NASA Astrophysics Data System (ADS)
Lindsay, Matthew B. J.; Blowes, David W.; Ptacek, Carol J.; Condon, Peter D.
2011-07-01
A laboratory-scale column experiment was conducted to evaluate the effect of organic carbon amendments on the mobility of As, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Tl and Zn in mine tailings. Three columns were packed with sulfide- and carbonate-rich tailings, which were amended with a 1:1 (vol.) mixture of peat and spent brewing grain at proportions of 0, 2 and 5 vol. %. A simulated input solution characterized by circumneutral pH and elevated concentrations of SO 4 and S 2O 3 was passed through the columns for 540 days. The input solution contained low concentrations of metal(loid)s during the initial 300 days and elevated concentrations thereafter. Decreases in mass transport of S 2O 3 were observed in all columns; with increased attenuation observed at 5 vol. % organic carbon content. Removal of Mn, Ni, Cu, Sb and Mo was observed in all columns during the initial 300 days. However, during this time, mobilization of Fe, As, Zn and Pb was observed, with the greatest increases in concentration observed at the higher organic carbon content. During the final 240 days, S 2O 3 removal was enhanced in columns containing organic carbon, and Fe, Mn, Ni, Tl, As and Sb removal also was observed. This study demonstrates the influence of organic carbon amendments on metal(loid) mobility in mine tailings. Decreases in mass discharge of metal(loid)s may be achieved using this technique; however, site-specific geochemical conditions must be considered before field-scale implementation.
The total carbon column observing network.
Wunch, Debra; Toon, Geoffrey C; Blavier, Jean-François L; Washenfelder, Rebecca A; Notholt, Justus; Connor, Brian J; Griffith, David W T; Sherlock, Vanessa; Wennberg, Paul O
2011-05-28
A global network of ground-based Fourier transform spectrometers has been founded to remotely measure column abundances of CO(2), CO, CH(4), N(2)O and other molecules that absorb in the near-infrared. These measurements are directly comparable with the near-infrared total column measurements from space-based instruments. With stringent requirements on the instrumentation, acquisition procedures, data processing and calibration, the Total Carbon Column Observing Network (TCCON) achieves an accuracy and precision in total column measurements that is unprecedented for remote-sensing observations (better than 0.25% for CO(2)). This has enabled carbon-cycle science investigations using the TCCON dataset, and allows the TCCON to provide a link between satellite measurements and the extensive ground-based in situ network. © 2011 The Royal Society
NASA Astrophysics Data System (ADS)
Qin, Xiu-Chun; Nakayama, Tomoki; Matsumi, Yutaka; Kawasaki, Masahiro; Ono, Akiko; Hayashida, Sachiko; Imasu, Ryoichi; Lei, Li-Ping; Murata, Isao; Kuroki, Takahiro; Ohashi, Masafumi
2018-01-01
Remote sensing of the atmospheric greenhouse gases, methane (CH4) and carbon dioxide (CO2), contributes to the understanding of global warming and climate change. A portable ground-based instrument consisting of a commercially available desktop optical spectrum analyzer and a small sun tracker has been applied to measure the column densities of atmospheric CH4 and CO2 at Yanting observation station in a mountainous paddy field of the Sichuan Basin from September to November 2013. The column-averaged dry-air molar mixing ratios, XCH4/XCO2, are compared with those retrieved by satellite observations in the Sichuan Basin and by ground-based network observations in the same latitude zone as the Yanting observation station.
Data Fusion for Earth Science Remote Sensing
NASA Technical Reports Server (NTRS)
Braverman, Amy
2007-01-01
Beginning in 2004, NASA has supported the development of an international network of ground-based remote sensing installations for the measurement of greenhouse gas columns. This collaboration has been successful and is currently used in both carbon cycle investigations and in the efforts to validate the GOSAT space-based column observations of CO2 and CH4. With the support of a grant, this research group has established a network of ground-based column observations that provide an essential link between the satellite observations of CO2, CO, and CH4 and the extensive global in situ surface network. The Total Carbon Column Observing Network (TCCON) was established in 2004. At the time of this report seven sites, employing modern instrumentation, were operational or were expected to be shortly. TCCON is expected to expand. In addition to providing the most direct means of tying the in situ and remote sensing data sets together, TCCON provides a means of testing the retrieval algorithms of SCIAMACHY and GOSAT over the broadest variation in atmospheric state. TCCON provides a critically maintained and long timescale record for identification of temporal drift and spatial bias in the calibration of the space-based sensors. Finally, the global observations from TCCON are improving our understanding of how to use column observations to provide robust estimates of surface exchange of C02 and CH4 in advance of the launch of OCO and GOSAT. TCCON data are being used to better understand the impact of both regional fluxes and long-range transport on gradients in the C02 column. Such knowledge is essential for identifying the tools required to best use the space-based observations. The technical approach and methodology of retrieving greenhouse gas columns from near-IR solar spectra, data quality and process control are described. Additionally, the impact of and relevance to NASA of TCCON and satellite validation and carbon science are addressed.
Mobility of multiwalled carbon nanotubes in porous media.
Liu, Xueying; O'Carroll, Denis M; Petersen, Elijah J; Huang, Qingguo; Anderson, C Lindsay
2009-11-01
Engineered multiwalled carbon nanotubes (MWCNTs) are the subject of intense research and are expected to gain widespread usage in a broad variety of commercial products. However, concerns have been raised regarding potential environmental and human health risks. The mobility of MWCNTs in porous media is examined in this study using one-dimensional flow-through column experiments under conditions representative of subsurface and drinking water treatment systems. Results demonstrate that pore water velocity strongly influenced MWCNT transport, with high MWCNT mobility at pore water velocities greater than 4.0 m/d. A numerical simulator, which incorporated a newly developed theoretical collector efficiency relationship for MWCNTs in spherical porous media, was developed to model observed column results. The model, which incorporated traditional colloid filtration theory in conjunction with a site-blocking term, yielded good agreement with observed results in quartz sand-packed column experiments. Experiments were also conducted in glass bead-packed columns with the same mean grain size as the quartz sand-packed columns. MWCNTs were more mobile in the glass bead-packed columns.
A composite reactor with wetted-wall column for mineral carbonation study in three-phase systems.
Zhu, Chen; Yao, Xizhi; Zhao, Liang; Teng, H Henry
2016-11-01
Despite the availability of various reactors designed to study gas-liquid reactions, no appropriate devices are available to accurately investigate triple-phased mineral carbonation reactions involving CO 2 gas, aqueous solutions (containing divalent cations), and carbonate minerals. This report presents a composite reactor that combines a modified conventional wetted-wall column, a pH control module, and an attachment to monitor precipitation reactions. Our test and calibration experiments show that the absorption column behaved largely in agreement with theoretical predictions and previous observations. Experimental confirmation of CO 2 absorption in NaOH and ethanolamine supported the effectiveness of the column for gas-liquid interaction. A test run in the CO 2 -NH 3 -MgCl 2 system carried out for real time investigation of the relevant carbonation reactions shows that the reactor's performance closely followed the expected reaction path reflected in pH change, the occurrence of precipitation, and the rate of NH 3 addition, indicating the appropriateness of the composite device in studying triple-phase carbonation process.
Bertelkamp, C; van der Hoek, J P; Schoutteten, K; Hulpiau, L; Vanhaecke, L; Vanden Bussche, J; Cabo, A J; Callewaert, C; Boon, N; Löwenberg, J; Singhal, N; Verliefde, A R D
2016-02-01
This study investigated organic micropollutant (OMP) biodegradation rates in laboratory-scale soil columns simulating river bank filtration (RBF) processes. The dosed OMP mixture consisted of 11 pharmaceuticals, 6 herbicides, 2 insecticides and 1 solvent. Columns were filled with soil from a RBF site and were fed with four different organic carbon fractions (hydrophilic, hydrophobic, transphilic and river water organic matter (RWOM)). Additionally, the effect of a short-term OMP/dissolved organic carbon (DOC) shock-load (e.g. quadrupling the OMP concentrations and doubling the DOC concentration) on OMP biodegradation rates was investigated to assess the resilience of RBF systems. The results obtained in this study imply that - in contrast to what is observed for managed aquifer recharge systems operating on wastewater effluent - OMP biodegradation rates are not affected by the type of organic carbon fraction fed to the soil column, in case of stable operation. No effect of a short-term DOC shock-load on OMP biodegradation rates between the different organic carbon fractions was observed. This means that the RBF site simulated in this study is resilient towards transient higher DOC concentrations in the river water. However, a temporary OMP shock-load affected OMP biodegradation rates observed for the columns fed with the river water organic matter (RWOM) and the hydrophilic fraction of the river water organic matter. These different biodegradation rates did not correlate with any of the parameters investigated in this study (cellular adenosine triphosphate (cATP), DOC removal, specific ultraviolet absorbance (SUVA), richness/evenness of the soil microbial population or OMP category (hydrophobicity/charge). Copyright © 2015 Elsevier Ltd. All rights reserved.
Longevity of granular iron in groundwater treatment processes: corrosion product development.
Kohn, Tamar; Livi, Kenneth J T; Roberts, A Lynn; Vikesland, Peter J
2005-04-15
Permeable reactive barriers employing iron as a reactive surface have received extensive attention. A remaining issue, however, relates to their longevity. As an integral part of a long-term column study conducted to examine the influence of inorganic cosolutes on iron reactivity toward chlorinated solvents and nitroaromatic compounds, Master Builder iron grains were characterized via scanning and transmission electron microscopy, electron energy loss spectroscopy (EELS), micro-Raman spectroscopy, and X-ray diffraction. Prior to exposure to carbonate solutions, the iron grains were covered by a surface scale that consisted of fayalite (Fe2SiO4), wüstite (FeO), magnetite (Fe3O4), maghemite (gamma-Fe2O3), and graphite. After 1100 days of exposure to solutions containing carbonate, other inorganic solutes, and organic contaminants, the wüstite, fayalite, and graphite of the original scale partially dissolved, and magnetite and iron carbonate hydroxide (Fe3(OH)2.2CO3) precipitated on top of the scale. Raman results indicate the presence of green rust (e.g., [Fe4(2+)Fe2(3+)(OH)12]-[CO3 x 2H2O]) toward the column outlet after 308 days of operation, although this mineral phase disappears at longer operation times. Grains extracted from a column exposed to a high concentration (20 mM) of sodium bicarbonate were more extensively weathered than those from columns exposed to 2 mM sodium bicarbonate. An iron carbonate hydroxide layer up to 100 microm thick was observed. Even though EELS analysis of iron carbonate hydroxide indicates that this is a redox-active phase, the thickness of this layer is presumed responsible for the previously observed decline in the reactivity of this column relative to low-bicarbonate columns. A silica-containing feed resulted in reduced reactivity toward TCE. Grains from this column had a strong enrichment of silicon in the precipitates, although no distinct silica-containing mineral phases were identified. The substitution of 2 mM calcium carbonate for 2 mM sodium bicarbonate in the feed did not produce a measurable reactivity loss, asthe discrete calcium carbonate precipitates that formed in this system did not severely restrict access to the reactive surface.
Calibration of the Total Carbon Column Observing Network using Aircraft Profile Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wunch, Debra; Toon, Geoffrey C.; Wennberg, Paul O.
2010-03-26
The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO{sub 2}, CO, CH{sub 4}, N{sub 2}O and H{sub 2}O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measure ments. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured profiles over four TCCON stations during 2008more » and 2009. The aircraft campaigns are the Stratosphere-Troposphere Analyses of Regional Transport 2008 (START-08), which included a profile over the Park Falls site, the HIAPER Pole-to-Pole Observations (HIPPO-1) campaign, which included profiles over the Lamont and Lauder sites, a series of Learjet profiles over the Lamont site, and a Beechcraft King Air profile over the Tsukuba site. These calibrations are compared with similar observations made during the INTEX-NA (2004), COBRA-ME (2004) and TWP-ICE (2006) campaigns. A single, global calibration factor for each gas accurately captures the TCCON total column data within error.« less
Mulopo, J; Zvimba, J N; Swanepoel, H; Bologo, L T; Maree, J
2012-01-01
Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3).
NASA Astrophysics Data System (ADS)
K, P.; Ghosh, P.; N, A.
2015-12-01
Oxygen and carbon isotopes in planktonic foraminifera Globigerina bulloides recovered from the water column of 0-1000 m depth across the meridional transect i.e. 10°N to 53°S of Indian ocean were compared with the available data from the core-top samples across the same transect. We also recorded in situ temperatures of the water column based on probe (CTD) profiles. The δ18O and δ13C values measured in the core top samples matches with the tow results. The equilibrium δ18O of calcite calculated from known temperature and δ18O of water column allowed us to compare the observed δ18O of formaminieral shell with the expected equilibrium values. Our comparison of carbonate composition in the samples between 10°N till 40°S showed excellent match with the expected equilibrium δ18O values established from the water collected at depth range of ~75-200m, however beyond 40°S the disequilibrium was pronounced with heavier δ18O (enriched by ~1.5‰) recorded in the carbonate as compared with the expected equilibrium δ18O values established from water. This observation was further verified with δ13C measurement of shell carbonates comparing with the equilibrium δ13C of calcite calculated with known temperature and δ13C of dissolved inorganic carbon in the water column. The δ13C of the shell carbonate was found heavier as compared to the expected equilibrium δ13C. Both δ18O and δ13C showed simultaneous enrichment signature in the region beyond 40°S suggesting role of processes such as leaching along with dissolution of shell carbonate in a relatively acidic condition.
NASA Astrophysics Data System (ADS)
Humpage, N.; Boesch, H.; Palmer, P. I.; Parr-Burman, P.; Vick, A.; Bezawada, N.; Black, M.; Born, A.; Gao, X.; Pearson, D.; Samara-Ratna, P.; Strachan, J.; Wells, M.
2015-12-01
GHOST is a novel, compact shortwave infrared spectrometer, designed for remote sensing of tropospheric columns of greenhouse gases (GHGs) over the ocean from an unmanned aircraft. This is achieved by observing solar radiation at high spectral resolution which has been directly reflected by the ocean surface. The GHOST system has been specifically designed and built to address the following science objectives: 1) testing of atmospheric transport models; 2) validation of GHG column observations over oceans obtained using polar orbiting satellites; and 3) complement in-situ tropopause transition layer observations from other instruments. During January and February 2015 GHOST successfully underwent rigorous environmental testing and was installed on board the Northrop Grumman Global Hawk N872NA, an unmanned aircraft operated by NASA from the Armstrong Flight Research Centre at Edwards Air Force Base, California. Here, we present first results from two Global Hawk flights which took place in March 2015 as part of the CAST-ATTREX campaign. The science flights comprised long, approximately north-south transects over the eastern Pacific Ocean, providing an opportunity to observe spatial trends in GHG column concentrations on regional scale. The second science flight on 10th March 2015 coincided with overpasses from both the NASA OCO-2 (Orbiting Carbon Observatory) and the JAXA GOSAT (Greenhouse gases Observing SATellite) satellites, enabling inter-comparison of the GHOST results with total column observations from both satellites. A TCCON (Total Carbon Column Observing Network) station was also operational at Edwards during the two flights, allowing the GHOST observations to be validated against ground based total column measurements of GHGs.
Emissions of methane in Europe inferred by total column measurements
NASA Astrophysics Data System (ADS)
Wunch, D.; Deutscher, N. M.; Hase, F.; Notholt, J.; Sussmann, R.; Toon, G. C.; Warneke, T.
2017-12-01
Atmospheric total column measurements have been used to infer emissions of methane in urban centres around the world. These measurements have been shown to be useful for verifying city-scale bottom-up inventories, and they can provide both timely and sub-annual emission information. We will present our analysis of atmospheric total column measurements of methane and carbon monoxide to infer annual and seasonal regional emissions of methane within Europe using five long-running atmospheric observatories. These observatories are part of the Total Carbon Column Observing Network, part of a global network that has been carefully designed to measure these gases on a consistent scale. Our inferred emissions will then be used to evaluate gridded emissions inventories in the region.
NASA Astrophysics Data System (ADS)
Dubey, M. K.; Parker, H. A.; Wennberg, P. O.; Wunch, D.; Jacobson, A. R.; Kawa, S. R.; Keppel-Aleks, G.; Basu, S.; O'Dell, C.; Frankenberg, C.; Michalak, A. M.; Baker, D. F.; Christofferson, B.; Restrepo-Coupe, N.; Saleska, S. R.; De Araujo, A. C.; Miller, J. B.
2016-12-01
The Amazon basin stores 150-200 PgC, exchanges 18 PgC with the atmosphere every year and has taken up 0.42-0.65 PgC/y over the past two decades. Despite its global significance, the response of the tropical carbon cycle to climate variability and change is ill constrained as evidenced by the large negative and positive feedbacks in future climate simulations. The complex interplay of radiation, water and ecosystem phenology remains unresolved in current tropical ecosystem models. We use high frequency regional scale TCCON observations of column CO2, CO and CH4 near Manaus, Brazil that began in October 2014 to understand the aforementioned interplay of processes in regulating biosphere-atmosphere exchange. We observe a robust daily column CO2 uptake of about 2 ppm (4 ppm to 0.5 ppm) over 8 hours and evaluate how it changes as we transition to the dry season. Back-trajectory calculations show that the daily CO2 uptake footprint is terrestrial and influenced by the heterogeneity of the Amazon rain forests. The column CO falls from above 120 ppb to below 80 ppb as we transition from the biomass burning to wet seasons. The daily mean column CO2 rises by 3 ppm from October through June. Removal of biomass burning, secular CO2 increase and variations from transport (by Carbon tracker simulations) implies an increase of 2.3 ppm results from tropical biospheric processes (respiration and photosynthesis). This is consistent with ground-based remote sensing and eddy flux observations that indicate that leaf development and demography drives the tropical carbon cycle in regions that are not water limited and is not considered in current models. We compare our observations with output from 7 CO2 inversion transport models with assimilated meteorology and find that while 5 models reproduce the CO2 seasonal cycle all of them under predict the daily drawdown of CO2 by a factor of 3. This indicates that the CO2 flux partitioning between photosynthesis and respiration is incorrect in current models and needs refinement. Finally, we use OCO-2 column CO2 and Solar Induced Fluorescence observations over the Amazon to elucidate the tropical carbon cycle mechanisms at larger scales.
Burdett, Heidi L.; Donohue, Penelope J. C.; Hatton, Angela D.; Alwany, Magdy A.; Kamenos, Nicholas A.
2013-01-01
Oceanic pH is projected to decrease by up to 0.5 units by 2100 (a process known as ocean acidification, OA), reducing the calcium carbonate saturation state of the oceans. The coastal ocean is expected to experience periods of even lower carbonate saturation state because of the inherent natural variability of coastal habitats. Thus, in order to accurately project the impact of OA on the coastal ocean, we must first understand its natural variability. The production of dimethylsulphoniopropionate (DMSP) by marine algae and the release of DMSP’s breakdown product dimethylsulphide (DMS) are often related to environmental stress. This study investigated the spatiotemporal response of tropical macroalgae (Padina sp., Amphiroa sp. and Turbinaria sp.) and the overlying water column to natural changes in reefal carbonate chemistry. We compared macroalgal intracellular DMSP and water column DMSP+DMS concentrations between the environmentally stable reef crest and environmentally variable reef flat of the fringing Suleman Reef, Egypt, over 45-hour sampling periods. Similar diel patterns were observed throughout: maximum intracellular DMSP and water column DMS/P concentrations were observed at night, coinciding with the time of lowest carbonate saturation state. Spatially, water column DMS/P concentrations were highest over areas dominated by seagrass and macroalgae (dissolved DMS/P) and phytoplankton (particulate DMS/P) rather than corals. This research suggests that macroalgae may use DMSP to maintain metabolic function during periods of low carbonate saturation state. In the reef system, seagrass and macroalgae may be more important benthic producers of dissolved DMS/P than corals. An increase in DMS/P concentrations during periods of low carbonate saturation state may become ecologically important in the future under an OA regime, impacting larval settlement and increasing atmospheric emissions of DMS. PMID:23724073
NASA Astrophysics Data System (ADS)
Torres, A. D.; Keppel-Aleks, G.; Doney, S. C.; Feng, S.; Lauvaux, T.; Fendrock, M. A.; Rheuben, J.
2017-12-01
Remote sensing instruments provide an unprecedented density of observations of the atmospheric CO2 column average mole fraction (denoted as XCO2), which can be used to constrain regional scale carbon fluxes. Inferring fluxes from XCO2 observations is challenging, as measurements and inversion methods are sensitive to not only the imprint local and large-scale fluxes, but also mesoscale and synoptic-scale atmospheric transport. Quantifying the fine-scale variability in XCO2 from mesoscale and synoptic-scale atmospheric transport will likely improve overall error estimates from flux inversions by improving estimates of representation errors that occur when XCO2 observations are compared to modeled XCO2 in relatively coarse transport models. Here, we utilize various statistical methods to quantify the imprint of atmospheric transport on XCO2 observations. We compare spatial variations along Orbiting Carbon Observatory (OCO-2) satellite tracks to temporal variations observed by the Total Column Carbon Observing Network (TCCON). We observe a coherent seasonal cycle of both within-day temporal and fine-scale spatial variability (of order 10 km) of XCO2 from these two datasets, suggestive of the imprint of mesoscale systems. To account for other potential sources of error in XCO2 retrieval, we compare observed temporal and spatial variations of XCO2 to high-resolution output from the Weather Research and Forecasting (WRF) model run at 9 km resolution. In both simulations and observations, the Northern hemisphere mid-latitude XCO2 showed peak variability during the growing season when atmospheric gradients are largest. These results are qualitatively consistent with our expectations of seasonal variations of the imprint of synoptic and mesoscale atmospheric transport on XCO2 observations; suggesting that these statistical methods could be sensitive to the imprint of atmospheric transport on XCO2 observations.
Molecular column densities in selected model atmospheres. [chemical analysis of carbon stars
NASA Technical Reports Server (NTRS)
Johnson, H. R.; Beebe, R. F.; Sneden, C.
