Science.gov

Sample records for carbon capture technologies

  1. IMPACCT: Carbon Capture Technology

    SciTech Connect

    2012-01-01

    IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

  2. Carbon Capture: A Technology Assessment

    DTIC Science & Technology

    2013-10-21

    monoethanolamine (MEA) and ammonia ; pre- combustion capture (also via chemical solvents) from the synthesis gas produced in an integrated coal gasification...71 D. Heaven et al., “ Synthesis Gas Purification in Gasification to Ammonia /Urea Plants,” Gasification Technologies...32 Ammonia -Based Capture Processes

  3. Prospects for carbon capture and storage technologies

    SciTech Connect

    Soren Anderson; Richard Newell

    2003-01-15

    Carbon capture and storage (CCS) technologies remove carbon dioxide from flue gases for storage in geologic formations or the ocean. The study found that CCS is technically feasible and economically attractive within the range of carbon policies discussed domestically and internationally. Current costs are about $200 to $250 per ton of carbon, although costs are sensitive to fuel prices and other assumptions and could be reduced significantly through technical improvements. Near-term prospects favor CCS for certain industrial sources and electric power plants, with storage in depleted oil and gas reservoirs. Deep aquifers may provide an attractive longer-term storage option, whereas ocean storage poses greater technical and environmental uncertainty. Vast quantities of economically recoverable fossil fuels, sizable political obstacles to their abandonment, and inherent delay associated with developing alternative energy sources suggest that CCS should be seriously considered in the portfolio of options for addressing climate change, alongside energy efficiency and carbon-free energy. 61 refs., 5 figs., 5 tabs.

  4. Carbon Capture in the Cement Industry: Technologies, Progress, and Retrofitting.

    PubMed

    Hills, Thomas; Leeson, Duncan; Florin, Nicholas; Fennell, Paul

    2016-01-05

    Several different carbon-capture technologies have been proposed for use in the cement industry. This paper reviews their attributes, the progress that has been made toward their commercialization, and the major challenges facing their retrofitting to existing cement plants. A technology readiness level (TRL) scale for carbon capture in the cement industry is developed. For application at cement plants, partial oxy-fuel combustion, amine scrubbing, and calcium looping are the most developed (TRL 6 being the pilot system demonstrated in relevant environment), followed by direct capture (TRL 4-5 being the component and system validation at lab-scale in a relevant environment) and full oxy-fuel combustion (TRL 4 being the component and system validation at lab-scale in a lab environment). Our review suggests that advancing to TRL 7 (demonstration in plant environment) seems to be a challenge for the industry, representing a major step up from TRL 6. The important attributes that a cement plant must have to be "carbon-capture ready" for each capture technology selection is evaluated. Common requirements are space around the preheater and precalciner section, access to CO2 transport infrastructure, and a retrofittable preheater tower. Evidence from the electricity generation sector suggests that carbon capture readiness is not always cost-effective. The similar durations of cement-plant renovation and capture-plant construction suggests that synchronizing these two actions may save considerable time and money.

  5. Amine reclaiming technologies in post-combustion carbon dioxide capture.

    PubMed

    Wang, Tielin; Hovland, Jon; Jens, Klaus J

    2015-01-01

    Amine scrubbing is the most developed technology for carbon dioxide (CO2) capture. Degradation of amine solvents due to the presence of high levels of oxygen and other impurities in flue gas causes increasing costs and deterioration in long term performance, and therefore purification of the solvents is needed to overcome these problems. This review presents the reclaiming of amine solvents used for post combustion CO2 capture (PCC). Thermal reclaiming, ion exchange, and electrodialysis, although principally developed for sour gas sweetening, have also been tested for CO2 capture from flue gas. The three technologies all have their strengths and weaknesses, and further development is needed to reduce energy usage and costs. An expected future trend for amine reclamation is to focus on process integration of the current reclaiming technologies into the PCC process in order to drive down costs.

  6. Risk-Based Comparison of Carbon Capture Technologies

    SciTech Connect

    Engel, David W.; Dalton, Angela C.; Dale, Crystal; Jones, Edward

    2013-05-01

    In this paper, we describe an integrated probabilistic risk assessment methodological framework and a decision-support tool suite for implementing systematic comparisons of competing carbon capture technologies. Culminating from a collaborative effort among national laboratories under the Carbon Capture Simulation Initiative (CCSI), the risk assessment framework and the decision-support tool suite encapsulate three interconnected probabilistic modeling and simulation components. The technology readiness level (TRL) assessment component identifies specific scientific and engineering targets required by each readiness level and applies probabilistic estimation techniques to calculate the likelihood of graded as well as nonlinear advancement in technology maturity. The technical risk assessment component focuses on identifying and quantifying risk contributors, especially stochastic distributions for significant risk contributors, performing scenario-based risk analysis, and integrating with carbon capture process model simulations and optimization. The financial risk component estimates the long-term return on investment based on energy retail pricing, production cost, operating and power replacement cost, plan construction and retrofit expenses, and potential tax relief, expressed probabilistically as the net present value distributions over various forecast horizons.

  7. Carbon Smackdown: Carbon Capture

    SciTech Connect

    Jeffrey Long

    2010-07-12

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  8. Carbon Smackdown: Carbon Capture

    ScienceCinema

    Jeffrey Long

    2016-07-12

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  9. Advanced modeling to accelerate the scale up of carbon capture technologies

    SciTech Connect

    Miller, David C.; Sun, XIN; Storlie, Curtis B.; Bhattacharyya, Debangsu

    2015-06-01

    In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale-up new carbon capture technologies. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  10. Designing and Demonstrating a Master Student Project to Explore Carbon Dioxide Capture Technology

    ERIC Educational Resources Information Center

    Asherman, Florine; Cabot, Gilles; Crua, Cyril; Estel, Lionel; Gagnepain, Charlotte; Lecerf, Thibault; Ledoux, Alain; Leveneur, Sebastien; Lucereau, Marie; Maucorps, Sarah; Ragot, Melanie; Syrykh, Julie; Vige, Manon

    2016-01-01

    The rise in carbon dioxide (CO[subscript 2]) concentration in the Earth's atmosphere, and the associated strengthening of the greenhouse effect, requires the development of low carbon technologies. New carbon capture processes are being developed to remove CO[subscript 2] that would otherwise be emitted from industrial processes and fossil fuel…

  11. NEWS BRIEF: Keeping Cool with Carbon Capture Technologies

    SciTech Connect

    2016-08-29

    NETL scientists have created unique sorbents to capture indoor air pollutants. The sorbents are used in enVerid System’s new HLR modules. The modules can be incorporated into HVAC systems to scrub the air.

  12. AGU Embassy Lecture Event Focuses on Carbon Capture and Storage Technology

    NASA Astrophysics Data System (ADS)

    March, Gabriella

    2010-09-01

    A program entitled “Carbon Capture and Storage (CCS)—Viable technology or risky gamble?” was the inaugural event of AGU's Embassy Lecture Series and part of the European Embassy Science Series. With many countries looking into ways to reduce carbon dioxide emissions, the 9 September event at the Germany Embassy in Washington, D. C., focused on the technological and commercial feasibility of CCS. Four speakers addressed questions including whether CCS can be implemented successfully on a commercial scale and if the technology is economically feasible with or without a cap and trade system, and whether the public will support CCS. They stressed the importance of good science, proper planning, and sound monitoring to ensure that the carbon captured will be stored permanently.

  13. Using Advanced Modeling to Accelerate the Scale-Up of Carbon Capture Technologies

    SciTech Connect

    Miller, David; Sun, Xin; Storlie, Curtis; Bhattacharyya, Debangsu

    2015-06-18

    Carbon capture and storage (CCS) is one of many approaches that are critical for significantly reducing domestic and global CO2 emissions. The U.S. Department of Energy’s Clean Coal Technology Program Plan envisions 2nd generation CO2 capture technologies ready for demonstration-scale testing around 2020 with the goal of enabling commercial deployment by 2025 [1]. Third generation technologies have a similarly aggressive timeline. A major challenge is that the development and scale-up of new technologies in the energy sector historically takes up to 15 years to move from the laboratory to pre-deployment and another 20 to 30 years for widespread industrial scale deployment. In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale up new carbon capture technologies. The CCSI Toolset (1) enables promising concepts to be more quickly identified through rapid computational screening of processes and devices, (2) reduces the time to design and troubleshoot new devices and processes by using optimization techniques to focus development on the best overall process conditions and by using detailed device-scale models to better understand and improve the internal behavior of complex equipment, and (3) provides quantitative predictions of device and process performance during scale up based on rigorously validated smaller scale simulations that take into account model and parameter uncertainty[2]. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  14. Development of a Risk-Based Comparison Methodology of Carbon Capture Technologies

    SciTech Connect

    Engel, David W.; Dalton, Angela C.; Dale, Crystal; Thompson, Julie; Leclaire, Rene; Edward, Bryan; Jones, Edward

    2014-06-01

    Given the varying degrees of maturity among existing carbon capture (CC) technology alternatives, an understanding of the inherent technical and financial risk and uncertainty associated with these competing technologies is requisite to the success of carbon capture as a viable solution to the greenhouse gas emission challenge. The availability of tools and capabilities to conduct rigorous, risk–based technology comparisons is thus highly desirable for directing valuable resources toward the technology option(s) with a high return on investment, superior carbon capture performance, and minimum risk. To address this research need, we introduce a novel risk-based technology comparison method supported by an integrated multi-domain risk model set to estimate risks related to technological maturity, technical performance, and profitability. Through a comparison between solid sorbent and liquid solvent systems, we illustrate the feasibility of estimating risk and quantifying uncertainty in a single domain (modular analytical capability) as well as across multiple risk dimensions (coupled analytical capability) for comparison. This method brings technological maturity and performance to bear on profitability projections, and carries risk and uncertainty modeling across domains via inter-model sharing of parameters, distributions, and input/output. The integration of the models facilitates multidimensional technology comparisons within a common probabilistic risk analysis framework. This approach and model set can equip potential technology adopters with the necessary computational capabilities to make risk-informed decisions about CC technology investment. The method and modeling effort can also be extended to other industries where robust tools and analytical capabilities are currently lacking for evaluating nascent technologies.

  15. Carbon Capture and Storage Database (CCS) from DOE's National Energy Technology Laboratory (NETL)

    DOE Data Explorer

    NETL's Carbon Capture and Storage (CCS) Database includes active, proposed, canceled, and terminated CCS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCS technology. The database contains more than 260 CCS projects worldwide in more than 30 countries across 6 continents. Access to the database requires use of Google Earth, as the NETL CCS database is a layer in Google Earth. Or, users can download a copy of the database in MS-Excel directly from the NETL website.

  16. A Novel System for Carbon Dioxide Capture Utilizing Electrochemical Membrane Technology

    SciTech Connect

    Ghezel-Ayagh, Hossein; Jolly, Stephen; Patel, Dilip; Hunt, Jennifer; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

    2013-06-03

    FuelCell Energy, Inc. (FCE), in collaboration with Pacific Northwest National Laboratory (PNNL) and URS Corporation, is developing a novel Combined Electric Power and Carbon-Dioxide Separation (CEPACS) system, under a contract from the U.S. Department of Energy (DE-FE0007634), to efficiently and cost effectively separate carbon dioxide from the emissions of existing coal fired power plants. The CEPACS system is based on FCE’s electrochemical membrane (ECM) technology utilizing the Company’s internal reforming carbonate fuel cell products carrying the trade name of Direct FuelCell® (DFC®). The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO2 from existing fossil-fuel power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO2-separation technology by working as two devices in one: it separates the CO2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean and environmentally benign (green) electric power at high efficiency using a supplementary fuel. The overall objective of this project is to successfully demonstrate the ability of FCE’s electrochemical membrane-based CEPACS system technology to separate ≥ 90% of the CO2 from a simulated Pulverized Coal (PC) power plant flue-gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. Also, a key project objective is to show, through a Technical and Economic Feasibility Study and bench scale testing (11.7 m2 area ECM), that the electrochemical membrane-based CEPACS system is an economical alternative for CO2 capture in PC power plants, and that it meets DOE objectives for the incremental cost of electricity (COE) for post-combustion CO2 capture.

  17. Cryogenic Carbon Capture

    SciTech Connect

    2010-07-15

    IMPACCT Project: SES is developing a process to capture CO2 from the exhaust gas of coal-fired power plants by desublimation - the conversion of a gas to a solid. Capturing CO2 as a solid and delivering it as a liquid avoids the large energy cost of CO2 gas compression. SES’ capture technology facilitates the prudent use of available energy resources. Coal is our most abundant energy resource and is an excellent fuel for baseline power production. SES capture technology can capture 99% of the CO2 emissions in addition to a wide range of other pollutants more efficiently and at lower costs than existing capture technologies. SES’ capture technology can be readily added to our existing energy infrastructure.

  18. An international partnership approach to clean energy technology innovation: Carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoliang

    Is a global research partnership effective in developing, deploying, and diffusing clean energy technologies? Drawing on and extending innovation system studies, this doctoral dissertation elaborates an analytical model for a global technology learning system; examines the rationales, mechanisms, and effectiveness of the United States-- China Clean Energy Research Center Advanced Coal Technology Consortium (CERC-ACTC); and analyzes government's role in developing and implementing carbon capture and storage technologies in the United States (U.S.) and China. Studies have shown that successful technology innovation leads to economic prosperity and national competence, and prove that technology innovation does not happen in isolation but rather within interactive systems among stakeholders. However, the innovation process itself remains unclear, particularly with regard to interactive learning among and between major institutional actors, including technology developers, regulators, and financial organizations. This study seeks to advance scholarship on the interactive learning from the angle of global interactive learning. This dissertation research project seeks, as well, to inform policy-makers of how to strengthen international collaboration in clean energy technology development. The U.S.--China CERC-ACTC announced by Presidents Obama and Hu in 2009, provided a unique opportunity to close this scholarly gap. ACTC aimed to "advance the coal technology needed to safely, effectively, and efficiently utilize coal resources including the ability to capture, store, and utilize the emissions from coal use in both nations " through the joint research and development by U.S. and Chinese scientists and engineers. This dissertation project included one-year field research in the two countries, with in-depth interviews of key stakeholders, a survey of Consortium participants, analysis of available data, and site visits to collaborative research projects from 2013-2014. This

  19. Carbon Capture and Storage, 2008

    ScienceCinema

    None

    2016-07-12

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  20. Carbon Capture and Storage, 2008

    SciTech Connect

    2009-03-19

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  1. Analysis and status of post-combustion carbon dioxide capture technologies.

    PubMed

    Bhown, Abhoyjit S; Freeman, Brice C

    2011-10-15

    The Electric Power Research Institute (EPRI) undertook a multiyear effort to understand the landscape of postcombustion CO₂ capture technologies globally. In this paper we discuss several central issues facing CO₂ capture involving scale, energy, and overall status of development. We argue that the scale of CO₂ emissions is sufficiently large to place inherent limits on the types of capture processes that could be deployed broadly. We also discuss the minimum energy usage in terms of a parasitic load on a power plant. Finally, we present summary findings of the landscape of capture technologies using an index of technology readiness levels.

  2. Demonstrating carbon capture

    SciTech Connect

    Qader, A.; Hooper, B.; Stevens, G.

    2009-11-15

    Australia is at the forefront of advancing CCS technology. The CO2CRC's H3 (Post-combustion) and Mulgrave (pre-combustion) capture projects are outlined. The capture technologies for these 2 demonstration projects are described. 1 map., 2 photos.

  3. Carbon Capture and Storage

    SciTech Connect

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several

  4. Temporal and Spatial Deployment of Carbon Dioxide Capture and Storage Technologies across the Representative Concentration Pathways

    SciTech Connect

    Dooley, James J.; Calvin, Katherine V.

    2011-04-18

    The Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment (to be published in 2013-2014) will to a significant degree be built around four Representative Concentration Pathways (RCPs) that are intended to represent four scenarios of future development of greenhouse gas emissions, land use, and concentrations that span the widest range of potential future atmospheric radiative forcing. Under the very stringent climate policy implied by the 2.6 W/m2 overshoot scenario, all electricity is eventually generated from low carbon sources. However, carbon dioxide capture and storage (CCS) technologies never comprise more than 50% of total electricity generation in that very stringent scenario or in any of the other cases examined here. There are significant differences among the cases studied here in terms of how CCS technologies are used, with the most prominent being is the significant expansion of biomass+CCS as the stringency of the implied climate policy increases. Cumulative CO2 storage across the three cases that imply binding greenhouse gas constraints ranges by nearly an order of magnitude from 170GtCO2 (radiative forcing of 6.0W/m2 in 2100) to 1600GtCO2 (2.6W/m2 in 2100) over the course of this century. This potential demand for deep geologic CO2 storage is well within published estimates of total global CO2 storage capacity.

  5. Marine ecotoxicity of nitramines, transformation products of amine-based carbon capture technology.

    PubMed

    Coutris, Claire; Macken, Ailbhe L; Collins, Andrew R; El Yamani, Naouale; Brooks, Steven J

    2015-09-15

    In the context of reducing CO2 emissions to the atmosphere, chemical absorption with amines is emerging as the most advanced technology for post-combustion CO2 capture from exhaust gases of fossil fuel power plants. Despite amine solvent recycling during the capture process, degradation products are formed and released into the environment, among them aliphatic nitramines, for which the environmental impact is unknown. In this study, we determined the acute and chronic toxicity of two nitramines identified as important transformation products of amine-based carbon capture, dimethylnitramine and ethanolnitramine, using a multi-trophic suite of bioassays. The results were then used to produce the first environmental risk assessment for the marine ecosystem. In addition, the in vivo genotoxicity of nitramines was studied by adapting the comet assay to cells from experimentally exposed fish. Overall, based on the whole organism bioassays, the toxicity of both nitramines was considered to be low. The most sensitive response to both compounds was found in oysters, and dimethylnitramine was consistently more toxic than ethanolnitramine in all bioassays. The Predicted No Effect Concentrations for dimethylnitramine and ethanolnitramine were 0.08 and 0.18 mg/L, respectively. The genotoxicity assessment revealed contrasting results to the whole organism bioassays, with ethanolnitramine found to be more genotoxic than dimethylnitramine by three orders of magnitude. At the lowest ethanolnitramine concentration (1mg/L), 84% DNA damage was observed, whereas 100mg/L dimethylnitramine was required to cause 37% DNA damage. The mechanisms of genotoxicity were also shown to differ between the two compounds, with oxidation of the DNA bases responsible for over 90% of the genotoxicity of dimethylnitramine, whereas DNA strand breaks and alkali-labile sites were responsible for over 90% of the genotoxicity of ethanolnitramine. Fish exposed to >3mg/L ethanolnitramine had virtually no DNA

  6. Direct Air Capture of CO2 - an Overview of Carbon Engineering's Technology and Pilot Plant Development

    NASA Astrophysics Data System (ADS)

    Holmes, G.; Corless, A.

    2014-12-01

    At Carbon Engineering, we are developing and commercializing technology to scrub CO2 directly from atmospheric air at industrial scale. By providing atmospheric CO2 for use in fuel production, we can enable production of transportation fuels with ultra-low carbon intensities, which command price premiums in the growing set of constrained fuels markets such as California's LCFS. We are a Calgary based startup founded in 2009 with 10 employees, and we are considered a global leader in the direct air capture (DAC) field. We will review CE's DAC technology, based on a wet-scrubbing "air contactor" which absorbs CO2 into aqueous solution, and a chemical looping "regeneration" component, which liberates pure CO2 from this aqueous solution while re-making the original absorption chemical. CE's DAC tecnology exports purified atmospheric CO2, combined with the combustion CO2 from plant energy usage, as the end product. We will also discuss CE's 2014-2015 end-to-end Pilot Demonstration Unit. This is a $7M technology demonstration plant that CE is building with the help of key industrial partners and equipment vendors. Vendor design and engineering requirements have been used to specify the pilot air contactor, pellet reactor, calciner, and slaker modules, as well as auxiliary systems. These modules will be run for several months to obtain the engineering and performance data needed for subsequent commercial plant design, as well as to test the residual integration risks associated with CE's process. By the time of the AGU conference, the pilot is expected to be in late stages of fabrication or early stages of site installation.

  7. Transport Properties of Amine/Carbon Dioxide Reactive Mixtures and Implications to Carbon Capture Technologies.

    PubMed

    Turgman-Cohen, Salomon; Giannelis, Emmanuel P; Escobedo, Fernando A

    2015-08-19

    The structure and transport properties of physisorbed and chemisorbed CO2 in model polyamine liquids (hexamethylenediamine and diethylenetriamine) are studied via molecular dynamics simulations. Such systems are relevant to CO2 absorption processes where nonaqueous amines are used as absorbents (e.g., when impregnated or grafted onto mesoporous media or misted in the gas phase). It is shown that accounting for the ionic speciation resulting from CO2 chemisorption enabled us to capture the qualitative changes in extent of absorption and fluidity with time that are observed in thermogravimetric experiments. Simulations reveal that high enough concentration of reacted CO2 leads to strong intermolecular ionic interactions and the arrest of molecular translations. The transport properties obtained from the simulations of the ionic speciated mixtures are also used to construct an approximate continuum-level model for the CO2 absorption process that mimics thermogravimetric experiments.

  8. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    SciTech Connect

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

  9. Lifetime of carbon capture and storage as a climate-change mitigation technology

    PubMed Central

    Szulczewski, Michael L.; MacMinn, Christopher W.; Herzog, Howard J.; Juanes, Ruben

    2012-01-01

    In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geologic storage capacities and sustainable injection rates, which has contributed to the absence of concerted government policy. Here, we clarify the potential of CCS to mitigate emissions in the United States by developing a storage-capacity supply curve that, unlike current large-scale capacity estimates, is derived from the fluid mechanics of CO2 injection and trapping and incorporates injection-rate constraints. We show that storage supply is a dynamic quantity that grows with the duration of CCS, and we interpret the lifetime of CCS as the time for which the storage supply curve exceeds the storage demand curve from CO2 production. We show that in the United States, if CO2 production from power generation continues to rise at recent rates, then CCS can store enough CO2 to stabilize emissions at current levels for at least 100 y. This result suggests that the large-scale implementation of CCS is a geologically viable climate-change mitigation option in the United States over the next century. PMID:22431639

  10. An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009

    SciTech Connect

    Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

    2009-06-26

    Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects – Sleipner, Snøhvit, In Salah and Weyburn – are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the public’s willingness to incur costs to avoid dangerous anthropogenic interference with the Earth’s climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport

  11. Carbon Capture and Storage in the Permian Basin, a Regional Technology Transfer and Training Program

    SciTech Connect

    Rychel, Dwight

    2013-09-30

    The Permian Basin Carbon Capture, Utilization and Storage (CCUS) Training Center was one of seven regional centers formed in 2009 under the American Recovery and Reinvestment Act of 2009 and managed by the Department of Energy. Based in the Permian Basin, it is focused on the utilization of CO2 Enhanced Oil Recovery (EOR) projects for the long term storage of CO2 while producing a domestic oil and revenue stream. It delivers training to students, oil and gas professionals, regulators, environmental and academia through a robust web site, newsletter, tech alerts, webinars, self-paced online courses, one day workshops, and two day high level forums. While course material prominently features all aspects of the capture, transportation and EOR utilization of CO2, the audience focus is represented by its high level forums where selected graduate students with an interest in CCUS interact with Industry experts and in-house workshops for the regulatory community.

  12. Realistic costs of carbon capture

    SciTech Connect

    Al Juaied, Mohammed . Belfer Center for Science and International Affiaris); Whitmore, Adam )

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding

  13. Toward transformational carbon capture systems

    SciTech Connect

    Miller, David C.; Litynski, John T.; Brickett, Lynn A.; Morreale, Bryan D.

    2015-10-28

    This paper will briefly review the history and current state of Carbon Capture and Storage (CCS) research and development and describe the technical barriers to carbon capture. it will argue forcefully for a new approach to R&D, which leverages both simulation and physical systems at the laboratory and pilot scales to more rapidly move the best technoogies forward, prune less advantageous approaches, and simultaneously develop materials and processes.

  14. Natural materials for carbon capture.

    SciTech Connect

    Myshakin, Evgeniy M.; Romanov, Vyacheslav N.; Cygan, Randall Timothy

    2010-11-01

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

  15. Wyoming Carbon Capture and Storage Institute

    SciTech Connect

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  16. Carbon dioxide capture and geological storage.

    PubMed

    Holloway, Sam

    2007-04-15

    Carbon dioxide capture and geological storage is a technology that could be used to reduce carbon dioxide emissions to the atmosphere from large industrial installations such as fossil fuel-fired power stations by 80-90%. It involves the capture of carbon dioxide at a large industrial plant, its transport to a geological storage site and its long-term isolation in a geological storage reservoir. The technology has aroused considerable interest because it can help reduce emissions from fossil fuels which are likely to remain the dominant source of primary energy for decades to come. The main issues for the technology are cost and its implications for financing new or retrofitted plants, and the security of underground storage.

  17. Carbon Dioxide Capture Adsorbents: Chemistry and Methods.

    PubMed

    Patel, Hasmukh A; Byun, Jeehye; Yavuz, Cafer T

    2016-12-21

    Excess carbon dioxide (CO2 ) emissions and their inevitable consequences continue to stimulate hard debate and awareness in both academic and public spaces, despite the widespread lack of understanding on what really is needed to capture and store the unwanted CO2 . Of the entire carbon capture and storage (CCS) operation, capture is the most costly process, consisting of nearly 70 % of the price tag. In this tutorial review, CO2 capture science and technology based on adsorbents are described and evaluated in the context of chemistry and methods, after briefly introducing the current status of CO2 emissions. An effective sorbent design is suggested, whereby six checkpoints are expected to be met: cost, capacity, selectivity, stability, recyclability, and fast kinetics.

  18. Annual Report: Carbon Capture (30 September 2012)

    SciTech Connect

    Luebke, David; Morreale, Bryan; Richards, George; Syamlal, Madhava

    2014-04-16

    Capture of carbon dioxide (CO{sub 2}) is a critical component in reducing greenhouse gas emissions from fossil fuel-based processes. The Carbon Capture research to be performed is aimed at accelerating the development of efficient, cost-effective technologies which meet the post-combustion programmatic goal of capture of 90% of the CO{sub 2} produced from an existing coal-fired power plant with less than a 35% increase in the cost of electricity (COE), and the pre-combustion goal of 90% CO{sub 2} capture with less than a 10% increase in COE. The specific objective of this work is to develop innovative materials and approaches for the economic and efficient capture of CO{sub 2} from coal-based processes, and ultimately assess the performance of promising technologies at conditions representative of field application (i.e., slip stream evaluation). The Carbon Capture research includes seven core technical research areas: post-combustion solvents, sorbents, and membranes; pre-combustion solvents, sorbents, and membranes; and oxygen (O{sub 2}) production. The goal of each of these tasks is to develop advanced materials and processes that are able to reduce the energy penalty and cost of CO{sub 2} (or O{sub 2}) separation over conventional technologies. In the first year of development, materials will be examined by molecular modeling, and then synthesized and experimentally characterized at lab scale. In the second year, they will be tested further under ideal conditions. In the third year, they will be tested under realistic conditions. The most promising materials will be tested at the National Carbon Capture Center (NCCC) using actual flue or fuel gas. Systems analyses will be used to determine whether or not materials developed are likely to meet the Department of Energy (DOE) COE targets. Materials which perform well and appear likely to improve in performance will be licensed for further development outside of the National Energy Technology Laboratory (NETL

  19. Coupled Climate-Economy-Biosphere (CoCEB) model - Part 2: Deforestation control and investment in carbon capture and storage technologies

    NASA Astrophysics Data System (ADS)

    Ogutu, K. B. Z.; D'Andrea, F.; Ghil, M.; Nyandwi, C.; Manene, M. M.; Muthama, J. N.

    2015-04-01

    This study uses the global climate-economy-biosphere (CoCEB) model developed in Part 1 to investigate economic aspects of deforestation control and carbon sequestration in forests, as well as the efficiency of carbon capture and storage (CCS) technologies as policy measures for climate change mitigation. We assume - as in Part 1 - that replacement of one technology with another occurs in terms of a logistic law, so that the same law also governs the dynamics of reduction in carbon dioxide emission using CCS technologies. In order to take into account the effect of deforestation control, a slightly more complex description of the carbon cycle than in Part 1 is needed. Consequently, we add a biomass equation into the CoCEB model and analyze the ensuing feedbacks and their effects on per capita gross domestic product (GDP) growth. Integrating biomass into the CoCEB and applying deforestation control as well as CCS technologies has the following results: (i) low investment in CCS contributes to reducing industrial carbon emissions and to increasing GDP, but further investment leads to a smaller reduction in emissions, as well as in the incremental GDP growth; and (ii) enhanced deforestation control contributes to a reduction in both deforestation emissions and in atmospheric carbon dioxide concentration, thus reducing the impacts of climate change and contributing to a slight appreciation of GDP growth. This effect is however very small compared to that of low-carbon technologies or CCS. We also find that the result in (i) is very sensitive to the formulation of CCS costs, while to the contrary, the results for deforestation control are less sensitive.

  20. Encapsulated liquid sorbents for carbon dioxide capture.

    PubMed

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  1. Carbon Capture and Storage: concluding remarks.

    PubMed

    Maitland, G C

    2016-10-20

    This paper aims to pull together the main points, messages and underlying themes to emerge from the Discussion. It sets these remarks in the context of where Carbon Capture and Storage (CCS) fits into the spectrum of carbon mitigation solutions required to meet the challenging greenhouse gas (GHG) emissions reduction targets set by the COP21 climate change conference. The Discussion focused almost entirely on carbon capture (21 out of 23 papers) and covered all the main technology contenders for this except biological processes. It included (chemical) scientists and engineers in equal measure and the Discussion was enriched by the broad content and perspectives this brought. The major underlying theme to emerge was the essential need for closer integration of materials and process design - the use of isolated materials performance criteria in the absence of holistic process modelling for design and optimisation can be misleading. Indeed, combining process and materials simulation for reverse materials molecular engineering to achieve the required process performance and cost constraints is now within reach and is beginning to make a significant impact on optimising CCS and CCU (CO2 utilisation) processes in particular, as it is on materials science and engineering generally. Examples from the Discussion papers are used to illustrate this potential. The take-home messages from a range of other underpinning research themes key to CCUS are also summarised: new capture materials, materials characterisation and screening, process innovation, membranes, industrial processes, net negative emissions processes, the effect of GHG impurities, data requirements, environment sustainability and resource management, and policy. Some key points to emerge concerning carbon transport, utilisation and storage are also included, together with some overarching conclusions on how to develop more energy- and cost-effective CCS processes through improved integration of approach across the

  2. New Technical Risk Management Development for Carbon Capture Process

    SciTech Connect

    Engel, David W.; Letellier, Bruce; Edwards, Brian; Leclaire, Rene; Jones, Edward

    2012-04-30

    The basic CCSI objective of accelerating technology development and commercial deployment of carbon capture technologies through the extensive use of numerical simulation introduces a degree of unfamiliarity and novelty that potentially increases both of the traditional risk elements. In order to secure investor confidence and successfully accelerate the marketability of carbon capture technologies, it is critical that risk management decision tools be developed in parallel with numerical simulation capabilities and uncertainty quantification efforts. The focus of this paper is on the development of a technical risk model that incorporates the specific technology maturity development (level).

  3. Policy Needs for Carbon Capture & Storage

    NASA Astrophysics Data System (ADS)

    Peridas, G.

    2007-12-01

    Climate change is one of the most pressing environmental problems of our time. The widespread consensus that exists on climate science requires deep cuts in greenhouse gas emissions, on the order of 50-80% globally from current levels. Reducing energy demand, increasing energy efficiency and sourcing our energy from renewable sources will, and should, play a key role in achieving these cuts. Fossil fuels however are abundant, relatively inexpensive, and still make up the backbone of our energy system. Phasing out fossil fuel use will be a gradual process, and is likely to take far longer than the timeframe dictated by climate science for reducing emissions. A reliable way of decarbonizing the use of fossil fuels is needed. Carbon capture and storage (CCS) has already proven to be a technology that can safely and effectively accomplish this task. The technological know-how and the underground capacity exist to store billions of tons of carbon dioxide in mature oil and gas fields, and deep saline formations. Three large international commercial projects and several other applications have proved this, but substantial barriers remain to be overcome before CCS becomes the technology of choice in all major emitting sectors. Government has a significant role to play in surmounting these barriers. Without mandatory limits on greenhouse gas emissions and a price on carbon, CCS is likely to linger in the background. The expected initial carbon price levels and their potential volatility under such a scheme dictates that further policies be used in the early years in order for CCS to be implemented. Such policies could include a new source performance standard for power plants, and a low carbon generation obligation that would relieve first movers by spreading the additional cost of the technology over entire sectors. A tax credit for capturing and permanently sequestering anthropogenic CO2 would aid project economics. Assistance in the form of loan guarantees for components

  4. Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals and industrial wastes as a Novel Carbon Capture and Storage Technology

    NASA Astrophysics Data System (ADS)

    Park, A. H. A.

    2014-12-01

    Increasing concentration of CO2 in the atmosphere is attributed to rising consumption of fossil fuels around the world. The development of solutions to reduce CO2 emissions to the atmosphere is one of the most urgent needs of today's society. One of the most stable and long-term solutions for storing CO2 is via carbon mineralization, where minerals containing metal oxides of Ca or Mg are reacted with CO2 to produce thermodynamically stable Ca- and Mg-carbonates that are insoluble in water. Carbon mineralization can be carried out in-situ or ex-situ. In the case of in-situ mineralization, the degree of carbonation is thought to be limited by both mineral dissolution and carbonate precipitation reaction kinetics, and must be well understood to predict the ultimate fate of CO2 within geological reservoirs. While the kinetics of in-situ mineral trapping via carbonation is naturally slow, it can be enhanced at high temperature and high partial pressure of CO2. The addition of weak organic acids produced from food waste has also been shown to enhance mineral weathering kinetics. In the case of the ex-situ carbon mineralization, the role of these ligand-bearing organic acids can be further amplified for silicate mineral dissolution. Unfortunately, high mineral dissolution rates often lead to the formation of a silica-rich passivation layer on the surface of silicate minerals. Thus, the use of novel solvent mixture that allows chemically catalyzed removal of this passivation layer during enhanced Mg-leaching surface reaction has been proposed and demonstrated. Furthermore, an engineered biological catalyst, carbonic anhydrase, has been developed and evaluated to accelerate the hydration of CO2, which is another potentially rate-limiting step of the carbonation reaction. The development of these novel catalytic reaction schemes has significantly improved the overall efficiency and sustainability of in-situ and ex-situ mineral carbonation technologies and allowed direct

  5. Membrane-based systems for carbon capture and hydrogen purification

    SciTech Connect

    Berchtold, Kathryn A

    2010-11-24

    This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the

  6. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    SciTech Connect

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  7. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    SciTech Connect

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO₂- absorbing liquid solvent contained within solid, CO₂-permeable, polymer shells. MECS enhance the rate of CO₂ absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO₂ pressures in stripping conditions, relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.

  8. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    DOE PAGES

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO₂- absorbing liquid solvent contained within solid, CO₂-permeable, polymer shells. MECS enhance the rate of CO₂ absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO₂ pressures in stripping conditions,more » relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.« less

  9. Materials chemistry: Cooperative carbon capture

    NASA Astrophysics Data System (ADS)

    Cooper, Andrew I.

    2015-03-01

    Enzymes bind carbon dioxide from the atmosphere in a highly precise way, whereas synthetic materials just passively adsorb it. Or do they? A study of compounds called metal-organic frameworks now challenges this picture. See Article p.303

  10. Capturing Gases in Carbon Honeycomb

    NASA Astrophysics Data System (ADS)

    Krainyukova, Nina V.

    2016-12-01

    In our recent paper (Krainyukova and Zubarev in Phys Rev Lett 116:055501, 2016. doi: 10.1103/PhysRevLett.116.055501) we reported the observation of an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. A family of structures can be built from absolutely dominant {sp}2 -bonded carbon atoms, and may be considered as three-dimensional graphene. Such structures demonstrate high absorption capacity for gases and liquids. In this work we show that the formation of honeycomb structures is highly sensitive to the carbon evaporation temperature and deposition rates. Both parameters are controlled by the electric current flowing through thin carbon rods. Two distinctly different regimes were found. At lower electric currents almost pure honeycomb structures form owing to sublimation. At higher currents the surface-to-bulk rod melting is observed. In the latter case densification of the carbon structures and a large contribution of glassy graphite emerge. The experimental diffraction patterns from honeycomb structures filled with absorbed gases and analyzed by the advanced method are consistent with the proposed models for composites which are different for Ar, Kr and Xe atoms in carbon matrices.

  11. Capturing Gases in Carbon Honeycomb

    NASA Astrophysics Data System (ADS)

    Krainyukova, Nina V.

    2017-04-01

    In our recent paper (Krainyukova and Zubarev in Phys Rev Lett 116:055501, 2016. doi: 10.1103/PhysRevLett.116.055501) we reported the observation of an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. A family of structures can be built from absolutely dominant {sp}2-bonded carbon atoms, and may be considered as three-dimensional graphene. Such structures demonstrate high absorption capacity for gases and liquids. In this work we show that the formation of honeycomb structures is highly sensitive to the carbon evaporation temperature and deposition rates. Both parameters are controlled by the electric current flowing through thin carbon rods. Two distinctly different regimes were found. At lower electric currents almost pure honeycomb structures form owing to sublimation. At higher currents the surface-to-bulk rod melting is observed. In the latter case densification of the carbon structures and a large contribution of glassy graphite emerge. The experimental diffraction patterns from honeycomb structures filled with absorbed gases and analyzed by the advanced method are consistent with the proposed models for composites which are different for Ar, Kr and Xe atoms in carbon matrices.

  12. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema

    Smit, Berend

    2016-07-12

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  13. Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture

    SciTech Connect

    Zitney, S.

    2012-01-01

    Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2

  14. Capturing King Coal: deploying carbon capture and storage systems in the US at scale

    SciTech Connect

    Fernando, H.; Venezia, J.; Rigdon, C.; Verma, P.

    2008-05-15

    This paper examines the challenges in the deployment of carbon capture and storage (CCS) systems in the USA under the four broad categories of technology, policy, legal and regulatory framework, and investment, and their implications for CCS as part of the solution to mitigate adverse climate change impacts.

  15. Carbon Capture and Sequestration (CCS)

    DTIC Science & Technology

    2009-06-19

    for CCS activities, and would represent a substantial infusion of funding compared to current spending levels. It would also be a large and rapid...or feedstock value, into a synthesis gas (composed primarily of carbon monoxide and hydrogen) for direct use in the production of energy or for

  16. Subsurface capture of carbon dioxide

    SciTech Connect

    Blount, Gerald; Siddal, Alvin A.; Falta, Ronald W.

    2014-07-22

    A process and apparatus of separating CO.sub.2 gas from industrial off-gas source in which the CO.sub.2 containing off-gas is introduced deep within an injection well. The CO.sub.2 gases are dissolved in the, liquid within the injection well while non-CO.sub.2 gases, typically being insoluble in water or brine, are returned to the surface. Once the CO.sub.2 saturated liquid is present within the injection well, the injection well may be used for long-term geologic storage of CO.sub.2 or the CO.sub.2 saturated liquid can be returned to the surface for capturing a purified CO.sub.2 gas.

  17. Scope for future CO{sub 2} emission reductions from electricity generation through the deployment of carbon capture and storage technologies

    SciTech Connect

    Jon Gibbins; Stuart Haszeldine; Sam Holloway; Jonathan Pearce; John Oakey; Simon Shackley; Carol Turley

    2006-02-15

    Ongoing work on the potential for carbon dioxide capture and storage (CCS) from fossil fuel power stations in the UK suggests that this technology may be capable of supplying significant amounts of low-emission electricity within one or two decades. Renewable generation is also planned to increase over similar time scales and there is the additional possibility of nuclear replacements being built. If the political justification for significant UK CO{sub 2} emission reductions emerges from global post-Kyoto negotiations, it is therefore possible that large ({approximately}45%) reductions in CO{sub 2} emissions from UK electricity generation could be achieved by as early as 2020. Both the technical and the political aspects are, however, changing rapidly, with perhaps the conclusion of the post-Kyoto negotiations in 2007 as the first clear pointer for the future. CCS technologies also have considerable potential for future emission reductions world wide, especially in regions where large numbers of new fossil fuel power plants are being built within {approximately}500 km of sedimentary basins. 10 refs., 2 figs., 2 tabs.

  18. Broadening the Appeal of Marginal Abatement Cost Curves: Capturing Both Carbon Mitigation and Development Benefits of Clean Energy Technologies; Preprint

    SciTech Connect

    Cowlin, S.; Cochran, J.; Cox, S.; Davison, C.; van der Gaast, Y.

    2012-08-01

    Low emission development strategies (LEDS) articulate policies and implementation plans that enable countries to advance sustainable, climate-resilient development and private sector growth while significantly reducing the greenhouse gas (GHG) emissions traditionally associated with economic growth. In creating a LEDS, policy makers often have access to information on abatement potential and costs for clean energy technologies, but there is a scarcity of economy-wide approaches for evaluating and presenting information on other dimensions of importance to development, such as human welfare, poverty alleviation, and energy security. To address this shortcoming, this paper proposes a new tool for communicating development benefits to policy makers as part of a LEDS process. The purpose of this tool is two-fold: 1. Communicate development benefits associated with each clean energy-related intervention; 2. Facilitate decision-making on which combination of interventions best contributes to development goals. To pilot this tool, the authors created a visual using data on developmental impacts identified through the Technology Needs Assessment (TNA) project in Montenegro. The visual will then be revised to reflect new data established through the TNA that provides information on cost, GHG mitigation, as well as the range and magnitude of developmental impacts.

  19. Basic Research Needs for Carbon Capture: Beyond 2020

    SciTech Connect

    Alivisatos, Paul; Buchanan, Michelle

    2010-03-04

    This report is based on a SC/FE workshop on Carbon Capture: Beyond 2020, held March 4–5, 2010, to assess the basic research needed to address the current technical bottlenecks in carbon capture processes and to identify key research priority directions that will provide the foundations for future carbon capture technologies. The problem of thermodynamically efficient and scalable carbon capture stands as one of the greatest challenges for modern energy researchers. The vast majority of US and global energy use derives from fossil fuels, the combustion of which results in the emission of carbon dioxide into the atmosphere. These anthropogenic emissions are now altering the climate. Although many alternatives to combustion are being considered, the fact is that combustion will remain a principal component of the global energy system for decades to come. Today’s carbon capture technologies are expensive and cumbersome and energy intensive. If scientists could develop practical and cost-effective methods to capture carbon, those methods would at once alter the future of the largest industry in the world and provide a technical solution to one of the most vexing problems facing humanity. The carbon capture problem is a true grand challenge for today’s scientists. Postcombustion CO2 capture requires major new developments in disciplines spanning fundamental theoretical and experimental physical chemistry, materials design and synthesis, and chemical engineering. To start with, the CO2 molecule itself is thermodynamically stable and binding to it requires a distortion of the molecule away from its linear and symmetric arrangement. This binding of the gas molecule cannot be too strong, however; the sheer quantity of CO2 that must be captured ultimately dictates that the capture medium must be recycled over and over. Hence the CO2 once bound, must be released with relatively little energy input. Further, the CO2 must be rapidly and selectively pulled out of a mixture

  20. 3 CFR - A Comprehensive Federal Strategy on Carbon Capture and Storage

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... country's geologic capacity to store carbon dioxide and promoting geological storage demonstration... Comprehensive Federal Strategy on Carbon Capture and Storage Memorandum for the Secretary of State the Secretary... deployment of clean coal technologies, particularly carbon capture and storage (CCS), will help position...

  1. Designing Surface Monitoring Meshes for Geologic Carbon Capture and Storage Sites: Accurate Emissions Accounting for an Essential 2°C Mitigation Technology

    NASA Astrophysics Data System (ADS)

    Augustin, C. M.; Swart, P. K.; Broad, K.

    2014-12-01

    Geologic carbon capture and storage (CCS) is a feasible solution to the international greenhouse gas (GHG) emissions problem and it has recently been called a "vital" mitigation tool by the International Energy Agency. However, there exists uncertainty concerning the terminal fate of stored carbon dioxide (CO2.) In this regard, reliable monitoring, verification and accounting (MVA) technologies are essential for making CCS publicly acceptable. Chiefly, MVA addresses safety and environmental concerns by providing a warning system to prevent or alleviate CO2 leakages. A secondary purpose of MVA technologies is to prove compliance with CO2 reduction standards through inventory verification. A key MVA tool for tracking CO2 leakages is surface (atmospheric) monitoring. Demonstrating its value, industry actors feel an impetus to invest in surface monitoring as a low-risk, high-value technology to mitigate liability in cases of potential leakages. Despite how necessary this tool is, to date, all surface monitoring mesh designs and best practices have been proposed locally, without discussion of standardization or optimization on a regional, national or international level. We identify the fundamental problem of surface monitoring mesh design as locating the monitoring sites to record CO2 levels over the designated geographic area at lowest cost with maximum impact. We approach this problem from both an operations research (OR) perspective and atmospheric dispersion perspective. From an OR perspective, we approach mesh design using multiobjective optimization models - we specify the relative placement of candidate sites, observation time interval, and optimality criteria. In the second approach, we model CO2 leakage scenarios to test the effectiveness of proposed mesh design from the first approach. We use atmospheric dispersion modeling softwares AERMOD and SCREEN3 - both tools developed by the United States Environmental Protection Agency and codified into law - for

  2. CO2 capture in different carbon materials.

    PubMed

    Jiménez, Vicente; Ramírez-Lucas, Ana; Díaz, José Antonio; Sánchez, Paula; Romero, Amaya

    2012-07-03

    In this work, the CO(2) capture capacity of different types of carbon nanofibers (platelet, fishbone, and ribbon) and amorphous carbon have been measured at 26 °C as at different pressures. The results showed that the more graphitic carbon materials adsorbed less CO(2) than more amorphous materials. Then, the aim was to improve the CO(2) adsorption capacity of the carbon materials by increasing the porosity during the chemical activation process. After chemical activation process, the amorphous carbon and platelet CNFs increased the CO(2) adsorption capacity 1.6 times, whereas fishbone and ribbon CNFs increased their CO(2) adsorption capacity 1.1 and 8.2 times, respectively. This increase of CO(2) adsorption capacity after chemical activation was due to an increase of BET surface area and pore volume in all carbon materials. Finally, the CO(2) adsorption isotherms showed that activated amorphous carbon exhibited the best CO(2) capture capacity with 72.0 wt % of CO(2) at 26 °C and 8 bar.

  3. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  4. Measurement of carbon capture efficiency and stored carbon leakage

    DOEpatents

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  5. Electron capture in carbon dwarf supernovae

    NASA Technical Reports Server (NTRS)

    Mazurek, T. J.; Truran, J. W.; Cameron, A. G. W.

    1974-01-01

    The rates of electron capture on heavier elements under the extreme conditions predicted for dwarf star supernovae have been computed, incorporating modifications that seem to be indicated by present experimental results. An estimate of the maximum possible value of such rates is also given. The distribution of nuclei in nuclear statistical equilibrium has been calculated for the range of expected supernovae conditions, including the effects of the temperature dependence of nuclear partition functions. These nuclide abundance distributions are then used to compute nuclear equilibrium thermodynamic properties. The effects of the electron capture on such equilibrium matter are discussed. In the context of the 'carbon detonation' supernova model, the dwarf central density required to ensure core collapse to a neutron star configuration is found to be slightly higher than that obtained by Bruenn (1972) with the electron capture rates of Hansen (1966).-

  6. Magnesian calcite sorbent for carbon dioxide capture.

    PubMed

    Mabry, James C; Mondal, Kanchan

    2011-01-01

    Magnesian calcite with controlled properties was synthesized for the removal of carbon dioxide. The results from characterization, reactivity and CO2 capture capacity for different synthesis conditions are reported. The magnesian calcite samples (CaCO3:MgCO3) were synthesized by the coprecipitation of specific amounts of commercially available CaO and MgO by carbon dioxide. Characterization was done with BET, SEM/EDS, particle size analysis and XRD. The capacity was measured using TGA cycles at 800 degrees C and compared for different preparation conditions. The effects of CaO, MgO and surfactant loading on the physical properties and carbonation activity were studied to determine the optimal synthesis condition. A long-term carbonation-calcination cycling test was conducted on the optimal sample. It was observed that the sample maintained its capacity to 86% of its original uptake even after 50 cycles.

  7. Cutting the cost of carbon capture: a case for carbon capture and utilization.

    PubMed

    Joos, Lennart; Huck, Johanna M; Van Speybroeck, Veronique; Smit, Berend

    2016-10-20

    A significant part of the cost for carbon capture and storage (CCS) is related to the compression of captured CO2 to its supercritical state, at 150 bar and typically 99% purity. These stringent conditions may however not always be necessary for specific cases of carbon capture and utilization (CCU). In this manuscript, we investigate how much the parasitic energy of an adsorbent-based carbon capture process may be lowered by utilizing CO2 at 1 bar and adapting the final purity requirement for CO2 from 99% to 70% or 50%. We compare different CO2 sources: the flue gases of coal-fired or natural gas-fired power plants and ambient air. We evaluate the carbon capture performance of over 60 nanoporous materials and determine the influence of the initial and final CO2 purity on the parasitic energy of the carbon capture process. Moreover, we demonstrate the underlying principles of the parasitic energy minimization in more detail using the commercially available NaX zeolite. Finally, the calculated utilization cost of CO2 is compared with the reported prices for CO2 and published costs for CCS.

  8. Feasibility study of algae-based Carbon Dioxide capture ...

    EPA Pesticide Factsheets

    SUMMARY: The biomass of microalgae contains approximately 50% carbon, which is commonly obtained from the atmosphere, but can also be taken from commercial sources that produce CO2, such as coal-fired power plants. A study of operational demonstration projects is being undertaken to evaluate the benefits of using algae to reduce CO2 emissions from industrial and small-scale utility power boilers. The operations are being studied for the use of CO2 from flue gas for algae growth along with the production of biofuels and other useful products to prepare a comprehensive characterization of the economic feasibility of using algae to capture CO2. Information is being generated for analyses of the potential for these technologies to advance in the market and assist in meeting environmental goals, as well as to examine their associated environmental implications. Three electric power generation plants (coal and fuel oil fired) equipped to send flue-gas emissions to algae culture at demonstration facilities are being studied. Data and process information are being collected and developed to facilitate feasibility and modeling evaluations of the CO2 to algae technology. An understanding of process requirements to apply this technology to existing industries would go far in advancing carbon capture opportunities. Documenting the successful use of this technology could help bring “low-tech”, low-cost, CO2 to algae, carbon capture to multiple size industries and

  9. Carbon Farming as a Carbon Negative Technology

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Laird, D.; Hayes, D. J.

    2015-12-01

    Carbon farms have a pivotal role in national and international efforts to mitigate and adapt to climate change. A carbon farm in its broadest sense is one that reduces greenhouse gas (GHG) emissions or captures and holds carbon in vegetation and soils. Their capacity to remove carbon from the air and store it safely and permanently, while providing additional human and ecosystem benefits, means they could contribute significantly to national efforts to stabilize or reduce GHGs. We examine carbon farms in the context of corn and soybean production agriculture. We illustrate, using Iowa data but with relevance across United States corn and soybean production, the potential for carbon farms to reduce human GHG emissions and sequester carbon permanently at a rate that has meaningful impact on global greenhouse gas concentration. Carbon has been viewed as a next generation cash crop in Iowa for over a decade. The carbon farm perspective, however, goes beyond carbon as cash crop to make carbon the center of an entire farm enterprise. The transformation is possible through slight adjustment crop practices mixed with advances in technology to sequester carbon through biochar. We examine carbon balance of Iowa agriculture given only the combination of slight reduction in fertilizer and sequestration by biochar. We find the following. Iowa carbon farms could turn Iowa agriculture into a carbon sink. The estimated range of GHG reduction by statewide implementation of carbon farms is 19.46 to 90.27 MMt CO2-equivalent (CO2-e), while the current agricultural CO2-e emission estimate is 35.38 MMt CO2-e. Iowa carbon farm GHG reduction would exceed Iowa GHG reduction by wind energy (8.7 MMt CO2-e) and could exceed combined reductions from wind energy and corn grain ethanol (10.7 MMt CO2-e; 19.4 MMt CO2-e combined). In fact, Iowa carbon farms alone could exceed GHG reduction from national corn grain ethanol production (39.6 MMt CO2-e). A carbon price accessible to agricultural

  10. Progress in carbon dioxide separation and capture: a review.

    PubMed

    Yang, Hongqun; Xu, Zhenghe; Fan, Maohong; Gupta, Rajender; Slimane, Rachid B; Bland, Alan E; Wright, Ian

    2008-01-01

    This article reviews the progress made in CO2 separation and capture research and engineering. Various technologies, such as absorption, adsorption, and membrane separation, are thoroughly discussed. New concepts such as chemical-looping combustion and hydrate-based separation are also introduced briefly. Future directions are suggested. Sequestration methods, such as forestation, ocean fertilization and mineral carbonation techniques are also covered. Underground injection and direct ocean dump are not covered.

  11. Emerging Technologies - Capturing Innovation with Technology

    SciTech Connect

    2012-12-01

    ET team research results are critical to achieving 50% energy savings across U.S. buildings within the next two decades. The ET team focuses on supporting research, development, and tech-to-market opportunities of high impact technologies, or those that demonstrate potential for achieving significant energy savings cost effectively.

  12. Layered solid sorbents for carbon dioxide capture

    DOEpatents

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  13. Layered solid sorbents for carbon dioxide capture

    SciTech Connect

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2013-02-25

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  14. A hybrid absorption–adsorption method to efficiently capture carbon

    PubMed Central

    Liu, Huang; Liu, Bei; Lin, Li-Chiang; Chen, Guangjin; Wu, Yuqing; Wang, Jin; Gao, Xueteng; Lv, Yining; Pan, Yong; Zhang, Xiaoxin; Zhang, Xianren; Yang, Lanying; Sun, Changyu; Smit, Berend; Wang, Wenchuan

    2014-01-01

    Removal of carbon dioxide is an essential step in many energy-related processes. Here we report a novel slurry concept that combines specific advantages of metal-organic frameworks, ion liquids, amines and membranes by suspending zeolitic imidazolate framework-8 in glycol-2-methylimidazole solution. We show that this approach may give a more efficient technology to capture carbon dioxide compared to conventional technologies. The carbon dioxide sorption capacity of our slurry reaches 1.25 mol l−1 at 1 bar and the selectivity of carbon dioxide/hydrogen, carbon dioxide/nitrogen and carbon dioxide/methane achieves 951, 394 and 144, respectively. We demonstrate that the slurry can efficiently remove carbon dioxide from gas mixtures at normal pressure/temperature through breakthrough experiments. Most importantly, the sorption enthalpy is only −29 kJ mol−1, indicating that significantly less energy is required for sorbent regeneration. In addition, from a technological point of view, unlike solid adsorbents slurries can flow and be pumped. This allows us to use a continuous separation process with heat integration. PMID:25296559

  15. Capture of carbon dioxide by hybrid sorption

    SciTech Connect

    Srinivasachar, Srivats

    2014-09-23

    A composition, process and system for capturing carbon dioxide from a combustion gas stream. The composition has a particulate porous support medium that has a high volume of pores, an alkaline component distributed within the pores and on the surface of the support medium, and water adsorbed on the alkaline component, wherein the proportion of water in the composition is between about 5% and about 35% by weight of the composition. The process and system contemplates contacting the sorbent and the flowing gas stream together at a temperature and for a time such that some water remains adsorbed in the alkaline component when the contact of the sorbent with the flowing gas ceases.

