate a three-dimensional, bicomponent supramolecular network architecture on an all-carbon sp(2)-sp(3) transparent platform. The substrate consists of hydrogenated diamond decorated with a monolayer graphene sheet. The pertaining bilayer assembly of a melamine-naphthalenetetracarboxylic diimide supramolecular network exhibiting a nanoporous honeycomb structure is explored via scanning tunneling microscopy initially at the solution-highly oriented pyrolytic graphite interface. On both graphene-terminated copper and an atomically flat graphene/diamond hybrid substrate, an assembly protocol is demonstrated yielding similar supramolecular networks with long-range order. Our results suggest that hybrid platforms, (supramolecular) chemistry and thermodynamic growth protocols can be merged for in situ molecular device fabrication. PMID:25115337

  9. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface is disclosed. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest. 4 figs.

  10. Wire-inhomogeneity detector

    DOEpatents

    Gibson, G.H.; Smits, R.G.; Eberhard, P.H.

    1982-08-31

    A device for uncovering imperfections in electrical conducting wire, particularly superconducting wire, by detecting variations in eddy currents. Eddy currents effect the magnetic field in a gap of an inductor, contained in a modified commercial ferrite core, through which the wire being tested is passed. A small increase or decrease in the amount of conductive material, such as copper, in a fixed cross section of wire will unbalance a bridge used to measure the impedance of the inductor, tripping a detector and sounding an alarm.

  11. Effect of doping by boron, carbon, and nitrogen atoms on the magnetic and photocatalytic properties of anatase

    NASA Astrophysics Data System (ADS)

    Zainullina, V. M.; Zhukov, V. P.; Korotin, M. A.; Polyakov, E. V.

    2011-07-01

    The effect of doping of titanium dioxide with the anatase structure by boron, carbon, and nitrogen atoms on the magnetic and optical properties and the electronic spectrum of this compound has been investigated using the ab initio tight-binding linear muffin-tin orbital (TB-LMTO) band-structure method in the local spin density approximation explicitly including Coulomb correlations (LSDA + U) in combination with the semiempirical extended Hückel theory (EHT) method. The LSDA + U calculations of the electronic structure, the imaginary part of the dielectric function, the total magnetic moments, and the magnetic moments at the impurity atoms have been carried out. The diagrams of the molecular orbitals of the clusters Ti3 X ( X = B, C, N) have been calculated and the pseudo-space images of the molecular orbitals of the clusters have been constructed. The effect of doping on the nature and origin of photocatalytic activity in the visible spectral range and the specific features of the generation of ferromagnetic interactions in doped anatase have been discussed based on the analysis of the obtained data. It has been shown that, in the sequence TiO2 - y N y → TiO2 - y C y → TiO2 - y B y ( y = 1/16), the photocatalytic activity can increase with the generation of electronic excitations with the participation of impurity bands. The calculated magnetic moments for boron and nitrogen atoms are equal to 1 μB, whereas the impurity carbon atoms are nonmagnetic.

  12. Kinetic and mechanistic studies of carbon-to-metal hydrogen atom transfer involving Os-centered radicals: evidence for tunneling.

    PubMed

    Lewandowska-Andralojc, Anna; Grills, David C; Zhang, Jie; Bullock, R Morris; Miyazawa, Akira; Kawanishi, Yuji; Fujita, Etsuko

    2014-03-01

    We have investigated the kinetics of novel carbon-to-metal hydrogen atom transfer reactions, in which homolytic cleavage of a C-H bond is accomplished by a single metal-centered radical. Time-resolved IR spectroscopic measurements revealed efficient hydrogen atom transfer from xanthene, 9,10-dihydroanthracene, and 1,4-cyclohexadiene to Cp(CO)2Os(•) and (η(5)-(i)Pr4C5H)(CO)2Os(•) radicals, formed by photoinduced homolysis of the corresponding osmium dimers. The rate constants for hydrogen abstraction from these hydrocarbons are in the range 1.5 × 10(5) M(-1) s(-1) to 1.7 × 10(7) M(-1) s(-1) at 25 °C. For the first time, kinetic isotope effects for carbon-to-metal hydrogen atom transfer were determined. Large primary deuterium kinetic isotope effects of 13.4 ± 1.0 and 16.8 ± 1.4 were observed for the hydrogen abstraction from xanthene to form Cp(CO)2OsH and (η(5)-(i)Pr4C5H)(CO)2OsH, respectively, at 25 °C. Temperature-dependent measurements of the kinetic isotope effects over a 60 °C temperature range were carried out to obtain the difference in activation energies (E(D) - E(H)) and the pre-exponential factor ratio (A(H)/A(D)). For hydrogen atom transfer from xanthene to (η(5)-(i)Pr4C5H)(CO)2Os(•), the (E(D) - E(H)) = 3.3 ± 0.2 kcal mol(-1) and A(H)/A(D) = 0.06 ± 0.02 values suggest a quantum mechanical tunneling mechanism.

  13. 1998 wire development workshop proceedings

    SciTech Connect

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  14. Large-Scale Fabrication of Carbon Nanotube Probe Tips For Atomic Force Microscopy Critical Dimension Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi Laura; Cassell, Alan M.; Stevens, Ramsey M.; Meyyappan, Meyya; Li, Jun; Han, Jie; Liu, Hongbing; Chao, Gordon

    2004-01-01

    Carbon nanotube (CNT) probe tips for atomic force microscopy (AFM) offer several advantages over Si/Si3N4 probe tips, including improved resolution, shape, and mechanical properties. This viewgraph presentation discusses these advantages, and the drawbacks of existing methods for fabricating CNT probe tips for AFM. The presentation introduces a bottom up wafer scale fabrication method for CNT probe tips which integrates catalyst nanopatterning and nanomaterials synthesis with traditional silicon cantilever microfabrication technology. This method makes mass production of CNT AFM probe tips feasible, and can be applied to the fabrication of other nanodevices with CNT elements.

  15. VIEW SOUTHEASTBUILDING 4 NO. 1 WIRE MILL (1871) WIRE DRAWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SOUTHEAST-BUILDING 4 NO. 1 WIRE MILL (1871) WIRE DRAWING MACHINE - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ

  16. Wire Array Photovoltaics

    NASA Astrophysics Data System (ADS)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  17. Operando atomic structure and active sites of TiO2(110)-supported gold nanoparticles during carbon monoxide oxidation.

    PubMed

    Saint-Lager, Marie-Claire; Laoufi, Issam; Bailly, Aude

    2013-01-01

    It is well known that gold nanoparticles supported on TiO2 act as a catalyst for CO oxidation, even below room temperature. Despite extensive studies, the origin of this catalytic activity remains under debate. Indeed, when the particle size decreases, many changes may occur; thus modifying the nanoparticles' electronic properties and consequently their catalytic performances. Thanks to a state-of-the-art home-developed setup, model catalysts can be prepared in ultra-high vacuum and their morphology then studied in operando conditions by Grazing Incidence Small Angle X-ray Scattering, as well as their atomic structure by Grazing Incidence X-ray Diffraction as a function of their catalytic activity. We previously reported on the existence of a catalytic activity maximum observed for three-dimensional gold nanoparticles with a diameter of 2-3 nm and a height of 6-7 atomic planes. In the present work we correlate this size dependence of the catalytic activity to the nanoparticles' atomic structure. We show that even when their size decreases below the optimum diameter, the gold nanoparticles keep the face-centered cubic structure characteristic of bulk gold. Nevertheless, for these smallest nanoparticles, the lattice parameter presents anisotropic strains with a larger contraction in the direction perpendicular to the surface. Moreover a careful analysis of the atomic-scale morphology around the catalytic activity maximum tends to evidence the role of sites with a specific geometry at the interface between the nanoparticles and the substrate. This argues for models where atoms at the interface periphery act as catalytically active sites for carbon monoxide oxidation.

  18. Size-selective catalytic growth of nearly 100% pure carbon nanocoils with copper nanoparticles produced by atomic layer deposition.

    PubMed

    Wang, Guizhen; Ran, Gu; Wan, Gengping; Yang, Peng; Gao, Zhe; Lin, Shiwei; Fu, Chuan; Qin, Yong

    2014-05-27

    In this paper, Cu nanoparticles with narrow size distribution are synthesized by reduction of CuO films produced by atomic layer deposition (ALD), which are used as catalysts for the catalytic growth of carbon nanostructures. By properly adjusting the ALD cycle numbers, the size of produced Cu nanoparticles can be well controlled. Uniform carbon nanocoils with near 100% purity can be obtained by using 50-80 nm Cu nanoparticles, while thin straight fibers and thick straight fibers are produced by applying 5-35 and 100-200 nm Cu nanoparticles, respectively. The mechanism of the particle size-dependent growth of the carbon nanostructure was analyzed based on the experimental results and theoretical simulation. Our results can provide important information for the preparation of helical carbon nanostructures with high purity. Moreover, this work also demonstrates that ALD is a viable technique for synthesizing nanoparticles with highly controllable size and narrow size distribution suitable for studying particle size-dependent catalytic behavior and other applications.

  19. Commercial and Industrial Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  20. 2016 MOST WIRED.

    PubMed

    Barr, Paul; Butcher, Lola; Hoppszallern, Suzanna

    2016-07-01

    This year's IT survey shows that hospitals are aggressively fighting cyber crime and looking for ways to use data to help in the transition to value-based care. Find out who made the 2016 lists of Most Wired, Most Advanced, Most Improved and Most Wired-Small and Rural. PMID:27526506

  1. 2016 MOST WIRED.

    PubMed

    Barr, Paul; Butcher, Lola; Hoppszallern, Suzanna

    2016-07-01

    This year's IT survey shows that hospitals are aggressively fighting cyber crime and looking for ways to use data to help in the transition to value-based care. Find out who made the 2016 lists of Most Wired, Most Advanced, Most Improved and Most Wired-Small and Rural.

  2. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel.

    PubMed

    Gao, Shan; Lin, Yue; Jiao, Xingchen; Sun, Yongfu; Luo, Qiquan; Zhang, Wenhua; Li, Dianqi; Yang, Jinlong; Xie, Yi

    2016-01-01

    Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially 'clean' strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate. The critical bottleneck lies in activating CO2 into the CO2(•-) radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO(-)) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions. The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems

  3. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Lin, Yue; Jiao, Xingchen; Sun, Yongfu; Luo, Qiquan; Zhang, Wenhua; Li, Dianqi; Yang, Jinlong; Xie, Yi

    2016-01-01

    Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially ‘clean’ strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate. The critical bottleneck lies in activating CO2 into the CO2•- radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO-) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions. The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems

  4. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina

    SciTech Connect

    Peterson, Eric J.; DelaRiva, Andrew T.; Lin, Sen; Johnson, Ryan S.; Guo, Hua; Miller, Jeffrey T.; Kwak, Ja Hun; Peden, Charles H.F.; Kiefer, Boris; Allard, Lawrence F.; Ribeiro, Fabio H.; Datye, Abhaya K.

    2014-09-15

    Catalysis by single isolated atoms of precious metals has attracted much recent interest since it promises the ultimate economy in atom efficiency. Previous reports have been confined to reducible oxide supports such as FeOx, TiO₂ or CeO₂. Here we show that isolated Pd atoms can be stabilized on industrially relevant gamma-alumina supports. At low Pd loadings (≤0.5 wt%) these catalysts contain exclusively atomically dispersed Pd species. The addition of lanthanum-oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated Pd atoms. Aberration-corrected scanning transmission electron microscopy (AC-STEM) confirms the presence of intermingled Pd and La on the gamma-alumina surface. Operando X-ray absorption spectroscopy, performed on Pd/La-alumina and Pd/gamma-alumina (0.5 wt% Pd) demonstrates the presence of catalytically active atomically dispersed ionic Pd in the Pd/La-doped gamma-alumina system. CO oxidation reactivity measurements show onset of catalytic activity at 40 °C, indicating that the ionic Pd species are not poisoned by CO. The reaction order in CO and O₂ is positive, suggesting a reaction mechanism that is different from that on metallic Pd. The catalyst activity is lost if the Pd species are reduced to their metallic form, but the activity can be regenerated by oxidation at 700 °C in air. The high-temperature stability of these ionic Pd species on commercial alumina supports makes this catalyst system of potential interest for low-temperature exhaust treatment catalysts.

  5. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel.

    PubMed

    Gao, Shan; Lin, Yue; Jiao, Xingchen; Sun, Yongfu; Luo, Qiquan; Zhang, Wenhua; Li, Dianqi; Yang, Jinlong; Xie, Yi

    2016-01-01

    Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially 'clean' strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate. The critical bottleneck lies in activating CO2 into the CO2(•-) radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO(-)) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions. The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems

  6. Negative ion productions in high velocity collision between small carbon clusters and Helium atom target

    NASA Astrophysics Data System (ADS)

    M, Chabot; K, Béroff; T, Pino; G, Féraud; N, Dothi; Padellec A, Le; G, Martinet; S, Bouneau; Y, Carpentier

    2012-11-01

    We measured absolute double capture cross section of Cn+ ions (n=1,5) colliding, at 2.3 and 2.6 a.u velocities, with an Helium target atom and the branching ratios of fragmentation of the so formed electronically excited anions Cn-*. We also measured absolute cross section for the electronic attachment on neutral Cn clusters colliding at same velocities with He atom. This is to our knowledge the first measurement of neutral-neutral charge exchange in high velocity collision.

  7. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suite Gas Processing System (GPS) Carbon Dioxide Scrubber

    NASA Technical Reports Server (NTRS)

    Hoffman, Christopher; Munoz, Bruno; Gundersen, Cynthia; Thomas, Walter, III; Stephenson, Timothy

    2008-01-01

    In support of the GPS for the SAM instrument suite built by NASA/GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr alloy wire, 0.0142 cm diameter, for use as a heater element for the carbon dioxide scrubber. The element would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The element also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni- 20Cr in low pressure CO2, coupled with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the element reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  8. International space station wire program

    NASA Technical Reports Server (NTRS)

    May, Todd

    1995-01-01

    Hardware provider wire systems and current wire insulation issues for the International Space Station (ISS) program are discussed in this viewgraph presentation. Wire insulation issues include silicone wire contamination, Tefzel cold temperature flexibility, and Russian polyimide wire insulation. ISS is a complex program with hardware developed and managed by many countries and hundreds of contractors. Most of the obvious wire insulation issues are known by contractors and have been precluded by proper selection.

  9. Chemisorption of Transition-Metal Atoms on Boron- and Nitrogen-Doped Carbon Nanotubes: Energetics and Geometric and Electronic Structures

    SciTech Connect

    An, Wei; Turner, C. H.

    2009-04-30

    The well-defined binding between transition-metals (TM) and the sidewall of carbon nanotubes (CNTs) plays a key role in the performance of CNT-based anoelectronics, as well as the stability of catalysts used in either heterogeneous catalysis or fuel-cell electrocatalysis. Spin-polarized density functional theory calculations demonstrate that either boron or nitrogen doping can increase the binding strength of TM atoms with singlewall carbon nanotubes (SWCNTs), and comparatively, boron doping is more effective. The binding nature can be identified as chemisorption, based on the magnitude of the binding energy and the formation of multiple bonds. The chemisorbed TM atoms can modify the electronic structure of the doped nanotubes in various ways, depending upon the TM and helicity of the CNT, rendering the TM/doped-SWCNT composite viable for a wide range of applications. A total of 11 technologically relevant TMs adsorbed on two distinct and stable doped-SWCNT models have been investigated in this study. The doping sites are arranged in either a locally concentrated or uniform fashion within semiconducting SWCNT(8,0) and metallic SWCNT(6,6). The results serve as a starting point for studying larger, more complex TM nanostructures anchored on the sidewall of boron- or nitrogen-doped CNTs.

  10. Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS

    NASA Astrophysics Data System (ADS)

    Gunay, H. Burak; Ghods, Pouria; Isgor, O. Burkan; Carpenter, Graham J. C.; Wu, Xiaohua

    2013-06-01

    The atomic structure of oxide films formed on carbon steel that are exposed to highly alkaline simulated concrete pore solutions was investigated using Electron Energy Loss Spectroscopy (EELS). In particular, the effect of chloride exposure on film structure was studied in two types of simulated pore solutions: saturated calcium hydroxide (CH) and a solution prepared to represent typical concrete pore solutions (CP). It was shown that the films that form on carbon steel in simulated concrete pore solutions contained three indistinct layers. The inner oxide film had a structure similar to that of FeIIO, which is known to be unstable in the presence of chlorides. The outer oxide film mainly resembled Fe3O4 (FeIIO·Fe2IIIO3) in the CH solution and α-Fe2IIIO3/Fe3O4 in the CP solution. The composition of the transition layer between the inner and outer layers of the oxide film was mainly composed of Fe3O4 (FeIIO·Fe2IIIO3). In the presence of chloride, the relative amount of the FeIII/FeII increased, confirming that chlorides induce valence state transformation of oxides from FeII to FeIII, and the difference between the atomic structures of oxide film layers diminished.