1974-01-01
From an examination of predicted column densities, the following conclusions were drawn: (1) The SiO ought to be visible in carbon stars which were generated from triple alpha burning, but absent from carbon stars generated from the CNO bi-cycle. (2) Variation in the observed relative strengths of TiO and ZrO is indicative of real differences in the ratio Ti/Zr. (3) The TiO/ZrO ratio shows a small variation as C/O and effective temperature is changed. (4) Column density of silicon dicarbide (SiC2) is sensitive to abundance, temperature, and gravity; hence all relationships between the strength of SiC2 and other stellar parameters will show appreciable scatter. There is however, a substantial luminosity effect present in the SiC2 column densities. (5) Unexpectedly, SiC2 is anti-correlated with C2. (6) The presence of SiC2 in a carbon star eliminates the possibility of these stars having temperatures greater than or equal to 3000 K, or being produced through the CNO bi-cycle.
Distribution of trace metals in anchialine caves of Adriatic Sea, Croatia
NASA Astrophysics Data System (ADS)
Cuculić, Vlado; Cukrov, Neven; Kwokal, Željko; Mlakar, Marina
2011-11-01
This study presents results of the first comprehensive research on ecotoxic trace metals (Cd, Pb, Cu and Zn) in aquatic anchialine ecosystems. Data show the influence of hydrological and geological characteristics on trace metals in highly stratified anchialine water columns. Distribution of Cd, Pb, Cu and Zn in two anchialine water bodies, Bjejajka Cave and Lenga Pit in the Mljet National park, Croatia were investigated seasonally from 2006 to 2010. Behaviour and concentrations of dissolved and total trace metals in stratified water columns and metal contents in sediment, carbonate rocks and soil of the anchialine environment were evaluated. Trace metals and dissolved organic carbon (DOC) concentrations in both anchialine water columns were significantly elevated compared to adjacent seawater. Zn and Cu concentrations were the highest in the Lenga Pit water column and sediment. Elevated concentrations of Zn, Pb and Cu in Bjejajka Cave were mainly terrigenous. Significantly elevated concentrations of cadmium (up to 0.3 μg L -1) were found in the water column of Bjejajka cave, almost two orders of magnitude higher compared to nearby surface seawater. Laboratory analysis revealed that bat guano was the major source of cadmium in Bjejajka Cave. Cadmium levels in Lenga Pit, which lacks accumulations of bat guano, were 20-fold lower. Moreover, low metal amounts in carbonate rocks in both caves, combined with mineral leaching experiments, revealed that carbonates play a minor role as a source of metals in both water columns. We observed two types of vertical distribution pattern of cadmium in the stratified anchialine Bjejajka Cave water column. At lower salinities, non-conservative behaviour was characterized by strong desorption and enrichment of dissolved phase while, at salinities above 20, Cd behaved conservatively and its dissolved concentration decreased. Conservative behaviour of Cu, Pb, Zn and DOC was observed throughout the water column. After heavy rains, Cd showed reduced concentration and uniform vertical distribution, suggesting a non-terrestrial origin. Under the same conditions, concentrations of total and dissolved Pb, Cu, Zn and DOC were significantly elevated. Variations of trace metal vertical distributions in anchialine water columns were caused by large inputs of fresh water (extraordinary rainy events), and were not influenced by seasonal changes.
Compact Reconnaissance Imaging Spectrometer Observations of Water Vapor and Carbon Monoxide
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd; Murchie, Scott L.
2009-01-01
The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft began taking observations in September 2006 and has now collected more than a full Martian year of data. Retrievals performed using the near-infrared spectra obtained by CRISM are used to characterize the seasonal and spatial variation of the column abundance of water vapor and the column-averaged mixing ratio of carbon monoxide. CRISM retrievals show nominal behavior in water vapor during northern hemisphere spring and summer with maximum abundance reaching 50 precipitable micrometers. Water vapor abundance during the southern hemisphere spring and summer appears significantly reduced compared to observations by other instruments taken during previous years. The CRISM retrievals show the seasonally and globally averaged carbon monoxide mixing ratio to be 700 ppm, but with strong seasonal variations at high latitudes. The summertime near-polar carbon monoxide mixing ratio falls to 200 ppm in the south and 400 ppm in the north as carbon dioxide sublimates from the seasonal polar ice caps and dilutes noncondensable species including carbon monoxide. At low latitudes, the carbon monoxide mixing ratio varies in response to the mean seasonal cycle of surface pressure.
All model results need to be evaluated against observed data, no matter what the model
scale. Traditionally for air quality applications, the observed data have been limited to
concentrations measured by networks of ground stations. These are located mostly in
Oshchepkov, Sergey; Bril, Andrey; Yokota, Tatsuya; Yoshida, Yukio; Blumenstock, Thomas; Deutscher, Nicholas M; Dohe, Susanne; Macatangay, Ronald; Morino, Isamu; Notholt, Justus; Rettinger, Markus; Petri, Christof; Schneider, Matthias; Sussman, Ralf; Uchino, Osamu; Velazco, Voltaire; Wunch, Debra; Belikov, Dmitry
2013-02-20
This paper presents an improved photon path length probability density function method that permits simultaneous retrievals of column-average greenhouse gas mole fractions and light path modifications through the atmosphere when processing high-resolution radiance spectra acquired from space. We primarily describe the methodology and retrieval setup and then apply them to the processing of spectra measured by the Greenhouse gases Observing SATellite (GOSAT). We have demonstrated substantial improvements of the data processing with simultaneous carbon dioxide and light path retrievals and reasonable agreement of the satellite-based retrievals against ground-based Fourier transform spectrometer measurements provided by the Total Carbon Column Observing Network (TCCON).
Non-detection of HC11N towards TMC-1: constraining the chemistry of large carbon-chain molecules
NASA Astrophysics Data System (ADS)
Loomis, Ryan A.; Shingledecker, Christopher N.; Langston, Glen; McGuire, Brett A.; Dollhopf, Niklaus M.; Burkhardt, Andrew M.; Corby, Joanna; Booth, Shawn T.; Carroll, P. Brandon; Turner, Barry; Remijan, Anthony J.
2016-12-01
Bell et al. reported the first detection of the cyanopolyyne HC11N towards the cold dark cloud TMC-1; no subsequent detections have been reported towards any source. Additional observations of cyanopolyynes and other carbon-chain molecules towards TMC-1 have shown a log-linear trend between molecule size and column density, and in an effort to further explore the underlying chemical processes driving this trend, we have analysed Green Bank Telescope observations of HC9N and HC11N towards TMC-1. Although we find an HC9N column density consistent with previous values, HC11N is not detected and we derive an upper limit column density significantly below that reported in Bell et al. Using a state-of-the-art chemical model, we have investigated possible explanations of non-linearity in the column density trend. Despite updating the chemical model to better account for ion-dipole interactions, we are not able to explain the non-detection of HC11N, and we interpret this as evidence of previously unknown carbon-chain chemistry. We propose that cyclization reactions may be responsible for the depleted HC11N abundance, and that products of these cyclization reactions should be investigated as candidate interstellar molecules.
NASA Astrophysics Data System (ADS)
Jacobs, N.; Simpson, W. R.; Parker, H. A.; Tu, Q.; Blumenstock, T.; Dubey, M. K.; Hase, F.; Osterman, G. B.
2017-12-01
Total column measurements of carbon-dioxide (CO2) from the Orbiting Carbon Observatory-2 (OCO-2) satellite have been validated at mid-latitudes by comparison to the Total Carbon Column Observing Network (TCCON), but there are still a limited number of sites providing high-latitude validation data for satellite observations of CO2, and no TCCON sites in Alaska. To understand the global distribution of CO2 sources and sinks, it is essential that we increase the abundance of validation sites, particularly in the climate-sensitive high-latitude Boreal forest. Therefore, we began the Arctic Mobile Infrared Greenhouse Gas Observations (AMIGGO) campaign in the Boreal Forest region around Fairbanks, Alaska with the goal of satellite validation and measurement of natural ecosystem fluxes. In this campaign, we used the EM27/SUN mobile solar-viewing Fourier-transform infrared spectrometer (EM27/SUN FTS) to retrieve the total CO2 column and column-averaged dry-air mole fraction of CO2 (XCO2) with the GGG2014 algorithm. The EM27/SUN FTS was developed by the Karlsruhe Institute of Technology (KIT) in collaboration with Bruker optics (Gisi et al., 2012, doi:10.5194/amt-5-2969-2012) and has been deployed in urban areas to measure anthropogenic fluxes of CO2 and CH4. To evaluate the EM27/SUN performance, co-located observations were made with two EM27/SUN spectrometers, and we found that XCO2 differences between spectrometers were small (0.24ppm on average) and very stable over time. In this presentation, we report on 14 OCO-2 targeted overpasses that occurred from August 2016 through July 2017, along with additional targets obtained during ongoing observations in 2017. We investigate underlying reasons for observed differences between OCO-2 and ground-based XCO2 using methods developed by Wunch et al. (2017, doi:10.5194/amt-10-2209-2017). As an additional point of comparison, coincident aircraft observations by NOAA Earth System Research Laboratory (ESRL) Global Monitoring Division at Poker Flat, Alaska, and observations from the 2017 Arctic-Boreal Vulnerability Experiment (ABoVE) airborne operations may also be included if available.
Biswas, Swarup; Mishra, Umesh
2016-01-01
The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater. PMID:26904681
Biswas, Swarup; Mishra, Umesh
2016-01-01
The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.
Rowsell, Victoria Francesca; Pang, Dawn Sok Cheng; Tsafou, Foteini; Voulvoulis, Nikolaos
2009-04-01
This research was set up in response to new European legislation to identify cost-effective treatment for removal of steroid estrogens from effluent. This study aimed to compare estrogen removal of two types of granular activated carbon: virgin (F400) and reactivated (C401) carbon. Rapid, small-scale column tests were conducted with a total bed volume of 24.9 cm3 over three columns, and analysis was carried out using high-performance liquid chromatography. Results demonstrated that C401 performed more efficiently with greater than or equal to 81% estrogen removal in wastewater compared to F400 which produced greater than or equal to 65% estrogen removal. Estrogen removal can be affected by competitive adsorption from natural organic matter present in wastewater. In addition, the physical properties of each carbon had the potential to influence adsorption differently, thus resulting in the observed varied adsorption capability of the two carbons.
A Global Perspective of Atmospheric CO2 Concentrations
NASA Technical Reports Server (NTRS)
Putman, William M.; Ott, Lesley; Darmenov, Anton; daSilva, Arlindo
2016-01-01
Carbon dioxide (CO2) is the most important greenhouse gas affected by human activity. About half of the CO2 emitted from fossil fuel combustion remains in the atmosphere, contributing to rising temperatures, while the other half is absorbed by natural land and ocean carbon reservoirs. Despite the importance of CO2, many questions remain regarding the processes that control these fluxes and how they may change in response to a changing climate. The Orbiting Carbon Observatory-2 (OCO-2), launched on July 2, 2014, is NASA's first satellite mission designed to provide the global view of atmospheric CO2 needed to better understand both human emissions and natural fluxes. This visualization shows how column CO2 mixing ratio, the quantity observed by OCO-2, varies throughout the year. By observing spatial and temporal gradients in CO2 like those shown, OCO-2 data will improve our understanding of carbon flux estimates. But, CO2 observations can't do that alone. This visualization also shows that column CO2 mixing ratios are strongly affected by large-scale weather systems. In order to fully understand carbon flux processes, OCO-2 observations and atmospheric models will work closely together to determine when and where observed CO2 came from. Together, the combination of high-resolution data and models will guide climate models towards more reliable predictions of future conditions.
Observations of circumstellar carbon monoxide and evidence for multiple ejections in red giants
NASA Technical Reports Server (NTRS)
Bernat, A. P.
1981-01-01
Observations of the fundamental 4.6 micron band of CO in nine red giants are presented. A common feature is multiple absorption lines which are identified as products of separate components or shells. Column densities are derived; the relative values should be free of the uncertainties inherent in determining the absolute scale. These column densities are well fitted by single excitation temperatures for each absorption component; these excitation temperatures are identified with the local kinetic temperatures. There is no correlation of CO column density with either gas or dust column density nor of the expansion velocity of the component with its distance from the star. The evidence is reviewed, and it is concluded that mass loss from red giants is most likely episodic in nature.
NASA Astrophysics Data System (ADS)
Wilson, E. L.; DiGregorio, A.; Villanueva, G. L.; Miletti, K.; Grunberg, C.; Grunberg, M.; Floyd, M.; Menendez, A. R.
2017-12-01
We present a low-cost, portable, miniaturized, laser heterodyne radiometer (mini-LHR) capable of measuring column carbon dioxide (CO2) and methane (CH4) in remote locations to validate passive satellite observations. A benefit of the portability is that mini-LHR instruments can be calibrated and compared site-by-side to quantify any internal biases, or any biases in stationary column instruments such as those in the total carbon column observing network (TCCON). This is the latest iteration of an instrument that has been under development by our team since 2009. During our recent Interdisciplinary Science (IDS) effort that involved measuring carbon emissions over thawing permafrost, it became clear that our mini-LHR needed to be redesigned to be significantly smaller, lighter, and to operate from a small solar panel so that it could be easily carried to the field sites located within the Bonanza Creek Research Forest near Fairbanks, AK. The boreal peatland sites at Bonanza Creek have forests that are underlain by cold soils, permafrost, collapse scar thermokarst bogs resulting from permafrost thaw, and rich fens with various underlying sediments and gravels that are not frozen. While these sites are extremely interesting for their role in carbon storage, the practical issue with these sites is that they are very wet (the fen site for example is periodically under several inches of water) and the trails to reach these sites are extremely muddy, narrow, and populated with swarms of biting insects. The soils at these sites are delicate and easily damaged by excessive foot traffic. They are also prone to periodic wild fires - making permanent column instrument installations impractical. Here, we compare data from the permafrost field work as well as data collected as part of the Hawai'i Space Exploration Analog and Simulation (Hi-SEAS) project where crewmembers are currently testing the mini-LHR on an isolated Mars-like site on the Mauna Loa side of the saddle area on the Big Island of Hawaii at approximately 8200 feet above sea level. These different remote locations demonstrate how the portable mini-LHR could be deployed to ground sites that have not been able to be validated in the past or where key data products are missing.
Brown, J.G.; Glynn, P.D.
2003-01-01
The kinetics of carbonate and Mn oxide dissolution under acidic conditions were examined through the in situ exposure of pure phase samples to acidic ground water in Pinal Creek Basin, Arizona. The average long-term calculated in situ dissolution rates for calcite and dolomite were 1.65??10-7 and 3.64??10-10 mmol/(cm2 s), respectively, which were about 3 orders of magnitude slower than rates derived in laboratory experiments by other investigators. Application of both in situ and lab-derived calcite and dolomite dissolution rates to equilibrium reactive transport simulations of a column experiment did not improve the fit to measured outflow chemistry: at the spatial and temporal scales of the column experiment, the use of an equilibrium model adequately simulated carbonate dissolution in the column. Pyrolusite (MnO2) exposed to acidic ground water for 595 days increased slightly in weight despite thermodynamic conditions that favored dissolution. This result might be related to a recent finding by another investigator that the reductive dissolution of pyrolusite is accompanied by the precipitation of a mixed Mn-Fe oxide species. In PHREEQC reactive transport simulations, the incorporation of Mn kinetics improved the fit between observed and simulated behavior at the column and field scales, although the column-fitted rate for Mn-oxide dissolution was about 4 orders of magnitude greater than the field-fitted rate. Remaining differences between observed and simulated contaminant transport trends at the Pinal Creek site were likely related to factors other than the Mn oxide dissolution rate, such as the concentration of Fe oxide surface sites available for adsorption, the effects of competition among dissolved species for available surface sites, or reactions not included in the model.
NASA Technical Reports Server (NTRS)
Miller, J. Houston; Clarke, Greg B.; Melroy, Hilary; Ott, Lesley; Steel, Emily Wilson
2014-01-01
In a collaboration between NASA GSFC and GWU, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrallyresolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. In the last year, the instrument was deployed for field measurements at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument has been observed. In the latest work the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. An overview of the measurement campaigns and the data retrieval algorithm for the calculation of column concentrations will be presented. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio frequency bandwidth and describe additional future goals in instrument development and deployment target
NASA Astrophysics Data System (ADS)
Lorenzoni, L.; Muller-Karger, F. E.; Rueda-Roa, D. T.; Thunell, R.; Scranton, M. I.; Taylor, G. T.; benitez-Nelson, C. R.; Montes, E.; Astor, Y. M.; Rojas, J.
2016-02-01
The CARIACO Ocean Time-Series project, located in the Cariaco Basin off the coast of Venezuela, seeks to understand relationships between hydrography, primary production, community composition, microbial activity, particle fluxes, and element cycling in the water column, and how variations in these processes are preserved in sediments accumulating in this anoxic basin. CARIACO uses autonomous and shipboard measurements to understand ecological and biogeochemical changes and how these relate to regional and global climatic/ocean variability. CARIACO is a model for national ocean observing programs in Central/South America, and has been developed as a community facility platform with open access to all data (http://imars.marine.usf.edu/cariaco). Research resulting from this program has contributed to knowledge about the decomposition and cycling of particles, the biological pump, and to our understanding of the ecology and oceanography of oxygen minimum zones. Despite this basin being anoxic below 250m, remineralization rates of organic matter are comparable to those in well oxygenated waters. A dynamic microbial community significantly influences carbon and nutrient biogeochemical cycling throughout the water column. Since 1995, declining particulate organic carbon fluxes have been measured throughout the water column using sediment traps, likely in response to declining Chl-a concentrations and smaller phytoplankton which have replaced the larger taxa over the past decade. This community shift appears to be caused by regional changes in the physical regime. CARIACO also recorded marked long-term changes in surface and deep DIC in response to a combination of factors including surface water warming. The observations of CARIACO highlight the importance of a sustained, holistic approach to studying biodiversity, ecology and the marine carbon cycle to predict potential impacts of climate change on the ocean's ecosystem services and carbon sequestration efficiency.
NASA Technical Reports Server (NTRS)
Steel, Emily; McLinden, Matthew
2012-01-01
This passive laser heterodyne radiometer (LHR) instrument simultaneously measures multiple trace gases in the atmospheric column including carbon dioxide (CO2) and methane (CH4), and resolves their concentrations at different altitudes. This instrument has been designed to operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In the LHR instrument described here, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. For a one-second integration, the estimated column sensitivities are 0.1 ppmv for CO2, and <1 ppbv for CH4. In addition to producing a standalone ground measurement product, this instrument could be used to calibrate/validate four Earth observing missions: ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons), OCO-2 (Orbiting Carbon Observatory), OCO-3, and GOSAT (Greenhouse gases Observational SATellite). The only network that currently measures CO2 and CH4 in the atmospheric column is TCCON (Total Carbon Column Observing Network), and only two of its 16 operational sites are in the United States. TCCON data is used for validation of GOSAT data, and will be used for OCO-2 validation. While these Fourier-transform spectrometers (FTS) can measure the largest range of trace gases, the network is severely limited due to the high cost and extreme size of these instruments (these occupy small buildings and require personnel for operation). The LHR/AERONET instrument offers a significantly smaller (carry-on luggage size) autonomous instrument that can be incorporated into AERONET s much larger (450 instruments) global network.
Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges
2014-01-03
The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi
2017-09-01
Long carbon-chain molecules were searched for toward the low-mass star-forming region L1527, which is a prototypical source of warm carbon-chain chemistry (WCCC), using the 100 m Green Bank Telescope. Long carbon-chain molecules, C7H (2Π1/2), C6H (2Π3/2 and 2Π1/2), CH3C4H, and C6H2 (cumulene carbene, CCCCCCH2), and cyclic species of C3H and C3H2O were detected. In particular, C7H was detected for the first time in molecular clouds. The column density of C7H is determined to be 6 × 1010 cm-2. The column densities of the carbon-chain molecules including CH3C4H and C6H in L1527 relative to those in the starless dark cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP) tend to be systematically lower for long carbon-chain lengths. However, the column densities of C7H and C6H2 do not follow this trend and are found to be relatively abundant in L1527. This result implies that these long carbon-chain molecules are remnants of the cold starless phase. The results—that both the remnants and WCCC products are observed toward L1527—are consistent with the suggestion that the protostar can also be born in the parent core at a relatively early stage in the chemical evolution.
The Darwin TCCON Site - CO2 Calibration and First Data
NASA Astrophysics Data System (ADS)
Deutscher, N. M.; Griffith, D. W.; Keppel-Aleks, G.; Washenfelder, R. A.; Wennberg, P. O.; Toon, G. C.
2007-12-01
This paper presents the first measurements from the solar observatory deployed to Darwin, Australia in August 2005. The observatory is the second dedicated instrument in the Total Carbon Column Observing Network (TCCON). The first two years of column values are presented, as well as comparison to integrated in situ aircraft profiles obtained during the Tropical Warm Pool - International Cloud Experiment (TWP-ICE) in January - February 2006. Sites in TCCON will provide ground-based validation and calibration for upcoming space-based instruments, such as the Orbiting Carbon Observatory (OCO) and Greenhouse Gases Observing Satellite (GOSAT), which measure the same atmospheric quantities. The TCCON stations are calibrated against integrated columns measured from aircraft by instruments calibrated on the accepted WMO CO2 scale. Two CO2 microwindows are calibrated independently, and the correction factors are determined to be 1.0143 ± 0.0004 (fit ± 95% confidence interval) and 1.0152 ± 0.0003, respectively, for the 6228 cm-1 and 6348 cm-1 bands. These values are in good agreement with similar comparisons made at Park Falls, and show an improvement in the absolute calibration, due to improved CO2 line parameters. The first two years of CO2 data from the solar FTS are analysed for secular and seasonal trends in the column average mixing ratio. These are compared to some surface in situ data trends for the same period. The column data capture the secular trend as observed in surface in situ measurements, however, the seasonal cycle is dampened relative to the surface data illustrating the need for high precision measurements, but also the potential to remove rectifier effects.