  16. Materials design for electrocatalytic carbon capture

    NASA Astrophysics Data System (ADS)

    Tan, Xin; Tahini, Hassan A.; Smith, Sean C.

    2016-05-01

    We discuss our philosophy for implementation of the Materials Genome Initiative through an integrated materials design strategy, exemplified here in the context of electrocatalytic capture and separation of CO2 gas. We identify for a group of 1:1 X-N graphene analogue materials that electro-responsive switchable CO2 binding behavior correlates with a change in the preferred binding site from N to the adjacent X atom as negative charge is introduced into the system. A reconsideration of conductive N-doped graphene yields the discovery that the N-dopant is able to induce electrocatalytic binding of multiple CO2 molecules at the adjacent carbon sites.

  17. Development Trends in Porous Adsorbents for Carbon Capture.

    PubMed

    Sreenivasulu, Bolisetty; Sreedhar, Inkollu; Suresh, Pathi; Raghavan, Kondapuram Vijaya

    2015-11-03

    Accumulation of greenhouse gases especially CO2 in the atmosphere leading to global warming with undesirable climate changes has been a serious global concern. Major power generation in the world is from coal based power plants. Carbon capture through pre- and post- combustion technologies with various technical options like adsorption, absorption, membrane separations, and chemical looping combustion with and without oxygen uncoupling have received considerable attention of researchers, environmentalists and the stake holders. Carbon capture from flue gases can be achieved with micro and meso porous adsorbents. This review covers carbonaceous (organic and metal organic frameworks) and noncarbonaceous (inorganic) porous adsorbents for CO2 adsorption at different process conditions and pore sizes. Focus is also given to noncarbonaceous micro and meso porous adsorbents in chemical looping combustion involving insitu CO2 capture at high temperature (>400 °C). Adsorption mechanisms, material characteristics, and synthesis methods are discussed. Attention is given to isosteric heats and characterization techniques. The options to enhance the techno-economic viability of carbon capture techniques by integrating with CO2 utilization to produce industrially important chemicals like ammonia and urea are analyzed. From the reader's perspective, for different classes of materials, each section has been summarized in the form of tables or figures to get a quick glance of the developments.

  18. Designed amyloid fibers as materials for selective carbon dioxide capture.

    PubMed

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M; Eisenberg, David S

    2014-01-07

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture.

  19. Evaluation of a carbonic anhydrase mimic for industrial carbon capture.

    PubMed

    Floyd, William C; Baker, Sarah E; Valdez, Carlos A; Stolaroff, Joshuah K; Bearinger, Jane P; Satcher, Joe H; Aines, Roger D

    2013-09-03

    Zinc(II) cyclen, a small molecule mimic of the enzyme carbonic anhydrase, was evaluated under rigorous conditions resembling those in an industrial carbon capture process: high pH (>12), nearly saturated salt concentrations (45% K2CO3) and elevated temperatures (100-130 °C). We found that the catalytic activity of zinc cyclen increased with increasing temperature and pH and was retained after exposure to a 45% w/w K2CO3 solution at 130 °C for 6 days. However, high bicarbonate concentrations markedly reduced the activity of the catalyst. Our results establish a benchmark level of stability and provide qualitative insights for the design of improved small-molecule carbon capture catalysts.

  20. Modeling Carbon Dioxide Capture by Monoethanolamine Solvent with ASPEN Plus

    NASA Astrophysics Data System (ADS)

    Luo, Tianyi

    Fossil fuels provide approximately 80% of the world's energy demands. Methods for reducing CO2 emissions resulting from fossil fuels include increasing the efficiency of power plants and production processes, decreasing energy demands, in combination with CO2 capture and long term storage (CCS). CO2 capture technologies include post-combustion, pre-combustion, and oxyfuel combustion. The amine-based post-combustion CO2 capture from a coal-fired power plant was studied in this thesis. In case of post-combustion capture, CO2 can be captured by Monoethanolamine solvent (MEA), a primary ethanolamine. MEA can associate with H3O+ to form an ion MEAH+, and can react with CO2 to form a carbonate ion MEACOO-. Commercial code ASPEN Plus was used to simulate the process of CO2 capture and optimize the process parameters and required energy duty. The major part of thermal energy requirement is from the Absorber and Stripper columns. This suggests that process optimization should focus on the Absorption/Desorption process. Optimization results show that the gas-liquid reaction equilibrium is affected by several operating parameters including solvent flow rate, stream temperature, column operating pressure, flue gas composition, solvent concentration and absorber design. With optimized CO2 capture, the energy consumption for solvent regeneration (reboiler thermal duty) was decreased from 5.76 GJ/ton captured CO2 to 4.56 GJ/t CO2. On the other hand, the cost of CO2 capture (and sequestration) could be reduced by limiting size of the Absorber column and operating pressure.

  1. Annual Report: Carbon Capture Simulation Initiative (CCSI) (30 September 2012)

    SciTech Connect

    Miller, David C.; Syamlal, Madhava; Cottrell, Roger; Kress, Joel D.; Sun, Xin; Sundaresan, S.; Sahinidis, Nikolaos V.; Zitney, Stephen E.; Bhattacharyya, D.; Agarwal, Deb; Tong, Charles; Lin, Guang; Dale, Crystal; Engel, Dave; Calafiura, Paolo; Beattie, Keith; Shinn, John

    2012-09-30

    The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and academic institutions that is developing and deploying state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically validated models, with uncertainty quantification (UQ), optimization, risk analysis and decision making capabilities. The CCSI Toolset incorporates commercial and open-source software currently in use by industry and is also developing new software tools as necessary to fill technology gaps identified during execution of the project. Ultimately, the CCSI Toolset will (1) enable promising concepts to be more quickly identified through rapid computational screening of devices and processes; (2) reduce the time to design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. CCSI is organized into 8 technical elements that fall under two focus areas. The first focus area (Physicochemical Models and Data) addresses the steps necessary to model and simulate the various technologies and processes needed to bring a new Carbon Capture and Storage (CCS) technology into production. The second focus area (Analysis & Software) is developing the software infrastructure to integrate the various components and implement the tools that are needed to make quantifiable decisions regarding the viability of new CCS technologies. CCSI also has an Industry Advisory Board (IAB). By working closely with industry from the inception of the project to identify

  2. Carbon dioxide capture from atmospheric air using sodium hydroxide spray.

    PubMed

    Stolaroff, Joshuah K; Keith, David W; Lowry, Gregory V

    2008-04-15

    In contrast to conventional carbon capture systems for power plants and other large point sources, the system described in this paper captures CO2 directly from ambient air. This has the advantages that emissions from diffuse sources and past emissions may be captured. The objective of this research is to determine the feasibility of a NaOH spray-based contactor for use in an air capture system by estimating the cost and energy requirements per unit CO2 captured. A prototype system is constructed and tested to measure CO2 absorption, energy use, and evaporative water loss and compared with theoretical predictions. A numerical model of drop collision and coalescence is used to estimate operating parameters for a full-scale system, and the cost of operating the system per unit CO2 captured is estimated. The analysis indicates that CO2 capture from air for climate change mitigation is technically feasible using off-the-shelf technology. Drop coalescence significantly decreases the CO2 absorption efficiency; however, fan and pump energy requirements are manageable. Water loss is significant (20 mol H2O/mol CO2 at 15 degrees C and 65% RH) but can be lowered by appropriately designing and operating the system. The cost of CO2 capture using NaOH spray (excluding solution recovery and CO2 sequestration, which may be comparable) in the full-scale system is 96 $/ton-CO2 in the base case, and ranges from 53 to 127 $/ton-CO2 under alternate operating parameters and assumptions regarding capital costs and mass transfer rate. The low end of the cost range is reached by a spray with 50 microm mean drop diameter, which is achievable with commercially available spray nozzles.

  3. Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons.

    PubMed

    Wang, Jitong; Chen, Huichao; Zhou, Huanhuan; Liu, Xiaojun; Qiao, Wenming; Long, Donghui; Ling, Licheng

    2013-01-01

    A high efficiency sorbent for CO2 capture was developed by loading polyethylenimine (PEI) on mesoporous carbons which possessed well-developed mesoporous structures and large pore volume. The physicochemical properties of the sorbent were characterized by N2 adsorption/desorption, scanning electron microscopy (SEM), thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) techniques followed by testing for CO2 capture. Factors that affected the sorption capacity of the sorbent were studied. The sorbent exhibited extraordinary capture capacity with CO2 concentration ranging from 5% to 80%. The optimal PEI loading was determined to be 65 wt.% with a CO2 sorption capacity of 4.82 mmol-CO2/g-sorbent in 15% CO2/N2 at 75 degrees C, owing to low mass-transfer resistance and a high utilization ratio of the amine compound (63%). Moisture had a promoting effect on the sorption separation of CO2. In addition, the developed sorbent could be regenerated easily at 100 degrees C, and it exhibited excellent regenerability and stability. These results indicate that this PEI-loaded mesoporous carbon sorbent should have a good potential for CO2 capture in the future.

  4. Biochemical Capture and Removal of Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Trachtenberg, Michael C.

    1998-01-01

    We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.

  5. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.

    PubMed

    Moreira, Diana; Pires, José C M

    2016-09-01

    Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures.

  6. Yeast-based microporous carbon materials for carbon dioxide capture.

    PubMed

    Shen, Wenzhong; He, Yue; Zhang, Shouchun; Li, Junfen; Fan, Weibin

    2012-07-01

    A hierarchical microporous carbon material with a Brunauer-Emmett-Teller surface area of 1348 m(2) g(-1) and a pore volume of 0.67 cm(3) g(-1) was prepared from yeast through chemical activation with potassium hydroxide. This type of material contains large numbers of nitrogen-containing groups (nitrogen content >5.3 wt%), and, consequently, basic sites. As a result, this material shows a faster adsorption rate and a higher adsorption capacity of CO(2) than the material obtained by directly carbonizing yeast under the same conditions. The difference is more pronounced in the presence of N(2) or H(2)O, showing that chemical activation of discarded yeast with potassium hydroxide could afford high-performance microporous carbon materials for the capture of CO(2).

  7. Sustainability of energy and carbon capture and storage for Turkey

    NASA Astrophysics Data System (ADS)

    Alpsar, Cengiz

    This study, as study herein, is intended to approach a different way to provide sustainability of energy and environment by different aspects for Turkey. This study investigates the potential of renewable energy sources in Turkey for non-emissions of GHG and elaborates on a carbon capture and storage technology by creating a roadmap for Turkey. The main purpose of this study is to make a roadmap about carbon capture and storage (CCS) for Turkey to use as it proceeds. As one of the members of International Panel of Climate Change, which signed Kyoto protocol, it must adapt its acts and regulations. In addition, this study concentrates on the sustainable energy potential of Turkey, although the study investigated only the alternative energy resources suitable for Turkey: solar, wind, geothermal, bio-energy, and hydropower. There are huge numbers of potential renewable energy sources, and given Turkey's total energy demand of 106.3 million tons equivalent petroleum in 2010, only solar potential would be able to eventually supply the total demand, but energy from the wind and hydropower are sufficient to provide partial amounts. This study might help policy makers in their decisions regarding CCS technology. Currently, there are various technical and non-technical economic and social challenges that prevent CCS from become an extensively used commercial technology. This document discusses them and presents goals for each research pathway.

  8. Evaluation of Mars CO2 Capture and Gas Separation Technologies

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    Recent national policy statements have established that the ultimate destination of NASA's human exploration program is Mars. In Situ Resource Utilization (ISRU) is a key technology required to ,enable such missions and it is appropriate to review progress in this area and continue to advance the systems required to produce rocket propellant, oxygen, and other consumables on Mars using the carbon dioxide atmosphere and other potential resources. The Mars Atmospheric Capture and Gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure CO2 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as well. To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from unreacted carbon oxides (C02-CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3)/carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include' freezers, selective membranes, selective solvents, polymeric sorbents

  9. 76 FR 24007 - Notice of Intent To Prepare an Environmental Impact Statement for the Lake Charles Carbon Capture...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... demonstrate technologies for the large-scale capture of carbon dioxide from industrial sources.'' DOE... Project (Lake Charles CCS Project) would demonstrate: (1) advanced technologies that capture carbon dioxide (CO 2 ) emissions at the Lake Charles Cogeneration Gasification Project (the LCC...

  10. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions.

    PubMed

    Xiang, Shengchang; He, Yabing; Zhang, Zhangjing; Wu, Hui; Zhou, Wei; Krishna, Rajamani; Chen, Banglin

    2012-07-17

    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve such separations and to replace current technologies, which use aqueous solvents to chemically absorb carbon dioxide. Here we show that a metal-organic frameworks (UTSA-16) displays high uptake (160 cm(3) cm(-3)) of CO(2) at ambient conditions, making it a potentially useful adsorbent material for post-combustion carbon dioxide capture and biogas stream purification. This has been further confirmed by simulated breakthrough experiments. The high storage capacities and selectivities of UTSA-16 for carbon dioxide capture are attributed to the optimal pore cages and the strong binding sites to carbon dioxide, which have been demonstrated by neutron diffraction studies.

  11. Designed amyloid fibers as materials for selective carbon dioxide capture

    PubMed Central

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077

  12. 75 FR 6087 - A Comprehensive Federal Strategy on Carbon Capture and Storage

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... Documents#0;#0; ] Memorandum of February 3, 2010 A Comprehensive Federal Strategy on Carbon Capture and...'s goals of providing clean energy, supporting American jobs, and reducing emissions of carbon pollution. Rapid commercial development and deployment of clean coal technologies, particularly...

  13. Electropolymerized carbonic anhydrase immobilization for carbon dioxide capture.

    PubMed

    Merle, Geraldine; Fradette, Sylvie; Madore, Eric; Barralet, Jake E

    2014-06-17

    Biomimetic carbonation carried out with carbonic anhydrase (CA) in CO2-absorbing solutions, such as methyldiethanolamine (MDEA), is one approach that has been developed to accelerate the capture of CO2. However, there are several practical issues, such as high cost and limited enzyme stability, that need to be overcome. In this study, the capacity of CA immobilization on a porous solid support was studied to improve the instability in the tertiary amine solvent. We have shown that a 63% porosity macroporous carbon foam support makes separation and reuse facile and allows for an efficient supply and presentation of CO2 to an aqueous solvent and the enzyme catalytic center. These enzymatic supports conserved 40% of their initial activity after 42 days at 70 °C in an amine solvent, whereas the free enzyme shows no activity after 1 h in the same conditions. In this work, we have overcome the technical barrier associated with the recovery of the biocatalyst after operation, and most of all, these electropolymerized enzymatic supports have shown a remarkable increase of thermal stability in an amine-based CO2 sequestration solvent.

  14. The Effectiveness of Classroom Capture Technology

    ERIC Educational Resources Information Center

    Ford, Maire B.; Burns, Colleen E.; Mitch, Nathan; Gomez, Melissa M.

    2012-01-01

    The use of classroom capture systems (systems that capture audio and video footage of a lecture and attempt to replicate a classroom experience) is becoming increasingly popular at the university level. However, research on the effectiveness of classroom capture systems in the university classroom has been limited due to the recent development and…

  15. Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture

    SciTech Connect

    2010-07-01

    IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

  16. Carbon dioxide capture process with regenerable sorbents

    DOEpatents

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  17. Bicarbonate produced from carbon capture for algae culture.

    PubMed

    Chi, Zhanyou; O'Fallon, James V; Chen, Shulin

    2011-11-01

    Using captured CO(2) to grow microalgae is limited by the high cost of CO(2) capture and transportation, as well as significant CO(2) loss during algae culture. Moreover, algae grow poorly at night, but CO(2) cannot be temporarily stored until sunrise. To address these challenges, we discuss a process where CO(2) is captured as bicarbonate and used as feedstock for algae culture, and the carbonate regenerated by the culture process is used as an absorbent to capture more CO(2). This process would significantly reduce carbon capture costs because it does not require additional energy for carbonate regeneration. Furthermore, not only would transport of the aqueous bicarbonate solution cost less than for that of compressed CO(2), but using bicarbonate would also provide a superior alternative for CO(2) delivery to an algae culture system.

  18. Ordered nanoporous carbon for increasing CO{sub 2} capture

    SciTech Connect

    Yoo, Hye-Min; Lee, Seul-Yi; Park, Soo-Jin

    2013-01-15

    Ordered nanoporous carbons (ONCs) were prepared using a soft-templating method. The prepared ONCs materials were subjected to a controlled carbonization temperature over the temperature range, 700-1000 Degree-Sign C, to increase the specific surface area and total pore volume of ordered nanoporous carbon followed by carbonization of the phenolic resin. ONCs materials synthesized at various carbonization temperatures were used as adsorbents to improve the CO{sub 2} adsorption efficiency. The surface properties of the ONCs materials were examined by X-ray photoelectron spectroscopy. The structural properties of the ONCs materials were analyzed by X-ray diffraction. The textural properties of the ONCs materials were examined using the N{sub 2}/77 K adsorption isotherms according to the Brunauer-Emmett-Teller equation. The CO{sub 2} adsorption capacity was measured by CO{sub 2} isothermal adsorption at 298 K/30 bar and 298 K/1 bar. The carbonization temperature was found to have a major effect on the CO{sub 2} adsorption capacity, resulting from the specific surface area and total pore volumes of the ONCs materials. - Graphical abstract: This schematic diagram described synthesis of ONCs. Highlights: Black-Right-Pointing-Pointer ONCs materials can be prepared readily using the direct-triblock-copolymer-templating method. Black-Right-Pointing-Pointer The distributions show that prominent development can be observed around the micro-pore region. Black-Right-Pointing-Pointer The soft-templating method provides opportunities for controlling the pore structure of ONCs. Black-Right-Pointing-Pointer From thermal power plants for CO2 capture by adsorption technology, is a new direction.

  19. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    PubMed

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility.

  20. Computational Tools for Accelerating Carbon Capture Process Development

    SciTech Connect

    Miller, David

    2013-01-01

    The goals of the work reported are: to develop new computational tools and models to enable industry to more rapidly develop and deploy new advanced energy technologies; to demonstrate the capabilities of the CCSI Toolset on non-proprietary case studies; and to deploy the CCSI Toolset to industry. Challenges of simulating carbon capture (and other) processes include: dealing with multiple scales (particle, device, and whole process scales); integration across scales; verification, validation, and uncertainty; and decision support. The tools cover: risk analysis and decision making; validated, high-fidelity CFD; high-resolution filtered sub-models; process design and optimization tools; advanced process control and dynamics; process models; basic data sub-models; and cross-cutting integration tools.

  1. Carbon Dioxide Capture and Transportation Options in the Illinois Basin

    SciTech Connect

    M. Rostam-Abadi; S. S. Chen; Y. Lu

    2004-09-30

    This report describes carbon dioxide (CO{sub 2}) capture options from large stationary emission sources in the Illinois Basin, primarily focusing on coal-fired utility power plants. The CO{sub 2} emissions data were collected for utility power plants and industrial facilities over most of Illinois, southwestern Indiana, and western Kentucky. Coal-fired power plants are by far the largest CO{sub 2} emission sources in the Illinois Basin. The data revealed that sources within the Illinois Basin emit about 276 million tonnes of CO2 annually from 122 utility power plants and industrial facilities. Industrial facilities include 48 emission sources and contribute about 10% of total emissions. A process analysis study was conducted to review the suitability of various CO{sub 2} capture technologies for large stationary sources. The advantages and disadvantages of each class of technology were investigated. Based on these analyses, a suitable CO{sub 2} capture technology was assigned to each type of emission source in the Illinois Basin. Techno-economic studies were then conducted to evaluate the energy and economic performances of three coal-based power generation plants with CO{sub 2} capture facilities. The three plants considered were (1) pulverized coal (PC) + post combustion chemical absorption (monoethanolamine, or MEA), (2) integrated gasification combined cycle (IGCC) + pre-combustion physical absorption (Selexol), and (3) oxygen-enriched coal combustion plants. A conventional PC power plant without CO2 capture was also investigated as a baseline plant for comparison. Gross capacities of 266, 533, and 1,054 MW were investigated at each power plant. The economic study considered the burning of both Illinois No. 6 coal and Powder River Basin (PRB) coal. The cost estimation included the cost for compressing the CO{sub 2} stream to pipeline pressure. A process simulation software, CHEMCAD, was employed to perform steady-state simulations of power generation systems

  2. Post combustion carbon dioxide capture using amine functionalized carbon nanotubes: A review

    NASA Astrophysics Data System (ADS)

    Dash, Sukanta K.

    2016-04-01

    Many technological viable options available for post combustion CO2 capture (PCC) from fossil fuel based power plants, such as amine absorption, adsorption, membrane separation, cryogenic separation processes. Out of these technological pathways adsorption using carbon nanotubes (CNTs) has shown potential advantages compared to other techniques for CO2 capture from flue gas streams which is evident form published literature from various research groups. Considering the recent developments, this work presents a state-of-the-art review on CO2 capture process using CNTs, amine functionalized CNTs and membrane based CNTs. One of the major challenges in developing CNT adsorption technology lies in the choice and development of an adsorbent material that can efficiently adsorb and also easily desorb and concentrate the captured CO2 with low energy input. This review work consists of a number of interdisciplinary research activities that are focused on the feasibility of developing a small scale carbon capture and storage (CCS) based on the adsorption properties of chemically functionalized CNTs. Another recent development for CO2 separation from flue gas is the application of membrane-based CNTs. Membrane based CO2 separation invites several advantages such as no need of an additional chemical or physical solvent; low energy use; simple process, hence easy to operate. In this work analysis and literature reviews carried out in the recent development in CNTs and membrane based CNTs for CO2 adsorption and separation to update the recent progress in this area. Finally a comparison with amine absorption process and retrofitting option has been discussed with few recommendations.

  3. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas.

    PubMed

    Kim, Seung Hyo; Kim, Kwang Hee; Hong, Soon Hyeok

    2014-01-13

    A carbon capture and use (CCU) strategy was applied to organic synthesis. Carbon dioxide (CO2) captured directly from exhaust gas was used for organic transformations as efficiently as hyper-pure CO2 gas from a commercial source, even for highly air- and moisture-sensitive reactions. The CO2 capturing aqueous ethanolamine solution could be recycled continuously without any diminished reaction efficiency.

  4. Carbon-Based Adsorbents for Postcombustion CO2 Capture: A Critical Review.

    PubMed

    Creamer, Anne Elise; Gao, Bin

    2016-07-19

    The persistent increase in atmospheric CO2 from anthropogenic sources makes research directed toward carbon capture and storage imperative. Current liquid amine absorption technology has several drawbacks including hazardous byproducts and a high-energy requirement for regeneration; therefore, research is ongoing to develop more practical methods for capturing CO2 in postcombustion scenarios. The unique properties of carbon-based materials make them specifically promising for CO2 adsorption at low temperature and moderate to high partial pressure. This critical review aims to highlight the development of carbon-based solid sorbents for postcombustion CO2 capture. Specifically, it provides an overview of postcombustion CO2 capture processes with solid adsorbents and discusses a variety of carbon-based materials that could be used. This review focuses on low-cost pyrogenic carbon, activated carbon (AC), and metal-carbon composites for CO2 capture. Further, it touches upon the recent progress made to develop metal organic frameworks (MOFs) and carbon nanomaterials and their general CO2 sorption potential.

  5. Carbon Capture and Storage (CCS): Overview, Developments, and Challenges

    NASA Astrophysics Data System (ADS)

    Busch, Andreas; Amann, Alexandra; Kronimus, Alexander; Kühn, Michael

    2010-05-01

    Carbon dioxide capture and storage (CCS) is a technology that will allow the continued combustion of fossil fuels (coal, oil, gas) for e.g. power generation, transportation and industrial processes for the next decades. It therefore facilitates to bridge to a more renewable energy dominated world, enhances the stability and security of energy systems and at the same time reduces global carbon emissions as manifested by many western countries. Geological media suitable for CO2 storage are mainly saline aquifers due to the large storage volumes associated with them, but also depleted oil and gas reservoirs or deep unminable coal beds. Lately, CO2 storage into mafic- to ultramafic rocks, associated with subsequent mineral carbonation are within the R&D scope and first demonstration projects are being executed. For all these storage options various physical and chemical trapping mechanisms must reveal the necessary capacity and injectivity, and must confine the CO2 both, vertically (through an effective seal) or horizontally (through a confining geological structure). Confinement is the prime prerequisite to prevent leakage to other strata, shallow potable groundwater, soils and/or atmosphere. Underground storage of gases (e.g. CO2, H2S, CH4) in these media has been demonstrated on a commercial scale by enhanced oil recovery operations, natural gas storage and acid gas disposal. Some of the risks associated with CO2 capture and geological storage are comparable with any of these industrial activities for which extensive safety and regulatory frameworks are in place. Specific risks associated with CO2 storage relate to the operational (injection) phase and to the post-operational phase. In both phases the risks of most concern are those posed by the potential for acute or chronic CO2 leakage from the storage site. Currently there are only few operations worldwide where CO2 is injected and stored in the subsurface. Some are related to oil production enhancement but the

  6. ELEMENTAL MERCURY CAPTURE BY ACTIVATED CARBON IN A FLOW REACTOR

    EPA Science Inventory


    The paper gives results of bench-scale experiments in a flow reactor to simulate the entrained-flow capture of elemental mercury (Hgo) using solid sorbents. Adsorption of Hgo by a lignite-based activated carbon (Calgon FGD) was examined at different carbon/mercury (C/Hg) rat...

  7. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  8. Annual Report: Carbon Capture Simulation Initiative (CCSI) (30 September 2013)

    SciTech Connect

    Miller, David C.; Syamlal, Madhava; Cottrell, Roger; Kress, Joel D.; Sundaresan, S.; Sun, Xin; Storlie, C.; Bhattacharyya, D.; Tong, Charles; Zitney, Stephen E; Dale, Crystal; Engel, Dave; Agarwal, Deb; Calafiura, Paolo; Shinn, John

    2014-03-05

    The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and academic institutions that is developing and deploying state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically validated models, with uncertainty quantification (UQ), optimization, risk analysis and decision making capabilities. The CCSI Toolset incorporates commercial and open-source software currently in use by industry and is also developing new software tools as necessary to fill technology gaps identified during execution of the project. Ultimately, the CCSI Toolset will (1) enable promising concepts to be more quickly identified through rapid computational screening of devices and processes; (2) reduce the time to design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. CCSI is led by the National Energy Technology Laboratory (NETL) and leverages the Department of Energy (DOE) national laboratories’ core strengths in modeling and simulation, bringing together the best capabilities at NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL). The CCSI’s industrial partners provide representation from the power generation industry, equipment manufacturers, technology providers and engineering and construction firms. The CCSI’s academic participants (Carnegie Mellon University, Princeton University, West

  9. Early atmospheric detection of carbon dioxide from carbon capture and storage sites

    PubMed Central

    Pak, Nasrin Mostafavi; Rempillo, Ofelia; Norman, Ann-Lise; Layzell, David B.

    2016-01-01

    ABSTRACT The early atmospheric detection of carbon dioxide (CO2) leaks from carbon capture and storage (CCS) sites is important both to inform remediation efforts and to build and maintain public support for CCS in mitigating greenhouse gas emissions. A gas analysis system was developed to assess the origin of plumes of air enriched in CO2, as to whether CO2 is from a CCS site or from the oxidation of carbon compounds. The system measured CO2 and O2 concentrations for different plume samples relative to background air and calculated the gas differential concentration ratio (GDCR = −ΔO2/ΔCO2). The experimental results were in good agreement with theoretical calculations that placed GDCR values for a CO2 leak at 0.21, compared with GDCR values of 1–1.8 for the combustion of carbon compounds. Although some combustion plume samples deviated in GDCR from theoretical, the very low GDCR values associated with plumes from CO2 leaks provided confidence that this technology holds promise in providing a tool for the early detection of CO2 leaks from CCS sites.  Implications: This work contributes to the development of a cost-effective technology for the early detection of leaks from sites where CO2 has been injected into the subsurface to enhance oil recovery or to permanently store the gas as a strategy for mitigating climate change. Such technology will be important in building public confidence regarding the safety and security of carbon capture and storage sites. PMID:27111469

  10. Microencapsulation of advanced solvents for carbon capture.

    PubMed

    Stolaroff, Joshuah K; Ye, Congwang; Oakdale, James S; Baker, Sarah E; Smith, William L; Nguyen, Du T; Spadaccini, Christopher M; Aines, Roger D

    2016-10-20

    Purpose-designed, water-lean solvents have been developed to improve the energy efficiency of CO2 capture from power plants, including CO2-binding organic liquids (CO2BOLs) and ionic liquids (ILs). Many of these solvents are highly viscous or change phases, posing challenges for conventional process equipment. Such problems can be overcome by encapsulation. Micro-Encapsulated CO2 Sorbents (MECS) consist of a CO2-absorbing solvent or slurry encased in spherical, CO2-permeable polymer shells. The resulting capsules have diameters in the range of 100-600 μm, greatly increasing the surface area and CO2 absorption rate of the encapsulated solvent. Encapsulating these new solvents requires careful selection of shell materials and fabrication techniques. We find several common classes of polymers are not compatible with MECS production, but we develop two custom formulations, a silicone and an acrylate, that show promise for encapsulating water-lean solvents. We make the first demonstration of an encapsulated IL for CO2 capture. The rate of CO2 absorption is enhanced by a factor of 3.5 compared to a liquid film, a value that can be improved by further development of shell materials and fabrication techniques.

  11. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  12. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    -current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

  13. Recent Advances in Carbon Capture with Metal-Organic Frameworks.

    PubMed

    Stylianou, Kyriakos C; Queen, Wendy L

    2015-01-01

    The escalating level of CO(2) in the atmosphere is one of the most critical environmental issues of our age. The carbon capture and storage from pilot test plants represents an option for reducing CO(2) emissions, however, the energy cost associated with post-combustion carbon capture process alone is ∼30% of the total energy generated by the power plant. Thus, the generation of carbon capture adsorbents with high uptake capacities, great separation performance and low cost is of paramount importance. Metal-organic frameworks are infinite networks of metal-containing nodes bridged by organic ligands through coordination bonds into porous extended structures and several reports have revealed that they are ideal candidates for the selective capture of CO(2). In this review we summarize recent advances related to the synthesis of porous MOFs and the latest strategies to enhance the CO(2) adsorption enthalpies and capacities at low-pressures, increase hydrolytic and mechanical stabilities, and improve the ease of regeneration. Although they show great promise for post-combustion carbon capture, there are still major challenges that must be overcome before they can be used for such a large-scale application.

  14. The mechanism of selective molecular capture in carbon nanotube networks.

    PubMed

    Wan, Yu; Guan, Jun; Yang, Xudong; Zheng, Quanshui; Xu, Zhiping

    2014-07-28

    Recently, air pollution issues have drawn significant attention to the development of efficient air filters, and one of the most promising materials for this purpose is nanofibers. We explore here the mechanism of selective molecular capture of volatile organic compounds in carbon nanotube networks by performing atomistic simulations. The results are discussed with respect to the two key parameters that define the performance of nanofiltration, i.e. the capture efficiency and flow resistance, which demonstrate the advantages of carbon nanotube networks with high surface-to-volume ratio and atomistically smooth surfaces. We also reveal the important roles of interfacial adhesion and diffusion that govern selective gas transport through the network.

  15. Chromosome Conformation Capture Carbon Copy (5C) in Budding Yeast.

    PubMed

    Belton, Jon-Matthew; Dekker, Job

    2015-06-01

    Chromosome conformation capture carbon copy (5C) is a high-throughput method for detecting ligation products of interest in a chromosome conformation capture (3C) library. 5C uses ligation-mediated amplification (LMA) to generate carbon copies of 3C ligation product junctions using single-stranded oligonucleotide probes. This procedure produces a 5C library of short DNA molecules which represent the interactions between the corresponding restriction fragments. The 5C library can be amplified using universal primers containing the Illumina paired-end adaptor sequences for subsequent high-throughput sequencing.

  16. Biotechnology for the acceleration of carbon dioxide capture and sequestration.

    PubMed

    Savile, Christopher K; Lalonde, James J

    2011-12-01

    The potential for enzymatic acceleration of carbon dioxide capture from combustion products of fossil fuels has been demonstrated. Carbonic anhydrase (CA) accelerates post combustion CO(2) capture, but available CAs are woefully inadequate for the harsh conditions employed in most of these processes. In this review, we summarize recent approaches to improve CA, and processes employing this enzyme, to maximize the benefit from this extremely fast biocatalyst. Approaches to overcoming limitations include sourcing CAs from thermophilic organisms, using protein engineering to evolve thermo-tolerant enzymes, immobilizing the enzyme for stabilization and confinement to cooler regions and process modifications that minimize the (thermo-, solvent) stress on the enzyme.

  17. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Novick, Scott J; Alvizo, Oscar

    2013-10-29

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  18. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  19. LanzaTech- Capturing Carbon. Fueling Growth.

    SciTech Connect

    2014-03-07

    LanzaTech will design a gas fermentation system that will significantly improve the rate at which methane gas is delivered to a biocatalyst. Current gas fermentation processes are not cost effective compared to other gas-to-liquid technologies because they are too slow for large-scale production. If successful, LanzaTech's system will process large amounts of methane at a high rate, reducing the energy inputs and costs associated with methane conversion.

  20. LanzaTech- Capturing Carbon. Fueling Growth.

    ScienceCinema

    NONE

    2016-07-12

    LanzaTech will design a gas fermentation system that will significantly improve the rate at which methane gas is delivered to a biocatalyst. Current gas fermentation processes are not cost effective compared to other gas-to-liquid technologies because they are too slow for large-scale production. If successful, LanzaTech's system will process large amounts of methane at a high rate, reducing the energy inputs and costs associated with methane conversion.

  1. CO(2) capture from dilute gases as a component of modern global carbon management.

    PubMed

    Jones, Christopher W

    2011-01-01

    The growing atmospheric CO(2) concentration and its impact on climate have motivated widespread research and development aimed at slowing or stemming anthropogenic carbon emissions. Technologies for carbon capture and sequestration (CCS) employing mass separating agents that extract and purify CO(2) from flue gas emanating from large point sources such as fossil fuel-fired electricity-generating power plants are under development. Recent advances in solvents, adsorbents, and membranes for postcombust- ion CO(2) capture are described here. Specifically, room-temperature ionic liquids, supported amine materials, mixed matrix and facilitated transport membranes, and metal-organic framework materials are highlighted. In addition, the concept of extracting CO(2) directly from ambient air (air capture) as a means of reducing the global atmospheric CO(2) concentration is reviewed. For both conventional CCS from large point sources and air capture, critical research needs are identified and discussed.

  2. Deployment models for commercialized carbon capture and storage.

    PubMed

    Esposito, Richard A; Monroe, Larry S; Friedman, Julio S

    2011-01-01

    Even before technology matures and the regulatory framework for carbon capture and storage (CCS) has been developed, electrical utilities will need to consider the logistics of how widespread commercial-scale operations will be deployed. The framework of CCS will require utilities to adopt business models that ensure both safe and affordable CCS operations while maintaining reliable power generation. Physical models include an infrastructure with centralized CO(2) pipelines that focus geologic sequestration in pooled regional storage sites or supply CO(2) for beneficial use in enhanced oil recovery (EOR) and a dispersed plant model with sequestration operations which take place in close proximity to CO(2) capture. Several prototypical business models, including hybrids of these two poles, will be in play including a self-build option, a joint venture, and a pay at the gate model. In the self-build model operations are vertically integrated and utility owned and operated by an internal staff of engineers and geologists. A joint venture model stresses a partnership between the host site utility/owner's engineer and external operators and consultants. The pay to take model is turn-key external contracting to a third party owner/operator with cash positive fees paid out for sequestration and cash positive income for CO(2)-EOR. The selection of a business model for CCS will be based in part on the desire of utilities to be vertically integrated, source-sink economics, and demand for CO(2)-EOR. Another element in this decision will be how engaged a utility decides to be and the experience the utility has had with precommercial R&D activities. Through R&D, utilities would likely have already addressed or at least been exposed to the many technical, regulatory, and risk management issues related to successful CCS. This paper provides the framework for identifying the different physical and related prototypical business models that may play a role for electric utilities in

  3. A framework for optimization and quantification of uncertainty and sensitivity for developing carbon capture systems

    DOE PAGES

    Eslick, John C.; Ng, Brenda; Gao, Qianwen; ...

    2014-12-31

    Under the auspices of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI), a Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS) has been developed. This tool enables carbon capture systems to be rapidly synthesized and rigorously optimized, in an environment that accounts for and propagates uncertainties in parameters and models. FOQUS currently enables (1) the development of surrogate algebraic models utilizing the ALAMO algorithm, which can be used for superstructure optimization to identify optimal process configurations, (2) simulation-based optimization utilizing derivative free optimization (DFO) algorithms with detailed black-box process models, and (3) rigorous uncertainty quantification throughmore » PSUADE. FOQUS utilizes another CCSI technology, the Turbine Science Gateway, to manage the thousands of simulated runs necessary for optimization and UQ. Thus, this computational framework has been demonstrated for the design and analysis of a solid sorbent based carbon capture system.« less

  4. A framework for optimization and quantification of uncertainty and sensitivity for developing carbon capture systems

    SciTech Connect

    Eslick, John C.; Ng, Brenda; Gao, Qianwen; Tong, Charles H.; Sahinidis, Nikolaos V.; Miller, David C.

    2014-12-31

    Under the auspices of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI), a Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS) has been developed. This tool enables carbon capture systems to be rapidly synthesized and rigorously optimized, in an environment that accounts for and propagates uncertainties in parameters and models. FOQUS currently enables (1) the development of surrogate algebraic models utilizing the ALAMO algorithm, which can be used for superstructure optimization to identify optimal process configurations, (2) simulation-based optimization utilizing derivative free optimization (DFO) algorithms with detailed black-box process models, and (3) rigorous uncertainty quantification through PSUADE. FOQUS utilizes another CCSI technology, the Turbine Science Gateway, to manage the thousands of simulated runs necessary for optimization and UQ. Thus, this computational framework has been demonstrated for the design and analysis of a solid sorbent based carbon capture system.

  5. Inherent Tracers for Carbon Capture and Storage in Sedimentary Formations: Composition and Applications.

    PubMed

    Flude, Stephanie; Johnson, Gareth; Gilfillan, Stuart M V; Haszeldine, R Stuart

    2016-08-02

    Inherent tracers-the "natural" isotopic and trace gas composition of captured CO2 streams-are potentially powerful tracers for use in CCS technology. This review outlines for the first time the expected carbon isotope and noble gas compositions of captured CO2 streams from a range of feedstocks, CO2-generating processes, and carbon capture techniques. The C-isotope composition of captured CO2 will be most strongly controlled by the feedstock, but significant isotope fractionation is possible during capture; noble gas concentrations will be controlled by the capture technique employed. Comparison with likely baseline data suggests that CO2 generated from fossil fuel feedstocks will often have δ(13)C distinguishable from storage reservoir CO2. Noble gases in amine-captured CO2 streams are likely to be low concentration, with isotopic ratios dependent on the feedstock, but CO2 captured from oxyfuel plants may be strongly enriched in Kr and Xe which are potentially valuable subsurface tracers. CO2 streams derived from fossil fuels will have noble gas isotope ratios reflecting a radiogenic component that will be difficult to distinguish in the storage reservoir, but inheritance of radiogenic components will provide an easily recognizable signature in the case of any unplanned migration into shallow aquifers or to the surface.

  6. The National Carbon Capture Center at the Power Systems Development Facility

    SciTech Connect

    None, None

    2014-12-30

    The National Carbon Capture Center (NCCC) at the Power Systems Development Facility supports the Department of Energy (DOE) goal of promoting the United States’ energy security through reliable, clean, and affordable energy produced from coal. Work at the NCCC supports the development of new power technologies and the continued operation of conventional power plants under CO2 emission constraints. The NCCC includes adaptable slipstreams that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During its first contract period, from October 1, 2008, through December 30, 2014, the NCCC designed, constructed, and began operation of the Post-Combustion Carbon Capture Center (PC4). Testing of CO2 capture technologies commenced in 2011, and through the end of the contract period, more than 25,000 hours of testing had been achieved, supporting a variety of technology developers. Technologies tested included advanced solvents, enzymes, membranes, sorbents, and associated systems. The NCCC continued operation of the existing gasification facilities, which have been in operation since 1996, to support the advancement of technologies for next-generation gasification processes and pre-combustion CO2 capture. The gasification process operated for 13 test runs, supporting over 30,000 hours combined of both gasification and pre-combustion technology developer testing. Throughout the contract period, the NCCC incorporated numerous modifications to the facilities to accommodate technology developers and increase test capabilities. Preparations for further testing were ongoing to continue advancement of the most promising technologies for

  7. SF Cleantech Pitchfest: Nano Sponges for Carbon Capture

    SciTech Connect

    Urban, Jeff

    2016-06-07

    Berkeley Lab materials scientist, Jeff Urban presents his research on using metal-organic frameworks to capture carbon at Berkeley Lab's Cleantech Pitchfest on June 1, 2016. Removing excess carbon from an overheating atmosphere is an urgent and complicated problem. The answer, according to Berkeley Lab’s Jeff Urban, could lie at the nanoscale, where specially designed cage-like structures called metal organic frameworks, or MOFs, can trap large amounts of carbon in microscopically tiny structures. A Harvard PhD with expertise in thermoelectrics, gas separation and hydrogen storage, Urban directs teams at the Molecular Foundry’s Inorganic Materials Facility.

  8. SF Cleantech Pitchfest: Nano Sponges for Carbon Capture

    ScienceCinema

    Urban, Jeff

    2016-09-02

    Berkeley Lab materials scientist, Jeff Urban presents his research on using metal-organic frameworks to capture carbon at Berkeley Lab's Cleantech Pitchfest on June 1, 2016. Removing excess carbon from an overheating atmosphere is an urgent and complicated problem. The answer, according to Berkeley Lab’s Jeff Urban, could lie at the nanoscale, where specially designed cage-like structures called metal organic frameworks, or MOFs, can trap large amounts of carbon in microscopically tiny structures. A Harvard PhD with expertise in thermoelectrics, gas separation and hydrogen storage, Urban directs teams at the Molecular Foundry’s Inorganic Materials Facility.

  9. Sorbents for CO2 capture from high carbon fly ashes.

    PubMed

    Maroto-Valer, M Mercedes; Lu, Zhe; Zhang, Yinzhi; Tang, Zhong

    2008-11-01

    Fly ashes with high-unburned-carbon content, referred to as fly ash carbons, are an increasing problem for the utility industry, since they cannot be marketed as a cement extender and, therefore, have to be disposed. Previous work has explored the potential development of amine-enriched fly ash carbons for CO2 capture. However, their performance was lower than that of commercially available sorbents, probably because the samples investigated were not activated prior to impregnation and, therefore, had a very low surface area. Accordingly, the work described here focuses on the development of activated fly ash derived sorbents for CO2 capture. The samples were steam activated at 850 degrees C, resulting in a significant increase of the surface area (1075 m2/g). The activated samples were impregnated with different amine compounds, and the resultant samples were tested for CO2 capture at different temperatures. The CO2 adsorption of the parent and activated samples is typical of a physical adsorption process. The impregnation process results in a decrease of the surface areas, indicating a blocking of the porosity. The highest adsorption capacity at 30 and 70 degrees C for the amine impregnated activated carbons was probably due to a combination of physical adsorption inherent from the parent sample and chemical adsorption of the loaded amine groups. The CO2 adsorption capacities for the activated amine impregnated samples are higher than those previously published for fly ash carbons without activation (68.6 vs. 45 mg CO2/g sorbent).

  10. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

    2006-09-30

    This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

  11. Rapid setting of portland cement by greenhouse carbon dioxide capture

    SciTech Connect

    Wagh, A.S.; Singh, D.; Knox, L.J.

    1994-04-01

    Following the work by Berger et al. on rapid setting of calcium silicates by carbonation, a method of high-volume capture of CO{sub 2} in portland cement has been developed. Typically, 10--24 wt. % of CO{sub 2} produced by the calcination of calcium carbonate during clinkering, may be captured, and the set cement acquires most of its full strength in less than a day. The approach will have economic advantages in fabrication of precast structures, in emergency development of infrastructure during natural disasters, and in defense applications. Moreover, it will help the cement industry comply with the Clean Air Act of 1990 by sequestering the greenhouse carbon dioxide.

  12. Self-Assembled Enzyme Nanoparticles for Carbon Dioxide Capture.

    PubMed

    Shanbhag, Bhuvana Kamath; Liu, Boyin; Fu, Jing; Haritos, Victoria S; He, Lizhong

    2016-05-11

    Enzyme-based processes have shown promise as a sustainable alternative to amine-based processes for carbon dioxide capture. In this work, we have engineered carbonic anhydrase nanoparticles that retain 98% of hydratase activity in comparison to their free counterparts. Carbonic anhydrase was fused with a self-assembling peptide that facilitates the noncovalent assembly of the particle and together were recombinantly expressed from a single gene construct in Escherichia coli. The purified enzymes, when subjected to a reduced pH, form 50-200 nm nanoparticles. The CO2 capture capability of enzyme nanoparticles was demonstrated at ambient (22 ± 2 °C) and higher (50 °C) temperatures, under which the nanoparticles maintain their assembled state. The carrier-free enzymatic nanoparticles demonstrated here offer a new approach to stabilize and reuse enzymes in a simple and cost-effective manner.

  13. THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect

    None, None

    2011-05-11

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Two reporting period, efforts at the PSDF/NCCC focused on new technology assessment and test planning; designing and constructing post-combustion CO2 capture facilities; testing of pre-combustion CO2 capture and related processes; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

  14. The Environmental and Economic Sustainability of Carbon Capture and Storage

    PubMed Central

    Hardisty, Paul E.; Sivapalan, Mayuran; Brooks, Peter

    2011-01-01

    For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO2 abated—there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications—indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO2 entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically

  15. The environmental and economic sustainability of carbon capture and storage.

    PubMed

    Hardisty, Paul E; Sivapalan, Mayuran; Brooks, Peter

    2011-05-01

    For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO(2) abated--there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications-indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO(2) entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically

  16. The National Carbon Capture Center at the Power Systems Development Facility

    SciTech Connect

    None, None

    2014-07-14

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy (DOE) and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to promote new technologies for CO2 capture from coal-derived flue gas and syngas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived flue gas and syngas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development paths to commercialization. During the calendar year 2013 portion of the Budget Period Four reporting period, efforts at the NCCC focused on post-combustion CO2 capture, gasification, and pre-combustion CO2 capture technology testing. Preparations for future testing were on-going as well, and involved facility upgrades and collaboration with numerous technology developers. In the area of post-combustion, testing was conducted on an enzyme-based technology, advanced solvents from two major developers, and a gas separation membrane. During the year, the gasification process was operated for three test runs, supporting development of water-gas shift and COS hydrolysis catalysts, a mercury sorbent, and several gasification support technologies. Syngas produced during gasification operation was also used for pre-combustion capture technologies, including gas separation membranes from three different technology developers, a CO2 sorbent, and CO2 solvents.

  17. Moisture swing sorbent for carbon dioxide capture from ambient air.

    PubMed

    Wang, Tao; Lackner, Klaus S; Wright, Allen

    2011-08-01

    An amine-based anion exchange resin dispersed in a flat sheet of polypropylene was prepared in alkaline forms so that it would capture carbon dioxide from air. The resin, with quaternary ammonium cations attached to the polymer structure and hydroxide or carbonate groups as mobile counterions, absorbs carbon dioxide when dry and releases it when wet. In ambient air, the moist resin dries spontaneously and subsequently absorbs carbon dioxide. This constitutes a moisture induced cycle, which stands in contrast to thermal pressure swing based cycles. This paper aims to determine the isothermal performance of the sorbent during such a moisture swing. Equilibrium experiments show that the absorption and desorption process can be described well by a Langmuir isothermal model. The equilibrium partial pressure of carbon dioxide over the resin at a given loading state can be increased by 2 orders of magnitude by wetting the resin.

  18. Postcombustion Capture of CO2 with CaO in a Circulating Fluidized Bed Carbonator

    NASA Astrophysics Data System (ADS)

    Alonso, M.; Rodriguez, N.; González, B.; Grasa, G.; Murillo, R.; Abanades, J. C.

    There is an emerging postcombustion capture technology that uses CaO to capture CO2 from combustion flue gases in a circulating fluidized bed reactor. This paper summarizes recent work conducted at CSIC to understand and develop this technology. The paper includes experimental results at conditions close to those expected in the real system, carried out in continuous mode in a 30kW test facility made up of two interconnected circulating fluidized bed reactors. In one of the reactors, CO2 is captured from the gas phase by the CaO continuously circulating from a calciner. In the second reactor, the CaCO3 formed in the carbonator is regenerated to CaO and CO2 by calcination. Modeling of the system at process level, at reactor level (in particular the CFB carbonator), and at particle level (decay in capture capability of CaO) is also outlined. The work carried out so far confirms that the carbonator reactors can be designed to attain capture efficiencies between 70-90%, operating at fluid dynamic conditions close to those present in circulating fluidized bed combustors.

  19. Carbon dioxide capture using Escherichia coli expressing carbonic anhydrase in a foam bioreactor.

    PubMed

    Watson, Stuart K; Han, Zhenlin; Su, Wei Wen; Deshusses, Marc A; Kan, Eunsung

    2016-12-01

    The present study reports CO2 capture and conversion to bicarbonate using Escherichia coli expressing carbonic anhydrase (CA) on its cell surface in a novel foam bioreactor. The very large gas-liquid interfacial area in the foam bioreactor promoted rapid CO2 absorption while the CO2 in the aqueous phase was subsequently converted to bicarbonate ions by the CA. CO2 gas removal in air was investigated at various conditions such as gas velocity, cell density and CO2 inlet concentration. Regimes for kinetic and mass transfer limitations were defined. Very high removal rates of CO2 were observed: 9570 g CO2 m(-3) bioreactor h(-1) and a CO2 removal efficiency of 93% at 4% inlet CO2 when the gas retention time was 24 s, and cell concentration was 4 gdw L(-1). These performances are superior to earlier reports of experimental bioreactors using CA for CO2 capture. Overall, this bioreactor system has significant potential as an alternative CO2 capture technology.

  20. High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas

    DOE PAGES

    Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; ...

    2014-12-31

    Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commerciallymore » attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.« less

  1. High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas

    SciTech Connect

    Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; Welch, Cynthia F.; Berchtold, Kathryn A.

    2014-12-31

    Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commercially attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.

  2. Carbon fibre composite for ventilation air methane (VAM) capture.

    PubMed

    Thiruvenkatachari, Ramesh; Su, Shi; Yu, Xin Xiang

    2009-12-30

    Coal mine methane (CMM) is not only a hazardous greenhouse gas but is also a wasted energy resource, if not utilised. This paper evaluates a novel adsorbent material developed for capturing methane from ventilation air methane (VAM) gas in underground coal mines. The adsorbent material is a honeycomb monolithic carbon fibre composite (HMCFC) consisting of multiple parallel flow-through channels and the material exhibits unique features including low pressure drop, good mechanical properties, ability to handle dust-containing gas streams, good thermal and electrical conductivity and selective adsorption of gases. During this study, a series of HMCFC adsorbents (using different types of carbon fibres) were successfully fabricated. Experimental data demonstrated the proof-of-concept of using the HMCFC adsorbent to capture methane from VAM gas. The adsorption capacity of the HMCFC adsorbent was twice that of commercial activated carbon. Methane concentration of 0.56% in the inlet VAM gas stream is reduced to about 0.011% after it passes through the novel carbon fibre composite adsorbent material at ambient temperature and atmospheric pressure. This amounts to a maximum capture efficiency of 98%. These encouraging laboratory scale studies have prompted further large scale trials and economic assessment.

  3. Surface modification of activated carbons for CO 2 capture

    NASA Astrophysics Data System (ADS)

    Pevida, C.; Plaza, M. G.; Arias, B.; Fermoso, J.; Rubiera, F.; Pis, J. J.

    2008-09-01

    The reduction of anthropogenic CO 2 emissions to address the consequences of climate change is a matter of concern for all developed countries. In the short term, one of the most viable options for reducing carbon emissions is to capture and store CO 2 at large stationary sources. Adsorption with solid sorbents is one of the most promising options. In this work, two series of materials were prepared from two commercial activated carbons, C and R, by heat treatment with gaseous ammonia at temperatures in the 200-800 °C range. The aim was to improve the selectivity and capacity of the sorbents to capture CO 2, by introducing basic nitrogen-functionalities into the carbons. The sorbents were characterised in terms of texture and chemical composition. Their surface chemistry was studied through temperature-programmed desorption tests and X-ray photoelectron spectroscopy. The capture performance of the carbons was evaluated by using a thermogravimetric analyser to record mass uptakes by the samples when exposed to a CO 2 atmosphere.

  4. Performance assessment of natural gas and biogas fueled molten carbonate fuel cells in carbon capture configuration

    NASA Astrophysics Data System (ADS)

    Barelli, Linda; Bidini, Gianni; Campanari, Stefano; Discepoli, Gabriele; Spinelli, Maurizio

    2016-07-01

    The ability of MCFCs as carbon dioxide concentrator is an alternative solution among the carbon capture and storage (CCS) technologies to reduce the CO2 emission of an existing plant, providing energy instead of implying penalties. Moreover, the fuel flexibility exhibited by MCFCs increases the interest on such a solution. This paper provides the performance characterization of MCFCs operated in CCS configuration and fed with either natural gas or biogas. Experimental results are referred to a base CCS unit constituted by a MCFC stack fed from a reformer and integrated with an oxycombustor. A comparative analysis is carried out to evaluate the effect of fuel composition on energy efficiency and CO2 capture performance. A higher CO2 removal ability is revealed for the natural feeding case, bringing to a significant reduction in MCFC total area (-11.5%) and to an increase in produced net power (+13%). Moreover, the separated CO2 results in 89% (natural gas) and 86.5% (biogas) of the CO2 globally delivered by the CCS base unit. Further investigation will be carried out to provide a comprehensive assessment of the different solutions eco-efficiency considering also the biogas source and availability.

  5. Carbon Dioxide Capture Technology Act of 2009

    THOMAS, 111th Congress

    Sen. Barrasso, John [R-WY

    2009-11-05

    12/08/2009 Committee on Energy and Natural Resources Subcommittee on Energy. Hearings held. With printed Hearing: S.Hrg. 111-330. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  6. The national carbon capture center at the power systems development facility

    SciTech Connect

    None, None

    2012-09-01

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Three reporting period, efforts at the NCCC/PSDF focused on testing of pre-combustion CO2 capture and related processes; commissioning and initial testing at the post-combustion CO2 capture facilities; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

  7. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson; Santosh Gangwal; Ya Liang; Tyler Moore; Margaret Williams; Douglas P. Harrison

    2004-09-30

    Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of sodium

  8. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-11-01

    Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of sodium

  9. Water Challenges for Geologic Carbon Capture and Sequestration

    PubMed Central

    Friedmann, Samuel J.; Carroll, Susan A.