  11. Boron carbide as atomic oxygen protection for the Lexan-carbon filter on the ROSAT wide-field camera

    NASA Astrophysics Data System (ADS)

    Kent, Barry J.; Swinyard, Bruce M.; Maier, Hans-Joerg; Frischke, Dagmar

    1992-01-01

    The ROSAT Wide Field Camera, launched in June 1990, uses large area (50 cm2) thin film (typically 0.5 micrometers thick), band pass filters to select different extreme ultra violet wavelength bands. One of the filters consists of a substrate of the plastic polycarbonate, Lexan$DAG, interleaved with carbon and is thus susceptible to erosion by atomic oxygen in the ROSAT low earth orbit at 580 km altitude. The filter was protected against this erosion mechanism by using a thin overcoating of boron carbide. We describe the boron carbide coating process, the technique used to minimize the heat load on the fragile plastic foil, and the need for an additional adhesion layer of carbon. The chemical composition of the boron carbide as evaporated material on glass slides has been measured using several surface science techniques as well as by analysis of the soft x-ray and EUV transmission of sample foils and completed flight filters. Additionally, using ion and atomic oxygen sources, the effectiveness of the coating has been evaluated by laboratory measurements on sample foils.

  12. Bi-2212 round wire development for high field applications

    NASA Astrophysics Data System (ADS)

    Miao, H.; Huang, Y.; Hong, S.; Gerace, M.; Parrell, J.

    2014-05-01

    Oxford Superconducting Technology (OST) has been continuously improving Bi-2212 round wire performance because of its potential for application in high-field magnets (> 25 T). We focused on Bi-2212 wire configuration design, filament densification and reducing carbon and hydrogen contamination to improve the engineering critical current density (JE). Several wire configurations have been developed to meet different wire diameter and operating current requirements. The swaging, cold isostatic pressing (CIP) and over-pressure heat treatment processes have been demonstrated to effectively increase Bi-2212 filament mass density in the final wire and result in high performance over long length. The JE values exceeding 550 A/mm2 at 4.2 K, 15 T have been achieved on the CIPed 1 m long sample using a 10 bar over-pressure (OP) heat treatment. The twisted Bi-2212 wire significantly reduced ac loss without the critical current degradation.

  13. Wire tension versus wire frequency: an experimental Ilizarov frame study.

    PubMed

    La Russa, Valentina; Skallerud, Bjørn; Klaksvik, Jomar; Foss, Olav A

    2010-08-26

    Stability of an Ilizarov frame highly depends on maintenance of adequate tension in the wires. Wire tension should be measured accurately in experimental laboratory studies when new types of wire fixators are tested. In this study, 20 wires were tested using two different wire fixators. The wires were sequentially tensioned from 0 to 1275 N in 50 N intervals. For each tension value, corresponding vibration frequency was recorded. We then described the relationship between wire tension and wire vibration frequency in an empirical equation (R(2)=99.8). Wire vibration frequency can also be described theoretically by the Euler-Bernoulli equation for a thin beam. Theoretical frequencies were calculated and compared with corresponding experimental frequencies. A close agreement was found (95% limits of agreement, +/-3.2 Hz). This empirical equation represents a simple tool, applicable when investigating the effect of new wire fixators, pre-tensioning and frame constructions on wire tension. PMID:20472242

  14. Carbon Dioxide Activation by Scandium Atoms and Scandium Monoxide Molecules: Formation and Spectroscopic Characterization of ScCO3 and OCScCO3 in Solid Neon.

    PubMed

    Zhang, Qingnan; Qu, Hui; Chen, Mohua; Zhou, Mingfei

    2016-01-28

    The reactions of carbon dioxide with scandium monoxide molecules and scandium atoms are investigated using matrix isolation infrared spectroscopy in solid neon. The species formed are identified by the effects of isotopic substitution on their infrared spectra as well as density functional calculations. The results show that the ground state ScO molecule reacts with carbon dioxide to form the carbonate complex ScCO3 spontaneously on annealing. The ground state Sc atom reacts with two carbon dioxide molecules to give the carbonate carbonyl complex OCScCO3 via the previously reported OScCO insertion intermediate on annealing. The observation of these spontaneous reactions is consistent with theoretical predictions that both the Sc + 2CO2 → OCScCO3 and ScO + CO2 → ScCO3 reactions are thermodynamically exothermic and are kinetically facile, requiring little or no activation energy. PMID:26738558

  15. Carbon Dioxide Activation by Scandium Atoms and Scandium Monoxide Molecules: Formation and Spectroscopic Characterization of ScCO3 and OCScCO3 in Solid Neon.

    PubMed

    Zhang, Qingnan; Qu, Hui; Chen, Mohua; Zhou, Mingfei

    2016-01-28

    The reactions of carbon dioxide with scandium monoxide molecules and scandium atoms are investigated using matrix isolation infrared spectroscopy in solid neon. The species formed are identified by the effects of isotopic substitution on their infrared spectra as well as density functional calculations. The results show that the ground state ScO molecule reacts with carbon dioxide to form the carbonate complex ScCO3 spontaneously on annealing. The ground state Sc atom reacts with two carbon dioxide molecules to give the carbonate carbonyl complex OCScCO3 via the previously reported OScCO insertion intermediate on annealing. The observation of these spontaneous reactions is consistent with theoretical predictions that both the Sc + 2CO2 → OCScCO3 and ScO + CO2 → ScCO3 reactions are thermodynamically exothermic and are kinetically facile, requiring little or no activation energy.

  16. Aptamer sandwich-based carbon nanotube sensors for single-carbon-atomic-resolution detection of non-polar small molecular species.

    PubMed

    Lee, Joohyung; Jo, Minjoung; Kim, Tae Hyun; Ahn, Ji-Young; Lee, Dong-ki; Kim, Soyoun; Hong, Seunghun

    2011-01-01

    A portable sensor platform for the detection of small molecular species is crucial for the on-site monitoring of environmental pollutants, food toxicants, and disease-related metabolites. However, it is still extremely difficult to find highly selective and sensitive sensor platforms for general small molecular detection. Herein, we report aptamer sandwich-based carbon nanotube sensor strategy for small molecular detection, where aptamers were utilized to capture target molecules as well as to enhance the sensor signals. We successfully demonstrated the detection of non-polar bisphenol A molecules with a 1 pM sensitivity. Significantly, our sensors were able to distinguish between similar small molecular species with single-carbon-atomic resolution. Furthermore, using the additional biotin modification on labeling aptamer, we enhanced the detection limit of our sensors down to 10 fM. This strategy allowed us to detect non-polar small molecular species using carbon nanotube transistors, thus overcoming the fundamental limitation of field effect transistor-based sensors. Considering the extensive applications of sandwich assay for the detection of rather large biomolecules, our results should open up completely new dimension in small molecular detection technology and should enable a broad range of applications such as environmental protection and food safety.

  17. Next Generation Wiring

    NASA Technical Reports Server (NTRS)

    Medelius, Petro; Jolley, Scott; Fitzpatrick, Lilliana; Vinje, Rubiela; Williams, Martha; Clayton, LaNetra; Roberson, Luke; Smith, Trent; Santiago-Maldonado, Edgardo

    2007-01-01

    Wiring is a major operational component on aerospace hardware that accounts for substantial weight and volumetric space. Over time wire insulation can age and fail, often leading to catastrophic events such as system failure or fire. The next generation of wiring must be reliable and sustainable over long periods of time. These features will be achieved by the development of a wire insulation capable of autonomous self-healing that mitigates failure before it reaches a catastrophic level. In order to develop a self-healing insulation material, three steps must occur. First, methods of bonding similar materials must be developed that are capable of being initiated autonomously. This process will lead to the development of a manual repair system for polyimide wire insulation. Second, ways to initiate these bonding methods that lead to materials that are similar to the primary insulation must be developed. Finally, steps one and two must be integrated to produce a material that has no residues from the process that degrades the insulating properties of the final repaired insulation. The self-healing technology, teamed with the ability to identify and locate damage, will greatly improve reliability and safety of electrical wiring of critical systems. This paper will address these topics, discuss the results of preliminary testing, and remaining development issues related to self-healing wire insulation.

  18. Divalent Fe Atom Coordination in Two-Dimensional Microporous Graphitic Carbon Nitride.

    PubMed

    Oh, Youngtak; Hwang, Jin Ok; Lee, Eui-Sup; Yoon, Minji; Le, Viet-Duc; Kim, Yong-Hyun; Kim, Dong Ha; Kim, Sang Ouk

    2016-09-28

    Graphitic carbon nitride (g-C3N4) is a rising two-dimensional material possessing intrinsic semiconducting property with unique geometric configuration featuring superimposed heterocyclic sp(2) carbon and nitrogen network, nonplanar layer chain structure, and alternating buckling. The inherent porous structure of heptazine-based g-C3N4 features electron-rich sp(2) nitrogen, which can be exploited as a stable transition metal coordination site. Multiple metal-functionalized g-C3N4 systems have been reported for versatile applications, but local coordination as well as its electronic structure variation upon incoming metal species is not well understood. Here we present detailed bond coordination of divalent iron (Fe(2+)) through micropore sites of graphitic carbon nitride and provide both experimental and computational evidence supporting the aforementioned proposition. In addition, the utilization of electronic structure variation is demonstrated through comparative photocatalytic activities of pristine and Fe-g-C3N4.

  19. Interaction between carbon dioxide and coal: atomic-scale characteristics and electronic structures

    NASA Astrophysics Data System (ADS)

    Liu, Yingdi; Wang, Sanwu

    2015-03-01

    Geologic sequestration of CO2 in unmineable coal seams has been suggested to mitigate the effect of the increasing of the atmospheric CO2 concentration on global warming. Extensive experimental studies have been performed for the injection of CO2 into coalbeds. However, the atomic-level mechanism for the interaction between CO2 and coal has not been fully explored. We report first-principles density-functional calculations and ab initio molecular dynamics simulations for the interaction between CO2 and the coal network. In particular, we report results about atomic-scale and electronic properties of the interaction. We also report a comparison with the interaction between CH4 and coal. This research used the supercomputer resources at NERSC, of XSEDE, at TACC, and at the Tandy Supercomputing Center.

  20. Atomic and electronic structures of carbon nanotube covalent connecting with graphene by oxygen molecular

    NASA Astrophysics Data System (ADS)

    Wei, Jianwei; Wei, Qiang; Ma, Zengwei; Zeng, Hui

    2016-02-01

    Based on density functional theories, we have investigated the nanostructure in which boron and nitrogen co-doped carbon nanotube (CNT)/graphene (GR) were connected by an oxygen molecular. The geometry structure and electronic properties of the system were calculated carefully. The band structures indicate that the impurity state of oxygen transfer the semiconducting co-doped carbon nanotube/graphene into a semimetallic composite material. The results show that the connection can be achieved with energy release under a wider range of distance between the nanotube and graphene. It indicates that the connection between the nanotube and the graphene might be a self-assemble process.

  1. Radiation from mixed multi-planar wire arrays

    SciTech Connect

    Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Weller, M. E.; Shlyaptseva, V. V.; Shrestha, I.; Keim, S. F.; Stafford, A.; Chuvatin, A. S.; Coverdale, C. A.; Apruzese, J. P.; Ouart, N. D.; Giuliani, J. L.

    2014-03-15

    The study of radiation from different wire materials in wire array Z-pinch plasma is a very challenging topic because it is almost impossible to separate different plasmas at the stagnation. A new approach is suggested based on planar wire array (PWA) loads to assess this problem. Multi-planar wire arrays are implemented that consist of few planes, each with the same number of wires and masses but from different wire materials, arranged in parallel rows. In particular, the experimental results obtained with triple PWAs (TPWAs) on the UNR Zebra generator are analyzed with Wire Ablation Dynamics Model, non-local thermodynamic equilibrium kinetic model, and 2D radiation magneto-hydrodynamic to illustrate this new approach. In TPWAs, two wire planes were from mid-atomic-number wire material and another plane was from alloyed Al, placed either in the middle or at the edge of the TPWA. Spatial and temporal properties of K-shell Al and L-shell Cu radiations were analyzed and compared from these two configurations of TPWAs. Advantages of the new approach are demonstrated and future work is discussed.

  2. A high-pressure atomic force microscope for imaging in supercritical carbon dioxide

    SciTech Connect

    Lea, Alan S.; Higgins, Steven R.; Knauss, Kevin G.; Rosso, Kevin M.

    2011-04-26

    A high-pressure atomic force microscope (AFM) that enables in-situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO2 (scCO2) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ~ 350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO2, precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations that change the fluid refractive index and hence the laser path. We demonstrate with our apparatus in-situ atomic scale imaging of a calcite (CaCO3) mineral surface in scCO2; both single, monatomic steps and dynamic processes occurring on the (10¯14) surface are presented. This new AFM provides unprecedented in-situ access to interfacial phenomena at solid-fluid interfaces under pressure.

  3. A high-pressure atomic force microscope for imaging in supercritical carbon dioxide

    SciTech Connect

    Lea, A. S.; Higgins, S. R.; Knauss, K. G.; Rosso, K. M.

    2011-01-01

    A high-pressure atomic force microscope(AFM) that enables in situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO2 (scCO2) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ~350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO2, precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations that change the fluidrefractive index and hence the laser path. We demonstrate with our apparatus in situ atomic scale imaging of a calcite (CaCO3) mineral surface in scCO2; both single, monatomic steps and dynamic processes occurring on the (101¯4) surface are presented. Finally, this new AFM provides unprecedented in situ access to interfacial phenomena at solid–fluid interfaces under pressure.

  4. A Multi-line Study of Atomic Carbon and Carbon Monoxide in the Galactic Star- forming Region W3

    NASA Astrophysics Data System (ADS)

    Jakob, H.; Kramer, C.; Mookerjea, B.; Jeyakumar, S.; Stutzki, J.

    We present results from simultaneous observations of the fine structure line emissions of neutral carbon (C I) at 492 and 809 GHz from selected Galactic star forming regions. These observations include the first results using the the newly installed SMART (SubmilliMeter Array Receiver at Two wavelengths) on KOSMA. The regions observed were selected in order to cover a range of strengths of the incident UV radiation from the exciting star/stars and also densities of the interstellar medium. Extended maps of C I emission from massive star forming regions including W3, S106 and Orion BN/KL have been observed. Simultaneous observation of the two C I lines ensures better relative calibration. The results from these observations will be combined with observed intensities of low-J and mid-J CO and C+ lines and analyzed using radiation transfer based models for Photon Dominated Regions (PDRs).

  5. Carbon kinetic isotope effect in the reaction of CH{sub 4} with Cl atoms

    SciTech Connect

    Saueressig, G.; Bergamaschi, P.; Crowley, J.N.

    1995-05-15

    The authors report laser absorption spectroscopy measurements of the carbon kinetic isotope effect involving chlorine reacting with methane under stratospheric type conditions. The authors find a slight isotope effect of 1.066 {+-} 0.002 at 297 K for the ratio of {sup 13}CH{sub 4}/{sup 12}CH{sub 4}. There was also a slight temperature dependence observed.

  6. Kinetic and Mechanistic Studies of Carbon-to-Metal Hydrogen Atom Transfer Involving Os-Centered Radicals: Evidence for Tunneling

    SciTech Connect

    Lewandowska-Androlojc, Anna; Grills, David C.; Zhang, Jie; Bullock, R. Morris; Miyazawa, Akira; Kawanishi, Yuji; Fujita, Etsuko

    2014-03-05

    We have investigated the kinetics of novel carbon-to-metal hydrogen atom transfer reactions, in which homolytic cleavage of a C-H bond is accomplished by a single metal-centered radical. Studies by means of time-resolved IR spectroscopic measurements revealed efficient hydrogen atom transfer from xanthene, 9,10-dihydroanthracene and 1,4-cyclohexadiene to Cp(CO)2Os• and (n5-iPr4C5H)(CO)2Os• radicals, formed by photoinduced homolysis of the corresponding osmium dimers. The rate constants for hydrogen abstraction from these hydrocarbons were found to be in the range 1.54 × 105 M 1 s 1 -1.73 × 107 M 1 s-1 at 25 °C. For the first time, kinetic isotope effects for carbon-to-metal hydrogen atom transfer were determined. Large primary kinetic isotope effects of 13.4 ± 1.0 and 16.6 ± 1.4 were observed for the hydrogen abstraction from xanthene to form Cp(CO)2OsH and (n5-iPr4C5H)(CO)2OsH, respectively, at 25 °C. Temperature-dependent measurements of the kinetic isotope effects over a 60 -C temperature range were carried out to obtain the difference in activation energies and the pre-exponential factor ratio. For hydrogen atom transfer from xanthene to (n5-iPr4C5H)(CO)2Os•, the (ED - EH) = 3.25 ± 0.20 kcal/mol and AH/AD = 0.056 ± 0.018 values are greater than the semi-classical limits and thus suggest a quantum mechanical tunneling mechanism. The work at BNL was carried out under contract DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences & Biosciences, Office of Basic Energy Sciences. RMB also thanks the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences for support. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  7. Contacting nanowires and nanotubes with atomic precision for electronic transport

    SciTech Connect

    Qin, Shengyong; Hellstrom, Sondra L; Bao, Zhenan; Boyanov, Boyan; Li, An-Ping

    2012-01-01

    Making contacts to nanostructures with atomic precision is an important process in the bottom-up fabrication and characterization of electronic nanodevices. Existing contacting techniques use top-down lithography and chemical etching, but lack atomic precision and introduce the possibility of contamination. Here, we report that a field-induced emission process can be used to make local contacts onto individual nanowires and nanotubes with atomic spatial precision. The gold nano-islands are deposited onto nanostructures precisely by using a scanning tunneling microscope tip, which provides a clean and controllable method to ensure both electrically conductive and mechanically reliable contacts. To demonstrate the wide applicability of the technique, nano-contacts are fabricated on silicide atomic wires, carbon nanotubes, and copper nanowires. The electrical transport measurements are performed in situ by utilizing the nanocontacts to bridge the nanostructures to the transport probes.