Organic Chemistry of Low-Mass Star-Forming Cores. I. 7 mm Spectroscopy of Chamaeleon MMSl
NASA Technical Reports Server (NTRS)
Cordiner, Martn A.; Charnley, Steven B.; Wirtstroem, Eva S.; Smith, Robert G.
2012-01-01
Observations are presented of emission lines from organic molecules at frequencies 32-50 GHz in the vicinity of Chamaeleon MMS1. This chemically rich dense cloud core harbors an extremely young, very low luminosity protostellar object and is a candidate first hydrostatic core. Column densities are derived and emission maps are presented for species including polyynes, cyanopolyynes, sulphuretted carbon chains, and methanol. The polyyne emission peak lies about 5000 AU from the protostar, whereas methanol peaks about 15,000 AU away. Averaged over the telescope beam, the molecular hydrogen number density is calculated to be 10(exp 6) / cubic cm and the gas kinetic temperature is in the range 5-7 K. The abundances of long carbon chains are very large and are indicative of a nonequilibrium carbon chemistry; C6H and HC7N column densities are 5.9(sup +2.9) (sub -1.3) x 10(exp 11) /cubic cm and 3.3 (sup +8.0)(sub -1.5) x 10(exp 12)/sq cm, respectively, which are similar to the values found in the most carbon-chain-rich protostars and prestellar cores known, and are unusually large for star-forming gas. Column density upper limits were obtained for the carbon chain anions C4H(-) and C6H(-), with anion-to-neutral ratios [C4H(-)]/[C4H] < 0.02% and [C6H(-l)]/[C6H] < 10%, consistent with previous observations in interstellar clouds and low-mass protostars. Deuterated HC,3 and c-C3H2 were detected. The [DC3N]/[HC,N] ratio of approximately 4% is consistent with the value typically found in cold interstellar gas.
Effect of water-column pH on sediment-phosphorus release rates in Upper Klamath Lake, Oregon, 2001
Fisher, Lawrence H.; Wood, Tamara M.
2004-01-01
Sediment-phosphorus release rates as a function of pH were determined in laboratory experiments for sediment and water samples collected from Shoalwater Bay in Upper Klamath Lake, Oregon, in 2001. Aerial release rates for a stable sediment/water interface that is representative of the sediment surface area to water column volume ratio (1:3) observed in the lake and volumetric release rates for resuspended sediment events were determined at three different pH values (8.1, 9.2, 10.2). Ambient water column pH (8.1) was maintained by sparging study columns with atmospheric air. Elevation of the water column pH to 9.2 was achieved through the removal of dissolved carbon dioxide by sparging with carbon dioxide-reduced air, partially simulating water chemistry changes that occur during algal photosynthesis. Further elevation of the pH to 10.2 was achieved by the addition of sodium hydroxide, which doubled average alkalinities in the study columns from about 1 to 2 milliequivalents per liter. Upper Klamath Lake sediments collected from the lake bottom and then placed in contact with lake water, either at a stable sediment/water interface or by resuspension, exhibited an initial capacity to take up soluble reactive phosphorus (SRP) from the water column rather than release phosphorus to the water column. At a higher pH this initial uptake of phosphorus is slowed, but not stopped. This initial phase was followed by a reversal in which the sediments began to release SRP back into the water column. The release rate of phosphorus 30 to 40 days after suspension of sediments in the columns was 0.5 mg/L/day (micrograms per liter per day) at pH 8, and 0.9 mg/L/day at pH 10, indicating that the higher pH increased the rate of phosphorus release by a factor of about two. The highest determined rate of release was approximately 10% (percent) of the rate required to explain the annual internal loading to Upper Klamath Lake from the sediments as calculated from a lake-wide mass balance and observed in total phosphorus data collected at individual locations.
Different decay patterns observed in a nineteenth-century building (Palma, Spain).
Genestar, Catalina; Pons, Carmen; Cerro, José Carlos; Cerdà, Víctor
2014-01-01
The effects of atmospheric pollutants and climatic conditions were studied in a decayed column in the Seminary of Sant Pere. This nineteenth-century building is situated in the historic centre of Palma (Mallorca, Spain), less than 0.5 km from the sea. Samples were collected from the internal and external part of the crusts formed in the four sides of the column. The samples were analysed by means of thermal analysis, X-ray diffractometry, scanning electron microscopy, Fourier transform infrared spectroscopy and ion chromatography. Results show significant differences in the four sides of the column. A high degree of carbonate stone sulfation is observed in all of the samples analysed. A synergistic effect between atmospheric factors and micropollutants on the deterioration of stone is observed. A high uptake of atmospheric particulate matter is found in the external part of the black crusts.
Copper (II) Removal In Anaerobic Continuous Column Reactor System By Using Sulfate Reducing Bacteria
NASA Astrophysics Data System (ADS)
Bilgin, A.; Jaffe, P. R.
2017-12-01
Copper is an essential element for the synthesis of the number of electrons carrying proteins and the enzymes. However, it has a high level of toxicity. In this study; it is aimed to treat copper heavy metal in anaerobic environment by using anaerobic continuous column reactor. Sulfate reducing bacteria culture was obtained in anaerobic medium using enrichment culture method. The column reactor experiments were carried out with bacterial culture obtained from soil by culture enrichment method. The system is operated with continuous feeding and as parallel. In the first rector, only sand was used as packing material. The first column reactor was only fed with the bacteria nutrient media. The same solution was passed through the second reactor, and copper solution removal was investigated by continuously feeding 15-600 mg/L of copper solution at the feeding inlet in the second reactor. When the experiment was carried out by adding the 10 mg/L of initial copper concentration, copper removal in the rate of 45-75% was obtained. In order to determine the use of carbon source during copper removal of mixed bacterial cultures in anaerobic conditions, total organic carbon TOC analysis was used to calculate the change in carbon content, and it was calculated to be between 28% and 75%. When the amount of sulphate is examined, it was observed that it changed between 28-46%. During the copper removal, the amounts of sulphate and carbon moles were equalized and more sulfate was added by changing the nutrient media in order to determine the consumption of sulphate or carbon. Accordingly, when the concentration of added sulphate is increased, it is calculated that between 35-57% of sulphate is spent. In this system, copper concentration of up to 15-600 mg / L were studied.
Ghate, Madhav R.; Yang, Ralph T.
1987-01-01
Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Guoping; Luo, Wensui; Brooks, Scott C
We conducted batch and recirculating column titration tests with contaminated acidic sediments with controlled CO2 in the headspace, and extended the geochemical model by Gu et al. (2003, GCA) to better understand and quantify the reactions governing trace metal fate in the subsurface. The sediment titration curve showed slow pH increase due to strong buffering by Al precipitation and CO2 uptake. Assuming precipitation of basaluminite at low saturation index (SI=-4), and decreasing cation exchange selectivity coefficient (kNa\\Al=0.3), the predictions are close to the observed pH and Al; and the model explains 1) the observed Ca, Mg, and Mn concentration decreasemore » by cation exchange with sorbed Al, and 2) the decrease of U by surface complexation with Fe hydroxides at low pH, and precipitation as liebigite (Ca2UO2(CO3)3:10H2O) at pH>5.5. Without further adjustment geochemical parameters, the model describes reasonably well previous sediment and column titration tests without CO2 in the headspace, as well as the new large column test. The apparent inhibition of U and Ni decrease in the large column can be explained by formation of aqueous carbonate complexes and/or competition with carbonate for surface sites. These results indicated that ignoring labile solid phase Al would underestimate base requirement in titration of acidic aquifers.« less
Gas-liquid chromatography with a volatile "stationary" liquid phase.
Wells, P S; Zhou, S; Parcher, J F
2002-05-01
A unique type of gas-liquid chromatography is described in which both mobile and "stationary" phases are composed of synthetic mixtures of helium and carbon dioxide. At temperatures below the critical point of the binary mixture and pressures above the vapor pressure of pure liquid carbon dioxide, helium and carbon dioxide can form two immiscible phases over extended composition ranges. A binary vapor phase enriched in helium can act as the mobile phase for chromatographic separations, whereas a CO2-rich liquid in equilibrium with the vapor phase, but condensed on the column wall, can act as a pseudostationary phase. Several examples of chromatographic separations obtained in "empty" capillary columns with no ordinary stationary liquid phase illustrate the range of conditions that produce such separations. In addition, several experiments are reported that confirm the proposed two-phase hypothesis. The possible consequences of the observed chromatographic phenomenon in the field of supercritical fluid chromatography with helium headspace carbon dioxide are discussed.
High-Accuracy Measurements of Total Column Water Vapor From the Orbiting Carbon Observatory-2
NASA Technical Reports Server (NTRS)
Nelson, Robert R.; Crisp, David; Ott, Lesley E.; O'Dell, Christopher W.
2016-01-01
Accurate knowledge of the distribution of water vapor in Earth's atmosphere is of critical importance to both weather and climate studies. Here we report on measurements of total column water vapor (TCWV) from hyperspectral observations of near-infrared reflected sunlight over land and ocean surfaces from the Orbiting Carbon Observatory-2 (OCO-2). These measurements are an ancillary product of the retrieval algorithm used to measure atmospheric carbon dioxide concentrations, with information coming from three highly resolved spectral bands. Comparisons to high-accuracy validation data, including ground-based GPS and microwave radiometer data, demonstrate that OCO-2 TCWV measurements have maximum root-mean-square deviations of 0.9-1.3mm. Our results indicate that OCO-2 is the first space-based sensor to accurately and precisely measure the two most important greenhouse gases, water vapor and carbon dioxide, at high spatial resolution [1.3 x 2.3 km(exp. 2)] and that OCO-2 TCWV measurements may be useful in improving numerical weather predictions and reanalysis products.
NASA Astrophysics Data System (ADS)
Deutscher, N. M.; Griffith, D. W. T.; Bryant, G. W.; Wennberg, P. O.; Toon, G. C.; Washenfelder, R. A.; Keppel-Aleks, G.; Wunch, D.; Yavin, Y.; Allen, N. T.; Blavier, J.-F.; Jiménez, R.; Daube, B. C.; Bright, A. V.; Matross, D. M.; Wofsy, S. C.; Park, S.
2010-03-01
An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO2 and O2 and other gases. Measured CO2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January-February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS XCO2 relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis.
NASA Astrophysics Data System (ADS)
Deutscher, N. M.; Griffith, D. W. T.; Bryant, G. W.; Wennberg, P. O.; Toon, G. C.; Washenfelder, R. A.; Keppel-Aleks, G.; Wunch, D.; Yavin, Y.; Allen, N. T.; Blavier, J.-F.; Jiménez, R.; Daube, B. C.; Bright, A. V.; Matross, D. M.; Wofsy, S. C.; Park, S.
2010-07-01
An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO2 and O2 and other gases. Measured CO2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January-February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS XCO2 relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis.
Peristyy, Anton; Paull, Brett; Nesterenko, Pavel N
2015-04-24
The chromatographic properties of high pressure high temperature synthesised diamond (HPHT) are investigated in normal phase mode of high performance liquid chromatography. Purified nonporous irregular shape particles of average particles size 1.2 μm and specific surface area 5.1 m(2) g(-1) were used for packing 100×4.6 mm ID or 50×4.6 mm ID stainless steel columns. The retention behaviour of several classes of compounds including alkyl benzenes, polyaromatic hydrocarbons (PAH), alkylphenylketones, phenols, aromatic acids and bases were studied using n-hexane-2-propanol mixtures as mobile phase. The results are compared with those observed for microdispersed sintered detonation nanodiamond (MSDN) and porous graphitic carbon (PGC). HPHT diamond revealed distinctive separation selectivity, which is orthogonal to that observed for porous graphitic carbon; while selectivities of HPHT diamond and microdispersed sintered detonation nanodiamonds are similar. Owing to non-porous particle nature, columns packed with high pressure high temperature diamond exhibited excellent mass transfer and produce separations with maximum column efficiency of 128,200 theoretical plates per meter. Copyright © 2015 Elsevier B.V. All rights reserved.
Vertical distribution of the prokaryotic cell size in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
La Ferla, R.; Maimone, G.; Azzaro, M.; Conversano, F.; Brunet, C.; Cabral, A. S.; Paranhos, R.
2012-12-01
Distributions of prokaryotic cell size and morphology were studied in different areas of the Mediterranean Sea by using image analysis on samples collected from surface down to bathypelagic layers (max depth 4,900 m) in the Southern Tyrrhenian, Southern Adriatic and Eastern Mediterranean Seas. Distribution of cell size of prokaryotes in marine ecosystem is very often not considered, which makes our study first in the context of prokaryotic ecology. In the deep Mediterranean layers, an usually-not-considered form of carbon sequestration through prokaryotic cells has been highlighted, which is consistent with an increase in cell size with the depth of the water column. A wide range in prokaryotic cell volumes was observed (between 0.045 and 0.566 μm3). Increase in cell size with depth was opposed to cell abundance distribution. Our results from microscopic observations were confirmed by the increasing HNA/LNA ratio (HNA, cells with high nucleic acid content; LNA, cells with low nucleic acid content) along the water column. Implications of our results on the increasing cell size with depth are in the fact that the quantitative estimation of prokaryotic biomass changes along the water column and the amount of carbon sequestered in the deep biota is enhanced.
Watanabe, Kenta; Kuwae, Tomohiro
2015-01-01
Carbon captured by marine organisms helps sequester atmospheric CO2, especially in shallow coastal ecosystems, where rates of primary production and burial of organic carbon (OC) from multiple sources are high. However, linkages between the dynamics of OC derived from multiple sources and carbon sequestration are poorly understood. We investigated the origin (terrestrial, phytobenthos derived, and phytoplankton derived) of particulate OC (POC) and dissolved OC (DOC) in the water column and sedimentary OC using elemental, isotopic, and optical signatures in Furen Lagoon, Japan. Based on these data analysis, we explored how OC from multiple sources contributes to sequestration via storage in sediments, water column sequestration, and air–sea CO2 exchanges, and analyzed how the contributions vary with salinity in a shallow seagrass meadow as well. The relative contribution of terrestrial POC in the water column decreased with increasing salinity, whereas autochthonous POC increased in the salinity range 10–30. Phytoplankton-derived POC dominated the water column POC (65–95%) within this salinity range; however, it was minor in the sediments (3–29%). In contrast, terrestrial and phytobenthos-derived POC were relatively minor contributors in the water column but were major contributors in the sediments (49–78% and 19–36%, respectively), indicating that terrestrial and phytobenthos-derived POC were selectively stored in the sediments. Autochthonous DOC, part of which can contribute to long-term carbon sequestration in the water column, accounted for >25% of the total water column DOC pool in the salinity range 15–30. Autochthonous OC production decreased the concentration of dissolved inorganic carbon in the water column and thereby contributed to atmospheric CO2 uptake, except in the low-salinity zone. Our results indicate that shallow coastal ecosystems function not only as transition zones between land and ocean but also as carbon sequestration filters. They function at different timescales, depending on the salinity, and OC sources. PMID:25880367
NASA Astrophysics Data System (ADS)
Semprini, L.; Azizian, M. F.; Kim, Y.
2011-12-01
Many groundwater sites are contaminated with mixtures of chlorinated aliphatic hydrocarbons (CAHs) that represent a challenge when biological remediation processes are being considered. This is especially challenging when high concentrations of CAHs are present.Trichloromethane (CF), for example, has been observed to inhibit and potentially exert toxicity on reductive dehalogenation of tetrachloroethene (PCE) and trichloroethene (TCE). Results will be presented from a continuous flow column study where the simultaneous transformation of PCE and carbon tetrachloride (CT) was achieved. The column was packed with a quartz sand and bioaugmented with the Evanite Culture (EV) that is capable of transforming PCE to ethene. The column was fed a synthetic groundwater that was amended with PCE to achieve an influent concentration near its solubility limit (0.10 mM) and formate (1.5 mM) that reacts to produce hydrogen as the ultimate electron donor. The column was operated for over 1600 days prior to the addition of CT. During this period PCE was transformed mainly to vinyl chloride (VC) and ethene (ETH) and minor amounts of cis-dichloroethene (cis-DCE) and TCE. The transformation extent achieved based on the column effluent concentrations ranged from about 50% ETH, 30% VC, and 20 cis-DCE up to 80% ETH and 20% VC. When the column was fed sulfate, it was completely transformed via sulfate reduction. Ferrous iron production from ferric iron reduction was observed early in the study. Acetate was also formed as a result of homoacetogenesis from hydrogen utilization. CT addition (0.015 mM) was started at 1600 days while PCE addition was continued. During the first 25 days of CT addition, CT concentrations gradually increased to 50% of the injection concentration and chloromethane (CM) and CF were observed as transformation products. CT concentrations then decreased with over 98% transformation achieved.CM was removed to below the detection limit and CF concentration decreases to about 0.003 mM, representing 20% of the CT transformed. Other transformation products have not been identified. Neither methane nor carbon monoxide have been detected as transformation products. The transformation of PCE to ethene actually improved after the addition of CT. Thus, neither CT nor CF are inhibiting the reductive dehalogenation of PCE. The improvement in PCE transformation extent coincided with an increase in the aqueous hydrogen concentration from 5 nM, prior to CT addition, to 150 nM after CT addition. This increase in hydrogen was associated with the inhibition in acetate production and the increase in formate concentrations from below detection to 1.0 mM after CT addition. The results indicate that there are likely benefits in adding formate to produce hydrogen when contaminants are present that can inhibit fermentation. The results from the column study are consistent with our observations in batch reactors using the EV culture.
Carbon Dioxide Sealing Capacity: Textural or Compositional Controls?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cranganu, Constantin; Soleymani, Hamidreza; Sadiqua, Soleymani
2013-11-30
This research project is aiming to assess the carbon dioxide sealing capacity of most common seal-rocks, such as shales and non-fractured limestones, by analyzing the role of textural and compositional parameters of those rocks. We hypothesize that sealing capacity is controlled by textural and/or compositional pa-rameters of caprocks. In this research, we seek to evaluate the importance of textural and compositional parameters affecting the sealing capacity of caprocks. The conceptu-al framework involves two testable end-member hypotheses concerning the sealing ca-pacity of carbon dioxide reservoir caprocks. Better understanding of the elements controlling sealing quality will advance our knowledge regarding the sealingmore » capacity of shales and carbonates. Due to relatively low permeability, shale and non-fractured carbonate units are considered relatively imper-meable formations which can retard reservoir fluid flow by forming high capillary pres-sure. Similarly, these unites can constitute reliable seals for carbon dioxide capture and sequestration purposes. This project is a part of the comprehensive project with the final aim of studying the caprock sealing properties and the relationship between microscopic and macroscopic characteristics of seal rocks in depleted gas fields of Oklahoma Pan-handle. Through this study we examined various seal rock characteristics to infer about their respective effects on sealing capacity in special case of replacing reservoir fluid with super critical carbon dioxide (scCO{sub 2}). To assess the effect of textural and compositional properties on scCO{sub 2} maximum reten-tion column height we collected 30 representative core samples in caprock formations in three counties (Cimarron, Texas, Beaver) in Oklahoma Panhandle. Core samples were collected from various seal formations (e.g., Cherokee, Keys, Morrowan) at different depths. We studied the compositional and textural properties of the core samples using several techniques. Mercury Injection Porosimetry (MIP), Scanning Electron Microsco-py SEM, and Sedigraph measurements are used to assess the pore-throat-size distribu-tion, sorting, texture, and grain size of the samples. Also, displacement pressure at 10% mercury saturation (Pd) and graphically derived threshold pressure (Pc) were deter-mined by MIP technique. SEM images were used for qualitative study of the minerals and pores texture of the core samples. Moreover, EDS (Energy Dispersive X-Ray Spec-trometer), BET specific surface area, and Total Organic Carbon (TOC) measurements were performed to study various parameters and their possible effects on sealing capaci-ty of the samples. We found that shales have the relatively higher average sealing threshold pressure (Pc) than carbonate and sandstone samples. Based on these observations, shale formations could be considered as a promising caprock in terms of retarding scCO{sub 2} flow and leak-age into above formations. We hypothesized that certain characteristics of shales (e.g., 3 fine pore size, pore size distribution, high specific surface area, and strong physical chemical interaction between wetting phase and mineral surface) make them an effi-cient caprock for sealing super critical CO{sub 2}. We found that the displacement pressure at 10% mercury saturation could not be the ultimate representative of the sealing capacity of the rock sample. On the other hand, we believe that graphical method, introduced by Cranganu (2004) is a better indicator of the true sealing capacity. Based on statistical analysis of our samples from Oklahoma Panhandle we assessed the effects of each group of properties (textural and compositional) on maximum supercriti-cal CO{sub 2} height that can be hold by the caprock. We conclude that there is a relatively strong positive relationship (+.40 to +.69) between supercritical CO{sub 2} column height based on Pc and hard/ soft mineral content index (ratio of minerals with Mohs hardness more than 5 over minerals with Mohs hardness less than 5) in both shales and limestone samples. Average median pore radius and porosity display a strong negative correlation with supercritical CO{sub 2} retention column height. Also, increasing bulk density is positive-ly correlated with the supercritical CO{sub 2} retention column height. One of the most im-portant factors affecting sealing capacity and consequently the height of supercritical CO{sub 2} column is sorting of the pore throats. We observed a strong positive correlation be-tween pore throat sorting and height of CO{sub 2} retention column, especially in shales. This correlation could not be observed in limestone samples. It suggests that the pore throat sorting is more controlling the sealing capacity in shales and shales with well sorted pore throats are the most reliable lithology as seal. We observed that Brunauer–Emmett–Teller (BET) surface area shows a very strong correlation with CO{sub 2} retention column height in limestone samples while BET surface area did not display significant correlation in shales. Pore structure based on SEM mi-crographs exhibits strong correlation with CO{sub 2} retention column height in limestones. Both intercrystalline and vuggy structures have negative correlations while intergranu-lar texture has positive correlation in limestone with respect to CO{sub 2} retention column height. Textural effects observed on SEM micrographs did not show statistically signifi-cant correlation with supercritical CO{sub 2} retention column height in shale samples. Finally, we showed that increasing hard/soft mineral index is strongly correlated with the displacement pressure in limestone samples. Vuggy texture displays a relatively strong and negative correlation with displacement pressure values at 10% mercury satu-ration in shale samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, L. Santschi, P.H.