    2010-01-01

    Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utilization and the “capture penalty” for water use. At depth, brine displacement within formations, storage reservoir pressure increases resulting from injection, and leakage are potential concerns. Potential impacts range from increasing water demand for capture to contamination of groundwater through leakage or brine displacement. Understanding these potential impacts and the conditions under which they arise informs the design and implementation of appropriate monitoring and controls, important both for assurance of environmental safety and for accounting purposes. Potential benefits also exist, such as co-production and treatment of water to both offset reservoir pressure increase and to provide local water for beneficial use. PMID:20127328

  10. Automated Rendezvous and Capture in Space: A Technology Assessment

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.

    1998-01-01

    This paper presents the results of a study to assess the technology of automated rendezvous and capture (AR&C) in space. The outline of the paper is as follows: First, the history of manual and automated rendezvous and capture and rendezvous and dock is presented. Next, the need for AR&C in space is reviewed. In light of these, AR&C systems are proposed that meet NASA's future needs, but can be developed in a reasonable amount of time with a reasonable amount of money. Technology plans for developing these systems are presented; cost and schedule are included.

  11. High-Performance Sorbents for Carbon Dioxide Capture from Air

    SciTech Connect

    Sholl, David; Jones, Christopher

    2013-03-13

    material improvements that could substantially reduce these costs. The most critical conclusions from our work are that (i) CO{sub 2} capture from ambient air using moderate temperature cyclic adsorption processes is technically feasible and (ii) the operational costs of realistic versions of these processes are moderate enough to encourage future development of this technology. Because of the very modest net investment that has been made in R&D associated with this approach from all sources worldwide (relative to the massive public and private investment that has been made in technologies for CO{sub 2} from concentrated point sources), our results strongly suggest that continued development of air capture is justified.

  12. The National Carbon Capture Center at the Power Systems Development Facility: Topical Report

    SciTech Connect

    None, None

    2011-03-01

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The newly established NCCC will include multiple, adaptable test skids that will allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period One reporting period, efforts at the PSDF/NCCC focused on developing a screening process for testing consideration of new technologies; designing and constructing pre- and post-combustion CO2 capture facilities; developing sampling and analytical methods; expanding fuel flexibility of the Transport Gasification process; and operating the gasification process for technology research and for syngas generation to test syngas conditioning technologies.

  13. Carbon capture and sequestration: identifying and managing risks - article no. 1

    SciTech Connect

    Alexandra B. Klass; Elizabeth J. Wilson

    2009-07-01

    Carbon capture and geologic sequestration (CCS) technology promises to provide deep emissions cuts, particularly from coal power generation, but deploying CCS creates risks of its own. This article first considers the risks associated with CCS, which involves capturing CO{sub 2} emissions from industrial sources and power plants, transporting the CO{sub 2} by pipeline, and injecting it underground for permanent sequestration. The article then suggests ways in which these risks can be minimized and managed and considers more broadly when or if CCS should be deployed or whether its use should be limited or rejected in favor of other solutions.

  14. Examining the role of carbon capture and storage through an ethical lens.

    PubMed

    Medvecky, Fabien; Lacey, Justine; Ashworth, Peta

    2014-12-01

    The risk posed by anthropogenic climate change is generally accepted, and the challenge we face to reduce greenhouse gas (GHG) emissions to a tolerable limit cannot be underestimated. Reducing GHG emissions can be achieved either by producing less GHG to begin with or by emitting less GHG into the atmosphere. One carbon mitigation technology with large potential for capturing carbon dioxide at the point source of emissions is carbon capture and storage (CCS). However, the merits of CCS have been questioned, both on practical and ethical grounds. While the practical concerns have already received substantial attention, the ethical concerns still demand further consideration. This article aims to respond to this deficit by reviewing the critical ethical challenges raised by CCS as a possible tool in a climate mitigation strategy and argues that the urgency stemming from climate change underpins many of the concerns raised by CCS.

  15. Preliminary carbon dioxide capture technical and economic feasibility study evaluation of carbon dioxide capture from existing fired plants by hybrid sorption using solid sorbents

    SciTech Connect

    Benson, Steven; Envergex, Srivats; Browers, Bruce; Thumbi, Charles

    2013-01-01

    Barr Engineering Co. was retained by the Institute for Energy Studies (IES) at University of North Dakota (UND) to conduct a technical and economic feasibility analysis of an innovative hybrid sorbent technology (CACHYS™) for carbon dioxide (CO2) capture and separation from coal combustion–derived flue gas. The project team for this effort consists of the University of North Dakota, Envergex LLC, Barr Engineering Co., and Solex Thermal Science, along with industrial support from Allete, BNI Coal, SaskPower, and the North Dakota Lignite Energy Council. An initial economic and feasibility study of the CACHYS™ concept, including definition of the process, development of process flow diagrams (PFDs), material and energy balances, equipment selection, sizing and costing, and estimation of overall capital and operating costs, is performed by Barr with information provided by UND and Envergex. The technology—Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS™)—is a novel solid sorbent technology based on the following ideas: reduction of energy for sorbent regeneration, utilization of novel process chemistry, contactor conditions that minimize sorbent-CO2 heat of reaction and promote fast CO2 capture, and a low-cost method of heat management. The technology’s other key component is the use of a low-cost sorbent.

  16. Polyurethane Foam-Based Ultramicroporous Carbons for CO2 Capture.

    PubMed

    Ge, Chao; Song, Jian; Qin, Zhangfeng; Wang, Jianguo; Fan, Weibin

    2016-07-27

    A series of sustainable porous carbon materials were prepared from waste polyurethane foam and investigated for capture of CO2. The effects of preparation conditions, such as precarbonization, KOH to carbon precursor weight ratio, and activation temperature, on the porous structure and CO2 adsorption properties were studied for the purpose of controlling pore sizes and nitrogen content and developing high-performance materials for capture of CO2. The sample prepared at optimum conditions shows CO2 adsorption capacities of 6.67 and 4.33 mmol·g(-1) at 0 and 25 °C under 1 bar, respectively, which are comparable to those of the best reported porous carbons prepared from waste materials. The HCl treatment experiment reveals that about 80% of CO2 adsorption capacity arises from physical adsorption, while the other 20% is due to the chemical adsorption originated from the interaction of basic N groups and CO2 molecules. The relationship between CO2 uptake and pore size at different temperatures indicates that the micropores with pore size smaller than 0.86 and 0.70 nm play a dominant role in the CO2 adsorption at 0 and 25 °C, respectively. It was found that the obtained carbon materials exhibited high recyclability and high selectivity to adsorption of CO2 from the CO2 and N2 mixture.

  17. Electrocatalytically switchable CO2 capture: first principle computational exploration of carbon nanotubes with pyridinic nitrogen.

    PubMed

    Jiao, Yan; Zheng, Yao; Smith, Sean C; Du, Aijun; Zhu, Zhonghua

    2014-02-01

    The front cover artwork for issue 12/2013 is provided by the group of Prof. Zhonghua Zhu, in collaboration with Prof. Sean C. Smith of Oak Ridge National Laboratory, and Prof. Aijun Du from Queensland University of Technology. The image shows how carbon nanotubes and/or graphene with doped pyridinic nitrogen could be applied for controllable, highly selective, and reversible CO2 capture. The Full Paper itself is available at 10.1002/cssc.201300624.

  18. Carbon Dioxide Capture and Separation Techniques for Gasification-based Power Generation Point Sources

    SciTech Connect

    Pennline, H.W.; Luebke, D.R.; Jones, K.L.; Morsi, B.I.; Heintz, Y.J.; Ilconich, J.B.

    2007-06-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and reduced costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (post-combustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle or IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Pertaining to another separation technology, fabrication techniques and mechanistic studies for membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. Finally, dry, regenerable processes based on sorbents are additional techniques for CO2 capture from fuel gas. An overview of these novel techniques is presented along with a research progress status of technologies related to membranes and physical solvents.

  19. Hunt for improved carbon capture picks up speed

    SciTech Connect

    2010-01-01

    A high-throughput metal-organic framework synthesis instrument in action. Berkeley Lab chemist Jeffrey Long's lab will soon host a round-the-clock, robotically choreographed hunt for carbon-hungry materials. The Berkeley Lab chemist leads a diverse team of scientists whose goal is to quickly discover materials that can efficiently strip carbon dioxide from a power plant's exhaust, before it leaves the smokestack and contributes to climate change. They're betting on a recently discovered class of materials called metal-organic frameworks, which boast a record-shattering internal surface area. A sugar cube-sized piece, if unfolded and flattened, would more than blanket a football field. The crystalline material can also be tweaked to absorb specific molecules. More: http://newscenter.lbl.gov/feature-stories/2010/05/26/carbon-capture-search/

  20. Protolytic carbon film technology

    SciTech Connect

    Renschler, C.L.; White, C.A.

    1996-04-01

    This paper presents a technique for the deposition of polyacrylonitrile (PAN) on virtually any surface allowing carbon film formation with only the caveat that the substrate must withstand carbonization temperatures of at least 600 degrees centigrade. The influence of processing conditions upon the structure and properties of the carbonized film is discussed. Electrical conductivity, microstructure, and morphology control are also described.

  1. A Virtual Reality Dance Training System Using Motion Capture Technology

    ERIC Educational Resources Information Center

    Chan, J. C. P.; Leung, H.; Tang, J. K. T.; Komura, T.

    2011-01-01

    In this paper, a new dance training system based on the motion capture and virtual reality (VR) technologies is proposed. Our system is inspired by the traditional way to learn new movements-imitating the teacher's movements and listening to the teacher's feedback. A prototype of our proposed system is implemented, in which a student can imitate…

  2. Perspectives on Carbon Capture and Sequestration in the United States

    NASA Astrophysics Data System (ADS)

    Wong-Parodi, Gabrielle Mei-Ling

    Overall, this dissertation examines a sequence of important interconnected issues: the perspectives of potential and actual CCS host communities, the perspectives of the environmental community on the rationality of CCS as viable mitigation solution for the United States, and strategies for engaging with the public on CCS. Much of the research in this dissertation is original work addressing major interdisciplinary gaps in existing literature as well as in industry and government public engagement practice. Each of the chapters is a stand-alone paper that provides a unique contribution to a series of different types of carbon management technologies and academic disciplines. They are assembled together to provide a unique integrated evaluation of these related problems. Collectively, these chapters capture some of the major challenges facing mitigation technology engagement from the potentially time consuming need for careful social site characterization to the opportunities for using citizen-guided marketing methods to identify factors that may enhance effective public engagement. Chapters 2 and 3 are essays on the perspectives of potential and actual CCS host communities. Chapter 2 finds that host communities in California's Central Valley are more concerned with the social risks of hosting a CCS project (e.g. fear of neglect should something go wrong) rather than with the technical risks of the technology. Chapter 3 finds that host communities across the US are more concerned with social risks, and want a say in how those risks should be mitigated. This Chapter concludes with a discussion of how a 'social site characterization' conducted along side a traditional site characterization when evaluating the potential for a CCS project may be a good way to both encourage positive relationships with community members and mitigate potential concerns. Chapter 4 is an essay on the perspectives of the environmental community towards the potential of CCS as a viable

  3. Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams

    SciTech Connect

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl; Patel, Dilip; DiNitto, M.; Marina, Olga A.; Pederson, Larry R.; Steen, William A.

    2015-09-30

    To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.

  4. Process analysis of CO{sub 2} capture from flue gas using carbonation/calcination cycles

    SciTech Connect

    Li, Z.S.; Cai, N.S.; Croiset, E.

    2008-07-15

    Process analysis of CO{sub 2} capture from flue gas using Ca-based carbonation/calcination cycles is presented here. A carbonation/calcination system is composed essentially of two reactors (an absorber and a regenerator) with Ca-based sorbent circulating between the two reactors (assumed here as fluidized beds). CO{sub 2} is, therefore, transferred from the absorber to the regenerator. Because of the endothermicity of the calcination reaction, a certain amount of coal is burned with pure oxygen in the regenerator. Detailed mass balance, heat balance and cost of electricity and CO{sub 2} mitigation for the carbonation/calcination cycles with three Ca-based sorbents in dual fluidized beds were calculated and analyzed to study the effect of the Ca-based sorbent activity decay on CO{sub 2} capture from flue gas. The three sorbents considered were: limestone, dolomite and CaO/Ca{sub 12}Al{sub 14}O{sub 33} (75/25 wt %) sorbent. All results, including the amount of coal and oxygen required, are presented with respect to the difference in calcium oxide conversion between the absorber and the regenerator, which is an important design parameter. Finally, costs of electricity and CO{sub 2} mitigation costs using carbonation/calcination cycles for the three sorbents were estimated. The results indicate that the economics of the carbonation/calcination process compare favorably with competing technologies for capturing CO{sub 2}.

  5. Global warming and the future of coal carbon capture and storage

    SciTech Connect

    Ken Berlin; Robert M. Sussman

    2007-05-15

    The paper considers how best to change the economic calculus of power plant developers so they internalize CCS costs when selecting new generation technologies. Five policy tools are analyzed: establishing a greenhouse gas cap-and-trade program; imposing carbon taxes; defining CCS systems as a so-called Best Available Control Technology for new power plants under the USA Clean Air Act's New Source Review program; developing a 'low carbon portfolio' standard that requires utilities to provide an increasing proportion of power from low-carbon generation sources over time; and requiring all new coal power plants to meet an 'emission performance' standard that limits CO{sub 2} emissions to levels achievable with CCS systems. Each of these tools has advantages and drawbacks but an emission performance standard for new power plants is likely to be most effective in spurring broad-scale adoption of CCS systems. Chapter headings are: global warming and the future of coal; new coal-fired power plants threaten all other efforts to combat global warming; a potential path to zero emissions through carbon capture and storage; CO{sub 2} capture at coal plants: the promise of IGCC and other technologies; barriers to commercialization of IGCC technology; crossing the chasm: a new policy framework to push ccs implementation forward; encouraging CCS systems with carbon caps and trading programs; using the existing Clean Air Act to require CCS systems for new coal plants; retail low carbon portfolio standard; carbon tax; emission performance standards for new coal power plants; and conclusions. 16 figs.

  6. Pilot-Scale Evaluation of an Advanced Carbon Sorbent-Based Process for Post-Combustion Carbon Capture

    SciTech Connect

    Hornbostel, Marc

    2016-09-01

    The overall objective of this project is to achieve the DOE’s goal to develop advanced CO2 capture and separation technologies that can realize at least 90% CO2 removal from flue gas steams produced at a pulverized coal (PC) power plant at a cost of less than $40/tonne of CO2 captured. The principal objective is to test a CO2 capture process that will reduce the parasitic plant load by using a CO2 capture sorbent that will require a reduced amount of steam. The process is based on advanced carbon sorbents having a low heat of adsorption, high CO2 adsorption capacity, and excellent selectivity. While the intent of this project was to produce design and performance data by testing the sorbent using a slipstream of coal-derived flue gas at the National Carbon Capture Center (NCCC) under realistic conditions and continuous long-term operation, the project was terminated following completion of the detailing pilot plant design/engineering work on June 30, 2016.

  7. The National Carbon Capture Center at the Power Systems Development Facility

    SciTech Connect

    None, None

    2012-12-31

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to promote new technologies for CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During the calendar year 2012 portion of the Budget Period Four reporting period, efforts at the NCCC focused on testing of pre- and post-combustion CO2 capture processes and gasification support technologies. Preparations for future testing were on-going as well, and involved facility upgrades and collaboration with numerous technology developers. In the area of pre-combustion, testing was conducted on a new water-gas shift catalyst, a CO2 solvent, and gas separation membranes from four different technology developers, including two membrane systems incorporating major scale-ups. Post-combustion tests involved advanced solvents from three major developers, a gas separation membrane, and two different enzyme technologies. An advanced sensor for gasification operation was evaluated, operation with biomass co-feeding with coal under oxygen-blown conditions was achieved, and progress continued on refining several gasification support technologies.

  8. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; A. Frank Seibert; J. Tim Cullinane; Terraun Jones

    2003-01-01

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Progress has been made in this reporting period on three subtasks. The rigorous Electrolyte Non-Random Two-Liquid (electrolyte-NRTL) model has been regressed to represent CO{sub 2} solubility in potassium carbonate/bicarbonate solutions. An analytical method for piperazine has been developed using a gas chromatograph. Funding has been obtained and equipment has been donated to provide for modifications of the existing pilot plant system with stainless steel materials.

  9. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    SciTech Connect

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  10. Carbon-fiber technology

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.; Parker, J. A.

    1980-01-01

    The state of the art of PAN based carbon fiber manufacture and the science of fiber behavior is surveyed. A review is given of the stabilization by oxidation and the subsequent carbonization of fibers, of the apparent structure of fibers deduced from scanning electron microscopy, from X-ray scattering, and from similarities with soft carbons, and of the known relations between fiber properties and heat treatment temperature. A simplified model is invoked to explain the electrical properties of fibers and recent quantum chemical calculations on atomic clusters are used to elucidate some aspects of fiber conductivity. Some effects of intercalation and oxidative modification of finished fibers are summarized.

  11. Selective and Regenerative Carbon Dioxide Capture by Highly Polarizing Porous Carbon Nitride.

    PubMed

    Oh, Youngtak; Le, Viet-Duc; Maiti, Uday Narayan; Hwang, Jin Ok; Park, Woo Jin; Lim, Joonwon; Lee, Kyung Eun; Bae, Youn-Sang; Kim, Yong-Hyun; Kim, Sang Ouk

    2015-09-22

    Energy-efficient CO2 capture is a stringent demand for green and sustainable energy supply. Strong adsorption is desirable for high capacity and selective capture at ambient conditions but unfavorable for regeneration of adsorbents by a simple pressure control process. Here we present highly regenerative and selective CO2 capture by carbon nitride functionalized porous reduced graphene oxide aerogel surface. The resultant structure demonstrates large CO2 adsorption capacity at ambient conditions (0.43 mmol·g(-1)) and high CO2 selectivity against N2 yet retains regenerability to desorb 98% CO2 by simple pressure swing. First-principles thermodynamics calculations revealed that microporous edges of graphitic carbon nitride offer the optimal CO2 adsorption by induced dipole interaction and allows excellent CO2 selectivity as well as facile regenerability. This work identifies a customized route to reversible gas capture using metal-free, two-dimensional carbonaceous materials, which can be extended to other useful applications.

  12. Application of halloysite nanotubes for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Kim, Jinsoo; Rubino, Ilaria; Lee, Joo-Youp; Choi, Hyo-Jick

    2016-04-01

    Halloysite is a naturally occurring clay, with physical structure represented by halloysite nanotubes (HNTs). We investigated the potential applicability of HNTs for carbon dioxide (CO2) capture, using two amine-functionalized HNTs: (3-aminopropyl) triethoxysilane (APTES)-grafted HNTs and polyethylenimine (PEI)-impregnated HNTs. APTES-HNTs and PEI-HNTs resulted in 5.6 and 30 wt. % (in sorbent) in functionalization onto HNTs, respectively. Capture efficiency was higher in APTES-HNTs at lower temperatures, while it was maximum in PEI-HNTs at 70°C-75 °C. At 75 °C, adsorption/desorption tests showed that 95% of the two reactions occurred within 30 min, and exhibited 0.15 and 0.21 millimole of CO2 adsorption capacity per millimole of amine group for APTES-HNTs and PEI-HNTs, respectively. During 10 cycles of CO2 adsorption/desorption, there was no significant decrease in sorbent weight and adsorption capacity in both HNTs. These results show that inherent structural features of HNTs can be easily tailored for the development of operational condition-specific CO2 capture system.

  13. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Tyler Moore; Douglas P. Harrison

    2003-08-01

    This report describes research conducted between April 1, 2003 and June 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Grade 1 sodium bicarbonate performed similarly to grade 5 sodium bicarbonate in fixed bed testing in that activity improved after the first carbonation cycle and did not decline over the course of 5 cycles. Thermogravimetric analysis indicated that sodium bicarbonate sorbents produced by calcination of sodium bicarbonate are superior to either soda ash or calcined trona. Energy requirements for regeneration of carbon dioxide sorbents (either wet or dry) is of primary importance in establishing the economic feasibility of carbon dioxide capture processes. Recent studies of liquid amine sorption processes were reviewed and found to incorporate conflicting assumptions of energy requirements. Dry sodium based processes have the potential to be less energy intensive and thus less expensive than oxygen inhibited amine based systems. For dry supported sorbents, maximizing the active fraction of the sorbent is of primary importance in developing an economically feasible process.

  14. Metal chlorides loaded on activated carbon to capture elemental mercury.

    PubMed

    Shen, Zhemin; Ma, Jing; Mei, Zhijian; Zhang, Jianda

    2010-01-01

    Activated carbon (AC) was considered to be an effective sorbent to control mercury in combustion systems. However, its capture capacity was low and it required a high carbon-to-mercury mass ratio. AC loaded with catalyst showed a high elemental mercury (Hg0) capture capacity due to large surface area of AC and high oxidization ability of catalyst. In this study, several metal chlorides and metal oxides were used to promote the sorption capacity of AC. As a result, metal chlorides were better than metal oxides loaded on AC to remove gaseous mercury. X-ray diffractometer (XRD), thermogravimetric analyzer (TGA) and specific surface area by Brunauer-Emmett-Teller method (BET) analysis showed the main mechanisms: first, AC had an enormous surface area for loading enough MClx; second, Cl and MxOy were generated during pyrogenation of MClx; finally, there were lots of active elements such as Cl and MxOy which could react with elemental mercury and convert it to mercury oxide and mercury chloride. The HgO and HgCl2 might be released from AC's porous structure by thermo regeneration. A catalytic chemisorption mechanism predominates the sorption process of elemental mercury. As Co and Mn were valence variable metal elements, their catalytic effect on Hg0 oxidization may accelerate both oxidation and halogenation of Hg0. The sorbents loaded with metal chlorides possessed a synergistic function of catalytic effect of valence variable metal and chlorine oxidation.

  15. Microbial Electrolytic Carbon Capture for Carbon Negative and Energy Positive Wastewater Treatment.

    PubMed

    Lu, Lu; Huang, Zhe; Rau, Greg H; Ren, Zhiyong Jason

    2015-07-07

    Energy and carbon neutral wastewater management is a major goal for environmental sustainability, but current progress has only reduced emission rather than using wastewater for active CO2 capture and utilization. We present here a new microbial electrolytic carbon capture (MECC) approach to potentially transform wastewater treatment to a carbon negative and energy positive process. Wastewater was used as an electrolyte for microbially assisted electrolytic production of H2 and OH(-) at the cathode and protons at the anode. The acidity dissolved silicate and liberated metal ions that balanced OH(-), producing metal hydroxide, which transformed CO2 in situ into (bi)carbonate. Results using both artificial and industrial wastewater show 80-93% of the CO2 was recovered from both CO2 derived from organic oxidation and additional CO2 injected into the headspace, making the process carbon-negative. High rates and yields of H2 were produced with 91-95% recovery efficiency, resulting in a net energy gain of 57-62 kJ/mol-CO2 captured. The pH remained stable without buffer addition and no toxic chlorine-containing compounds were detected. The produced (bi)carbonate alkalinity is valuable for wastewater treatment and long-term carbon storage in the ocean. Preliminary evaluation shows promising economic and environmental benefits for different industries.

  16. Development of moving bed simulation model for carbon capture from fossil energy systems.

    SciTech Connect

    Kim, H.; Miller, D.

    2011-01-01

    The capture and separation of carbon dioxide (CO2) has been identified as a high-priority topic to cope with global climate change. Fossil fuels currently supply the most of the world's energy needs, and their utilization is the major source of the anthropogenic CO2 emission [1]. Particularly, the existing coal-fired power plants annually emit about 2 billion tons of CO2 which is equivalent to two-thirds of the total emissions from U.S. power sector [2]. Therefore, it is critical to develop the cost-effective technologies to mitigate this problem. There are three options for capture for capturing CO2 from fossil energy system: post-combustion capture, pre-combustion capture, and oxy-combustion. Among them, post-combustion capture has the greatest near-term potential for reducing CO2 emission, because it can be applied to the existing coal-fired power plant with relative ease through a retrofit. The current commercially available solvent-based processes have advantages of fast kinetics and strong reactions, however only at a significant cost and efficiency penalty. Recently, various solid sorbents are being explored for one of promising CO2 capture technology, which are expected to reduce energy requirement and water usage with the approaches of fluidized or moving bed. However, solids are inherently more difficult to work with than liquids and no large scale system has yet been commercialized. In this study, we developed the rigorous 1-D PDE model for moving beds in Aspen Custom Modeler; the entire system consists of adsorbers, regenerators, and auxiliary equipment. The simulation result will be expected to compare with those of other post-combustion processes. We will deal with not only advantages of lower capital costs and power requirements but also problems associated with pressure drop and heat transfer.

  17. The energy-water nexus and the role of carbon capture and sequestration.

    SciTech Connect

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Shuster, Erik; Castillo, Cesar; Kobos, Peter Holmes

    2010-10-01

    There is growing evidence of human induced climate change. Various legislation has been introduced to cap carbon emissions. Fossil powered electric generation is responsible for over 30% of the U.S. emissions. Carbon Capture and Sequestration (CCS) technology is water and energy intensive. The project's objectives are: (1) Explore water consumption implications associated with full deployment of a Carbon Capture and Storage (CCS) future; (2) Identify vulnerable areas in which water resources may be too limited to enable full deployment of CCS technology; and (3) Implement project with the cooperation of the National Energy Technology Laboratory (NETL) and DOE Office of Policy and International Affairs. Thermoelectric consumption projected to increase by 3.7 BGD due to CCS by 2035, a doubling over 2004. This increase is equivalent to projected growth in consumption by all other sectors. Demand is not equally distributed across the U.S. 18.5% of this future demand is located in watershed prone to surface and groundwater stress. 30% of current and future demand is located in watersheds prone to drought stress.

  18. Carbon dioxide capture and separation techniques for advanced power generation point sources

    SciTech Connect

    Pennline, H.W.; Luebke, D.R.; Morsi, B.I.; Heintz, Y.J.; Jones, K.L.; Ilconich, J.B.

    2006-09-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (postcombustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle – IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Fabrication techniques and mechanistic studies for hybrid membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic silanes incorporated into an alumina support or ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. An overview of two novel techniques is presented along with a research progress status of each technology.

  19. CO2 Capture from the Air: Technology Assessment and Implications for Climate Policy

    NASA Astrophysics Data System (ADS)

    Keith, D. W.

    2002-05-01

    for global climate policy are examined using DIAM [2], a stylized integrated assessment model. We find that air capture can fundamentally alter the temporal dynamics of global warming mitigation. The reason for this is that air capture differs from conventional mitigation in three key aspects. First, it removes emissions from any part of the economy with equal ease or difficulty, so its cost provides an absolute cap on the cost of mitigation. Second, it permits reduction in concentrations faster than the natural carbon cycle: the effects of irreversibility are thus partly alleviated. Third, because it is less coupled with the energy system, air capture may offer stronger economies of scale and smaller adjustment costs than the more conventional mitigation technologies. Air capture limits the total cost of a worst-case climate scenario. In an optimal sequential decision framework with uncertainty, existence of air capture decreases the need for near-term precautionary abatement. Like geoengineering, air capture thus poses a moral hazard. 1. S. Elliott, et al. Compensation of atmospheric CO2 buildup through engineered chemical sinkage. Geophys. Res. Let., 28:1235-1238, 2001. 2. Minh Ha-Duong, Michael J. Grubb, and Jean-Charles Hourcade. Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement. Nature, 390: 270-274, 1997.

  20. Flexible Electrostatic Technology for Capture and Handling Project

    NASA Technical Reports Server (NTRS)

    Keys, Andrew; Bryan, Tom; Horwitz, Chris; Rakoczy, John; Waggoner, Jason

    2015-01-01

    To NASA unfunded & planned missions: This new capability to sense proximity, flexibly align to, and attractively grip and capture practically any object in space without any pre-designed physical features or added sensors or actuators will enable or enhance many of MSFC's strategic emphasis areas in space transportation, and space systems such as: 1. A Flexible Electrostatic gripper can enable the capture, gripping and releasing of an extraterrestrial sample of different minerals or a sample canister (metallic or composite) without requiring a handle or grapple fixture.(B) 2. Flexible self-aligning in-space capture/soft docking or berthing of ISS resupply vehicles, pressurized modules, or nodes for in-space assembly and shielding, radiator, and solar Array deployment for space habitats (C) 3. The flexible electrostatic gripper when combined with a simple steerable extendible boom can grip, position, and release objects of various shapes and materials with low mass and power without any prior handles or physical accommodations or surface contamination for ISS experiment experiments and in-situ repair.(F)(G) 4. The Dexterous Docking concept previously proposed to allow simple commercial resupply ships to station-keep and capture either ISS or an Exploration vehicle for supply or fluid transfer lacked a self-sensing, compliant, soft capture gripper like FETCH that could retract and attach to a CBM. (I) 5. To enable a soft capture and de-orbit of a piece of orbital debris will require self-aligning gripping and holding an object wherever possible (thermal coverings or shields of various materials, radiators, solar arrays, antenna dishes) with little or no residual power while adding either drag or active low level thrust.(K) 6. With the scalability of the FETCH technology, small satellites can be captured and handled or can incorporate FETCH gripper to dock to and handle other small vehicles and larger objects for de-orbiting or mitigating Orbital debris (L) 7. Many of

  1. Calcium-decorated carbon nanostructures for the selective capture of carbon dioxide.

    PubMed

    Koo, Jahyun; Bae, Hyeonhu; Kang, Lei; Huang, Bing; Lee, Hoonkyung

    2016-10-26

    The development of advanced materials for CO2 capture is of great importance for mitigating climate change. In this paper, we outline our discovery that calcium-decorated carbon nanostructures, i.e., zigzag graphene nanoribbons (ZGNRs), carbyne, and graphyne, have great potential for selective CO2 capture, as demonstrated via first-principles calculations. Our findings show that Ca-decorated ZGNRs can bind up to three CO2 molecules at each Ca atom site with an adsorption energy of ∼-0.8 eV per CO2, making them suitable for reversible CO2 capture. They adsorb CO2 molecules preferentially, compared with other gas molecules such as H2, N2, and CH4. Moreover, based on equilibrium thermodynamical simulations, we confirm that Ca-decorated ZGNRs can capture CO2 selectively from a gas mixture with a capacity of ∼4.5 mmol g(-1) under ambient conditions. Similar results have been found in other carbon nanomaterials, indicating the generality of carbon based nanostructures for selective CO2 capture under ambient conditions.

  2. Performance Criteria for Capture and/or Immobilization Technologies

    SciTech Connect

    Jubin, R. T.; Bruffey, S. H.; Strachan, D. M.; Soelberg, N. R.; Spencer, B. B.; Riley, B. J.

    2016-02-01

    The capture and subsequent immobilization of the four volatile radionuclides (3H, 14C, 85Kr, and 129I) from the off-gas streams of a used nuclear fuel reprocessing facility has been a topic of substantial research interest for the US DOE and international colleagues. Regulations set forth by the US EPA direct that some or all of these radionuclides (based upon fuel burnup, fuel type, cooling time, etc.) will require removal, to some extent, from the plant effluent streams prior to discharge to the environment. Upon removal, the radionuclide, as well as any associated sorbent, is destined for waste. Research of separation and capture methodologies has included a wide range of technologies including liquid caustic scrubbing systems, solid adsorbents, and cryogenic distillation. The studies of waste forms have been correspondingly diverse. In considering the technologies available for future development and implementation of both sorbents and waste forms, it will be necessary to use benchmarked measures of performance to objectively evaluate each sorbent system or waste form. This document is intended to provide initial guidance on the types of performance criteria for capture materials and waste forms intended for use in the recycling removal and disposal of UNF and, where possible, the minimum acceptable values for those criteria.

  3. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marcus Hilliard; Amorvadee Veawab

    2006-07-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The pilot plant data have been reconciled using 17% inlet CO{sub 2}. A rate-based model demonstrates that the stripper is primarily controlled by liquid film mast transfer resistance, with kinetics at vacuum and diffusion of reactants and products at normal pressure. An additional major unknown ion, probably glyoxylate, has been observed in MEA degradation. Precipitation of gypsum may be a feasible approach to removing sulphate from amine solutions and providing for simultaneous removal of CO{sub 2} and SO{sub 2}. Corrosion of carbon steel in uninhibited MEA solution is increased by increased amine concentration, by addition of piperazine, and by greater CO{sub 2} loading.

  4. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marcus Hilliard; Amornvadee Veawab

    2006-09-30

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Ethylenediamine was detected in a degraded solution of MEA/PZ solution, suggesting that piperazine is subject to oxidation. Stripper modeling has demonstrated that vacuum strippers will be more energy efficient if constructed short and fat rather than tall and skinny. The matrix stripper has been identified as a configuration that will significantly reduce energy use. Extensive measurements of CO{sub 2} solubility in 7 m MEA at 40 and 60 C have confirmed the work by Jou and Mather. Corrosion of carbon steel without inhibitors increases from 19 to 181 mpy in lean solutions of 6.2 m MEA/PZ as piperazine increases from 0 to 3.1 m.

  5. CO{sub 2} CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; J.Tim Cullinane; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas

    2005-01-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Thermodynamic modeling predicts that the heat of desorption of CO{sub 2} from 5m K+/2.5 PZ from 85 kJ/mole at 40 C to 30 kJ/mole at 120 C. Mass transfer modeling of this solvent suggests that carbonate and general salt concentration play a major role in catalyzing the rate of reaction of CO{sub 2} with piperazine. Stripper modeling suggests that with the multipressure stripper, the energy consumption with a generic solvent decreases by 15% as the heat of desorption is decreased from 23.8 to 18.5 kcal/gmol. A second pilot plant campaign with 5m K+/2.5 PZ was successfully completed.

  6. Post-combustion carbon dioxide capture cost reduction to 2030 and beyond.

    PubMed

    Adderley, B; Carey, J; Gibbins, J; Lucquiaud, M; Smith, R

    2016-10-20

    Post-combustion CO2 capture (PCC) can be achieved using a variety of technologies. Importantly it is applicable to a wide range of processes and may also be retrofitted in certain cases. This paper covers the use of PCC for low carbon power generation from new natural gas combined cycle (NGCC) plants that are expected to be built in the UK in the 2020s and 2030s and that will run into the 2050s. Costs appear potentially comparable with other low carbon and controllable generation sources such as nuclear or renewables plus storage, especially with the lower gas prices that can be expected in a carbon-constrained world. Non-fuel cost reduction is still, however, desirable and, since CO2 capture is a new application, significant potential is likely to exist. For the NGCC+PCC examples shown in this paper, moving from 'first of a kind' (FOAK) to 'nth of a kind' (NOAK) gives significant improvements through both reduced financing costs and capital cost reductions. To achieve this the main emphasis needs to be on 'commercial readiness', rather than on system-level 'technical readiness', and on improvements through innovation activities, supported by underpinning research, that develop novel sub-processes; this will also maintain NOAK status for cost-effective financing. Feasible reductions in the energy penalty for PCC capture have much less impact, reflecting the inherently high levels of efficiency for modern NGCC+PCC plants.

  7. Real-time monitoring of emissions from monoethanolamine-based industrial scale carbon capture facilities.

    PubMed

    Zhu, Liang; Schade, Gunnar Wolfgang; Nielsen, Claus Jørgen

    2013-12-17

    We demonstrate the capabilities and properties of using Proton Transfer Reaction time-of-flight mass spectrometry (PTR-ToF-MS) to real-time monitor gaseous emissions from industrial scale amine-based carbon capture processes. The benchmark monoethanolamine (MEA) was used as an example of amines needing to be monitored from carbon capture facilities, and to describe how the measurements may be influenced by potentially interfering species in CO2 absorber stack discharges. On the basis of known or expected emission compositions, we investigated the PTR-ToF-MS MEA response as a function of sample flow humidity, ammonia, and CO2 abundances, and show that all can exhibit interferences, thus making accurate amine measurements difficult. This warrants a proper sample pretreatment, and we show an example using a dilution with bottled zero air of 1:20 to 1:10 to monitor stack gas concentrations at the CO2 Technology Center Mongstad (TCM), Norway. Observed emissions included many expected chemical species, dominantly ammonia and acetaldehyde, but also two new species previously not reported but emitted in significant quantities. With respect to concerns regarding amine emissions, we show that accurate amine quantifications in the presence of water vapor, ammonia, and CO2 become feasible after proper sample dilution, thus making PTR-ToF-MS a viable technique to monitor future carbon capture facility emissions, without conventional laborious sample pretreatment.

  8. An Estimate of the Cost of Electricity from Light Water Reactors and Fossil Plants with Carbon Capture and Sequestration

    SciTech Connect

    Simon, A J

    2009-08-21

    As envisioned in this report, LIFE technology lends itself to large, centralized, baseload (or 'always on') electrical generation. Should LIFE plants be built, they will have to compete in the electricity market with other generation technologies. We consider the economics of technologies with similar operating characteristics: significant economies of scale, limited capacity for turndown, zero dependence on intermittent resources and ability to meet environmental constraints. The five generation technologies examined here are: (1) Light Water Reactors (LWR); (2) Coal; (3) Coal with Carbon Capture and Sequestration (CCS); (4) Natural Gas; and (5) Natural Gas with Carbon Capture and Sequestration. We use MIT's cost estimation methodology (Du and Parsons, 2009) to determine the cost of electricity at which each of these technologies is viable.

  9. Carbon dioxide capture capacity of sodium hydroxide aqueous solution.

    PubMed

    Yoo, Miran; Han, Sang-Jun; Wee, Jung-Ho

    2013-01-15

    The present paper investigates the various features of NaOH aqueous solution when applied as an absorbent to capture carbon dioxide (CO(2)) emitted with relatively high concentration in the flue gas. The overall CO(2) absorption reaction was carried out according to consecutive reaction steps that are generated in the order of Na(2)CO(3) and NaHCO(3). The reaction rate and capture efficiency were strongly dependent on the NaOH concentration in the Na(2)CO(3) production range, but were constant in the NaHCO(3) production step, irrespective of the NaOH concentration. The amount of CO(2) absorbed in the solution was slightly less than the theoretical value, which was ascribed to the low trona production during the reaction and the consequent decrease in CO(2) absorption in the NaOH solution. The mass ratio of absorbed CO(2) that participated in the Na(2)CO(3), NaHCO(3), and trona production reactions was calculated to be 20:17:1, respectively.

  10. Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis.

    PubMed

    Wang, Tao; Lackner, Klaus S; Wright, Allen B

    2013-01-14

    An ideal chemical sorbent for carbon dioxide capture from ambient air (air capture) must have a number of favourable properties, such as environmentally benign behaviour, a high affinity for CO(2) at very low concentration (400 ppm), and a low energy cost for regeneration. The last two properties seem contradictory, especially for sorbents employing thermal swing adsorption. On the other hand, thermodynamic analysis shows that the energy cost of an air capture device need only be slightly larger than that of a flue gas scrubber. The moisture swing separation process studied in this paper provides a novel approach to low cost CO(2) capture from air. The anionic exchange resin sorbent binds CO(2) when dry and releases it when wet. A thermodynamic model with coupled phase and chemical equilibria is developed to study the complex H(2)O-CO(2)-resin system. The moisture swing behaviour is compatible with hydration energies changing with the activity of water on the resin surfaces. This activity is in turn set by the humidity. The rearrangement of hydration water on the resin upon the sorption of a CO(2) molecule is predicted as a function of the humidity and temperature. Using water as fuel to drive the moisture swing enables an economical, large-scale implementation of air capture. By generating CO(2) with low partial pressures, the present technology has implications for in situ CO(2) utilizations which require low pressure CO(2) gas rather than liquid CO(2).

  11. Advanced CO{sub 2} Capture Technology for Low Rank Coal IGCC System

    SciTech Connect

    Alptekin, Gokhan

    2013-09-30

    The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in bituminous coal the net plant efficiency is about 2.4 percentage points higher than an Integrated Gasification Combined Cycle (IGCC) plant equipped with SelexolTM to capture CO{sub 2}. We also previously completed two successful field demonstrations: one at the National Carbon Capture Center (Southern- Wilsonville, AL) in 2011, and a second demonstration in fall of 2012 at the Wabash River IGCC plant (Terra Haute, IN). In this project, we first optimized the sorbent to catalyst ratio used in the combined WGS and CO{sub 2} capture

  12. Long-term impacts of air capture technologies on optimal climate strategies under economic uncertainties

    NASA Astrophysics Data System (ADS)

    Ghasemi, F.

    2014-12-01

    Despite widespread attention to the consequences of climate change, tangible and concerted progress toward mitigation of the adverse effects of greenhouse-gas (GHG) emissions has yet to be coordinated among various national and international agents. The energy objectives set by such initiatives as 'Sustainable Energy for All' partially help slow down the global warming in short term, but the risks posed by GHG emissions would persist for a long time. This fact makes negative emission solutions more appealing as a part of the climate protection efforts. Here I use integrated assessment modeling to investigate the potential added value of air capture technologies as a complement for more conventional solutions such as carbon capture and storage, and the use of renewables. Thermodynamic limits of air capture technologies are used as a general guideline for the estimation of the performance of air capture technologies. Optimal long-run climate strategies are discussed taking into account the uncertainties in the impact of CO2 concentration on the Global Wealth Product, and possible scenarios that result in an overshoot beyond the 2°C warming limit.

  13. Optimization of carbon capture systems using surrogate models of simulated processes.

    SciTech Connect

    Cozad, A.; Chang, Y.; Sahinidis, N.; Miller, D.

    2011-01-01

    With increasing demand placed on power generation plants to reduce carbon dioxide (CO2) emissions, processes to separate and capture CO2 for eventual sequestration are highly sought after. Carbon capture processes impart a parasitic load on the power plants; it is estimated that this would increase the cost of electricity from existing pulverized coal plants anywhere from 71-85 percent [1]. The National Energy and Technology Lab (NETL) is working to lower this to below a 30 percent increase. To reach this goal, work is being done not only to accurately simulate these processes, but also to leverage those accurate and detailed simulations to design optimal carbon capture processes. The major challenges include the lack of accurate algebraic models of the processes, computationally costly simulations, and insufficiently robust simulations. The first challenge bars the use of provable derivative-based optimization algorithms. The latter two can either lead to difficult or impossible direct derivative-free optimization. To overcome these difficulties, we take a more indirect method to solving this problem by, first, generating an accurate set of algebraic surrogate models from the simulation then using derivative-based solvers to optimize the surrogate models. We developed a method that uses derivative-based and derivative-free optimization alongside machine learning and statistical techniques to generate the set of low-complexity surrogate models using data sampled from detailed simulations. The models are validated and improved through the use of derivative-free solvers to adaptively sample new simulation points. The resulting surrogate models can then be used in a superstructure-based process synthesis and solved using derivative-based methods to optimize carbon capture processes.

  14. Economic and environmental evaluation of coal-and-biomass-to-liquids-and-electricity plants equipped with carbon capture and storage

    EPA Science Inventory

    Among various clean energy technologies, one innovative option for reducing greenhouse gas (GHG) emissions involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from co-processed coal and biomass. With a relatively pure CO2 strea...

  15. Molecular simulation of carbon dioxide adsorption for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Tenney, Craig M.

    Capture of CO2 from fossil fuel power plants and sequestration in unmineable coal seams are achievable methods for reducing atmospheric emissions of this greenhouse gas. To aid the development of effective CO2 capture and sequestration technologies, a series of molecular simulation studies were conducted to study the adsorption of CO2 and related species onto heterogeneous, solid adsorbents. To investigate the influence of surface heterogeneity upon adsorption behavior in activated carbons and coal, isotherms were generated via grand canonical Monte Carlo (GCMC) simulation for CO2 adsorption in slit-shaped pores with several variations of chemical and structural heterogeneity. Adsorption generally increased with increasing oxygen content and the presence of holes or furrows, which acted as preferred binding sites. To investigate the potential use of the flexible metal organic framework (MOF) Cu(BF4)2(bpy)2 (bpy=bipyridine) for CO2 capture, pure- and mixed-gas adsorption was simulated at conditions representative of power plant process streams. This MOF was chosen because it displays a novel behavior in which the crystal structure reversibly transitions from an empty, zero porosity state to a saturated, expanded state at the "gate pressure". Estimates of CO2 capacity above the gate pressure from GCMC simulations using a rigid MOF model showed good agreement with experiment. The CO2 adsorption capacity and estimated heats of adsorption are comparable to common physi-adsorbents under similar conditions. Mixed-gas simulations predicted CO2/N2 and CO2/H 2selectivities higher than typical microporous materials. To more closely investigate this gating effect, hybrid Monte-Carlo/molecular-dynamics (MCMD) was used to simulate adsorption using a flexible MOF model. Simulation cell volumes remained relatively constant at low gas pressures before increasing at higher pressure. Mixed-gas simulations predicted CO2/N 2 selectivities comparable to other microporous adsorbents. To

  16. Capturing spatial heterogeneity of soil organic carbon under changing climate

    NASA Astrophysics Data System (ADS)

    Mishra, U.; Fan, Z.; Jastrow, J. D.; Matamala, R.; Vitharana, U.

    2015-12-01

    The spatial heterogeneity of the land surface affects water, energy, and greenhouse gas exchanges with the atmosphere. Designing observation networks that capture land surface spatial heterogeneity is a critical scientific challenge. Here, we present a geospatial approach to capture the existing spatial heterogeneity of soil organic carbon (SOC) stocks across Alaska, USA. We used the standard deviation of 556 georeferenced SOC profiles previously compiled in Mishra and Riley (2015, Biogeosciences, 12:3993-4004) to calculate the number of observations that would be needed to reliably estimate Alaskan SOC stocks. This analysis indicated that 906 randomly distributed observation sites would be needed to quantify the mean value of SOC stocks across Alaska at a confidence interval of ± 5 kg m-2. We then used soil-forming factors (climate, topography, land cover types, surficial geology) to identify the locations of appropriately distributed observation sites by using the conditioned Latin hypercube sampling approach. Spatial correlation and variogram analyses demonstrated that the spatial structures of soil-forming factors were adequately represented by these 906 sites. Using the spatial correlation length of existing SOC observations, we identified 484 new observation sites would be needed to provide the best estimate of the present status of SOC stocks in Alaska. We then used average decadal projections (2020-2099) of precipitation, temperature, and length of growing season for three representative concentration pathway (RCP 4.5, 6.0, and 8.5) scenarios of the Intergovernmental Panel on Climate Change to investigate whether the location of identified observation sites will shift/change under future climate. Our results showed 12-41 additional observation sites (depending on emission scenarios) will be required to capture the impact of projected climatic conditions by 2100 on the spatial heterogeneity of Alaskan SOC stocks. Our results represent an ideal distribution

  17. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas

    PubMed Central

    Alvizo, Oscar; Nguyen, Luan J.; Savile, Christopher K.; Bresson, Jamie A.; Lakhapatri, Satish L.; Solis, Earl O. P.; Fox, Richard J.; Broering, James M.; Benoit, Michael R.; Zimmerman, Sabrina A.; Novick, Scott J.; Liang, Jack; Lalonde, James J.

    2014-01-01

    Carbonic anhydrase (CA) is one of nature’s fastest enzymes and can dramatically improve the economics of carbon capture under demanding environments such as coal-fired power plants. The use of CA to accelerate carbon capture is limited by the enzyme’s sensitivity to the harsh process conditions. Using directed evolution, the properties of a β-class CA from Desulfovibrio vulgaris were dramatically enhanced. Iterative rounds of library design, library generation, and high-throughput screening identified highly stable CA variants that tolerate temperatures of up to 107 °C in the presence of 4.2 M alkaline amine solvent at pH >10.0. This increase in thermostability and alkali tolerance translates to a 4,000,000-fold improvement over the natural enzyme. At pilot scale, the evolved catalyst enhanced the rate of CO2 absorption 25-fold compared with the noncatalyzed reaction. PMID:25368146

  18. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas

    DOE PAGES

    Alvizo, Oscar; Nguyen, Luan J.; Savile, Christopher K.; ...

    2014-11-03

    Carbonic anhydrase (CA) is one of nature’s fastest enzymes and can dramatically improve the economics of carbon capture under demanding environments such as coal-fired power plants. The use of CA to accelerate carbon capture is limited by the enzyme’s sensitivity to the harsh process conditions. Using directed evolution, the properties of a β-class CA from Desulfovibrio vulgaris were dramatically enhanced. Iterative rounds of library design, library generation, and high-throughput screening identified highly stable CA variants that tolerate temperatures of up to 107 °C in the presence of 4.2 M alkaline amine solvent at pH >10.0. This increase in thermostability andmore » alkali tolerance translates to a 4,000,000-fold improvement over the natural enzyme. In conclusion, at pilot scale, the evolved catalyst enhanced the rate of CO2 absorption 25-fold compared with the noncatalyzed reaction.« less

  19. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas

    SciTech Connect

    Alvizo, Oscar; Nguyen, Luan J.; Savile, Christopher K.; Bresson, Jamie A.; Lakhapatri, Satish L.; Solis, Earl O. P.; Fox, Richard J.; Broering, James M.; Benoit, Michael R.; Zimmerman, Sabrina A.; Novick, Scott J.; Liang, Jack; Lalonde, James J.

    2014-11-03

    Carbonic anhydrase (CA) is one of nature’s fastest enzymes and can dramatically improve the economics of carbon capture under demanding environments such as coal-fired power plants. The use of CA to accelerate carbon capture is limited by the enzyme’s sensitivity to the harsh process conditions. Using directed evolution, the properties of a β-class CA from Desulfovibrio vulgaris were dramatically enhanced. Iterative rounds of library design, library generation, and high-throughput screening identified highly stable CA variants that tolerate temperatures of up to 107 °C in the presence of 4.2 M alkaline amine solvent at pH >10.0. This increase in thermostability and alkali tolerance translates to a 4,000,000-fold improvement over the natural enzyme. In conclusion, at pilot scale, the evolved catalyst enhanced the rate of CO2 absorption 25-fold compared with the noncatalyzed reaction.

  20. A national look at carbon capture and storage-National carbon sequestration database and geographical information system (NatCarb)

    USGS Publications Warehouse

    Carr, T.R.; Iqbal, A.; Callaghan, N.; ,; Look, K.; Saving, S.; Nelson, K.

    2009-01-01

    The US Department of Energy's Regional Carbon Sequestration Partnerships (RCSPs) are responsible for generating geospatial data for the maps displayed in the Carbon Sequestration Atlas of the United States and Canada. Key geospatial data (carbon sources, potential storage sites, transportation, land use, etc.) are required for the Atlas, and for efficient implementation of carbon sequestration on a national and regional scale. The National Carbon Sequestration Database and Geographical Information System (NatCarb) is a relational database and geographic information system (GIS) that integrates carbon storage data generated and maintained by the RCSPs and various other sources. The purpose of NatCarb is to provide a national view of the carbon capture and storage potential in the U.S. and Canada. The digital spatial database allows users to estimate the amount of CO2 emitted by sources (such as power plants, refineries and other fossil-fuel-consuming industries) in relation to geologic formations that can provide safe, secure storage sites over long periods of time. The NatCarb project is working to provide all stakeholders with improved online tools for the display and analysis of CO2 carbon capture and storage data. NatCarb is organizing and enhancing the critical information about CO2 sources and developing the technology needed to access, query, model, analyze, display, and distribute natural resource data related to carbon management. Data are generated, maintained and enhanced locally at the RCSP level, or at specialized data warehouses, and assembled, accessed, and analyzed in real-time through a single geoportal. NatCarb is a functional demonstration of distributed data-management systems that cross the boundaries between institutions and geographic areas. It forms the first step toward a functioning National Carbon Cyberinfrastructure (NCCI). NatCarb provides access to first-order information to evaluate the costs, economic potential and societal issues of

  1. Carbon Capture and Sequestration: A Regulatory Gap Assessment

    SciTech Connect

    Lincoln Davies; Kirsten Uchitel; John Ruple; Heather Tanana

    2012-04-30

    Though a potentially significant climate change mitigation strategy, carbon capture and sequestration (CCS) remains mired in demonstration and development rather than proceeding to full-scale commercialization. Prior studies have suggested numerous reasons for this stagnation. This Report seeks to empirically assess those claims. Using an anonymous opinion survey completed by over 200 individuals involved in CCS, it concludes that there are four primary barriers to CCS commercialization: (1) cost, (2) lack of a carbon price, (3) liability risks, and (4) lack of a comprehensive regulatory regime. These results largely confirm previous work. They also, however, expose a key barrier that prior studies have overlooked: the need for comprehensive, rather than piecemeal, CCS regulation. The survey data clearly show that the CCS community sees this as one of the most needed incentives for CCS deployment. The community also has a relatively clear idea of what that regulation should entail: a cooperative federalism approach that directly addresses liability concerns and that generally does not upset traditional lines of federal-state authority.

  2. An early deployment strategy for carbon capture, utilisation, and storage

    SciTech Connect

    Carter, L.D.

    2012-11-01

    This report describes the current use of CO2 for EOR, and discusses potential expansion of EOR using CO2 from power plants. Analysis of potential EOR development in the USA, where most current CO2-based EOR production takes place, indicates that relatively low cost, traditional sources of CO2 for EOR (CO2 domes and CO2 from natural gas processing plants) are insufficient to exploit the full potential of EOR. To achieve that full potential will require use of CO2 from combustion and gasification systems, such as fossil fuel power plants, where capture of CO2 is more costly. The cost of current CCUS systems, even with the revenue stream for sale of the CO2 for EOR, is too high to result in broad deployment of the technology in the near term. In the longer term, research and development may be sufficient to reduce CO2 capture costs to a point where CCUS would be broadly deployed. This report describes a case study of conditions in the USA to explore a financial incentive to promote early deployment of CCUS, providing a range of immediate benefits to society, greater likelihood of reducing the long-term cost of CCUS, and greater likelihood of broad deployment of CCUS and CCS in the long term. Additionally, it may be possible to craft such an incentive in a manner that its cost is more than offset by taxes flowing from increased domestic oil production. An example of such an incentive is included in this report.

  3. Managing uncertainties: the making of the IPCC's special report on carbon dioxide capture and storage.

    PubMed

    Narita, Daiju

    2012-01-01

    Carbon dioxide capture and storage (CCS) is a technology that receives growing recognition because of its extremely great in mitigating climate change. However, uncertainties concerning the viability of this approach exist. With this background, the Intergovernmental Panel on Climate Change (IPCC) published a report in 2005 assessing of CCS. This article discusses the compilation process of the report, based on information collected through interviews with key participants and document research, highlighting how CCS's key uncertainties were estimated in the face of two disparate needs: scientific rigor and policy relevance.

  4. Energy-efficient stirred-tank photobioreactors for simultaneous carbon capture and municipal wastewater treatment.

    PubMed

    Mohammed, K; Ahammad, S Z; Sallis, P J; Mota, C R

    2014-01-01

    Algal based wastewater treatment (WWT) technologies are attracting renewed attention because they couple energy-efficient sustainable treatment with carbon capture, and reduce the carbon footprint of the process. A low-cost energy-efficient mixed microalgal culture-based pilot WWT system, coupled with carbon dioxide (CO2) sequestration, was investigated. The 21 L stirred-tank photobioreactors (STPBR) used light-emitting diodes as the light source, resulting in substantially reduced operational costs. The STPBR were operated at average optimal light intensity of 582.7 μmol.s(-1).m(-2), treating synthetic municipal wastewater containing approximately 250, 90 and 10 mg.L(-1) of soluble chemical oxygen demand (SCOD), ammonium (NH4-N), and phosphate, respectively. The STPBR were maintained for 64 days without oxygen supplementation, but had a supply of CO2 (25 mL.min(-1), 25% v/v in N2). Relatively high SCOD removal efficiency (>70%) was achieved in all STPBR. Low operational cost was achieved by eliminating the need for mechanical aeration, with microalgal photosynthesis providing all oxygenation. The STPBR achieved an energy saving of up to 95%, compared to the conventional AS system. This study demonstrates that microalgal photobioreactors can provide effective WWT and carbon capture, simultaneously, in a system with potential for scaling-up to municipal WWT plants.