  8. High velocity pulsed wire-arc spray

    NASA Technical Reports Server (NTRS)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor); Kincaid, Russell W. (Inventor)

    1999-01-01

    Wire arc spraying using repetitively pulsed, high temperature gas jets, usually referred to as plasma jets, and generated by capillary discharges, substantially increases the velocity of atomized and entrained molten droplets. The quality of coatings produced is improved by increasing the velocity with which coating particles impact the coated surface. The effectiveness of wire-arc spraying is improved by replacing the usual atomizing air stream with a rapidly pulsed high velocity plasma jet. Pulsed power provides higher coating particle velocities leading to improved coatings. 50 micron aluminum droplets with velocities of 1500 m/s are produced. Pulsed plasma jet spraying provides the means to coat the insides of pipes, tubes, and engine block cylinders with very high velocity droplet impact.

  9. Carbon clusters containing two metals atoms: Structures, growth mechanism, and fullerene formation

    SciTech Connect

    Shelimov, K.B.; Jarrold, M.F.

    1996-02-07

    Gas phase ion mobility measurments have been used to probe the structures and interconversion of La{sub 2}C{sub n}{sup +} (n = 1-100) isomers. The smallest La{sub 2}C{sub n}{sup +} clusters (n = 10) appear to be planar rings. However, planar mono and bicylic rings (the dominant isomers for C{sub n}{sup +} and LaC{sub n}{sup +}, n = 30, clusters) are not observed for the larger La{sub 2}C{sub n}{sup +} species. Instead, isomers which appear to be three-dimensional ring complexes dominate for unannealed La{sub 2}C{sub n}{sup +} (n + 17) clusters. The formation of these complexes is probably driven by electrostatic forces. For n = 30 the three-dimensional ring complexes isomerize into metallofullerenes (and metal-containing graphite sheets for n = 30-37). The estimated activation energies for these isomerization processes are about 1eV lower than those estimated for similar processes for planar C{sub n}{sup +} and LaC{sub n}{sup +} rings. Metallofullerenes with two non-endohedral metal atoms (for n = 28-29), one endohedral metal atom (for n = 31-100), and two endohedral metal atoms (for n > 64, only even n), are identified. Fullerene derivatives (presumably fullerene + ring complexes) are abundant in the unannealed isomer distributions for La{sub 2}C{sub n}{sup +} (n > 50) clusters, but readily isomerize into regular fullerenes upon collisional heating. 47 refs., 9 figs., 2 tabs.

  10. Combined nano-SIMS/AFM/EBSD analysis and atom probe tomography, of carbon distribution in austenite/ε-martensite high-Mn steels.

    PubMed

    Seol, Jae-Bok; Lee, B-H; Choi, P; Lee, S-G; Park, C-G

    2013-09-01

    We introduce a new experimental approach for the identification of the atomistic position of interstitial carbon in a high-Mn binary alloy consisting of austenite and ε-martensite. Using combined nano-beam secondary ion mass spectroscopy, atomic force microscopy and electron backscatter diffraction analyses, we clearly observe carbon partitioning to austenite. Nano-beam secondary ion mass spectroscopy and atom probe tomography studies also reveal carbon trapping at crystal imperfections as identified by transmission electron microscopy. Three main trapping sites can be distinguished: phase boundaries between austenite and ε-martensite, stacking faults in austenite, and prior austenite grain boundaries. Our findings suggest that segregation and/or partitioning of carbon can contribute to the austenite-to-martensite transformation of the investigated alloy.

  11. Nanopatterning on silicon surface using atomic force microscopy with diamond-like carbon (DLC)-coated Si probe

    PubMed Central

    2011-01-01

    Atomic force microscope (AFM) equipped with diamond-like carbon (DLC)-coated Si probe has been used for scratch nanolithography on Si surfaces. The effect of scratch direction, applied tip force, scratch speed, and number of scratches on the size of the scratched geometry has been investigated. The size of the groove differs with scratch direction, which increases with the applied tip force and number of scratches but decreases slightly with scratch speed. Complex nanostructures of arrays of parallel lines and square arrays are further fabricated uniformly and precisely on Si substrates at relatively high scratch speed. DLC-coated Si probe has the potential to be an alternative in AFM-based scratch nanofabrication on hard surfaces. PMID:21888633

  12. FORMATION OF CARBON DIOXIDE, METHANOL, ETHANOL, AND FORMIC ACID ON AN ICY GRAIN ANALOG USING FAST OXYGEN ATOMS

    SciTech Connect

    Madzunkov, S. M.; MacAskill, J. A.; Chutjian, A.

    2010-03-20

    Carbon dioxide (CO{sub 2}), methanol (CH{sub 3}OH), ethanol (CH{sub 3}CH{sub 2}OH), and formic acid (HCOOH) have been formed in collisions of a superthermal, 9 eV beam of O({sup 3} P) atoms with CH{sub 4} molecules, with an over coat of CO molecules, adsorbed on a gold surface at 4.8 K. The products are detected using temperature programmed-desorption and quadrupole mass spectrometry. Identification of the species is carried out through use of the Metropolis random walk algorithm as constrained by the fractionation patterns of the detected species. Relative formation yields are reported and reaction sequences are given to account for possible formation routes.

  13. Anisotropic Conductance of a Surface Quantum-Wire Array

    NASA Astrophysics Data System (ADS)

    Weitering, Hanno; Yoo, Kwonjae

    2001-03-01

    The Ga/Si(112)6x1 interface consists of a self-assembled, mesoscopic array of atomic Ga wires on a high-index Si(112) surface. The structural uniformity of this atomic-wire- or quantum-wire array is far superior to those created by nano-lithography or STM atom manipulation. The details of electron transport in these quantum wires should be very interesting. Si atoms also possess dangling bonds. Since the trivalent Ga atoms are threefold coordinated, their dangling bond orbitals are empty and hence, they should not contribute significantly to the conductivity. However, quasi one-dimensional metallic transport might be possible in the silicon dangling bonds because each dangling bond contributes one electron. These dangling bonds can form a quasi one-dimensional, half-filled electronic band. One of the interesting questions is whether this surface is indeed a quasi 1D metal or whether the Si chains undergo a Jahn-Teller or buckling distortion that opens up a band gap. We have measured the conductance of this mesoscopic wire array as a function of temperature parallel and perpendicular to the Ga chains. Transport measurements reveal a strong conductance anisotropy as expected. However, the conduction channels are orthogonal to the crystallographic chains. This counterintuitive result is in excellent agreement with electronic structure calculations by Ortega and Flores. The theoretical band structure was confirmed independently with photoemission spectroscopy.

  14. Adsorption of glycine on diamond (001): Role of bond angle of carbon atoms

    NASA Astrophysics Data System (ADS)

    Li, Lin; Xu, Jing; Xu, Li-Fang; Lian, Chao-Sheng; Li, Jun-Jie; Wang, Jian-Tao; Gu, Chang-Zhi

    2015-05-01

    The adsorption behaviors of glycine on diamond (001) are systematically investigated by first-principles calculations. We have considered all possible adsorption configurations without a surface dangling bond and give a quantitative analysis for the relationship between the deviation of carbon bond angle and adsorption energy. We found that a smaller distortion of carbon covalent bond angle results in a more stable adsorption structure, and the most stable adsorption has a benzene-ring-like structure with the highest adsorption energy of 5.11 eV per molecule and the minimum distortion of carbon covalent bond angle. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272278, 91323304, 10774177, and 11374341), the National Basic Research Program of China (Grand No. 2009CB930502), the Knowledge Innovation Project of Chinese Academy of Sciences (Grand No. KJCX2-EW-W02), the Fundamental Research Funds for the Central Universities of Ministry of Education of China, and the Research Funds of Renmin University of China.

  15. A highly catalytic and selective conversion of carboxylic acids to 1-alkenes of one less carbon atom

    SciTech Connect

    Miller, J.A.; Nelson, J.A.; Byrne, M.P. )

    1993-01-01

    An equimolar mixture of a carboxylic acid and acetic anhydride produces a reagent combination that undergoes a highly efficient decarbonylation/dehydration at 250[degrees]C using either Pd- or Rh-based catalyst systems, affording excellent yields of the corresponding 1-alkenes and one less carbon atom. The stoichiometric and catalytic decarbonylation of aliphatic aldehydes and acid chlorides to alkanes and alkenes, respectively, by transition-metal complexes are well-known and synthetically useful transformations. Relatively little, however, has been reported concerning the analogous decarbonylation/dehydration of aliphatic carboxylic acids to olefins, with generally poor results achieved in terms of catalyst efficiency and selectivity toward terminal olefin formation in the product. For example, the decarbonylation/dehydration of stearic acid to heptadecane using a Rh-based catalyst was reported to proceed with a maximum catalyst turnover number (TON; moles of olefin product formed per mole of catalyst used) of ca. 250, with selectivities toward 1-heptadecene formation typically below 50%. Interestingly, results were presented in this work which suggested that the decarbonylation of stearic acid proceeded via intermediate formation of stearic anhydride. Use of a preformed, symmetrical anhydride is not desirable from an economic or synthetic viewpoint, particularly since its decarbonylation should result in the formation of equal amounts of olefin and carboxylic acid coproducts. The authors now report here that the use of a carboxylic acid substrate as an equimolar mixture with acetic anhydride (Ac[sub 2]O) produces a mixed anhydride system which undergoes an extremely facile decarbonylation reaction to provide a general and highly selective route to the corresponding 1-alkenes of one less carbon atom. 19 refs., 1 tab.

  16. Perfluoroalkyl carboxylic acids with up to 22 carbon atoms in snow and soil samples from a ski area.

    PubMed

    Plassmann, Merle M; Berger, Urs

    2013-05-01

    The use of fluorinated ski waxes as a direct input route of perfluoroalkyl carboxylic acids (PFCAs) to the environment was investigated. PFCA homologues with 6-22 carbon atoms (C6-22 PFCAs) were detected in fluorinated ski waxes and their raw materials by liquid chromatography coupled to tandem mass spectrometry. Snow and soil samples from a ski area in Sweden were taken after a skiing competition and after snowmelt, respectively. In both snow and soil samples C6-22 PFCAs were detected, representing the first report of PFCAs with up to 22 carbon atoms in environmental samples. Single analyte concentrations in snow (analyzed as melt water) and soil ranged up to 0.8μgL(-1) and 5ngg(-1) dry weight, respectively. ∑PFCA concentrations in snow and soil decreased from the start to the finish of the ski trail. Distinct differences in PFCA patterns between snow (prevalence of C14-20 PFCAs) and soil samples (C6-14 PFCAs dominating) were observed. Additionally, a PFCA pattern change from the start to about two third of the distance of the ski trail was found both for snow and soil, with a larger fraction of longer chain homologues present in samples from the start. These observations are probably a result of differences in PFCA homologue patterns present in different types of waxes. The calculated PFCA input from snow affected by the skiing competition was smaller than the PFCA inventory in soil for all chain lengths and markedly smaller for C6-15 PFCAs, presenting evidence for long-term accumulation in soil.

  17. Demonstration of a cold atom beam splitter on atom chip

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaojun; Li, Xiaolin; Zhang, Haichao; Wang, Yuzhu

    2016-08-01

    We report an experimental demonstration of a new scheme to split cold atoms on an atom chip. The atom chip consists of a U-wire and a Z-wire. The cold atom cloud is initially loaded and prepared in the Z-trap, which is split into two separate parts by switching on the current of the U-wire. The two separate atom clouds have a distance more than one millimeter apart from each other and show almost symmetrical profiles, corresponding to about a 50/50 splitting ratio. Project supported by the State Key Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107).

  18. Demonstration of a cold atom beam splitter on atom chip

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaojun; Li, Xiaolin; Zhang, Haichao; Wang, Yuzhu

    2016-08-01

    We report an experimental demonstration of a new scheme to split cold atoms on an atom chip. The atom chip consists of a U-wire and a Z-wire. The cold atom cloud is initially loaded and prepared in the Z-trap, which is split into two separate parts by switching on the current of the U-wire. The two separate atom clouds have a distance more than one millimeter apart from each other and show almost symmetrical profiles, corresponding to about a 50/50 splitting ratio. Project supported by the State Key Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107).

  19. Splicing Wires Permanently With Explosives

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Kushnick, Anne C.

    1990-01-01

    Explosive joining process developed to splice wires by enclosing and metallurgically bonding wires within copper sheets. Joints exhibit many desirable characteristics, 100-percent conductivity and strength, no heat-induced annealing, no susceptibility to corrosion in contacts between dissimilar metals, and stability at high temperature. Used to join wires to terminals, as well as to splice wires. Applicable to telecommunications industry, in which millions of small wires spliced annually.

  20. Smooth scaling of valence electronic properties in fullerenes: From one carbon atom, to C60, to graphene

    NASA Astrophysics Data System (ADS)

    Lewis, Greyson R.; Bunting, William E.; Zope, Rajendra R.; Dunlap, Brett I.; Ellenbogen, James C.

    2013-05-01

    Scaling of quantum capacitances and valence electron detachment energies is studied for icosahedral and nonicosahedral fullerenes. Scaling trends are considered from zero to infinite average radius, where a fullerene's local surface properties are similar to those of graphene. Detailed density-functional-theory calculations are performed to determine the geometries and detachment energies of icosahedral fullerenes, while values of these quantities are obtained for nonicosahedral species from previously published experimental results. Strongly linear, quasiclassical scaling versus average radii r¯n is seen for the quantum capacitances, but on two different scaling lines for icosahedral and nonicosahedral species, respectively. By contrast, nonclassical, nonlinear scaling versus 1/r¯n is seen for the electron detachment energies, i.e., the valence ionization potentials and electron affinities. This nonlinearity is not accounted for by classical theories that are used to explain trends in electronic properties of fullerenes and usually give accurate quantitative estimates. Instead, simple quantum equations are derived to account for nonlinearities in the metal-particle-like electron detachment energy scaling and to show that these are responsible for nonclassical, nonzero intercepts in the capacitance scaling lines of the fullerenes. Last, it is found that points representing the carbon atom and the graphene limit lie on scaling lines for icosahedral fullerenes, so their quantum capacitances and their detachment energies scale smoothly from one C atom, to C60, to graphene.

  1. How surface reparation prevents catalytic oxidation of carbon monoxide on atomic gold at defective magnesium oxide surfaces.

    PubMed

    Töpfer, Kai; Tremblay, Jean Christophe

    2016-07-21

    In this contribution, we study using first principles the co-adsorption and catalytic behaviors of CO and O2 on a single gold atom deposited at defective magnesium oxide surfaces. Using cluster models and point charge embedding within a density functional theory framework, we simulate the CO oxidation reaction for Au1 on differently charged oxygen vacancies of MgO(001) to rationalize its experimentally observed lack of catalytic activity. Our results show that: (1) co-adsorption is weakly supported at F(0) and F(2+) defects but not at F(1+) sites, (2) electron redistribution from the F(0) vacancy via the Au1 cluster to the adsorbed molecular oxygen weakens the O2 bond, as required for a sustainable catalytic cycle, (3) a metastable carbonate intermediate can form on defects of the F(0) type, (4) only a small activation barrier exists for the highly favorable dissociation of CO2 from F(0), and (5) the moderate adsorption energy of the gold atom on the F(0) defect cannot prevent insertion of molecular oxygen inside the defect. Due to the lack of protection of the color centers, the surface becomes invariably repaired by the surrounding oxygen and the catalytic cycle is irreversibly broken in the first oxidation step. PMID:27345190

  2. Localised quantum states of atomic and molecular particles physisorbed on carbon-based nanoparticles

    SciTech Connect

    Kaprálová-Žďánská, Petra Ruth; Trachta, Michal; Bludský, Ota; Špirko, Vladimír

    2014-09-21

    The vibrational states of atomic and molecular particles adsorbed on long linear nanographenes are described using reliable theoretical potentials and appropriate vibrational (lateral) Hamiltonians. Although they rigorously obey the Bloch theorem only for infinite nanographenes, the energy patterns of the probed states closely resemble the usual Bloch bands and gaps. In addition, for any finite nanographene, these patterns are enriched by the presence of “solitary” energy levels and the “resonance” structure of the bands. While typical band states are profoundly delocalised due to a fast tunneling of the adsorbed particle, the “solitary” and “resonance” states exhibit strong localisation, similar to the behaviour of the states of the Wannier-Stark ladders in optical and semiconductor superlattices.