2000-02-01
Average {sup 14}C ages of dissolved organic carbon (DOC) in the ocean are 3--6,000 years, and are influenced by old DOC from continental margins. However, sources of DOC from terrestrial, autochthonous, and sedimentary organic carbon seem to be too young to be responsible for the old DOC observed in the ocean. Since colloidal organic carbon (COC, i.e., high molecular weight DOC), which is chemically very similar to that of bulk DOC, can be effectively isolated from seawater using cross-flow ultrafiltration, it can hold clues to sources and pathways of DOC turnover in the ocean. Radiocarbon measurements on COC in themore » water column and benthic nepheloid layer (BNL) from two continental margin areas (the Middle Atlantic Bight and the Gulf of Mexico) and controlled laboratory experiments were carried out to study sources of old DOC in the ocean margin areas. Vertical distributions of suspended particulate matter (SPM), particulate organic carbon (POC), nitrogen (PON), and DOC in the water column and bottom waters near the sediment-water interface all demonstrate a well developed benthic nepheloid layer in both ocean margin areas. COC from the BNL was much older than COC from the overlying water column. These results, together with strong concentration gradients of SPM, POC, PON, and DOC, suggest a sedimentary source for organic carbon species and possibly for old COC as well in BNL waters. This is confirmed by the results from controlled laboratory experiments. The heterogeneity of {Delta}{sup 14}C signatures in bulk SOC thus points to a preferential release of old organic components from sediment resuspension, which can be the transport mechanism of the old benthic COC observed in ocean margin areas. Old COC from continental margin nepheloid layers may thus be a potential source of old DOC to the deep ocean.« less
METHOD OF OPERATING A HEAVY WATER MODERATED REACTOR
Vernon, H.C.
1962-08-14
A method of removing fission products from the heavy water used in a slurry type nuclear reactor is described. According to the process the slurry is steam distilled with carbon tetrachloride so that at least a part of the heavy water and carbon tetrachloride are vaporized; the heavy water and carbon tetrachloride are separated; the carbon tetrachloride is returned to the steam distillation column at different points in the column to aid in depositing the slurry particles at the bottom of the column; and the heavy water portion of the condensate is purified. (AEC)
Interpreting space-based trends in carbon monoxide with multiple models
Strode, Sarah A.; Worden, Helen M.; Damon, Megan; ...
2016-06-10
Here, we use a series of chemical transport model and chemistry climate model simulations to investigate the observed negative trends in MOPITT CO over several regions of the world, and to examine the consistency of time-dependent emission inventories with observations. We also found that simulations driven by the MACCity inventory, used for the Chemistry Climate Modeling Initiative (CCMI), reproduce the negative trends in the CO column observed by MOPITT for 2000–2010 over the eastern United States and Europe. However, the simulations have positive trends over eastern China, in contrast to the negative trends observed by MOPITT. The model bias inmore » CO, after applying MOPITT averaging kernels, contributes to the model–observation discrepancy in the trend over eastern China. This demonstrates that biases in a model's average concentrations can influence the interpretation of the temporal trend compared to satellite observations. The total ozone column plays a role in determining the simulated tropospheric CO trends. A large positive anomaly in the simulated total ozone column in 2010 leads to a negative anomaly in OH and hence a positive anomaly in CO, contributing to the positive trend in simulated CO. Our results demonstrate that accurately simulating variability in the ozone column is important for simulating and interpreting trends in CO.« less
Interpreting space-based trends in carbon monoxide with multiple models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strode, Sarah A.; Worden, Helen M.; Damon, Megan
Here, we use a series of chemical transport model and chemistry climate model simulations to investigate the observed negative trends in MOPITT CO over several regions of the world, and to examine the consistency of time-dependent emission inventories with observations. We also found that simulations driven by the MACCity inventory, used for the Chemistry Climate Modeling Initiative (CCMI), reproduce the negative trends in the CO column observed by MOPITT for 2000–2010 over the eastern United States and Europe. However, the simulations have positive trends over eastern China, in contrast to the negative trends observed by MOPITT. The model bias inmore » CO, after applying MOPITT averaging kernels, contributes to the model–observation discrepancy in the trend over eastern China. This demonstrates that biases in a model's average concentrations can influence the interpretation of the temporal trend compared to satellite observations. The total ozone column plays a role in determining the simulated tropospheric CO trends. A large positive anomaly in the simulated total ozone column in 2010 leads to a negative anomaly in OH and hence a positive anomaly in CO, contributing to the positive trend in simulated CO. Our results demonstrate that accurately simulating variability in the ozone column is important for simulating and interpreting trends in CO.« less
Interpreting Space-Based Trends in Carbon Monoxide with Multiple Models
NASA Technical Reports Server (NTRS)
Strode, Sarah A.; Worden, Helen M.; Damon, Megan; Douglass, Anne R.; Duncan, Bryan N.; Emmons, Louisa K.; Lamarque, Jean-Francois; Manyin, Michael; Oman, Luke D.; Rodriguez, Jose M.;
2016-01-01
We use a series of chemical transport model and chemistry climate model simulations to investigate the observed negative trends in MOPITT CO over several regions of the world, and to examine the consistency of timedependent emission inventories with observations. We find that simulations driven by the MACCity inventory, used for the Chemistry Climate Modeling Initiative (CCMI), reproduce the negative trends in the CO column observed by MOPITT for 2000-2010 over the eastern United States and Europe. However, the simulations have positive trends over eastern China, in contrast to the negative trends observed by MOPITT. The model bias in CO, after applying MOPITT averaging kernels, contributes to the model-observation discrepancy in the trend over eastern China. This demonstrates that biases in a model's average concentrations can influence the interpretation of the temporal trend compared to satellite observations. The total ozone column plays a role in determining the simulated tropospheric CO trends. A large positive anomaly in the simulated total ozone column in 2010 leads to a negative anomaly in OH and hence a positive anomaly in CO, contributing to the positive trend in simulated CO. These results demonstrate that accurately simulating variability in the ozone column is important for simulating and interpreting trends in CO.
IASI carbon monoxide validation over the Arctic during POLARCAT spring and summer campaigns
NASA Astrophysics Data System (ADS)
Pommier, M.; Law, K. S.; Clerbaux, C.; Turquety, S.; Hurtmans, D.; Hadji-Lazaro, J.; Coheur, P.-F.; Schlager, H.; Ancellet, G.; Paris, J.-D.; Nédélec, P.; Diskin, G. S.; Podolske, J. R.; Holloway, J. S.; Bernath, P.
2010-11-01
In this paper, we provide a detailed comparison between carbon monoxide (CO) data measured by the Infrared Atmospheric Sounding Interferometer (IASI)/MetOp and aircraft observations over the Arctic. The CO measurements were obtained during North American (NASA ARCTAS and NOAA ARCPAC) and European campaigns (POLARCAT-France, POLARCAT-GRACE and YAK-AEROSIB) as part of the International Polar Year (IPY) POLARCAT activity in spring and summer 2008. During the campaigns different air masses were sampled including clean air, polluted plumes originating from anthropogenic sources in Europe, Asia and North America, and forest fire plumes originating from Siberia and Canada. The paper illustrates that CO-rich plumes following different transport pathways were well captured by the IASI instrument, in particular due to the high spatial coverage of IASI. The comparison between IASI CO total columns, 0-5 km partial columns and profiles with collocated aircraft data was achieved by taking into account the different sensitivity and geometry of the sounding instruments. A detailed analysis is provided and the agreement is discussed in terms of information content and surface properties at the location of the observations. For profiles, the data were found to be in good agreement in spring with differences lower than 17%, whereas in summer the difference can reach 20% for IASI profiles below 8 km for polluted cases. For total columns the correlation coefficients ranged from 0.15 to 0.74 (from 0.47 to 0.77 for partial columns) in spring and from 0.26 to 0.84 (from 0.66 to 0.88 for partial columns) in summer. A better agreement is seen over the sea in spring (0.73 for total column and 0.78 for partial column) and over the land in summer (0.69 for total columns and 0.81 for partial columns). The IASI vertical sensitivity was better over land than over sea, and better over land than over sea ice and snow allowing a higher potential to detect CO vertical distribution during summer.
Ghate, M.R.; Yang, R.T.
1985-10-03
Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.
Decadal Record of Satellite Carbon Monoxide Observations
NASA Astrophysics Data System (ADS)
Worden, Helen; Deeter, Merritt; Frankenberg, Christian; George, Maya; Nichitiu, Florian; Worden, John; Aben, Ilse; Bowman, Kevin; Clerbaux, Cathy; Coheur, Pierre-Francois; de Laat, Jos; Warner, Juying; Drummond, James; Edwards, David; Gille, John; Hurtmans, Daniel; Ming, Luo; Martinez-Alonso, Sara; Massie, Steven; Pfister, Gabriele
2013-04-01
Atmospheric carbon monoxide (CO) distributions are controlled by anthropogenic emissions, biomass burning, chemical production, transport and oxidation by reaction with the hydroxyl radical (OH). Quantifying trends in CO is therefore important for understanding changes related to all of these contributions. Here we present a comprehensive record of satellite observations from 2000 through 2011 of total column CO using the available measurements from nadir-viewing thermal infrared instruments: MOPITT, AIRS, TES and IASI. We examine trends for CO in the Northern and Southern hemispheres along with regional trends for E. China, E. USA, Europe and India. Measurement and sampling methods for each of the instruments are discussed, and we show diagnostics for systematic errors in MOPITT trends. We find that all the satellite observations are consistent with a modest decreasing trend around -1%/year in total column CO over the Northern hemisphere for this time period. Decreasing trends in total CO column are observed for the United States, Europe and E. China with more than 2σ significance. For India, the trend is also decreasing, but smaller in magnitude and less significant. Decreasing trends in surface CO have also been observed from measurements in the U.S. and Europe. Although less information is available for surface CO in China, there is a decreasing trend reported for Beijing. Some of the interannual variability in the observations can be explained by global fire emissions, and there may be some evidence of the global financial crisis in late 2008 to early 2009. But the overall decrease needs further study to understand the implications for changes in anthropogenic emissions.
Vo, Hoang-Nhat-Phong; Bui, Xuan-Thanh; Nguyen, Thanh-Tin; Nguyen, Dinh Duc; Dao, Thanh-Son; Cao, Ngoc-Dan-Thanh; Vo, Thi-Kim-Quyen
2018-08-01
Photobioreactor technology, especially bubble column configuration, employing microalgae cultivation (e.g., Chlorella sp.), is an ideal man-made environment to achieve sufficient microalgae biomass through its strictly operational control. Nutrients, typically N and P, are necessary elements in the cultivation process, which determine biomass yield and productivity. Specifically, N:P ratios have certain effects on microalgae's biomass growth. It is also attractive that microalgae can sequester CO 2 by using that carbon source for photosynthesis and, subsequently, reducing CO 2 emission. Therefore, this study aims to investigate the effect of N:P ratios on Chlorella sp.'s growth, and to study the dynamic of CO 2 fixation in the bubble column photobioreactor. According to our results, N:P ratio of 15:1 could produce the highest biomass yield (3568 ± 158 mg L -1 ). The maximum algae concentration was 105 × 10 6 cells mL -1 , receiving after 92 h. Chlorella sp. was also able to sequester CO 2 at 28 ± 1.2%, while the specific growth rate and carbon fixation rate were observed at 0.064 h -1 and 68.9 ± 1.91 mg L -1 h -1 , respectively. The types of carbon sources (e.g., organic and inorganic carbon) possessed potential impact on microalgae's cultivation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Enhancement of soft X-ray lasing action with thin blade radiators
Suckewer, Szymon; Skinner, Charles H.; Voorhees, David R.
1988-01-01
An enhancement of approximately 100 of stimulated emission over spontaneous emission of the CVI 182 Angstrom line was obtained in a recombining magnetically confined plasma column. The plasma was formed by focusing a CO.sub.2 laser beam on a carbon disc. A magnetic solenoid produced a strong magnetic field which confined the plasma to the shape of a column. A single thin carbon blade extended parallel to the plasma column and served to make the column axially more uniform and also acted as a heat sink. Axial and transverse measurements of the soft X-ray lasing action were made from locations off-set from the central axis of the plasma column. Multiple carbon blades located at equal intervals around the plasma column were also found to produce acceptable results. According to another embodiment 10 a thin coating of aluminum or magnesium was placed on the carbon disc and blade. The Z of the coating should preferably be at least 5 greater than the Z of the target. Measurements of the soft X-rays generated at 182 Angstroms showed a significant increase in intensity enhancement.
Kemmochi, Yukio; Tsutsumi, Kaori; Arikawa, Akihiro; Nakazawa, Hiroyuki
2002-11-22
2,3,7,8-Substituted polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs) and non-ortho-substituted polychlorinated biphenyls (PCBs) account for almost all of the total toxic equivalents (TEQ) in environmental samples. Activated carbon columns are used to fractionate the samples for GC-MS analysis or bioassay. Micropore-free surface-activated carbon is highly selective for PCDD/Fs and non-ortho-PCBs and can improve the conventional activated carbon column clean-up. Along with sulfuric acid-coated diatomaceous earth columns, micropore-free surface-activated carbon provides a rapid, robust, and high-throughput sample preparation method for PCDD/Fs and non-ortho-PCBs analysis.
NASA Astrophysics Data System (ADS)
Belikov, D. A.; Maksyutov, S.; Sherlock, V.; Aoki, S.; Deutscher, N. M.; Dohe, S.; Griffith, D.; Kyro, E.; Morino, I.; Nakazawa, T.; Notholt, J.; Rettinger, M.; Schneider, M.; Sussmann, R.; Toon, G. C.; Wennberg, P. O.; Wunch, D.
2013-02-01
We have developed an improved version of the National Institute for Environmental Studies (NIES) three-dimensional chemical transport model (TM) designed for accurate tracer transport simulations in the stratosphere, using a hybrid sigma-isentropic (σ-θ) vertical coordinate that employs both terrain-following and isentropic parts switched smoothly around the tropopause. The air-ascending rate was derived from the effective heating rate and was used to simulate vertical motion in the isentropic part of the grid (above level 350 K), which was adjusted to fit to the observed age of the air in the stratosphere. Multi-annual simulations were conducted using the NIES TM to evaluate vertical profiles and dry-air column-averaged mole fractions of CO2 and CH4. Comparisons with balloon-borne observations over Sanriku (Japan) in 2000-2007 revealed that the tracer transport simulations in the upper troposphere and lower stratosphere are performed with accuracies of ~5% for CH4 and SF6, and ~1% for CO2 compared with the observed volume-mixing ratios. The simulated column-averaged dry air mole fractions of atmospheric carbon dioxide (XCO2) and methane (XCH4) were evaluated against daily ground-based high-resolution Fourier Transform Spectrometer (FTS) observations measured at twelve sites of the Total Carbon Column Observing Network (TCCON) (Bialystok, Bremen, Darwin, Garmisch, Izaña, Lamont, Lauder, Orleans, Park Falls, Sodankylä, Tsukuba, and Wollongong) between January 2009 and January 2011. The comparison shows the model's ability to reproduce the site-dependent seasonal cycles as observed by TCCON, with correlation coefficients typically on the order 0.8-0.9 and 0.4-0.8 for XCO2 and XCH4, respectively, and mean model biases of ±0.2% and ±0.5%, excluding Sodankylä, where strong biases are found. The ability of the model to capture the tracer total column mole fractions is strongly dependent on the model's ability to reproduce seasonal variations in tracer concentrations in the planetary boundary layer (PBL). We found a marked difference in the model's ability to reproduce near-surface concentrations at sites located some distance from multiple emission sources and where high emissions play a notable role in the tracer's budget. Comparisons with aircraft observations over Surgut (West Siberia), in an area with high emissions of methane from wetlands, show contrasting model performance in the PBL and in the free troposphere. Thus, the PBL is another critical region for simulating the tracer total column mole fractions.
NASA Astrophysics Data System (ADS)
Té, Yao; Jeseck, Pascal; Franco, Bruno; Mahieu, Emmanuel; Jones, Nicholas; Paton-Walsh, Clare; Griffith, David W. T.; Buchholz, Rebecca R.; Hadji-Lazaro, Juliette; Hurtmans, Daniel; Janssen, Christof
2016-09-01
This paper studies the seasonal variation of surface and column CO at three different sites (Paris, Jungfraujoch and Wollongong), with an emphasis on establishing a link between the CO vertical distribution and the nature of CO emission sources. We find the first evidence of a time lag between surface and free tropospheric CO seasonal variations in the Northern Hemisphere. The CO seasonal variability obtained from the total columns and free tropospheric partial columns shows a maximum around March-April and a minimum around September-October in the Northern Hemisphere (Paris and Jungfraujoch). In the Southern Hemisphere (Wollongong) this seasonal variability is shifted by about 6 months. Satellite observations by the IASI-MetOp (Infrared Atmospheric Sounding Interferometer) and MOPITT (Measurements Of Pollution In The Troposphere) instruments confirm this seasonality. Ground-based FTIR (Fourier transform infrared) measurements provide useful complementary information due to good sensitivity in the boundary layer. In situ surface measurements of CO volume mixing ratios at the Paris and Jungfraujoch sites reveal a time lag of the near-surface seasonal variability of about 2 months with respect to the total column variability at the same sites. The chemical transport model GEOS-Chem (Goddard Earth Observing System chemical transport model) is employed to interpret our observations. GEOS-Chem sensitivity runs identify the emission sources influencing the seasonal variation of CO. At both Paris and Jungfraujoch, the surface seasonality is mainly driven by anthropogenic emissions, while the total column seasonality is also controlled by air masses transported from distant sources. At Wollongong, where the CO seasonality is mainly affected by biomass burning, no time shift is observed between surface measurements and total column data.
NASA Astrophysics Data System (ADS)
Pronk, G. J.; Mellage, A.; Milojevic, T.; Smeaton, C. M.; Rezanezhad, F.; Van Cappellen, P.
2017-12-01
Microbial growth and turnover of soil organic carbon (SOC) depend on the availability of electron donors and acceptors. The steep geochemical gradients in the capillary fringe between the saturated and unsaturated zones provide hotspots of soil microbial activity. Water table fluctuations and the associated drying and wetting cycles within these zones have been observed to lead to enhanced turnover of SOC and adaptation of the local microbial communities. To improve our understanding of SOC degradation under changing moisture conditions, we carried out an automated soil column experiment with integrated of hydro-bio-geophysical monitoring under both constant and oscillating water table conditions. An artificial soil mixture composed of quartz sand, montmorillonite, goethite and humus was used to provide a well-defined system. This material was inoculated with a microbial community extracted from a forested riparian zone. The soils were packed into 6 columns (60 cm length and 7.5 cm inner diameter) to a height of 45 cm; and three replicate columns were incubated under constant water table while another three were saturated and drained monthly. The initial soil development, carbon cycling and microbial community development were then characterized during 10 months of incubation. This system provides an ideal artificial gradient from the saturated to the unsaturated zone to study soil development from initially homogeneous materials and the same microbial community composition under controlled conditions. Depth profiles of SOC and microbial biomass after 329 days of incubation showed a depletion of carbon in the transition drying and wetting zone that was not associated with higher accumulation of microbial biomass, indicating a lower carbon use efficiency of the microbial community established within the water table fluctuation zone. This was supported by a higher ATP to microbial biomass carbon ratio within the same zone. The findings from this study highlight the importance of considering the effects of transient soil moisture and oxygen availability on microbial mediated SOC transformations. The effects of these changes in carbon use efficiency need to be included in soil models in order to accurately predict SOC turnover.
Fate of leaf litter deposits and impacts on oxygen availability in bank filtration column studies.
Bayarsaikhan, Uranchimeg; Filter, Josefine; Gernert, Ulrich; Jekel, Martin; Ruhl, Aki Sebastian
2018-07-01
Degradation of particulate organic carbon (POC) such as leaf litter might deplete dissolved oxygen within the upper layers of bank filtration, an efficient and robust barrier for pathogens and for various organic micro-pollutants (OMP) in water supply systems worldwide. The degradation of OMP during bank filtration depends on the redox conditions. The present study aimed at identifying the impacts and fates of different local leaves on the oxygen consumption and the possible biological degradation of indicator OMP. Oxygen concentrations initially decreased within the columns from around 8 mg/L in the influent to low concentrations indicating extensive consumption within a short travel distance. Still a substantial oxygen consumption was observed after 250 days. OMP concentrations were not significantly affected by the microbial processes. A layer of calcium carbonate crystallites was observed on the POC layer. Some leaf fragments appeared to be persistant towards degradation and the carbon content relative to nitrogen and sulfur contents decreased within 250 days. The results demonstrate that trees at bank filtration sites might have a strong long-term impact on the subsurface redox conditions. Copyright © 2018 Elsevier Inc. All rights reserved.
INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED ...
INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED SALT BRINE TO MAKE BICARBONATE OF SODA. - Solvay Process Company, SA Wetside Building, Between Willis & Milton Avenue, Solvay, Onondaga County, NY
Carbon X-ray absorption in the local ISM: fingerprints in X-ray Novae spectra
NASA Astrophysics Data System (ADS)
Gatuzz, Efraín; Ness, J.-U.; Gorczyca, T. W.; Hasoglu, M. F.; Kallman, Timothy R.; García, Javier A.
2018-06-01
We present a study of the C K-edge using high-resolution LETGS Chandra spectra of four novae during their super-soft-source (SSS) phase. We identified absorption lines due to C II Kα, C III Kα and C III Kβ resonances. We used these astronomical observations to perform a benchmarking of the atomic data, which involves wavelength shifts of the resonances and photoionization cross-sections. We used improved atomic data to estimate the C II and C III column densities. The absence of physical shifts for the absorption lines, the consistence of the column densities between multiple observations and the high temperature required for the SSS nova atmosphere modeling support our conclusion about an ISM origin of the respective absorption lines. Assuming a collisional ionization equilibrium plasma the maximum temperature derived from the ratio of C II/C III column densities of the absorbers correspond to Tmax < 3.05 × 104 K.