  5. Analysis and Comparison of Carbon Capture & Sequestration Policies

    NASA Astrophysics Data System (ADS)

    Burton, E.; Ezzedine, S. M.; Reed, J.; Beyer, J. H.; Wagoner, J. L.

    2010-12-01

    Several states and countries have adopted or are in the process of crafting policies to enable geologic carbon sequestration projects. These efforts reflect the recognition that existing statutory and regulatory frameworks leave ambiguities or gaps that elevate project risk for private companies considering carbon sequestration projects, and/or are insufficient to address a government’s mandate to protect the public interest. We have compared the various approaches that United States’ state and federal governments have taken to provide regulatory frameworks to address carbon sequestration. A major purpose of our work is to inform the development of any future legislation in California, should it be deemed necessary to meet the goals of Assembly Bill 1925 (2006) to accelerate the adoption of cost-effective geologic sequestration strategies for the long-term management of industrial carbon dioxide in the state. Our analysis shows a diverse issues are covered by adopted and proposed carbon capture and sequestration (CCS) legislation and that many of the new laws focus on defining regulatory frameworks for underground injection of CO2, ambiguities in property issues, or assigning legal liability. While these approaches may enable the progress of early projects, future legislation requires a longer term and broader view that includes a quantified integration of CCS into a government’s overall climate change mitigation strategy while considering potentially counterproductive impacts on CCS of other climate change mitigation strategies. Furthermore, legislation should be crafted in the context of a vision for CCS as an economically viable and widespread industry. While an important function of new CCS legislation is enabling early projects, it must be kept in mind that applying the same laws or protocols in the future to a widespread CCS industry may result in business disincentives and compromise of the public interest in mitigating GHG emissions. Protection of the

  6. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China

    SciTech Connect

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  7. Physical and Economic Integration of Carbon Capture Methods with Sequestration Sinks

    NASA Astrophysics Data System (ADS)

    Murrell, G. R.; Thyne, G. D.

    2007-12-01

    Currently there are several different carbon capture technologies either available or in active development for coal- fired power plants. Each approach has different advantages, limitations and costs that must be integrated with the method of sequestration and the physiochemical properties of carbon dioxide to evaluate which approach is most cost effective. For large volume point sources such as coal-fired power stations, the only viable sequestration sinks are either oceanic or geological in nature. However, the carbon processes and systems under consideration produce carbon dioxide at a variety of pressure and temperature conditions that must be made compatible with the sinks. Integration of all these factors provides a basis for meaningful economic comparisons between the alternatives. The high degree of compatibility between carbon dioxide produced by integrated gasification combined cycle technology and geological sequestration conditions makes it apparent that this coupling currently holds the advantage. Using a basis that includes complete source-to-sink sequestration costs, the relative cost benefit of pre-combustion IGCC compared to other post-combustion methods is on the order of 30%. Additional economic benefits arising from enhanced oil recovery revenues and potential sequestration credits further improve this coupling.

  8. US pulls out of carbon-capture plant

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2008-03-01

    An ambitious plan to build a 1.8bn coal-fired power plant that would not release any carbon dioxide into the atmosphere has been delayed after the US Department of Energy (DOE) cancelled a planned grant of 1.1bn for the so-called FutureGen programme. Critics complain that the withdrawal of support will seriously hamper the development of what could be an environmentally sound technology. However, the board of the FutureGen Alliance - a public-private partnership set up to design, build and operate the plant - has announced that it will continue to push the project forward.

  9. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    PubMed

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive.

  10. Learning through a portfolio of carbon capture and storage demonstration projects

    NASA Astrophysics Data System (ADS)

    Reiner, David M.

    2016-01-01

    Carbon dioxide capture and storage (CCS) technology is considered by many to be an essential route to meet climate mitigation targets in the power and industrial sectors. Deploying CCS technologies globally will first require a portfolio of large-scale demonstration projects. These first projects should assist learning by diversity, learning by replication, de-risking the technologies and developing viable business models. From 2005 to 2009, optimism about the pace of CCS rollout led to mutually independent efforts in the European Union, North America and Australia to assemble portfolios of projects. Since 2009, only a few of these many project proposals remain viable, but the initial rationales for demonstration have not been revisited in the face of changing circumstances. Here I argue that learning is now both more difficult and more important given the slow pace of deployment. Developing a more coordinated global portfolio will facilitate learning across projects and may determine whether CCS ever emerges from the demonstration phase.

  11. Implications of ammonia emissions from post-combustion carbon capture for airborne particulate matter.

    PubMed

    Heo, Jinhyok; McCoy, Sean T; Adams, Peter J

    2015-04-21

    Amine scrubbing, a mature post-combustion carbon capture and storage (CCS) technology, could increase ambient concentrations of fine particulate matter (PM2.5) due to its ammonia emissions. To capture 2.0 Gt CO2/year, for example, it could emit 32 Gg NH3/year in the United States given current design targets or 15 times higher (480 Gg NH3/year) at rates typical of current pilot plants. Employing a chemical transport model, we found that the latter emission rate would cause an increase of 2.0 μg PM2.5/m(3) in nonattainment areas during wintertime, which would be troublesome for PM2.5-burdened areas, and much lower increases during other seasons. Wintertime PM2.5 increases in nonattainment areas were fairly linear at a rate of 3.4 μg PM2.5/m(3) per 1 Tg NH3, allowing these results to be applied to other CCS emissions scenarios. The PM2.5 impacts are modestly uncertain (±20%) depending on future emissions of SO2, NOx, and NH3. The public health costs of CCS NH3 emissions were valued at $31-68 per tonne CO2 captured, comparable to the social cost of carbon itself. Because the costs of solvent loss to CCS operators are lower than the social costs of CCS ammonia, there is a regulatory interest to limit ammonia emissions from CCS.

  12. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control.

    PubMed

    Rao, Anand B; Rubin, Edward S

    2002-10-15

    Capture and sequestration of CO2 from fossil fuel power plants is gaining widespread interest as a potential method of controlling greenhouse gas emissions. Performance and cost models of an amine (MEA)-based CO2 absorption system for postcombustion flue gas applications have been developed and integrated with an existing power plant modeling framework that includes multipollutant control technologies for other regulated emissions. The integrated model has been applied to study the feasibility and cost of carbon capture and sequestration at both new and existing coal-burning power plants. The cost of carbon avoidance was shown to depend strongly on assumptions about the reference plant design, details of the CO2 capture system design, interactions with other pollution control systems, and method of CO2 storage. The CO2 avoidance cost for retrofit systems was found to be generally higher than for new plants, mainly because of the higher energy penalty resulting from less efficient heat integration as well as site-specific difficulties typically encountered in retrofit applications. For all cases, a small reduction in CO2 capture cost was afforded by the SO2 emission trading credits generated by amine-based capture systems. Efforts are underway to model a broader suite of carbon capture and sequestration technologies for more comprehensive assessments in the context of multipollutant environmental management.

  13. A TECHNICAL, ECONOMIC AND ENVIRONMENTAL ASSESSMENT OF AMINE-BASED CO2 CAPTURE TECHNOLOGY FOR POWER PLANT GREENHOUSE GAS CONTROL

    SciTech Connect

    Edward S. Rubin; Anand B. Rao

    2002-10-01

    Capture and sequestration of CO{sub 2} from fossil fuel power plants is gaining widespread interest as a potential method of controlling greenhouse gas emissions. Performance and cost models of an amine (MEA)-based CO{sub 2} absorption system for post-combustion flue gas applications have been developed, and integrated with an existing power plant modeling framework that includes multi-pollutant control technologies for other regulated emissions. The integrated model has been applied to study the feasibility and cost of carbon capture and sequestration at both new and existing coal-burning power plants. The cost of carbon avoidance was shown to depend strongly on assumptions about the reference plant design, details of the CO{sub 2} capture system design, interactions with other pollution control systems, and method of CO{sub 2} storage. The CO{sub 2} avoidance cost for retrofit systems was found to be generally higher than for new plants, mainly because of the higher energy penalty resulting from less efficient heat integration, as well as site-specific difficulties typically encountered in retrofit applications. For all cases, a small reduction in CO{sub 2} capture cost was afforded by the SO{sub 2} emission trading credits generated by amine-based capture systems. Efforts are underway to model a broader suite of carbon capture and sequestration technologies for more comprehensive assessments in the context of multi-pollutant environmental management.

  14. Microporous polystyrene particles for selective carbon dioxide capture.

    PubMed

    Kaliva, Maria; Armatas, Gerasimos S; Vamvakaki, Maria

    2012-02-07

    This study presents the synthesis of microporous polystyrene particles and the potential use of these materials in CO(2) capture for biogas purification. Highly cross-linked polystyrene particles are synthesized by the emulsion copolymerization of styrene (St) and divinylbenzene (DVB) in water. The cross-link density of the polymer is varied by altering the St/DVB molar ratio. The size and the morphology of the particles are characterized by scanning and transmission electron microscopy. Following supercritical point drying with carbon dioxide or lyophilization from benzene, the polystyrene nanoparticles exhibit a significant surface area and permanent microporosity. The dried particles comprising 35 mol % St and 65 mol % DVB possess the largest surface area, ∼205 m(2)/g measured by Brunauer-Emmett-Teller and ∼185 m(2)/g measured by the Dubinin-Radushkevich method, and a total pore volume of 1.10 cm(3)/g. Low pressure measurements suggest that the microporous polystyrene particles exhibit a good separation performance of CO(2) over CH(4), with separation factors in the range of ∼7-13 (268 K, CO(2)/CH(4) = 5/95 gas mixture), which renders them attractive candidates for use in gas separation processes.

  15. Cumulative Radiative Forcing Implications of Deployment Strategies for Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Sathre, R. C.; Masanet, E.

    2011-12-01

    Carbon capture and storage (CCS) is increasingly discussed as a potential means of mitigating the climate disruption associated with fossil fuel use. Some technologies for capturing, transporting, and sequestering carbon dioxide (CO2) are already mature, while others technologies under development may lead to more cost- and energy-efficient CCS systems. Various elements of CCS systems are currently in operation at relatively small scale, but will need to be scaled up very substantially in order to make a significant contribution to climate change mitigation. Because the rate of fossil fuel CO2 emission is continuing to increase and the emitted CO2 will remain in the atmosphere for long time periods, the speed at which CCS is deployed will strongly affect the cumulative CO2 emission and the climate impacts. To better understand these issues, in this analysis we integrate scenario forecasting of energy supply systems, life cycle emission modeling, and time-dependent calculations of cumulative radiative forcing. We develop a series of CCS deployment scenarios that describe plausible future trajectories for CCS implementation in the US electric power plant fleet. The scenarios incorporate dimensions such as speed of deployment build-out, year of initiating deployment, efficiency of capture technology, and installation in new power plants vs. retrofitting existing plants. We conduct life cycle greenhouse gas (GHG) emissions analyses of each scenario to estimate annual emission profiles of CO2, CH4, and N2O over a 90-year time horizon, from 2010 to 2100. We then model the atmospheric dynamics of the emitted GHGs including atmospheric decay and instantaneous radiative forcing patterns over time. Finally, we determine the cumulative radiative forcing of each scenario, which we use as a proxy for surface temperature change and resulting disruption to physical, ecological and social systems. The results show strong climate mitigation benefits of early, aggressive

  16. Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines

    SciTech Connect

    Graeme Puxty; Robert Rowland; Andrew Allport; Qi Yang; Mark Bown; Robert Burns; Marcel Maeder; Moetaz Attalla

    2009-08-15

    The significant and rapid reduction of greenhouse gas emissions is recognized as necessary to mitigate the potential climate effects from global warming. The postcombustion capture (PCC) and storage of carbon dioxide (CO{sub 2}) produced from the use of fossil fuels for electricity generation is a key technology needed to achieve these reductions. The most mature technology for CO{sub 2} capture is reversible chemical absorption into an aqueous amine solution. In this study the results from measurements of the CO{sub 2} absorption capacity of aqueous amine solutions for 76 different amines are presented. Measurements were made using both a novel isothermal gravimetric analysis (IGA) method and a traditional absorption apparatus. Seven amines, consisting of one primary, three secondary, and three tertiary amines, were identified as exhibiting outstanding absorption capacities. Most have a number of structural features in common including steric hindrance and hydroxyl functionality 2 or 3 carbons from the nitrogen. Initial CO{sub 2} absorption rate data from the IGA measurements was also used to indicate relative absorption rates. Most of the outstanding performers in terms of capacity also showed initial absorption rates comparable to the industry standard monoethanolamine (MEA). This indicates, in terms of both absorption capacity and kinetics, that they are promising candidates for further investigation. 30 refs., 8 figs.

  17. Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines.

    PubMed

    Puxty, Graeme; Rowland, Robert; Allport, Andrew; Yang, Qi; Bown, Mark; Burns, Robert; Maeder, Marcel; Attalla, Moetaz

    2009-08-15

    The significant and rapid reduction of greenhouse gas emissions is recognized as necessary to mitigate the potential climate effects from global warming. The postcombustion capture (PCC) and storage of carbon dioxide (CO2) produced from the use of fossil fuels for electricity generation is a key technology needed to achieve these reductions. The most mature technology for CO2 capture is reversible chemical absorption into an aqueous amine solution. In this study the results from measurements of the CO2 absorption capacity of aqueous amine solutions for 76 different amines are presented. Measurements were made using both a novel isothermal gravimetric analysis (IGA) method and a traditional absorption apparatus. Seven amines, consisting of one primary, three secondary, and three tertiary amines, were identified as exhibiting outstanding absorption capacities. Most have a number of structural features in common including steric hindrance and hydroxyl functionality 2 or 3 carbons from the nitrogen. Initial CO2 absorption rate data from the IGA measurements was also used to indicate relative absorption rates. Most of the outstanding performers in terms of capacity also showed initial absorption rates comparable to the industry standard monoethanolamine (MEA). This indicates, in terms of both absorption capacity and kinetics, that they are promising candidates for further investigation.

  18. Mercury capture by native fly ash carbons in coal-fired power plants.

    PubMed

    Hower, James C; Senior, Constance L; Suuberg, Eric M; Hurt, Robert H; Wilcox, Jennifer L; Olson, Edwin S

    2010-08-01

    The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons.

  19. Mercury capture by native fly ash carbons in coal-fired power plants

    PubMed Central

    Hower, James C.; Senior, Constance L.; Suuberg, Eric M.; Hurt, Robert H.; Wilcox, Jennifer L.; Olson, Edwin S.

    2013-01-01

    The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons. PMID:24223466

  20. Global carbon management using air capture and geosequestration at remote locations

    NASA Astrophysics Data System (ADS)

    Lackner, K. S.; Goldberg, D.

    2014-12-01

    CO2 emissions need not only stop; according the IPCC, emissions need to turn negative. This requires means to remove CO2 from air and store it safely and permanently. We outline a combination of secure geosequestration and direct capture of CO2 from ambient air to create negative emissions at remote locations. Operation at remote sites avoids many difficulties associated with capture at the source, where space for added equipment is limited, good storage sites are in short supply, and proximity to private property engenders resistance. Large Igneous Provinces have been tested as secure CO2 reservoirs. CO2 and water react with reservoir rock to form stable carbonates, permanently sequestering the carbon. Outfitting reservoirs in large igneous provinces far from human habitation with ambient air capture systems creates large CO2 sequestration sites. Their remoteness offers advantages in environmental security and public acceptance and, thus, can smooth the path toward CO2 stabilization. Direct capture of CO2 from ambient air appears energetically and economically viable and could be scaled up quickly. Thermodynamic energy requirements are very small and a number of approaches have shown to be energy efficient in practice. Sorbent technologies include supported organoamines, alkaline brines, and quaternary ammonium based ion-exchange resins. To demonstrate that the stated goals of low cost and low energy consumption can be reached at scale, public research and demonstration projects are essential. We suggest co-locating air capture and geosequestration at sites where renewable energy resources can power both activities. Ready renewable energy would also allow for the co-production of synthetic fuels. Possible locations with large wind and basalt resources include Iceland and Greenland, the north-western United States, the Kerguelen plateau, Siberia and Morocco. Capture and sequestration in these reservoirs could recover all of the emissions of the 20th century and

  1. Using Modern Technologies to Capture and Share Indigenous Astronomical Knowledge

    NASA Astrophysics Data System (ADS)

    Nakata, Martin; Hamacher, Duane W.; Warren, John; Byrne, Alex; Pagnucco, Maurice; Harley, Ross; Venugopal, Srikumar; Thorpe, Kirsten; Neville, Richard; Bolt, Reuben

    2014-06-01

    Indigenous Knowledge is important for Indigenous communities across the globe and for the advancement of our general scientific knowledge. In particular, Indigenous astronomical knowledge integrates many aspects of Indigenous Knowledge, including seasonal calendars, navigation, food economics, law, ceremony, and social structure. Capturing, managing, and disseminating this knowledge in the digital environment poses a number of challenges, which we aim to address using a collaborative project emerging between experts in the higher education, library, archive and industry sectors. Using Microsoft's WorldWide Telescope and Rich Interactive Narratives technologies, we propose to develop software, media design, and archival management solutions to allow Indigenous communities to share their astronomical knowledge with the world on their terms and in a culturally sensitive manner.

  2. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    USGS Publications Warehouse

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  3. Development of Novel Carbon Sorbents for CO{sub 2} Capture

    SciTech Connect

    Krishnan, Gopala; Hornbostel, Marc; Bao, Jianer; Perez, Jordi; Nagar, Anoop; Sanjurjo, Angel

    2013-11-30

    An innovative, low-cost, and low-energy-consuming carbon dioxide (CO{sub 2}) capture technology was developed, based on CO{sub 2}adsorption on a high-capacity and durable carbon sorbent. This report describes the (1) performance of the concept on a bench-scale system; (2) results of parametric tests to determine the optimum operating conditions; (3) results of the testing with a flue gas from coal-fired boilers; and (4) evaluation of the technical and economic viability of the technology. The process uses a falling bed of carbon sorbent microbeads to separate the flue gas into two streams: a CO{sub 2} -lean flue gas stream from which > 90% of the CP{sub 2} is removed and a pure stream of CO{sub 2} that is ready for compression and sequestration. The carbo sorbent microbeads have several unique properties such as high CO{sub 2} capacity, low heat of adsorption and desorption (25 to 28 kJ/mole), mechanically robust, and rapid adsorption and desorption rates. The capture of CO{sub 2} from the flue gas is performed at near ambient temperatures in whic the sorbent microbeads flow down by gravity counter-current with the up-flow of the flue gas. The adsorbed CO{sub 2} is stripped by heating the CO{sub 2}-loaded sorbent to - 100°C, in contact with low-pressure (- 5 psig) steam in a section at the bottom of the adsorber. The regenerated sorben is dehydrated of adsorbed moisture, cooled, and lifted back to the adsorber. The CO{sub 2} from the desorber is essentially pure and can be dehydrated, compressed, and transported to a sequestration site. Bench-scale tests using a simulated flue gas showed that the integrated system can be operated to provide > 90% CO{sub 2} capture from a 15% CO{sub 2} stream in the adsorber and produce > 98% CO{sub 2} at the outlet of the stripper. Long-term tests ( 1,000 cycles) showed that the system can be operated reliably without sorbent agglomeration or attrition. The bench-scale reactor was also operated using a flue gas stream from a coal

  4. Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS)

    NASA Astrophysics Data System (ADS)

    Muratori, Matteo; Calvin, Katherine; Wise, Marshall; Kyle, Page; Edmonds, Jae

    2016-09-01

    Bioenergy with carbon capture and storage (BECCS) is considered a potential source of net negative carbon emissions and, if deployed at sufficient scale, could help reduce carbon dioxide emissions and concentrations. However, the viability and economic consequences of large-scale BECCS deployment are not fully understood. We use the Global Change Assessment Model (GCAM) integrated assessment model to explore the potential global and regional economic impacts of BECCS. As a negative-emissions technology, BECCS would entail a net subsidy in a policy environment in which carbon emissions are taxed. We show that by mid-century, in a world committed to limiting climate change to 2 °C, carbon tax revenues have peaked and are rapidly approaching the point where climate mitigation is a net burden on general tax revenues. Assuming that the required policy instruments are available to support BECCS deployment, we consider its effects on global trade patterns of fossil fuels, biomass, and agricultural products. We find that in a world committed to limiting climate change to 2 °C, the absence of CCS harms fossil-fuel exporting regions, while the presence of CCS, and BECCS in particular, allows greater continued use and export of fossil fuels. We also explore the relationship between carbon prices, food-crop prices and use of BECCS. We show that the carbon price and biomass and food crop prices are directly related. We also show that BECCS reduces the upward pressure on food crop prices by lowering carbon prices and lowering the total biomass demand in climate change mitigation scenarios. All of this notwithstanding, many challenges, both technical and institutional, remain to be addressed before BECCS can be deployed at scale.

  5. Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process

    SciTech Connect

    Meyer, Howard; Zhou, S James; Ding, Yong; Bikson, Ben

    2012-03-31

    This report summarizes progress made during Phase I and Phase II of the project: "Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process," under contract DE-FE-0000646. The objective of this project is to develop a practical and cost effective technology for CO{sub 2} separation and capture for pre-combustion coal-based gasification plants using a membrane contactor/solvent absorption process. The goals of this technology development project are to separate and capture at least 90% of the CO{sub 2} from Integrated Gasification Combined Cycle (IGCC) power plants with less than 10% increase in the cost of energy services. Unlike conventional gas separation membranes, the membrane contactor is a novel gas separation process based on the gas/liquid membrane concept. The membrane contactor is an advanced mass transfer device that operates with liquid on one side of the membrane and gas on the other. The membrane contactor can operate with pressures that are almost the same on both sides of the membrane, whereas the gas separation membranes use the differential pressure across the membrane as driving force for separation. The driving force for separation for the membrane contactor process is the chemical potential difference of CO{sub 2} in the gas phase and in the absorption liquid. This process is thus easily tailored to suit the needs for pre-combustion separation and capture of CO{sub 2}. Gas Technology Institute (GTI) and PoroGen Corporation (PGC) have developed a novel hollow fiber membrane technology that is based on chemically and thermally resistant commercial engineered polymer poly(ether ether ketone) or PEEK. The PEEK membrane material used in the membrane contactor during this technology development program is a high temperature engineered plastic that is virtually non-destructible under the operating conditions encountered in typical gas absorption applications. It can withstand contact with most of the common treating

  6. Biocatalytic carbon capture via reversible reaction cycle catalyzed by isocitrate dehydrogenase.

    PubMed

    Xia, Shunxiang; Frigo-Vaz, Benjamin; Zhao, Xueyan; Kim, Jungbae; Wang, Ping

    2014-09-12

    The practice of carbon capture and storage (CCS) requires efficient capture and separation of carbon dioxide from its gaseous mixtures such as flue gas, followed by releasing it as a pure gas which can be subsequently compressed and injected into underground storage sites. This has been mostly achieved via reversible thermochemical reactions which are generally energy-intensive. The current work examines a biocatalytic approach for carbon capture using an NADP(H)-dependent isocitrate dehydrogenase (ICDH) which catalyzes reversibly carboxylation and decarboxylation reactions. Different from chemical carbon capture processes that rely on thermal energy to realize purification of carbon dioxide, the biocatalytic strategy utilizes pH to leverage the reaction equilibrium, thereby realizing energy-efficient carbon capture under ambient conditions. Results showed that over 25 mol of carbon dioxide could be captured and purified from its gas mixture for each gram of ICDH applied for each carboxylation/decarboxylation reaction cycle by varying pH between 6 and 9. This work demonstrates the promising potentials of pH-sensitive biocatalysis as a green-chemistry route for carbon capture.

  7. Front page or "buried" beneath the fold? Media coverage of carbon capture and storage.

    PubMed

    Boyd, Amanda D; Paveglio, Travis B

    2014-05-01

    Media can affect public views and opinions on science, policy and risk issues. This is especially true of a controversial emerging technology that is relatively unknown. The study presented here employs a media content analysis of carbon capture and storage (CCS), one potential strategy to reduce greenhouse gas emissions. The authors analyzed all mentions of CCS in two leading Canadian national newspapers and two major western regional newspapers from the first article that discussed CCS in 2004 to the end of 2009 (825 articles). An in-depth content analysis was conducted to examine factors relating to risk from CCS, how the technology was portrayed and if coverage was negatively or positively biased. We conclude by discussing the possible impact of media coverage on support or opposition to CCS adoption.

  8. Workshop on Particle Capture, Recovery and Velocity/Trajectory Measurement Technologies

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E. (Editor)

    1994-01-01

    A workshop on particle capture, recovery, and velocity/trajectory measurement technologies was held. The primary areas covered were: (1) parent-daughter orbit divergence; (2) trajectory sensing; (3) capture medium development: laboratory experiments, and (4) future flight opportunities.

  9. Molten Carbonate Fuel Cell performance analysis varying cathode operating conditions for carbon capture applications

    NASA Astrophysics Data System (ADS)

    Audasso, Emilio; Barelli, Linda; Bidini, Gianni; Bosio, Barbara; Discepoli, Gabriele

    2017-04-01

    The results of a systematic experimental campaign to verify the impact of real operating conditions on the performance of a complete Molten Carbonate Fuel Cell (MCFC) are presented. In particular, the effects of ageing and composition of water, oxygen and carbon dioxide in the cathodic feeding stream are studied through the analysis of current-voltage curves and Electrochemical Impedance Spectroscopy (EIS). Based on a proposed equivalent electrical circuit model and a fitting procedure, a correlation is found among specific operating parameters and single EIS coefficients. The obtained results suggest a new performance monitoring approach to be applied to MCFC for diagnostic purpose. Particular attention is devoted to operating conditions characteristic of MCFC application as CO2 concentrators, which, by feeding the cathode with exhaust gases, is a promising route for efficient and cheap carbon capture.

  10. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marus Hiilliard; Qing Xu; David Van Wagener; Jorge M. Plaza

    2006-12-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The best solvent and process configuration, matrix with MDEA/PZ, offers 22% and 15% energy savings over the baseline and improved baseline, respectively, with stripping and compression to 10 MPa. The energy requirement for stripping and compression to 10 MPa is about 20% of the power output from a 500 MW power plant with 90% CO{sub 2} removal. The stripper rate model shows that a ''short and fat'' stripper requires 7 to 15% less equivalent work than a ''tall and skinny'' one. The stripper model was validated with data obtained from pilot plant experiments at the University of Texas with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ under normal pressure and vacuum conditions using Flexipac AQ Style 20 structured packing. Experiments with oxidative degradation at low gas rates confirm the effects of Cu{sup +2} catalysis; in MEA/PZ solutions more formate and acetate is produced in the presence of Cu{sup +2}. At 150 C, the half life of 30% MEA with 0.4 moles CO{sub 2}/mole amine is about 2 weeks. At 100 C, less than 3% degradation occurred in two weeks. The solubility of potassium sulfate in MEA solution increases significantly with CO{sub 2} loading and decreases with MEA concentration. The base case corrosion rate in 5 M MEA/1,2M PZ is 22 mpy. With 1 wt% heat stable salt, the corrosion rate increases by 50% to 160% in the order: thiosulfate< oxalatecarbonate is ineffective in the absence of oxygen, but 50 to 250 ppm reduces corrosion to less than 2 mpy in the presence of oxygen.

  11. Thermodynamic screening of metal-substituted MOFs for carbon capture.

    PubMed

    Koh, Hyun Seung; Rana, Malay Kumar; Hwang, Jinhyung; Siegel, Donald J

    2013-04-07

    Metal-organic frameworks (MOFs) have emerged as promising materials for carbon capture applications due to their high CO2 capacities and tunable properties. Amongst the many possible MOFs, metal-substituted compounds based on M-DOBDC and M-HKUST-1 have demonstrated amongst the highest CO2 capacities at the low pressures typical of flue gasses. Here we explore the possibility for additional performance tuning of these compounds by computationally screening 36 metal-substituted variants (M = Be, Mg, Ca, Sr, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, W, Sn, and Pb) with respect to their CO2 adsorption enthalpy, ΔH(T=300K). Supercell calculations based on van der Waals density functional theory (vdW-DF) yield enthalpies in good agreement with experimental measurements, out-performing semi-empirical (DFT-D2) and conventional (LDA & GGA) functionals. Our screening identifies 13 compounds having ΔH values within the targeted thermodynamic window -40 ≤ ΔH ≤ -75 kJ mol(-1): 8 are based on M-DODBC (M = Mg, Ca, Sr, Sc, Ti, V, Mo, and W), and 5 on M-HKUST-1 (M = Be, Mg, Ca, Sr and Sc). Variations in the electronic structure and the geometry of the structural building unit are examined and used to rationalize trends in CO2 affinity. In particular, the partial charge on the coordinatively unsaturated metal sites is found to correlate with ΔH, suggesting that this property may be used as a simple performance descriptor. The ability to rapidly distinguish promising MOFs from those that are "thermodynamic dead-ends" will be helpful in guiding synthesis efforts towards promising compounds.

  12. JV Task 106 - Feasibility of CO2 Capture Technologies for Existing North Dakota Lignite-Fired Pulverized Coal Boilers

    SciTech Connect

    Michael L. Jones; Brandon M. Pavlish; Melanie D. Jensen

    2007-05-01

    The goal of this project is to provide a technical review and evaluation of various carbon dioxide (CO{sub 2}) capture technologies, with a focus on the applicability to lignite-fired facilities within North Dakota. The motivation for the project came from the Lignite Energy Council's (LEC's) need to identify the feasibility of CO{sub 2} capture technologies for existing North Dakota lignite-fired, pulverized coal (pc) power plants. A literature review was completed to determine the commercially available technologies as well as to identify emerging CO{sub 2} capture technologies that are currently in the research or demonstration phase. The literature review revealed few commercially available technologies for a coal-fired power plant. CO{sub 2} separation and capture using amine scrubbing have been performed for several years in industry and could be applied to an existing pc-fired power plant. Other promising technologies do exist, but many are still in the research and demonstration phases. Oxyfuel combustion, a technology that has been used in industry for several years to increase boiler efficiency, is in the process of being tailored for CO{sub 2} separation and capture. These two technologies were chosen for evaluation for CO{sub 2} separation and capture from coal-fired power plants. Although oxyfuel combustion is still in the pilot-scale demonstration phase, it was chosen to be evaluated at LEC's request because it is one of the most promising emerging technologies. As part of the evaluation of the two chosen technologies, a conceptual design, a mass and energy balance, and an economic evaluation were completed.

  13. The role of stakeholders in developing an international regulatory framework for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Augustin, C. M.; Broad, K.; Swart, P. K.

    2011-12-01

    It is estimated that carbon capture and storage (CCS) could be used to achieve between 15% and 55% of the carbon emission reductions necessary to avoid dangerous levels of climate change. It is also believed that achieving emission reduction goals will be less costly with CCS than without it. The expansion of active CCS sites over the past decade, from three to 53 demonstrates the value that industry sees in CCS as a transition technology for governments seeking to reduce their CO2 emissions. However, to continue developing CCS for industry scale implementation, it is essential to provide the regulatory certainty needed to foster energy industry wide adoption of CCS. Existing CCS regulatory regimes are inadequate, fragmented and contradictory. There is a need for comprehensive, unifying regulations for CCS that are flexible enough to adapt as the technology develops. Governments are limited by the fact that carbon capture and storage is a multidisciplinary issue that touches on the fields of oil drilling, groundwater quality, greenhouse gas management, air quality, and risk management. Though it is in part a technological, environmental and management issue there is also a complex political element to tackling the CCS problem. Due to its cross-cutting nature, CCS regulations should be based off the best practices and standards developed by industry stakeholders. Industry standards are stakeholder developed and consensus based, created through a democratic and collaborative process by bodies such as the International Standards Organization, the National Institutes of Standards and Testing (USA), ASTM International, and the Canadian Standards Organization. Standards can typically be broken down into six general categories: test methods, specifications, classifications, practices, guides, and terminology. These standards are created by stakeholders across the industry and across geographic boundaries to create an trade-wide, rather than nationwide, consensus and

  14. Inorganic membranes for carbon capture and power generation

    NASA Astrophysics Data System (ADS)

    Snider, Matthew T.

    Inorganic membranes are under consideration for cost-effective reductions of carbon emissions from coal-fired power plants, both in the capture of pollutants post-firing and in the direct electrochemical conversion of coal-derived fuels for improved plant efficiency. The suitability of inorganic membrane materials for these purposes stems as much from thermal and chemical stability in coal plant operating conditions as from high performance in gas separations and power generation. Hydrophilic, micro-porous zeolite membrane structures are attractive for separating CO2 from N2 in gaseous waste streams due to the attraction of CO2 to the membrane surface and micropore walls that gives the advantage to CO2 transport. Recent studies have indicated that retention of the templating agent used in zeolite synthesis can further block N2 from the micropore interior and significantly improve CO2/N2 selectivity. However, the role of the templating agent in micro-porous transport has not been well investigated. In this work, gas sorption studies were conducted by high-pressure thermo-gravimetric analysis on Zeolite Y membrane materials to quantify the effect of the templating agent on CO2, N2, and H2O adsorption/desorption, as well as to examine the effect of humidification on overall membrane performance. In equilibrium conditions, the N2 sorption enthalpy was nearly unchanged by the presence of the templating agent, but the N2 pore occupation was reduced ˜1000x. Thus, the steric nature of the blocking of N2 from the micropores by the templating agent was confirmed. CO2 and H2O sorption enthalpies were similarly unaffected by the templating agent, and the micropore occupations were only reduced as much as the void volume taken up by the templating agent. Thus, the steric blocking effect did not occur for molecules more strongly attracted to the micropore walls. Additionally, in time-transient measurements the CO 2 and H2O mobilities were significantly enhanced by the presence

  15. Environmental remediation and conversion of carbon dioxide (CO(2)) into useful green products by accelerated carbonation technology.

    PubMed

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO(2)), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called 'accelerated carbonation', which completes its fast reaction within few hours by using pure CO(2). Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO(2) in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO(2) emissions and environmental remediation.

  16. Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs).

    PubMed

    Wang, Xin; Feng, Yujie; Liu, Jia; Lee, He; Li, Chao; Li, Nan; Ren, Nanqi

    2010-08-15

    Due to increased discharge of CO(2) is incurring problems, CO(2) sequestration technologies require substantial development. By introducing anodic off gas into an algae grown cathode (Chlorella vulgaris), new microbial carbon capture cells (MCCs) were constructed and demonstrated here to be an effective technology for CO(2) emission reduction with simultaneous voltage output without aeration (610+/-50 mV, 1000 Omega). Maximum power densities increased from 4.1 to 5.6 W/m(3) when the optical density (OD) of cathodic algae suspension increased from 0.21 to 0.85 (658 nm). Compared to a stable voltage of 706+/-21 mV (1000 Omega) obtained with cathodic dissolved oxygen (DO) of 6.6+/-1.0 mg/L in MCC, voltage outputs decreased from 654 to 189 mV over 70 h in the control reactor (no algae) accompanied with a decrease in DO from 7.6 to 0.9 mg/L, indicating that cathode electron acceptor was oxygen. Gas analysis showed that all the CO(2) generated from anode was completely eliminated by catholyte, and the soluble inorganic carbon was further converted into algal biomass. These results showed the possibility of a new method for simultaneous carbon fixing, power generation and biodiesel production during wastewater treatment without aeration.

  17. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    SciTech Connect

    Lin, Jerry Y. S.

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900°C and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a

  18. Metal-Organic Frameworks as Potential Platforms for Carbon Dioxide Capture and Chemical Transformation

    NASA Astrophysics Data System (ADS)

    Gao, Wenyang

    The anthropogenic carbon dioxide (CO2) emission into the atmosphere, mainly through the combustion of fossil fuels, has resulted in a balance disturbance of the carbon cycle. Overwhelming scientific evidence proves that the escalating level of atmospheric CO2 is deemed as the main culprit for global warming and climate change. It is thus imperative to develop viable CO2 capture and sequestration (CCS) technologies to reduce CO2 emissions, which is also essential to avoid the potential devastating effects in future. The drawbacks of energy-cost, corrosion and inefficiency for amine-based wet-scrubbing systems which are currently used in industry, have prompted the exploration of alternative approaches for CCS. Extensive efforts have been dedicated to the development of functional porous materials, such as activated carbons, zeolites, porous organic polymers, and metal-organic frameworks (MOFs) to capture CO2. However, these adsorbents are limited by either poor selectivity for CO2 separation from gas mixtures or low CO2 adsorption capacity. Therefore, it is still highly demanding to design next-generation adsorbent materials fulfilling the requirements of high CO2 selectivity and enough CO2 capacity, as well as high water/moisture stability under practical conditions. Metal-organic frameworks (MOFs) have been positioned at the forefront of this area as a promising type of candidate amongst various porous materials. This is triggered by the modularity and functionality of pore size, pore walls and inner surface of MOFs by use of crystal engineering approaches. In this work, several effective strategies, such as incorporating 1,2,3-triazole groups as moderate Lewis base centers into MOFs and employing flexible azamacrocycle-based ligands to build MOFs, demonstrate to be promising ways to enhance CO 2 uptake capacity and CO2 separation ability of porous MOFs. It is revealed through in-depth studies on counter-intuitive experimental observations that the local electric

  19. AN INTEGRATED MODELING FRAMEWORK FOR CARBON MANAGEMENT TECHNOLOGIES

    SciTech Connect

    Anand B. Rao; Edward S. Rubin; Michael B. Berkenpas

    2004-03-01

    CO{sub 2} capture and storage (CCS) is gaining widespread interest as a potential method to control greenhouse gas emissions from fossil fuel sources, especially electric power plants. Commercial applications of CO{sub 2} separation and capture technologies are found in a number of industrial process operations worldwide. Many of these capture technologies also are applicable to fossil fuel power plants, although applications to large-scale power generation remain to be demonstrated. This report describes the development of a generalized modeling framework to assess alternative CO{sub 2} capture and storage options in the context of multi-pollutant control requirements for fossil fuel power plants. The focus of the report is on post-combustion CO{sub 2} capture using amine-based absorption systems at pulverized coal-fired plants, which are the most prevalent technology used for power generation today. The modeling framework builds on the previously developed Integrated Environmental Control Model (IECM). The expanded version with carbon sequestration is designated as IECM-cs. The expanded modeling capability also includes natural gas combined cycle (NGCC) power plants and integrated coal gasification combined cycle (IGCC) systems as well as pulverized coal (PC) plants. This report presents details of the performance and cost models developed for an amine-based CO{sub 2} capture system, representing the baseline of current commercial technology. The key uncertainties and variability in process design, performance and cost parameters which influence the overall cost of carbon mitigation also are characterized. The new performance and cost models for CO{sub 2} capture systems have been integrated into the IECM-cs, along with models to estimate CO{sub 2} transport and storage costs. The CO{sub 2} control system also interacts with other emission control technologies such as flue gas desulfurization (FGD) systems for SO{sub 2} control. The integrated model is applied to

  20. Flightweight Carbon Nanotube Magnet Technology

    NASA Technical Reports Server (NTRS)

    Chapman, J. N.; Schmidt, H. J.; Ruoff, R. S.; Chandrasekhar, V.; Dikin, D. A.; Litchford, R. J.

    2003-01-01

    Virtually all plasma-based systems for advanced airborne/spaceborne propulsion and power depend upon the future availability of flightweight magnet technology. Unfortunately, current technology for resistive and superconducting magnets yields system weights that tend to counteract the performance advantages normally associated with advanced plasma-based concepts. The ongoing nanotechnology revolution and the continuing development of carbon nanotubes (CNT), however, may ultimately relieve this limitation in the near future. Projections based on recent research indicate that CNTs may achieve current densities at least three orders of magnitude larger than known superconductors and mechanical strength two orders of magnitude larger than steel. In fact, some published work suggests that CNTs are superconductors. Such attributes imply a dramatic increase in magnet performance-to-weight ratio and offer real hope for the construction of true flightweight magnets. This Technical Publication reviews the technology status of CNTs with respect to potential magnet applications and discusses potential techniques for using CNT wires and ropes as a winding material and as an integral component of the containment structure. The technology shortfalls are identified and a research and technology strategy is described that addresses the following major issues: (1) Investigation and verification of mechanical and electrical properties, (2) development of tools for manipulation and fabrication on the nanoscale, (3) continuum/molecular dynamics analysis of nanotube behavior when exposed to practical bending and twisting loads, and (4) exploration of innovative magnet fabrication techniques that exploit the natural attributes of CNTs.

  1. The Biological Deep Sea Hydrothermal Vent as a Model to Study Carbon Dioxide Capturing Enzymes

    PubMed Central

    Minic, Zoran; Thongbam, Premila D.

    2011-01-01

    Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture. PMID:21673885

  2. The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes.

    PubMed

    Minic, Zoran; Thongbam, Premila D

    2011-01-01

    Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO₂ from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO₂ fixation and assimilation might be very useful. This review describes some current research concerning CO₂ fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.

  3. Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit

    SciTech Connect

    Sarkar, Avik; Pan, Wenxiao; Suh, Dong-Myung; Huckaby, E. D.; Sun, Xin

    2014-10-01

    To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD-based flow simulations for the regeneration device responsible for extracting CO2 from CO2-loaded sorbent particles before the particles are recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the low regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented.

  4. Synergistic Carbon Dioxide Capture and Conversion in Porous Materials.

    PubMed

    Zhang, Yugen; Lim, Diane S W

    2015-08-24

    Global climate change and excessive CO2 emissions have caused widespread public concern in recent years. Tremendous efforts have been made towards CO2 capture and conversion. This has led to the development of numerous porous materials as CO2 capture sorbents. Concurrently, the conversion of CO2 into value-added products by chemical methods has also been well-documented recently. However, realizing the attractive prospect of direct, in situ chemical conversion of captured CO2 into other chemicals remains a challenge.

  5. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Andrew Sexton; Jason Davis; Marcus Hilliard; Qing Xu; David Van Wagener; Jorge M. Plaza

    2007-03-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The best K{sup +}/PZ solvent, 4.5 m K{sup +}/4.5 m PZ, requires equivalent work of 31.8 kJ/mole CO{sub 2} when used with a double matrix stripper and an intercooled absorber. The oxidative degradation of piperazine or organic acids is reduced significantly by inhibitor A, but the production of ethylenediamine is unaffected. The oxidative degradation of piperazine in 7 m MEA/2 m PZ is catalyzed by Cu{sup ++}. The thermal degradation of MEA becomes significant at 120 C. The solubility of potassium sulfate in MEA/PZ solvents is increased at greater CO{sub 2} loading. The best solvent and process configuration, matrix with MDEA/PZ, offers 22% and 15% energy savings over the baseline and improved baseline, respectively, with stripping and compression to 10 MPa. The energy requirement for stripping and compression to 10 MPa is about 20% of the power output from a 500 MW power plant with 90% CO{sub 2} removal. The stripper rate model shows that a ''short and fat'' stripper requires 7 to 15% less equivalent work than a ''tall and skinny'' one. The stripper model was validated with data obtained from pilot plant experiments at the University of Texas with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ under normal pressure and vacuum conditions using Flexipac AQ Style 20 structured packing. Experiments with oxidative degradation at low gas rates confirm the effects of Cu{sup +2} catalysis; in MEA/PZ solutions more formate and acetate is produced in the presence of Cu{sup +2}. At 150 C, the half life of 30% MEA with 0.4 moles CO{sub 2}/mole amine is about 2 weeks. At 100 C, less than 3% degradation occurred in two weeks. The solubility of potassium sulfate in MEA solution increases significantly with CO{sub 2} loading and decreases with MEA concentration. The base case corrosion

  6. Application of the sol-gel technique to develop synthetic calcium-based sorbents with excellent carbon dioxide capture characteristics.

    PubMed

    Broda, Marcin; Kierzkowska, Agnieszka M; Müller, Christoph R

    2012-02-13

    An option for reducing the release of greenhouse gases into the atmosphere is the implementation of CO(2) capture and storage (CCS) technologies. However, the costs associated with capturing CO(2) by using the currently available technology of amine scrubbing are very high. An emerging second-generation CO(2) capture technology is the use of calcium-based sorbents, which exploit the carbonation and calcination reactions of CaO, namely, CaO+CO(2) ↔CaCO(3). Naturally occurring Ca-based sorbents are inexpensive, but show a very rapid decay of CO(2) uptake capacity with cycle number. Here, we report the development of synthetic Ca-based CO(2) sorbents using a sol-gel technique. Using this technique, we are able to synthesize a nanostructured material that possesses a high surface area and pore volume and shows excellent CO(2) capture characteristics over many cycles. Furthermore, we are able to establish a clear relationship between the structure of the sorbent and its performance. After 30 cycles of calcination and carbonation, the best material possessed a CO(2) uptake capacity of 0.51 g of CO(2) per gram of sorbent; a value that is about 250 % higher than that for naturally occurring Havelock limestone.

  7. Challenges of oxyfuel combustion modeling for carbon capture

    NASA Astrophysics Data System (ADS)

    Kangwanpongpan, T.; Klatt, M.; Krautz, H. J.

    2012-04-01

    From the policies scenario from Internal Energy Agency (IEA) in 2010, global energy demand for coal climbs from 26% in 2006 to 29% in 2030 and most of demands for coal comes from the power-generation sector [1]. According to the new Copenhagen protocol [3], Global CO2 emission is rising from power generation due to an increasing world demand of electricity. For Energy-related CO2 emission in 2009, 43% of CO2 emissions from fuel combustion were produced from coal, 37% from oil and 20% from gas [4]. Therefore, CO2 capture from coal is the key factor to reduce greenhouse gas emission. Oxyfuel combustion is one of the promising technologies for capturing CO2 from power plants and subsequent CO2 transportation and storage in a depleted oil or gas field or saline-aquifer. The concept of Oxyfuel combustion is to remove N2 from the combustion process and burn the fuel with a mixture composed of O2 and CO2 together with recycled flue gas back into combustion chamber in order to produce a flue gas consisting mainly of CO2. This flue gas can be easily purified, compressed and transported to storage sites. However, Oxyfuel plants are still in the phase of pilot-scaled projects [5] and combustion in Oxyfuel conditions must be further investigated for a scale-up plant. Computational fluid dynamics (CFD) serves as an efficient tool for many years in Oxyfuel combustion researches [6-12] to provide predictions of temperature, heat transfer, and product species from combustion process inside furnace. However, an insight into mathematical models for Oxyfuel combustion is still restricted due to many unknown parameters such as devolatilization rate, reaction mechanisms of volatile reactions, turbulent gaseous combustion of volatile products, char heterogeneous reactions, radiation properties of gaseous mixtures and heat transfer inside and through furnace's wall. Heat transfer drastically changes due to an increasing proportion of H2O and CO2 in these Oxyfuel conditions and the degree

  8. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-04-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry.

  9. Direct electrochemical capture and release of carbon dioxide using an industrial organic pigment: quinacridone.

    PubMed

    Apaydin, Dogukan Hazar; Głowacki, Eric Daniel; Portenkirchner, Engelbert; Sariciftci, Niyazi Serdar

    2014-06-23

    Limiting anthropogenic carbon dioxide emissions constitutes a major issue faced by scientists today. Herein we report an efficient way of controlled capture and release of carbon dioxide using nature inspired, cheap, abundant and non-toxic, industrial pigment namely, quinacridone. An electrochemically reduced electrode consisting of a quinacridone thin film (ca. 100 nm thick) on an ITO support forms a quinacridone carbonate salt. The captured CO2 can be released by electrochemical oxidation. The amount of captured CO2 was quantified by FT-IR. The uptake value for electrochemical release process was 4.61 mmol g(-1). This value is among the highest reported uptake efficiencies for electrochemical CO2 capture. For comparison, the state-of-the-art aqueous amine industrial capture process has an uptake efficiency of ca. 8 mmol g(-1).

  10. Environmental Remediation and Conversion of Carbon Dioxide (CO2) into Useful Green Products by Accelerated Carbonation Technology

    PubMed Central

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO2), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called ‘accelerated carbonation’, which completes its fast reaction within few hours by using pure CO2. Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO2 in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO2 emissions and environmental remediation. PMID:20195442

  11. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P.Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

    2002-10-01

    The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that higher temperature calcination of trona leds to reduced carbonation activity in subsequent cycles, but that calcination in dry carbon dioxide did not result in decreased activity relative to calcination in helium. Following higher temperature calcination, sodium bicarbonate (SBC) No.3 has greater activity than either coarse or fine grades of trona. Fixed bed testing of calcined SBC No.3 at 70 C confirmed that high rates of carbon dioxide absorption are possible and that the resulting product is a mixture of Wegscheider's salt and sodium carbonate. In fluidized bed testing of supported potassium carbonate, very rapid carbonation rates were observed. Activity of the support material complicated the data analysis. A milled, spherical grade of SBC appeared to be similar in attrition and abrasion characteristics to an unmilled, less regularly shaped SBC. The calcination behavior, at 107 C, for the milled and unmilled materials was also similar.

  12. Optimal Synthesis of a Pulverized Coal Power Plant with Carbon Capture

    SciTech Connect

    Prakash R. Kotecha; Juan M. Salazar; Stephen Zitney

    2009-01-01

    Coal constitutes an important source of fuel for the production of power in the United States. For instance, in January 2009, pulverized coal (PC) power plants alone contributed to over 45 percent of the Nation's total electric power production. However, PC power plants also contribute to increased emissions of greenhouse gases principally carbon-dioxide (CO2). Recently, various carbon capture strategies have been under active investigation so as to make these plants compete with the more environmental friendly renewable energy sources. One such technology that has received considerable success is the capture of CO2 by an amine-based solvent extraction process. However, an aqueous absorption/stripping technology when used in a PC power plant can reduce the net power output of the plant by as much as 20-40%. The energy penalty comes from heating up the solvent in the regenerator, balancing the enthalpy of reaction, and water stripping. This energy penalty poses considerable limitations on commercial viability of the solvent extraction process and, as a result, various energy-saving modifications have been proposed in the literature ranging from the use of hybrid solvents to novel stripper configurations. In this paper, we show that the energy penalty can be further reduced by heat integration of various PC plant components with the carbon capture system. In addition to the release of greenhouse gases to the environment, PC plants also consume a large amount of freshwater. It is estimated that subcritical and supercritical PC plants have water losses of 714 gal/MWh and 639 gal/MWh, respectively. Water loss is based on an overall balance of the plant source and exit streams. This includes coal moisture, air humidity, process makeup, cooling tower makeup (equivalent to evaporation plus blowdown), process losses (including losses through reactions, solids entrainment, and process makeup/blowdown) and flue gas losses. The primary source of water used in PC power plants

  13. Reviews and synthesis: Carbon capture and storage monitoring - an integrated biological, biophysical and chemical approach

    NASA Astrophysics Data System (ADS)

    Hicks, N.; Vik, U.; Taylor, P.; Ladoukakis, E.; Park, J.; Kolisis, F.; Stahl, H.; Jakobsen, K. S.

    2015-06-01

    Carbon capture and storage (CCS) is a developing technology that seeks to mitigate against the impact of increasing anthropogenic carbon dioxide (CO2) production by capturing CO2 from large point source emitters. After capture the CO2 is compressed and transported to a reservoir where it is stored for geological time scales. Potential leakages from CCS projects, where stored CO2 migrates through the overlaying sediments, are likely to have severe implications on benthic and marine ecosystems. Nonetheless, prokaryotic response to elevated CO2 concentrations has been suggested as one of the first detectable warnings if a CO2 leakage should occur. Applying properties of prokaryotic communities (i.e. community composition and metabolic status) as a novel CO2 monitoring application is highly reliable within a multidisciplinary framework, where deviations from the baseline can easily be identified. In this paper we review current knowledge about the impact of CO2 leakages on marine sediments from a multidisciplinary-based monitoring perspective. We focus on aspects from the fields of biology, geophysics, and chemistry, and discuss a case study example. We argue the importance of an integrative multidisciplinary approach, incorporating biogeochemistry, geophysics, microbial ecology and modelling, with a particular emphasis on metagenomic techniques and novel bioinformatics, for future CCS monitoring. Within this framework, we consider that an effective CCS monitoring programme will ensure that large-scale leakages with potentially devastating effects for the overlaying ecosystem are avoided. Furthermore, the multidisciplinary approach suggested here for CCS monitoring is generic, and can be adapted to other systems of interest.

  14. Updated ice core record captures industrial era carbon variability

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-09-01

    In 1999, researchers published data from ice cores collected at Law Dome, a research site in East Antarctica. These data are distinguished by their high time resolution and by their overlap with modern measurements, providing one of the most important records of how the atmosphere's chemical composition changed over the past 1000 years. Air trapped in bubbles in the ice core let researchers measure the concentration of carbon dioxide and other gases and analyze the ratio of carbon-13 to carbon-12 isotopes in the atmospheric carbon dioxide. Burning fossil fuel releases carbon dioxide that is depleted in carbon-13 isotopes, and the Law Dome record provided evidence that modern increases in atmospheric carbon dioxide are due to anthropogenic activity. In a new study, Rubino et al., a team that includes some of the authors from the original analysis, use novel tools and techniques to update their ice core record.

  15. Purification of carbonic anhydrase from bovine erythrocytes and its application in the enzymic capture of carbon dioxide.

    PubMed

    da Costa Ores, Joana; Sala, Luisa; Cerveira, Guido Picaluga; Kalil, Susana Juliano

    2012-06-01

    This work presents a study of industrially applicable techniques to obtain a biologically supported carbon dioxide capture system, based on the extraction of carbonic anhydrase from bovine blood. Carbonic anhydrase is a metalloenzyme which catalyzes the reversible hydration of carbon dioxide. The objective of this study was to establish conditions to obtain carbonic anhydrase from bovine erythrocytes and apply it in the capture of carbon dioxide. To achieve this, two different purification techniques were evaluated: one by extraction with the organic solvents chloroform and ethanol, where different solvent proportions were studied; and the other by ammonium sulfate precipitation, testing percent saturations between 10% and 80%. Carbon dioxide was enzymatically captured by its precipitation as calcium carbonate with the enzyme obtained by both techniques. The enzyme extracted by ethanol and chloroform showed an activity of 2623 U mL(-1), recovery of 98% and purification factor of 104-fold. That precipitated by ammonium sulfate showed an activity of 2162 U mL(-1), recovery of 66% and purification factor of 1.4-fold using 60% ammonium sulfate saturation. The results obtained in the carbon dioxide capture experiments showed that the carbonic anhydrase extracted in this study not only enhanced the hydration of CO(2), but also promoted the formation of CaCO(3).

  16. Carbon Capture by a Continuous, Regenerative Ammonia-Based Scrubbing Process

    SciTech Connect

    Resnik, K.P.; Yeh, J.T.; Pennline, H.W.

    2006-10-01

    Overview: To develop a knowledge/data base to determine whether an ammonia-based scrubbing process is a viable regenerable-capture technique that can simultaneously remove carbon dioxide, sulfur dioxide, nitric oxides, and trace pollutants from flue gas.

  17. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    SciTech Connect

    Nils Johnson; Joan Ogden

    2010-12-31

    In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilities can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the

  18. Capture and storage of Carbon dioxid: a method for countering climatic changes

    NASA Astrophysics Data System (ADS)

    Benea, L. M.