  3. Localised quantum states of atomic and molecular particles physisorbed on carbon-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaprálová-Žánská, Petra Ruth; Trachta, Michal; Bludský, Ota; Špirko, Vladimír

    2014-09-01

    The vibrational states of atomic and molecular particles adsorbed on long linear nanographenes are described using reliable theoretical potentials and appropriate vibrational (lateral) Hamiltonians. Although they rigorously obey the Bloch theorem only for infinite nanographenes, the energy patterns of the probed states closely resemble the usual Bloch bands and gaps. In addition, for any finite nanographene, these patterns are enriched by the presence of "solitary" energy levels and the "resonance" structure of the bands. While typical band states are profoundly delocalised due to a fast tunneling of the adsorbed particle, the "solitary" and "resonance" states exhibit strong localisation, similar to the behaviour of the states of the Wannier-Stark ladders in optical and semiconductor superlattices.

  4. The Fe-V Cofactor of Vanadium Nitrogenase Contains an Interstitial Carbon Atom.

    PubMed

    Rees, Julian A; Bjornsson, Ragnar; Schlesier, Julia; Sippel, Daniel; Einsle, Oliver; DeBeer, Serena

    2015-11-01

    The first direct evidence is provided for the presence of an interstitial carbide in the Fe-V cofactor of Azotobacter vinelandii vanadium nitrogenase. As for our identification of the central carbide in the Fe-Mo cofactor, we employed Fe Kβ valence-to-core X-ray emission spectroscopy and density functional theory calculations, and herein report the highly similar spectra of both variants of the cofactor-containing protein. The identification of an analogous carbide, and thus an atomically homologous active site in vanadium nitrogenase, highlights the importance and influence of both the interstitial carbide and the identity of the heteroatom on the electronic structure and catalytic activity of the enzyme.

  5. The Fe–V Cofactor of Vanadium Nitrogenase Contains an Interstitial Carbon Atom

    PubMed Central

    Rees, Julian A; Bjornsson, Ragnar; Schlesier, Julia; Sippel, Daniel; Einsle, Oliver; DeBeer, Serena

    2015-01-01

    The first direct evidence is provided for the presence of an interstitial carbide in the Fe–V cofactor of Azotobacter vinelandii vanadium nitrogenase. As for our identification of the central carbide in the Fe–Mo cofactor, we employed Fe Kβ valence-to-core X-ray emission spectroscopy and density functional theory calculations, and herein report the highly similar spectra of both variants of the cofactor-containing protein. The identification of an analogous carbide, and thus an atomically homologous active site in vanadium nitrogenase, highlights the importance and influence of both the interstitial carbide and the identity of the heteroatom on the electronic structure and catalytic activity of the enzyme. PMID:26376620

  6. Enhanced binding strength between metal nanoclusters and carbon nanotubes with an atomic nickel defect.

    PubMed

    Sung, Dongchul; Park, Noejung; Kim, Gunn; Hong, Suklyun

    2012-05-25

    Using spin-polarized density functional theory calculations, we study binding properties of small metal nanoclusters (Cu(13) and Al(13)) onto carbon nanotubes (CNTs). On defect-free CNTs, the binding affinity with the Cu or Al cluster is very weak. When various defects such as vacancies, substitutional nickel defects, and nickel adatoms are introduced in CNTs to increase the binding strength, the binding energies of the metal nanoclusters increase substantially irrespective of types of defects. The effect of the Ni adatom is especially noticeable. Our results propose a method for improving the wettability of metal-CNT complex composites.

  7. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    SciTech Connect

    Nandan, Ravi Nanda, Karuna Kar

    2015-06-24

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min{sup −1}. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  8. Influence of Different Defects in Vertically Aligned Carbon Nanotubes on TiO2 Nanoparticle Formation through Atomic Layer Deposition.

    PubMed

    Acauan, Luiz; Dias, Anna C; Pereira, Marcelo B; Horowitz, Flavio; Bergmann, Carlos P

    2016-06-29

    The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures.

  9. Influence of Different Defects in Vertically Aligned Carbon Nanotubes on TiO2 Nanoparticle Formation through Atomic Layer Deposition.

    PubMed

    Acauan, Luiz; Dias, Anna C; Pereira, Marcelo B; Horowitz, Flavio; Bergmann, Carlos P

    2016-06-29

    The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures. PMID:27269125

  10. Diagnostics of Carbon Nanotube Formation in a Laser Produced Plume: An Investigation of the Metal Catalyst by Laser Ablation Atomic Fluorescence Spectroscopy

    NASA Technical Reports Server (NTRS)

    deBoer, Gary; Scott, Carl

    2003-01-01

    Carbon nanotubes, elongated molecular tubes with diameters of nanometers and lengths in microns, hold great promise for material science. Hopes for super strong light-weight material to be used in spacecraft design is the driving force behind nanotube work at JSC. The molecular nature of these materials requires the appropriate tools for investigation of their structure, properties, and formation. The mechanism of nanotube formation is of particular interest because it may hold keys to controlling the formation of different types of nanotubes and allow them to be produced in much greater quantities at less cost than is currently available. This summer's work involved the interpretation of data taken last summer and analyzed over the academic year. The work involved diagnostic studies of carbon nanotube formation processes occurring in a laser-produced plume. Laser ablation of metal doped graphite to produce a plasma plume in which carbon nanotubes self assemble is one method of making carbon nanotube. The laser ablation method is amenable to applying the techniques of laser spectroscopy, a powerful tool for probing the energies and dynamics of atomic and molecular species. The experimental work performed last summer involved probing one of the metal catalysts, nickel, by laser induced fluorescence. The nickel atom was studied as a function of oven temperature, probe laser wavelength, time after ablation, and position in the laser produced plume. This data along with previously obtained data on carbon was analyzed over the academic year. Interpretations of the data were developed this summer along with discussions of future work. The temperature of the oven in which the target is ablated greatly influences the amount of material ablated and the propagation of the plume. The ablation conditions and the time scale of atomic and molecular lifetimes suggest that initial ablation of the metal doped carbon target results in atomic and small molecular species. The metal

  11. Intercalation of multiple carbon atoms between the carbonyls of alpha-diketones.

    PubMed

    Balskus, E P; Méndez-Andino, J; Arbit, R M; Paquette, L A

    2001-10-01

    The reaction of open-chain or cyclic alpha-diketones with specific omega-alkenyl organometallics leads readily under the proper conditions to 1,2-diols bonded to terminal olefinic chains. With 1-phenyl-1,2-propanedione, biacetyl, and cyclohexane-1,2-dione, allylindation in aqueous THF proceeds readily at both adjacent carbonyls. For cyclododecane-1,2-dione, recourse must be made to allylmagnesium bromide for completing the second-stage condensation. Grignard reagents have also served well as reactants for biacetyl monoadducts. In contrast, monoallylated camphorquinone is reluctant to couple to Grignard reagents and reacts only when Barbier-type alkyllithium reactions are applied. The ring closing metatheses of these products have been examined. Where six-membered ring formation operates, cyclization can be performed directly on diols. When larger rings are involved, the diols will react only if structural preorganization capable of facilitating mutual approach of the two double bonds is at play. For this purpose, the prior conversion to a cyclic carbonate holds considerable utility. In the latter setting, saponification must precede the diol cleavage step which has been performed with lead tetraacetate. The latter reagent also exhibits the very beneficial effect of facilitating removal of ruthenium and phosphorus byproducts generated during the metathesis step. This chemistry conveniently lends itself to the controlled intercalation of multiple methylene groups between the carbonyl carbons of readily available alpha-diketones to deliver linear or cyclic products.

  12. A novel table-top device for the single-atom detection of Carbon-14

    NASA Astrophysics Data System (ADS)

    Meyer, Fred W.; Galutschek, Ernst

    2006-05-01

    Carbon-14 labeled compounds are widely used in the pharmaceutical industry, e.g., as tracers to determine the fate of these compounds in vivo. The sensitivities of most present methods are inadequate to permit utilization of sufficiently small quantities of ^14C to avoid the issues of radioactive waste and contamination, both of which are unacceptable for environmental, health and safety, and financial reasons. A new compact ^14C detection apparatus has recently been developed that uses low-energy multicharged carbon beams with charge state of +3 or higher to eliminate molecular isobar interference at mass 14. After magnetic selection of the desired charge state, the ion beam, which will still be dominated by ^14N multicharged ions of the same charge state, is directed to an insulator single-crystal surface at grazing incidence, where efficient negative ion formation takes place without appreciable energy loss of the scattered ions. Two stages of electrostatic analysis spatially separate the desired ^14C^- ions from scattered neutrals and other background prior to their detection on a two-dimensional position-sensitive detector (2-D PSD). Unique characteristics of the apparatus are its small size, low cost, high efficiency (i.e., throughput), and ease of sample preparation, in comparison with the conventional AMS approach. Initial test results using large-area LiF and KBr single crystal targets will be presented.

  13. Vibrational Relaxation of Ground-State Oxygen Molecules With Atomic Oxygen and Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Saran, D. V.; Pejakovic, D. A.; Copeland, R. A.

    2008-12-01

    Vertical water vapor profiles are key to understanding the composition and energy budget in the mesosphere and lower thermosphere (MLT). The SABER instrument onboard NASA's TIMED satellite measures such profiles by detecting H2O(ν2) emission in the 6.8 μm region. Collisional deactivation of vibrationally excited O2, O2(X3Σ-g, υ = 1) + H2O ↔ O2(X3Σ-g, υ = 0) + H2O(ν2), is an important source of H2O(ν2). A recent study has identified two other processes involving excited O2 that control H2O(ν2) population in the MLT: (1) the vibrational-translational (V-T) relaxation of O2(X3Σ-g, υ = 1) level by atomic oxygen and (2) the V-V exchange between CO2 and excited O2 molecules [1]. Over the past few years SRI researchers have measured the atomic oxygen removal process mentioned above at room temperature [2] and 240 K [3]. These measurements have been incorporated into the models for H2O(ν2) emission [1]. Here we report laboratory studies of the collisional removal of O2(X3Σ-g, υ = 1) by O(3P) at room temperature and below, reaching temperatures relevant to mesopause and polar summer MLT (~150 K). Instead of directly detecting the O2(X3Σ-g, υ = 1) population, a technically simpler approach is used in which the υ = 1 level of the O2(a1Δg) state is monitored. A two-laser method is employed, in which the pulsed output of the first laser near 285 nm photodissociates ozone to produce atomic oxygen and O2(a1Δg, υ = 1), and the pulsed output of the second laser detects O2(a1Δg, υ = 1) via resonance-enhanced multiphoton ionization. With ground-state O2 present, owing to the rapid equilibration of the O2(X3Σ-g, υ = 1) and O2(a1Δg, υ = 1) populations via the processes O2(a1Δg, υ = 1) + O2(X3Σ-g, υ = 0) ↔ O2(a1Δg, υ = 0) + O2(X3Σ-g, υ = 1), the information on the O2(X3Σ-g, υ = 1) kinetics is extracted from the O2(a1Δg, υ = 1) temporal evolution. In addition, measurements of the removal of O2(X3Σ-g, υ = 1) by CO2 at room temperature will also

  14. Role of defects in the process of graphene growth on hexagonal boron nitride from atomic carbon

    SciTech Connect

    Dabrowski, J. Lippert, G.; Schroeder, T.; Lupina, G.

    2014-11-10

    Hexagonal boron nitride (h-BN) is an attractive substrate for graphene, as the interaction between these materials is weak enough for high carrier mobility to be retained in graphene but strong enough to allow for some epitaxial relationship. We deposited graphene on exfoliated h-BN by molecular beam epitaxy (MBE), we analyzed the atomistic details of the process by ab initio density functional theory (DFT), and we linked the DFT and MBE results by random walk theory. Graphene appears to nucleate around defects in virgin h-BN. The DFT analysis reveals that sticking of carbon to perfect h-BN is strongly reduced by desorption, so that pre-existing seeds are needed for the nucleation. The dominant nucleation seeds are C{sub N}C{sub B} and O{sub N}C{sub N} pairs and B{sub 2}O{sub 3} inclusions in the virgin substrate.

  15. Graphene as an atomically thin interface for growth of vertically aligned carbon nanotubes

    PubMed Central

    Rao, Rahul; Chen, Gugang; Arava, Leela Mohana Reddy; Kalaga, Kaushik; Ishigami, Masahiro; Heinz, Tony F.; Ajayan, Pulickel M.; Harutyunyan, Avetik R.

    2013-01-01

    Growth of vertically aligned carbon nanotube (CNT) forests is highly sensitive to the nature of the substrate. This constraint narrows the range of available materials to just a few oxide-based dielectrics and presents a major obstacle for applications. Using a suspended monolayer, we show here that graphene is an excellent conductive substrate for CNT forest growth. Furthermore, graphene is shown to intermediate growth on key substrates, such as Cu, Pt, and diamond, which had not previously been compatible with nanotube forest growth. We find that growth depends on the degree of crystallinity of graphene and is best on mono- or few-layer graphene. The synergistic effects of graphene are revealed by its endurance after CNT growth and low contact resistances between the nanotubes and Cu. Our results establish graphene as a unique interface that extends the class of substrate materials for CNT growth and opens up important new prospects for applications. PMID:23712556

  16. TRACING H{sub 2} COLUMN DENSITY WITH ATOMIC CARBON (C I) AND CO ISOTOPOLOGS

    SciTech Connect

    Lo, N.; Bronfman, L.; Cunningham, M. R.; Jones, P. A.; Lowe, V.; Cortes, P. C.; Simon, R.; Fissel, L.; Novak, G.

    2014-12-20

    We present the first results of neutral carbon ([C I] {sup 3} P {sub 1}-{sup 3} P {sub 0} at 492 GHz) and carbon monoxide ({sup 13}CO, J = 1-0) mapping in the Vela Molecular Ridge cloud C (VMR-C) and the G333 giant molecular cloud complexes with the NANTEN2 and Mopra telescopes. For the four regions mapped in this work, we find that [C I] has very similar spectral emission profiles to {sup 13}CO, with comparable line widths. We find that [C I] has an opacity of 0.1-1.3 across the mapped region while the [C I]/{sup 13}CO peak brightness temperature ratio is between 0.2 and 0.8. The [C I] column density is an order of magnitude lower than that of {sup 13}CO. The H{sub 2} column density derived from [C I] is comparable to values obtained from {sup 12}CO. Our maps show that C I is preferentially detected in gas with low temperatures (below 20 K), which possibly explains the comparable H{sub 2} column density calculated from both tracers (both C I and {sup 12}CO underestimate column density), as a significant amount of the C I in the warmer gas is likely in the higher energy state transition ([C I] {sup 3} P {sub 2}-{sup 3} P {sub 1} at 810 GHz), and thus it is likely that observations of both the above [C I] transitions are needed in order to recover the total H{sub 2} column density.

  17. Liquid ``Wires" for Microfluidics

    NASA Astrophysics Data System (ADS)

    Kellis, Nathan; Mazzeo, Aaron; Mazzeo, Brian

    2009-10-01

    We demonstrate liquid ``wires'' in a simple solution measurement device. This device highlights the possibility of fabricating liquid circuits. These ``wires'' were formed by filling micro-milled PMMA channels with 5M NaCl solution. Wires were connected to these salt solution channels; the impedance of a test channel filled with solution was measured by an HP 4294A Impedance Analyzer. Deionized water, 2-propanol, and 5M NaCl were measured. Numerical simulations were performed on the channel cross-section to determine the predicted impedance of the device. The simulated results were compared to the experimental data. Graphs of simulations and experiments are presented for the frequency range 1 KHz to 110 MHz. The data show electrode polarization at the electrode-electrolyte interface, as well as parasitic capacitance inherent in the experimental arrangement.

  18. Wire brush fastening device

    DOEpatents

    Meigs, R.A.