NASA Astrophysics Data System (ADS)
Saitoh, Masafumi; Ueno, Yuichiro; Isozaki, Yukio; Shibuya, Takazo; Yao, Jianxin; Ji, Zhansheng; Shozugawa, Katsumi; Matsuo, Motoyuki; Yoshida, Naohiro
2015-12-01
Carbonate precipitation is a major process in the global carbon cycle. It was recently proposed that authigenic carbonate (carbonate precipitated in situ at the sediment-water interface and/or within the sediment) played a major role in the carbon cycle throughout Earth's history. The carbon isotopic composition of authigenic carbonates in ancient oceans have been assumed to be significantly lower than that of dissolved inorganic carbon (DIC) in seawater, as is observed in the modern oceans. However, the δ13Ccarb values of authigenic carbonates in the past has not been analyzed in detail. Here, we report authigenic carbonates in the uppermost Guadalupian (Middle Permian) rocks at Chaotian, Sichuan, South China. Monocrystalline calcite crystals <20 mm long are common in the black mudstone/chert sequence that was deposited on a relatively deep anoxic slope/basin along the continental margin. Textures of the crystals indicate in situ precipitation on the seafloor and/or within the sediments. The calcite precipitation corresponds stratigraphically with denitrification and sulfate reduction in the anoxic deep-water mass, as indicated by previously reported nitrogen and sulfur isotope records, respectively. Relatively high δ13Ccarb values of the authigenic carbonates (largely -1 ‰) compared with those of organic matter in the rocks (ca. -26 ‰) suggest that the main carbon source of the carbonates was DIC in the water column. The calcite crystals precipitated in an open system with respect to carbonate, possibly near the sediment-water interface rather than deep within the sediments. The δ13Ccarb values of the carbonates were close to the δ13CDIC value of seawater due to mixing of 13C-depleted remineralized organic carbon (that was released into the water column by the water-mass anaerobic respiration) with the large DIC pool in the oceans. Our results imply that δ13Ccarb values of authigenic carbonates in the anoxic oceans might have been systematically different from the values in the oxic oceans in Earth's history, controlled by the depth of the redoxcline in the water column and sediments. If our model is correct, authigenic carbonates with relatively high δ13Ccarb values in the ancient anoxic oceans may have had a less substantial influence on the bulk δ13Ccarb values in geologic records than has been previously suggested.
Progress of Validation of GOSAT Standard Products
NASA Astrophysics Data System (ADS)
Uchino, Osamu
2010-05-01
Isamu Morino, Tomoaki Tanaka, Yuki Miyamoto, Yukio Yoshida, Tatsuya Yokota, Toshinobu Machida National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan Debra Wunch, Paul Wennberg Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA Geoffrey Toon Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA Thorsten Warneke, Justus Notholt Institute of Environmental Physics, University of Bremen, Bremen, Germany David Griffith, Nicholas Deutscher Department of Chemistry, University of Wollongong, Wollongong New South Wales, Australia Vanessa Sherlock National Institute of Water and Atmospheric Research, Lauder, Central Otago, New Zealand Hidekazu Matsueda, Yousuke Sawa Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan Colm Sweeney, Pieter Tans Earth System Research Laboratory, NOAA, Boulder, USA The Greenhouse gases Observing SATellite (GOSAT), launched on 23 January 2009, is the world's first satellite dedicated to measuring the concentrations of the two major greenhouse gases, carbon dioxide (CO2) and methane (CH4), from space. The data measured with the Thermal And Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI) are processed into several types of data products. Column abundances of CO2 and CH4 (TANSO-FTS SWIR L2 data product) are retrieved from the FTS L1B spectral data. Validation of the FTS Level 2 data product is critical since the data is used for generating the FTS Level 3 (global distributions of column-averaged mixing ratio data of XCO2 and XCH4) and the FTS Level 4 (regional CO2 fluxes and three dimensional distribution of CO2 calculated from the estimated fluxes) products. The reference data to be used for validating abundances are required to have uncertainties of less than 1.0 % (0.3 % or 1 ppm is desirable) for CO2 and 2.0 % for CH4. Ground-based high-resolution FTSs that measure direct solar light are known to have the highest precision in observing column abundances of CO2 and CH4. Data provided from TCCON (Total Carbon Column Observing Network) have been used for the GOSAT data validation. The major error factors in the retrieval of the Level 2 column abundances of CO2 and CH4 are interferences by aerosols and thin cirrus clouds. To elucidate their influences on the column abundance retrieval, we measure aerosols and cirrus clouds using lidars and/or sky-radiometers at selected FTS sites. Concentrations of CO2 and CH4 measured by CONTRAIL (Comprehensive Observation Network for Trace gases by AIrLiner) are also of great importance in validating the Level 2 data product. In the CONTRAIL project, vertical profiles of CO2 concentrations are obtained during the take-off and landing periods at uncertainties of 0.2 ppm. These profiles are used to calculate XCO2. Furthermore airborne data prepared by NOAA and NIES are utilized in the validation work. We will present recent results of the validation activity in which we compare the Level 2 column concentrations against the reference data provided from TCCON, CONTRAIL, NOAA, and NIES.
Biogeochemical snapshot of an urban water system: The Anacostia River, Washington DC
NASA Astrophysics Data System (ADS)
Macavoy, S.; Ewers, E.; Bushaw-Newton, K.
2007-12-01
Highly urbanized and contaminated with PAHs, heavy metals, and sewage, the Anacostia River flows through Maryland and Washington, DC into the tidal Potomac River. Efforts have been underway to assess the river's ecological integrity and to determine the extent of anthropogenic influences. This study examines the nutrients, bacterial biomarkers, organic material, and carbon, nitrogen and sulfur sources in the Anacostia. High biological oxygen demand and low nitrogen (0.33-0.56 mg /L)/phosphorus (0.014 - 0.021 mg/L) concentrations were observed in three areas of the river. Bacterial activity based on carbon source utilization was higher in sediment samples than in water column samples. While bacterial abundances were decreased in downstream areas of sediment; abundances increased in downstream areas in the water column. Downstream sites had higher nutrient concentrations and dissolved organic carbon (up to 13.7 mg/L). Odd-chain length and branched fatty acids (FAs) in the sediments indicated bacterial sources, but long chain FAs indicative of terrestrial primary production were also abundant in some sediments. Also dominant among methyl esters and ketones in some sediment and water column samples was methyl isobutyl ketone, a common industrial solvent and combustion by-product. Sediment carbon stable isotope analyses show a mix of autochthonous and allochthonous derived materials, but most carbon was derived from terrestrial sources (-23.3 to -31.7°). Sediment nitrogen stable isotopes ranged from -5.4 to. 5.6, showing nitrate uptake by plants and also recycling of nitrogen within the river. Sulfur sources were generally between 3 and -5, reflecting local sulfate sources and anaerobic sulfate reduction.
Performance characteristics and modeling of carbon dioxide absorption by amines in a packed column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, S.H.; Shyu, C.T.
1999-01-01
Carbon dioxide (CO[sub 2]) is widely recognized as a major greenhouse gas contributing to global warming. To mitigate the global warming problem, removal of CO[sub 2] from the industrial flue gases is necessary. Absorption of carbon dioxide by amines in a packed column was experimentally investigated. The amines employed in the present study were the primary mono-ethanolamine (MEA) and tertiary N-methyldiethanolamine (MDEA), two very popular amines widely used in the industries for gas purification. The CO[sub 2] absorption characteristics by these two amines were experimentally examined under various operating conditions. A theoretical model was developed for describing the CO[sub 2]more » absorption behavior. Test data have revealed that the model predictions and the observed CO[sub 2] absorption breakthrough curves agree very well, validating the proposed model. Preliminary regeneration tests of exhausted amine solution were also conducted. The results indicated that the tertiary amine is easier to regenerate with less loss of absorption capacity than the primary one.« less
Net community production and metabolic balance at the oligotrophic ocean site, station ALOHA
NASA Astrophysics Data System (ADS)
le B. Williams, Peter J.; Morris, Paul J.; Karl, David M.
2004-11-01
To test the hypothesis that in oligotrophic areas of the ocean respiration exceeds production, a 12-month study was undertaken of in vitro-determined net oxygen production and consumption in the top 150 m of the water column at the extreme oligotrophic site, Station ALOHA, in the North Pacific subtropical gyre. Throughout the year the water column was observed to be in metabolic deficit, the calculated cumulative shortfall being 9±1.7 mol O2 m-2 a-1 (approximately 100 g C m-2 a-1), an amount equivalent to 40% of measured production (annual estimated rates of production and consumption were, respectively, 22 and 31 mol O2 m-2 a-1). We consider three possible explanations for the observed deficit: the in vitro oxygen rate measurements, in themselves, are fundamentally flawed and should be discounted, the observations are correct and the observed deficit is a true account of the balance of oxygen (and organic carbon) at Station ALOHA, or the observations are correct as they stand, but need not be interpreted as organic carbon imbalance for that ecosystem. We find no error unique to the oxygen rate measurements themselves. We find also no evidence that the associated organic carbon deficit can be sustained over the long-term by internal organic reserves or by external subsidy. Accordingly we accept the geochemical findings that calculated in situ oxygen flux requires the euphotic zone of the water column at this site to be slightly (circa 2 mol C m-2 a-1) autotrophic, in contrast to the simple analysis of our observations which gives a net heterotrophic water column. We discuss a number of processes that may give rise to the observed discrepancy. In part it may derive from the difficulty of reproducing the variations in the light field experienced by an algal cell due to vertical advection. It may also derive from the intermittency of production. This latter effect would manifest itself in the following manner. Because of its universal distribution in the food web, respiration has greater integrating properties than photosynthesis and so will give a more accurate estimate of the long-term mean in studies with coarse sampling frequencies. If the system is undersampled, then short bursts of photosynthesis are prone to be missed from the integration of the production term but will be seen in the consumption term: hence the apparent deficit. The corollary of this line of reasoning is that, in undersampled systems, respiration has the potential to give a more accurate measurement of integrated system production than photosynthesis.
NASA Astrophysics Data System (ADS)
Kryc, K. A.; Murray, R. W.; Murray, D. W.
2003-06-01
To increase our understanding of the mechanisms that control the distribution of Al and Ti within marine sediment, we performed sequential extractions targeting the chemical signatures of the loosely bound, exchangeable, carbonate, oxide, organic, opal, and residual fraction of sediment from a carbonate-dominated regime (equatorial Pacific) and from a mixed opal-terrigenous regime (West Antarctic Peninsula). We observe a systematic partitioning of Al and Ti between sediment phases that is related to bulk Al/Ti. We show that, where we can quantify an Alexcess component, the dissolved Al is preferentially affiliated with the oxide fraction, resulting in Al/Ti molar ratios of 500-3000. This is interpreted as the result of surface complexation in the water column of dissolved Al onto oxyhydroxides. We also observe a previously undetected Tiexcess with as much as 80% of the total Ti in the organic fraction, which is most likely a function of metal-organic colloidal removal from the water column. In samples where the excess metals are obscured by the detrital load, the Al and Ti are almost exclusively found in the residual phase. This argues for the paired removal of Al (preferentially by the oxide component) and Ti (preferentially by the organic component) from the water column by settling particulate matter. This research builds upon earlier work that shows changes in the bulk ratio of Al to Ti in carbonate sediment from the central-equatorial Pacific that coincide with changes in the sedimentary bulk accumulation rate (BAR). The ratios that are observed are as much as three times higher than typical shale values, and were interpreted as the result of scavenging of dissolved Al onto particles settling in the water column. Because this non-terrigenous Alexcess accounts for up to 50% of the total sedimentary Al inventory and correlates best with BAR, the bulk Al/Ti may be a sensitive tracer of particle flux and, therefore, export production. Because we show that the excess metals are the result of scavenging processes, the bulk Al/Ti may be considered a sensitive proxy for this region.
NASA Astrophysics Data System (ADS)
Saad, Katherine M.; Wunch, Debra; Deutscher, Nicholas M.; Griffith, David W. T.; Hase, Frank; De Mazière, Martine; Notholt, Justus; Pollard, David F.; Roehl, Coleen M.; Schneider, Matthias; Sussmann, Ralf; Warneke, Thorsten; Wennberg, Paul O.
2016-11-01
Global and regional methane budgets are markedly uncertain. Conventionally, estimates of methane sources are derived by bridging emissions inventories with atmospheric observations employing chemical transport models. The accuracy of this approach requires correctly simulating advection and chemical loss such that modeled methane concentrations scale with surface fluxes. When total column measurements are assimilated into this framework, modeled stratospheric methane introduces additional potential for error. To evaluate the impact of such errors, we compare Total Carbon Column Observing Network (TCCON) and GEOS-Chem total and tropospheric column-averaged dry-air mole fractions of methane. We find that the model's stratospheric contribution to the total column is insensitive to perturbations to the seasonality or distribution of tropospheric emissions or loss. In the Northern Hemisphere, we identify disagreement between the measured and modeled stratospheric contribution, which increases as the tropopause altitude decreases, and a temporal phase lag in the model's tropospheric seasonality driven by transport errors. Within the context of GEOS-Chem, we find that the errors in tropospheric advection partially compensate for the stratospheric methane errors, masking inconsistencies between the modeled and measured tropospheric methane. These seasonally varying errors alias into source attributions resulting from model inversions. In particular, we suggest that the tropospheric phase lag error leads to large misdiagnoses of wetland emissions in the high latitudes of the Northern Hemisphere.
Separation of carbon nanotubes into chirally enriched fractions
Doorn, Stephen K [Los Alamos, NM; Niyogi, Sandip [Los Alamos, NM
2012-04-10
A mixture of single-walled carbon nanotubes ("SWNTs") is separated into fractions of enriched chirality by preparing an aqueous suspension of a mixture of SWNTs and a surfactant, injecting a portion of the suspension on a column of separation medium having a density gradient, and centrifuging the column. In some embodiments, salt is added prior to centrifugation. In other embodiments, the centrifugation is performed at a temperature below room temperature. Fractions separate as colored bands in the column. The diameter of the separated SWNTs decreases with increasing density along the gradient of the column. The colored bands can be withdrawn separately from the column.
Liquid gallium columns sheathed with carbon: Bulk synthesis and manipulation.
Zhan, Jinhua; Bando, Yoshio; Hu, Junqing; Golberg, Dmitri; Nakanishi, Haruyuki
2005-06-16
It is impossible to fabricate isolated gallium nanomaterials due to the low melting point of Ga (29.8 degrees C) and its high reactivity. We report the bulk synthesis of uniform liquid Ga columns encapsulated into carbon nanotubes through high-temperature chemical reaction between Ga and CH4. The diameter of filled Ga liquid columns is approximately 25 nm, and their length is up to several micrometers. The thickness of the carbon sheaths is approximately 6 nm. Simultaneous condensation of a Ga vapor and carbon clusters results in the generation of Ga-filled carbon nanotubes. A convergent 300 kV electron beam generated in a field emission high-resolution electron microscope is demonstrated to be a powerful tool for delicate manipulation of the liquid Ga nanocolumns: they can be gently joined, cut, and sealed within carbon nanotubes. The self-organization of a carbon sheath during the electron-beam irradiation is discussed. The electron-beam irradiation may also become a decent tool for Ga-filled carbon nanotube thermometer calibration.
NASA Astrophysics Data System (ADS)
Kasai, K.; Shiomi, K.; Konno, A.; Tadono, T.; Hori, M.
2016-12-01
Global observation of greenhouse gases such as carbon dioxide (CO2) and methane (CH4) with high spatio-temporal resolution and accurate estimation of sources and sinks are important to understand greenhouse gases dynamics. Greenhouse Gases Observing Satellite (GOSAT) has observed column-averaged dry-air mole fractions of CO2 (XCO2) and CH4 (XCH4) over 7 years since January 2009 with wide swath but sparse pointing. Orbiting Carbon Observatory-2 (OCO-2) has observed XCO2 jointly on orbit since July 2014 with narrow swath but high resolution. We use two retrieved datasets as GOSAT observation data. One is ACOS GOSAT/TANSO-FTS Level 2 Full Product by NASA/JPL, and the other is NIES TANSO-FTS L2 column amount (SWIR). By using these GOSAT datasets and OCO-2 L2 Full Product, the biases among datasets, local sources and sinks, and temporal variability of greenhouse gases are clarified. In addition, CarbonTracker, which is a global model of atmospheric CO2 and CH4 developed by NOAA/ESRL, are also analyzed for comparing between satellite observation data and atmospheric model data. Before analyzing these datasets, outliers are screened by using quality flag, outcome flag, and warn level in land or sea parts. Time series data of XCO2 and XCH4 are obtained globally from satellite observation and atmospheric model datasets, and functions which express typical inter-annual and seasonal variation are fitted to each spatial grid. Consequently, anomalous events of XCO2 and XCH4 are extracted by the difference between each time series dataset and the fitted function. Regional emission and absorption events are analyzed by time series variation of satellite observation data and by comparing with atmospheric model data.
Pradhan, Snigdhendubala; Boernick, Hilmar; Kumar, Pradeep; Mehrotra, Indu
2016-07-15
The correlation between octanol-water partition coefficient (KOW) and the transport of aqueous samples containing single organic compound is well documented. The concept of the KOW of river water containing the mixture of organics was evolved by Pradhan et al. (2015). The present study aims at determining the KOW and sorption parameters of synthetic aqueous samples and river water to finding out the correlation, if any. The laboratory scale columns packed with aquifer materials were fed with synthetic and river water samples. Under the operating conditions, the compounds in the samples did not separate, and all the samples that contain more than one organic compound yielded a single breakthrough curve. Breakthrough curves simulated from sorption isotherms were compared with those from the column runs. The sorption parameters such as retardation factor (Rf), height of mass transfer zone (HMTZ), rate of mass transfer zone (RMTZ), breakpoint column capacity (qb) and maximum column capacity (qx) estimated from column runs, sorption isotherms and models developed by Yoon-Nelson, Bohart-Adam and Thomas were in agreement. The empirical correlations were found between the KOW and sorption parameters. The transport of the organics measured as dissolved organic carbon (DOC) through the aquifer can be predicted from the KOW of the river water and other water samples. The novelty of the study is to measure KOW and to envisage the fate of the DOC of the river water, particularly during riverbank filtration. Statistical analysis of the results revealed a fair agreement between the observed and computed values. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Frankenberg, Christian; Kulawik, Susan S.; Wofsy, Steven C.; Chevallier, Frédéric; Daube, Bruce; Kort, Eric A.; O'Dell, Christopher; Olsen, Edward T.; Osterman, Gregory
2016-06-01
In recent years, space-borne observations of atmospheric carbon dioxide (CO2) have been increasingly used in global carbon-cycle studies. In order to obtain added value from space-borne measurements, they have to suffice stringent accuracy and precision requirements, with the latter being less crucial as it can be reduced by just enhanced sample size. Validation of CO2 column-averaged dry air mole fractions (XCO2) heavily relies on measurements of the Total Carbon Column Observing Network (TCCON). Owing to the sparseness of the network and the requirements imposed on space-based measurements, independent additional validation is highly valuable. Here, we use observations from the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) flights from 01/2009 through 09/2011 to validate CO2 measurements from satellites (Greenhouse Gases Observing Satellite - GOSAT, Thermal Emission Sounder - TES, Atmospheric Infrared Sounder - AIRS) and atmospheric inversion models (CarbonTracker CT2013B, Monitoring Atmospheric Composition and Climate (MACC) v13r1). We find that the atmospheric models capture the XCO2 variability observed in HIPPO flights very well, with correlation coefficients (r2) of 0.93 and 0.95 for CT2013B and MACC, respectively. Some larger discrepancies can be observed in profile comparisons at higher latitudes, in particular at 300 hPa during the peaks of either carbon uptake or release. These deviations can be up to 4 ppm and hint at misrepresentation of vertical transport. Comparisons with the GOSAT satellite are of comparable quality, with an r2 of 0.85, a mean bias μ of -0.06 ppm, and a standard deviation σ of 0.45 ppm. TES exhibits an r2 of 0.75, μ of 0.34 ppm, and σ of 1.13 ppm. For AIRS, we find an r2 of 0.37, μ of 1.11 ppm, and σ of 1.46 ppm, with latitude-dependent biases. For these comparisons at least 6, 20, and 50 atmospheric soundings have been averaged for GOSAT, TES, and AIRS, respectively. Overall, we find that GOSAT soundings over the remote Pacific Ocean mostly meet the stringent accuracy requirements of about 0.5 ppm for space-based CO2 observations.
Kraft, Vadim; Grützke, Martin; Weber, Waldemar; Menzel, Jennifer; Wiemers-Meyer, Simon; Winter, Martin; Nowak, Sascha
2015-08-28
A two-dimensional ion chromatography (IC/IC) technique with heart-cutting mode for the separation of ionic organophosphates was developed. These analytes are generated during thermal degradation of three different commercially available Selectilyte™ lithium ion battery electrolytes. The composition of the investigated electrolytes is based on 1M lithium hexafluorophosphate (LiPF6) dissolved in ethylene carbonate/dimethyl carbonate (50:50wt%, LP30), ethylene carbonate/diethyl carbonate (50:50wt%, LP40) and ethylene carbonate/ethyl methyl carbonate (50:50wt%, LP50). The organophosphates were pre-separated from PF6(-) anion on the low capacity A Supp 4 column, which was eluted with a gradient step containing acetonitrile. The fraction containing analytes was retarded on a pre-concentration column and after that transferred to the high capacity columns, where the separation was performed isocratically. Different stationary phases and eluents were applied on the 2nd dimension for the investigation of retention times, whereas the highly promising results were obtained with a high capacitive A Supp 10 column. The organophosphates generated in LP30 and LP40 electrolytes could be separated by application of an aqueous NaOH eluent providing fast analysis time within 35min. For the separation of the organophosphates of LP50 electrolyte due to its complexity a NaOH eluent containing a mixture of methanol/H2O was necessary. In addition, the developed two dimensional IC method was hyphenated to an inductively coupled plasma mass spectrometer (ICP-MS) using aqueous NaOH without organic modifiers. This proof of principle measurement was carried out for future quantitative investigation regarding the concentration of the ionic organophosphates. Furthermore, the chemical stability of several ionic organophosphates in water and acetonitrile at room temperature over a period of 10h was investigated. In both solvents no decomposition of the investigated analytes was observed and therefore water as solvent for dilution of samples was proved as suitable. Copyright © 2015 Elsevier B.V. All rights reserved.