    2017-01-01

    One of the options aimed at preventing climatic changes is the capture and storage of carbon dioxide, a method with a great potential for reducing greenhouse gases. Capturing and storing carbon dioxide in the soil involves new benefits for the communities in the respective areas. Those benefits also follow from the fact that the organic compound has an essential factor in the soil, determining its properties. The paper presents several results concerning the determination of the quantity of carbon dioxide in different types of soil and it is intended to be the beginning of the process of data collection and the analysis of the reserves and the flow of carbon.

  19. Capture and release of carbon dioxide by carbon nanotubes via temperature cycling

    NASA Astrophysics Data System (ADS)

    Rende{2}, Deniz; Baysal, Nihat; Ozisik, Rahmi

    2011-03-01

    Carbon nanotubes (CNTs) received remarkable attention since they were shown to possess many unique properties as well as being effective and stable adsorbent materials that make them potentially useful for gas storage and separation of various gas mixtures. In this study, the effect of temperature variations on carbon dioxide (CO2) capture via single walled carbon nanotubes (SWNTs) and multi walled carbon nanotubes (MWNTs) were investigated with molecular dynamics simulations. SWNTs of type (10,10), (15,15), and (20,20) and MWNTs formed from the combination of these were simulated. The temperature was varied between 300 and 360 K. The results suggest that absorption of CO2 into the CNTs were directly related to the internal volume of the nanotube, but the cross-sectional area of the tube entrance had a significant effect on the number of CO2 molecules retained. The number of CO2 molecules collected in CNTs gradually decreases with increasing temperature. Separate simulations were performed to understand the potential use of CNTs as thermal pumps to collect/discharge CO2 molecules via temperature cycling. Supported by the NSF (CMMI-0500324 and DMR-0117792).

  20. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  1. Economics of carbon dioxide capture and utilization-a supply and demand perspective.

    PubMed

    Naims, Henriette

    2016-11-01

    Lately, the technical research on carbon dioxide capture and utilization (CCU) has achieved important breakthroughs. While single CO2-based innovations are entering the markets, the possible economic effects of a large-scale CO2 utilization still remain unclear to policy makers and the public. Hence, this paper reviews the literature on CCU and provides insights on the motivations and potential of making use of recovered CO2 emissions as a commodity in the industrial production of materials and fuels. By analyzing data on current global CO2 supply from industrial sources, best practice benchmark capture costs and the demand potential of CO2 utilization and storage scenarios with comparative statics, conclusions can be drawn on the role of different CO2 sources. For near-term scenarios the demand for the commodity CO2 can be covered from industrial processes, that emit CO2 at a high purity and low benchmark capture cost of approximately 33 €/t. In the long-term, with synthetic fuel production and large-scale CO2 utilization, CO2 is likely to be available from a variety of processes at benchmark costs of approx. 65 €/t. Even if fossil-fired power generation is phased out, the CO2 emissions of current industrial processes would suffice for ambitious CCU demand scenarios. At current economic conditions, the business case for CO2 utilization is technology specific and depends on whether efficiency gains or substitution of volatile priced raw materials can be achieved. Overall, it is argued that CCU should be advanced complementary to mitigation technologies and can unfold its potential in creating local circular economy solutions.

  2. Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture.

    PubMed

    Xiang, Zhonghua; Mercado, Rocio; Huck, Johanna M; Wang, Hui; Guo, Zhanhu; Wang, Wenchuan; Cao, Dapeng; Haranczyk, Maciej; Smit, Berend

    2015-10-21

    Porous covalent polymers are attracting increasing interest in the fields of gas adsorption, gas separation, and catalysis due to their fertile synthetic polymer chemistry, large internal surface areas, and ultrahigh hydrothermal stabilities. While precisely manipulating the porosities of porous organic materials for targeted applications remains challenging, we show how a large degree of diversity can be achieved in covalent organic polymers by incorporating multiple functionalities into a single framework, as is done for crystalline porous materials. Here, we synthesized 17 novel porous covalent organic polymers (COPs) with finely tuned porosities, a wide range of Brunauer-Emmett-Teller (BET) specific surface areas of 430-3624 m(2) g(-1), and a broad range of pore volumes of 0.24-3.50 cm(3) g(-1), all achieved by tailoring the length and geometry of building blocks. Furthermore, we are the first to successfully incorporate more than three distinct functional groups into one phase for porous organic materials, which has been previously demonstrated in crystalline metal-organic frameworks (MOFs). COPs decorated with multiple functional groups in one phase can lead to enhanced properties that are not simply linear combinations of the pure component properties. For instance, in the dibromobenzene-lined frameworks, the bi- and multifunctionalized COPs exhibit selectivities for carbon dioxide over nitrogen twice as large as any of the singly functionalized COPs. These multifunctionalized frameworks also exhibit a lower parasitic energy cost for carbon capture at typical flue gas conditions than any of the singly functionalized frameworks. Despite the significant improvement, these frameworks do not yet outperform the current state-of-art technology for carbon capture. Nonetheless, the tuning strategy presented here opens up avenues for the design of novel catalysts, the synthesis of functional sensors from these materials, and the improvement in the performance of

  3. Early public impressions of terrestrial carbon capture and storage in a coal-intensive state.

    PubMed

    Carley, Sanya R; Krause, Rachel M; Warren, David C; Rupp, John A; Graham, John D

    2012-07-03

    While carbon capture and storage (CCS) is considered to be critical to achieving long-term climate-protection goals, public concerns about the CCS practice could pose significant obstacles to its deployment. This study reports findings from the first state-wide survey of public perceptions of CCS in a coal-intensive state, with an analysis of which factors predict early attitudes toward CCS. Nearly three-quarters of an Indiana sample (N = 1001) agree that storing carbon underground is a good approach to protecting the environment, despite 80% of the sample being unaware of CCS prior to participation in the two-wave survey. The majority of respondents do not hold strong opinions about CCS technology. Multivariate analyses indicate that support for CCS is predicted by a belief that humankind contributes to climate change, a preference for increased use of renewable energy, and egalitarian and individualistic worldviews, while opposition to CCS is predicted by self-identified political conservatism and by selective attitudes regarding energy and climate change. Knowledge about early impressions of CCS can help inform near-term technology decisions at state regulatory agencies, utilities, and pipeline companies, but follow-up surveys are necessary to assess how public sentiments evolve in response to image-building efforts with different positions on coal and CCS.

  4. Life cycle assessment of carbon capture and utilization from ammonia process in Mexico.

    PubMed

    Morales Mora, M A; Vergara, C Pretelín; Leiva, M A; Martínez Delgadillo, S A; Rosa-Domínguez, E R

    2016-12-01

    Post-combustion CO2 capture (PCC) of flue gas from an ammonia plant (AP) and the environmental performance of the carbon capture utilization (CCU) technology for greenhouse gas (GHG) emissions to an enhanced oil recovery (EOR) system in Mexico was performed as case study. The process simulations (PS) and life cycle assessment (LCA) were used as supporting tools to quantify the CO2 capture and their environmental impacts, respectively. Two scenarios were considered: 1) the AP with its shift and CO2 removal unit and 2) Scenario 1 plus PCC of the flue gas from the AP primary reformer (AP-2CO2) and the global warming (GW) impact. Also, the GW of the whole of a CO2-EOR project, from these two streams of captured CO2, was evaluated. Results show that 372,426 tCO2/year can be PCC from the flue gas of the primary reformer and 480,000 tons/y of capacity from the AP. The energy requirement for solvent regeneration is estimated to be 2.8 MJ/kgCO2 or a GW impact of 0.22 kgCO2e/kgCO2 captured. GW performances are 297.6 kgCO2e emitted/barrel (bbl) for scenario one, and 106.5 kgCO2e emitted/bbl for the second. The net emissions, in scenario one, were 0.52 tCO2e/bbl and 0.33 tCO2e/bbl in scenario two. Based on PS, this study could be used to evaluate the potential of CO2 capture of 4080 t/d of 4 ammonia plants. The integration of PS-LCA to a PCC study allows the applicability as methodological framework for the development of a cluster of projects in which of CO2 could be recycled back to fuel, chemical, petrochemical products or for enhanced oil recovery (EOR). With AP-2CO2, "CO2 emission free" ammonia production could be achieved.

  5. Deciding between carbon trading and carbon capture and sequestration: an optimisation-based case study for methanol synthesis from syngas.

    PubMed

    Üçtuğ, Fehmi Görkem; Ağralı, Semra; Arıkan, Yıldız; Avcıoğlu, Eray

    2014-01-01

    The economic and technical feasibility of carbon capture and sequestration (CCS) systems are gaining importance as CO2 emission reduction is becoming a more pressing issue for parties from production sectors. Public and private entities have to comply with national schemes imposing tighter limits on their emission allowances. Often these parties face two options as whether to invest in CCS or buy carbon credits for the excess emissions above their limits. CCS is an expensive system to invest in and to operate. Therefore, its feasibility depends on the carbon credit prices prevailing in the markets now and in the future. In this paper we consider the problem of installing a CCS unit in order to ensure that the amount of CO2 emissions is within its allowable limits. We formulate this problem as a non-linear optimisation problem where the objective is to maximise the net returns from pursuing an optimal mix of the two options described above. General Algebraic Modelling Systems (GAMS) software was used to solve the model. The results were found to be sensitive to carbon credit prices and the discount rate, which determines the choices with respect to the future and the present. The model was applied to a methanol synthesis plant as an example. However, the formulation can easily be extended to any production process if the CO2 emissions level per unit of physical production is known. The results showed that for CCS to be feasible, carbon credit prices must be above 15 Euros per ton. This value, naturally, depends on the plant-specific data, and the costs we have employed for CCS. The actual prices (≈5 Euros/ton CO2) at present are far from encouraging the investors into CCS technology.

  6. Capturing carbon dioxide as a polymer from natural gas

    NASA Astrophysics Data System (ADS)

    Hwang, Chih-Chau; Tour, Josiah J.; Kittrell, Carter; Espinal, Laura; Alemany, Lawrence B.; Tour, James M.

    2014-06-01

    Natural gas is considered the cleanest and recently the most abundant fossil fuel source, yet when it is extracted from wells, it often contains 10-20 mol% carbon dioxide (20-40 wt%), which is generally vented to the atmosphere. Efforts are underway to contain this carbon dioxide at the well-head using inexpensive and non-corrosive methods. Here we report nucleophilic porous carbons are synthesized from simple and inexpensive carbon-sulphur and carbon-nitrogen precursors. Infrared, Raman and 13C nuclear magnetic resonance signatures substantiate carbon dioxide fixation by polymerization in the carbon channels to form poly(CO2) under much lower pressures than previously required. This growing chemisorbed sulphur- or nitrogen-atom-initiated poly(CO2) chain further displaces physisorbed hydrocarbon, providing a continuous carbon dioxide selectivity. Once returned to ambient conditions, the poly(CO2) spontaneously depolymerizes, leading to a sorbent that can be easily regenerated without the thermal energy input that is required for traditional sorbents.

  7. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

    2003-01-01

    The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates or intermediate salts through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that high calcination temperatures decrease the activity of sodium bicarbonate Grade 1 (SBC No.1) during subsequent carbonation cycles, but there is little or no progressive decrease in activity in successive cycles. SBC No.1 appears to be more active than SBC No.3. As expected, the presence of SO{sub 2} in simulated flue gas results in a progressive loss of sorbent capacity with increasing cycles. This is most likely due to an irreversible reaction to produce Na{sub 2}SO{sub 3}. This compound appears to be stable at calcination temperatures as high as 200 C. Tests of 40% supported potassium carbonate sorbent and plain support material suggest that some of the activity observed in tests of the supported sorbent may be due to adsorption by the support material rather than to carbonation of the sorbent.

  8. Capturing the emerging market for climate-friendly technologies: opportunities for Ohio

    SciTech Connect

    2006-11-15

    This paper briefly describes the factors driving the growing demand for climate-friendly technologies, some of the key existing companies, organizations, and resources in Ohio, and the potential for Ohio to become a leading supplier of climate solutions. These solutions include a new generation of lower-emitting coal technologies, components for wind turbines, and the feedstocks and facilities to produce biofuels. Several public-private partnerships and initiatives have been established in Ohio. These efforts have encouraged the development of numerous federal- and state-funded projects and attracted major private investments in two increasingly strategic sectors of the Ohio economy: clean-coal technology and alternative energy technology, with a focus on fuel cells. Several major clean-coal projects have been recently initiated in Ohio. In April 2006, the Public Utilities Commission of Ohio approved American Electric Power's (AEP) plan to build a 600 MW clean-coal plant along the Ohio River in Meigs County. The plant will use Integrated Gasification Combined Cycle (IGCC) technology which makes it easier to capture carbon dioxide for sequestration. Three other potential coal gasification facilities are being considered in Ohio: a combination IGCC and synthetic natural gas plant in Allen County by Global Energy/Lima Energy; a coal-to-fuels facility in Lawrence County by Baard Energy, and a coal-to-fuels facility in Scioto County by CME North American Merchant Energy. The paper concludes with recommendations for how Ohio can capitalize on these emerging opportunities. These recommendations include focusing and coordinating state funding of climate technology programs, promoting the development of climate-related industry clusters, and exploring export opportunities to states and countries with existing carbon constraints.

  9. Techno-economic assessment of polymer membrane systems for postcombustion carbon capture at coal-fired power plants.

    PubMed

    Zhai, Haibo; Rubin, Edward S

    2013-03-19

    This study investigates the feasibility of polymer membrane systems for postcombustion carbon dioxide (CO(2)) capture at coal-fired power plants. Using newly developed performance and cost models, our analysis shows that membrane systems configured with multiple stages or steps are capable of meeting capture targets of 90% CO(2) removal efficiency and 95+% product purity. A combined driving force design using both compressors and vacuum pumps is most effective for reducing the cost of CO(2) avoided. Further reductions in the overall system energy penalty and cost can be obtained by recycling a portion of CO(2) via a two-stage, two-step membrane configuration with air sweep to increase the CO(2) partial pressure of feed flue gas. For a typical plant with carbon capture and storage, this yielded a 15% lower cost per metric ton of CO(2) avoided compared to a plant using a current amine-based capture system. A series of parametric analyses also is undertaken to identify paths for enhancing the viability of membrane-based capture technology.

  10. New Adsorption Cycles for Carbon Dioxide Capture and Concentration

    SciTech Connect

    James Ritter; Armin Ebner; Steven Reynolds Hai Du; Amal Mehrotra

    2008-07-31

    The objective of this three-year project was to study new pressure swing adsorption (PSA) cycles for CO{sub 2} capture and concentration at high temperature. The heavy reflux (HR) PSA concept and the use of a hydrotalcite like (HTlc) adsorbent that captures CO{sub 2} reversibly at high temperatures simply by changing the pressure were two key features of these new PSA cycles. Through the completion or initiation of nine tasks, a bench-scale experimental and theoretical program has been carried out to complement and extend the process simulation study that was carried out during Phase I (DE-FG26-03NT41799). This final report covers the entire project from August 1, 2005 to July 31, 2008. This program included the study of PSA cycles for CO{sub 2} capture by both rigorous numerical simulation and equilibrium theory analysis. The insight gained from these studies was invaluable toward the applicability of PSA for CO{sub 2} capture, whether done at ambient or high temperature. The rigorous numerical simulation studies showed that it is indeed possible to capture and concentrate CO{sub 2} by PSA. Over a wide range of conditions it was possible to achieve greater than 90% CO{sub 2} purity and/or greater than 90% CO{sub 2} recovery, depending on the particular heavy reflux (HR) PSA cycle under consideration. Three HR PSA cycles were identified as viable candidates for further study experimentally. The equilibrium theory analysis, which represents the upper thermodynamic limit of the performance of PSA process, further validated the use of certain HR PSA cycles for CO{sub 2} capture and concentration. A new graphical approach for complex PSA cycle scheduling was also developed during the course of this program. This new methodology involves a priori specifying the cycle steps, their sequence, and the number of beds, and then following a systematic procedure that requires filling in a 2-D grid based on a few simple rules, some heuristics and some experience. It has been

  11. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport

  12. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC{number_sign}3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO{sub 2}. Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO{sub 2}/20% H{sub 2}O, and lowest subsequent to calcination in pure CO{sub 2} at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO{sub 2} in the simulated flue gas. CO{sub 2} evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC{number_sign}3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first carbonation cycle, CO

  13. The clathrate hydrate process for post and pre-combustion capture of carbon dioxide.

    PubMed

    Linga, Praveen; Kumar, Rajnish; Englezos, Peter

    2007-11-19

    One of the new approaches for capturing carbon dioxide from treated flue gases (post-combustion capture) is based on gas hydrate crystallization. The basis for the separation or capture of the CO(2) is the fact that the carbon dioxide content of gas hydrate crystals is different than that of the flue gas. When a gas mixture of CO(2) and H(2) forms gas hydrates the CO(2) prefers to partition in the hydrate phase. This provides the basis for the separation of CO(2) (pre-combustion capture) from a fuel gas (CO(2)/H(2)) mixture. The present study illustrates the concept and provides basic thermodynamic and kinetic data for conceptual process design. In addition, hybrid conceptual processes for pre and post-combustion capture based on hydrate formation coupled with membrane separation are presented.

  14. Generation, capture, and utilization of industrial carbon dioxide.

    PubMed

    Hunt, Andrew J; Sin, Emily H K; Marriott, Ray; Clark, James H

    2010-03-22

    As a carbon-based life form living in a predominantly carbon-based environment, it is not surprising that we have created a carbon-based consumer society. Our principle sources of energy are carbon-based (coal, oil, and gas) and many of our consumer goods are derived from organic (i.e., carbon-based) chemicals (including plastics, fabrics and materials, personal care and cleaning products, dyes, and coatings). Even our large-volume inorganic-chemicals-based industries, including fertilizers and construction materials, rely on the consumption of carbon, notably in the form of large amounts of energy. The environmental problems which we now face and of which we are becoming increasingly aware result from a human-induced disturbance in the natural carbon cycle of the Earth caused by transferring large quantities of terrestrial carbon (coal, oil, and gas) to the atmosphere, mostly in the form of carbon dioxide. Carbon is by no means the only element whose natural cycle we have disturbed: we are transferring significant quantities of elements including phosphorus, sulfur, copper, and platinum from natural sinks or ores built up over millions of years to unnatural fates in the form of what we refer to as waste or pollution. However, our complete dependence on the carbon cycle means that its disturbance deserves special attention, as is now manifest in indicators such as climate change and escalating public concern over global warming. As with all disturbances in materials balances, we can seek to alleviate the problem by (1) dematerialization: a reduction in consumption; (2) rematerialization: a change in what we consume; or (3) transmaterialization: changing our attitude towards resources and waste. The "low-carbon" mantra that is popularly cited by organizations ranging from nongovernmental organizations to multinational companies and from local authorities to national governments is based on a combination of (1) and (2) (reducing carbon consumption though greater

  15. "Not in (or under) my backyard": Geographic proximity and public acceptance of carbon capture and storage facilities.

    PubMed

    Krause, Rachel M; Carley, Sanya R; Warren, David C; Rupp, John A; Graham, John D

    2014-03-01

    Carbon capture and storage (CCS) is an innovative technical approach to mitigate the problem of climate change by capturing carbon dioxide emissions and injecting them underground for permanent geological storage. CCS has been perceived both positively, as an innovative approach to facilitate a more environmentally benign use of fossil fuels while also generating local economic benefits, and negatively, as a technology that prolongs the use of carbon-intensive energy sources and burdens local communities with prohibitive costs and ecological and human health risks. This article extends existing research on the "not in my backyard" (NIMBY) phenomenon in a direction that explores the public acceptance of CCS. We utilize survey data collected from 1,001 residents of the coal-intensive U.S. state of Indiana. Over 80% of respondents express support for the general use of CCS technology. However, 20% of these initial supporters exhibit a NIMBY-like reaction and switch to opposition as a CCS facility is proposed close to their communities. Respondents' worldviews, their beliefs about the local economic benefits that CCS will generate, and their concerns about its safety have the greatest impact on increasing or decreasing the acceptance of nearby facilities. These results lend valuable insights into the perceived risks associated with CCS technology and the possibilities for its public acceptance at both a national and local scale. They may be extended further to provide initial insights into likely public reactions to other technologies that share a similar underground dimension, such as hydraulic fracturing.

  16. Borehole EM Monitoring at Aquistore: Final Report to the Carbon Capture Project (CCP)

    SciTech Connect

    Daley, Thomas M.; Smith, J. Torquil; Beyer, John Henry; LaBrecque, Douglas

    2012-10-15

    Geologic carbon sequestration (GCS) is a technology whose goal is to prevent atmospheric release of greenhouse gases via injection of carbon dioxide (CO2) into an underground reservoir for long term storage. GCS is typically part of a program of carbon capture and storage (CCS) that captures CO2 from point sources such as power plants, transports the CO2 to a storage site, and operates an injection facility. One recent CCS pilot project is the Aquistore CO2 sequestration project, near Estevan, Saskatchewan, Canada. The Aquistore project is managed by the Petroleum Technology Research Centre (PTRC) and will be one of the first integrated CCS projects storing CO2 in a deep saline aquifer from a coal fired power plant (PTRC, 2011). Aquistore is expected to store 500,000 tons of CO2 during its lifetime (Ministry of Environment, 2012). Assuring the long-term, safe storage of CO2 requires the development of effective monitoring strategies. As part of the geophysical monitoring effort at Aquistore, there were initial plans for deployment of borehole electrodes for electrical or electromagnetic measurements to monitor CO2 within the reservoir. The injected CO2 displaces saline brine in the reservoir, and because CO2 has a high resistivity compared to brine, the overall resistivity of the formation increases and can be monitored by measuring electric or magnetic fields. Previous work by Lawrence Berkeley National Laboratory (LBNL) had indicated that borehole-to-surface electromagnetic monitoring, using an electric dipole source near the bottom of a well penetrating the reservoir, could detect the resistivity change induced by GCS. To assess the potential application of electromagnetic monitoring at Aquistore, Lawrence Berkeley National Laboratory and Multi-Phase Technologies collaborated on a two-part study including (1) numerical forward modeling of a time

  17. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-05-01

    Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

  18. IN-FLIGHT CAPTURE OF ELEMENTAL MERCURY BY A CHLORINE-IMPREGNATED ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses the in-flight capture of elemental mercury (Hgo) by a chlorine (C1)-impregnated activated carbon. Efforts to develop sorbents for the control of Hg emissions have demonstrated that C1-impregnation of virgin activated carbons using dilute solutions of hydrogen ...

  19. Sustainability: The capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of modern smokeless biomass pyrolysis for biochar and biofuel production is potentially a revolutionary approach for global carbon capture and sequestration at gigatons of carbon (GtC) scales. A conversion of about 7% of the annual terrestrial gross photosynthetic product (120 GtC y-1) i...

  20. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Raghubir P. Gupta

    2006-03-31

    This report describes research conducted between January 1, 2006, and March 31, 2006, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. An integrated system composed of a downflow co-current contact absorber and two hollow screw conveyors (regenerator and cooler) was assembled, instrumented, debugged, and calibrated. A new batch of supported sorbent containing 15% sodium carbonate was prepared and subjected to surface area and compact bulk density determination.

  1. Carbon dioxide capture from a cement manufacturing process

    DOEpatents

    Blount, Gerald C.; Falta, Ronald W.; Siddall, Alvin A.

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  2. A multicriteria decision analysis model and risk assessment framework for carbon capture and storage.

    PubMed

    Humphries Choptiany, John Michael; Pelot, Ronald

    2014-09-01

    Multicriteria decision analysis (MCDA) has been applied to various energy problems to incorporate a variety of qualitative and quantitative criteria, usually spanning environmental, social, engineering, and economic fields. MCDA and associated methods such as life-cycle assessments and cost-benefit analysis can also include risk analysis to address uncertainties in criteria estimates. One technology now being assessed to help mitigate climate change is carbon capture and storage (CCS). CCS is a new process that captures CO2 emissions from fossil-fueled power plants and injects them into geological reservoirs for storage. It presents a unique challenge to decisionmakers (DMs) due to its technical complexity, range of environmental, social, and economic impacts, variety of stakeholders, and long time spans. The authors have developed a risk assessment model using a MCDA approach for CCS decisions such as selecting between CO2 storage locations and choosing among different mitigation actions for reducing risks. The model includes uncertainty measures for several factors, utility curve representations of all variables, Monte Carlo simulation, and sensitivity analysis. This article uses a CCS scenario example to demonstrate the development and application of the model based on data derived from published articles and publicly available sources. The model allows high-level DMs to better understand project risks and the tradeoffs inherent in modern, complex energy decisions.

  3. Energy and economic analysis of the carbon dioxide capture installation with the use of monoethanolamine and ammonia

    NASA Astrophysics Data System (ADS)

    Bochon, Krzysztof; Chmielniak, Tadeusz

    2015-03-01

    In the study an accurate energy and economic analysis of the carbon capture installation was carried out. Chemical absorption with the use of monoethanolamine (MEA) and ammonia was adopted as the technology of carbon dioxide (CO2) capture from flue gases. The energy analysis was performed using a commercial software package to analyze the chemical processes. In the case of MEA, the demand for regeneration heat was about 3.5 MJ/kg of CO2, whereas for ammonia it totalled 2 MJ/kg CO2. The economic analysis was based on the net present value (NPV) method. The limit price for CO2 emissions allowances at which the investment project becomes profitable (NPV = 0) was more than 160 PLN/Mg for MEA and less than 150 PLN/Mg for ammonia. A sensitivity analysis was also carried out to determine the limit price of CO2 emissions allowances depending on electricity generation costs at different values of investment expenditures.

  4. Amine enriched solid sorbents for carbon dioxide capture

    DOEpatents

    Gray, McMahan L.; Soong, Yee; Champagne, Kenneth J.

    2003-04-15

    A new method for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The new method entails treating a solid substrate with acid or base and simultaneous or subsequent treatment with a substituted amine salt. The method eliminates the need for organic solvents and polymeric materials for the preparation of CO.sub.2 capture systems.

  5. New phase equilibrium analyzer for determination of the vapor-liquid equilibrium of carbon dioxide and permanent gas mixtures for carbon capture and storage.

    PubMed

    Ke, Jie; Parrott, Andrew J; Sanchez-Vicente, Yolanda; Fields, Peter; Wilson, Richard; Drage, Trevor C; Poliakoff, Martyn; George, Michael W

    2014-08-01

    A high-pressure, phase equilibrium analyzer incorporating a fiber-optic reflectometer is described. The analyzer has been designed for measuring the vapor-liquid equilibrium data of multi-component mixtures of carbon dioxide and permanent gases, providing a novel tool to acquire of a large number of phase equilibrium data for the development of the new carbon capture and storage technologies. We demonstrate that the analyzer is suitable for determining both the bubble- and dew-point lines at temperature from 253 K and pressure up to 25 MPa using pure CO2 and two binary mixtures of CO2 + N2 and CO2 + H2.

  6. New phase equilibrium analyzer for determination of the vapor-liquid equilibrium of carbon dioxide and permanent gas mixtures for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Ke, Jie; Parrott, Andrew J.; Sanchez-Vicente, Yolanda; Fields, Peter; Wilson, Richard; Drage, Trevor C.; Poliakoff, Martyn; George, Michael W.

    2014-08-01

    A high-pressure, phase equilibrium analyzer incorporating a fiber-optic reflectometer is described. The analyzer has been designed for measuring the vapor-liquid equilibrium data of multi-component mixtures of carbon dioxide and permanent gases, providing a novel tool to acquire of a large number of phase equilibrium data for the development of the new carbon capture and storage technologies. We demonstrate that the analyzer is suitable for determining both the bubble- and dew-point lines at temperature from 253 K and pressure up to 25 MPa using pure CO2 and two binary mixtures of CO2 + N2 and CO2 + H2.

  7. CO2 CAPTURE PROJECT-AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    SciTech Connect

    Helen Kerr

    2004-04-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union (DG Res & DG Tren), Norway (Klimatek) and the U.S.A. (Department of Energy)). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion--technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel--where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with wet high concentrations of CO{sub 2} for storage. (4) Capture Technology, Pre-Combustion--in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening--analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV)--providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies have completed their

  8. CO2 Capture Project-An Integrated, Collaborative Technology Development Project for Next Generation CO2 Separation, Capture and Geologic Sequestration

    SciTech Connect

    Helen Kerr; Linda M. Curran

    2005-04-15

    The CO{sub 2} Capture Project (CCP) was a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, ENI, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union [DG RES & DG TREN], the Norwegian Research Council [Klimatek Program] and the U.S. Department of Energy [NETL]). The project objective was to develop new technologies that could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies were to be developed to ''proof of concept'' stage by the end of 2003. Certain promising technology areas were increased in scope and the studies extended through 2004. The project budget was approximately $26.4 million over 4 years and the work program is divided into eight major activity areas: Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. Capture Technology, Pre-Combustion: in which, natural gas and petroleum cokes are converted to hydrogen and CO{sub 2} in a reformer/gasifier. Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Pre-combustion De-carbonization

  9. Capturing and sequestering carbon by enhancing the natural carbon cycle: Prelimary identification of basic science needs and opportunities

    SciTech Connect

    Benson, S.M.

    1997-07-01

    This document summarizes proceedings and conclusions of a US DOE workshop. The purpose of the workshop was to identify the underlying research needed to answer the following questions: (1) Can the natural carbon cycle be used to aid in stabilizing or decreasing atmospheric CO{sub 2} and CH{sub 4} by: (a) Increasing carbon capture; (b) Preventing carbon from returning to the atmosphere through intermediate (<100 years) to long-term sequestration (> 100 years)?; and (2) What kind of ecosystem management practices could be used to achieve this? Three working groups were formed to discuss the terrestrial biosphere, oceans, and methane. Basic research needs identified included fundamental understanding of carbon cycling and storage in soils, influence of climate change and anthropogenic emissions on the carbon cycle, and carbon capture and sequestration in oceans. 2 figs., 4 tabs.

  10. MULTI-PHASE CFD MODELING OF A SOLID SORBENT CARBON CAPTURE SYSTEM

    SciTech Connect

    Ryan, Emily M.; Xu, Wei; DeCroix, David; Saha, Kringan; Huckaby, E. D.; Darteville, Sebastien; Sun, Xin

    2012-05-01

    Post-combustion solid sorbent carbon capture systems are being studied via computational modeling as part of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI). The work focuses on computational modeling of device-scale multi-phase computational fluid dynamics (CFD) simulations for given carbon capture reactor configurations to predict flow properties, outlet compositions, temperature and pressure. The detailed outputs of the device-scale models provide valuable insight into the operation of new carbon capture devices and will help in the design and optimization of carbon capture systems. As a first step in this project we have focused on modeling a 1 kWe solid sorbent carbon capture system using the commercial CFD software ANSYS FLUENT®. Using the multi-phase models available in ANSYS FLUENT®, we are investigating the use of Eulerian-Eulerian and Eulerian-Lagrangian methods for modeling a fluidized bed carbon capture design. The applicability of the dense discrete phase method (DDPM) is being considered along with the more traditional Eulerian-Eulerian multi-phase model. In this paper we will discuss the design of the 1 kWe solid sorbent system and the setup of the DDPM and Eulerian-Eulerian models used to simulate the system. The results of the hydrodynamics in the system will be discussed and the predictions of the DDPM and Eulerian-Eulerian simulations will be compared. A discussion of the sensitivity of the model to boundary and initial conditions, computational meshing, granular pressure, and drag sub-models will also be presented.

  11. Unusual ultra-hydrophilic, porous carbon cuboids for atmospheric-water capture.

    PubMed

    Hao, Guang-Ping; Mondin, Giovanni; Zheng, Zhikun; Biemelt, Tim; Klosz, Stefan; Schubel, René; Eychmüller, Alexander; Kaskel, Stefan

    2015-02-02

    There is significant interest in high-performance materials that can directly and efficiently capture water vapor, particularly from air. Herein, we report a class of novel porous carbon cuboids with unusual ultra-hydrophilic properties, over which the synergistic effects between surface heterogeneity and micropore architecture is maximized, leading to the best atmospheric water-capture performance among porous carbons to date, with a water capacity of up to 9.82 mmol g(-1) at P/P0 =0.2 and 25 °C (20% relative humidity or 6000 ppm). Benefiting from properties, such as defined morphology, narrow pore size distribution, and high heterogeneity, this series of functional carbons may serve as model materials for fundamental research on carbon chemistry and the advance of new types of materials for water-vapor capture as well as other applications requiring combined highly hydrophilic surface chemistry, developed hierarchical porosity, and excellent stability.

  12. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-04-01

    This report describes research conducted between January 1, 2004 and March 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. RTI has produced laboratory scale batches (approximately 300 grams) of supported sorbents (composed of 20 to 40% sodium carbonate) with high surface area and acceptable activity. Initial rates of weight gain of the supported sorbents when exposed to a simulated flue gas exceeded that of 100% calcined sodium bicarbonate. One of these sorbents was tested through six cycles of carbonation/calcination by thermogravimetric analysis and found to have consistent carbonation activity. Kinetic modeling of the regeneration cycle on the basis of diffusion resistance at the particle surface is impractical, because the evolving gases have an identical composition to those assumed for the bulk fluidization gas. A kinetic model of the reaction has been developed on the basis of bulk motion of water and carbon dioxide at the particle surface (as opposed to control by gas diffusion). The model will be used to define the operating conditions in future laboratory- and pilot-scale testing.

  13. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  14. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    SciTech Connect

    Farnum, Rachel; Perry, Robert; Wood, Benjamin

    2014-12-31

    GE Global Research is developing technology to remove carbon dioxide (CO 2) from the flue gas of coal-fired powerplants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO2-capture solvent. GE Global Research was contracted by the Department of Energy to test a pilot-scale continuous CO2 absorption/desorption system using a GAP-1m/TEG mixture as the solvent. As part of that effort, an Environmental, Health, and Safety (EH&S) assessment for a CO2-capture system for a 550 MW coal-fired powerplant was conducted. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP- 1m/SOX salt, and dodecylbenzenesulfonicacid (DDBSA) were also identified foranalysis. An EH&S assessment was also completed for the manufacturing process for the GAP-1m solvent. The chemicals associated with the manufacturing process include methanol, xylene, allyl chloride, potassium cyanate, sodium hydroxide (NaOH), tetramethyldisiloxane (TMDSO), tetramethyl ammonium hydroxide, Karstedt catalyst, octamethylcyclotetrasiloxane (D4), Aliquat 336, methyl carbamate, potassium chloride, trimethylamine, and (3-aminopropyl) dimethyl silanol. The toxicological effects of each component of both the CO2 capture system and the manufacturing process were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. Engineering and control systems, including environmental abatement, are described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

  15. CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    SciTech Connect

    Dr. Helen Kerr

    2003-08-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making substantial progress

  16. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; Eric Chen; J. Tim Cullinane; Marcus Hilliard; Babatunde Oyenekan; Terraun Jones

    2003-07-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. A rigorous thermodynamic model has been further developed with a standalone FORTRAN code to represent the CO{sub 2} vapor pressure and speciation of the new solvent. Gas chromatography has been used to measure the oxidative degradation of piperazine. The heat exchangers for the pilot plant have been received. The modifications are on schedule for start-up in November 2003.

  17. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; Eric Chen; J. Tim Cullinane; Marcus Hillard; Babatunde Oyenekan

    2003-10-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. A rigorous thermodynamic model has been further developed with a standalone FORTRAN code to represent the CO{sub 2} vapor pressure and speciation of the new solvent. The welding work has initiated and will be completed for a revised startup of the pilot plant in February 2004.

  18. Carbon dioxide capture from power or process plant gases

    SciTech Connect

    Bearden, Mark D; Humble, Paul H

    2014-06-10

    The present invention are methods for removing preselected substances from a mixed flue gas stream characterized by cooling said mixed flue gas by direct contact with a quench liquid to condense at least one preselected substance and form a cooled flue gas without substantial ice formation on a heat exchanger. After cooling additional process methods utilizing a cryogenic approach and physical concentration and separation or pressurization and sorbent capture may be utilized to selectively remove these materials from the mixed flue gas resulting in a clean flue gas.

  19. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; Eric Chen; J. Tim Cullinane; Marcus Hilliard; Terraun Jones

    2003-04-01

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. A rigorous thermodynamic model has been developed with a stand-alone FORTRAN code to represent the CO{sub 2} vapor pressure and speciation of the new solvent. Parameters have been developed for use of the electrolyte NRTL model in AspenPlus. Analytical methods have been developed using gas chromatography and ion chromatography. The heat exchangers for the pilot plant have been ordered.

  20. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; A. Frank Seibert

    2002-10-01

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Progress has been made in this reporting period on three subtasks. A simple thermodynamic model has been developed to represent the CO{sub 2} vapor pressure and speciation of the new solvent. A rate model has been formulated to predict the CO{sub 2} flux with these solutions under absorber conditions. A process and instrumentation diagram and process flow diagram have been prepared for modifications of the existing pilot plant system.

  1. Feasibility study of algae-based Carbon Dioxide capture

    EPA Science Inventory

    SUMMARY: The biomass of microalgae contains approximately 50% carbon, which is commonly obtained from the atmosphere, but can also be taken from commercial sources that produce CO2, such as coal-fired power plants. A study of operational demonstration projects is being undertak...

  2. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Andreas Weber; Raghubir P. Gupta

    2006-01-01

    This report describes research conducted between October 1, 2005, and December 31, 2005, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from flue gas from coal combustion. A field test was conducted to examine the extent to which RTI's supported sorbent can be regenerated in a heated, hollow screw conveyor. This field test was conducted at the facilities of a screw conveyor manufacturer. The sorbent was essentially completely regenerated during this test, as confirmed by thermal desorption and mass spectroscopy analysis of the regenerated sorbent. Little or no sorbent attrition was observed during 24 passes through the heated screw conveyor system. Three downflow contactor absorption tests were conducted using calcined sodium bicarbonate as the absorbent. Maximum carbon dioxide removals of 57 and 91% from simulated flue gas were observed at near ambient temperatures with water-saturated gas. These tests demonstrated that calcined sodium carbonate is not as effective at removing CO{sub 2} as are supported sorbents containing 10 to 15% sodium carbonate. Delivery of the hollow screw conveyor for the laboratory-scale sorbent regeneration system was delayed; however, construction of other components of this system continued during the quarter.

  3. Radiative muon capture on carbon, oxygen, and calcium

    SciTech Connect

    Armstrong, D.S.; Ahmad, S.; Burnham, R.A.; Gorringe, T.P.; Hasinoff, M.D.; Larabee, A.J.; Waltham, C.E. ); Azuelos, G.; Macdonald, J.A.; Numao, T.; Poutissou, J. ); Blecher, M.; Wright, D.H. ); Clifford, E.T.H.; Summhammer, J. University of Victoria, Victoria, British Columbia ); Depommier, P.; Poutissou, R. ); Mes, H. ); Robertson, B.C. )

    1991-03-01

    The photon energy spectra from radiative muon capture on {sup 12}C, {sup 16}O, and {sup 40}Ca have been measured using a time projection chamber as a pair spectrometer. The branching ratio for radiative muon capture is sensitive to {ital g}{sub {ital p}}, the induced pseudoscalar coupling constant of the weak interaction. Expressed in terms of the axial-vector weak coupling constant {ital g}{sub {ital a}}, values of {ital g}{sub {ital p}}/{ital g}{sub {ital a}}=5.7{plus minus}0.8 and {ital g}{sub {ital p}}/{ital g}{sub {ital a}}=7.3{plus minus}0.9 are obtained for {sup 40}Ca and {sup 16}O, respectively, from comparison with phenomenological calculations of the nuclear response. From comparison with microscopic calculations, values of {ital g}{sub {ital p}}/{ital g}{sub {ital a}}=4.6{plus minus}1.8, 13.6{sub {minus}1.9}{sup +1.6}, and 16.2{sub {minus}0.7}{sup +1.3} for {sup 40}Ca, {sup 16}O, and {sup 12}C, respectively, are obtained. The microscopic results are suggestive of a renormalization of the nucleonic form factors within the nucleus.

  4. Water and climate risks to power generation with carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Byers, E. A.; Hall, J. W.; Amezaga, J. M.; O'Donnell, G. M.; Leathard, A.

    2016-02-01

    Carbon capture and storage (CCS) provides the opportunity to minimize atmospheric carbon emissions from fossil fuel power plants. However, CCS increases cooling water use and few studies have simulated the potential impacts of low flows on CCS power plant reliability. We present a framework to simulate the impacts of natural hydrological variability and climatic changes on water availability for portfolios of CCS capacity and cooling technologies. The methods are applied to the River Trent, the UK’s largest inland cooling water source for electricity generation capacity. Under a medium emissions climate change scenario, the projected median reductions in river flow by the 2040s was 43% for Q99.9 very low flows and 31% in licensable abstractions between Q99.9 and Q91. With CCS developments, cooling water abstractions are projected to increase, likely exceeding available water for all users by the 2030s-2040s. Deficits are reduced when wet/dry hybrid tower cooling is used, which may increase reliability at low flows. We also explore alternative water licensing regimes, currently considered by the UK Government. Climate change and growing cooling demands, individually and jointly present risks that will be prominent by the 2030s, if unaddressed. These risks may be managed if water-efficient abstraction is prioritized when supplies are limited.

  5. Subtask 2.18 - Advancing CO2 Capture Technology: Partnership for CO2 Capture (PCO2C) Phase III

    SciTech Connect

    Kay, John; Azenkeng, Alexander; Fiala, Nathan; Jensen, Melanie; Laumb, Jason; Leroux, Kerryanne; McCollor, Donald; Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler

    2016-03-31

    Industries and utilities continue to investigate ways to decrease their carbon footprint. Carbon capture and storage (CCS) can enable existing power generation facilities to meet the current national CO2 reduction goals. The Partnership for CO2 Capture Phase III focused on several important research areas in an effort to find ways to decrease the cost of capture across both precombustion and postcombustion platforms. Two flue gas pretreatment technologies for postcombustion capture, an SO2 reduction scrubbing technology from Cansolv Technologies Inc. and the Tri-Mer filtration technology that combines particulate, NOx, and SO2 control, were evaluated on the Energy & Environmental Research Center’s (EERC’s) pilot-scale test system. Pretreating the flue gas should enable more efficient, and therefore less expensive, CO2 capture. Both technologies were found to be effective in pretreating flue gas prior to CO2 capture. Two new postcombustion capture solvents were tested, one from the Korea Carbon Capture and Sequestration R&D Center (KCRC) and one from CO2 Solutions Incorporated. Both of these solvents showed the ability to capture CO2 while requiring less regeneration energy, which would reduce the cost of capture. Hydrogen separation membranes from Commonwealth Scientific and Industrial Research Organisation were evaluated through precombustion testing. They are composed of vanadium alloy, which is less expensive than the palladium alloys that are typically used. Their performance was comparable to that of other membranes that have been tested at the EERC. Aspen Plus® software was used to model the KCRC and CO2 Solutions solvents and found that they would result in significantly improved overall plant performance. The modeling effort also showed that the parasitic steam load at partial capture of 45% is less than half that of 90% overall capture, indicating savings that

  6. Geologic Carbon Dioxide Capture and Storage via Low-Temperature Carbonation of Peridotite

    NASA Astrophysics Data System (ADS)

    Matter, J. M.; Kelemen, P. B.; Mervine, E. M.; Paukert, A. N.; Streit, E.

    2011-12-01

    Carbon dioxide is naturally captured and stored in mantle peridotite in two forms: travertine deposits on the surface and carbonate-filled veins in the subsurface. Both are the product of near-surface reactions of CO2-bearing fluids with peridotite in an open and closed system reaction path. As originally discussed by Barnes and O'Neil [1], meteoric water infiltrates and reacts with peridotite in equilibrium with atmospheric CO2, resulting in increasing Mg, Ca and SiO2 concentrations. Further reaction with peridotite at closed system conditions leads to the precipitation of Mg-carbonates and serpentine. The resulting alkaline Ca-OH water absorbs CO2 from the atmosphere and precipitates calcite as travertine deposits when it exits the peridotite as spring water. In order to evaluate the potential of enhancing peridotite carbonation, we have to better understand the processes that occur along the reaction path, and the time scales involved in these processes. For the past few years we have been investigating natural CO2 mineralization in the peridotite of the Samail Ophiolite in northern Oman. We have obtained fluid and rock samples for chemical and isotopic analysis from at least 15 active alkaline spring systems. Concerning the residence time of groundwater along the reaction path, measured tritium concentrations in shallow groundwater and alkaline spring water range from 1.4-2.6 and 0.05-0.15 TU, respectively. Alkaline spring waters with values close to the detection limit (<0.005 TU) are considered sub-modern or older (recharged prior to 1952), whereas the shallow groundwater is most likely a mixture between sub-modern and modern recharge. Recently analyzed 14CDIC data support the tritium data. An additional indicator of the circulation path of groundwater in the peridotite is temperature measurements of the spring water. They are within a few degrees of the mean annual air temperature of Oman, which does not indicate deep circulation of the alkaline water. In

  7. Chemical technologies for exploiting and recycling carbon dioxide into the value chain.

    PubMed

    Peters, Martina; Köhler, Burkhard; Kuckshinrichs, Wilhelm; Leitner, Walter; Markewitz, Peter; Müller, Thomas E

    2011-09-19

    While experts in various fields discuss the potential of carbon capture and storage (CCS) technologies, the utilization of carbon dioxide as chemical feedstock is also attracting renewed and rapidly growing interest. These approaches do not compete; rather, they are complementary: CCS aims to capture and store huge quantities of carbon dioxide, while the chemical exploitation of carbon dioxide aims to generate value and develop better and more-efficient processes from a limited part of the waste stream. Provided that the overall carbon footprint for the carbon dioxide-based process chain is competitive with conventional chemical production and that the reaction with the carbon dioxide molecule is enabled by the use of appropriate catalysts, carbon dioxide can be a promising carbon source with practically unlimited availability for a range of industrially relevant products. In addition, it can be used as a versatile processing fluid based on its remarkable physicochemical properties.

  8. Carbon dioxide capture using resin-wafer electrodeionization

    DOEpatents

    Lin, YuPo J.; Snyder, Seth W.; Trachtenberg, Michael S.; Cowan, Robert M.; Datta, Saurav

    2015-09-08

    The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium. A pH suitable for exchange of CO.sub.2 is electrochemically maintained within the basic and acidic ion exchange wafers by applying an electric potential across the cathode and anode.

  9. Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications

    DOEpatents

    Gay, McMahan; Choi, Sunho; Jones, Christopher W

    2014-09-16

    A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

  10. LADAR vision technology for automated rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Frey, Randy W.

    1991-01-01

    LADAR Vision Technology at Autonomous Technologies Corporation consists of two sensor/processing technology elements: high performance long range multifunction coherent Doppler laser radar (LADAR) technology; and short range integrated CCD camera with direct detection laser ranging sensors. Algorithms and specific signal processing implementations have been simulated for both sensor/processing approaches to position and attitude tracking applicable to AR&C. Experimental data supporting certain sensor measurement accuracies have been generated.

  11. Hypervelocity technology carbon/carbon testing

    NASA Astrophysics Data System (ADS)

    Anselmo, John V.; Kretz, Lawrence O.

    The paper describes the procedures used at the Structures Test Laboratory of the Wright Laboratory's Flight Dynamics Directorate to test a carbon/carbon hot structure representing a typical hypersonic gliding body, and presents the results of tests. The forebody was heated to 1371 C over 13 test runs, using radiant quartz lamps; a vertical shear force of 5.34 kN was introduced to the nose at a stabilized temperature of 816 C. Test data were collected using prototype high-temperature strain gages, in-house-designed high-temperature extensometers, conventional strain gages, and thermocouples. Video footage was taken of all test runs. Test runs were successfully completed up to 1371 C with flight typical thermal gradients at heating rates up to 5.56 C/sec. Results showed that, overall, the termal test control systems performed as predicted and that test temperatures and thermal gradients were achieved to within about 5 percent in most cases.

  12. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees; Andrew Sexton; Daniel Ellenberger

    2005-10-26

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Modeling of stripper performance suggests that vacuum stripping may be an attractive configuration for all solvents. Flexipac 1Y structured packing performs in the absorber as expected. It provides twice as much mass transfer area as IMTP No.40 dumped packing. Independent measurements of CO{sub 2} solubility give a CO{sub 2} loading that is 20% lower than that Cullinane's values with 3.6 m PZ at 100-120 C. The effective mass transfer coefficient (K{sub G}) in the absorber with 5 m K/2.5 m PZ appears to be 0 to 30% greater than that of 30 wt% MEA.

  13. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees; Andrew Sexton; Amorvadee Veawab

    2005-01-26

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. In Campaign 3 of the pilot plant, the overall mass transfer coefficient for the stripper with 7 m MEA decreased from 0.06 to 0.01 mol/(m{sup 3}.s.kPa) as the rich loading increased from 0.45 to 0.6 mol CO{sub 2}/mol MEA. Anion chromatography has demonstrated that nitrate and nitrite are major degradation products of MEA and PZ with pure oxygen. In measurements with the high temperature FTIR in 7 m MEA the MEA vapor pressure varied from 2 to 20 Pa at 35 to 70 C. In 2.5 m PZ the PZ vapor pressure varied from 0.2 to 1 Pa from 37 to 70 C.

  14. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees

    2005-07-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The baseline campaign with 30% MEA has given heat duties from 40 to 70 kcal/gmol CO{sub 2} as predicted by the stripper model. The Flexipak 1Y structured packing gives significantly better performance than IMTP 40 duped packing in the absorber, but in the stripper the performance of the two packings is indistinguishable. The FTIR analyzer measured MEA volatility in the absorber represented by an activity coefficient of 0.7. In the MEA campaign the material balance closed with an average error of 3.5% and the energy balance had an average error of 5.9.

  15. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Amorvadee Veawab

    2006-04-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The final campaign of the pilot plant was completed in February 2006 with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ using Flexipac AQ Style 20. The new cross-exchanger reduced the approach temperature to less than 9 C. Stripper modeling has demonstrated that a configuration with a ''Flashing Feed'' requires 6% less work that a simple stripper. The oxidative degradation of piperazine proceeds more slowly than that of monoethanolamine and produces ethylenediamine and other products. Uninhibited 5 m KHCO{sub 3}/2.5 m PZ corrodes 5 to 6 times faster that 30% MEA with 0.2 mol CO{sub 2}/mol MEA.

  16. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; Eric Chen; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2005-04-29

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Stripper modeling suggests the energy requirement with a simple stripper will be about the same for 5 m K{sup +}/2.5 m PZ and 7 m MEA. Modeling with a generic solvent shows that the optimum heat of CO{sub 2} desorption to minimize heat duty lies between 15 and 25 kcal/gmol. On-line pH and density measurements are effective indicators of loading and total alkalinity for the K+/PZ solvent. The baseline pilot plant campaign with 30% MEA has been started.

  17. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; Eric Chen; J.Tim Cullinane; Marcus Hilliard; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2004-07-29

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. CO{sub 2} mass transfer rates are second order in piperazine concentration and increase with ionic strength. Modeling of stripper performance suggests that 5 m K{sup +}/2.5 m PZ will require 25 to 46% less heat than 7 m MEA. The first pilot plant campaign was completed on June 24. The CO{sub 2} penetration through the absorber with 20 feet of Flexipac{trademark} 1Y varied from 0.6 to 16% as the inlet CO{sub 2} varied from 3 to 12% CO{sub 2} and the gas rate varied from 0.5 to 3 kg/m{sup 2}-s.

  18. Carbon fiber manufacturing via plasma technology

    DOEpatents

    Paulauskas, Felix L.; Yarborough, Kenneth D.; Meek, Thomas T.

    2002-01-01

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  19. Illustrative national scale scenarios of environmental and human health impacts of Carbon Capture and Storage.

    PubMed

    Tzanidakis, Konstantinos; Oxley, Tim; Cockerill, Tim; ApSimon, Helen

    2013-06-01

    Integrated Assessment, and the development of strategies to reduce the impacts of air pollution, has tended to focus only upon the direct emissions from different sources, with the indirect emissions associated with the full life-cycle of a technology often overlooked. Carbon Capture and Storage (CCS) reflects a number of new technologies designed to reduce CO2 emissions, but which may have much broader environmental implications than greenhouse gas emissions. This paper considers a wider range of pollutants from a full life-cycle perspective, illustrating a methodology for assessing environmental impacts using source-apportioned effects based impact factors calculated by the national scale UK Integrated Assessment Model (UKIAM). Contrasting illustrative scenarios for the deployment of CCS towards 2050 are presented which compare the life-cycle effects of air pollutant emissions upon human health and ecosystems of business-as-usual, deployment of CCS and widespread uptake of IGCC for power generation. Together with estimation of the transboundary impacts we discuss the benefits of an effects based approach to such assessments in relation to emissions based techniques.

  20. Low Cost, High Capacity Regenerable Sorbent for Carbon Dioxide Capture from Existing Coal-fired Power Plants

    SciTech Connect

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Dietz, Steven

    2016-03-03

    In this project TDA Research, Inc (TDA) has developed a new post combustion carbon capture technology based on a vacuum swing adsorption system that uses a steam purge and demonstrated its technical feasibility and economic viability in laboratory-scale tests and tests in actual coal derived flue gas. TDA uses an advanced physical adsorbent to selectively remove CO2 from the flue gas. The sorbent exhibits a much higher affinity for CO2 than N2, H2O or O2, enabling effective CO2 separation from the flue gas. We also carried out a detailed process design and analysis of the new system as part of both sub-critical and super-critical pulverized coal fired power plants. The new technology uses a low cost, high capacity adsorbent that selectively removes CO2 in the presence of moisture at the flue gas temperature without a need for significant cooling of the flue gas or moisture removal. The sorbent is based on a TDA proprietary mesoporous carbon that consists of surface functionalized groups that remove CO2 via physical adsorption. The high surface area and favorable porosity of the sorbent also provides a unique platform to introduce additional functionality, such as active groups to remove trace metals (e.g., Hg, As). In collaboration with the Advanced Power and Energy Program of the University of California, Irvine (UCI), TDA developed system simulation models using Aspen PlusTM simulation software to assess the economic viability of TDA’s VSA-based post-combustion carbon capture technology. The levelized cost of electricity including the TS&M costs for CO2 is calculated as $116.71/MWh and $113.76/MWh for TDA system integrated with sub-critical and super-critical pulverized coal fired power plants; much lower than the $153.03/MWhand $147.44/MWh calculated for the corresponding amine based systems. The cost of CO2 captured for TDA’s VSA based system is $38

  1. CO2 Capture Using Electrical Energy: Electrochemically Mediated Separation for Carbon Capture and Mitigation

    SciTech Connect

    2010-07-16

    IMPACCT Project: MIT and Siemens Corporation are developing a process to separate CO2 from the exhaust of coal-fired power plants by using electrical energy to chemically activate and deactivate sorbents, or materials that absorb gases. The team found that certain sorbents bond to CO2 when they are activated by electrical energy and then transported through a specialized separator that deactivates the molecule and releases it for storage. This method directly uses the electricity from the power plant, which is a more efficient but more expensive form of energy than heat, though the ease and simplicity of integrating it into existing coal-fired power plants reduces the overall cost of the technology. This process could cost as low as $31 per ton of CO2 stored.

  2. An Integrated, Low Temperature Process to Capture and Sequester Carbon Dioxide from Industrial Emissions

    NASA Astrophysics Data System (ADS)

    Wendlandt, R. F.; Foremski, J. J.