    1995-09-19

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus. 13 figs.

  19. Wire brush fastening device

    DOEpatents

    Meigs, Richard A.

    1995-01-01

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus.

  20. Flashover failures from wet-wire arcing and tracking

    NASA Astrophysics Data System (ADS)

    Campbell, F. J.

    1984-12-01

    Flashover failure occurs in a wire bundle as a high-energy surge between a bare conductor delivering power and a ground-plane (e.g., metal framework or wire shielding) as the conductive path across adjacent wires approaches zero resistance. It happens as a violent blazing flashover in which the copper of the bare wire melts and splatters - causing melting and burn-through of some of the adjacent wires in the bundle. Thus, it could produce the loss of a number of circuits at once. Under service stress conditions the process leading to a flashover could begin as the wire insulation initially deteriorates by cracking or chaffing and the surfaces of adjacent wires in the bundles become contaminated due to salt spray, mist, fog and high humidity. Under these conditions, typical of Naval aircraft service, arcing and tracking initiate and eventually localized spots extend into a continuous carbonaceous path, bridging the wires from the fault to ground. At some point the wetting is no longer necessary to sustain the current, and the flashover strikes. This phenomena is known to develop on the surfaces of polymeric materials that readily carbonize when pyrolized and the susceptibility to fail by this mechanism is characterized in standard arcing and tracking tests. The phenyl-containing polymeric materials fall into this class. Laboratory tests have demonstrated that flashover will occur on wires insulated with a hi-phenyl polyimide composite and also on wires insulated with a polyphenyl ketone polymer; whereas, two types of a polytetrafluoroethylene insulation did not carbonize or flashover in the test. These results are in agreement with other references on arcing and tracking studies.

  1. Flying wires at Fermilab

    SciTech Connect

    Gannon, J.; Crawford, C.; Finley, D.; Flora, R.; Groves, T.; MacPherson, M.

    1989-03-01

    Transverse beam profile measurement systems called ''Flying Wires'' have been installed and made operational in the Fermilab Main Ring and Tevatron accelerators. These devices are used routinely to measure the emittance of both protons and antiprotons throughout the fill process, and for emittance growth measurements during stores. In the Tevatron, the individual transverse profiles of six proton and six antiproton bunches are obtained simultaneously, with a single pass of the wire through the beam. Essential features of the hardware, software, and system operation are explained in the rest of the paper. 3 refs., 4 figs.

  2. A review of wiring system safety in space power systems

    NASA Technical Reports Server (NTRS)

    Stavnes, Mark W.; Hammoud, Ahmad N.

    1993-01-01

    Wiring system failures have resulted from arc propagation in the wiring harnesses of current aerospace vehicles. These failures occur when the insulation becomes conductive upon the initiation of an arc. In some cases, the conductive path of the carbon arc track displays a high enough resistance such that the current is limited, and therefore may be difficult to detect using conventional circuit protection. Often, such wiring failures are not simply the result of insulation failure, but are due to a combination of wiring system factors. Inadequate circuit protection, unforgiving system designs, and careless maintenance procedures can contribute to a wiring system failure. This paper approaches the problem with respect to the overall wiring system, in order to determine what steps can be taken to improve the reliability, maintainability, and safety of space power systems. Power system technologies, system designs, and maintenance procedures which have led to past wiring system failures will be discussed. New technologies, design processes, and management techniques which may lead to improved wiring system safety will be introduced.

  3. Atoms in Action

    SciTech Connect

    2009-01-01

    This movie produced with Berkeley Lab's TEAM 0.5 microscope shows the growth of a hole and the atomic edge reconstruction in a graphene sheet. An electron beam focused to a spot on the sheet blows out the exposed carbon atoms to make the hole. The carbon atoms then reposition themselves to find a stable configuration. http://newscenter.lbl.gov/press-releases/2009/03/26/atoms-in-action/

  4. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  5. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  6. Wiring for space applications program

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad

    1994-01-01

    The insulation testing and analysis consists of: identifying and prioritizing NASA wiring requirements; selecting candidate wiring constructions; developing test matrix and formulating test program; managing, coordinating, and conducting tests; and analyzing and documenting data, establishing guidelines and recommendations.

  7. One hundred angstrom niobium wire

    NASA Technical Reports Server (NTRS)

    Cline, H. E.; Rose, R. M.; Wulff, J.

    1968-01-01

    Composite of fine niobium wires in copper is used to study the size and proximity effects of a superconductor in a normal matrix. The niobium rod was drawn to a 100 angstrom diameter wire on a copper tubing.

  8. Restricted access carbon nanotubes for direct extraction of cadmium from human serum samples followed by atomic absorption spectrometry analysis.

    PubMed

    Barbosa, Adriano F; Barbosa, Valéria M P; Bettini, Jefferson; Luccas, Pedro O; Figueiredo, Eduardo C

    2015-01-01

    In this paper, we propose a new sorbent that is able to extract metal ions directly from untreated biological fluids, simultaneously excluding all proteins from these samples. The sorbent was obtained through the modification of carbon nanotubes (CNTs) with an external bovine serum albumin (BSA) layer, resulting in restricted access carbon nanotubes (RACNTs). The BSA layer was fixed through the interconnection between the amine groups of the BSA using glutaraldehyde as cross-linker. When a protein sample is percolated through a cartridge containing RACNTs and the sample pH is higher than the isoelectric point of the proteins, both proteins from the sample and the BSA layer are negatively ionized. Thus, an electrostatic repulsion prevents the interaction between the proteins from the sample on the RACNTs surface. At the same time, metal ions are adsorbed in the CNTs (core) after their passage through the chains of proteins. The Cd(2+) ion was selected for a proof-of-principle case to test the suitability of the RACNTs due to its toxicological relevance. RACNTs were able to extract Cd(2+) and exclude almost 100% of the proteins from the human serum samples in an online solid-phase extraction system coupled with thermospray flame furnace atomic absorption spectrometry. The limits of detection and quantification were 0.24 and 0.80 μg L(-1), respectively. The sampling frequency was 8.6h(-1), and the intra- and inter-day precisions at the 0.80, 15.0, and 30.0 μg L(-1) Cd(2+) levels were all lower than 10.1% (RSD). The recoveries obtained for human blood serum samples fortified with Cd(2+) ranged from 85.0% to 112.0%. The method was successfully applied to analyze Cd(2+) directly from six human blood serum samples without any pretreatment, and the observed concentrations ranged from

  9. Fracture toughness evaluation of high-strength cold-drawn eutectoid steel wires used in wire ropes

    NASA Astrophysics Data System (ADS)

    Pourladian, Bamdad

    High carbon (eutectoid) steel wires are used in many modern engineering applications which require high strength and durability. The most demanding applications are those for wire ropes, tire reinforcements, engine valve springs, and structural strands used for long span cable stayed bridges. In this study, a test method based on Linear Elastic Fracture Mechanics (LEFM) was used to evaluate fracture toughness, KC, for various grades of wire which were of 0.072″ nominal diameter. An extensive review of literature on mechanical behavior of wire ropes is presented. Also a very thorough review of technical literature on the applications of LEFM in high strength rods and wires is provided. Various stress intensity factor solutions (K-solutions) are evaluated and compared. The most applicable K-solutions for application in KC determination in circular rods and wires with semi-elliptical surface cracks are recommended. Plane-stress K-solutions for straight-edge surface cracks in 0.072″ diameter steel wire were also developed by a 3D FEA model. An experimental fracture toughness test procedure based on principles of LEFM is described in detail. Experimental tensile fracture data is presented for 285 pre-cracked fracture samples. SEM fractographs documenting fracture surface topography of various fracture modes are described and characterized. For each wire grade and condition an average value of KC was determined. Statistical treatment of data and 90% confidence intervals are also provided. Average KC values ranged from 52Ksiin to 60Ksiin for wires ranging in tensile strength from 289 Ksi to 336 Ksi. Delamination toughening phenomenon was observed in some wire fracture samples and documented. As high as 60% increase in KC value was observed for some delaminated wires. The effect of crack aspect ratio in semi-elliptical cracks was considered and found to be very significant.

  10. Wired To Flex.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2000-01-01

    Discusses wire and cable management solutions school construction committees can use that do not limit flexibility. Topics cover such areas as using perimeter raceways in classrooms, incorporating a flexible communications cabling infrastructure in to the initial design, and answering the question of how to meet future requirements and…

  11. Basic Wiring. Second Edition.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; And Others

    This guide is designed to assist teachers conducting a foundation course to prepare students for additional courses of training for entry-level employment in either the residential or commercial and industrial wiring trades. Included in the guide are 17 instructional units and the following sections of information for teachers: guidelines in using…

  12. A World without Wires

    ERIC Educational Resources Information Center

    Panettieri, Joseph C.

    2006-01-01

    The wireless bandwagon is rolling across Mississippi, picking up a fresh load of converts and turning calamity into opportunity. Traditional wired school networks, many of which unraveled during Hurricane Katrina, are giving way to advanced wireless mesh networks that frequently include voice-over-IP (VoIP) capabilities. Vendor funding is helping…

  13. Residential Wiring. Second Edition.

    ERIC Educational Resources Information Center

    Taylor, Mark; And Others

    This guide is designed to assist teachers conducting a course to prepare students for entry-level employment in the residential wiring trade. Included in the guide are six instructional units and the following sections of information for teachers: guidelines in using the unit components; academic and workplace skills classifications and…

  14. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  15. NewsWire, 2002.

    ERIC Educational Resources Information Center

    Byrom, Elizabeth, Ed.; Bingham, Margaret, Ed.; Bowman, Gloria, Ed.; Shoemaker, Dan, Ed.

    2002-01-01

    This document presents the 3 2002 issues of the newsletter "NewsWire," (volume 5). Issue Number One focuses on collaborative Web projects. This issue begins with descriptions of four individual projects: "iEARN"; "Operation RubyThroat"; "Follow the Polar Huskies!"; and "Log in Your Animal Roadkill!" Features that follow include: "Bringing the…

  16. Wire EDM for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  17. 76 FR 72721 - Galvanized Steel Wire From China and Mexico; Scheduling of the Final Phase of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... COMMISSION Galvanized Steel Wire From China and Mexico; Scheduling of the Final Phase of Countervailing Duty... Mexico of galvanized steel wire, provided for in subheading 7217.20 of the Harmonized Tariff Schedule of... the subject merchandise as galvanized steel wire which is a cold- drawn carbon quality steel...

  18. 1997 wire development workshop: Proceedings

    SciTech Connect

    1997-04-01

    This conference is divided into the following sections: (1) First Generation Wires I; (2) First Generation Wires II; (3) Coated conductors I; and (4) Coated conductors II. Applications of the superconducting wires include fault current limiters, superconducting motors, transformers, and power transmission lines.

  19. A transfer of carbon atoms from fatty acids to sugars and amino acids in yellow lupine (Lupinus luteus L.) seedlings.

    PubMed

    Borek, Sławomir; Ratajczak, Wiktoria; Ratajczak, Lech

    2003-05-01

    The metabolism of 14C-acetate was investigated during the in vitro germination of yellow lupine seeds. Carbon atoms (14C) from the C-2 position of acetate were incorporated mainly into amino acids: aspartate, glutamate, and glutamine and into sugars: glucose, sucrose, and fructose. In contrast to this, 14C from the C-1 position of acetate was released mainly as 14CO2. Incorporation of 1-14C and 2-14C from acetate into amino acids and sugars in seedling axes was more intense when sucrose was added to the medium. However, in cotyledons where lipids are converted to carbohydrates, this process was inhibited by exogenous sucrose. Since acetate is the product of fatty acid beta-oxidation, our results indicate that, at least in lupine, seed storage lipids can be converted not only to sucrose, but mainly to amino acids. Inhibitory effects of sucrose on the incorporation of 14C from acetate into amino acids and sugars in cotyledons of lupine seedlings may be explained as the effect of regulation of the glyoxylate cycle by sugars. PMID:12806783

  20. Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing.

    PubMed

    Choi, Taejin; Kim, Soo Hyeon; Lee, Chang Wan; Kim, Hangil; Choi, Sang-Kyung; Kim, Soo-Hyun; Kim, Eunkyoung; Park, Jusang; Kim, Hyungjun

    2015-01-15

    A useful strategy has been developed to fabricate carbon-nanotube-nickel (CNT-Ni) nanocomposites through atomic layer deposition (ALD) of Ni and chemical vapor deposition (CVD) of functionalized CNTs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess uniform Ni nanoparticles that are constructed by finely controlled deposition of Ni onto oxygen or bromine functionalized CNT surface. Electrochemical studies indicate that the CNT-Ni nanocomposites exhibit high electrocatalytic activity for glucose oxidation in alkaline solutions, which enables the products to be used in enzyme-free electrochemical sensors for glucose determination. It was demonstrated that the CNT-Ni nanocomposite-based glucose biosensor offers a variety of merits, such as a wide linear response window for glucose concentrations of 5 μM-2 mM, short response time (3 s), a low detection limit (2 μM), high sensitivity (1384.1 μA mM(-1) cm(-2)), and good selectivity and repeatability.

  1. Direct formation of anatase TiO2 nanoparticles on carbon nanotubes by atomic layer deposition and their photocatalytic properties.

    PubMed

    Huang, Sheng-Hsin; Liao, Shih-Yun; Wang, Chih-Chieh; Kei, Chi-Chung; Gan, Jon-Yiew; Perng, Tsong-Pyng

    2016-10-01

    TiO2 with different morphology was deposited on acid-treated multi-walled carbon nanotubes (CNTs) by atomic layer deposition at 100 °C-300 °C to form a TiO2@CNT structure. The TiO2 fabricated at 100 °C was an amorphous film, but became crystalline anatase nanoparticles when fabricated at 200 °C and 300 °C. The saturation growth rates of TiO2 nanoparticles at 300 °C were about 1.5 and 0.4 Å/cycle for substrate-enhanced growth and linear growth processes, respectively. It was found that the rate constants for methylene blue degradation by the TiO2@CNT structure formed at 300 °C were more suitable to fit with second-order reaction. The size of 9 nm exhibited the best degradation efficiency, because of the high specific area and appropriate diffusion length for the electrons and holes.

  2. Facile synthesis of analogous graphene quantum dots with sp(2) hybridized carbon atom dominant structures and their photovoltaic application.

    PubMed

    Huang, Zhengcheng; Shen, Yongtao; Li, Yu; Zheng, Wenjun; Xue, Yunjia; Qin, Chengqun; Zhang, Bo; Hao, Jingxiang; Feng, Wei

    2014-11-01

    Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of "pristine" GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel properties. Furthermore, O-GQDs were applied as electron-acceptors in a poly(3-hexylthiophene) (P3HT)-based organic photovoltaic device. The performance highlights that O-GQD has potential to be a novel electron-acceptor material due to the sp(2) hybridized carbon atom dominant structure and good solubility in organic solvents.

  3. Variation of mechanical property of single-walled carbon nanotubes-treated cells explored by atomic force microscopy.

    PubMed

    Dulińska-Molak, Ida; Mao, Hongli; Kawazoe, Naoki; Chen, Guoping

    2014-04-01

    With a range of biological properties, single-walled carbon nanotubes (SWCNTs) are a promising material for nanobiotechnology. Concerns about their potential effect on human health have led to the interest in understanding the interaction between SWCNTs and cells. There are many reports showing the potential cellular effects of SWCNTs but this issue is quite controversially discussed in the literature. In this study, we used conventional biological evaluation methods and atomic force microscopy (AFM) to compare the effects of SWCNTs on three different cell types: bovine articular chondrocytes, human bone marrow-derived mesenchymal stem cells and HeLa cells. No obvious effects of SWCNTs on cell morphology and viability were observed during 3 days in vitro culture. However, SWCNTs significantly increased the Young's modulus of all the three types of cells. The effect of SWCNTs on Young's modulus was in an increasing order of Hela cells < chondrocytes < mesenchymal stem cells. AFM was shown to be a useful tool for investigation of the effect of nanomaterials on mechanical property of cells.

  4. Impact of the atomic layer deposition precursors diffusion on solid-state carbon nanotube based supercapacitors performances

    NASA Astrophysics Data System (ADS)

    Fiorentino, Giuseppe; Vollebregt, Sten; Tichelaar, F. D.; Ishihara, Ryoichi; Sarro, Pasqualina M.

    2015-02-01

    A study on the impact of atomic layer deposition (ALD) precursors diffusion on the performance of solid-state miniaturized nanostructure capacitor array is presented. Three-dimensional nanostructured capacitor array based on double conformal coating of multiwalled carbon nanotubes (MWCNTs) bundles is realized using ALD to deposit Al2O3 as dielectric layer and TiN as high aspect-ratio conformal counter-electrode on 2 μm long MWCNT bundles. The devices have a small footprint (from 100 μm2 to 2500 μm2) and are realized using an IC wafer-scale manufacturing process with high reproducibility (≤0.3E-12F deviation). To evaluate the enhancement of the electrode surface, the measured capacitance values are compared to a lumped circuital model. The observed discrepancies are explained with a partial coating of the CNT, that determine a limited use of the available electrode surface area. To analyze the CNT coating effectiveness, the ALD precursors diffusions inside the CNT bundle is studied using a Knudsen diffusion mechanism.