A Preliminary Assessment of Orbiting Carbon Observatory-2 (OCO-2) Measurements Using TCCON Data
NASA Astrophysics Data System (ADS)
Wennberg, P. O.; Fisher, B.; Roehl, C. M.; Wunch, D.; Osterman, G. B.; Eldering, A.; Naylor, B. J.; Nguyen, H.; Mandrake, L.; O'Dell, C.; Frankenberg, C.; Natraj, V.; Taylor, T.; Smyth, M.; Crisp, D.; Pollock, H. R.; Payne, V.; Gunson, M. R.; Salawitch, R. J.
2014-12-01
The NASA Orbiting Carbon Observatory-2 (OCO-2) successfully launched from Vandenberg Air Force Base in California on July 2, 2014. The mission provides remotely-sensed measurements of the column-averaged dry air mole fraction of carbon dioxide from space. In order to insure the quality of the space-based observations, a detailed validation program was developed for the original OCO mission. During the time period between the original OCO launch failure and the successful launch of OCO-2, that validation methodology was tested and refined using data from the Japanese Greenhouse gases Observing SATellite (GOSAT) as part of the NASA Atmospheric CO2 Observations from Space (ACOS) project. At the core of the OCO-2 validation plan are comparisons of the satellite data to observations from Total Carbon Column Observation Network (TCCON), a network of ground based Fourier Transform Spectrometers. The TCCON instruments provide "ground truth", allowing for determination of bias in the space-based observations. The TCCON observations are, in turn, traceable to the World Meteorological Organization (WMO) standards through aircraft and balloon-borne profile observations at the TCCON locations. OCO-2 is capable of making measurements in three observation modes: nadir; glint; and target. The initial operational mode for OCO-2 alternates between nadir and glint mode every 16 days with target mode observations initiated by commanding the spacecraft to point to specific surface location. Of the 19 locations that can be observed by OCO-2 in target mode, 18 are TCCON sites. The decision to target a specific TCCON site is based on a variety of criteria, including the local weather forecast, the operational status of the station, and the time since previous observation of that site. In addition, the coincidence criteria to utilize in comparison between the satellite and TCCON measurements have been refined during the ACOS project and will be utilized to compare OCO-2 nadir and glint observations with TCCON data. In this presentation, we will show preliminary comparisons between OCO-2 and TCCON, using data from all satellite observing modes.
Comparison of neptunium sorption results using batch and column techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Triay, I.R.; Furlano, A.C.; Weaver, S.C.
1996-08-01
We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments undermore » static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases.« less
NASA Astrophysics Data System (ADS)
Dittert, Nicolas; Henrich, Rüdiger
2000-04-01
Ultrastructure dissolution susceptibility of the planktic foraminifer Globigerina bulloides, carbonate ion content of the water column, calcium carbonate content of the sediment surface, and carbonate/carbon weight percentage ratio derived from sediment surface samples were investigated in order to reconstruct the position of the calcite saturation horizon, the sedimentary calcite lysocline, and the calcium carbonate compensation depth (CCD) in the modern South Atlantic Ocean. Carbonate ion data from the water column refer to the GEOSECS locations 48, 103, and 109 and calcium carbonate data come from 19 GeoB sediment surface samples of 4 transects into the Brazil, the Guinea, and the Cape Basins. We present a new (paleo-) oceanographic tool, namely the Globigerina bulloides dissolution index (BDX). Further, we give evidence (a) for progressive G. bulloides ultrastructural breakdown with increasing carbonate dissolution even above the lysocline; (b) for a sharp BDX increase at the sedimentary lysocline; and (c) for the total absence of this species at the CCD. BDX puts us in the position to distinguish the upper open ocean and the upwelling influenced continental margin above from the deep ocean below the sedimentary lysocline. Carbonate ion data from water column samples, calcite weight percentage data from surface sediment samples, and carbonate/carbon weight percentage ratio appear to be good proxies to confirm BDX. As shown by BDX both the calcite saturation horizon (in the water column) and the sedimentary lysocline (at the sediment-water interface) mark the boundary between the carbonate ion undersaturated and highly corrosive Antarctic Bottom Water and the carbonate ion saturated North Atlantic Deep Water (NADW) of the modern South Atlantic.
NASA Astrophysics Data System (ADS)
Weir, B.; Chatterjee, A.; Ott, L. E.; Pawson, S.
2017-12-01
This talk presents an overview of results from the GEOS-Carb reanalysis of retrievals of average-column carbon dioxide (XCO2) from the Orbiting Carbon Observatory 2 (OCO-2) and Greenhouse Gases Observing Satellite (GOSAT) satellite missions. The reanalysis is a Level 3 (L3) product: a collection of 3D fields of carbon dioxide (CO2) mixing ratios every 6 hours beginning in April 2009 going until the present on a grid with a 0.5 degree horizontal resolution and 72 vertical levels from the surface to 0.01 hPa. Using an assimilation methodology based on the Goddard Earth Observing System (GEOS) atmospheric data assimilation system (ADAS), the L3 fields are weighted averages of the two satellite retrievals and predictions from the GEOS general circulation model driven by assimilated meteorology from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2). In places and times where there are a dense number of soundings, the observations dominate the predicted mixing ratios, while the model is used to fill in locations with fewer soundings, e.g., high latitudes and the Amazon. Blending the satellite observations with model predictions has at least two notable benefits. First, it provides a bridge for evaluating the satellite retrievals and their uncertainties against a heterogeneous collection of observations including those from surface sites, towers, aircraft, and soundings from the Total Carbon Column Observing Network (TCCON). Extensive evaluations of the L3 reanalysis clearly demonstrate both the strength and the deficiency of the satellite retrievals. Second, it is possible to estimate variables from the reanalysis without introducing bias due to spatiotemporal variability in sounding coverage. For example, the assimilated product provides robust estimates of the monthly CO2 global growth rate. These monthly growth rate estimates show significant differences from estimates based on in situ observations, which have sparse coverage, and those based on model surface fluxes, which imperfectly represent key processes. This presentation discusses the implications of this finding as well as ongoing strategies to extract more information from the satellite retrievals in future L3 reanalyses.
In-column bonded phase polymerization for improved packing uniformity
Huckabee, Alexis G.; Yerneni, Charu; Jacobson, Rachel E.; Alzate, Edwin J.; Chen, Tse-Hong; Wirth, Mary J.
2017-01-01
It is difficult to pack chromatographic particles having polymeric-bonded phases because solvents used for making a stable slurry cause the polymer layer to swell. Growth of the polymer inside the column (in situ) after packing was investigated and compared with conventional, ex situ polymer growth. The method of activators generated by electron transfer, along with atom-transfer radical polymerization, enabled polymerization under ambient conditions. Nonporous, 0.62 µm silica particles with silane initiators were used. Polyacrylamide films with a hydrated thickness of 23 nm in 75:25 water/isopropanol grew in 55 min for both in situ and ex situ preparations, and the same carbon coverage was observed. Higher chromatographic resolution and better column-to-column reproducibility were observed for in situ polymer growth, as evaluated by hydrophilic interaction liquid chromatography for the model glycoprotein, ribonuclease B. In situ polymer growth was also found to give lower eddy diffusion, as shown by a narrower peak width for injected acetonitrile in 50:50 acetonitrile/water. When columns were packed more loosely, bed collapse occurred quickly for ex situ, but not for in situ, polymer growth. The higher resolution and stability for in situ polymer growth is explained by packing with hard, rather than soft, contacts between particles. PMID:28387037
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Landon, James; Irvin, Bradley
Corrosion studies were carried out on metal coated and noncoated carbon steel as well as stainless steel in a pilot-scale post-combustion CO 2 capture process. Aqueous 30 wt % monoethanolamine (MEA) solvent was used without any chemical additive for antioxidation to examine a worst-case scenario where corrosion is not mitigated. The corrosion rate of all carbon steels was almost zero in the absorber column and CO 2 lean amine piping except for Ni-coated carbon steel (<1.8 mm/yr). Ni 2Al 3/Al 2O 3 precoated carbon steels showed initial protection but lost their integrity in the stripping column and CO 2 richmore » amine piping, and severe corrosion was eventually observed for all carbon steels at these two locations. Stainless steel was found to be stable and corrosion resistant in all of the sampling locations throughout the experiment. This study provides an initial framework for the use of carbon steel as a potential construction material for process units with relatively mild operating conditions (temperature less than 80 °C), such as the absorber and CO 2 lean amine piping of a post-combustion CO 2 capture process. As a result, it also warrants further investigation of using carbon steel with more effective corrosion mitigation strategies for process units where harsh environments are expected (such as temperatures greater than 100 °C).« less
Li, Wei; Landon, James; Irvin, Bradley; ...
2017-04-13
Corrosion studies were carried out on metal coated and noncoated carbon steel as well as stainless steel in a pilot-scale post-combustion CO 2 capture process. Aqueous 30 wt % monoethanolamine (MEA) solvent was used without any chemical additive for antioxidation to examine a worst-case scenario where corrosion is not mitigated. The corrosion rate of all carbon steels was almost zero in the absorber column and CO 2 lean amine piping except for Ni-coated carbon steel (<1.8 mm/yr). Ni 2Al 3/Al 2O 3 precoated carbon steels showed initial protection but lost their integrity in the stripping column and CO 2 richmore » amine piping, and severe corrosion was eventually observed for all carbon steels at these two locations. Stainless steel was found to be stable and corrosion resistant in all of the sampling locations throughout the experiment. This study provides an initial framework for the use of carbon steel as a potential construction material for process units with relatively mild operating conditions (temperature less than 80 °C), such as the absorber and CO 2 lean amine piping of a post-combustion CO 2 capture process. As a result, it also warrants further investigation of using carbon steel with more effective corrosion mitigation strategies for process units where harsh environments are expected (such as temperatures greater than 100 °C).« less
Using altimetry to help explain patchy changes in hydrographic carbon measurements
NASA Astrophysics Data System (ADS)
Rodgers, Keith B.; Key, Robert M.; Gnanadesikan, Anand; Sarmiento, Jorge L.; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Dunne, John P.; Glover, David M.; Ishida, Akio; Ishii, Masao; Jacobson, Andrew R.; Lo Monaco, Claire; Maier-Reimer, Ernst; Mercier, Herlé; Metzl, Nicolas; PéRez, Fiz F.; Rios, Aida F.; Wanninkhof, Rik; Wetzel, Patrick; Winn, Christopher D.; Yamanaka, Yasuhiro
2009-09-01
Here we use observations and ocean models to identify mechanisms driving large seasonal to interannual variations in dissolved inorganic carbon (DIC) and dissolved oxygen (O2) in the upper ocean. We begin with observations linking variations in upper ocean DIC and O2 inventories with changes in the physical state of the ocean. Models are subsequently used to address the extent to which the relationships derived from short-timescale (6 months to 2 years) repeat measurements are representative of variations over larger spatial and temporal scales. The main new result is that convergence and divergence (column stretching) attributed to baroclinic Rossby waves can make a first-order contribution to DIC and O2 variability in the upper ocean. This results in a close correspondence between natural variations in DIC and O2 column inventory variations and sea surface height (SSH) variations over much of the ocean. Oceanic Rossby wave activity is an intrinsic part of the natural variability in the climate system and is elevated even in the absence of significant interannual variability in climate mode indices. The close correspondence between SSH and both DIC and O2 column inventories for many regions suggests that SSH changes (inferred from satellite altimetry) may prove useful in reducing uncertainty in separating natural and anthropogenic DIC signals (using measurements from Climate Variability and Predictability's CO2/Repeat Hydrography program).
Capodici, Marco; Avona, Alessia; Laudicina, Vito Armando; Viviani, Gaspare
2018-07-15
Bio-trenches are a sustainable option for treating nitrate contamination in groundwater. However, a possible side effect of this technology is the production of nitrous oxide, a greenhouse gas that can be found both dissolved in the liquid effluent as well as emitted as off gas. The aim of this study was to analyze NO 3 - removal and N 2 O production in lab-scale column trials. The column contained olive nut as organic carbon media. The experimental study was divided into three phases (I, II and III) each characterized by different inlet NO 3 - concentrations (30, 50, 75mgNO 3 -NL -1 respectively). Sampling ports deployed along the length of the column allowed to observe the denitrification process as well as the formation and consumption of intermediate products, such as nitrite (NO 2 - ) and nitrous oxide (N 2 O). In particular, it was observed that N 2 O production represent only a small fraction of removed NO 3 - during Phase I and II, both for dissolved (0.007%) and emitted (0.003%) phase, and it was recorded a high denitrification efficiency, over 99%. Nevertheless, significantly higher values were recorded for Phase 3 concerning emitted phase (0.018%). This fact is due to increased inlet concentration which resulted in a carbon limitation and in a consequent decrease in denitrification efficiency (76%). Copyright © 2018 Elsevier B.V. All rights reserved.
Biomass burning signals over the South Atlantic Ocean before and during the El Niño event of 2015/16
NASA Astrophysics Data System (ADS)
Arnold, Sabrina G.; Feist, Dietrich G.; Marshall, Julia; Guillermo Nuñez Ramirez, Tonatiuh
2017-04-01
The Max Planck Institute for Biogeochemistry (MPI-BGC) has been operating a Fourier-Transform Spectrometer (FTS) on Ascension Island (8° S, 14° W) as part of the Total Carbon Column Observation Network (TCCON). Since 2012, this instrument has been observing column-averaged dry-air mole fractions (commonly referred to as Xgas) of greenhouse gases like CO2, CH4, CO, N2O and others. Due to its location in the southern trade wind zone, the station is downwind from Africa most of the time. Different parts of the total column above the station are influenced by fluxes from different regions. Especially the lower layers of the free troposphere just above the planetary boundary layer (PBL) show strong biomass burning signals. XCH4 and especially XCO are strongly enhanced during the northern and southern African burning seasons. For XCO, enhancements of 50-100% in the total column can be observed on the time scale of days. Transport model simulations suggest that biomass burning signals from as far as the Eastern Indian Ocean may be detected over Ascension Island. Most of these effects are not visible from observations in the PBL. The 5-year time series allows a first look at the effect of the 2015/16 El Niño on the biomass burning patterns in the Southern Hemisphere.
Gas chromatographic separation of fatty acid methyl esters on weakly polar capillary columns.
Yamamoto, Kouhei; Kinoshita, Akemi; Shibahara, Akira
2008-02-22
It was found that weakly polar columns, routinely used in capillary GC for analyzing sterols, food additives, etc., can also be used for separating fatty acid methyl esters (FAMEs). On these columns, FAMEs elute in the order of their unsaturation. The equivalent chain-length value of methyl 22:6 is below 23.00. This means FAMEs within a carbon chain length, having up to six double bonds, elute before the next (one carbon longer) saturated FAME elutes. Peak identification is easy. Weakly polar columns are compatible in both GC and GC/MS systems.
Alves, Alcione Aparecida de Almeida; Ruiz, Giselle Louise de Oliveira; Nonato, Thyara Campos Martins; Müller, Laura Cecilia; Sens, Maurício Luiz
2018-02-26
The application of a fixed bed adsorption column of granular activated carbon (FBAC-GAC), in the removal of carbaryl, methomyl and carbofuran at a concentration of 25 μg L -1 for each carbamate, from the public water supply was investigated. For the determination of the presence of pesticides in the water supply, the analytical technique of high-performance liquid chromatography with post-column derivatization was used. Under conditions of constant diffusivity, the FBAC-GAC was saturated after 196 h of operation on a pilot scale. The exhaust rate of the granular activated carbon (GAC) in the FBAC-GAC until the point of saturation was 0.02 kg GAC m -3 of treated water. By comparing a rapid small-scale column test and FBAC-GAC, it was confirmed that the predominant intraparticle diffusivity in the adsorption column was constant diffusivity. Based on the results obtained on a pilot scale, it was possible to estimate the values to be applied in the FBAC-GAC (full scale) to remove the pesticides, which are particle size with an average diameter of 1.5 mm GAC; relationship between the internal diameter of the column and the average diameter of GAC ≥50 in order to avoid preferential flow near the adsorption column wall; surface application rate 240 m 3 m -2 d -1 and an empty bed contact time of 3 min. BV: bed volume; CD: constant diffusivity; EBCT: empty bed contact time; FBAC-GAC: fixed bed adsorption column of granular activated carbon; GAC: granular activated carbon; MPV: maximum permitted values; NOM: natural organic matter; PD: proportional diffusivity; pH PCZ : pH of the zero charge point; SAR: surface application rate; RSSCT: rapid small-scale column test; WTCS: water treated conventional system.
Geoelectrical Evidence of Microbial Degradation of Diesel Contaminated Sediments
NASA Astrophysics Data System (ADS)
Werkema, D. D.; Atekwana, E. A.; Rossbach, S.; Sauck, W. A.
2003-12-01
The alteration of physical properties by microbial activity in petroleum contaminated sediments was investigated using geophysical techniques in laboratory column experiments. Microbial population growth was determined by the Most Probable Number technique (MPN), community dynamics were determined by the rDNA intergenic spacer analysis (RISA), microbial mineralization of diesel fuel was assessed using dissolved inorganic carbon (DIC), enhanced mineral dissolution was determined by dissolved calcium, and the vertical geoelectrical profile was measured using DC resistivity (converted to conductivity). The columns simulated a saturation profile and contained sanitized, uniform sand with the following experimental treatments: diesel + microbes, diesel, microbes, and no treatment. After 16 months, two important conclusions were drawn. First, the relative increase in magnitude of the parameters measured was highest in the diesel + microbe column (showing at least 110% increase), lower in the diesel column and lowest (actually showing a decrease) in the column with no treatment. Further, the diesel + microbe column showed the greatest increase in oil degrading microbial populations (135%) compared to the column with no treatment, which showed no changes. Secondly, the depth at which the conductivity reached the maximum occurred within and slightly above the diesel layer (which represents a depth that was originally water wet). It was further observed that the relative change in bulk conductivity below the saturated zone is of a lower magnitude than above (<10%). These results suggest the diesel layer, and the zone slightly above, were the most biologically active. Additionally, the diesel + microbe column showed RISA fragments attributed to microbial succession typically observed in organic contaminant plumes. A simple Archie's Law analysis was used to estimate the pore water conductivities necessary to reproduce the bulk conductivity measured. This analysis shows that relative to the column with only microbes (selected as the control to be most representative of field conditions), the diesel column revealed a 2.3 fold increase and the diesel + microbe column showed a 3 fold increase in pore water conductivity. This increase was located within the diesel layer above the water saturated zone. Within the saturated zone, the no treatment column showed a 0.81 fold increase, the diesel column a 1.28, and the diesel + microbe column 1.45. We conclude from this study that microbial activity and the resultant biogeochemical changes played an important role in modifying the geoelectrical properties of aquifers and sediments rich in organic carbon and mineralized by bacteria by increasing the bulk conductivity. This conductive zone occurred within and immediately above the free-phase petroleum layer. In natural environments with high concentrations of organic compounds available as electron donors, geophysical techniques may potentially be used as indicators of microbial activity. Notice: This is an abstract of a proposed presentation and does not necessarily reflect the United States Environmental Protection Agency (EPA) policy. The actual presentation has not been peer reviewed by EPA. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
The relation between carbon monoxide emission and visual extinction in cloud L134
NASA Technical Reports Server (NTRS)
Tucker, K. D.; Dickman, R. L.; Encrenaz, P. J.; Kutner, M. L.
1976-01-01
Emission from the J = 1-0 transition of carbon monoxide has been mapped over an area of 40 by 55 arcmin in cloud L134, and visual extinctions over the entire cloud have been obtained by means of star counts. Line intensities of at least 2 K are observable down to an extinction level of about one magnitude. From observations of the J = 1-0 transition of the (C-13)O isotopic species at 18 locations in the cloud, a linear correlation is found between the local thermodynamic equilibrium (LTE) column densities of (C-13)O and magnitudes of visual extinction.
NASA Astrophysics Data System (ADS)
Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong
2015-08-01
A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.
Zietzschmann, F; Müller, J; Sperlich, A; Ruhl, A S; Meinel, F; Altmann, J; Jekel, M
2014-01-01
This study investigates the applicability of the rapid small-scale column test (RSSCT) concept for testing of granular activated carbon (GAC) for organic micro-pollutants (OMPs) removal from wastewater treatment plant (WWTP) effluent. The chosen experimental setup was checked using pure water, WWTP effluent, different GAC products, and variable hydrodynamic conditions with different flow velocities and differently sized GAC, as well as different empty bed contact times (EBCTs). The setup results in satisfying reproducibility and robustness. RSSCTs in combination with WWTP effluent are effective when comparing the OMP removal potentials of different GAC products and are a useful tool for the estimation of larger filters. Due to the potentially high competition between OMPs and bulk organics, breakthrough curves are likely to have unfavorable shapes when treating WWTP effluent. This effect can be counteracted by extending the EBCT. With respect to the strong competition observed in GAC treatment of WWTP effluent, the small organic acid and neutral substances are retained longer in the RSSCT filters and are likely to cause the majority of the observed adsorption competition with OMPs.