    2013-12-01

    Laboratory experiments show that it is possible to integrate (1) the chemistry of serpentine dissolution, (2) capture of CO2 gas from the combustion of natural gas and coal-fired power plants using aqueous amine-based solvents, (3) long-term CO2 sequestration via solid phase carbonate precipitation, and (4) capture solvent regeneration with acid recycling in a single, continuous process. In our process, magnesium is released from serpentine at 300°C via heat treatment with ammonium sulfate salts or at temperatures as low as 50°C via reaction with sulfuric acid. We have also demonstrated that various solid carbonate phases can be precipitated directly from aqueous amine-based (NH3, MEA, DMEA) CO2 capture solvent solutions at room temperature. Direct precipitation from the capture solvent enables regenerating CO2 capture solvent without the need for heat and without the need to compress the CO2 off gas. We propose that known low-temperature electrochemical methods can be integrated with this process to regenerate the aqueous amine capture solvent and recycle acid for dissolution of magnesium-bearing mineral feedstocks and magnesium release. Although the direct precipitation of magnesite at ambient conditions remains elusive, experimental results demonstrate that at temperatures ranging from 20°C to 60°C, either nesquehonite Mg(HCO3)(OH)●2H2O or a double salt with the formula [NH4]2Mg(CO3)2●4H2O or an amorphous magnesium carbonate precipitate directly from the capture solvent. These phases are less desirable for CO2 sequestration than magnesite because they potentially remove constituents (water, ammonia) from the reaction system, reducing the overall efficiency of the sequestration process. Accordingly, the integrated process can be accomplished with minimal energy consumption and loss of CO2 capture and acid solvents, and a net generation of 1 to 4 moles of H2O/6 moles of CO2 sequestered (depending on the solid carbonate precipitate and amount of produced H2

  3. Computational Tools for Accelerating Carbon Capture Process Development

    SciTech Connect

    Miller, David; Sahinidis, N V; Cozad, A; Lee, A; Kim, H; Morinelly, J; Eslick, J; Yuan, Z

    2013-06-04

    This presentation reports development of advanced computational tools to accelerate next generation technology development. These tools are to develop an optimized process using rigorous models. They include: Process Models; Simulation-Based Optimization; Optimized Process; Uncertainty Quantification; Algebraic Surrogate Models; and Superstructure Optimization (Determine Configuration).

  4. Report of the Interagency Task Force on Carbon Capture and Storage

    SciTech Connect

    2010-08-01

    Carbon capture and storage (CCS) refers to a set of technologies that can greatly reduce carbon dioxide (CO{sub 2}) emissions from new and existing coal- and gas-fired power plants, industrial processes, and other stationary sources of CO{sub 2}. In its application to electricity generation, CCS could play an important role in achieving national and global greenhouse gas (GHG) reduction goals. However, widespread cost-effective deployment of CCS will occur only if the technology is commercially available and a supportive national policy framework is in place. In keeping with that objective, on February 3, 2010, President Obama established an Interagency Task Force on Carbon Capture and Storage composed of 14 Executive Departments and Federal Agencies. The Task Force, co-chaired by the Department of Energy (DOE) and the Environmental Protection Agency (EPA), was charged with proposing a plan to overcome the barriers to the widespread, cost-effective deployment of CCS within ten years, with a goal of bringing five to ten commercial demonstration projects online by 2016. Composed of more than 100 Federal employees, the Task Force examined challenges facing early CCS projects as well as factors that could inhibit widespread commercial deployment of CCS. In developing the findings and recommendations outlined in this report, the Task Force relied on published literature and individual input from more than 100 experts and stakeholders, as well as public comments submitted to the Task Force. The Task Force also held a large public meeting and several targeted stakeholder briefings. While CCS can be applied to a variety of stationary sources of CO{sub 2}, its application to coal-fired power plant emissions offers the greatest potential for GHG reductions. Coal has served as an important domestic source of reliable, affordable energy for decades, and the coal industry has provided stable and quality high-paying jobs for American workers. At the same time, coal-fired power

  5. The use of computer imaging technology to facilitate the capture of feedlot necropsy information.

    PubMed Central

    Wildman, B K; Schunicht, O C; Jim, G K; Guichon, P T; Booker, C W; Tollens, R A

    2000-01-01

    The collection of necropsy information is an integral component of veterinary feedlot consulting. Computer imaging technology can be employed to facilitate the capture of feedlot necropsy data. A digital camera is used to capture necropsy images. Subsequently, the images are electronically transferred to a central site for veterinary interpretation and diagnosis. Images Figure 1. PMID:10723598

  6. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas Nelson; Brian S. Turk; Paul Box; Raghubir P. Gupta

    2005-10-01

    This report describes research conducted between July 1, 2005, and September 30, 2005, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from flue gas from coal combustion. A new batch of supported sorbent containing 10% sodium carbonate (Na{sub 2}CO{sub 3}) was obtained and characterized. Thermogravimetric analysis (TGA) testing confirmed that the Na{sub 2}CO{sub 3} sorbent reacted with sulfur dioxide (SO{sub 2}) at temperatures between 40 and 160 C. Although the rate of reaction was more rapid at lower temperatures, these data suggest that SO{sub 2} will not be released from the sorbent under expected sorbent-regeneration conditions. Preliminary work has been conducted to establish the design specifications for a laboratory screw-conveyor sorbent regeneration/cooling apparatus. A plan for a scheduled pilot-scale test of a heated hollow-screw conveyor was developed. This test will be conducted at facilities of the screw conveyor fabricator. This test will confirm the extent of sorbent regeneration and will provide data to evaluate multi-cycle sorbent attrition rates associated with this type of processing.

  7. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; Eric Chen; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2004-11-08

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The stripper model with Aspen Custom Modeler and careful optimization of solvent rate suggests that 7 m MEA and 5 m K+/2.5 m PZ will be practically equivalent in energy requirement and optimum solution capacity. The multipressure stripper reduces energy consumption by 15% with a maximum pressure of 5 atm. The use of vanadium as a corrosion inhibitor will carry little risk of long-term environmental or health effects liability, but the disposal of solvent with vanadium will be subject to regulation, probably as a hazardous waste. Analysis of the pilot plant data from Campaign 1 has given values of the mass transfer coefficient consistent with the rate data from the wetted wall column. With a rich end pinch, 30% MEA should provide a capacity of 1.3-1.4 mole CO{sub 2}/kg solvent.

  8. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    SciTech Connect

    Glaser, Paul; Bhandari, Dhaval; Narang, Kristi; McCloskey, Pat; Singh, Surinder; Ananthasayanam, Balajee; Howson, Paul; Lee, Julia; Wroczynski, Ron; Stewart, Frederick; Orme, Christopher; Klaehn, John; McNally, Joshua; Rownaghi, Ali; Lu, Liu; Koros, William; Goizueta, Roberto; Sethi, Vijay

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was

  9. Multi-phase CFD modeling of solid sorbent carbon capture system

    SciTech Connect

    Ryan, E. M.; DeCroix, D.; Breault, Ronald W.; Xu, W.; Huckaby, E. David

    2013-01-01

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

  10. Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System

    SciTech Connect

    Ryan, Emily M.; DeCroix, David; Breault, Ronald W.; Xu, Wei; Huckaby, E. D.; Saha, Kringan; Darteville, Sebastien; Sun, Xin

    2013-07-30

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

  11. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

    2001-01-01

    Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

  12. Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture

    SciTech Connect

    Sjostrom, Sharon

    2016-06-02

    ADA completed a DOE-sponsored program titled Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture under program DE-FE0004343. During this program, sorbents were analyzed for use in a post-combustion CO2 capture process. A supported amine sorbent was selected based upon superior performance to adsorb a greater amount of CO2 than the activated carbon sorbents tested. When the most ideal sorbent at the time was selected, it was characterized and used to create a preliminary techno-economic analysis (TEA). A preliminary 550 MW coal-fired power plant using Illinois #6 bituminous coal was designed with a solid sorbent CO2 capture system using the selected supported amine sorbent to both facilitate the TEA and to create the necessary framework to scale down the design to a 1 MWe equivalent slipstream pilot facility. The preliminary techno-economic analysis showed promising results and potential for improved performance for CO2 capture compared to conventional MEA systems. As a result, a 1 MWe equivalent solid sorbent system was designed, constructed, and then installed at a coal-fired power plant in Alabama. The pilot was designed to capture 90% of the CO2 from the incoming flue gas at 1 MWe net electrical generating equivalent. Testing was not possible at the design conditions due to changes in sorbent handling characteristics at post-regenerator temperatures that were not properly incorporated into the pilot design. Thus, severe pluggage occurred at nominally 60% of the design sorbent circulation rate with heated sorbent, although no handling issues were noted when the system was operated prior to bringing the regenerator to operating temperature. Testing within the constraints of the pilot plant resulted in 90% capture of the incoming CO2 at a flow rate equivalent of 0.2 to 0.25 MWe net electrical generating equivalent. The reduction in equivalent flow rate at 90% capture was

  13. Microbial carbon capture cell using cyanobacteria for simultaneous power generation, carbon dioxide sequestration and wastewater treatment.

    PubMed

    Pandit, Soumya; Nayak, Bikram Kumar; Das, Debabrata

    2012-03-01

    Microbial carbon capture cells (MCCs) were constructed with cyanobacteria growing in a photo biocathode in dual-chambered flat plate mediator-less MFCs separated by an anion exchange membrane from the anode compartment containing Shewanella putrefaciens. The performance of the MCC with Anabaena sparged with CO(2)-air mixture was compared with that of a conventional cathode sparged with air only. The power densities achieved were 57.8 mW/m(2) for Anabaena sparged with a CO(2)-air mixture, 39.2 mW/m(2) for CO(2)-air mixture sparging only, 29.7 mW/m(2) for Anabaena sparged with air, and 19.6 mW/m(2) for air sparging only. The pH of the cathode containing Anabaena gradually increased from 7 to 9.12 and power generation decreased from 34.7 to 23.8 mW/m(2) 17 due to pH imbalance associated voltage losses without CO(2)-air mixture sparging. Sparging with a 5% CO(2)-air mixture produced maximum power of 100.1 mW/m(2). In addition, the power density of MCC increased by 31% when nitrate was added into the catholyte.

  14. Sustainability Assessment of Coal-Fired Power Plants with Carbon Capture and Storage

    SciTech Connect

    Widder, Sarah H.; Butner, R. Scott; Elliott, Michael L.; Freeman, Charles J.

    2011-11-30

    Carbon capture and sequestration (CCS) has the ability to dramatically reduce carbon dioxide (CO2) emissions from power production. Most studies find the potential for 70 to 80 percent reductions in CO2 emissions on a life-cycle basis, depending on the technology. Because of this potential, utilities and policymakers are considering the wide-spread implementation of CCS technology on new and existing coal plants to dramatically curb greenhouse gas (GHG) emissions from the power generation sector. However, the implementation of CCS systems will have many other social, economic, and environmental impacts beyond curbing GHG emissions that must be considered to achieve sustainable energy generation. For example, emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM) are also important environmental concerns for coal-fired power plants. For example, several studies have shown that eutrophication is expected to double and acidification would increase due to increases in NOx emissions for a coal plant with CCS provided by monoethanolamine (MEA) scrubbing. Potential for human health risks is also expected to increase due to increased heavy metals in water from increased coal mining and MEA hazardous waste, although there is currently not enough information to relate this potential to actual realized health impacts. In addition to environmental and human health impacts, supply chain impacts and other social, economic, or strategic impacts will be important to consider. A thorough review of the literature for life-cycle analyses of power generation processes using CCS technology via the MEA absorption process, and other energy generation technologies as applicable, yielded large variability in methods and core metrics. Nonetheless, a few key areas of impact for CCS were developed from the studies that we reviewed. These are: the impact of MEA generation on increased eutrophication and acidification from ammonia emissions and increased toxicity

  15. The Potential of Microbial Activity to Increase the Efficacy of Geologic Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Cunningham, A. B.; Gerlach, R.; Phillips, A. J.; Eldring, J.; Lauchnor, E.; Klapper, I.; Ebigbo, A.; Mitchell, A. C.; Spangler, L.

    2012-12-01

    Geologic carbon capture and storage involves the injection of CO2 into underground formations such as brine aquifers where microbe-rock-fluid interactions will occur. These interactions may be important for the long-term fate of the injected CO2 particularly near well bores and potential leakage pathways. Herein, concepts and results are presented from bench to meso-scale experiments focusing on the utility of attached microorganisms and biofilms to enhance storage security of injected CO2. Batch and flow experiments at atmospheric and geologic CO2storage-relevant pressures have demonstrated the ability of microbial biofilms to decrease the permeability of natural and artificial porous media, survive the exposure to scCO2, and facilitate the conversion of CO2 into long-term stable carbonate phases as well as increase the solubility of CO2 in brines. Recently, the microbially catalyzed process of ureolysis has been investigated for the potential to promote calcium carbonate mineralization in subsurface reservoirs using native or introduced ureolytic microorganisms, which increase the saturation state of CaCO3 via the hydrolysis of urea. The anticipated applications for this biomineralization process in the subsurface include sealing microfractures and CO2 leakage pathways for increased security of geologic carbon storage. Recent work has focused on facilitating this biomineralization process in large scale (74 cm diameter, 38 cm high sandstone) radial flow systems under ambient and subsurface relevant pressures with the goal of developing injection strategies suited for field scale deployment. Methods for microscopic and macroscopic visualization of relevant processes, such as growth of microbial biofilms, their interactions with minerals and influence on pore spaces in porous media reactors are being developed and have been used to calibrate reactive transport models. As a result, these models are being used to predict the effect of biological processes on CO2

  16. Polymer-encapsulated carbon capture liquids that tolerate precipitation of solids for increased capacity

    SciTech Connect

    Aines, Roger D; Bourcier, William L; Spadaccini, Christopher M; Stolaroff, Joshuah K

    2015-02-03

    A system for carbon dioxide capture from flue gas and other industrial gas sources utilizes microcapsules with very thin polymer shells. The contents of the microcapsules can be liquids or mixtures of liquids and solids. The microcapsules are exposed to the flue gas and other industrial gas and take up carbon dioxide from the flue gas and other industrial gas and eventual precipitate solids in the capsule.

  17. Carbon dioxide capture and utilization: using dinuclear catalysts to prepare polycarbonates.

    PubMed

    Yi, N; Unruangsri, J; Shaw, J; Williams, C K

    2015-01-01

    The copolymerization of epoxides, including cyclohexene oxide and vinyl-cyclohexene oxide with carbon dioxide are presented. These processes are catalyzed using a homogeneous di-zinc complex that shows good activity and very high selectivities for polycarbonate polyol formation. The polymerizations are investigated in the presence of different amounts of exogenous reagents, including water, diols and diamines, as models for common contaminants in any carbon dioxide capture and utilization scenario.

  18. Soil carbon sequestration and biochar as negative emission technologies.

    PubMed

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization.

  19. Comparative Assessment of Gasification Based Coal Power Plants with Various CO2 Capture Technologies Producing Electricity and Hydrogen

    PubMed Central

    2014-01-01

    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool “Aspen Plus”. The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency. PMID:24578590

  20. Comparative Assessment of Gasification Based Coal Power Plants with Various CO2 Capture Technologies Producing Electricity and Hydrogen.

    PubMed

    Mukherjee, Sanjay; Kumar, Prashant; Hosseini, Ali; Yang, Aidong; Fennell, Paul

    2014-02-20

    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool "Aspen Plus". The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency.

  1. Feasibility study of using brine for carbon dioxide capture and storage from fixed sources

    SciTech Connect

    Daniel Dziedzic; Kenneth B. Gross; Robert A. Gorski; John T. Johnson

    2006-12-15

    A laboratory-scale reactor was developed to evaluate the capture of carbon dioxide (CO{sub 2}) from a gas into a liquid as an approach to control greenhouse gases emitted from fixed sources. CO{sub 2} at 5-50% concentrations was passed through a gas-exchange membrane and transferred into liquid media - tap water or simulated brine. When using water, capture efficiencies exceeded 50% and could be enhanced by adding base (e.g., sodium hydroxide) or the combination of base and carbonic anhydrase, a catalyst that speeds the conversion of CO{sub 2} to carbonic acid. The transferred CO{sub 2} formed ions, such as bicarbonate or carbonate, depending on the amount of base present. Adding precipitating cations, like Ca{sup ++}, produced insoluble carbonate salts. Simulated brine proved nearly as efficient as water in absorbing CO{sub 2}, with less than a 6% reduction in CO{sub 2} transferred. The CO{sub 2} either dissolved into the brine or formed a mixture of gas and ions. If the chemistry was favorable, carbonate precipitate spontaneously formed. Energy expenditure of pumping brine up and down from subterranean depths was modeled. We concluded that using brine in a gas-exchange membrane system for capturing CO{sub 2} from a gas stream to liquid is technically feasible and can be accomplished at a reasonable expenditure of energy. 24 refs., 9 figs., 2 tabs., 1 app.

  2. Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture

    SciTech Connect

    Richardson, Carl; Steen, William; Triana, Eugenio; Machalek, Thomas; Davila, Jenny; Schmit, Claire; Wang, Andrew; Temple, Brian; Lu, Yongqi; Lu, Hong; Zhang, Luzheng; Ruhter, David; Rostam-Abadi, Massoud; Sayyah, Maryam; Ito, Brandon; Suslick, Kenneth

    2013-09-30

    This document summarizes the work performed on Cooperative Agreement DE-FE0000465, “Evaluation of Dry Sorbent Technology for Pre-Combustion CO{sub 2} Capture,” during the period of performance of January 1, 2010 through September 30, 2013. This project involves the development of a novel technology that combines a dry sorbent-based carbon capture process with the water-gas-shift reaction for separating CO{sub 2} from syngas. The project objectives were to model, develop, synthesize and screen sorbents for CO{sub 2} capture from gasified coal streams. The project was funded by the DOE National Energy Technology Laboratory with URS as the prime contractor. Illinois Clean Coal Institute and The University of Illinois Urbana-Champaign were project co-funders. The objectives of this project were to identify and evaluate sorbent materials and concepts that were suitable for capturing carbon dioxide (CO{sub 2}) from warm/hot water-gas-shift (WGS) systems under conditions that minimize energy penalties and provide continuous gas flow to advanced synthesis gas combustion and processing systems. Objectives included identifying and evaluating sorbents that efficiently capture CO{sub 2} from a gas stream containing CO{sub 2}, carbon monoxide (CO), and hydrogen (H{sub 2}) at temperatures as high as 650 °C and pressures of 400-600 psi. After capturing the CO{sub 2}, the sorbents would ideally be regenerated using steam, or other condensable purge vapors. Results from the adsorption and regeneration testing were used to determine an optimal design scheme for a sorbent enhanced water gas shift (SEWGS) process and evaluate the technical and economic viability of the dry sorbent approach for CO{sub 2} capture. Project work included computational modeling, which was performed to identify key sorbent properties for the SEWGS process. Thermodynamic modeling was used to identify optimal physical properties for sorbents and helped down-select from the universe of possible sorbent

  3. Kinetic and economic analysis of reactive capture of dilute carbon dioxide with Grignard reagents.

    PubMed

    Dowson, G R M; Dimitriou, I; Owen, R E; Reed, D G; Allen, R W K; Styring, P

    2015-01-01

    Carbon Dioxide Utilisation (CDU) processes face significant challenges, especially in the energetic cost of carbon capture from flue gas and the uphill energy gradient for CO2 reduction. Both of these stumbling blocks can be addressed by using alkaline earth metal compounds, such as Grignard reagents, as sacrificial capture agents. We have investigated the performance of these reagents in their ability to both capture and activate CO2 directly from dried flue gas (essentially avoiding the costly capture process entirely) at room temperature and ambient pressures with high yield and selectivity. Naturally, to make the process sustainable, these reagents must then be recycled and regenerated. This would potentially be carried out using existing industrial processes and renewable electricity. This offers the possibility of creating a closed loop system whereby alcohols and certain hydrocarbons may be carboxylated with CO2 and renewable electricity to create higher-value products containing captured carbon. A preliminary Techno-Economic Analysis (TEA) of an example looped process has been carried out to identify the electrical and raw material supply demands and hence determine production costs. These have compared broadly favourably with existing market values.

  4. Calcifying cyanobacteria--the potential of biomineralization for carbon capture and storage.

    PubMed

    Jansson, Christer; Northen, Trent

    2010-06-01

    Employment of cyanobacteria in biomineralization of carbon dioxide by calcium carbonate precipitation offers novel and self-sustaining strategies for point-source carbon capture and sequestration. Although details of this process remain to be elucidated, a carbon-concentrating mechanism, and chemical reactions in exopolysaccharide or proteinaceous surface layers are assumed to be of crucial importance. Cyanobacteria can utilize solar energy through photosynthesis to convert carbon dioxide to recalcitrant calcium carbonate. Calcium can be derived from sources such as gypsum or industrial brine. A better understanding of the biochemical and genetic mechanisms that carry out and regulate cynaobacterial biomineralization should put us in a position where we can further optimize these steps by exploiting the powerful techniques of genetic engineering, directed evolution, and biomimetics.

  5. Calcifying Cyanobacteria - The potential of biomineralization for Carbon Capture and Storage

    SciTech Connect

    Jansson, Christer G; Northen, Trent

    2010-03-26

    Employment of cyanobacteria in biomineralization of carbon dioxide by calcium carbonate precipitation offers novel and self-sustaining strategies for point-source carbon capture and sequestration. Although details of this process remain to be elucidated, a carbon-concentrating mechanism, and chemical reactions in exopolysaccharide or proteinaceous surface layers are assumed to be of crucial importance. Cyanobacteria can utilize solar energy through photosynthesis to convert carbon dioxide to recalcitrant calcium carbonate. Calcium can be derived from sources such as gypsum or industrial brine. A better understanding of the biochemical and genetic mechanisms that carry out and regulate cynaobacterial biomineralization should put us in a position where we can further optimize these steps by exploiting the powerful techniques of genetic engineering, directed evolution, and biomimetics.

  6. Economic and environmental evaluation of flexible integrated gasification polygeneration facilities with carbon capture and storage

    EPA Science Inventory

    One innovative option for reducing greenhouse gas (GHG) emissions involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from co-processed coal and biomass. In this scheme, the feedstocks are first converted to syngas, from which ...

  7. Thermokinetic/mass-transfer analysis of carbon capture for reuse/sequestration.

    SciTech Connect

    Stechel, Ellen Beth; Brady, Patrick Vane; Staiger, Chad Lynn; Luketa, Anay Josephine

    2010-09-01

    Effective capture of atmospheric carbon is a key bottleneck preventing non bio-based, carbon-neutral production of synthetic liquid hydrocarbon fuels using CO{sub 2} as the carbon feedstock. Here we outline the boundary conditions of atmospheric carbon capture for recycle to liquid hydrocarbon fuels production and re-use options and we also identify the technical advances that must be made for such a process to become technically and commercially viable at scale. While conversion of atmospheric CO{sub 2} into a pure feedstock for hydrocarbon fuels synthesis is presently feasible at the bench-scale - albeit at high cost energetically and economically - the methods and materials needed to concentrate large amounts of CO{sub 2} at low cost and high efficiency remain technically immature. Industrial-scale capture must entail: (1) Processing of large volumes of air through an effective CO{sub 2} capture media and (2) Efficient separation of CO{sub 2} from the processed air flow into a pure stream of CO{sub 2}.

  8. Electrocatalytically switchable CO2 capture: first principle computational exploration of carbon nanotubes with pyridinic nitrogen.

    PubMed

    Jiao, Yan; Zheng, Yao; Smith, Sean C; Du, Aijun; Zhu, Zhonghua

    2014-02-01

    Carbon nanotubes with specific nitrogen doping are proposed for controllable, highly selective, and reversible CO2 capture. Using density functional theory incorporating long-range dispersion corrections, we investigated the adsorption behavior of CO2 on (7,7) single-walled carbon nanotubes (CNTs) with several nitrogen doping configurations and varying charge states. Pyridinic-nitrogen incorporation in CNTs is found to induce an increasing CO2 adsorption strength with electron injecting, leading to a highly selective CO2 adsorption in comparison with N2 . This functionality could induce intrinsically reversible CO2 adsorption as capture/release can be controlled by switching the charge carrying state of the system on/off. This phenomenon is verified for a number of different models and theoretical methods, with clear ramifications for the possibility of implementation with a broader class of graphene-based materials. A scheme for the implementation of this remarkable reversible electrocatalytic CO2 -capture phenomenon is considered.

  9. Synthesis and characterization of functional thienyl-phosphine microporous polymers for carbon dioxide capture.

    PubMed

    Chen, Xianghui; Qiao, Shanlin; Du, Zhengkun; Zhou, Yuanhang; Yang, Renqiang

    2013-07-25

    A novel kind of functional organic microporous polymer is designed by introducing polar organic groups (P=O and P=S) and electron-rich heterocyclic into the framework to obtain high carbon dioxide capture capacity. The estimated Brunauer-Emmett-Teller (BET) surface areas of these polymers are about 600 m(2) g(-1) and the highest CO2 uptake is 2.26 mmol g(-1) (1.0 bar/273 K). Interestingly, the polymer containing P=O groups shows greater CO2 capture capacity than that containing P=S groups at the same temperature. In addition, these polymers show high isosteric heats of CO2 adsorption (28.6 kJ mol(-1) ), which can be competitive with some nitrogen-rich networks. Therefore, these microporous polymers are promising candidates for carbon dioxide capture.

  10. Terahertz science and technology of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Hartmann, R. R.; Kono, J.; Portnoi, M. E.

    2014-08-01

    The diverse applications of terahertz (THz) radiation and its importance to fundamental science makes finding ways to generate, manipulate and detect THz radiation one of the key areas of modern applied physics. One approach is to utilize carbon nanomaterials, in particular, single-wall carbon nanotubes and graphene. Their novel optical and electronic properties offer much promise to the field of THz science and technology. This article describes the past, current, and future of THz science and technology of carbon nanotubes and graphene. We will review fundamental studies such as THz dynamic conductivity, THz nonlinearities and ultrafast carrier dynamics as well as THz applications such as THz sources, detectors, modulators, antennas and polarizers.

  11. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    SciTech Connect

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025

  12. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    PubMed Central

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified. PMID:24696663

  13. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions.

    PubMed

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified.

  14. Conductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2 Capture

    PubMed Central

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A.; Smith, Sean C.

    2015-01-01

    Good electrical conductivity and high electron mobility of the sorbent materials are prerequisite for electrocatalytically switchable CO2 capture. However, no conductive and easily synthetic sorbent materials are available until now. Here, we examined the possibility of conductive graphitic carbon nitride (g-C4N3) nanosheets as sorbent materials for electrocatalytically switchable CO2 capture. Using first-principle calculations, we found that the adsorption energy of CO2 molecules on g-C4N3 nanosheets can be dramatically enhanced by injecting extra electrons into the adsorbent. At saturation CO2 capture coverage, the negatively charged g-C4N3 nanosheets achieve CO2 capture capacities up to 73.9 × 1013 cm−2 or 42.3 wt%. In contrast to other CO2 capture approaches, the process of CO2 capture/release occurs spontaneously without any energy barriers once extra electrons are introduced or removed, and these processes can be simply controlled and reversed by switching on/off the charging voltage. In addition, these negatively charged g-C4N3 nanosheets are highly selective for separating CO2 from mixtures with CH4, H2 and/or N2. These predictions may prove to be instrumental in searching for a new class of experimentally feasible high-capacity CO2 capture materials with ideal thermodynamics and reversibility. PMID:26621618

  15. Conductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2 Capture

    NASA Astrophysics Data System (ADS)

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A.; Smith, Sean C.

    2015-12-01

    Good electrical conductivity and high electron mobility of the sorbent materials are prerequisite for electrocatalytically switchable CO2 capture. However, no conductive and easily synthetic sorbent materials are available until now. Here, we examined the possibility of conductive graphitic carbon nitride (g-C4N3) nanosheets as sorbent materials for electrocatalytically switchable CO2 capture. Using first-principle calculations, we found that the adsorption energy of CO2 molecules on g-C4N3 nanosheets can be dramatically enhanced by injecting extra electrons into the adsorbent. At saturation CO2 capture coverage, the negatively charged g-C4N3 nanosheets achieve CO2 capture capacities up to 73.9 × 1013 cm-2 or 42.3 wt%. In contrast to other CO2 capture approaches, the process of CO2 capture/release occurs spontaneously without any energy barriers once extra electrons are introduced or removed, and these processes can be simply controlled and reversed by switching on/off the charging voltage. In addition, these negatively charged g-C4N3 nanosheets are highly selective for separating CO2 from mixtures with CH4, H2 and/or N2. These predictions may prove to be instrumental in searching for a new class of experimentally feasible high-capacity CO2 capture materials with ideal thermodynamics and reversibility.

  16. Conductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2 Capture.

    PubMed

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C

    2015-12-01

    Good electrical conductivity and high electron mobility of the sorbent materials are prerequisite for electrocatalytically switchable CO2 capture. However, no conductive and easily synthetic sorbent materials are available until now. Here, we examined the possibility of conductive graphitic carbon nitride (g-C4N3) nanosheets as sorbent materials for electrocatalytically switchable CO2 capture. Using first-principle calculations, we found that the adsorption energy of CO2 molecules on g-C4N3 nanosheets can be dramatically enhanced by injecting extra electrons into the adsorbent. At saturation CO2 capture coverage, the negatively charged g-C4N3 nanosheets achieve CO2 capture capacities up to 73.9 × 10(13) cm(-2) or 42.3 wt%. In contrast to other CO2 capture approaches, the process of CO2 capture/release occurs spontaneously without any energy barriers once extra electrons are introduced or removed, and these processes can be simply controlled and reversed by switching on/off the charging voltage. In addition, these negatively charged g-C4N3 nanosheets are highly selective for separating CO2 from mixtures with CH4, H2 and/or N2. These predictions may prove to be instrumental in searching for a new class of experimentally feasible high-capacity CO2 capture materials with ideal thermodynamics and reversibility.

  17. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2015-10-20

    This paper examines thermal efficiency penalties and greenhouse gas as well as other pollutant emissions associated with pulverized coal (PC) power plants equipped with postcombustion CO2 capture for carbon sequestration. We find that, depending on the source of heat used to meet the steam requirements in the capture unit, retrofitting a PC power plant that maintains its gross power output (compared to a PC power plant without a capture unit) can cause a drop in plant thermal efficiency of 11.3-22.9%-points. This estimate for efficiency penalty is significantly higher than literature values and corresponds to an increase of about 5.3-7.7 US¢/kWh in the levelized cost of electricity (COE) over the 8.4 US¢/kWh COE value for PC plants without CO2 capture. The results follow from the inclusion of mass and energy feedbacks in PC power plants with CO2 capture into previous analyses, as well as including potential quality considerations for safe and reliable transportation and sequestration of CO2. We conclude that PC power plants with CO2 capture are likely to remain less competitive than natural gas combined cycle (without CO2 capture) and on-shore wind power plants, both from a levelized and marginal COE point of view.

  18. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    SciTech Connect

    Singh, Surinder; Spiry, Irina; Wood, Benjamin; Hancu, Dan; Chen, Wei

    2014-07-01

    This report presents system and economicanalysis for a carbon-capture unit which uses an aminosilicone-based solvent for CO₂ capture in a pulverized coal (PC) boiler. The aminosilicone solvent is a 60/40 wt/wt mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) with tri-ethylene glycol (TEG) as a co-solvent. Forcomparison purposes, the report also shows results for a carbon-capture unit based on a conventional approach using mono-ethanol amine (MEA). The first year removal cost of CO₂ for the aminosilicone-based carbon-capture process is $46.04/ton of CO₂ as compared to $60.25/ton of CO₂ when MEA is used. The aminosilicone- based process has <77% of the CAPEX of a system using MEA solvent. The lower CAPEX is due to several factors, including the higher working capacity of the aminosilicone solvent compared the MEA, which reduces the solvent flow rate required, reducing equipment sizes. If it is determined that carbon steel can be used in the rich-lean heat exchanger in the carbon capture unit, the first year removal cost of CO₂ decreases to $44.12/ton. The aminosilicone-based solvent has a higherthermal stability than MEA, allowing desorption to be conducted at higher temperatures and pressures, decreasing the number of compressor stages needed. The aminosilicone-based solvent also has a lowervapor pressure, allowing the desorption to be conducted in a continuous-stirred tank reactor versus a more expensive packed column. The aminosilicone-based solvent has a lowerheat capacity, which decreases the heat load on the desorber. In summary, the amino-silicone solvent has significant advantages overconventional systems using MEA.

  19. Screen Capture Technology: A Digital Window into Students' Writing Processes

    ERIC Educational Resources Information Center

    Seror, Jeremie

    2013-01-01

    Technological innovations and the prevalence of the computer as a means of producing and engaging with texts have dramatically transformed how literacy is defined and developed in modern society. This rise in digital writing practices has led to a growing number of tools and methods that can be used to explore second language (L2) writing…

  20. Digital Images: Capturing America's Past with the Technology of Today

    ERIC Educational Resources Information Center

    Berson, Michael J.

    2004-01-01

    The use of digital photography in the social studies classroom offers students an application of technology that can help them develop the skills necessary to access, analyze, and evaluate all forms of information and communication. Students learn to recognize how images represent diverse perspectives, connect disparate pieces of information, and…

  1. Lecture Capture Technology and Student Performance in an Operations Management Course

    ERIC Educational Resources Information Center

    Sloan, Thomas W.; Lewis, David A.

    2014-01-01

    Lecture capture technologies (LCT) such as Echo360, Mediasite, and Tegrity have become very popular in recent years. Many studies have shown that students favor the use of such technology, but relatively little research has studied the impact of LCT on learning. This article examines two research questions: (1) whether the use of LCT actually…

  2. Design of protonation constant measurement apparatus for carbon dioxide capturing solvents

    NASA Astrophysics Data System (ADS)

    Ma'mun, S.; Amelia, E.; Rahmat, V.; Alwani, D. R.; Kurniawan, D.

    2016-11-01

    Global warming phenomenon has led to world climate change caused by high concentrations of greenhouse gases (GHG), e.g. carbon dioxide (CO2), in the atmosphere. Carbon dioxide is produced in large amount from coal-fired power plants, iron and steel production, cement production, chemical and petrochemical manufacturing, natural gas purification, and transportation. Carbon dioxide emissions seem to rise from year to year; some efforts to reduce the emissions are, therefore, required. Amine-based absorption could be deployed for post-combustion capture. Some parameters, e.g. mass transfer coefficients and chemical equilibrium constants, are required for a vapor-liquid equilibrium modeling. Protonation constant (pKa), as one of those parameters, could then be measured experimentally. Therefore, an experimental setup to measure pKa of CO2 capturing solvents was designed and validated by measuring the pKa of acetic acid at 30 to 70 °C by a potentiometric titration method. The set up was also used to measure the pKa of MEA at 27 °C. Based on the validation results and due to low vapor pressure of CO2 capturing solvents in general, e.g. alkanolamines, the setup could therefore be used for measuring pKa of the CO2 capturing solvents at temperatures up to 70 °C.

  3. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    SciTech Connect

    Lewis, Amanda; Zhao, Hongbin; Hopkins, Scott

    2014-12-01

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  4. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  5. Antarctic Pumpdown---a New Geoengineering Concept for Capturing and Storing Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Beget, J. E.

    2014-12-01

    Growing concentrations of carbon dioxide in the atmosphere are increasing global temperatures. This is projected to impact human society in negative ways. Multiple geoengineering approaches have been suggested that might counteract problems created by greenhouse warming, but geoengineering itself can be problematic as some proposed methods would pose environmental risks to the oceans, atmosphere, and biosphere. I propose a new approach that would remove CO2 from the atmosphere and store it in the cryosphere. Carbon dioxide would be captured by seeding the atmosphere over a designated small region of central Antarctica with monoethanolamine (MEA), a well known compound commonly used for CO2 capture in submarines and industrial processes. Monoethanolamine captures and retains carbon dioxide until it encounters water. Because MEA crystals are stable when dry, they would fall from the atmosphere just in the local area where the seeding is done, and they would be naturally buried by snowfalls and preserved in the upper parts of the East Antarctic Ice Sheet, where thawing does not occur. The carbon dioxide removed from the atmosphere by this process could reside safely in this geologic reservoir for thousands of years, based on known flow characteristic of the ice sheet. Also, carbon dioxide stored in this way could be recovered in the future by drilling into the ice sheet to the frozen storage zone. The CO2 Antarctic Pumpdown (CAP) concept could potentially be used to stabilize or reduce the amount of carbon dioxide in the atmosphere, and then to store the carbon dioxide safely and inexpensively in a stable geologic reservoir

  6. Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture.

    PubMed

    Gajda, Iwona; Greenman, John; Melhuish, Chris; Santoro, Carlo; Li, Baikun; Cristiani, Pierangela; Ieropoulos, Ioannis

    2015-12-01

    In Microbial Fuel Cells (MFCs), the recovery of water can be achieved with the help of both active (electro-osmosis), and passive (osmosis) transport pathways of electrolyte through the semi-permeable selective separator. The electrical current-dependent transport, results in cations and electro-osmotically dragged water molecules reaching the cathode. The present study reports on the production of catholyte on the surface of the cathode, which was achieved as a direct result of electricity generation using MFCs fed with wastewater, and employing Pt-free carbon based cathode electrodes. The highest pH levels (>13) of produced liquid were achieved by the MFCs with the activated carbon cathodes producing the highest power (309 μW). Caustic catholyte formation is presented in the context of beneficial cathode flooding and transport mechanisms, in an attempt to understand the effects of active and passive diffusion. Active transport was dominant under closed circuit conditions and showed a linear correlation with power performance, whereas osmotic (passive) transport was governing the passive flux of liquid in open circuit conditions. Caustic catholyte was mineralised to a mixture of carbonate and bicarbonate salts (trona) thus demonstrating an active carbon capture mechanism as a result of the MFC energy-generating performance. Carbon capture would be valuable for establishing a carbon negative economy and environmental sustainability of the wastewater treatment process.

  7. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury.

    PubMed

    Ghorishi, S Behrooz; Keeney, Robert M; Serre, Shannon D; Gullett, Brian K; Jozewicz, Wojciech S

    2002-10-15

    Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury (Hg0) and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to increases (by a factor of 2-3) in fixed-bed capture of these mercury species. A commercially available activated carbon (DARCO FGD, NORITAmericas Inc. [FGD])was Cl-impregnated (Cl-FGD) [5 lb (2.3 kg) per batch] and tested for entrained-flow, short-time-scale capture of Hg0. In an entrained flow reactor, the Cl-FGD was introduced in Hg0-laden flue gases (86 ppb of Hg0) of varied compositions with gas/solid contact times of about 3-4 s, resulting in significant Hg0 removal (80-90%), compared to virgin FGD (10-15%). These levels of Hg0 removal were observed across a wide range of very low carbon-to-mercury weight ratios (1000-5000). Variation of the natural gas combustion flue gas composition, by doping with nitrogen oxides and sulfur dioxide, and the flow reactor temperature (100-200 degrees C) had minimal effects on Hg0 removal bythe Cl-FGD in these carbon-to-mercury weight ratios. These results demonstrate significant enhancement of activated carbon reactivity with minimal treatment and are applicable to combustion facilities equipped with downstream particulate matter removal such as an electrostatic precipitator.

  8. Facile Synthesis of Magnetic Mesoporous Hollow Carbon Microspheres for Rapid Capture of Low-Concentration Peptides

    PubMed Central

    2015-01-01

    Mesoporous and hollow carbon microspheres embedded with magnetic nanoparticles (denoted as MHM) were prepared via a facile self-sacrificial method for rapid capture of low-abundant peptides from complex biological samples. The morphology, structure, surface property, and magnetism were well-characterized. The hollow magnetic carbon microspheres have a saturation magnetization value of 130.2 emu g–1 at room temperature and a Brunauer–Emmett–Teller specific surface area of 48.8 m2 g–1 with an average pore size of 9.2 nm for the mesoporous carbon shell. The effectiveness of these MHM affinity microspheres for capture of low-concentration peptides was evaluated by standard peptides, complex protein digests, and real biological samples. These multifunctional hollow carbon microspheres can realize rapid capture and convenient separation of low-concentration peptides. They were validated to have better performance than magnetic mesoporous silica and commercial peptide-enrichment products. In addition, they can be easily recycled and present excellent reusability. Therefore, it is expected that this work may provide a promising tool for high-throughput discovery of peptide biomarkers from biological samples for disease diagnosis and other biomedical applications. PMID:24992375

  9. Facile synthesis of magnetic mesoporous hollow carbon microspheres for rapid capture of low-concentration peptides.

    PubMed

    Cheng, Gong; Zhou, Ming-Da; Zheng, Si-Yang

    2014-08-13

    Mesoporous and hollow carbon microspheres embedded with magnetic nanoparticles (denoted as MHM) were prepared via a facile self-sacrificial method for rapid capture of low-abundant peptides from complex biological samples. The morphology, structure, surface property, and magnetism were well-characterized. The hollow magnetic carbon microspheres have a saturation magnetization value of 130.2 emu g(-1) at room temperature and a Brunauer-Emmett-Teller specific surface area of 48.8 m(2) g(-1) with an average pore size of 9.2 nm for the mesoporous carbon shell. The effectiveness of these MHM affinity microspheres for capture of low-concentration peptides was evaluated by standard peptides, complex protein digests, and real biological samples. These multifunctional hollow carbon microspheres can realize rapid capture and convenient separation of low-concentration peptides. They were validated to have better performance than magnetic mesoporous silica and commercial peptide-enrichment products. In addition, they can be easily recycled and present excellent reusability. Therefore, it is expected that this work may provide a promising tool for high-throughput discovery of peptide biomarkers from biological samples for disease diagnosis and other biomedical applications.

  10. Method and system for capturing carbon dioxide and/or sulfur dioxide from gas stream

    DOEpatents

    Chang, Shih-Ger; Li, Yang; Zhao, Xinglei

    2014-07-08

    The present invention provides a system for capturing CO.sub.2 and/or SO.sub.2, comprising: (a) a CO.sub.2 and/or SO.sub.2 absorber comprising an amine and/or amino acid salt capable of absorbing the CO.sub.2 and/or SO.sub.2 to produce a CO.sub.2- and/or SO.sub.2-containing solution; (b) an amine regenerator to regenerate the amine and/or amino acid salt; and, when the system captures CO.sub.2, (c) an alkali metal carbonate regenerator comprising an ammonium catalyst capable catalyzing the aqueous alkali metal bicarbonate into the alkali metal carbonate and CO.sub.2 gas. The present invention also provides for a system for capturing SO.sub.2, comprising: (a) a SO.sub.2 absorber comprising aqueous alkali metal carbonate, wherein the alkali metal carbonate is capable of absorbing the SO.sub.2 to produce an alkali metal sulfite/sulfate precipitate and CO.sub.2.

  11. Swellable, water- and acid-tolerant polymer sponges for chemoselective carbon dioxide capture.

    PubMed

    Woodward, Robert T; Stevens, Lee A; Dawson, Robert; Vijayaraghavan, Meera; Hasell, Tom; Silverwood, Ian P; Ewing, Andrew V; Ratvijitvech, Thanchanok; Exley, Jason D; Chong, Samantha Y; Blanc, Frédéric; Adams, Dave J; Kazarian, Sergei G; Snape, Colin E; Drage, Trevor C; Cooper, Andrew I

    2014-06-25

    To impact carbon emissions, new materials for carbon capture must be inexpensive, robust, and able to adsorb CO2 specifically from a mixture of other gases. In particular, materials must be tolerant to the water vapor and to the acidic impurities that are present in gas streams produced by using fossil fuels to generate electricity. We show that a porous organic polymer has excellent CO2 capacity and high CO2 selectivity under conditions relevant to precombustion CO2 capture. Unlike polar adsorbents, such as zeolite 13x and the metal-organic framework, HKUST-1, the CO2 adsorption capacity for the hydrophobic polymer is hardly affected by the adsorption of water vapor. The polymer is even stable to boiling in concentrated acid for extended periods, a property that is matched by few microporous adsorbents. The polymer adsorbs CO2 in a different way from rigid materials by physical swelling, much as a sponge adsorbs water. This gives rise to a higher CO2 capacities and much better CO2 selectivity than for other water-tolerant, nonswellable frameworks, such as activated carbon and ZIF-8. The polymer has superior function as a selective gas adsorbent, even though its constituent monomers are very simple organic feedstocks, as would be required for materials preparation on the large industrial scales required for carbon capture.

  12. Economic and Environmental Evaluation of Flexible Integrated Gasification Polygeneration Facilities Equipped with Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Aitken, M.; Yelverton, W. H.; Dodder, R. S.; Loughlin, D. H.

    2014-12-01

    Among the diverse menu of technologies for reducing greenhouse gas (GHG) emissions, one option involves pairing carbon capture and storage (CCS) with the generation of synthetic fuels and electricity from co-processed coal and biomass. In this scheme, the feedstocks are first converted to syngas, from which a Fischer-Tropsch (FT) process reactor and combined cycle turbine produce liquid fuels and electricity, respectively. With low concentrations of sulfur and other contaminants, the synthetic fuels are expected to be cleaner than conventional crude oil products. And with CO2 as an inherent byproduct of the FT process, most of the GHG emissions can be eliminated by simply compressing the CO2 output stream for pipeline transport. In fact, the incorporation of CCS at such facilities can result in very low—or perhaps even negative—net GHG emissions, depending on the fraction of biomass as input and its CO2 signature. To examine the potential market penetration and environmental impact of coal and biomass to liquids and electricity (CBtLE), which encompasses various possible combinations of input and output parameters within the overall energy landscape, a system-wide analysis is performed using the MARKet ALlocation (MARKAL) model. With resource supplies, energy conversion technologies, end-use demands, costs, and pollutant emissions as user-defined inputs, MARKAL calculates—using linear programming techniques—the least-cost set of technologies that satisfy the specified demands subject to environmental and policy constraints. In this framework, the U.S. Environmental Protection Agency (EPA) has developed both national and regional databases to characterize assorted technologies in the industrial, commercial, residential, transportation, and generation sectors of the U.S. energy system. Here, the EPA MARKAL database is updated to include the costs and emission characteristics of CBtLE using figures from the literature. Nested sensitivity analysis is then

  13. Ab initio thermodynamic approach to identify mixed solid sorbents for CO2 capture technology

    DOE PAGES

    Duan, Yuhua

    2015-10-15

    Because the current technologies for capturing CO2 are still too energy intensive, new materials must be developed that can capture CO2 reversibly with acceptable energy costs. At a given CO2 pressure, the turnover temperature (Tt) of the reaction of an individual solid that can capture CO2 is fixed. Such Tt may be outside the operating temperature range (ΔTo) for a practical capture technology. To adjust Tt to fit the practical ΔTo, in this study, three scenarios of mixing schemes are explored by combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations. Our calculated resultsmore » demonstrate that by mixing different types of solids, it’s possible to shift Tt to the range of practical operating temperature conditions. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the mixed solids of interest, we were able to identify the mixing ratios of two or more solids to form new sorbent materials for which lower capture energy costs are expected at the desired pressure and temperature conditions.« less

  14. Progress Towards Commercialization of Electrochemical Membrane Technology for CO2 Capture and Power Generation

    SciTech Connect

    Ghezel-Ayagh, Hossein; Jolly, Stephen; DiNitto, M.; Hunt, Jennifer; Patel, Dilip; Steen, William A.; Richardson, C. F.; Marina, Olga A.; Pederson, Larry R.

    2014-03-01

    To address the concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept, as a novel solution for greenhouse gas emission reduction. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s well established Direct FuelCell® products. The system concept works as two devices in one: it separates the CO2 from the exhaust of other plants and simultaneously, using a supplementary fuel, produces electric power at high efficiency. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of coal fired power plants under a U.S. Department of Energy contract. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from flue gas of a PC plant with no more than 35% increase in the cost of electricity. The specific objectives and related activities presently ongoing for the project include: 1) conduct bench scale tests of ECM and 2) evaluate the effects of impurities present in the coal plant flue gas by laboratory scale performance tests of the membrane.

  15. Critical Metals in Strategic Low-carbon Energy Technologies

    NASA Astrophysics Data System (ADS)

    Moss, R. L.

    2012-04-01

    Due to the rapid growth in demand for certain materials, compounded by political risks associated with the geographical concentration of the supply of them, shortages of materials could be a potential bottleneck to the deployment of low-carbon energy technologies. Consequently, an assessment has been carried out to ascertain whether such shortages could jeopardise the objectives of the EU's Strategic Energy Technology Plan (SET-Plan), especially in the six low-carbon energy technologies of SET-Plan, namely: nuclear, solar, wind, bioenergy, carbon capture and storage (CCS) and electricity grids. The assessment identified 14 metals for which the deployment of the six technologies will require 1% or more (and in some cases, much more) of current world supply per annum between 2020 and 2030. Following a more critical examination, based on the likelihood of rapid future global demand growth, limitations to expanding supply in the short to medium term, and the concentration of supply and political risks associated with key suppliers, 5 of the 14 metals were pinpointed to be at high risk, namely: the rare earth metals neodymium and dysprosium (for wind technology), and the by-products (from the processing of other metals) indium, tellurium and gallium (for photovoltaic technologies). In addition, the work has explored potential mitigation strategies, ranging from expanding European output, increasing recycling and reuse to reducing waste and finding substitutes for these metals in their main applications. Furthermore, recommendations are provided which include closely working with the EU's Raw Materials Initiative; supporting efforts to ensure reliable supply of ore concentrates at competitive prices; promoting R&D and demonstration projects on new lower cost separation processes; and promoting the further development of recycling technologies and increasing end-of-life collection

  16. [Research progress on biochar carbon sequestration technology].

    PubMed

    Jiang, Zhi-Xiang; Zheng, Hao; Li, Feng-Min; Wang, Zhen-Yu

    2013-08-01

    Biochar is a fine-grained and porous material, which is produced by pyrolyzing biomass under anaerobic or oxygen-limiting condition. Due to the aromatic structure, it is resistant to the biotic and abiotic degradation which makes biochar production a promising carbon sequestration technology, and it has attracted widespread attention. Factors including biochar production, biochar stability in soil and the response of plant growth and soil organic carbon to the biochar addition can influence the carbon sequestration potential of biochar. Through exploring the mechanisms of biochar carbon sequestration, the influence of these factors was studied. Furthermore, the research progress of carbon sequestration potential and its economic viability were examined. Finally, aiming at the knowledge gaps in the influencing factors as well as the relationship between these factors, some further research needs were proposed for better application of biochar in China.

  17. Highly stable beta-class carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Alvizo, Oscar; Benoit, Mike; Novick, Scott

    2013-04-16

    The present disclosure relates to .beta.-class carbonic anhydrase polypeptides having improved properties including increased thermostability and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides formulations and uses of the polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering. Also provided are polynucleotides encoding the carbonic anhydrase polypeptides and host cells capable of expressing them.

  18. Highly stable beta-class carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Alvizo, Oscar; Benoit, Michael R; Novick, Scott J

    2013-08-20

    The present disclosure relates to .beta.-class carbonic anhydrase polypeptides having improved properties including increased thermostability and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides formulations and uses of the polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering. Also provided are polynucleotides encoding the carbonic anhydrase polypeptides and host cells capable of expressing them.

  19. Relevant influence of limestone crystallinity on CO₂ capture in the Ca-looping technology at realistic calcination conditions.

    PubMed

    Valverde, J M; Sanchez-Jimenez, P E; Perez-Maqueda, L A

    2014-08-19

    We analyze the role of limestone crystallinity on its CO2 capture performance when subjected to carbonation/calcination cycles at conditions mimicking the Ca-looping (CaL) technology for postcombustion CO2 capture. The behavior of raw and pretreated limestones (milled and thermally annealed) is investigated by means of thermogravimetric analysis (TGA) tests under realistic sorbent regeneration conditions, which necessarily involve high CO2 partial pressure in the calciner and quick heating rates. The pretreatments applied lead to contrasting effects on the solid crystal structure and, therefore, on its resistance to solid-state diffusion. Our results show that decarbonation at high CO2 partial pressure is notably promoted by decreasing solid crystallinity. CaO regeneration is fully achieved under high CO2 partial pressure at 900 °C in short residence times for the milled limestone whereas complete regeneration for raw limestone requires a minimum calcination temperature of about 950 °C. Such a reduction of the calcination temperature and the consequent mitigation of multicyclic capture capacity decay would serve to enhance the efficiency of the CaL technology. On the other hand, the results of our study suggest that the use of highly crystalline limestones would be detrimental since excessively high calcination temperatures should be required to attain full decarbonation at realistic conditions.

  20. High-efficiency power production from natural gas with carbon capture

    NASA Astrophysics Data System (ADS)

    Adams, Thomas A.; Barton, Paul I.

    A unique electricity generation process uses natural gas and solid oxide fuel cells at high electrical efficiency (74%HHV) and zero atmospheric emissions. The process contains a steam reformer heat-integrated with the fuel cells to provide the heat necessary for reforming. The fuel cells are powered with H 2 and avoid carbon deposition issues. 100% CO 2 capture is achieved downstream of the fuel cells with very little energy penalty using a multi-stage flash cascade process, where high-purity water is produced as a side product. Alternative reforming techniques such as CO 2 reforming, autothermal reforming, and partial oxidation are considered. The capital and energy costs of the proposed process are considered to determine the levelized cost of electricity, which is low when compared to other similar carbon capture-enabled processes.

  1. Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.

    PubMed

    Yadav, Anant; Choudhary, Piyush; Atri, Neelam; Teir, Sebastian; Mutnuri, Srikanth

    2016-11-01

    The objective of the present study was to set up a small-scale pilot reactor at ONGC Hazira, Surat, for capturing CO2 from vent gas. The studies were carried out for CO2 capture by either using microalgae Chlorella sp. or a consortium of microalgae (Scenedesmus quadricauda, Chlorella vulgaris and Chlorococcum humicola). The biomass harvested was used for anaerobic digestion to produce biogas. The carbonation column was able to decrease the average 34 vol.% of CO2 in vent gas to 15 vol.% of CO2 in the outlet gas of the carbonation column. The yield of Chlorella sp. was found to be 18 g/m(2)/day. The methane yield was 386 l CH4/kg VSfed of Chlorella sp. whereas 228 l CH4/kg VSfed of the consortium of algae.

  2. Toluene vapor capture by activated carbon particles in a dual gas-solid cyclone system.

    PubMed

    Lim, Yun Hui; Ngo, Khanh Quoc; Park, Young Koo; Jo, Young Min

    2012-08-01

    Capturing of odorous compounds such as toluene vapor by a particulate-activated carbon adsorbent was investigated in a gas-solid cyclone, which is one type of mobile beds. The test cyclone was early modified with the post cyclone (PoC) and a spiral flow guide to the vortex finder. The proposed process may contribute to the reduction of gases and dust from industrial exhausts, especially when dealing with a low concentration of odorous elements and a large volume ofdust flow. In this device, the toluene capturing efficiency at a 400 ppm concentration rose up to 77.4% when using activated carbon (AC) particles with a median size of 27.03 microm. A maximum 96% of AC particles could be collected for reuse depending on the size and flow rate. The AC regenerated via thermal treatment showed an adsorption potential up to 66.7% throughout repeated tests.