  5. Direct formation of anatase TiO2 nanoparticles on carbon nanotubes by atomic layer deposition and their photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Huang, Sheng-Hsin; Liao, Shih-Yun; Wang, Chih-Chieh; Kei, Chi-Chung; Gan, Jon-Yiew; Perng, Tsong-Pyng

    2016-10-01

    TiO2 with different morphology was deposited on acid-treated multi-walled carbon nanotubes (CNTs) by atomic layer deposition at 100 °C-300 °C to form a TiO2@CNT structure. The TiO2 fabricated at 100 °C was an amorphous film, but became crystalline anatase nanoparticles when fabricated at 200 °C and 300 °C. The saturation growth rates of TiO2 nanoparticles at 300 °C were about 1.5 and 0.4 Å/cycle for substrate-enhanced growth and linear growth processes, respectively. It was found that the rate constants for methylene blue degradation by the TiO2@CNT structure formed at 300 °C were more suitable to fit with second-order reaction. The size of 9 nm exhibited the best degradation efficiency, because of the high specific area and appropriate diffusion length for the electrons and holes.

  6. Direct formation of anatase TiO2 nanoparticles on carbon nanotubes by atomic layer deposition and their photocatalytic properties.

    PubMed

    Huang, Sheng-Hsin; Liao, Shih-Yun; Wang, Chih-Chieh; Kei, Chi-Chung; Gan, Jon-Yiew; Perng, Tsong-Pyng

    2016-10-01

    TiO2 with different morphology was deposited on acid-treated multi-walled carbon nanotubes (CNTs) by atomic layer deposition at 100 °C-300 °C to form a TiO2@CNT structure. The TiO2 fabricated at 100 °C was an amorphous film, but became crystalline anatase nanoparticles when fabricated at 200 °C and 300 °C. The saturation growth rates of TiO2 nanoparticles at 300 °C were about 1.5 and 0.4 Å/cycle for substrate-enhanced growth and linear growth processes, respectively. It was found that the rate constants for methylene blue degradation by the TiO2@CNT structure formed at 300 °C were more suitable to fit with second-order reaction. The size of 9 nm exhibited the best degradation efficiency, because of the high specific area and appropriate diffusion length for the electrons and holes. PMID:27576914

  7. Fabrication and characterization of tunnel barriers in a multi-walled carbon nanotube formed by argon atom beam irradiation

    SciTech Connect

    Tomizawa, H.; Yamaguchi, T.; Akita, S.; Ishibashi, K.

    2015-07-28

    We have evaluated tunnel barriers formed in multi-walled carbon nanotubes (MWNTs) by an Ar atom beam irradiation method and applied the technique to fabricate coupled double quantum dots. The two-terminal resistance of the individual MWNTs was increased owing to local damage caused by the Ar beam irradiation. The temperature dependence of the current through a single barrier suggested two different contributions to its Arrhenius plot, i.e., formed by direct tunneling through the barrier and by thermal activation over the barrier. The height of the formed barriers was estimated. The fabrication technique was used to produce coupled double quantum dots with serially formed triple barriers on a MWNT. The current measured at 1.5 K as a function of two side-gate voltages resulted in a honeycomb-like charge stability diagram, which confirmed the formation of the double dots. The characteristic parameters of the double quantum dots were calculated, and the feasibility of the technique is discussed.

  8. Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing.

    PubMed

    Choi, Taejin; Kim, Soo Hyeon; Lee, Chang Wan; Kim, Hangil; Choi, Sang-Kyung; Kim, Soo-Hyun; Kim, Eunkyoung; Park, Jusang; Kim, Hyungjun

    2015-01-15

    A useful strategy has been developed to fabricate carbon-nanotube-nickel (CNT-Ni) nanocomposites through atomic layer deposition (ALD) of Ni and chemical vapor deposition (CVD) of functionalized CNTs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess uniform Ni nanoparticles that are constructed by finely controlled deposition of Ni onto oxygen or bromine functionalized CNT surface. Electrochemical studies indicate that the CNT-Ni nanocomposites exhibit high electrocatalytic activity for glucose oxidation in alkaline solutions, which enables the products to be used in enzyme-free electrochemical sensors for glucose determination. It was demonstrated that the CNT-Ni nanocomposite-based glucose biosensor offers a variety of merits, such as a wide linear response window for glucose concentrations of 5 μM-2 mM, short response time (3 s), a low detection limit (2 μM), high sensitivity (1384.1 μA mM(-1) cm(-2)), and good selectivity and repeatability. PMID:25113051

  9. In-Situ Wire Damage Detection System

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor); Tate, Lanetra C. (Inventor); Smith, Trent M. (Inventor); Gibson, Tracy L. (Inventor); Jolley, Scott T. (Inventor); Medelius, Pedro J. (Inventor)

    2014-01-01

    An in-situ system for detecting damage in an electrically conductive wire. The system includes a substrate at least partially covered by a layer of electrically conductive material forming a continuous or non-continuous electrically conductive layer connected to an electrical signal generator adapted to delivering electrical signals to the electrically conductive layer. Data is received and processed to identify damage to the substrate or electrically conductive layer. The electrically conductive material may include metalized carbon fibers, a thin metal coating, a conductive polymer, carbon nanotubes, metal nanoparticles or a combination thereof.

  10. Polypyrrolic bipyridine bis(phenantrolinequinone) Ru(II) complex/carbon nanotube composites for NAD-dependent enzyme immobilization and wiring.

    PubMed

    Reuillard, Bertrand; Le Goff, Alan; Cosnier, Serge

    2014-05-01

    We report the synthesis and electrochemical characterization of a novel electropolymerizable Ru(II) complex containing two phenanthrolinequinone ligands, Ru(II)(PhQ)2(bpy-pyrrole)(PF6)2. This complex was electropolymerized on glassy carbon (GC) and multiwalled carbon nanotube (MWCNT) electrodes. Higher apparent surface concentrations (80 nmol cm(-2)) were obtained on MWCNTs than on GC electrodes and correspond to ∼1000 equivalent compact monolayers of Ru complex. Moreover, the nanostructured metallopolymer exhibits efficient electrocatalytic properties toward oxidation of NADH. This metallopolymer can be electrogenerated in water from the adsorbed Ru(II) monomer. This property was applied to the immobilization of enzymes by coadsorption of Ru complex and enzyme and then electropolymerization of coatings. This two-step procedure leads to the entrapment of 70%-90% of the deposited amount of enzyme in poly-Ru(II)(PhQ)2(bpy-pyrrole) films. Glucose dehydrogenase (GDH) was thus efficiently immobilized in the electrogenerated polymer matrix. In presence of NAD(+) (10 mM), the resulting enzyme electrode exhibits high current densities for glucose oxidation of 1.04 mA cm(-2) at low overpotentials (-0.1 V) with a detection limit of 1 μM of glucose.

  11. ATOMIC AND MOLECULAR PHYSICS: Dynamic splitting and merging of an atom cloud on an atom chip

    NASA Astrophysics Data System (ADS)

    Ke, Min; Yan, Bo; Cheng, Feng; Wang, Yu-Zhu

    2009-11-01

    Chip-based atom interferometers bring together the advantages of atom chips and Bose-Einstein condensates. Their central prerequisite is that a condensate can be coherently split into two halves with a determined relative phase. This paper demonstrates the dynamical splitting and merging of an atom cloud with two U-wires on an atom chip. Symmetrical and asymmetrical splittings are realized by applying a bias field with different directions and magnitudes. The trajectories of the splitting are consistent with theoretical calculations. The atom chip is a good candidate for constructing an atom interferometer.

  12. Mechanical Behavior of Carbon Nanotubes Filled With Metal Nanowires By Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Danailov, Daniel; Keblinski, Pawel; Pulickel, Ajayan; Nayak, Saroj

    2002-03-01

    Using molecular dynamics simulations we studied mechanical behavior of (10,10) carbon nanotubes filled with a crystalline fcc metal wires. The interatomic interactions were described by a combination of Terfoff’s bond-order potential for carbon, embedded atom method (EAM) potential for metal and pair potential for carbon-metal interactions. The elastic properties, as well as failure mechanism were determined by simulating three point bending test, by pressing the center and the ends of relatively long tube in determined relatively small ring areas. We observed that following elastic response, at larger deformation, the metal wire yields well before the carbon bonding is affected. The behavior of filled tubes was compared with that of hollow tubes. Interesting is thet the hollow carbon (10,10) nanotube is more strong elastically than the same tube filled with Au-metal nanowire. We also simulated indentation of filled tubes residing on a hard flat surface. Similarly as in the bending test, metal wire yields first, is cut in between hard cylinder and hard plane and pushed away from under the indenter. Upon further increase of the indentation force, carbon tube is broken and forms two open ends that are rapidly zipped around the cut metal wire. Remarkably, the shape of the zipped tube ends strong depend of the speed of the punching of the tube. This result imply a possibility of designing tubes with various closed end shapes with applicationusing in the nanoscale manipulation procedures used for production.

  13. Dental Arch Wire

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Straightening teeth is an arduous process requiring months, often years, of applying corrective pressure by means of arch wires-better known as brace-which may have to be changed several times in the course of treatment. A new method has been developed by Dr. George Andreasen, orthodontist and dental scientist at the University of Iowa. The key is a new type of arch wire material, called Nitinol, with exceptional elasticity which helps reduce the required number of brace changes. An alloy of nickel and titanium, Nitinol was originally developed for aerospace applications by the Naval Ordnance Laboratory, now the Naval Surface Weapons Laboratory, White Oaks, Maryland. NASA subsequently conducted additional research on the properties of Nitinol and on procedures for processing the metal.

  14. From wires to cosmology

    NASA Astrophysics Data System (ADS)

    Amin, Mustafa A.; Baumann, Daniel

    2016-02-01

    We provide a statistical framework for characterizing stochastic particle production in the early universe via a precise correspondence to current conduction in wires with impurities. Our approach is particularly useful when the microphysics is uncertain and the dynamics are complex, but only coarse-grained information is of interest. We study scenarios with multiple interacting fields and derive the evolution of the particle occupation numbers from a Fokker-Planck equation. At late times, the typical occupation numbers grow exponentially which is the analog of Anderson localization for disordered wires. Some statistical features of the occupation numbers show hints of universality in the limit of a large number of interactions and/or a large number of fields. For test cases, excellent agreement is found between our analytic results and numerical simulations.

  15. Wire insulation defect detector

    NASA Technical Reports Server (NTRS)

    Greulich, Owen R. (Inventor)

    2004-01-01

    Wiring defects are located by detecting a reflected signal that is developed when an arc occurs through the defect to a nearby ground. The time between the generation of the signal and the return of the reflected signal provides an indication of the distance of the arc (and therefore the defect) from the signal source. To ensure arcing, a signal is repeated at gradually increasing voltages while the wire being tested and a nearby ground are immersed in a conductive medium. In order to ensure that the arcing occurs at an identifiable time, the signal whose reflection is to be detected is always made to reach the highest potential yet seen by the system.

  16. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Reynolds, L.; Tweed, H.

    1972-01-01

    The work performed entailed the design, development, construction and testing of a 4000 word by 18 bit random access, NDRO plated wire memory for use in conjunction with a spacecraft imput/output unit and central processing unit. The primary design parameters, in order of importance, were high reliability, low power, volume and weight. A single memory unit, referred to as a qualification model, was delivered.

  17. Superconducting magnet wire

    DOEpatents

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  18. Wiring for aerospace applications

    NASA Technical Reports Server (NTRS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-01-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  19. Atomic structure of PtCu nanoparticles in PtCu/C catalysts prepared by simultaneous and sequential deposition of components on carbon support

    NASA Astrophysics Data System (ADS)

    Bugaev, L. A.; Srabionyan, V. V.; Pryadchenko, V. V.; Bugaev, A. L.; Avakyan, L. A.; Belenov, S. V.; Guterman, V. E.

    2016-05-01

    Nanocatalysts PtCu/C with different distribution of components in bimetallic PtCu nanoparticles (NPs) were synthesized by simultaneous and sequential deposition of Cu and Pt on carbon support. Electrochemical stability of the obtained samples PtCu/C was studied using the cyclic voltammetry. Characterization of atomic structure of as prepared PtCu NPs and obtained after acid treatment was performed by Pt L 3- and Cu K-edge EXAFS using the technique for determining local structure parameters of the absorbing atom under strong correlations among them. EXAFS derived parameters were used for generation of structural models of PtCu NPs by the method of cluster simulations. Within this approach, the models of atomic structure of PtCu NPs obtained by the two methods of synthesis, before and after post treatment and after two months from their preparation were revealed.

  20. Stabilizing a high-temperature electrochemical silver-carbonate CO2 capture membrane by atomic layer deposition of a ZrO2 overcoat.

    PubMed

    Zhang, Peng; Tong, Jingjing; Jee, Youngseok; Huang, Kevin

    2016-07-28

    A high-selectivity and high-flux electrochemical silver-carbonate dual-phase membrane was coated with a nanoscaled ZrO2 layer by atomic layer deposition (ALD) for stable CO2 capture at high-temperature (≥800 °C); the latter has an important implication for direct dry methane reforming with the captured CO2 and O2 for syngas production.

  1. Stabilizing a high-temperature electrochemical silver-carbonate CO2 capture membrane by atomic layer deposition of a ZrO2 overcoat.

    PubMed

    Zhang, Peng; Tong, Jingjing; Jee, Youngseok; Huang, Kevin

    2016-07-28

    A high-selectivity and high-flux electrochemical silver-carbonate dual-phase membrane was coated with a nanoscaled ZrO2 layer by atomic layer deposition (ALD) for stable CO2 capture at high-temperature (≥800 °C); the latter has an important implication for direct dry methane reforming with the captured CO2 and O2 for syngas production. PMID:27417536

  2. Magnetoconductance of quantum wires

    NASA Astrophysics Data System (ADS)

    Ferreira, Gerson J.; Sammarco, Filipe; Egues, Carlos

    2010-03-01

    At low temperatures the conductance of a quantum wires exhibit characteristic plate-aus due to the quantization of the transverse modes [1]. In the presence of high in-plane magnetic fields these spin-split transverse modes cross. Recently, these crossings were observed experimentally [2] via measurements of the differential conductance as a function of the gate voltage and the in-plane magnetic-field. These show structures described as either anti-crossings or magnetic phase transitions. Motivated by our previous works on magnetotransport in 2DEGs via the Spin Density Functional Theory (SDFT) [3], here we propose a similar model to investigate the magnetoconductance of quantum wires. We use (i) the SDFT via the Kohn-Sham self-consistent scheme within the local spin density approximation to obtain the electronic structure and (ii) the Landauer-Buettiker formalism to calculate the conductance of a quantum wire. Our results show qualitative agreement with the data of Ref. [2]. [1] B. J. van Wees et al., Phys. Rev. Lett. 60, 848 (1988). [2] A. C. Graham et al., Phys. Rev. Lett. 100, 226804 (2008). [3] H. J. P. Freire, and J. C. Egues, Phys. Rev. Lett. 99, 026801 (2007); G. J. Ferreira, and J. Carlos Egues, J. Supercond. Nov. Mag., in press; G. J. Ferreira, H. J. P. Freire, J. Carlos Egues, submitted.

  3. Novel ferrocene-anchored ZnO nanoparticle/carbon nanotube assembly for glucose oxidase wiring: application to a glucose/air fuel cell

    NASA Astrophysics Data System (ADS)

    Haddad, Raoudha; Mattei, Jean-Gabriel; Thery, Jessica; Auger, Aurélien

    2015-06-01

    Glucose oxidase (GOx) is immobilized on ZnO nanoparticle-modified electrodes. The immobilized glucose oxidase shows efficient mediated electron transfer with ZnO nanoparticles to which the ferrocenyl moiety is π-stacked into a supramolecular architecture. The constructed ZnO-Fc/CNT modified electrode exhibits high ferrocene surface coverage, preventing any leakage of the π-stacked ferrocene from the newly described ZnO hybrid nanoparticles. The use of the new architecture of ZnO supported electron mediators to shuttle electrons from the redox centre of the enzyme to the surface of the working electrode can effectively bring about successful glucose oxidation. These modified electrodes evaluated as a highly efficient architecture provide a catalytic current for glucose oxidation and are integrated in a specially designed glucose/air fuel cell prototype using a conventional platinum-carbon (Pt/C) cathode at physiological pH (7.0). The obtained architecture leads to a peak power density of 53 μW cm-2 at 300 mV for the Nafion® based biofuel cell under ``air breathing'' conditions at room temperature.