NASA Astrophysics Data System (ADS)
Jung, Yeonjin; Kim, Jhoon; Kim, Woogyung; Boesch, Hartmut; Goo, Tae-Young; Cho, Chunho
2017-04-01
Although several CO2 retrieval algorithms have been developed to improve our understanding about carbon cycle, limitations in spatial coverage and uncertainties due to aerosols and thin cirrus clouds are still remained as a problem for monitoring CO2 concentration globally. Based on an optimal estimation method, the Yonsei CArbon Retrieval (YCAR) algorithm was developed to retrieve the column-averaged dry-air mole fraction of carbon dioxide (XCO2) using the Greenhouse Gases Observing SATellite (GOSAT) measurements with optimized a priori CO2 profiles and aerosol models over East Asia. In previous studies, the aerosol optical properties (AOP) are the most important factors in CO2 retrievals since AOPs are assumed as fixed parameters during retrieval process, resulting in significant XCO2 retrieval error up to 2.5 ppm. In this study, to reduce these errors caused by inaccurate aerosol optical information, the YCAR algorithm improved with taking into account aerosol optical properties as well as aerosol vertical distribution simultaneously. The CO2 retrievals with two difference aerosol approaches have been analyzed using the GOSAT spectra and have been evaluated throughout the comparison with collocated ground-based observations at several Total Carbon Column Observing Network (TCCON) sites. The improved YCAR algorithm has biases of 0.59±0.48 ppm and 2.16±0.87 ppm at Saga and Tsukuba sites, respectively, with smaller biases and higher correlation coefficients compared to the GOSAT operational algorithm. In addition, the XCO2 retrievals will be validated at other TCCON sites and error analysis will be evaluated. These results reveal that considering better aerosol information can improve the accuracy of CO2 retrieval algorithm and provide more useful XCO2 information with reduced uncertainties. This study would be expected to provide useful information in estimating carbon sources and sinks.
Ustrzycka, Alicja; Piotrowska, Natalia; Bonk, Alicja; Filipiak, Janusz; Tylmann, Wojciech
2018-06-01
An isotopic monitoring was undertaken in 2012-2014 at Lake Żabińskie (Mazurian Lakeland, NE Poland). The aim was to identify the factors and processes controlling an isotopic composition of the lake water and to explore the mechanism responsible for recording the climatic signal in stable isotope composition of deposited carbonates. δ 18 O and δ 2 H in the precipitation, lake water column, inflows and outflow, δ 18 O and δ 13 C in the carbonate fraction of sediments trapped in the water column were recorded with monthly resolution. A relationship between δ 18 O and δ 2 H in local precipitation was used to estimate the local meteoric water line. The dataset obtained for the water enabled to identify the modification of the water's isotopic composition due to evaporation, connected with seasonal lake water stratification and mixing patterns. Statistically significant correlation coefficients suggest that the δ 18 O of the carbonate fraction in the sediment traps depends on the δ 18 O of rainfall water and on air temperature. The fractionation coefficient α shows that in summer months the carbonate precipitation process is closest to equilibrium. As expected for an exorheic lake, no significant correlation was observed between δ 18 O and δ 13 C in precipitated carbonate.
NASA Astrophysics Data System (ADS)
Jinghai, Zhou; Tianbei, Kang; Fengchi, Wang; Xindong, Wang
2017-11-01
Eight less stirrups in the core area frame joints are simulated by ABAQUS finite element numerical software. The composite reinforcement method is strengthened with carbon fiber and increasing column section, the axial compression ratio of reinforced specimens is 0.3, 0.45 and 0.6 respectively. The results of the load-displacement curve, ductility and stiffness are analyzed, and it is found that the different axial compression ratio has great influence on the bearing capacity of increasing column section strengthening method, and has little influence on carbon fiber reinforcement method. The different strengthening schemes improve the ultimate bearing capacity and ductility of frame joints in a certain extent, composite reinforcement joints strengthening method to improve the most significant, followed by increasing column section, reinforcement method of carbon fiber reinforced joints to increase the minimum.
NASA Astrophysics Data System (ADS)
Osterman, G. B.; Fisher, B.; Roehl, C. M.; Wunch, D.; Wennberg, P. O.; Eldering, A.; Naylor, B. J.; Crisp, D.; Pollock, H. R.; Gunson, M. R.
2014-12-01
The NASA Orbiting Carbon Observatory-2 (OCO-2) successfully launched from Vandenberg Air Force Base in California on July 2, 2014. The OCO-2 mission is designed to provide remotely sensed measurements of the column averaged dry air mole fraction of carbon dioxide from space. OCO-2 is capable of making measurements in three observation modes: Nadir, glint and target. The standard operational mode for OCO-2 alternates between nadir and glint mode every 16 days, but target mode observations are possible by commanding the spacecraft to point to specific surface location. In this presentation we provide information on the preliminary observations and plans for OCO-2 2015. In particular, we will also provide an update on the pointing capabilities and accuracy for OCO-2. We provide updates on OCO-2 target mode including possible target mode locations. We will show calendars for the different viewing geometries and target mode possibilities.
Validation of OCO-2 and ACOS-GOSAT using HIPPO and TCCON
NASA Technical Reports Server (NTRS)
Kulawik, Susan S.; Wunch, Debra; O'Dell, Christopher; Miller, Charles; Osterman, Greg; Wennberg, Paul; Griffith, David; Sherlock, Vanessa; Deutscher, Nicholas M.; Notholt, Justus;
2017-01-01
Consistent validation of satellite CO2 estimates is a prerequisite for using multiple satellite CO2measurements for joint flux inversion and establishing a long-term atmospheric CO2 data record. Wevalidate recent satellite observation of OCO-2 v7 and ACOS-GOSAT v7.3 using similar analysis as previouswork (Kulawik et al. (2016) and Frankenberg et al. (2106)) through comparisons to the HIAPER Pole-to-Pole Observations (HIPPO) and the Total Carbon Column Observing Network (TCCON) to estimate biasesand errors affecting the understanding of carbon cycle science. CarbonTracker RT is also compared tothe validation data, and additionally used to evaluate the mismatch between the HIPPO observationtimeframe and the OCO-2 record, which are offset by 3-7 years. Some key metrics that are validatedinclude the seasonal cycle phase and amplitude, latitudinal gradient by season, regional biases, anderrors with respect to averaging.
Perturbations and gradients as fundamental tests for modeling the soil carbon cycle
NASA Astrophysics Data System (ADS)
Bond-Lamberty, B. P.; Bailey, V. L.; Becker, K.; Fansler, S.; Hinkle, C.; Liu, C.
2013-12-01
An important step in matching process-level knowledge to larger-scale measurements and model results is to challenge those models with site-specific perturbations and/or changing environmental conditions. Here we subject modified versions of an ecosystem process model to two stringent tests: replicating a long-term climate change dryland experiment (Rattlesnake Mountain) and partitioning the carbon fluxes of a soil drainage gradient in the northern Everglades (Disney Wilderness Preserve). For both sites, on-site measurements were supplemented by laboratory incubations of soil columns. We used a parameter-space search algorithm to optimize, within observational limits, the model's influential inputs, so that the spun-up carbon stocks and fluxes matched observed values. Modeled carbon fluxes (net primary production and net ecosystem exchange) agreed with measured values, within observational error limits, but the model's partitioning of soil fluxes (autotrophic versus heterotrophic), did not match laboratory measurements from either site. Accounting for site heterogeneity at DWP, modeled carbon exchange was reasonably consistent with values from eddy covariance. We discuss the implications of this work for ecosystem- to global scale modeling of ecosystems in a changing climate.
Lassabatere, Laurent; Spadini, Lorenzo; Delolme, Cécile; Février, Laureline; Galvez Cloutier, Rosa; Winiarski, Thierry
2007-11-01
The chemical and physical processes involved in the retention of 10(-2)M Zn, Pb and Cd in a calcareous medium were studied under saturated dynamic (column) and static (batch) conditions. Retention in columns decreased in order: Pb>Cd approximately Zn. In the batch experiments, the same order was observed for a contact time of less than 40h and over, Pb>Cd>Zn. Stronger Pb retention is in accordance with the lower solubility of Pb carbonates. However, the equality of retained Zn and Cd does not fit the solubility constants of carbonated solids. SEM analysis revealed that heavy metals and calcareous particles are associated. Pb precipitated as individualized Zn-Cd-Ca- free carbonated crystallites. All the heavy metals were also found to be associated with calcareous particles, without any change in their porosity, pointing to a surface/lattice diffusion-controlled substitution process. Zn and Cd were always found in concomitancy, though Pb fixed separately at the particle circumferences. The Phreeqc 2.12 interactive code was used to model experimental data on the following basis: flow fractionation in the columns, precipitation of Pb as cerrusite linked to kinetically controlled calcite dissolution, and heavy metal sorption onto proton exchanging sites (presumably surface complexation onto a calcite surface). This model simulates exchanges of metals with surface protons, pH buffering and the prevention of early Zn and Cd precipitation. Both modeling and SEM analysis show a probable significant decrease of calcite dissolution along with its contamination with metals.
Vereecken, H; Vanderborght, J; Kasteel, R; Spiteller, M; Schäffer, A; Close, M
2011-01-01
In this study, we analyzed sorption parameters for pesticides that were derived from batch and column or batch and field experiments. The batch experiments analyzed in this study were run with the same pesticide and soil as in the column and field experiments. We analyzed the relationship between the pore water velocity of the column and field experiments, solute residence times, and sorption parameters, such as the organic carbon normalized distribution coefficient ( ) and the mass exchange coefficient in kinetic models, as well as the predictability of sorption parameters from basic soil properties. The batch/column analysis included 38 studies with a total of 139 observations. The batch/field analysis included five studies, resulting in a dataset of 24 observations. For the batch/column data, power law relationships between pore water velocity, residence time, and sorption constants were derived. The unexplained variability in these equations was reduced, taking into account the saturation status and the packing status (disturbed-undisturbed) of the soil sample. A new regression equation was derived that allows estimating the values derived from column experiments using organic matter and bulk density with an value of 0.56. Regression analysis of the batch/column data showed that the relationship between batch- and column-derived values depends on the saturation status and packing of the soil column. Analysis of the batch/field data showed that as the batch-derived value becomes larger, field-derived values tend to be lower than the corresponding batch-derived values, and vice versa. The present dataset also showed that the variability in the ratio of batch- to column-derived value increases with increasing pore water velocity, with a maximum value approaching 3.5. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Early Results from the NASA Orbiting Carbon Observatory-2 (OCO-2)
NASA Astrophysics Data System (ADS)
Crisp, David; Eldering, Annmarie
2015-04-01
The Orbiting Carbon Observatory-2 (OCO-2) is NASA's first satellite designed to collect the measurements needed to estimate the column-averaged carbon dioxide (CO2) dry air mole fraction, XCO2, with the sensitivity, accuracy, and resolution needed to characterize the CO2 sources and sinks on regional scales over the globe. OCO-2 was successfully launched from Vandenberg Air Force Base in California on July 2, 2014 and joined the 705-km Afternoon Constellation (A-Train) on August 3, 2014. The three-channel imaging grating spectrometer was then cooled to its operating temperatures and a comprehensive series of characterization and calibration activities were initiated. Since early October 2014, the observatory has been routinely collecting almost 1 million soundings over the sunlit hemisphere each day. Early cloud screening results indicate that 15-30% of these measurements may be sufficiently cloud free to yield precise estimates of XCO2. Initial deliveries of calibrated, geo-located OCO-2 spectra to the NASA Goddard Earth Science Data and Information Services Center (GES DISC) began on December 30, 2014. Preliminary estimates of XCO2 retrieved from these data are currently being validated against observations from the Total Carbon Column Observing Network (TCCON) and other standards. Routine deliveries XCO2 and other products, including surface pressure and chlorophyll fluorescence, to the GES DISC are expected to begin before the end of March, 2015. This presentation will summarize the status of the OCO-2 mission and the coverage, resolution, and accuracy of its early results.
Limited transport of functionalized multi-walled carbon nanotubes in two natural soils
USDA-ARS?s Scientific Manuscript database
Column experiments were conducted in undisturbed and in repacked soil columns at water contents close to saturation (85–96%) to investigate the transport and retention of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNT) in two natural soils. Additionally, a field lysimeter experiment...
Yin, J.; Haggerty, R.; Stoliker, D.L.; Kent, D.B.; Istok, J.D.; Greskowiak, J.; Zachara, J.M.
2011-01-01
In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry. Copyright 2011 by the American Geophysical Union.
Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.
2011-01-01
In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.
Fischer, Marc L.; Parazoo, Nicholas; Brophy, Kieran; ...
2017-03-09
Here, we report simulation experiments estimating the uncertainties in California regional fossil fuel and biosphere CO 2 exchanges that might be obtained by using an atmospheric inverse modeling system driven by the combination of ground-based observations of radiocarbon and total CO 2, together with column-mean CO 2 observations from NASA's Orbiting Carbon Observatory (OCO-2). The work includes an initial examination of statistical uncertainties in prior models for CO 2 exchange, in radiocarbon-based fossil fuel CO 2 measurements, in OCO-2 measurements, and in a regional atmospheric transport modeling system. Using these nominal assumptions for measurement and model uncertainties, we find thatmore » flask measurements of radiocarbon and total CO 2 at 10 towers can be used to distinguish between different fossil fuel emission data products for major urban regions of California. We then show that the combination of flask and OCO-2 observations yields posterior uncertainties in monthly-mean fossil fuel emissions of ~5–10%, levels likely useful for policy relevant evaluation of bottom-up fossil fuel emission estimates. Similarly, we find that inversions yield uncertainties in monthly biosphere CO 2 exchange of ~6%–12%, depending on season, providing useful information on net carbon uptake in California's forests and agricultural lands. Finally, initial sensitivity analysis suggests that obtaining the above results requires control of systematic biases below approximately 0.5 ppm, placing requirements on accuracy of the atmospheric measurements, background subtraction, and atmospheric transport modeling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Marc L.; Parazoo, Nicholas; Brophy, Kieran
Here, we report simulation experiments estimating the uncertainties in California regional fossil fuel and biosphere CO 2 exchanges that might be obtained by using an atmospheric inverse modeling system driven by the combination of ground-based observations of radiocarbon and total CO 2, together with column-mean CO 2 observations from NASA's Orbiting Carbon Observatory (OCO-2). The work includes an initial examination of statistical uncertainties in prior models for CO 2 exchange, in radiocarbon-based fossil fuel CO 2 measurements, in OCO-2 measurements, and in a regional atmospheric transport modeling system. Using these nominal assumptions for measurement and model uncertainties, we find thatmore » flask measurements of radiocarbon and total CO 2 at 10 towers can be used to distinguish between different fossil fuel emission data products for major urban regions of California. We then show that the combination of flask and OCO-2 observations yields posterior uncertainties in monthly-mean fossil fuel emissions of ~5–10%, levels likely useful for policy relevant evaluation of bottom-up fossil fuel emission estimates. Similarly, we find that inversions yield uncertainties in monthly biosphere CO 2 exchange of ~6%–12%, depending on season, providing useful information on net carbon uptake in California's forests and agricultural lands. Finally, initial sensitivity analysis suggests that obtaining the above results requires control of systematic biases below approximately 0.5 ppm, placing requirements on accuracy of the atmospheric measurements, background subtraction, and atmospheric transport modeling.« less
Analysis and simulation of industrial distillation processes using a graphical system design model
NASA Astrophysics Data System (ADS)
Boca, Maria Loredana; Dobra, Remus; Dragos, Pasculescu; Ahmad, Mohammad Ayaz
2016-12-01
The separation column used for experimentations one model can be configured in two ways: one - two columns of different diameters placed one within the other extension, and second way, one column with set diameter [1], [2]. The column separates the carbon isotopes based on the cryogenic distillation of pure carbon monoxide, which is fed at a constant flow rate as a gas through the feeding system [1],[2]. Based on numerical control systems used in virtual instrumentation was done some simulations of the distillation process in order to obtain of the isotope 13C at high concentrations. The experimental installation for cryogenic separation can be configured from the point of view of the separation column in two ways: Cascade - two columns of different diameters and placed one in the extension of the other column, and second one column with a set diameter. It is proposed that this installation is controlled to achieve data using a data acquisition tool and professional software that will process information from the isotopic column based on a logical dedicated algorithm. Classical isotopic column will be controlled automatically, and information about the main parameters will be monitored and properly display using one program. Take in consideration the very-low operating temperature, an efficient thermal isolation vacuum jacket is necessary. Since the "elementary separation ratio" [2] is very close to unity in order to raise the (13C) isotope concentration up to a desired level, a permanent counter current of the liquid-gaseous phases of the carbon monoxide is created by the main elements of the equipment: the boiler in the bottom-side of the column and the condenser in the top-side.
GOSAT field experiments with a new portable mid-IR FTS in the western US
NASA Astrophysics Data System (ADS)
Shiomi, K.; Kikuchi, N.; Kuze, A.; Suto, H.; Kawakami, S.; Hashimoto, M.; Kataoka, F.; Kasai, K.; Arai, T.; Hedelius, J.; Viatte, C.; Wennberg, P. O.; Roehl, C. M.; Leifer, I.; Yates, E. L.; Marrero, J. E.; Iraci, L. T.; Bruegge, C. J.; Schwandner, F. M.; Crisp, D.
2016-12-01
The column-average dry air mole fractions of carbon dioxide (XCO2), methane (XCH4) and carbon monoxide (XCO) were measured from the surface using direct sunlight at near-IR wavelengths. Simultaneous detection of CO is helpful to characterize CO2 source type. We measured XCO along with XCO2 and XCH4 using a new portable Fourier transform spectrometer (FTS), EM27/SUN mid-IR,in western US field experiments at 1) Caltech, in Pasadena, a northern Los Angeles suburb, 2) Chino, a dairy farming region east of Los Angeles, and 3) Railroad Valley (RRV), a desert playa in Nevada. These measurements were conducted during the GOSAT/OCO-2 joint campaign for vicarious calibration and validation (cal/val) and its preparatory experiments in the early summer of 2016. Before the campaign, measurements from the JAXA EM27/SUN mid-IR were compared with those from the Total Carbon Column Observing Network (TCCON) station at Caltech. Then, we observed a diurnal cycle at the Chino dairy site, an area of concentrated animal husbandry, producing a CH4 point source. Finally, we conducted the cal/val campaign at RRV coincident with GOSAT and OCO-2 overpass observations. Over RRV, in-situ vertical profiles of CO2 and CH4 were measured using the Alpha Jet research aircraft as a part of the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX). We will compare experimental results from the cal/val campaign for XCO2 and XCH4 with the portable FTS.
NASA Astrophysics Data System (ADS)
Cavagna, A.-J.; Dehairs, F.; Bouillon, S.; Woule-Ebongué, V.; Planchon, F.; Delille, B.; Bouloubassi, I.
2013-04-01
The combination of concentrations and δ13C signatures of Particulate Organic Carbon (POC) and sterols provides a powerful approach to study ecological and environmental changes in both the modern and ancient ocean. We applied this tool to study the biogeochemical changes in the modern ocean water column during the BONUS-GoodHope survey (February-March 2008) from Cape Basin to the northern part of the Weddell Gyre. Cholesterol and brassicasterol were chosen as ideal biomarkers of the heterotrophic and autotrophic carbon pools, respectively, because of their ubiquitous and relatively refractory nature. We document depth distributions of concentrations (relative to bulk POC) and δ13C signatures of cholesterol and brassicasterol combined with CO2 aq. surface concentration variation. While the relationship between CO2 aq. and δ13C of bulk POC and biomarkers have been reported by others for the surface water, our data show that this persists in mesopelagic and deep waters, suggesting that δ13C signatures of certain biomarkers in the water column could be applied as proxies for surface water CO2 aq. We observed a general increase in sterol δ13C signatures with depth, which is likely related to a combination of particle size effects, selective feeding on larger cells by zooplankton, and growth rate related effects. Our data suggest a key role of zooplankton fecal aggregates in carbon export for this part of the Southern Ocean (SO). Additionally, in the southern part of the transect south of the Polar Front (PF), the release of sea-ice algae during the ice demise in the Seasonal Ice Zone (SIZ) is hypothesized to influence the isotopic signature of sterols in the open ocean. Overall, the combined use of δ13C values and concentrations measurements of both bulk organic C and specific sterols throughout the water column offers the promising potential to explore the recent history of plankton and the fate of organic matter in the SO.
Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies.
Goel, Jyotsna; Kadirvelu, Krishna; Rajagopal, Chitra; Kumar Garg, Vinod
2005-10-17
In the present study, a deeper understanding of adsorption behavior of Pb(II) from aqueous systems onto activated carbon and treated activated carbon has been attempted via static and column mode studies under various conditions. It probes mainly two adsorbents that is, activated carbon (AC) and modified activated carbon (AC-S). Characterization of both the adsorbents was one of the key focal areas of the present study. This has shown a clear change or demarcation in the various physical and chemical properties of the modified adsorbent from its precursor activated carbon. Both the adsorbents are subjected to static mode adsorption studies and then after a comparison based on isotherm analysis; more efficient adsorbent is screened for column mode adsorption studies. The lead removal increased for sample of treated carbon. The extent of Pb(II) removal was found to be higher in the treated activated carbon. The aim of carrying out the continuous-flow studies was to assess the effect of various process variables, viz., of bed height, hydraulic loading rate and initial feed concentration on breakthrough time and adsorption capacity. This has helped in ascertaining the practical applicability of the adsorbent. Breakthrough curves were plotted for the adsorption of lead on the adsorbent using continuous-flow column operation by varying different operating parameters like hydraulic loading rate (3.0-10.5 m3/(hm2)), bed height (0.3-0.5 m) and feed concentrations (2.0-6.0 mg/l). At the end, an attempt has also been made to model the data generated from column studies using the empirical relationship based on Bohart-Adams model. This model has provided an objective framework to the subjective interpretation of the adsorption system and the model constant obtained here can be used to achieve the ultimate objective of our study that is, up scaling and designing of adsorption process at the pilot plant scale level. AC-S column regeneration using 0.5 and 1.0M concentration of HNO3 has been investigated. It has shown a regeneration efficiency of 52.0% with 0.5 M HNO3.