  3. Advanced computational tools for optimization and uncertainty quantification of carbon capture processes

    SciTech Connect

    Miller, David C.; Ng, Brenda; Eslick, John

    2014-01-01

    Advanced multi-scale modeling and simulation has the potential to dramatically reduce development time, resulting in considerable cost savings. The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and universities that is developing, demonstrating, and deploying a suite of multi-scale modeling and simulation tools. One significant computational tool is FOQUS, a Framework for Optimization and Quantification of Uncertainty and Sensitivity, which enables basic data submodels, including thermodynamics and kinetics, to be used within detailed process models to rapidly synthesize and optimize a process and determine the level of uncertainty associated with the resulting process. The overall approach of CCSI is described with a more detailed discussion of FOQUS and its application to carbon capture systems.

  4. Final Scientific/Technical Report Carbon Capture and Storage Training Northwest - CCSTNW

    SciTech Connect

    Workman, James

    2013-09-30

    This report details the activities of the Carbon Capture and Storage Training Northwest (CCSTNW) program 2009 to 2013. The CCSTNW created, implemented, and provided Carbon Capture and Storage (CCS) training over the period of the program. With the assistance of an expert advisory board, CCSTNW created curriculum and conducted three short courses, more than three lectures, two symposiums, and a final conference. The program was conducted in five phases; 1) organization, gap analysis, and form advisory board; 2) develop list serves, website, and tech alerts; 3) training needs survey; 4) conduct lectures, courses, symposiums, and a conference; 5) evaluation surveys and course evaluations. This program was conducted jointly by Environmental Outreach and Stewardship Alliance (dba. Northwest Environmental Training Center – NWETC) and Pacific Northwest National Laboratories (PNNL).

  5. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture.

    PubMed

    Shekhah, Osama; Belmabkhout, Youssef; Chen, Zhijie; Guillerm, Vincent; Cairns, Amy; Adil, Karim; Eddaoudi, Mohamed

    2014-06-25

    Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4(4) square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials.

  6. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    SciTech Connect

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  7. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture

    PubMed Central

    Shekhah, Osama; Belmabkhout, Youssef; Chen, Zhijie; Guillerm, Vincent; Cairns, Amy; Adil, Karim; Eddaoudi, Mohamed

    2014-01-01

    Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 44 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. PMID:24964404

  8. Neutron capture nuclei-containing carbon nanoparticles for destruction of cancer cells.

    PubMed

    Hwang, Kuo Chu; Lai, Po Dong; Chiang, Chi-Shiun; Wang, Pei-Jen; Yuan, Chiun-Jye

    2010-11-01

    HeLa cells were incubated with neutron capture nuclei (boron-10 and gadolinium)-containing carbon nanoparticles, followed by irradiation of slow thermal neutron beam. Under a neutron flux of 6 x 10(11) n/cm(2) (or 10 min irradiation at a neutron flux of 1 x 10(9) n/cm(2) s), the percentages of acute cell death at 8 h after irradiation are 52, 55, and 28% for HeLa cells fed with BCo@CNPs, GdCo@CNPs, and Co@CNPs, respectively. The proliferation capability of the survived HeLa cells was also found to be significantly suppressed. At 48 h after neutron irradiation, the cell viability further decreases to 35 +/- 5% as compared to the control set receiving the same amount of neutron irradiation dose but in the absence of carbon nanoparticles. This work demonstrates "proof-of-concept" examples of neutron capture therapy using (10)B-, (157)Gd-, and (59)Co-containing carbon nanoparticles for effective destruction of cancer cells. It will also be reported the preparation and surface functionalization of boron or gadolinium doped core-shell cobalt/carbon nanoparticles (BCo@CNPs, GdCo@CNPs and Co@CNPs) using a modified DC pulsed arc discharge method, and their characterization by various spectroscopic measurements, including TEM, XRD, SQUID, FT-IR, etc. Tumor cell targeting ability was introduced by surface modification of these carbon nanoparticles with folate moieties.

  9. Hierarchical calibration and validation of computational fluid dynamics models for solid sorbent-based carbon capture

    SciTech Connect

    Lai, Canhai; Xu, Zhijie; Pan, Wenxiao; Sun, Xin; Storlie, Curtis; Marcy, Peter; Dietiker, Jean-François; Li, Tingwen; Spenik, James

    2016-01-01

    To quantify the predictive confidence of a solid sorbent-based carbon capture design, a hierarchical validation methodology—consisting of basic unit problems with increasing physical complexity coupled with filtered model-based geometric upscaling has been developed and implemented. This paper describes the computational fluid dynamics (CFD) multi-phase reactive flow simulations and the associated data flows among different unit problems performed within the said hierarchical validation approach. The bench-top experiments used in this calibration and validation effort were carefully designed to follow the desired simple-to-complex unit problem hierarchy, with corresponding data acquisition to support model parameters calibrations at each unit problem level. A Bayesian calibration procedure is employed and the posterior model parameter distributions obtained at one unit-problem level are used as prior distributions for the same parameters in the next-tier simulations. Overall, the results have demonstrated that the multiphase reactive flow models within MFIX can be used to capture the bed pressure, temperature, CO2 capture capacity, and kinetics with quantitative accuracy. The CFD modeling methodology and associated uncertainty quantification techniques presented herein offer a solid framework for estimating the predictive confidence in the virtual scale up of a larger carbon capture device.

  10. Carbon dioxide capture by aminoalkyl imidazolium-based ionic liquid: a computational investigation.

    PubMed

    Chen, Jie-Jie; Li, Wen-Wei; Li, Xue-Liang; Yu, Han-Qing

    2012-04-07

    Efficient technologies/processes for CO(2) capture are greatly desired, and ionic liquids are recognized as promising materials for this purpose. However, the mechanisms for selectively capturing CO(2) by ionic liquids are unclear. In this study, the interactions between CO(2) and 1-n-amino-alkyl-3-methyl-imidazolium tetrafluoroborate, an amino imidazolium ionic liquid (AIIL), in its CO(2) capturing process, are elucidated with both quantum chemistry and molecular dynamics approaches on the molecular level. The effects of the straight aminoalkyl chain length in imidazolium-based cations on CO(2) capture are explored, and thereby the factors governing CO(2) capture for this ionic liquid family, e.g., ionic liquid structure, charge distribution, intermolecular interactions, thermodynamic properties and absorption kinetics, are analyzed. Molecular dynamics simulations are used to study the diffusion of the involved compounds and liquid structures of the CO(2)-AIIL systems. The results show that the amino-alkyl chain length plays an important role in governing the absorption properties of AIILs, including the free energies of absorption, equilibrium constants, desorption temperature, absorption rate constants, diffusion coefficients, and organization of CO(2) around cations and anions. This study provides useful information about rational design of ionic liquids for efficient CO(2) capture.

  11. Four advances in carbon-carbon materials technology

    NASA Technical Reports Server (NTRS)

    Maahs, Howard G.; Vaughn, Wallace L.; Kowbel, Witold

    1994-01-01

    Carbon-carbon composites are a specialty class of materials having many unique properties making these composites attractive for a variety of demanding engineering applications. Chief among these properties are exceptional retention of mechanical properties at temperatures as high as 4000 F, excellent creep resistance, and low density (1.6 to 1.8 g/cu cm). Although carbon-carbon composites are currently in service in a variety of applications, much development work remains to be accomplished before these materials can be considered to be fully mature, realizing their full potential. Four recent technology advances holding particular promise for overcoming current barriers to the wide-spread commercialization of carbon-carbon composites are described. These advances are: markedly improved interlaminar strengths (more than doubled) of two dimensional composites achieved by whiskerization of the fabric reinforcing plies, simultaneously improved oxidation resistance and mechanical properties achieved by the incorporation of matrix-phase oxidation inhibitors based on carborane chemistry, improved oxidation resistance achieved by compositionally graded oxidation protective coatings, and markedly reduced processing times (hours as opposed to weeks or months) accomplished through a novel process of carbon infiltration and coatings deposition based on the use of liquid-phase precursor materials.

  12. Amine-based CO2 capture technology development from the beginning of 2013-a review.

    PubMed

    Dutcher, Bryce; Fan, Maohong; Russell, Armistead G

    2015-02-04

    It is generally accepted by the scientific community that anthropogenic CO2 emissions are leading to global climate change, notably an increase in global temperatures commonly referred to as global warming. The primary source of anthropogenic CO2 emissions is the combustion of fossil fuels for energy. As society's demand for energy increases and more CO2 is produced, it becomes imperative to decrease the amount emitted to the atmosphere. One promising approach to do this is to capture CO2 at the effluent of the combustion site, namely, power plants, in a process called postcombustion CO2 capture. Technologies to achieve this are heavily researched due in large part to the intuitive nature of removing CO2 from the stack gas and the ease in retrofitting existing CO2 sources with these technologies. As such, several reviews have been written on postcombustion CO2 capture. However, it is a fast-developing field, and the most recent review papers already do not include the state-of-the-art research. Notable among CO2 capture technologies are amine-based technologies. Amines are well-known for their reversible reactions with CO2, which make them ideal for the separation of CO2 from many CO2-containing gases, including flue gas. For this reason, this review will cover amine-based technology developed and published in and after the year 2013.

  13. Theoretical Screening of Mixed Solid Sorbent for Applications to CO{sub 2} Capture Technology

    SciTech Connect

    Duan, Yuhua

    2014-03-30

    Since current technologies for capturing CO{sub 2} to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO{sub 2} sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO{sub 2} capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO{sub 2} capture Technologies.

  14. Theoretical Screening of Mixed Solid Sorbent for Applications to CO2 Capture Technology

    SciTech Connect

    Duan, Yuhua

    2014-01-01

    Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO2 sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO2 capture Technologies.

  15. Monitoring of Potential Seepage Through Surface Sediments in the Sleipner Carbon Capture and Storage Area

    NASA Astrophysics Data System (ADS)

    James, R. H.; Lichtschlag, A.; Cevatoglu, M.; Reigstad, L.; Connelly, D.; Bull, J. M.

    2013-12-01

    Subseafloor Carbon Capture and Storage (CCS) has been recognized as critical technology for reducing the release of anthropogenic CO2 emissions to the atmosphere. However, the potential pathways of CO2 movement in the sedimentary overburden as well as the impact of any CO2 seepage from a storage site on the marine environment are poorly understood. As part of the ECO2 project, we have conducted a multidisciplinary survey of the area around Sleipner, which is one of the longest operated subseafloor CCS sites. Our aims were to: (1) Search for tracers of leakage of formation fluids or any other potential precursors of CO2 seepage, in the vicinity of the subseafloor CO2 plume. (2) Assess the potential for mobilization of toxic metals by CO2. (3) Characterize the environment in the vicinity of the Sleipner storage site. Potential pathways of seepage from the storage site were determined by the AUV AUTOSUB, that was equipped with a variety of instrumentation including sidescan sonar and an EM2000 multibeam systems, as well as a CHIRP profiler capable of inspecting the architecture of the sedimentary overburden. To detect geochemical indicators of leakage and their potential impact on the seafloor environment, the composition of fluids and gases were determined in the upper part of the sediment overburden (up to 3.8 m below seafloor), which was recovered by vibrocoring. The microbial activity in these sediments was also determined, by measuring the RNA content of selected cores. In this presentation we will compare the results that we have obtained from the area above the CO2 plume with results from an area ~20 km the north of the Sleipner platform (Hugin fracture). The Hugin fracture is several km long, and pore fluids from sediments recovered from the fracture have a distinctively different composition, with depletion of sulphate and chloride and increase of sulphide, dissolved inorganic carbon and total alkalinity. Assessing the natural variation in the sedimentary

  16. An Assessment of the Technology of Automated Rendezvous and Capture in Space

    NASA Technical Reports Server (NTRS)

    Polites, M. E.

    1998-01-01

    This paper presents the results of a study to assess the technology of automated rendezvous and capture (AR&C) in space. The outline of the paper is as follows. First, the history of manual and automated rendezvous and capture and rendezvous and dock is presented. Next, the need for AR&C in space is established. Then, today's technology and ongoing technology efforts related to AR&C in space are reviewed. In light of these, AR&C systems are proposed that meet NASA's future needs, but can be developed in a reasonable amount of time with a reasonable amount of money. Technology plans for developing these systems are presented; cost and schedule are included.

  17. Competence-based and integrity-based trust as predictors of acceptance of carbon dioxide capture and storage (CCS).

    PubMed

    Terwel, Bart W; Harinck, Fieke; Ellemers, Naomi; Daamen, Dancker D L

    2009-08-01

    Public trust in organizations that are involved in the management and use of new technologies affects lay judgments about the risks and benefits associated with these technologies. In turn, judgments about risks and benefits influence lay attitudes toward these technologies. The validity of this (indirect) effect of trust on lay attitudes toward new technologies, which is referred to as the causal chain account of trust, has up till now only been examined in correlational research. The two studies reported in this article used an experimental approach to more specifically test the causal chain account of trust in the context of carbon dioxide capture and storage technology (CCS). Complementing existing literature, the current studies explicitly distinguished between two different types of trust in organizations: competence-based trust (Study 1) and integrity-based trust (Study 2). In line with predictions, results showed that the organizational position regarding CCS implementation (pro versus con) more strongly affected people's risk and benefit perceptions and their subsequent acceptance of CCS when competence-based trust was high rather than low. In contrast, the organizational position had a greater impact on people's level of CCS acceptance when integrity-based trust was low rather than high.

  18. Chemically Accelerated Carbon Mineralization: Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals as Novel Carbon Capture and Storage

    SciTech Connect

    2010-07-01

    IMPACCT Project: Columbia University is developing a process to pull CO2 out of the exhaust gas of coal-fired power plants and turn it into a solid that can be easily and safely transported, stored above ground, or integrated into value-added products (e.g. paper filler, plastic filler, construction materials, etc.). In nature, the reaction of CO2 with various minerals over long periods of time will yield a solid carbonate—this process is known as carbon mineralization. The use of carbon mineralization as a CO2 capture and storage method is limited by the speeds at which these minerals can be dissolved and CO2 can be hydrated. To facilitate this, Columbia University is using a unique process and a combination of chemical catalysts which increase the mineral dissolution rate, and the enzymatic catalyst carbonic anhydrase which speeds up the hydration of CO2.

  19. Examining the Use of Lecture Capture Technology: Implications for Teaching and Learning

    ERIC Educational Resources Information Center

    Groen, Jovan F.; Quigley, Brenna; Herry, Yves

    2016-01-01

    This study sought to provide a better understanding of how lecture capture technology is used by students and how its use is related to student satisfaction, attendance, and academic performance. Using a mixed method design with both quantitative and qualitative methods to collect data, instruments included a student questionnaire, interviews and…

  20. Integrating Video-Capture Virtual Reality Technology into a Physically Interactive Learning Environment for English Learning

    ERIC Educational Resources Information Center

    Yang, Jie Chi; Chen, Chih Hung; Jeng, Ming Chang

    2010-01-01

    The aim of this study is to design and develop a Physically Interactive Learning Environment, the PILE system, by integrating video-capture virtual reality technology into a classroom. The system is designed for elementary school level English classes where students can interact with the system through physical movements. The system is designed to…

  1. Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane.

    PubMed

    Alonso, Amanda; Moral-Vico, J; Abo Markeb, Ahmad; Busquets-Fité, Martí; Komilis, Dimitrios; Puntes, Victor; Sánchez, Antoni; Font, Xavier

    2017-04-01

    Innovative gas capture technologies with the objective to mitigate CO2 and CH4 emissions are discussed in this review. Emphasis is given on the use of nanoparticles (NP) as sorbents of CO2 and CH4, which are the two most important global warming gases. The existing NP sorption processes must overcome certain challenges before their implementation to the industrial scale. These are: i) the utilization of the concentrated gas stream generated by the capture and gas purification technologies, ii) the reduction of the effects of impurities on the operating system, iii) the scale up of the relevant materials, and iv) the retrofitting of technologies in existing facilities. Thus, an innovative design of adsorbents could possibly address those issues. Biogas purification and CH4 storage would become a new motivation for the development of new sorbent materials, such as nanomaterials. This review discusses the current state of the art on the use of novel nanomaterials as adsorbents for CO2 and CH4. The review shows that materials based on porous supports that are modified with amine or metals are currently providing the most promising results. The Fe3O4-graphene and the MOF-117 based NPs show the greatest CO2 sorption capacities, due to their high thermal stability and high porosity. Conclusively, one of the main challenges would be to decrease the cost of capture and to scale-up the technologies to minimize large-scale power plant CO2 emissions.

  2. Flue-gas carbon capture on carbonaceous sorbents: Toward a low-cost multifunctional Carbon Filter for 'Green' energy producers

    SciTech Connect

    Radosz, M.; Hu, X.D.; Krutkramelis, K.; Shen, Y.Q.

    2008-05-15

    A low-pressure Carbon Filter Process (patent pending) is proposed to capture carbon dioxide (CO{sub 2}) from flue gas. This filter is filled with a low-cost carbonaceous sorbent, such as activated carbon or charcoal, which has a high affinity (and, hence, high capacity) to CO{sub 2} but not to nitrogen (N{sub 2}). This, in turn, leads to a high CO{sub 2}/N{sub 2} selectivity, especially at low pressures. The Carbon Filter Process proposed in this work can recover at least 90% of flue-gas CO{sub 2} of 90%+ purity at a fraction of the cost normally associated with the conventional amine absorption process. The Carbon Filter Process requires neither expensive materials nor flue-gas compression or refrigeration, and it is easy to heat integrate with an existing or grassroots power plant without affecting the cost of the produced electricity too much. An abundant supply of low-cost CO{sub 2} from electricity producers is good news for enhanced oil recovery (EOR) and enhanced coal-bed methane recovery (ECBMR) operators, because it will lead to higher oil and gas recovery rates in an environmentally sensitive manner. A CO{sub 2}-rich mixture that contains some nitrogen is much less expensive to separate from flue-gas than pure CO{sub 2}; therefore, mixed CO{sub 2}/N{sub 2}-EOR and CO{sub 2}/N{sub 2}-ECBMR methods are proposed to maximize the overall carbon capture and utilization efficiency.

  3. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization.

    PubMed

    Huang, Ning; Chen, Xiong; Krishna, Rajamani; Jiang, Donglin

    2015-03-02

    Ordered open channels found in two-dimensional covalent organic frameworks (2D COFs) could enable them to adsorb carbon dioxide. However, the frameworks' dense layer architecture results in low porosity that has thus far restricted their potential for carbon dioxide adsorption. Here we report a strategy for converting a conventional 2D COF into an outstanding platform for carbon dioxide capture through channel-wall functionalization. The dense layer structure enables the dense integration of functional groups on the channel walls, creating a new version of COFs with high capacity, reusability, selectivity, and separation productivity for flue gas. These results suggest that channel-wall functional engineering could be a facile and powerful strategy to develop 2D COFs for high-performance gas storage and separation.

  4. Synthesis of High-Surface-Area Nitrogen-Doped Porous Carbon Microflowers and Their Efficient Carbon Dioxide Capture Performance.

    PubMed

    Li, Yao; Cao, Minhua

    2015-07-01

    Sustainable carbon materials have received particular attention in CO2 capture and storage owing to their abundant pore structures and controllable pore parameters. Here, we report high-surface-area hierarchically porous N-doped carbon microflowers, which were assembled from porous nanosheets by a three-step route: soft-template-assisted self-assembly, thermal decomposition, and KOH activation. The hydrazine hydrate used in our experiment serves as not only a nitrogen source, but also a structure-directing agent. The activation process was carried out under low (KOH/carbon=2), mild (KOH/carbon=4) and severe (KOH/carbon=6) activation conditions. The mild activated N-doped carbon microflowers (A-NCF-4) have a hierarchically porous structure, high specific surface area (2309 m(2)  g(-1)), desirable micropore size below 1 nm, and importantly large micropore volume (0.95 cm(3)  g(-1)). The remarkably high CO2 adsorption capacities of 6.52 and 19.32 mmol g(-1) were achieved with this sample at 0 °C (273 K) and two pressures, 1 bar and 20 bar, respectively. Furthermore, this sample also exhibits excellent stability during cyclic operations and good separation selectivity for CO2 over N2.

  5. Can Thermally Sprayed Aluminum (TSA) Mitigate Corrosion of Carbon Steel in Carbon Capture and Storage (CCS) Environments?

    NASA Astrophysics Data System (ADS)

    Paul, S.; Syrek-Gerstenkorn, B.

    2017-01-01

    Transport of CO2 for carbon capture and storage (CCS) uses low-cost carbon steel pipelines owing to their negligible corrosion rates in dry CO2. However, in the presence of liquid water, CO2 forms corrosive carbonic acid. In order to mitigate wet CO2 corrosion, use of expensive corrosion-resistant alloys is recommended; however, the increased cost makes such selection economically unfeasible; hence, new corrosion mitigation methods are sought. One such method is the use of thermally sprayed aluminum (TSA), which has been used to mitigate corrosion of carbon steel in seawater, but there are concerns regarding its suitability in CO2-containing solutions. A 30-day test was carried out during which carbon steel specimens arc-sprayed with aluminum were immersed in deionized water at ambient temperature bubbled with 0.1 MPa CO2. The acidity (pH) and potential were continuously monitored, and the amount of dissolved Al3+ ions was measured after completion of the test. Some dissolution of TSA occurred in the test solution leading to nominal loss in coating thickness. Potential measurements revealed that polarity reversal occurs during the initial stages of exposure which could lead to preferential dissolution of carbon steel in the case of coating damage. Thus, one needs to be careful while using TSA in CCS environments.

  6. Effects of Carbonization Parameters of Moso-Bamboo-Based Porous Charcoal on Capturing Carbon Dioxide

    PubMed Central

    Jhan, Jhih-Wei; Cheng, Yi-Ming; Cheng, Hau-Hsein

    2014-01-01

    This study experimentally analyzed the carbon dioxide adsorption capacity of Moso-bamboo- (Phyllostachys edulis-) based porous charcoal. The porous charcoal was prepared at various carbonization temperatures and ground into powders with 60, 100, and 170 meshes, respectively. In order to understand the adsorption characteristics of porous charcoal, its fundamental properties, namely, charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET) surface area, iodine number, pore volume, and powder size, were analyzed. The results show that when the carbonization temperature was increased, the charcoal yield decreased and the pH value increased. Moreover, the bamboo carbonized at a temperature of 1000°C for 2 h had the highest iodine sorption value and BET surface area. In the experiments, charcoal powders prepared at various carbonization temperatures were used to adsorb 1.854% CO2 for 120 h. The results show that the bamboo charcoal carbonized at 1000°C and ground with a 170 mesh had the best adsorption capacity, significantly decreasing the CO2 concentration to 0.836%. At room temperature and atmospheric pressure, the Moso-bamboo-based porous charcoal exhibited much better CO2 adsorption capacity compared to that of commercially available 350-mesh activated carbon. PMID:25225639

  7. Effects of carbonization parameters of Moso-bamboo-based porous charcoal on capturing carbon dioxide.

    PubMed

    Huang, Pei-Hsing; Jhan, Jhih-Wei; Cheng, Yi-Ming; Cheng, Hau-Hsein

    2014-01-01

    This study experimentally analyzed the carbon dioxide adsorption capacity of Moso-bamboo- (Phyllostachys edulis-) based porous charcoal. The porous charcoal was prepared at various carbonization temperatures and ground into powders with 60, 100, and 170 meshes, respectively. In order to understand the adsorption characteristics of porous charcoal, its fundamental properties, namely, charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET) surface area, iodine number, pore volume, and powder size, were analyzed. The results show that when the carbonization temperature was increased, the charcoal yield decreased and the pH value increased. Moreover, the bamboo carbonized at a temperature of 1000(°)C for 2 h had the highest iodine sorption value and BET surface area. In the experiments, charcoal powders prepared at various carbonization temperatures were used to adsorb 1.854% CO2 for 120 h. The results show that the bamboo charcoal carbonized at 1000(°)C and ground with a 170 mesh had the best adsorpt on capacity, significantly decreasing the CO2 concentration to 0.836%. At room temperature and atmospheric pressure, the Moso-bamboo-based porous charcoal exhibited much better CO2 adsorption capacity compared to that of commercially available 350-mesh activated carbon.

  8. The Black Lake (Quebec, Canada) mineral carbonation experimental station: CO2 capture in mine waste

    NASA Astrophysics Data System (ADS)

    Beaudoin, G.; Constantin, M.; Duchesne, J.; Dupuis, C.; Entrazi, A.; Gras, A.; Huot, F.; Fortier, R.; Hebert, R.; Larachi, F.; Lechat, K.; Lemieux, J. M.; Molson, J. W. H.; Maldague, X.; Therrien, R.; Assima, G. P.

    2014-12-01

    Passive mineral carbonation of chrysotile mining and milling waste was discovered at the Black Lake mine, southern Québec, 10 years ago. Indurated crusts were found at the surface and within waste piles where mineral and rock fragments are cemented by hydrated magnesium carbonates. A long-term research program has yielded significant insight into the process of CO2 capture from the atmosphere, and how it can be implemented during mining operations. Laboratory experiments show that the waste mineralogy is crucial, brucite being more reactive than serpentine. Partial water saturation, circa 40%, is also critical to dissolve magnesium from minerals, and transport aqueous CO2 to precipitation sites. Grain armoring by iron oxidation induced by dissolved oxygen prevents further reaction. Two experimental cells constructed with milling waste and fitted with various monitoring probes (T, H2O content, leachate) and gas sampling ports, have been monitored for more than 3 years, along with environmental conditions. The interstitial gas in the cells remains depleted in CO2 indicating continuous capture of ambient atmospheric CO2 at rates faster than advection to reaction sites. The energy released by the exothermic mineral carbonation reactions has been observed both in laboratory experiments (up to 4 °C) and in the field. Warm air, depleted to 10 ppmv CO2, vents at the surface of the waste piles, indicating reaction with atmospheric CO2 deep inside the piles. A thermal anomaly, detected by airborne infrared and coincident with a known venting area, was selected for locating a 100 m deep borehole fitted with sensor arrays to monitor active mineral carbonation within the pile. The borehole has intersected areas where mineral carbonation has indurated the milling waste. The borehole will be monitored for the next 3 years to better understand the mineral carbonation process, and its potential to yield recoverable geothermal energy in mining environments.

  9. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO₂ capture performance.

    PubMed

    Wang, Rutao; Wang, Peiyu; Yan, Xingbin; Lang, Junwei; Peng, Chao; Xue, Qunji

    2012-11-01

    Business costs and energy/environmental concerns have increased interested in biomass materials for production of activated carbons, especially as electrode materials for supercapacitors or as solid-state adsorbents in CO₂ adsorption area. In this paper, waste celtuce leaves were used to prepare porous carbon by air-drying, pyrolysis at 600 °C in argon, followed by KOH activation. The as-prepared porous carbon have a very high specific surface area of 3404 m²/g and a large pore volume of 1.88 cm³/g. As an electroactive material, the porous carbon exhibits good capacitive performance in KOH aqueous electrolyte, with the specific capacitances of 421 and 273 F/g in three and two-electrode systems, respectively. As a solid-state adsorbent, the porous carbon has an excellent CO₂ adsorption capacity at ambient pressures of up to 6.04 and 4.36 mmol/g at 0 and 25 °C, respectively. With simple production process, excellent recyclability and regeneration stability, the porous carbon that was derived from celtuce leaves is among the most promising materials for high-performance supercapacitors and CO₂ capture.

  10. Characterization of activated carbon fiber filters for pressure drop, submicrometer particulate collection, and mercury capture.

    PubMed

    Hayashi, T; Lee, T G; Hazelwood, M; Hedrick, E; Biswas, P

    2000-06-01

    The use of activated carbon fiber (ACF) filters for the capture of particulate matter and elemental Hg is demonstrated. The pressure drop and particle collection efficiency characteristics of the ACF filters were established at two different face velocities and for two different aerosols: spherical NaCl and combustion-generated silica particles. The clean ACF filter specific resistance was 153 kg m-2 sec-1. The experimental specific resistance for cake filtration was 1.6 x 10(6) sec-1 and 2.4 x 10(5) sec-1 for 0.5- and 1.5-micron mass median diameter particles, respectively. The resistance factor R was approximately 2, similar to that for the high-efficiency particulate air filters. There was a discrepancy in the measured particle collection efficiencies and those predicted by theory. The use of the ACF filter for elemental Hg capture was illustrated, and the breakthrough characteristic was established. The capacity of the ACF filter for Hg capture was similar to other powdered activated carbons.

  11. A new class of single-component absorbents for reversible carbon dioxide capture under mild conditions.

    PubMed

    Barzagli, Francesco; Lai, Sarah; Mani, Fabrizio

    2015-01-01

    Some inexpensive and commercially available secondary amines reversibly react with CO2 at room temperature and ambient pressure to yield carbonated species in the liquid phase in the absence of any additional solvent. These solvent-free absorbents have a high CO2 capture capacity (0.63-0.65 mol CO2 /mol amine) at 1.0 bar (=100 kPa), combined with low-temperature reversibility at ambient pressure. (13) C NMR spectroscopy analysis identified the carbonated species as the carbamate salts and unexpected carbamic acids. These absorbents were used for CO2 (15 and 40 % in air) capture in continuous cycles of absorption-desorption carried out in packed columns, yielding an absorption efficiency of up to 98.5 % at absorption temperatures of 40-45 °C and desorption temperatures of 70-85 °C at ambient pressure. The absence of any parasitic solvent that requires to be heated and stability towards moisture and heating could result in some of these solvent-free absorbents being a viable alternative to aqueous amines for CO2 chemical capture.

  12. Electrochemical Capture and Release of Carbon Dioxide Using a Disulfide-Thiocarbonate Redox Cycle.

    PubMed

    Singh, Poonam; Rheinhardt, Joseph H; Olson, Jarred Z; Tarakeshwar, Pilarisetty; Mujica, Vladimiro; Buttry, Daniel A

    2017-01-25

    We describe a new electrochemical cycle that enables capture and release of carbon dioxide. The capture agent is benzylthiolate (RS(-)), generated electrochemically by reduction of benzyldisulfide (RSSR). Reaction of RS(-) with CO2 produces a terminal, sulfur-bound monothiocarbonate, RSCO2(-), which acts as the CO2 carrier species, much the same as a carbamate serves as the CO2 carrier for amine-based capture strategies. Oxidation of the thiocarbonate releases CO2 and regenerates RSSR. The newly reported S-benzylthiocarbonate (IUPAC name benzylsulfanylformate) is characterized by (1)H and (13)C NMR, FTIR, and electrochemical analysis. The capture-release cycle is studied in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP TFSI) and dimethylformamide. Quantum chemical calculations give a binding energy of CO2 to benzyl thiolate of -66.3 kJ mol(-1), consistent with the experimental observation of formation of a stable CO2 adduct. The data described here represent the first report of electrochemical behavior of a sulfur-bound terminal thiocarbonate.

  13. Molecular simulation studies of CO2 adsorption by carbon model compounds for carbon capture and sequestration applications.

    PubMed

    Liu, Yangyang; Wilcox, Jennifer

    2013-01-02

    Effects of oxygen-containing surface functionalities on the adsorption of mixtures including CO(2)/CH(4), CO(2)/N(2), and CO(2)/H(2)O have been investigated in the current work. Together with Bader charge analysis, electronic structure calculations have provided the initial framework comprising both the geometry and corresponding charge information required to carry out statistical-based molecular simulations. The adsorption isotherms and selectivity of CO(2) from CO(2)/N(2), CO(2)/CH(4), and CO(2)/H(2)O gas mixtures were determined by grand canonical Monte Carlo simulations at temperature/pressure conditions relevant to carbon capture and sequestration applications. The interactions between the surfaces with induced polarity and nonpolar/polar molecules have been investigated. It has been observed that, due to the induced polarity of the surface functionalization, the selectivity of CO(2) over CH(4) increases from approximately 2 to higher than 5, and the selectivity of CO(2) over N(2) increases from approximately 5 to 20, especially in the low-pressure regime. However, water vapor will always preferentially adsorb over CO(2) in carbon-based systems containing oxygen functionalized surfaces at conditions relevant to carbon capture application. Molecular simulation results indicate that the surface chemistry in micropores is tunable thereby influencing the selectivity for enhanced uptake of CO(2).

  14. Electronic data capture platform for clinical research based on mobile phones and near field communication technology.

    PubMed

    Morak, Jürgen; Schwetz, Verena; Hayn, Dieter; Fruhwald, Friedrich; Schreier, Gunter

    2008-01-01

    Electronic data capture systems support data acquisition for clinical research and enable the evaluation of new investigational medical devices. In case of evaluating a device the most challenging part is the user interface i.e. the solution how to acquire the data within a clinical setting and to synchronize them with a web-based data centre. The aim of this paper is to describe the development of an electronic data capture system with a mobile data input solution based on mobile phones and Near Field Communication technology. This system was evaluated within a real clinical setting and demonstrated high usability, security and reliability.

  15. Capture of carbon dioxide by amine-impregnated as-synthesized MCM-41.

    PubMed

    Wei, Jianwen; Liao, Lei; Xiao, Yu; Zhang, Pei; Shi, Yao

    2010-01-01

    The novel carbon dioxide (CO2) adsorbents with a high capture efficiency were prepared through impregnating the as-synthesized MCM-41 with three kinds of amines, namely diethylenetriamine (DETA), triethylenetetramine (TETA) and 2-amino-2-methyl-1-propanol (AMP). The resultant samples were characterized by small angle X-ray diffraction and low temperature N2 adsorption. The synthesis way not only saves the energy or extractor to remove the template but also is environmentally friendly due to the absence of the potential pollutants such as toluene. CO2 capture was investigated in a dynamic packed column. The sample impregnated by TETA showed the highest adsorption capacity, approximately 2.22 mmol/g at 60 degrees C due to its highest amino-groups content among the three amines. The CO2 adsorption behavior was also investigated with the deactivation model, which showed an excellent prediction for the breakthrough curves.

  16. New demands, new supplies : a national look at the water balance of carbon dioxide capture and sequestration.

    SciTech Connect

    Krumhansl, James Lee; McNemar, Andrea , Morgantown, WV); Kobos, Peter Holmes; Roach, Jesse Dillon; Klise, Geoffrey Taylor

    2010-12-01

    Concerns over rising concentrations of greenhouse gases in the atmosphere have resulted in serious consideration of policies aimed at reduction of anthropogenic carbon dioxide (CO2) emissions. If large scale abatement efforts are undertaken, one critical tool will be geologic sequestration of CO2 captured from large point sources, specifically coal and natural gas fired power plants. Current CO2 capture technologies exact a substantial energy penalty on the source power plant, which must be offset with make-up power. Water demands increase at the source plant due to added cooling loads. In addition, new water demand is created by water requirements associated with generation of the make-up power. At the sequestration site however, saline water may be extracted to manage CO2 plum migration and pressure build up in the geologic formation. Thus, while CO2 capture creates new water demands, CO2 sequestration has the potential to create new supplies. Some or all of the added demand may be offset by treatment and use of the saline waters extracted from geologic formations during CO2 sequestration. Sandia National Laboratories, with guidance and support from the National Energy Technology Laboratory, is creating a model to evaluate the potential for a combined approach to saline formations, as a sink for CO2 and a source for saline waters that can be treated and beneficially reused to serve power plant water demands. This presentation will focus on the magnitude of added U.S. power plant water demand under different CO2 emissions reduction scenarios, and the portion of added demand that might be offset by saline waters extracted during the CO2 sequestration process.

  17. New Demands, New Supplies: A National Look at the Water Balance of Carbon Dioxide Capture and Sequestration

    NASA Astrophysics Data System (ADS)

    Roach, J. D.; Kobos, P.; Klise, G. T.; Krumhansl, J. L.; McNemar, A.

    2010-12-01

    Concerns over rising concentrations of greenhouse gases in the atmosphere have resulted in serious consideration of policies aimed at reduction of anthropogenic carbon dioxide (CO2) emissions. If large scale abatement efforts are undertaken, one critical tool will be geologic sequestration of CO2 captured from large point sources, specifically coal and natural gas fired power plants. Current CO2 capture technologies exact a substantial energy penalty on the source power plant, which must be offset with make-up power. Water demands increase at the source plant due to added cooling loads. In addition, new water demand is created by water requirements associated with generation of the make-up power. At the sequestration site however, saline water may be extracted to manage CO2 plum migration and pressure build up in the geologic formation. Thus, while CO2 capture creates new water demands, CO2 sequestration has the potential to create new supplies. Some or all of the added demand may be offset by treatment and use of the saline waters extracted from geologic formations during CO2 sequestration. Sandia National Laboratories, with guidance and support from the National Energy Technology Laboratory, is creating a model to evaluate the potential for a combined approach to saline formations, as a sink for CO2 and a source for saline waters that can be treated and beneficially reused to serve power plant water demands. This presentation will focus on the magnitude of added U.S. power plant water demand under different CO2 emissions reduction scenarios, and the portion of added demand that might be offset by saline waters extracted during the CO2 sequestration process. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Molecular Simulation of Carbon Dioxide Capture by Montmorillonite Using an Accurate and Flexible Force Field

    SciTech Connect

    Romanov, V N; Cygan, R T; Myshakin, E M

    2012-06-21

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, CO2. Recent experimental studies have demonstrated the efficacy of intercalating CO2 in the interlayer of layered clays, but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 and H2O in the interlayer of montmorillonite clay and to help validate the models with experimental observation. An accurate and fully flexible set of interatomic potentials for CO2 is developed and combined with Clayff potentials to help evaluate the intercalation mechanism and examine the effect of molecular flexibility onthe diffusion rate of CO2 in water.

  19. Moving from Misinformation Derived from Public Attitude Surveys on Carbon Dioxide Capture and Storage toward Realistic Stakeholder Involvement

    SciTech Connect

    Malone, Elizabeth L.; Dooley, James J.; Bradbury, Judith A.

    2010-03-01

    Stakeholder involvement can include many activities, from providing information on a website to one-on-one conversations with people confronting an issue in their community. For carbon dioxide capture and storage (CCS) a major tool of SI to date has been the survey. Recent surveys and other research into stakeholder involvement focused on the nascent commercial deployment of CCS technologies have provided valuable information about the state of general knowledge and attitudes toward these technologies. Most importantly, these research efforts reveal that the general public has relatively little knowledge about CCS. Given this lack of knowledge with respect to the concept of CCS let alone first-hand experiential knowledge derived from seeing these technologies deployed in local communities this paper critiques the methodology and results of the survey research. Then the framing of SI in CCS is examined, including the assumption that clear stakeholder acceptance is a realistic goal and that the public has a decisive say in choosing the energy technologies of the present and the future. Finally, a broader suite of SI activities is recommended as more suited to realistic and contextual goals.

  20. Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping.

    PubMed

    Mitchell, Andrew C; Dideriksen, Knud; Spangler, Lee H; Cunningham, Alfred B; Gerlach, Robin

    2010-07-01

    The potential of microorganisms for enhancing carbon capture and storage (CCS) via mineral-trapping (where dissolved CO(2) is precipitated in carbonate minerals) and solubility trapping (as dissolved carbonate species in solution) was investigated. The bacterial hydrolysis of urea (ureolysis) was investigated in microcosms including synthetic brine (SB) mimicking a prospective deep subsurface CCS site with variable headspace pressures [p(CO(2))] of (13)C-CO(2). Dissolved Ca(2+) in the SB was completely precipitated as calcite during microbially induced hydrolysis of 5-20 g L(-1) urea. The incorporation of carbonate ions from (13)C-CO(2) ((13)C-CO(3)(2-)) into calcite increased with increasing p((13)CO(2)) and increasing urea concentrations: from 8.3% of total carbon in CaCO(3) at 1 g L(-1) to 31% at 5 g L(-1), and 37% at 20 g L(-1). This demonstrated that ureolysis was effective at precipitating initially gaseous [CO(2)(g)] originating from the headspace over the brine. Modeling the change in brine chemistry and carbonate precipitation after equilibration with the initial p(CO(2)) demonstrated that no net precipitation of CO(2)(g) via mineral-trapping occurred, since urea hydrolysis results in the production of dissolved inorganic carbon. However, the pH increase induced by bacterial ureolysis generated a net flux of CO(2)(g) into the brine. This reduced the headspace concentration of CO(2) by up to 32 mM per 100 mM urea hydrolyzed because the capacity of the brine for carbonate ions was increased, thus enhancing the solubility-trapping capacity of the brine. Together with the previously demonstrated permeability reduction of rock cores at high pressure by microbial biofilms and resilience of biofilms to supercritical CO(2), this suggests that engineered biomineralizing biofilms may enhance CCS via solubility-trapping, mineral formation, and CO(2)(g) leakage reduction.

  1. Advancing adsorption and membrane separation processes for the gigaton carbon capture challenge.

    PubMed

    Wilcox, Jennifer; Haghpanah, Reza; Rupp, Erik C; He, Jiajun; Lee, Kyoungjin

    2014-01-01

    Reducing CO2 in the atmosphere and preventing its release from point-source emitters, such as coal and natural gas-fired power plants, is a global challenge measured in gigatons. Capturing CO2 at this scale will require a portfolio of gas-separation technologies to be applied over a range of applications in which the gas mixtures and operating conditions will vary. Chemical scrubbing using absorption is the current state-of-the-art technology. Considerably less attention has been given to other gas-separation technologies, including adsorption and membranes. It will take a range of creative solutions to reduce CO2 at scale, thereby slowing global warming and minimizing its potential negative environmental impacts. This review focuses on the current challenges of adsorption and membrane-separation processes. Technological advancement of these processes will lead to reduced cost, which will enable subsequent adoption for practical scaled-up application.

  2. Recycling technology of emitted carbon dioxide

    SciTech Connect

    Arakawa, Hironori

    1993-12-31

    Ways to halt global warming are being discussed worldwide. Global warming is an energy problem which is mainly attributed to the large volumes of carbon dioxide (CO{sub 2}) released into the atmosphere from the rapid increase in energy consumption since the Industrial Revolution. The basic solution to the problem, therefore, is to cut consumption of fossil fuels. To this end, it is important to promote energy conservation by improving the fuel efficiency of machines, as well as shift to energy sources that do not emit carbon dioxide and develop related technologies. If current trends in economic growth continue in the devloping world as well as the developed countries, there can be no doubt that energy consumption will increase. Therefore, alongside energy conservation and the development of alternative energies, the importance of technologies to recover and fix CO{sub 2} will increase in the fight against global warming.

  3. Biomass waste carbon materials as adsorbents for CO2 capture under post-combustion conditions

    NASA Astrophysics Data System (ADS)

    Calvo-Muñoz, Elisa; García-Mateos, Francisco José; Rosas, Juana; Rodríguez-Mirasol, José; Cordero, Tomás

    2016-05-01

    A series of porous carbon materials obtained from biomass waste have been synthesized, with different morphologies and structural properties, and evaluated as potential adsorbents for CO2 capture in post-combustion conditions. These carbon materials present CO2 adsorption capacities, at 25 ºC and 101.3 kPa, comparable to those obtained by other complex carbon or inorganic materials. Furthermore, CO2 uptakes under these conditions can be well correlated to the narrow micropore volume, derived from the CO2 adsorption data at 0 ºC (VDRCO2). In contrast, CO2 adsorption capacities at 25 ºC and 15 kPa are more related to only pores of sizes lower than 0.7 nm. The capacity values obtained in column adsorption experiments were really promising. An activated carbon fiber obtained from Alcell lignin, FCL, presented a capacity value of 1.3 mmol/g (5.7 %wt). Moreover, the adsorption capacity of this carbon fiber was totally recovered in a very fast desorption cycle at the same operation temperature and total pressure and, therefore, without any additional energy requirement. Thus, these results suggest that the biomass waste used in this work could be successfully valorized as efficient CO2 adsorbent, under post-combustion conditions, showing excellent regeneration performance.

  4. Siting is a constraint to realize environmental benefits from carbon capture and storage.

    PubMed

    Sekar, Ashok; Williams, Eric; Chester, Mikhail

    2014-10-07

    Carbon capture and storage (CCS) for coal power plants reduces onsite carbon dioxide emissions, but affects other air emissions on and offsite. This research assesses the net societal benefits and costs of Monoethanolamine (MEA) CCS, valuing changes in emissions of CO2, SO2, NOX, NH3 and particulate matter (PM), including those in the supply chain. Geographical variability and stochastic uncertainty for 407 coal power plant locations in the U.S. are analyzed. The results show that the net environmental benefits and costs of MEA CCS depend critically on location. For a few favorable sites of both power plant and upstream processes, CCS realizes a net benefit (benefit-cost ratio >1) if the social cost of carbon exceeds $51/ton. For much of the U.S. however, the social cost of carbon must be much higher to realize net benefits from CCS, up to a maximum of $910/ton. While the social costs of carbon are uncertain, typical estimates are in the range of $32-220 per ton, much lower than the breakeven value for many potential CCS locations. Increased impacts upstream from the power plant can dramatically change the social acceptability of CCS and needs further consideration and analysis.

  5. Bicarbonate-based Integrated Carbon Capture and Algae Production System with alkalihalophilic cyanobacterium.

    PubMed

    Chi, Zhanyou; Xie, Yuxiao; Elloy, Farah; Zheng, Yubin; Hu, Yucai; Chen, Shulin

    2013-04-01

    An extremely alkalihalophilic cyanobacteria Euhalothece ZM001 was tested in the Bicarbonate-based Integrated Carbon Capture and Algae Production System (BICCAPS), which utilize bicarbonate as carbon source for algae culture and use the regenerated carbonate to absorb CO2. Culture conditions including temperature, inoculation rate, medium composition, pH, and light intensity were investigated. A final biomass concentration of 4.79 g/L was reached in tissue flask culture with 1.0 M NaHCO3/Na2CO3. The biomass productivity of 1.21 g/L/day was achieved under optimal conditions. When pH increased from 9.55 to 10.51, 0.256 M of inorganic carbon was consumed during the culture process. This indicated sufficient carbon can be supplied as bicarbonate to the culture. This study proved that a high biomass production rate can be achieved in a BICCAPS. This strategy can also lead to new design of photobioreactors that provides an alternative supply of CO2 to sparging.

  6. Spatially-Explicit Water Balance Implications of Carbon Capture and Sequestration

    NASA Astrophysics Data System (ADS)

    Sathre, R. C.; Breunig, H.; Greenblatt, J.; Larsen, P.; McKone, T.; Quinn, N. W.; Scown, C.

    2012-12-01

    Carbon dioxide capture and sequestration (CCS) is increasingly discussed as a means to reduce greenhouse gas emissions and limit climate destabilization. CCS implementation is likely to have varied effects on local water balances. On one hand, power plants equipped with CO2 capture may require substantially more cooling water than plants without CO2 capture. On the other hand, injection of captured CO2 into saline aquifers may require brine extraction for pressure management, and the extracted brine may be desalinated and used as a fresh water resource. We conduct a geospatial analysis detailing how CCS implementation affects the county-level balance of water supply and demand across the contiguous United States. We calculate baseline water stress indices for each county for the year 2005, and explore CCS deployment scenarios for the year 2030 and their impacts on local water supply and demand. We use GIS mapping to identify locations where water supply will likely not constrain CCS deployment, locations where fresh water supply may constrain CCS deployment but brine extraction can overcome these constraints, and locations where limited fresh water and brine availability are likely to constrain CCS deployment. We conduct sensitivity analyses to determine bounds of uncertainty and to identify the most influential parameters. We find that CCS can strongly affect freshwater supply and demand in specific regions, but overall it has a moderate effect on water balances.; Locations of 217 coal-fired (red) and natural gas-fired (green) power plants that meet criteria for CO2 capture. Size of circle corresponds to amount of CO2 emission in 2005.

  7. Predicting Large CO2 Adsorption in Aluminosilicate Zeolites for Postcombustion Carbon Dioxide Capture

    SciTech Connect

    Kim, J; Lin, LC; Swisher, JA; Haranczyk, M; Smit, B

    2012-11-21

    Large-scale simulations of aluminosilicate zeolites were conducted to identify structures that possess large CO2 uptake for postcombustion carbon dioxide capture. In this study, we discovered that the aluminosilicate zeolite structures with the highest CO2 uptake values have an idealized silica lattice with a large free volume and a framework topology that maximizes the regions with nearest-neighbor framework atom distances from 3 to 4.5 angstrom. These predictors extend well to different Si:Al ratios and for both Na+ and Ca2+ cations, demonstrating their universal applicability in identifying the best-performing aluminosilicate zeolite structures.

  8. Understanding Geochemical Impacts of Carbon Dioxide Leakage from Carbon Capture and Sequestration

    EPA Science Inventory

    US EPA held a technical Geochemical Impact Workshop in Washington, DC on July 10 and 11, 2007 to discuss geological considerations and Area of Review (AoR) issues related to geologic sequestration (GS) of Carbon Dioxide (CO2). Seventy=one (71) representatives of the electric uti...

  9. Development of an Activated Carbon-Based Electrode for the Capture and Rapid Electrolytic Reductive Debromination of Methyl Bromide from Postharvest Fumigations.

    PubMed

    Li, Yuanqing; Liu, Chong; Cui, Yi; Walse, Spencer S; Olver, Ryan; Zilberman, David; Mitch, William A

    2016-10-18

    Due to concerns surrounding its ozone depletion potential, there is a need for technologies to capture and destroy methyl bromide (CH3Br) emissions from postharvest fumigations applied to control agricultural pests. Previously, we described a system in which CH3Br fumes vented from fumigation chambers could be captured by granular activated carbon (GAC). The GAC was converted to a cathode by submergence in a high ionic strength solution and connection to the electrical grid, resulting in reductive debromination of the sorbed CH3Br. The GAC bed was drained and dried for reuse to capture and destroy CH3Br fumes from the next fumigation. However, the loose GAC particles and slow kinetics of this primitive electrode necessitated improvements. Here, we report the development of a cathode containing a thin layer of small GAC particles coating carbon cloth as a current distributor. Combining the high sorption potential of GAC for CH3Br with the conductivity of the carbon cloth current distributor, the cathode significantly lowered the total cell resistance and achieved 96% reductive debromination of CH3Br sorbed at 30% by weight to the GAC within 15 h at -1 V applied potential vs standard hydrogen electrode, a time scale and efficiency suitable for postharvest fumigations. The cathode exhibited stable performance over 50 CH3Br capture and destruction cycles. Initial cost estimates indicate that this technique could treat CH3Br fumes at ∼$5/kg, roughly one-third of the cost of current alternatives.

  10. Coprecipitated, copper-based, alumina-stabilized materials for carbon dioxide capture by chemical looping combustion.

    PubMed

    Imtiaz, Qasim; Kierzkowska, Agnieszka Marta; Müller, Christoph Rüdiger

    2012-08-01

    Chemical looping combustion (CLC) has emerged as a carbon dioxide capture and storage (CCS) process to produce a pure stream of CO(2) at very low costs when compared with alternative CCS technologies, such as scrubbing with amines. From a thermodynamic point of view, copper oxide is arguably the most promising candidate for the oxygen carrier owing to its exothermic reduction and oxidation reactions and high oxygen-carrying capacity. However, the low melting point of pure copper of only 1085 °C has so far prohibited the synthesis of copper-rich oxygen carriers. This paper is concerned with the development of copper-based and Al(2)O(3)-stabilized oxygen carriers that contain a high mass fraction of CuO, namely, 82.4 wt %. The oxygen carriers were synthesized by using a coprecipitation technique. The synthesized oxygen carriers were characterized in detail with regards to their morphological properties, chemical composition, and surface topography. It was found that both the precipitating agent and the pH at which the precipitation was performed strongly influenced the structure and chemical composition of the oxygen carriers. In addition, XRD analysis confirmed that, for the majority of the precipitation conditions investigated, CuO reacted with Al(2)O(3) to form fully reducible CuAl(2)O(4). The redox characteristics of the synthesized materials were evaluated at 800 °C by using methane as the fuel and air for reoxidation. It was found that the oxygen-carrying capacity of the synthesized oxygen carriers was strongly influenced by both the precipitating agent and the pH at which the precipitation was performed; however, all oxygen carriers tested showed a stable cyclic oxygen-carrying capacity. The oxygen carriers synthesized at pH 5.5 using NaOH or Na(2)CO(3) as the precipitating agents were the best oxygen carriers synthesized owing to their high and stable oxygen transfer and uncoupling capacities. The excellent redox characteristics of the best oxygen carrier

  11. From Fundamental Understanding To Predicting New Nanomaterials For High Capacity Hydrogen/Methane Storage and Carbon Capture

    SciTech Connect

    Yildirim, Taner

    2015-03-03

    On-board hydrogen/methane storage in fuel cell-powered vehicles is a major component of the national need to achieve energy independence and protect the environment. The main obstacles in hydrogen storage are slow kinetics, poor reversibility and high dehydrogenation temperatures for the chemical hydrides; and very low desorption temperatures/energies for the physisorption materials (MOF’s, porous carbons). Similarly, the current methane storage technologies are mainly based on physisorption in porous materials but the gravimetric and volumetric storage capacities are below the target values. Finally, carbon capture, a critical component of the mitigation of CO2 emissions from industrial plants, also suffers from similar problems. The solid-absorbers such as MOFs are either not stable against real flue-gas conditions and/or do not have large enough CO2 capture capacity to be practical and cost effective. In this project, we addressed these challenges using a unique combination of computational, synthetic and experimental methods. The main scope of our research was to achieve fundamental understanding of the chemical and structural interactions governing the storage and release of hydrogen/methane and carbon capture in a wide spectrum of candidate materials. We studied the effect of scaffolding and doping of the candidate materials on their storage and dynamics properties. We reviewed current progress, challenges and prospect in closely related fields of hydrogen/methane storage and carbon capture.[1-5] For example, for physisorption based storage materials, we show that tap-densities or simply pressing MOFs into pellet forms reduce the uptake capacities by half and therefore packing MOFs is one of the most important challenges going forward. For room temperature hydrogen storage application of MOFs, we argue that MOFs are the most promising scaffold materials for Ammonia-Borane (AB) because of their unique interior active metal-centers for AB binding and well

  12. Carbon Dioxide Reduction Technology Trade Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.

    2011-01-01

    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system

  13. Carbon dioxide capture strategies from flue gas using microalgae: a review.

    PubMed

    Thomas, Daniya M; Mechery, Jerry; Paulose, Sylas V

    2016-09-01

    Global warming and pollution are the twin crises experienced globally. Biological offset of these crises are gaining importance because of its zero waste production and the ability of the organisms to thrive under extreme or polluted condition. In this context, this review highlights the recent developments in carbon dioxide (CO2) capture from flue gas using microalgae and finding the best microalgal remediation strategy through contrast and comparison of different strategies. Different flue gas microalgal remediation strategies discussed are as follows: (i) Flue gas to CO2 gas segregation using adsorbents for microalgal mitigation, (ii) CO2 separation from flue gas using absorbents and later regeneration for microalgal mitigation, (iii) Flue gas to liquid conversion for direct microalgal mitigation, and (iv) direct flue gas mitigation using microalgae. This work also studies the economic feasibility of microalgal production. The study discloses that the direct convening of flue gas with high carbon dioxide content, into microalgal system is cost-effective.

  14. Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris

    NASA Astrophysics Data System (ADS)

    Zhou, Minghua; He, Huanhuan; Jin, Tao; Wang, Hongyu

    2012-09-01

    With the increasing concerns for global climate change, a sustainable, efficient and renewable energy production from wastewater is imperative. In this study, a novel microbial carbon capture cell (MCC), is constructed for the first time by the introduction of immobilized microalgae (Chlorella vulgaris) into the cathode chamber of microbial fuel cells (MFCs) to fulfill the zero discharge of carbon dioxide. This process can achieve an 84.8% COD removal, and simultaneously the maximum power density can reach 2485.35 mW m-3 at a current density of 7.9 A m-3 and the Coulombic efficiency is 9.40%, which are 88% and 57.7% greater than that with suspended C. vulgaris, respectively. These enhancements in performance demonstrate the feasibility of an economical and effective approach for the simultaneous wastewater treatment, electricity generation and biodiesel production from microalgae.