  4. Polarizabilities and van der Waals C6 coefficients of fullerenes from an atomistic electrodynamics model: Anomalous scaling with number of carbon atoms.

    PubMed

    Saidi, Wissam A; Norman, Patrick

    2016-07-14

    The van der Waals C6 coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C6 ∝ N(2.2) as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N(2.75) as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes by fitting against accurate ab initio calculations. This model shows that C6 ∝ N(2.8), which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole-dipole term scales almost linearly with the number of carbon atoms. PMID:27421409

  5. Polarizabilities and van der Waals C6 coefficients of fullerenes from an atomistic electrodynamics model: Anomalous scaling with number of carbon atoms.

    PubMed

    Saidi, Wissam A; Norman, Patrick

    2016-07-14

    The van der Waals C6 coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C6 ∝ N(2.2) as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N(2.75) as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes by fitting against accurate ab initio calculations. This model shows that C6 ∝ N(2.8), which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole-dipole term scales almost linearly with the number of carbon atoms.

  6. Polarizabilities and van der Waals C6 coefficients of fullerenes from an atomistic electrodynamics model: Anomalous scaling with number of carbon atoms

    NASA Astrophysics Data System (ADS)

    Saidi, Wissam A.; Norman, Patrick

    2016-07-01

    The van der Waals C6 coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C6 ∝ N2.2 as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N2.75 as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes by fitting against accurate ab initio calculations. This model shows that C6 ∝ N2.8, which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole-dipole term scales almost linearly with the number of carbon atoms.

  7. Seal Wire Integrity Verification Instrument: Evaluation of Laboratory Prototypes

    SciTech Connect

    Good, Morris S.; Skorpik, James R.; Kravtchenko, Victor; Wishard, Bernard; Prince, James M.; Pardini, Allan F.; Heasler, Patrick G.; Santiago-Rojas, Emiliano; Mathews, Royce; Khayyat, Sakher; Tanner, Jennifer E.; Undem, Halvor A.

    2009-10-07

    Tamper indicating devices (TIDs) provide evidence that sensitive items, to which they have been applied, have been tampered with or not. Passive wire-loop seals, a class of TIDs, are generally comprised of a multi-strand seal wire that is threaded through or around key features and a unique seal body that captures and restrains the seal wire. Seal integrity resides with unique identification of the seal and the integrity of the seal body and the seal wire. Upon inspection, the seal wire may be cut and the full length inspected. A new seal may be applied in the field as a replacement, if desired. Seal wire inspection typically requires visual and tactile examinations, which are both subjective. A need therefore exists to develop seal wire inspection technology that is easy to use in the field, is objective, provides an auditable data trail, and has low error rates. Expected benefits, if successfully implemented, are improved on-site inspection reliability and security. The work scope for this effort was restricted to integrity of seal wire used by the International Atomic Energy Agency (IAEA) and resulted in development of a wire integrity verification instrument (WIVI) laboratory prototype. Work included a performance evaluation of a laboratory-bench-top system, and design and delivery of two WIVI laboratory prototypes. The paper describes the basic physics of the eddy current measurement, a description of the WIVI laboratory prototype, and an initial evaluation performed by IAEA personnel. --- Funding was provided by the U.S. Program for Technical Assistance to IAEA Safeguards (POTAS).

  8. Investigation of mechanical properties of cryogenically treated music wire.

    PubMed

    Heptonstall, A; Waller, M; Robertson, N A

    2015-08-01

    It has been reported that treating music wire (high carbon steel wire) by cooling to cryogenic temperatures can enhance its mechanical properties with particular reference to those properties important for musical performance. We use such wire for suspending many of the optics in Advanced LIGO, the upgrade to LIGO—the Laser Interferometric Gravitational-Wave Observatory. Two properties that particularly interest us are mechanical loss and breaking strength. A decrease in mechanical loss would directly reduce the thermal noise associated with the suspension, thus enhancing the noise performance of mirror suspensions within the detector. An increase in strength could allow thinner wire to be safely used, which would enhance the dilution factor of the suspension, again leading to lower suspension thermal noise. In this article, we describe the results of an investigation into some of the mechanical properties of music wire, comparing untreated wire with the same wire which has been cryogenically treated. For the samples we studied, we conclude that there is no significant difference in the properties of interest for application in gravitational wave detectors. PMID:26329213

  9. Wire aging of hydrocarbon gases with TMAE additions

    SciTech Connect

    Va'vra, J.

    1986-10-01

    We report on experimental results describing wire aging properties of the CRID/RICH detectors in the TMAE gas environment. This test used 7 ..mu..m and 33 ..mu..m diameter carbon fibers, and 20 ..mu..m diameter gold-plated tungsten wires as sense wires, and operated in gas mixtures of either CH/sub 4/ or C/sub 2/H/sub 6/ at 1 atm, together with 0.6 Torr of the photoionizing vapor TMAE (tetrakis dimethylamino ethylene), which serves as a photocathode in the CRID detectors. The wires were damaged by the /sup 55/Fe x-rays. This paper is based on irradiation of 20 wires, each being a separate test. The gas purity was consistent with requirements of CRID detectors (<1 ppM of oxygen, <1 ppM of water). The test explored the aging as a function of wire diameter, wire material, gas flow, gas temperature, rate of radiation and gas type. Several chemical analyses of the deposit samples were performed (FTIR, ESCA and GC-MS techniques).

  10. Investigation of mechanical properties of cryogenically treated music wire

    NASA Astrophysics Data System (ADS)

    Heptonstall, A.; Waller, M.; Robertson, N. A.

    2015-08-01

    It has been reported that treating music wire (high carbon steel wire) by cooling to cryogenic temperatures can enhance its mechanical properties with particular reference to those properties important for musical performance. We use such wire for suspending many of the optics in Advanced LIGO, the upgrade to LIGO—the Laser Interferometric Gravitational-Wave Observatory. Two properties that particularly interest us are mechanical loss and breaking strength. A decrease in mechanical loss would directly reduce the thermal noise associated with the suspension, thus enhancing the noise performance of mirror suspensions within the detector. An increase in strength could allow thinner wire to be safely used, which would enhance the dilution factor of the suspension, again leading to lower suspension thermal noise. In this article, we describe the results of an investigation into some of the mechanical properties of music wire, comparing untreated wire with the same wire which has been cryogenically treated. For the samples we studied, we conclude that there is no significant difference in the properties of interest for application in gravitational wave detectors.

  11. Processing and mechanical behavior of hypereutectoid steel wires

    SciTech Connect

    Lesuer, D.R.; Syn, C.K.; Sherby, O.D.; Kim, D.K.

    1996-06-25

    Hypereutectoid steels have the potential for dramatically increasing the strength of wire used in tire cord and in other high strength wire applications. The basis for this possible breakthrough is the elimination of a brittle proeutectoid network that can form along grain boundaries if appropriate processing procedures and alloy additions are used. A review is made of work done by Japanese and other researchers on eutectoid and mildly hypereutectoid wires. A linear extrapolation of the tensile strength of fine wires predicts higher strengths at higher carbon contents. The influence of processing, alloy additions and carbon content in optimizing the strength, ductility and fracture behavior of hypereutectoid steels is presented. It is proposed that the tensile strength of pearlitic wires is dictated by the fracture strength of the carbide lamella at grain boundary locations in the carbide. Methods to improve the strength of carbide grain boundaries and to decrease the carbide plate thickness will contribute to enhancing the ultrahigh strength obtainable in hypereutectoid steel wires. 23 refs., 13 figs., 1 tab.

  12. Synergic effect of atomic oxygen and outgassing phenomena on Carbon/SiC composites for space applications

    NASA Astrophysics Data System (ADS)

    Albano, Marta

    so that sublimation and ablation easily can take place. The key role played by carbon composites in re-entry environment is due to their high stability at high temperature, preserving their mechanical properties. However, most of these applications involve extended time periods in oxidizing environments where carbon reacts rapidly with oxygen at temperatures as low as 770K and the composites are subjected to oxidation degradation. For these reasons coated C/C and C/SiC composites are the most promising materials for the exposed surface of a thermal protection system. The modern approaches to a design of such materials assume broad application of mathematical and physical simulation methods. But mathematical simulation is impossible if there is no true information available on the characteristics (properties) of objects analyzed. In the majority of cases in practice the direct measurement of materials thermo physical properties, especially of complex composition, is impossible. There is only one way which permits to overcome these complexities - the indirect measurement. Mathematically, such an approach is usually formulated as a solution of the inverse problem: through direct measurements of system's state (temperature, component concentration, etc.) define the properties of a system analyzed, for example, the materials thermophysical characteristics. Violation of cause-and-effect relations in the statement of these problems results in their correctness in mathematical sense (i.e., the absence of existence and/or uniqueness and/or stability of the solution). Hence to solve such problems special methods are developed usually called regularized. In order to guarantee the success of a space structure there is the necessity to study the synergic effects of all the challenges that the harsh space environment place to the structure. For this reason here is presented a joint experimental study on synergic effects on C/SiC composites. Outgassing and atomic oxygen corrosion

  13. Dual wire welding torch and method

    SciTech Connect

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  14. Manually Operated Welding Wire Feeder

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor)

    2001-01-01

    A manual welding wire feeder apparatus comprising a bendable elongate metal frame with a feed roller mounted at the center thereof for rotation about an axis transverse to the longitudinal axis of the frame. The frame ends are turned up as tabs and each provided with openings in alignment with each other and the mid-width center of the roller surface. The tab openings are sized to accommodate welding wire and each extends to a side edge of the tab, both opening on the same side of the frame, whereby welding wire can be side-loaded onto the frame. On the side of the frame, opposite the roller a lock ring handle is attached tangentially and is rotatable about the attachment point and an axis perpendicular to the frame. The device is grasped in the hand normally used to hold the wire. A finger is placed through the loop ring and the frame positioned across the palm and lower fingers. The thumb is positioned atop the wire so it can be moved from the back of the frame across the roller, and towards the front. In doing so, the wire is advanced at a steady rate in axial alignment with the tab openings and roller. To accommodate different wire diameters the frame is bendable about its center in the plane of the frame axis and wire so as to keep the wire in sufficient tension against the roller and to keep the wire fixed when the frame is tilted and thumb pressure released.

  15. Topography and transport properties of oligo(phenylene ethynylene) molecular wires studied by scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Dholakia, Geetha R.; Fan, Wendy; Koehne, Jessica; Han, Jie; Meyyappan, M.

    2003-01-01

    Conjugated phenylene(ethynylene) molecular wires are of interest as potential candidates for molecular electronic devices. Scanning tunneling microscopic study of the topography and current-voltage (I-V) characteristics of self-assembled monolayers of two types of molecular wires are presented here. The study shows that the topography and I-Vs, for small scan voltages, of the two wires are quite similar and that the electronic and structural changes introduced by the substitution of an electronegative N atom in the central phenyl ring of these wires does not significantly alter the self-assembly or the transport properties.

  16. Metering Wheel-Wire Track Wire Boom Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Granoff, Mark S.

    2014-01-01

    The NASA MMS Spin Plane Double Probe (SDP) Deployer utilizes a helical path, rotating Metering Wheel and a spring loaded Wire "Holding" Track to pay out a "fixed end" 57 meter x 1.5 mm diameter Wire Boom stored between concentric storage cylinders. Unlike rotating spool type storage devices, the storage cylinders remain stationary, and the boom wire is uncoiled along the length of the cylinder via the rotation of the Metering Wheel. This uncoiling action avoids the need for slip-ring contacts since the ends of the wire can remain stationary. Conventional fixed electrical connectors (Micro-D type) are used to terminate to operational electronics.

  17. Carbon-wire loop based artifact correction outperforms post-processing EEG/fMRI corrections--A validation of a real-time simultaneous EEG/fMRI correction method.

    PubMed

    van der Meer, Johan N; Pampel, André; Van Someren, Eus J W; Ramautar, Jennifer R; van der Werf, Ysbrand D; Gomez-Herrero, German; Lepsien, Jöran; Hellrung, Lydia; Hinrichs, Hermann; Möller, Harald E; Walter, Martin

    2016-01-15

    Simultaneous EEG-fMRI combines two powerful neuroimaging techniques, but the EEG signal suffers from severe artifacts in the MRI environment that are difficult to remove. These are the MR scanning artifact and the blood-pulsation artifact--strategies to remove them are a topic of ongoing research. Additionally large, unsystematic artifacts are produced across the full frequency spectrum by the magnet's helium pump (and ventilator) systems which are notoriously hard to remove. As a consequence, experimenters routinely deactivate the helium pump during simultaneous EEG-fMRI acquisitions which potentially risks damaging the MRI system and necessitates more frequent and expensive helium refills. We present a novel correction method addressing both helium pump and ballisto-cardiac (BCG) artifacts, consisting of carbon-wire loops (CWL) as additional sensors to accurately track unpredictable artifacts related to subtle movements in the scanner, and an EEGLAB plugin to perform artifact correction. We compare signal-to-noise metrics of EEG data, corrected with CWL and three conventional correction methods, for helium pump off and on measurements. Because the CWL setup records signals in real-time, it fits requirements of applications where immediate correction is necessary, such as neuro-feedback applications or stimulation time-locked to specific sleep oscillations. The comparison metrics in this paper relate to: (1) the EEG signal itself, (2) the "eyes open vs. eyes closed" effect, and (3) an assessment of how the artifact corrections impacts the ability to perform meaningful correlations between EEG alpha power and the BOLD signal. Results show that the CWL correction corrects for He pump artifact and also produces EEG data more comparable to EEG obtained outside the magnet than conventional post-processing methods. PMID:26505301

  18. Carbon-wire loop based artifact correction outperforms post-processing EEG/fMRI corrections--A validation of a real-time simultaneous EEG/fMRI correction method.

    PubMed

    van der Meer, Johan N; Pampel, André; Van Someren, Eus J W; Ramautar, Jennifer R; van der Werf, Ysbrand D; Gomez-Herrero, German; Lepsien, Jöran; Hellrung, Lydia; Hinrichs, Hermann; Möller, Harald E; Walter, Martin

    2016-01-15

    Simultaneous EEG-fMRI combines two powerful neuroimaging techniques, but the EEG signal suffers from severe artifacts in the MRI environment that are difficult to remove. These are the MR scanning artifact and the blood-pulsation artifact--strategies to remove them are a topic of ongoing research. Additionally large, unsystematic artifacts are produced across the full frequency spectrum by the magnet's helium pump (and ventilator) systems which are notoriously hard to remove. As a consequence, experimenters routinely deactivate the helium pump during simultaneous EEG-fMRI acquisitions which potentially risks damaging the MRI system and necessitates more frequent and expensive helium refills. We present a novel correction method addressing both helium pump and ballisto-cardiac (BCG) artifacts, consisting of carbon-wire loops (CWL) as additional sensors to accurately track unpredictable artifacts related to subtle movements in the scanner, and an EEGLAB plugin to perform artifact correction. We compare signal-to-noise metrics of EEG data, corrected with CWL and three conventional correction methods, for helium pump off and on measurements. Because the CWL setup records signals in real-time, it fits requirements of applications where immediate correction is necessary, such as neuro-feedback applications or stimulation time-locked to specific sleep oscillations. The comparison metrics in this paper relate to: (1) the EEG signal itself, (2) the "eyes open vs. eyes closed" effect, and (3) an assessment of how the artifact corrections impacts the ability to perform meaningful correlations between EEG alpha power and the BOLD signal. Results show that the CWL correction corrects for He pump artifact and also produces EEG data more comparable to EEG obtained outside the magnet than conventional post-processing methods.

  19. Control of hydrogen and carbon impurity inclusion during the growth of GaAsN thin film by atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yuki; Fukuyama, Atsuhiko; Haraguchi, Tomohiro; Yamauchi, Toshihiro; Ikari, Tetsuo; Suzuki, Hidetoshi

    2016-01-01

    The effects of growth temperature and nitrogen (N) source duration on N, carbon (C), and hydrogen (H) concentrations in GaAsN layers grown by atomic layer epitaxy (ALE) were investigated to understand the incorporation mechanisms of these atoms. In addition, the effects of the above growth conditions on the self-limiting mechanism (SLM) were investigated. The SLM was in effect at growth temperatures of 500 and 520 °C. The origin of the residual C was not N but other sources. With increasing N source duration, the N and H concentrations increased and saturated. The N incorporation mechanisms were discussed by a simple model considering the absorption and desorption of N atoms on the gallium (Ga)-covered surface. H atoms originating from the N source were incorporated in to the GaAsN layer. According to the ratio of the H concentration to the N concentration, the difference in the incorporation processes of N and H atoms in ALE-grown GaAsN layers was discussed.

  20. Evaluation of an improved atomic data basis for carbon in UEDGE emission modeling for L-mode plasmas in DIII-D

    NASA Astrophysics Data System (ADS)

    Muñoz Burgos, J. M.; Leonard, A. W.; Loch, S. D.; Ballance, C. P.

    2013-07-01

    New scaled carbon atomic electron-impact excitation data is utilized to evaluate comparisons between experimental measurements and fluid emission modeling of detached plasmas at DIII-D. The C I and C II modeled emission lines for 909.8 and 514.7 nm were overestimated by a factor of 10-20 than observed experimentally for the inner leg, while the outer leg was within a factor of 2. Due to higher modeled emissions, a previous study using the UEDGE code predicted that a higher amount of carbon was required to achieve a detached outboard divertor plasma in L-mode at DIII-D. The line emission predicted by using the new scaled carbon data yields closer results when compared against experiment. We also compare modeling and measurements of Dα emission from neutral deuterium against predictions from newly calculated R-Matrix with pseudostates data available at the ADAS database.

  1. Improving the accuracy of carbon-to-hydrogen ratio determination for P, N, S, O, Cl, and Br-containing organic compounds using atomic emission detection.

    PubMed

    Chernetsova, Elena S; Revelsky, Alexander I; Durst, Dupont; Sobolevsky, Tim G; Revelsky, Igor A

    2005-05-01

    The objective of this work was to investigate the dependence of atomic emission detector C and H response on microwave-induced plasma conditions and to improve the accuracy of carbon-to-hydrogen ratio determination for trialkylphosphates, herbicides, chlorophenols, and sulfur-containing organic compounds. Compounds which differed structurally from the analytes were used as reference compounds. It was found that when the oxygen concentration in the helium was the maximum for the instrument (9%) relative errors in carbon-to-hydrogen ratio determination were 3-8%, irrespective of analyte and reference compound structure, whereas when working in the mode of operation recommended by the manufacturer of the instrument (1.5% oxygen in helium) the respective errors were 10-20% or higher. This improvement in the accuracy of carbon-to-hydrogen ratio determination was accompanied by a factor of ten decrease in sensitivity. PMID:15688154

  2. Review of wire chamber aging

    SciTech Connect

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs.

  3. Atomic-layer-deposition alumina induced carbon on porous Ni(x)Co(1-x)O nanonets for enhanced pseudocapacitive and Li-ion storage performance.

    PubMed

    Guan, Cao; Wang, Yadong; Zacharias, Margit; Wang, John; Fan, Hong Jin

    2015-01-01

    A unique composite nanonet of metal oxide@carbon interconnected sheets is obtained by atomic layer deposition (ALD)-assisted fabrication. In this nanonet structure, mesoporous metal oxide nanosheets are covered by a layer of amorphous carbon nanoflakes. Specifically, quasi-vertical aligned and mesoporous Ni(x)Co(1-x)O nanosheets are first fabricated directly on nickel foam substrates by a hydrothermal method. Then, an ALD-enabled carbon coating method is applied for the growth of carbon nanoflakes on the surface of the nanosheets. The thus formed 3D hierarchical structure of Ni(x)Co(1-x)O@carbon composite flakes have a higher surface area, better electrical conductivity and structure stability than the bare Ni(x)Co(1-x)O. The application of such composite nanomaterials is demonstrated as electrodes for a supercapacitor and a lithium-ion battery. In both tests, the composite electrode shows enhancement in capacity and cycling stability. This effective composite nanostructure design of metal oxides@carbon flakes could provide a promising method to construct high-performance materials for energy and environment applications.

  4. Atom probe study of the carbon distribution in a hardened martensitic hot-work tool steel X38CrMoV5-1.

    PubMed

    Lerchbacher, Christoph; Zinner, Silvia; Leitner, Harald

    2012-07-01

    The microstructure of the hardened common hot-work tool steel X38CrMoV5-1 has been characterized by atom probe tomography with the focus on the carbon distribution. Samples quenched with technically relevant cooling parameters λ from 0.1 (30 K/s) to 12 (0.25 K/s) have been investigated. The parameter λ is an industrially commonly used exponential cooling parameter, representing the cooling time from 800 to 500 °C in seconds divided with hundred. In all samples pronounced carbon segregation to dislocations and cluster formation could be observed after quenching. Carbon enriched interlath films with peak carbon levels of 6-10 at.%, which have been identified to be retained austenite by TEM, show a thickness increase with increasing λ. Therefore, the fraction of total carbon staying in the austenite grows. This carbon is not available for the tempering induced precipitation of secondary carbides in the bulk. Through all samples no segregation of any substitutional elements takes place. Charpy impact testing and fracture surface analysis of the hardened samples reveal the cooling rate induced microstructural distinctions.

  5. Warm ISM in the Sagittarius A Complex. I. Mid-J CO, atomic carbon, ionized atomic carbon, and ionized nitrogen sub-mm/FIR line observations with the Herschel-HIFI and NANTEN2/SMART telescopes

    NASA Astrophysics Data System (ADS)

    García, P.; Simon, R.; Stutzki, J.; Güsten, R.; Requena-Torres, M. A.; Higgins, R.

    2016-04-01

    Aims: We investigate the spatial and spectral distribution of the local standard of rest (LSR) velocity resolved submillimetre emission from the warm (25-90 K) gas in the Sgr A Complex, located in the Galactic centre. Methods: We present large-scale submillimetre heterodyne observations towards the Sgr A Complex covering ~300 arcmin2. These data were obtained in the frame of the Herschel EXtraGALactic guaranteed time key program (HEXGAL) with the Herschel-HIFI satellite and are complemented with submillimetre observations obtained with the NANTEN2/SMART telescope as part of the NANTEN2/SMART Central Nuclear Zone Survey. The observed species are CO(J = 4-3) at 461.0 GHz observed with the NANTEN2/SMART telescope, and [CI] 3P1-3P0 at 492.2 GHz, [CI] 3P2-3P1 at 809.3 GHz, [NII] 3P1-3P0 at 1461.1 GHz, and [CII] 2P3/2-2P1/2 at 1900.5 GHz observed with the Herschel-HIFI satellite. The observations are presented in a 1 km s-1 spectral resolution and a spatial resolution ranging from 46 arcsec to 28 arcsec. The spectral coverage of the three lower frequency lines is ±200 km s-1, while in the two high frequency lines, the upper LSR velocity limit is +94 km s-1 and +145 km s-1 for the [NII] and [CII] lines, respectively. Results: The spatial distribution of the emission in all lines is very widespread. The bulk of the carbon monoxide emission is found towards Galactic latitudes below the Galactic plane, and all the known molecular clouds are identified. Both neutral atomic carbon lines have their brightest emission associated with the +50 km s-1 cloud. Their spatial distribution at this LSR velocity describes a crescent-shape structure, which is probably the result of interaction with the energetic event (one or several supernovae explosions) that gave origin to the non-thermal Sgr A-East source. The [CII] and [NII] emissions have most of their flux associated with the thermal arched-filaments and the H region and bright spots in [CII] emission towards the central nuclear

  6. In-situ surface and interface study of atomic oxygen modified carbon containing porous low-κ dielectric films for barrier layer applications

    NASA Astrophysics Data System (ADS)

    Bogan, J.; Lundy, R.; P. McCoy, A.; O'Connor, R.; Byrne, C.; Walsh, L.; Casey, P.; Hughes, G.

    2016-09-01

    The surface treatment of ultralow-κ dielectric layers by exposure to atomic oxygen is presented as a potential mechanism to modify the chemical composition of the dielectric surface to facilitate copper diffusion barrier layer formation. High carbon content, low-κ dielectric films of varying porosity were exposed to atomic oxygen treatments at room temperature, and x-ray photoelectron spectroscopy studies reveal both the depletion of carbon and the incorporation of oxygen at the surface. Subsequent dynamic water contact angle measurements show that the chemically modified surfaces become more hydrophilic after treatment, suggesting that the substrates have become more "SiO2-like" at the near surface region. This treatment is shown to be thermally stable up to 400 °C. High resolution electron energy loss spectroscopy elemental profiles confirm the localised removal of carbon from the surface region. Manganese (≈1 nm) was subsequently deposited on the modified substrates and thermally annealed to form surface localized MnSiO3 based barrier layers. The energy-dispersive X-ray spectroscopy elemental maps show that the atomic oxygen treatments facilitate the formation of a continuous manganese silicate barrier within dense low-k films, but significant manganese diffusion is observed in the case of porous substrates, negatively impacting the formation of a discrete barrier layer. Ultimately, the atomic oxygen treatment proves effective in modifying the surface of non-porous dielectrics while continuing to facilitate barrier formation. However, in the case of high porosity films, diffusion of manganese into the bulk film remains a critical issue.

  7. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Carpenter, K. H.

    1974-01-01

    The design, construction, and test history of a 4096 word by 18 bit random access NDRO Plated Wire Memory for use in conjunction with a spacecraft input/output and central processing unit is reported. A technical and functional description is given along with diagrams illustrating layout and systems operation. Test data is shown on the procedures and results of system level and memory stack testing, and hybrid circuit screening. A comparison of the most significant physical and performance characteristics of the memory unit versus the specified requirements is also included.

  8. Texture development in Galfenol wire

    NASA Astrophysics Data System (ADS)

    Boesenberg, A. J.; Restorff, J. B.; Wun-Fogle, M.; Sailsbury, H.; Summers, E.

    2013-05-01

    Galfenol (Fe-Ga alloy) wire fabrication provides a low cost alternative to directional solidification methods. This work evaluates the compositional dependence of the wire drawing suitability of Fe-Ga and characterizes the microstructural and magnetic properties of these wires. Wire has been produced with Ga contents between 10 at. % and 17 at. % to allow determination of the ductile to brittle transition (DTBT) in wire manufacture. Published results on chill cast bend specimens indicated that a DTBT occurs at roughly 15 at. % Ga. This DTBT was observed under tensile loading with a corresponding change in fracture behavior from transverse fracture to intergranular fracture. For improved magnetostrictive performance, higher Ga contents are desired, closer to the 17 at. % Ga evaluated in this work. Electron backscattered diffraction B-H loop and resonance measurements as a function of magnetic field (to determine modulus and coupling factor) are presented for as-drawn, furnace, and direct current (DC) annealed wire. Galfenol wire produced via traditional drawing methods is found to have a strong <110> (α) texture parallel to the drawing direction. As-drawn wire was observed to have a lower magnetic permeability and larger hysteresis than DC annealed wire. This is attributed to the presence of a large volume of crystalline defects; such as vacancies and dislocations.

  9. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury....

  10. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury....

  11. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY... of insulated wire; splice in underground wire. Insulated wire shall be protected from...

  12. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury....

  13. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury....

  14. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY... of insulated wire; splice in underground wire. Insulated wire shall be protected from...

  15. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury....

  16. Evolution of the atomic order and valence state of rare-earth atoms and uranium in a new carbon-metal composite—diphthalocyanine pyrolysate C64H32N16 Me ( Me = Y, La, Ce, Eu, and U)

    NASA Astrophysics Data System (ADS)

    Sovestnov, A. E.; Kapustin, V. K.; Tikhonov, V. I.; Fomin, E. V.; Chernenkov, Yu. P.

    2014-08-01

    The structure of a metal-carbon composite formed by the pyrolysis of diphthalocyanine of some rare-earth elements (Y, La, Ce, Eu) and uranium in the temperature range T ann = 800-1700°C has been investigated for the first time by the methods of X-ray diffraction analysis and X-ray line shift. It has been shown that, in the general case, the studied pyrolysates consist of three phases. One phase corresponds to the structure of graphite. The second phase corresponds to nitrides, carbides, and oxides of basic metal elements with a crystallite size ranging from 5 to 100 nm. The third phase is amorphous or consisting of crystallites with a size of ˜1 nm. It has been found that all the basic elements (Y, La, Ce, Eu, U) and incorporated iodine atoms in the third phase are in a chemically bound state. The previously unobserved electronic configurations have been revealed for europium. The possibility of including not only atoms of elements forming diphthalocyanine but also other elements (for example, iodine) in the composite structure is of interest, in particular, for the creation of a thermally, chemically, and radiation resistant metal-carbon matrix for the radioactive waste storage.

  17. Soft magnetic wires

    NASA Astrophysics Data System (ADS)

    Vázquez, M.

    2001-06-01

    An overview of the present state of the art on the preparation techniques, outstanding magnetic properties and applications of soft magnetic micro and nanowires is presented. Rapid solidification techniques (in-rotating-water quenching and drawing methods) to fabricate amorphous microwires with diameter in the range from 100 down to 1 μm are first described. Electrodeposition is also employed to prepare composite microtubes (magnetic coatings) and to fill porous membranes (diameter of the order of 0.1 μm). Magnetic behaviours of interest are related to the different hysteresis loops of samples: square-shaped loops typical of bistable behaviour, and nearly non-hysteretic loop with well-defined transverse anisotropy field. The role played by magnetic dipolar interactions in the magnetic behaviour of arrays of micro and nanowires is described. A particular analysis is done on the giant magnetoimpedance (GMI) effect in the radio and microwave frequency ranges exhibited by ultrasoft microwires. Finally, a few examples of applications are introduced for magnetostrictive and non-magnetostrictive wires, they are: “magnetoelastic pens”, micromotors; DC current-sensors based on GMI, and sharpened amorphous wire tips in spin polarised scanning tunneling microscopy.

  18. Improved superconducting magnet wire

    DOEpatents

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  19. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    NASA Astrophysics Data System (ADS)

    Spurgeon, Joshua Michael

    Despite demand for clean energy to reduce our addiction to fossil fuels, the price of these technologies relative to oil and coal has prevented their widespread implementation. Solar energy has enormous potential as a carbon-free resource but is several times the cost of coal-produced electricity, largely because photovoltaics of practical efficiency require high-quality, pure semiconductor materials. To produce current in a planar junction solar cell, an electron or hole generated deep within the material must travel all the way to the junction without recombining. Radial junction, wire array solar cells, however, have the potential to decouple the directions of light absorption and charge-carrier collection so that a semiconductor with a minority-carrier diffusion length shorter than its absorption depth (i.e., a lower quality, potentially cheaper material) can effectively produce current. The axial dimension of the wires is long enough for sufficient optical absorption while the charge-carriers are collected along the shorter radial dimension in a massively parallel array. This thesis explores the wire array solar cell design by developing potentially low-cost fabrication methods and investigating the energy-conversion properties of the arrays in photoelectrochemical cells. The concept was initially investigated with Cd(Se, Te) rod arrays; however, Si was the primary focus of wire array research because its semiconductor properties make low-quality Si an ideal candidate for improvement in a radial geometry. Fabrication routes for Si wire arrays were explored, including the vapor-liquid-solid growth of wires using SiCl4. Uniform, vertically aligned Si wires were demonstrated in a process that permits control of the wire radius, length, and spacing. A technique was developed to transfer these wire arrays into a low-cost, flexible polymer film, and grow multiple subsequent arrays using a single Si(111) substrate. Photoelectrochemical measurements on Si wire array

  20. Reactions of atomic hydrogen with formic acid and carbon monoxide in solid parahydrogen II: Deuterated reaction studies.

    PubMed

    Wonderly, William R; Anderson, David T

    2014-09-11

    It is difficult to determine whether the measured rate constant for reaction of atomic hydrogen with formic acid reported in Part 1 reflects the H atom quantum diffusion rate or the rate constant for the tunneling reaction step. In Part 2 of this series, we present kinetic studies of the postphotolysis H atom reactions with deuterated formic acid (DCOOD) to address this ambiguity. Short duration 193 nm in situ photolysis of DCOOD trapped in solid parahydrogen results in partial depletion of the DCOOD precursor and photoproduction of primarily CO, CO2, DOCO, HCO and mobile H atoms. At 1.9 K we observe post-irradiation growth in the concentrations of DOCO and HCO that can be explained by H atom tunneling reactions with DCOOD and CO, respectively. Conducting experiments with different deuterium isotopomers of formic acid (DCOOD, DCOOH, HCOOD and HCOOH) provides strong circumstantial evidence the reaction involves H atom abstraction from the alkyl group of formic acid. Further, the anomalous temperature dependence measured for the H + HCOOH reaction in Part 1 is also observed for the analogous reactions with deuterated formic acid. The rate constants extracted for H atom reactions with DCOOD and HCOOH are equivalent to within experimental uncertainty. This lack of a kinetic isotope effect in the measured rate constant is interpreted as evidence the reactions are diffusion limited; the measured rate constant reflects the H atom diffusion rate and not the tunneling reaction rate. Whether or not H atom reactions with chemical species in solid parahydrogen are diffusion limited is one of the outstanding questions in this field, and this work makes significant strides toward showing the reaction kinetics with formic acid are diffusion limited.