  15. Carbon dioxide capture with the ozone-like polynitrogen molecule Li3N3.

    PubMed

    Torrent-Sucarrat, Miquel; Varandas, António J C

    2014-12-26

    In a very recent article (Chem.-Eur. J. 2014, 20, 6636), Olson et al. performed a theoretical study of the low-lying isomers of Li3N3 and found that two of the most stable structures show a novel N3(3-) molecular motif, which possesses structural and chemical bonding features similar to ozone. We explore a first application of these new Li3N3 species as a captor of carbon dioxide. Our results conclude that this is a very exothermic and exoergic process (the capture of one and two carbon dioxide molecules on Li3N3 releases, respectively, 42 and 70 kcal mol(-1) in relative free energy values evaluated at the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level of theory), which apparently occurs without any energy barrier but requires a nonlinear N3(3-) molecular motif.

  16. Direct Capture Technologies for Genomics-Guided Discovery of Natural Products

    PubMed Central

    Chan, Andrew N.; Santa Maria, Kevin C.; Li, Bo

    2016-01-01

    Microbes are important producers of natural products, which have played key roles in understanding biology and treating disease. However, the full potential of microbes to produce natural products has yet to be realized; the overwhelming majority of natural product gene clusters encoded in microbial genomes remain “cryptic”, and have not been expressed or characterized. In contrast to the fast-growing number of genomic sequences and bioinformatic tools, methods to connect these genes to natural product molecules are still limited, creating a bottleneck in genome-mining efforts to discover novel natural products. Here we review developing technologies that leverage the power of homologous recombination to directly capture natural product gene clusters and express them in model hosts for isolation and structural characterization. Although direct capture is still in its early stages of development, it has been successfully utilized in several different classes of natural products. These early successes will be reviewed, and the methods will be compared and contrasted with existing traditional technologies. Lastly, we will discuss the opportunities for the development of direct capture in other organisms, and possibilities to integrate direct capture with emerging genome-editing techniques to accelerate future study of natural products. PMID:26456469

  17. Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor.

    PubMed

    Honda, Ryo; Boonnorat, Jarungwit; Chiemchaisri, Chart; Chiemchaisri, Wilai; Yamamoto, Kazuo

    2012-12-01

    A highly efficient microalgae cultivation process was developed for carbon dioxide capture using nutrients from treated sewage. A submerged-membrane filtration system was installed in a photobioreactor to achieve high nutrient loading and to maintain a high concentration and production of microalgae. Chlorella vulgaris, Botryococcus braunii and Spirulina platensis were continuously cultivated with simulated treated sewage and 1%-CO(2) gas. The optimum hydraulic retention time (HRT) and solids retention time (SRT) were explored to achieve the maximum CO(2) capture rate, nutrient removal rate and microalgae biomass productivity. The carbon dioxide capture rate and volumetric microalgae productivity were high when the reactor was operated under 1-day (HRT) and 18-days (SRT) conditions. The independent control of HRT and SRT is effective for efficient microalgae cultivation and carbon dioxide capture using treated sewage.

  18. Sustainable microalgae for the simultaneous synthesis of carbon quantum dots for cellular imaging and porous carbon for CO2 capture.

    PubMed

    Guo, Li-Ping; Zhang, Yan; Li, Wen-Cui

    2017-05-01

    Microalgae biomass is a sustainable source with the potential to produce a range of products. However, there is currently a lack of practical and functional processes to enable the high-efficiency utilization of the microalgae. We report here a hydrothermal process to maximize the utilizability of microalgae biomass. Specifically, our concept involves the simultaneous conversion of microalgae to (i) hydrophilic and stable carbon quantum dots and (ii) porous carbon. The synthesis is easily scalable and eco-friendly. The microalgae-derived carbon quantum dots possess a strong two-photon fluorescence property, have a low cytotoxicity and an efficient cellular uptake, and show potential for high contrast bioimaging. The microalgae-based porous carbons show excellent CO2 capture capacities of 6.9 and 4.2mmolg(-1) at 0 and 25°C respectively, primarily due to the high micropore volume (0.59cm(3)g(-1)) and large specific surface area (1396m(2)g(-1)).

  19. Development of a Dry Sorbent-based Post-Combustion CO2 Capture Technology for Retrofit in Existing Power Plants

    SciTech Connect

    Nelson, Thomas; Coleman, Luke; Anderson, Matthew; Gupta, Raghubir; Herr, Joshua; Kalluri, Ranjeeth; Pavani, Maruthi

    2009-12-31

    The objective of this research and development (R&D) project was to further the development of a solid sorbent-based CO2 capture process based on sodium carbonate (i.e. the Dry Carbonate Process) that is capable of capturing>90% of the CO2 as a nearly pure stream from coal-fired power plant flue gas with <35% increase in the cost of electrictiy (ICOE).

  20. Computational investigation of reactive to nonreactive capture of carbon dioxide by oxygen-containing Lewis bases.

    PubMed

    Teague, Craig M; Dai, Sheng; Jiang, De-en

    2010-11-04

    Recent work has shown that room temperature ionic liquid systems reactively absorb CO(2) and offer distinct advantages over current CO(2) capture technologies. Here we computationally evaluated CO(2) interaction energies with a series of oxygen-containing Lewis base anions (including cyclohexanolate and phenolate and their respective derivatives). Our results show that the interaction energy can be tuned across a range from reactive to nonreactive (or physical) interactions. We evaluated different levels of theory as well as possible corrections to the interaction energy, and we explained our calculated trends on the basis of properties of the individual anions. We found that the interaction energy between CO(2) and the Lewis bases examined here correlates most strongly with the atomic charge on the oxygen atom. This insight provides a useful handle to tune the anion-CO(2) interaction energy for future experimental and computational studies of novel CO(2) capture systems.

  1. Microwave-swing adsorption to capture and recover vapors from air streams with activated carbon fiber cloth.

    PubMed

    Hashisho, Zaher; Rood, Mark; Botich, Leon

    2005-09-01

    Adsorption with regeneration is a desirable means to control the emissions of organic vapors such as hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from air streams as it allows for capture, recovery, and reuse of those VOCs/HAPS. Integration of activated-carbon fiber-cloth (ACFC) adsorbent with microwave regeneration provides promise as a new adsorption/ regeneration technology. This research investigates the feasibility of using microwaves to regenerate ACFC as part of a process for capture and recovery of organic vapors from gas streams. A bench-scale fixed-bed microwave-swing adsorption (MSA) system was built and tested for adsorption of water vapor, methyl ethyl ketone (MEK), and tetrachloroethylene (PERC) from an airstream and then recovery of those vapors with microwave regeneration. The electromagnetic heating behavior of dry and vapor-saturated ACFC was also characterized. The MSA system successfully adsorbed organic vapors from the airstreams, allowed for rapid regeneration of the ACFC cartridge, and recovered the water and organic vapors as liquids.

  2. Carbon-Enhanced Metal-Poor Stars and the Need for an Intermediate Neutron Capture Process

    NASA Astrophysics Data System (ADS)

    Stancliffe, Richard J.; Hampel, Melanie; Lugaro, Maria; Meyer, Bradley S.

    Carbon-enhanced metal-poor (CEMP) stars in the Galactic Halo display enrichments in heavy elements associated with either the s (slow) or the r (rapid) neutron-capture process (e.g., barium and europium respectively), and in some cases they display evidence of both. The abundance patterns of these CEMP-s/r stars, which show both Ba and Eu enrichment, are particularly puzzling since the s and the r processes require neutron densities that are more than ten orders of magnitude apart, and hence are thought to occur in very different stellar sites. We investigate whether the abundance patterns of CEMP-s/r stars can arise from the nucleosynthesis of the intermediate neutron-capture process (the i process), which is characterised by neutron densities between those of the s and the r processes. Using nuclear network calculations, we study neutron capture nucleosynthesis at different constant neutron densities n ranging from 107 to 1015 cm-3. Neutron densities on the highest side of this range result in abundance patterns that show an increased production of heavy s- and r-process elements but similar levels of the light s-process elements. With our i-process model, we are able to reproduce the abundance patterns of 20 CEMP-s/r stars that could not be explained by s-process nucleosynthesis.

  3. Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture.

    PubMed

    Liu, Wu-Jun; Jiang, Hong; Tian, Ke; Ding, Yan-Wei; Yu, Han-Qing

    2013-08-20

    Anthropogenic CO2 emission makes significant contribution to global climate change and CO2 capture and storage is a currently a preferred technology to change the trajectory toward irreversible global warming. In this work, we reported a new strategy that the inexhaustible MgCl2 in seawater and the abundantly available biomass waste can be utilized to prepare mesoporous carbon stabilized MgO nanoparticles (mPC-MgO) for CO2 capture. The mPC-MgO showed excellent performance in the CO2 capture process with the maximum capacity of 5.45 mol kg(-1), much higher than many other MgO based CO2 trappers. The CO2 capture capacity of the mPC-MgO material kept almost unchanged in 19-run cyclic reuse, and can be regenerated at low temperature. The mechanism for the CO2 capture by the mPC-MgO was investigated by FTIR and XPS, and the results indicated that the high CO2 capture capacity and the favorable selectivity of the as-prepared materials were mainly attributed to their special structure (i.e., surface area, functional groups, and the MgO NPs). This work would open up a new pathway to slow down global warming as well as resolve the pollution of waste biomass.

  4. Porous carbon material containing CaO for acidic gas capture: preparation and properties.

    PubMed

    Przepiórski, Jacek; Czyżewski, Adam; Pietrzak, Robert; Toyoda, Masahiro; Morawski, Antoni W

    2013-12-15

    A one-step process for the preparation of CaO-containing porous carbons is described. Mixtures of poly(ethylene terephthalate) with natural limestone were pyrolyzed and thus hybrid sorbents could be easily obtained. The polymeric material and the mineral served as a carbon precursor and CaO delivering agent, respectively. We discuss effects of the preparation conditions and the relative amounts of the raw materials used for the preparations on the porosity of the hybrid products. The micropore areas and volumes of the obtained products tended to decrease with increasing CaO contents. Increase in the preparation temperature entailed a decrease in the micropore volume, whereas the mesopore volume increased. The pore creation mechanism is proposed on the basis of thermogravimetric and temperature-programmed desorption measurements. The prepared CaO-containing porous carbons efficiently captured SO2 and CO2 from air. Washing out of CaO from the hybrid materials was confirmed as a suitable method to obtain highly porous carbon materials.

  5. Mesoporous magnesium oxide nanoparticles derived via complexation-combustion for enhanced performance in carbon dioxide capture.

    PubMed

    Hiremath, Vishwanath; Shavi, Raghavendra; Gil Seo, Jeong

    2017-03-10

    Magnesium oxide (MgO) is a promising candidate for carbon dioxide (CO2) capture at high temperature applicable to pre-combustion capture in an integrated gasification combined cycle (IGCC) scheme. In this work, mesoporous MgO nanoparticles were synthesized via simple complexation-combustion method by using glycine (G) and urea (U) as fuels (F). The obtained sorbents were thoroughly characterized in terms of the crystalline structure, morphology, nature of the fuel, F/O ratio, and their consequent effects on CO2 sorption. It was observed that due to the complexation followed by combustion in the presence of glycine, MgO with crystallite size as small as∼8nm could be derived. The synthesized MgO nanoparticles exhibited exceptionally high CO2 sorption at elevated temperatures. Furthermore, CO2 sorption isotherms in assistance with FT-IR and DSC experiments demonstrated that the low CO2 uptake at ambient temperature (25-100°C) may be due to the formation of monodentate carbonates, whereas predominant bicarbonates enhance the CO2 uptake at elevated temperatures (100-300°C). MgO-1.5(G) obtained the highest sorption corresponding to 1.34mmol/g at 200°C.

  6. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 2. Fabric filter removal.

    PubMed

    Scala, F

    2001-11-01

    Following a companion paper focused on the in-duct mercury capture in incinerator flue gas by powdered activated carbon injection, this paper is concerned with the additional mercury capture on the fabric filter cake, relevant to baghouse equipped facilities. A detailed model is presented for this process, based on material balances on mercury in both gaseous and adsorbed phases along the growing filter cake and inside the activated carbon particles,taking into account mass transfer resistances and adsorption kinetics. Several sorbents of practical interest have been considered, whose parameters have been evaluated from available literature data. The values and range of the operating variables have been chosen in order to simulate typical incinerators operating conditions. Results of simulations indicate that, contrary to the in-duct removal process, high mercury removal efficiencies can be obtained with moderate sorbent consumption, as a consequence of the effective gas/sorbent contacting on the filter. Satisfactory utilization of the sorbents is predicted, especially at long filtration times. The sorbent feed rate can be minimized by using a reactive sorbent and by lowering the filter temperature as much as possible. Minor benefits can be obtained also by decreasing the sorbent particle size and by increasing the cleaning cycle time of the baghouse compartments. Reverse-flow baghouses were more efficient than pulse-jet baghouses, while smoother operation can be obtained by increasing the number of baghouse compartments. Model results are compared with available relevant full scale data.

  7. Tail-end Hg capture on Au/carbon-monolith regenerable sorbents.

    PubMed

    Izquierdo, M Teresa; Ballestero, Diego; Juan, Roberto; García-Díez, Enrique; Rubio, Begoña; Ruiz, Carmen; Pino, M Rosa

    2011-10-15

    In this work, a regenerable sorbent for Hg retention based on carbon supported Au nanoparticles has been developed and tested. Honeycomb structures were chosen in order to avoid pressure drop and particle entrainment in a fixed bed. Carbon-based supports were selected in order to easily modify the surface chemistry to favour the Au dispersion. Results of Hg retention and regeneration were obtained in a bench scale experimental installation working at high space velocities (for sorbent, 53,000 h(-1); for active phase, 2.6 × 10(8) h(-1)), 120 °C for retention temperature and Hg inlet concentration of 23 ppbv. Gold nanoparticles were shown to be the active phase for mercury capture through an amalgamating mechanism. The mercury captured by the spent sorbent can be easily released to be disposed or reused. Mercury evolution from spent sorbents was followed by TPD experiments showing that the sorbent can be regenerated at temperatures as low as 220 °C.

  8. An investigation of carbon dioxide capture by chitin acetate/DMSO binary system.

    PubMed

    Eftaiha, Ala'a F; Alsoubani, Fatima; Assaf, Khaleel I; Troll, Carsten; Rieger, Bernhard; Khaled, Aseel H; Qaroush, Abdussalam K

    2016-11-05

    Chitin is considered to be the second most abundant naturally-occurring polysaccharide. Also, dimethyl sulfoxide (DMSO) is the second highest dielectric constant polar solvent after water. Despite the low solubility of chitin in common organic solvents, and due to its high nitrogen content, it may serve as a potential scrubbing agent "wet scrubbing" for carbon dioxide (CO2) capturing as an alternative to monoethanolamine "renewables for renewables approach". Briefly, a detailed investigation for the utilization of low molecular weight, chitin-acetate (CA) in DMSO for the capturing of CO2 is reported. As carbonation process takes place, the formation of ionic alkylcarbonate was confirmed throughout spectroscopic and computational studies. Supramolecular chemisorption was proven throughout (1)H Nuclear Magnetic Resonance ((1)H NMR) together with the absence of sorption of CO2 by the monomeric repeating unit, glucosamine hydrochloride. Further, Density Functional Theory (DFT) calculations supported the formation of the CA/CO2 adduct through a newly formed supramolecular ionic interaction and hydrogen bonding along the oligosaccharide backbone between the neighboring ammonium ion and hydroxyl functional groups. The sorption capacity was measured volumetrically within an in situ Attenuated Total Reflectance-Fourier Transform Infrared coupled (in situ ATR-FTIR) autoclave at 25.0°C, and 4.0bar CO2, with a maximum sorption capacity of 3.63 [Formula: see text] /gsorbent at 10.0% (w/v).

  9. Molecular simulations of nitrogen-doped hierarchical carbon adsorbents for post-combustion CO2 capture.

    PubMed

    Psarras, Peter; He, Jiajun; Wilcox, Jennifer

    2016-10-19

    A present challenge in the mitigation of anthropogenic CO2 emissions involves the design of less energy- and water-intensive capture technologies. Sorbent-based capture represents a promising solution, as these materials have negligible water requirements and do not incur the heavy energy penalties associated with solvent regeneration. However, to be considered competitive with traditional technologies (i.e., MEA capture), these sorbents must exhibit a high CO2 loading capacity and high CO2/N2 selectivity. It has been reported that ultramicroporous character and surface nitrogen functionality are of great importance to the enhancement of CO2 capacity and CO2/N2 selectivity. However, the role of pore size in combination with surface functionality in the enhancement of these properties remains unclear. To investigate these effects, grand canonical Monte Carlo (GCMC) simulations were carried out on pure and N-functionalized 3-layer graphitic slit-pore models and compared to experimental results for two high performing materials reported elsewhere. We show that the quaternary, pyridinic, and especially the oxidized pyridinic group lend to enhanced performance, with the latter providing exceptional CO2 loading (4.31 mmol g(-1)) and CO2/N2 selectivity (138.3 : 1). Increasing surface nitrogen content resulted in enhanced loading and excellent CO2/N2 selectivity (45.8 : 1-55.9 : 1), provided that the sorbent has significant ultramicroporous character. Additionally, we elucidate a threshold pore width, under which N-functionalization becomes increasingly influential on performance parameters, and show how this threshold changes with application (PC vs. NGCC capture). Finally, we propose that an alternative functionality - the nitroso group - may be responsible for the enhanced performance of some recent materials reported in the literature.

  10. Capture of methyl bromide emissions with activated carbon following the fumigation of a small building contaminated with a Bacillus anthracis spore simulant.

    PubMed

    Wood, Joseph P; Clayton, Mathew J; McArthur, Timothy; Serre, Shannon D; Mickelsen, Leroy; Touati, Abderrahmane

    2015-02-01

    A wide-area Bacillus anthracis spore contamination incident will present immense challenges related to decontamination capacity. For this reason, fumigation with methyl bromide (MeBr) has been proposed as a potential remediation option. Although a few bench-scale laboratory studies have been conducted to evaluate activated carbon for the capture of MeBr, these studies were conducted at conditions replicating commodity fumigation using relatively low MeBr concentrations, temperatures, and/or relative humidity (RH) levels. The more rigorous MeBr fumigation requirements to fully inactivate B. anthracis spores are much more of a challenge for an activated carbon system (ACS) to capture MeBr, and warrant their own investigation. Further, while the aforementioned studies have shown activated carbon to be a possible option for the capture of MeBr in gas streams, these tests were conducted at laboratory bench scale, and thus lack operational perspective and data. Thus, we present for the first time the results of a full-scale study to evaluate an ACS employed for the capture of MeBr at conditions that would be used for decontaminating a building structure contaminated with B. anthracis spores. Airflow rate, temperature, RH, and MeBr levels were measured within the ACS during its operation. Despite the relatively high humidity, temperature, and MeBr levels, the MeBr capture efficiency of the ACS was demonstrated to be more than 99%. The concentration of MeBr exhausted from the structure was reduced from 41,000 to 136 ppmv in 3.5 hr, corresponding to an overall atmospheric emission rate of less than 2 kg. The practical adsorption rate of the ACS was determined to be 4.83 kg MeBr/100 kg carbon. The information and data presented here will facilitate future use of this technology when fumigating with MeBr.

  11. Radiative double electron capture in collisions of fully-stripped fluorine ions with thin carbon foils

    NASA Astrophysics Data System (ADS)

    Elkafrawy, Tamer Mohammad Samy

    Radiative double electron capture (RDEC) is a one-step process in ion-atom collisions occurring when two target electrons are captured to a bound state of the projectile simultaneously with the emission of a single photon. The emitted photon has approximately double the energy of the photon emitted due to radiative electron capture (REC), which occurs when a target electron is captured to a projectile bound state with simultaneous emission of a photon. REC and RDEC can be treated as time-reversed photoionization (PI) and double photoionization (DPI), respectively, if loosely-bound target electrons are captured. This concept can be formulated with the principle of detailed balance, in which the processes of our interest can be described in terms of their time-reversed ones. Fully-stripped ions were used as projectiles in the performed RDEC experiments, providing a recipient system free of electron-related Coulomb fields. This allows the target electrons to be transferred without interaction with any of the projectile electrons, enabling accurate investigation of the electron-electron interaction in the vicinity of electromagnetic field. In this dissertation, RDEC was investigated during the collision of fully-stripped fluorine ions with a thin carbon foil and the results are compared with the recent experimental and theoretical studies. In the current work, x rays associated with projectile charge-changing by single and double electron capture and no charge change by F9+ ions were observed and compared with recent work for O8+ ions and with theory. Both the F 9+ and O8+ ions had energies in the ˜MeV/u range. REC, in turn, was investigated as a means to compare with the theoretical predictions of the RDEC/REC cross section ratio. The most significant background processes including various mechanisms of x-ray emission that may interfere with the energy region of interest are addressed in detail. This enables isolation of the contributions of REC and RDEC from the

  12. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect

    Stewart Mehlman

    2010-06-16

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE’s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  13. Carbon Sequestration and Carbon Capture and Storage (CCS) in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hisyamudin Muhd Nor, Nik; Norhana Selamat, Siti; Hanif Abd Rashid, Muhammad; Fauzi Ahmad, Mohd; Jamian, Saifulnizan; Chee Kiong, Sia; Fahrul Hassan, Mohd; Mohamad, Fariza; Yokoyama, Seiji

    2016-06-01

    Southeast Asia is a standout amongst the most presented districts to unnatural weather change dangers even they are not principle worldwide carbon dioxide (CO2) maker, its discharge will get to be significant if there is no move made. CO2 wellsprings of Southeast Asia are mainly by fossil fuel through era of power and warmth generation, and also transportation part. The endeavors taken by these nations can be ordered into administrative and local level. This paper review the potential for carbon catch and capacity (CCS) as a part of the environmental change moderation system for the Malaysian power area utilizing an innovation appraisal structure. The country's recorded pattern of high dependence on fossil fuel for its power segment makes it a prime possibility for CCS reception. This issue leads to gradual increment of CO2 emission. It is evident from this evaluation that CCS can possibly assume a vital part in Malaysia's environmental change moderation methodology gave that key criteria are fulfilled. With the reason to pick up considerations from all gatherings into the earnestness of an Earth-wide temperature boost issue in Southeast Asia, assume that more efficient measures can be taken to effectively accomplish CO2 diminishment target.

  14. Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents

    SciTech Connect

    Benson, Steven; Srinivasachar, Srivats; Laudal, Daniel; Browers, Bruce

    2014-12-31

    A novel hybrid solid sorbent technology for CO₂ capture and separation from coal combustion-derived flue gas was evaluated. The technologyCapture of CO₂ by Hybrid Sorption (CACHYS™) – is a solid sorbent technology based on the following ideas: 1) reduction of energy for sorbent regeneration, 2) utilization of novel process chemistry, 3) contactor conditions that minimize sorbent-CO₂ heat of reaction and promote fast CO₂ capture, and 4) low-cost method of heat management. This report provides key information developed during the course of the project that includes sorbent performance, energy for sorbent regeneration, physical properties of the sorbent, the integration of process components, sizing of equipment, and overall capital and operational cost of the integrated CACHYS™ system. Seven sorbent formulations were prepared and evaluated at the lab-scale for energy requirements and CO₂ capture performance. Sorbent heat of regeneration ranged from 30-80 kJ/mol CO₂ and was found to be dependent on process conditions. Two sorbent formulations (designated HCK-4 & HCK-7) were down-selected for additional fixed-bed testing. Additional testing involved subjecting the sorbents to 100 continuous cycles in the fixed-bed reactor to determine performance as a function of time. The working capacity achieved for HCK-4 sorbent ranged from 5.5-8.0 g CO₂/100 g sorbent, while the HCK-7 typically ranged from 8.0-10.0 g CO₂/100 g sorbent. Overall, there was no deterioration in capacity with continuous cycling for either sorbent. The CACHYS™ bench-scale testing system designed and fabricated under this award consists of a dual circulating fluidized-bed adsorber and a moving-bed regenerator. The system takes a flue gas slipstream from the University of North Dakota’s coal-fired steam plant. Prior to being sent to the adsorber, the flue gas is scrubbed to remove SO₂ and particulate. During parametric testing of the adsorber, CO₂ capture achieved using

  15. Carbon Dioxide Capture with Ionic Liquids and Deep Eutectic Solvents: A New Generation of Sorbents.

    PubMed

    Sarmad, Shokat; Mikkola, Jyri-Pekka; Ji, Xiaoyan

    2017-01-20

    High cost and high energy penalty for CO2 uptake from flue gases are important obstacles in large-scale industrial applications, and developing efficient technology for CO2 capture from technical and economic points is crucial. Ionic liquids (ILs) show the potential for CO2 separation owing to their inherent advantages, and have been proposed as alternatives to overcome the drawbacks of conventional sorbents. Chemical modification of ILs to improve their performance in CO2 absorption has received more attention. Deep eutectic solvents (DESs) as a new generation of ILs are considered as more economical alternatives to cope with the deficiencies of high cost and high viscosity of conventional ILs. This Review discusses the potential of functionalized ILs and DESs as CO2 sorbents. Incorporation of CO2 -philic functional groups, such as amine, in cation and/or anion moiety of ILs can promot their absorption capacity. In general, the functionalization of the anion part of ILs is more effective than the cation part. DESs represent favorable solvent properties and are capable of capturing CO2 , but the research work is scarce and undeveloped compared to the studies conducted on ILs. It is possible to develop novel DESs with promising absorption capacity. However, more investigation needs to be carried out on the mechanism of CO2 sorption of DESs to clarify how these novel sorbents can be adjusted and fine-tuned to be best tailored as optimized media for CO2 capture.

  16. CFD Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Power Systems

    SciTech Connect

    Arastoopour, Hamid; Abbasian, Javad

    2014-07-31

    This project describes the work carried out to prepare a highly reactive and mechanically strong MgO based sorbents and to develop a Population Balance Equations (PBE) approach to describe the evolution of the particle porosity distribution that is linked with Computational Fluid Dynamics (CFD) to perform simulations of the CO2 capture and sorbent regeneration. A large number of MgO-based regenerable sorbents were prepared using low cost and abundant dolomite as the base material. Among various preparation parameters investigated the potassium/magnesium (K/Mg) ratio was identified as the key variable affecting the reactivity and CO2 capacity of the sorbent. The optimum K/Mg ratio is about 0.15. The sorbent formulation HD52-P2 was identified as the “best” sorbent formulation and a large batch (one kg) of the sorbent was prepared for the detailed study. The results of parametric study indicate the optimum carbonation and regeneration temperatures are 360° and 500°C, respectively. The results also indicate that steam has a beneficial effect on the rate of carbonation and regeneration of the sorbent and that the reactivity and capacity of the sorbent decreases in the cycling process (sorbent deactivation). The results indicate that to achieve a high CO2 removal efficiency, the bed of sorbent should be operated at a temperature range of 370-410°C which also favors production of hydrogen through the WGS reaction. To describe the carbonation reaction kinetics of the MgO, the Variable Diffusivity shrinking core Model (VDM) was developed in this project, which was shown to accurately fit the experimental data. An important advantage of this model is that the changes in the sorbent conversion with time can be expressed in an explicit manner, which will significantly reduce the CFD computation time. A Computational Fluid Dynamic/Population Balance Equations (CFD/PBE) model was developed that accounts for the particle (sorbent) porosity distribution and a new version of

  17. Transition metal ion capture using functional mesoporous carbon made with 1,10-phenanthroline☆

    PubMed Central

    Chouyyok, Wilaiwan; Yantasee, Wassana; Shin, Yongsoon; Grudzien, Rafal M.; Fryxell, Glen E.

    2012-01-01

    Functional mesoporous carbon has been built using 1,10-phenanthroline as the fundamental building block, resulting in a nanoporous, high surface area sorbent capable of selectively binding transition metal ions. This material had a specific surface area of 870 m2/g, an average pore size of about 30 Å, and contained as much as 8.2 wt% N. Under acidic conditions, where the 1,10-phenanthroline ligand is protonated, this material was found to be an effective anion exchange material for transition metal anions like PdCl42- and H2VO41-. 1,10-Phenanthroline functionalized mesoporous carbon (“Phen-FMC”) was found to have a high affinity for Cu(II), even down to a pH of 1. At pHs above 5, Phen-FMC was found to bind a variety of transition metal cations (e.g. Co(II), Ni(II), Zn(II), etc.) from filtered ground water, river water and seawater. Phen-FMC displayed rapid sorption kinetics with Co(II) in filtered river water, reaching equilibrium in less than an hour, and easily lowering the [Co(II)] to sub-ppb levels. Phen-FMC was found to be more effective for transition metal ion capture than ion-exchange resin or activated carbon. PMID:23762013

  18. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    DOEpatents

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  19. Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO₂ Capture from Post-Combustion Flue Gases

    SciTech Connect

    Chen, Shiaoguo

    2015-09-30

    A novel Gas Pressurized Stripping (GPS) post-combustion carbon capture (PCC) process has been developed by Carbon Capture Scientific, LLC, CONSOL Energy Inc., Nexant Inc., and Western Kentucky University in this bench-scale project. The GPS-based process presents a unique approach that uses a gas pressurized technology for CO₂ stripping at an elevated pressure to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over the MEA process. To meet project goals and objectives, a combination of experimental work, process simulation, and technical and economic analysis studies were applied. The project conducted individual unit lab-scale tests for major process components, including a first absorption column, a GPS column, a second absorption column, and a flasher. Computer simulations were carried out to study the GPS column behavior under different operating conditions, to optimize the column design and operation, and to optimize the GPS process for an existing and a new power plant. The vapor-liquid equilibrium data under high loading and high temperature for the selected amines were also measured. The thermal and oxidative stability of the selected solvents were also tested experimentally and presented. A bench-scale column-based unit capable of achieving at least 90% CO₂ capture from a nominal 500 SLPM coal-derived flue gas slipstream was designed and built. This integrated, continuous, skid-mounted GPS system was tested using real flue gas from a coal-fired boiler at the National Carbon Capture Center (NCCC). The technical challenges of the GPS technology in stability, corrosion, and foaming of selected solvents, and environmental, health and

  20. Long-term calcination/carbonation cycling and thermal pretreatment for CO{sub 2} capture by limestone and dolomite

    SciTech Connect

    Zhongxiang Chen; Hoon Sub Song; Miguel Portillo; C. Jim Lim; John R. Grace; E.J. Anthony

    2009-03-15

    Capturing carbon dioxide is vital for the future of climate-friendly combustion, gasification, and steam-re-forming processes. Dry processes utilizing simple sorbents have great potential in this regard. Long-term calcination/carbonation cycling was carried out in an atmospheric-pressure thermogravimetric reactor. Although dolomite gave better capture than limestone for a limited number of cycles, the advantage declined over many cycles. Under some circumstances, decreasing the carbonation temperature increased the rate of reaction because of the interaction between equilibrium and kinetic factors. Limestone and dolomite, after being pretreated thermally at high temperatures (1000 or 1100{sup o}C), showed a substantial increase in calcium utilization over many calcination/carbonation cycles. Lengthening the pretreatment interval resulted in greater improvement. However, attrition was significantly greater for the pretreated sorbents. Greatly extending the duration of carbonation during one cycle was found to be capable of restoring the CO{sub 2} capture ability of sorbents to their original behavior, offering a possible means of countering the long-term degradation of calcium sorbents for dry capture of carbon dioxide. 12 refs., 12 figs., 2 tabs.

  1. Intro to Carbon Sequestration

    ScienceCinema

    None

    2016-07-12

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  2. Intro to Carbon Sequestration

    SciTech Connect

    2008-03-06

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  3. Engineering Lessons Learned and Technical Standards Integration: Capturing Key Technologies for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Mellen, Daniele P.; Garcia, Danny; Vaughan, William W.

    2003-01-01

    Capturing engineering lessons learned derived from past experiences and new technologies, then integrating them with technical standards, provides a viable process for enhancing engineering capabilities. The development of future space missions will require ready access, not only to the latest technical standards, but also to lessons learned derived from past experiences and new technologies. The integration of this information such that it is readily accessible by engineering and programmatic personnel is a key aspect of enabling technology. This paper addresses the development of a new and innovative Lessons Learned/Best Practices/Applications Notes--Standards Integration System, including experiences with its initial implementation as a pilot effort within the NASA Technical Standards Program. Included are metrics on the Program, feedbacks from users, future plans, and key issues that are being addressed to expand the System's utility. The objective is the enhancement of engineering capabilities on all aspects of systems development applicable to the success of future space missions.

  4. Supersonic Technology for CO2 Capture: A High Efficiency Inertial CO2 Extraction System

    SciTech Connect

    2010-07-01

    IMPACCT Project: Researchers at ATK and ACENT Laboratories are developing a device that relies on aerospace wind-tunnel technologies to turn CO2 into a condensed solid for collection and capture. ATK’s design incorporates a special nozzle that converges and diverges to expand flue gas, thereby cooling it off and turning the CO2 into solid particles which are removed from the system by a cyclonic separator. This technology is mechanically simple, contains no moving parts and generates no chemical waste, making it inexpensive to construct and operate, readily scalable, and easily integrated into existing facilities. The increase in the cost to coal-fired power plants associated with introduction of this system would be 50% less than current technologies.

  5. Autonomous Underwater Vehicle Survey Design for Monitoring Carbon Capture and Storage Sites

    NASA Astrophysics Data System (ADS)

    Bull, J. M.; Cevatoglu, M.; Connelly, D.; Wright, I. C.; McPhail, S.; Shitashima, K.

    2013-12-01

    Long-term monitoring of sub-seabed Carbon Capture and Storage (CCS) sites will require systems that are flexible, independent, and have long-endurance. In this presentation we will discuss the utility of autonomous underwater vehicles equipped with different sensor packages in monitoring storage sites. We will present data collected using Autosub AUV, as part of the ECO2 project, from the Sleipner area of the North Sea. The Autosub AUV was equipped with sidescan sonar, an EM2000 multibeam systems, a Chirp sub-bottom profiler, and a variety of chemical sensors. Our presentation will focus on survey design, and the simultaneous use of multiple sensor packages in environmental monitoring on the continental shelf.

  6. Proposed roadmap for overcoming legal and financial obstacles to carbon capture and sequestration

    SciTech Connect

    Jacobs, Wendy ); Chohen, Leah; Kostakidis-Lianos, Leah; Rundell, Sara )

    2009-03-01

    Many existing proposals either lack sufficient concreteness to make carbon capture and geological sequestration (CCGS) operational or fail to focus on a comprehensive, long term framework for its regulation, thus failing to account adequately for the urgency of the issue, the need to develop immediate experience with large scale demonstration projects, or the financial and other incentives required to launch early demonstration projects. We aim to help fill this void by proposing a roadmap to commercial deployment of CCGS in the United States.This roadmap focuses on the legal and financial incentives necessary for rapid demonstration of geological sequestration in the absence of national restrictions on CO2 emissions. It weaves together existing federal programs and financing opportunities into a set of recommendations for achieving commercial viability of geological sequestration.

  7. Space Geodesy and Geochemistry Applied to the Monitoring, Verification of Carbon Capture and Storage

    SciTech Connect

    Swart, Peter

    2013-11-30

    This award was a training grant awarded by the U.S. Department of Energy (DOE). The purpose of this award was solely to provide training for two PhD graduate students for three years in the general area of carbon capture and storage (CCS). The training consisted of course work and conducting research in the area of CCS. Attendance at conferences was also encouraged as an activity and positive experience for students to learn the process of sharing research findings with the scientific community, and the peer review process. At the time of this report, both students have approximately two years remaining of their studies, so have not fully completed their scientific research projects.

  8. Super liquid-repellent gas membranes for carbon dioxide capture and heart-lung machines.

    PubMed

    Paven, Maxime; Papadopoulos, Periklis; Schöttler, Susanne; Deng, Xu; Mailänder, Volker; Vollmer, Doris; Butt, Hans-Jürgen

    2013-01-01

    In a gas membrane, gas is transferred between a liquid and a gas through a microporous membrane. The main challenge is to achieve a high gas transfer while preventing wetting and clogging. With respect to the oxygenation of blood, haemocompatibility is also required. Here we coat macroporous meshes with a superamphiphobic-or liquid repellent-layer to meet this challenge. The superamphiphobic layer consists of a fractal-like network of fluorinated silicon oxide nanospheres; gas trapped between the nanospheres keeps the liquid from contacting the wall of the membrane. We demonstrate the capabilities of the membrane by capturing carbon dioxide gas into a basic aqueous solution and in addition use it to oxygenate blood. Usually, blood tends to clog membranes because of the abundance of blood cells, platelets, proteins and lipids. We show that human blood stored in a superamphiphobic well for 24 h can be poured off without leaving cells or adsorbed protein behind.

  9. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect

    Benson, Steven; Palo, Daniel; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-01

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, an Environmental Health and Safety (EH&S) Assessment was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment addressed air and particulate emissions as well as solid and liquid waste streams. The magnitude of the emissions and waste streams was estimated for evaluation purposes. EH&S characteristics of materials used in the system are also described. This document contains data based on the mass balances from both the 40 kJ/mol CO2 and 80 kJ/mol CO2 desorption energy cases evaluated in the Final Technical and Economic Feasibility study also conducted by Barr Engineering.

  10. The Intermediate Neutron-capture Process and Carbon-enhanced Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Hampel, Melanie; Stancliffe, Richard J.; Lugaro, Maria; Meyer, Bradley S.

    2016-11-01

    Carbon-enhanced metal-poor (CEMP) stars in the Galactic Halo display enrichments in heavy elements associated with either the s (slow) or the r (rapid) neutron-capture process (e.g., barium and europium, respectively), and in some cases they display evidence of both. The abundance patterns of these CEMP-s/r stars, which show both Ba and Eu enrichment, are particularly puzzling, since the s and the r processes require neutron densities that are more than ten orders of magnitude apart and, hence, are thought to occur in very different stellar sites with very different physical conditions. We investigate whether the abundance patterns of CEMP-s/r stars can arise from the nucleosynthesis of the intermediate neutron-capture process (the i process), which is characterized by neutron densities between those of the s and the r processes. Using nuclear network calculations, we study neutron capture nucleosynthesis at different constant neutron densities n ranging from 107-1015 cm-3. With respect to the classical s process resulting from neutron densities on the lowest side of this range, neutron densities on the highest side result in abundance patterns, which show an increased production of heavy s-process and r-process elements, but similar abundances of the light s-process elements. Such high values of n may occur in the thermal pulses of asymptotic giant branch stars due to proton ingestion episodes. Comparison to the surface abundances of 20 CEMP-s/r stars shows that our modeled i-process abundances successfully reproduce observed abundance patterns, which could not be previously explained by s-process nucleosynthesis. Because the i-process models fit the abundances of CEMP-s/r stars so well, we propose that this class should be renamed as CEMP-i.

  11. Capture of carbon dioxide from flue gases by amine-functionalized TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Song, Fujiao; Zhao, Yunxia; Cao, Yan; Ding, Jie; Bu, Yunfei; Zhong, Qin

    2013-03-01

    The novel carbon dioxide (CO2) adsorbents with high capture efficiency were prepared through impregnating TiO2 nanotubes (TiNT) with four kinds of amines, namely monoethanolamine (MEA), ethylenediamine (EDA), triethylenetetramine (TETA) and tetraethylenepentamine (TEPA), respectively. The samples were characterized by thermogravimetric analysis, low temperature N2 adsorption and transmission electron microscopy. CO2 capture was investigated in a dynamic packed column. The TEPA-loaded sample showed a better adsorption capacity due to its higher amino-groups content. In condition, TiNT-TEPA-69 shows the highest CO2 adsorption capacity among the four TEPA-loaded samples, approximately 4.37 mmol/g at 60 °C. The adsorption capacity was enhanced to 5.24 mmol/g under moisture conditions. TiNT-TEPA-69 was selected as adsorbent to study the adsorption/desorption behavior in the absence of moisture and in the presence of moisture. While the former is fairly stable after 5 adsorption/desorption cycles, the latter decreases dramatically.

  12. Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air.

    PubMed

    Goeppert, Alain; Zhang, Hang; Czaun, Miklos; May, Robert B; Prakash, G K Surya; Olah, George A; Narayanan, S R

    2014-05-01

    Adsorbents prepared easily by impregnation of fumed silica with polyethylenimine (PEI) are promising candidates for the capture of CO2 directly from the air. These inexpensive adsorbents have high CO2 adsorption capacity at ambient temperature and can be regenerated in repeated cycles under mild conditions. Despite the very low CO2 concentration, they are able to scrub efficiently all CO2 out of the air in the initial hours of the experiments. The influence of parameters such as PEI loading, adsorption and desorption temperature, particle size, and PEI molecular weight on the adsorption behavior were investigated. The mild regeneration temperatures required could allow the use of waste heat available in many industrial processes as well as solar heat. CO2 adsorption from the air has a number of applications. Removal of CO2 from a closed environment, such as a submarine or space vehicles, is essential for life support. The supply of CO2-free air is also critical for alkaline fuel cells and batteries. Direct air capture of CO2 could also help mitigate the rising concerns about atmospheric CO2 concentration and associated climatic changes, while, at the same time, provide the first step for an anthropogenic carbon cycle.

  13. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    NASA Technical Reports Server (NTRS)

    Johnson, James E.; Bates, Timothy S.

    1993-01-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  14. Easily Regenerable Solid Adsorbents Based on Polyamines for Carbon Dioxide Capture from the Air

    SciTech Connect

    Goeppert, A; Zhang, H; Czaun, M; May, RB; Prakash, GKS; Olah, GA; Narayanan, SR

    2014-03-18

    Adsorbents prepared easily by impregnation of fumed silica with polyethylenimine (PEI) are promising candidates for the capture of CO2 directly from the air. These inexpensive adsorbents have high CO2 adsorption capacity at ambient temperature and can be regenerated in repeated cycles under mild conditions. Despite the very low CO2 concentration, they are able to scrub efficiently all CO2 out of the air in the initial hours of the experiments. The influence of parameters such as PEI loading, adsorption and desorption temperature, particle size, and PEI molecular weight on the adsorption behavior were investigated. The mild regeneration temperatures required could allow the use of waste heat available in many industrial processes as well as solar heat. CO2 adsorption from the air has a number of applications. Removal of CO2 from a closed environment, such as a submarine or space vehicles, is essential for life support. The supply of CO2-free air is also critical for alkaline fuel cells and batteries. Direct air capture of CO2 could also help mitigate the rising concerns about atmospheric CO2 concentration and associated climatic changes, while, at the same time, provide the first step for an anthropogenic carbon cycle.

  15. The cost of carbon capture and storage for natural gas combined cycle power plants.

    PubMed

    Rubin, Edward S; Zhai, Haibo

    2012-03-20

    This paper examines the cost of CO(2) capture and storage (CCS) for natural gas combined cycle (NGCC) power plants. Existing studies employ a broad range of assumptions and lack a consistent costing method. This study takes a more systematic approach to analyze plants with an amine-based postcombustion CCS system with 90% CO(2) capture. We employ sensitivity analyses together with a probabilistic analysis to quantify costs for plants with and without CCS under uncertainty or variability in key parameters. Results for new baseload plants indicate a likely increase in levelized cost of electricity (LCOE) of $20-32/MWh (constant 2007$) or $22-40/MWh in current dollars. A risk premium for plants with CCS increases these ranges to $23-39/MWh and $25-46/MWh, respectively. Based on current cost estimates, our analysis further shows that a policy to encourage CCS at new NGCC plants via an emission tax or carbon price requires (at 95% confidence) a price of at least $125/t CO(2) to ensure NGCC-CCS is cheaper than a plant without CCS. Higher costs are found for nonbaseload plants and CCS retrofits.

  16. Water use at pulverized coal power plants with postcombustion carbon capture and storage.

    PubMed

    Zhai, Haibo; Rubin, Edward S; Versteeg, Peter L

    2011-03-15

    Coal-fired power plants account for nearly 50% of U.S. electricity supply and about a third of U.S. emissions of CO(2), the major greenhouse gas (GHG) associated with global climate change. Thermal power plants also account for 39% of all freshwater withdrawals in the U.S. To reduce GHG emissions from coal-fired plants, postcombustion carbon capture and storage (CCS) systems are receiving considerable attention. Current commercial amine-based capture systems require water for cooling and other operations that add to power plant water requirements. This paper characterizes and quantifies water use at coal-burning power plants with and without CCS and investigates key parameters that influence water consumption. Analytical models are presented to quantify water use for major unit operations. Case study results show that, for power plants with conventional wet cooling towers, approximately 80% of total plant water withdrawals and 86% of plant water consumption is for cooling. The addition of an amine-based CCS system would approximately double the consumptive water use of the plant. Replacing wet towers with air-cooled condensers for dry cooling would reduce plant water use by about 80% (without CCS) to about 40% (with CCS). However, the cooling system capital cost would approximately triple, although costs are highly dependent on site-specific characteristics. The potential for water use reductions with CCS is explored via sensitivity analyses of plant efficiency and other key design parameters that affect water resource management for the electric power industry.

  17. Optimization of water use and cost of electricity for an MEA carbon capture process, January 26, 2012

    SciTech Connect

    Eslick, J.; Miller, D.

    2012-01-01

    DOE goals are: 90% CO{sub 2} capture, Less than 30% increase in COE, and to reduce water use by 70% at 50% cost of dry cooling. Objectives are: (1) Develop detailed models of supercritical power plant, MEA carbon capture process, CO{sub 2} compression; and (2) Optimize process for conflicting goals of minimizing water use and COE CO{sub 2} capture greatly increases COE and water use, power gen. 1/3 of fresh water use, and water scarcity is increasing.

  18. Capturing Nanotechnology's Current State of Development via Analysis of Patents. OECD Science, Technology and Industry Working Papers, 2007/4

    ERIC Educational Resources Information Center

    Igami, Masatsura; Okazaki, Teruo

    2007-01-01

    This analysis aims at capturing current inventive activities in nanotechnologies based on the analysis of patent applications to the European Patent Office (EPO). Reported findings include: (1) Nanotechnology is a multifaceted technology, currently consisting of a set of technologies on the nanometre scale rather than a single technological field;…

  19. Implicit prosody mining based on the human eye image capture technology

    NASA Astrophysics Data System (ADS)

    Gao, Pei-pei; Liu, Feng

    2013-08-01

    The technology of eye tracker has become the main methods of analyzing the recognition issues in human-computer interaction. Human eye image capture is the key problem of the eye tracking. Based on further research, a new human-computer interaction method introduced to enrich the form of speech synthetic. We propose a method of Implicit Prosody mining based on the human eye image capture technology to extract the parameters from the image of human eyes when reading, control and drive prosody generation in speech synthesis, and establish prosodic model with high simulation accuracy. Duration model is key issues for prosody generation. For the duration model, this paper put forward a new idea for obtaining gaze duration of eyes when reading based on the eye image capture technology, and synchronous controlling this duration and pronunciation duration in speech synthesis. The movement of human eyes during reading is a comprehensive multi-factor interactive process, such as gaze, twitching and backsight. Therefore, how to extract the appropriate information from the image of human eyes need to be considered and the gaze regularity of eyes need to be obtained as references of modeling. Based on the analysis of current three kinds of eye movement control model and the characteristics of the Implicit Prosody reading, relative independence between speech processing system of text and eye movement control system was discussed. It was proved that under the same text familiarity condition, gaze duration of eyes when reading and internal voice pronunciation duration are synchronous. The eye gaze duration model based on the Chinese language level prosodic structure was presented to change previous methods of machine learning and probability forecasting, obtain readers' real internal reading rhythm and to synthesize voice with personalized rhythm. This research will enrich human-computer interactive form, and will be practical significance and application prospect in terms of

  20. Silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture under the flue gas condition

    SciTech Connect

    Lee, Min-Sang; Park, Soo-Jin

    2015-03-15

    In this study, silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine (PEI) were prepared via a two-step process: (i) hydrolysis of tetraethylorthosilicate onto multi-walled carbon nanotubes, and (ii) impregnation of PEI. The adsorption properties of CO{sub 2} were investigated using CO{sub 2} adsorption–desorption isotherms at 298 K and thermogravimetric analysis under the flue gas condition (15% CO{sub 2}/85% N{sub 2}). The results obtained in this study indicate that CO{sub 2} adsorption increases after impregnation of PEI. The increase in CO{sub 2} capture was attributed to the affinity between CO{sub 2} and the amine groups. CO{sub 2} adsorption–desorption experiments, which were repeated five times, also showed that the prepared adsorbents have excellent regeneration properties. - Graphical abstract: Fabrication and CO{sub 2} adsorption process of the S-MWCNTs impregnated with PEI. - Highlights: • Silica coated-MWCNT impregnated with PEI was synthesized. • Amine groups of PEI gave CO{sub 2} affinity sites on MWCNT surfaces. • The S-MWCNT/PEI(50) exhibited the highest CO{sub 2} adsorption capacity.

  1. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report

    SciTech Connect

    Not Available

    1993-07-01

    This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

  2. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources.

    PubMed

    Choi, Sunho; Drese, Jeffrey H; Jones, Christopher W

    2009-01-01

    Since the time of the industrial revolution, the atmospheric CO(2) concentration has risen by nearly 35 % to its current level of 383 ppm. The increased carbon dioxide concentration in the atmosphere has been suggested to be a leading contributor to global climate change. To slow the increase, reductions in anthropogenic CO(2) emissions are necessary. Large emission point sources, such as fossil-fuel-based power generation facilities, are the first targets for these reductions. A benchmark, mature technology for the separation of dilute CO(2) from gas streams is via absorption with aqueous amines. However, the use of solid adsorbents is now being widely considered as an alternative, potentially less-energy-intensive separation technology. This Review describes the CO(2) adsorption behavior of several different classes of solid carbon dioxide adsorbents, including zeolites, activated carbons, calcium oxides, hydrotalcites, organic-inorganic hybrids, and metal-organic frameworks. These adsorbents are evaluated in terms of their equilibrium CO(2) capacities as well as other important parameters such as adsorption-desorption kinetics, operating windows, stability, and regenerability. The scope of currently available CO(2) adsorbents and their critical properties that will ultimately affect their incorporation into large-scale separation processes is presented.

  3. Surface modification of oil fly ash and its application in selective capturing of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Yaumi, Ali L.; Hussien, Ibnelwaleed A.; Shawabkeh, Reyad A.

    2013-02-01

    Oil fly ash from power generation plants was activated with 30% NH4OH and used for selective adsorption of carbon dioxide from CO2/N2 mixture. The treated samples were characterized for their surface area, morphology, crystalline phase, chemical composition and surface functional groups. Energy dispersive X-ray analysis showed an increase in the carbon contents from 45 to 73 wt% as a result of leaching out metal oxides. XRD proved that chemical activation of ash resulted in diminishing of major crystalline phases of zeolite, and other alumino-silicates leaving only quartz and mullite. BET analysis showed an increase in surface area from 59 to 318 m2/g after chemical activation and the pore volume increased from 0.0368 to 0.679 cm3/g. This increase in pore volume is supported by the results of SEM, where more micropores were opened with well-defined particle sizes and porous structure. The TGA of the treated fly ash showed stability at higher temperature as the weight loss decreased with increasing temperature. For treated ash, the FTIR displayed new peaks of amine functional group. The treated ash was used for the removal of CO2 from CO2/N2 mixture and the maximum adsorption/capturing capacity was found to be 240 mg/g. This capacity increases with increase in initial gas concentration, inlet flow rate and temperature suggesting the endothermic nature of the interaction between the gas molecules and the surface of the ash.

  4. Viability preserved capture of microorganism by plasma functionalized carbon-encapsulated iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Viswan, Anchu; Sugiura, Kuniaki; Nagatsu, Masaaki

    2015-09-01

    Carbon-encapsulated iron nanoparticles (Fe@C NPs) were synthesized by DC arc discharge method. Carbon encapsulation makes the particles hydrophobic, however for most of the biomedical applications they need to be hydrophilic. To attain this, the particles were amino functionalized by RF plasma. Effect of gas mixture ratio (Ar/NH3), pretreatment, post-treatment times and RF power were optimized. By varying the RF plasma conditions, the amino group population on the surface of Fe@C NPs were increased. With conventional chemical method the amino group population on particles, synthesized in different conditions was found to be ranging from 3-7 × 104 per particle. Bioconjugation efficiency of the nanoparticles was examined by biotin-avidin system, which can be simulated for antigen-antibody reactions. Results from the UV absorption and fluorescence spectroscopy shows increment in bioconjugation efficiency, with the increase of amino group population on the nanoparticles. After confirming the bioconjugation efficiency, the amino functionalized Fe@C NPs were modified with antibodies for targeting specific microorganisms. Our aim is to capture the microbes in viable and concentrated form even from less populated samples, with lesser time compared to the presently available methods. This work has been supported in part by Grant-in-Aid for Scientific Research (Nos. 21110010 and 25246029) from the Japan Society for the Promotion of Science (JSPS).

  5. Capturing the Local Adsorption Structures of Carbon Dioxide in Polyamine-Impregnated Mesoporous Silica Adsorbents.

    PubMed

    Huang, Shing-Jong; Hung, Chin-Te; Zheng, Anmin; Lin, Jen-Shan; Yang, Chun-Fei; Chang, Yu-Chi; Deng, Feng; Liu, Shang-Bin

    2014-09-18

    Interactions between amines and carbon dioxide (CO2) are essential to amine-functionalized solid adsorbents for carbon capture, and an in-depth knowledge of these interactions is crucial to adsorbent design and fabrication as well as adsorption/desorption processes. The local structures of CO2 adsorbed on a tetraethylenepentamine-impregnated mesoporous silica SBA-15 were investigated by solid-state (13)C{(14)N} S-RESPDOR MAS NMR technique and theoretical DFT calculations. Two types of adsorption species, namely, secondary and tertiary carbamates as well as distant ammonium groups were identified together with their relative concentrations and relevant (14)N quadrupolar parameters. Moreover, a dipolar coupling of 716 Hz was derived, corresponding to a (13)C-(14)N internuclear distance of 1.45 Å. These experimental data are in excellent agreement with results obtained from DFT calculations, revealing that the distribution of surface primary and secondary amines readily dictates the CO2 adsorption/desorption properties of the adsorbent.

  6. Research for deployment: incorporating risk, regulation, and liability for carbon capture and sequestration.

    PubMed

    Wilson, Elizabeth J; Friedmann, S Julio; Pollak, Melisa F

    2007-09-01

    Carbon capture and sequestration (CCS) has the potential to enable deep reductions in global carbon dioxide (CO2) emissions, however this promise can only be fulfilled with large-scale deployment. For this to happen, CCS must be successfully embedded into a larger legal and regulatory context, and any potential risks must be effectively managed. We developed a list of outstanding research and technical questions driven by the demands of the regulatory and legal systems for the geologic sequestration (GS) component of CCS. We then looked at case studies that bound uncertainty within two of the research themes that emerge. These case studies, on surface leakage from abandoned wells and groundwater quality impacts from metals mobilization, illustrate how research can inform decision makers on issues of policy, regulatory need, and legal considerations. A central challenge is to ensure that the research program supports development of general regulatory and legal frameworks, and also the development of geological, geophysical, geochemical, and mo