Does Terrestrial Carbon Explain Lake Superior Model-Data pCO2 Discrepancy?
NASA Astrophysics Data System (ADS)
Bennington, V.; McKinley, G. A.; Atilla, N.; Kimura, N.; Urban, N.; Wu, C.; Desai, A.
2008-12-01
As part of the CyCLeS project, a three-dimensional hydrodynamic model (MITgcm) was coupled to a medium- complexity ecosystem model and applied to Lake Superior in order to constrain the seasonal cycle of lake pCO2 and air-lake fluxes of CO2. Previous estimates of CO2 emissions from the lake, while very large, were based on field measurements of very limited spatial and temporal extent. The model allows a more realistic extrapolation from the limited data by incorporation of lake-wide circulation and food web dynamics. A large discrepancy (200 uatm) between observations and model-predicted pCO2 during spring suggests a significant input of terrestrial carbon into the lake. The physical model has 10-km horizontal resolution with 29 vertical layers, ten of which are in the top 50 m of the water column. The model is forced by interpolated meteorological data obtained from land-based weather stations, buoys, and other measurements. Modeled surface temperatures compare well to satellite- based surface water temperature images derived from NOAA AVHRR (Advanced Very High Resolution Radiometer), though there are regional patterns of bias that suggest errors in the heat flux forcing. Growth of two classes of phytoplankton is modeled as a function of temperature, light, and nutrients. One grazer preys upon all phytoplankton. The cycles of carbon and phosphorous are explicitly modeled throughout the water column. The model is able to replicate the observed seasonal cycle of lake chlorophyll and the deep chlorophyll maximum. The model is unable to capture the magnitude of observed CO2 super-saturation during spring without considering external carbon inputs to the lake. Simple box model results suggest that the estimated pool of terrestrial carbon in the lake (17 TgC) must remineralize with a timescale of months during spring in order to account for the model/data pCO2 difference. River inputs and enhanced remineralization in spring due to photo-oxidation are other mechanisms considered to explain the discrepancy between model predictions and observations of pCO2. Model results suggest that year-round and lake-wide direct measurements of pCO2 would help to better constrain the lake carbon cycle.
15N indicates an active N-cycling microbial community in low carbon, freshwater sediments.
NASA Astrophysics Data System (ADS)
Sheik, C.
2017-12-01
Earth's large lakes are unique aquatic ecosystems, but we know little of the microbial life driving sedimentary biogeochemical cycles and ultimately the isotopic record. In several of these large lakes, water column productivity is constrained by element limitation, such as phosphorus and iron, creating oligotrophic water column conditions that drive low organic matter content in sediments. Yet, these sediments are biogeochemically active and have been shown to have oxygen consumption rates akin to pelagic ocean sediments and complex sulfur cycling dynamics. Thus, large oligotrophic lakes provide unique and interesting biogeochemical contrast to highly productive freshwater and coastal marine systems. Using Lake Superior as our study site, we found microbial community structure followed patterns in bulk sediment carbon and nitrogen concentrations. These observed patterns were loosely driven by land proximity, as some stations are more coastal and have higher rates of sedimentation, allochthonous carbon inputs and productivity than pelagic sites. Interestingly, upper sediment carbon and nitrogen stable isotopes were quite different from water column. Sediment carbon and nitrogen isotopes correlated significantly with microbial community structure. However, 15N showed much stronger correlation than 13C, and became heavier with core depth. Coinciding with the increase in 15N values, we see evidence of both denitrification and anammox processes in 16S rRNA gene libraries and metagenome assembled genomes. Given that microorganisms prefer light isotopes and that these N-cycling processes both contribute to N2 production and efflux from the sediment, the increase in 15N with sediment depth suggests microbial turnover. Abundance of these genomes also varies with depth suggesting these novel microorganisms are partitioning into specific sediment geochemical zones. Additionally, several of these genomes contain genes involved in sulphur cycling, suggesting a dual biogeochemical role and potential for a cryptic sulfur cycle. Together, Lake Superior sediments offer a glimpse into microbial metabolism in carbon limited environments. Further the pervasiveness of co-metabolic pathways suggests interpretation of isotopic records may be messier than previously thought.
Sounthararajah, D P; Loganathan, P; Kandasamy, J; Vigneswaran, S
2015-04-28
Heavy metals are serious pollutants in aquatic environments. A study was undertaken to remove Cu, Cd, Ni, Pb and Zn individually (single metal system) and together (mixed metals system) from water by adsorption onto a sodium titanate nanofibrous material. Langmuir adsorption capacities (mg/g) at 10(-3)M NaNO3 ionic strength in the single metal system were 60, 83, 115 and 149 for Ni, Zn, Cu, and Cd, respectively, at pH 6.5 and 250 for Pb at pH 4.0. In the mixed metals system they decreased at high metals concentrations. In column experiments with 4% titanate material and 96% granular activated carbon (w/w) mixture at pH 5.0, the metals breakthrough times and adsorption capacities (for both single and mixed metals systems) decreased in the order Pb>Cd, Cu>Zn>Ni within 266 bed volumes. The amounts adsorbed were up to 82 times higher depending on the metal in the granular activated carbon+titanate column than in the granular activated carbon column. The study showed that the titanate material has high potential for removing heavy metals from polluted water when used with granular activated carbon at a very low proportion in fixed-bed columns. Copyright © 2015 Elsevier B.V. All rights reserved.
Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A
2015-01-01
The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.
Towards Verifying National CO2 Emissions
NASA Astrophysics Data System (ADS)
Fung, I. Y.; Wuerth, S. M.; Anderson, J. L.
2017-12-01
With the Paris Agreement, nations around the world have pledged their voluntary reductions in future CO2 emissions. Satellite observations of atmospheric CO2 have the potential to verify self-reported emission statistics around the globe. We present a carbon-weather data assimilation system, wherein raw weather observations together with satellite observations of the mixing ratio of column CO2 from the Orbiting Carbon Observatory-2 are assimilated every 6 hours into the NCAR carbon-climate model CAM5 coupled to the Ensemble Kalman Filter of DART. In an OSSE, we reduced the fossil fuel emissions from a country, and estimated the emissions innovations demanded by the atmospheric CO2 observations. The uncertainties in the innovation are analyzed with respect to the uncertainties in the meteorology to determine the significance of the result. The work follows from "On the use of incomplete historical data to infer the present state of the atmosphere" (Charney et al. 1969), which maps the path for continuous data assimilation for weather forecasting and the five decades of progress since.
Azizian, Mohammad F; Semprini, Lewis
2017-08-01
The simultaneous anaerobic transformation of tetrachloroethene (PCE) and carbon tetrachloride (CT) was evaluated in a continuous flow column. The column was packed with quartz sand and bioaugmented with the Evanite culture (EV) that is capable of transforming PCE to ethene. Azizian and Semprini (2016) reported that PCE and CT could be simultaneously transformed in the column, with PCE (0.1mM) transformed mainly to ethene and CT (0.015mM) to chloroform (CF) (20%) and an unknown transformation product, likely carbon dioxide (CO 2 ). The fermentation of propionate, formed from lactate fermentation, was inhibited after the transformation of CT, likely from the exposure to CF. Reported here is the second phase of that study where a second bioaugmentation of the EV culture was made to reintroduce a lactate and propionate fermenting population to the column. Effective lactate and propionate fermentation were restored with a H 2 concentration of ~25nM maintained in the column effluent. PCE (0.1mM) was effectively transformed to ethene (~98%) and vinyl chloride (VC) (~2%). Unlabeled CT (0.015 to 0.03mM) was completely transformed with a transient build-up of CF and chloromethane (CM), which were subsequently removed below their detection limits. A series of transient tests were initiated through the addition of carbon-13 labeled CT ( 13 CT), with concentrations gradually increased from 0.03 to 0.10mM. GC-MS analysis of the column effluent showed that 13 C labeled CO 2 ( 13 CO 2 ) was formed, ranging from 82 to 93% of the 13 CT transformed, with the transient increases in 13 CO 2 associated with the increased concentration of 13 CT. A modified COD analysis indicated a lesser amount of 13 CT (18%) was transformed to soluble products, while 13 CO 2 represented 82% the 13 CT transformed. In a final transient test, the influent lactate concentration was decreased from 1.1 to 0.67mM. The transformation of both CT and PCE changed dramatically. Only 59% of the 13 CT was transformed, primarily to CF. 13 CO 2 concentrations gradually decreased to background levels, indicating CO 2 was no longer a transformation product. PCE transformation resulted in the following percentage of products formed: cDCE (60%), VC (36%), and ethene (4%). Incomplete propionate fermentation was also observed, consistent with the build-up of CF and the decrease in H 2 concentrations to approximately 2nM. The results clearly demonstrate that high concentrations of CT were transformed to CO 2 , and effective PCE dehalogenation to ethene was maintained when excess lactate was fed and propionate was effectively fermented. However, when the lactate concentration was reduced, both PCE and CT transformation and propionate fermentation were negatively impacted. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Azizian, Mohammad F.; Semprini, Lewis
2017-08-01
The simultaneous anaerobic transformation of tetrachloroethene (PCE) and carbon tetrachloride (CT) was evaluated in a continuous flow column. The column was packed with quartz sand and bioaugmented with the Evanite culture (EV) that is capable of transforming PCE to ethene. Azizian and Semprini (2016) reported that PCE and CT could be simultaneously transformed in the column, with PCE (0.1 mM) transformed mainly to ethene and CT (0.015 mM) to chloroform (CF) (20%) and an unknown transformation product, likely carbon dioxide (CO2). The fermentation of propionate, formed from lactate fermentation, was inhibited after the transformation of CT, likely from the exposure to CF. Reported here is the second phase of that study where a second bioaugmentation of the EV culture was made to reintroduce a lactate and propionate fermenting population to the column. Effective lactate and propionate fermentation were restored with a H2 concentration of 25 nM maintained in the column effluent. PCE (0.1 mM) was effectively transformed to ethene ( 98%) and vinyl chloride (VC) ( 2%). Unlabeled CT (0.015 to 0.03 mM) was completely transformed with a transient build-up of CF and chloromethane (CM), which were subsequently removed below their detection limits. A series of transient tests were initiated through the addition of carbon-13 labeled CT (13CT), with concentrations gradually increased from 0.03 to 0.10 mM. GC-MS analysis of the column effluent showed that 13C labeled CO2 (13CO2) was formed, ranging from 82 to 93% of the 13CT transformed, with the transient increases in 13CO2 associated with the increased concentration of 13CT. A modified COD analysis indicated a lesser amount of 13CT (18%) was transformed to soluble products, while 13CO2 represented 82% the 13CT transformed. In a final transient test, the influent lactate concentration was decreased from 1.1 to 0.67 mM. The transformation of both CT and PCE changed dramatically. Only 59% of the 13CT was transformed, primarily to CF. 13CO2 concentrations gradually decreased to background levels, indicating CO2 was no longer a transformation product. PCE transformation resulted in the following percentage of products formed: cDCE (60%), VC (36%), and ethene (4%). Incomplete propionate fermentation was also observed, consistent with the build-up of CF and the decrease in H2 concentrations to approximately 2 nM. The results clearly demonstrate that high concentrations of CT were transformed to CO2, and effective PCE dehalogenation to ethene was maintained when excess lactate was fed and propionate was effectively fermented. However, when the lactate concentration was reduced, both PCE and CT transformation and propionate fermentation were negatively impacted.
A method to account for the temperature sensitivity of TCCON total column measurements
NASA Astrophysics Data System (ADS)
Niebling, Sabrina G.; Wunch, Debra; Toon, Geoffrey C.; Wennberg, Paul O.; Feist, Dietrich G.
2014-05-01
The Total Carbon Column Observing Network (TCCON) consists of ground-based Fourier Transform Spectrometer (FTS) systems all around the world. It achieves better than 0.25% precision and accuracy for total column measurements of CO2 [Wunch et al. (2011)]. In recent years, the TCCON data processing and retrieval software (GGG) has been improved to achieve better and better results (e. g. ghost correction, improved a priori profiles, more accurate spectroscopy). However, a small error is also introduced by the insufficent knowledge of the true temperature profile in the atmosphere above the individual instruments. This knowledge is crucial to retrieve highly precise gas concentrations. In the current version of the retrieval software, we use six-hourly NCEP reanalysis data to produce one temperature profile at local noon for each measurement day. For sites in the mid latitudes which can have a large diurnal variation of the temperature in the lowermost kilometers of the atmosphere, this approach can lead to small errors in the final gas concentration of the total column. Here, we present and describe a method to account for the temperature sensitivity of the total column measurements. We exploit the fact that H2O is most abundant in the lowermost kilometers of the atmosphere where the largest diurnal temperature variations occur. We use single H2O absorption lines with different temperature sensitivities to gain information about the temperature variations over the course of the day. This information is used to apply a posteriori correction of the retrieved gas concentration of total column. In addition, we show that the a posteriori temperature correction is effective by applying it to data from Lamont, Oklahoma, USA (36,6°N and 97,5°W). We chose this site because regular radiosonde launches with a time resolution of six hours provide detailed information of the real temperature in the atmosphere and allow us to test the effectiveness of our correction. References: Wunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R. A., Notholt, J., Connor, B. J., Griffith, D. W. T., Sherlock, V., and Wennberg, P. O.: The Total Carbon Column Observing Network, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 2087-2112, 2011.
NASA Astrophysics Data System (ADS)
Galeczka, Iwona; Wolff-Boenisch, Domenik; Oelkers, Eric H.; Gislason, Sigurdur R.
2014-02-01
A novel high pressure column flow reactor was used to investigate the evolution of solute chemistry along a 2.3 m flow path during pure water- and CO2-charged water-basaltic glass interaction experiments at 22 and 50 °C and 10-5.7 to 22 bars partial pressure of CO2. Experimental results and geochemical modelling showed the pH of injected pure water evolved rapidly from 6.7 to 9-9.5 and most of the iron released to the fluid phase was subsequently consumed by secondary minerals, similar to natural meteoric water-basalt systems. In contrast to natural systems, however, the aqueous aluminium concentration remained relatively high along the entire flow path. The aqueous fluid was undersaturated with respect to basaltic glass and carbonate minerals, but supersaturated with respect to zeolites, clays, and Fe hydroxides. As CO2-charged water replaced the alkaline fluid within the column, the fluid briefly became supersaturated with respect to siderite. Basaltic glass dissolution in the column reactor, however, was insufficient to overcome the pH buffer capacity of CO2-charged water. The pH of this CO2-charged water rose from an initial 3.4 to only 4.5 in the column reactor. This acidic reactive fluid was undersaturated with respect to carbonate minerals but supersaturated with respect to clays and Fe hydroxides at 22 °C, and with respect to clays and Al hydroxides at 50 °C. Basaltic glass dissolution in the CO2-charged water was closer to stoichiometry than in pure water. The mobility and aqueous concentration of several metals increased significantly with the addition of CO2 to the inlet fluid, and some metals, including Mn, Cr, Al, and As exceeded the allowable drinking water limits. Iron became mobile and the aqueous Fe2+/Fe3+ ratio increased along the flow path. Although carbonate minerals did not precipitate in the column reactor in response to CO2-charged water-basaltic glass interaction, once this fluid exited the reactor, carbonates precipitated as the fluid degassed at the outlet. Substantial differences were found between the results of geochemical modelling calculations and the observed chemical evolution of the fluids during the experiments. These differences underscore the need to improve the models before they can be used to predict with confidence the fate and consequences of carbon dioxide injected into the subsurface. The pH increase from 3.4 to 4.5 of the CO2-rich inlet fluid does not immobilize toxic elements at ambient temperature but immobilizes Al and Cr at 50 °C. This indicates that further neutralization of CO2-charged water is required for decreased toxic element mobility. The CO2-charged water injection enhances the mobility of redox sensitive Fe2+ significantly making it available for the storage of injected carbon as iron carbonate minerals. The precipitation of aluminosilicates likely occurred at a pH of 4.2-4.5 in CO2-charged waters. These secondary phases can (1) fill the available pore space and therefore clog the host rock in the vicinity of the injection well, and (2) incorporate some divalent cations limiting their availability for carbon storage. The inability of simple reactive transport models to describe accurately the fluid evolution in this well constrained one dimensional flow system suggests that significant improvements need to be made to such models before we can predict with confidence the fate and consequences of injecting carbon dioxide into the subsurface. Column reactors such as that used in this study could be used to facilitate ex situ carbon mineral storage. Carbonate precipitation at the outlet of the reactor suggests that the harvesting of divalent metals from rocks using CO2-charged waters could potentially be upscaled to an industrial carbonation process.
Ling, Xu; Zou, Li; Chen, Zilin
2017-09-01
A polymeric column that contains multiwalled carbon nanotubes-β-cyclodextrin composite was developed. The composite was wrapped into the poly(butyl methacrylate-ethylene dimethacrylate) monolith column (0.76 mm id and 10 cm in length). The column was then applied for the online solid-phase microextraction of psoralen and isopsoralen from Fructus Psoraleae. Following microextraction, the coumarins were quantified by high-performance liquid chromatography with C 18 separation column and UV detection. The effects of sample flow rate, sample volume, and pH value were optimized. The method showed low limits of detection (20 pg/mL, S/N = 3) for both psoralen and isopsoralen. Finally the method was successfully applied to the determination of psoralen and isopsoralen in spiked herb extracts and rat plasma where it gave recoveries that ranged between 93.2 and 102.1%. The empty hydrophobic cavities of β-cyclodextrin and the hydrophobicity of multiwalled carbon nanotubes provided specific extraction capability for psoralen and isopsoralen. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bock, James Joseph
1994-01-01
We report an observation of 158 micron line emission from singly ionized carbon from the diffuse interstellar medium at high galactic latitude. The integrated line intensity is measured in a 36 arcmin field-of-view along a triangular scan path in a 5 deg x 20 deg region in Ursa Major using a rocket-borne, liquid helium cooled spectrophotometer. The scan includes high latitude infrared cirrus, molecular clouds, a bright external galaxy, M82, and the HI Hole, which is a region of uniquely low neutral hydrogen column density. Emission from (CII) is observed in all regions and, in the absence of appreciable CO emission, is well correlated with neutral hydrogen column density. We observe a (CII) gas cooling rate which varies from (3.25 +/- 0.8 to 1.18 +/- 0.4) x 10-26 ergs-1 H-atom-1, in good agreement with recent observations of UV absorption lines at high galactic latitude. Regions with CO emission have enhanced (CII) line emission over that expected from the correlation with neutral hydrogen column density. The line-to-continuum ratio varies from I(CII)/lambda Ilambda = 0.002 to 0.008 in comparison with the all sky average of 0.0082 reported by FIRAS, which is heavily weighted towards the Galactic plane. The far-infrared continuum intensity, measured at 134 microns, 154 microns, and 186 microns, correlates with the 100 micron brightness measured by IRAS, and in regions excluding molecular clouds, with HI column density. The far-infrared brightness correlated with HI column density is fit by a thermal spectrum with a temperature T = 16.4 (+2.3/-1.8) K assuming an index of emissivity n = 2. The residual brightness after subtracting the emission correlated with neutral hydrogen column density yields an upper limit to the far-infrared extra-galactic background radiation of lambda Ilambda (154 microns) less than 2.6 x 10-12 W cm-2 sr-1. The observation of M82 confirms the laboratory calibration of the instrument. Unique instrumentation was developed to realize the instrument. A high sensitivity detection system consisting of stressed Ge:Ga photoconductors coupled to charge integrating amplifiers is described. We developed a compact, miniature He-4 refrigerator suitable for spaceborne operation. A silicon-gap Fabry-Perot filter, designed for use in high-throughput, compact optical systems, was developed. The performance of a far-infrared low-pass filter stack with high out-of-band rejection is reported. We tested the performance of a telescope baffle system with high-off axis rejection in a combination of ground-based and rocket-borne experiments. A submillimeter-black coating suitable for use in spaceborne telescopes is described. We report the laboratory testing of the instrument and the performance during the flight, and discuss the scientific implications of the observations.
Behaviour of estrogenic endocrine-disrupting chemicals in permeable carbonate sands.
Shepherd, Benjamin O; Erler, Dirk V; Tait, Douglas R; van Zwieten, Lukas; Kimber, Stephen; Eyre, Bradley D
2015-08-01
The remediation of four estrogenic endocrine-disrupting compounds (EDCs), estrone (E1), estradiol (E2), ethinylestradiol (EE2) and estriol (E3), was measured in saturated and unsaturated carbonate sand-filled columns dosed with wastewater from a sewage treatment plant. The estrogen equivalency (EEQ) of inlet wastewater was 1.2 ng L(-1) and was remediated to an EEQ of 0.5 ng L(-1) through the unsaturated carbonate sand-filled columns. The high surface area of carbonate sand and associated high microbial activity may have assisted the degradation of these estrogens. The fully saturated sand columns showed an increase in total estrogenic potency with an EEQ of 2.4 ng L(-1), which was double that of the inlet wastewater. There was a significant difference (P < 0.05) in total estrogenic potency between aerobic and anaerobic columns. The breakdown of conjugated estrogens to estrogenic EDCs formed under long residence time and reducing conditions may have been responsible for the increase in the fully saturated columns. This may also be explained by the desorption of previously sorbed estrogenic EDCs. The effect of additional filter materials, such as basalt sediment and coconut fibre, on estrogenic EDC reduction was also tested. None of these amendments provided improvements in estrogen remediation relative to the unamended unsaturated carbonate sand columns. Aerobic carbonate sand filters have good potential to be used as on-site wastewater treatment systems for the reduction of estrogenic EDCs. However, the use of fully saturated sand filters, which are used to promote denitrification, and the loss of nitrogen as N2 were shown to cause an increase in EEQ. The potential for the accumulation of estrogenic EDCs under anaerobic conditions needs to be considered when designing on-site sand filtration systems required to reduce nitrogen. Furthermore, the accumulation of estrogens under anaerobic conditions such as under soil absorption systems or leachate fields has the potential to contaminate groundwater especially when the water table levels fluctuate.
NASA Astrophysics Data System (ADS)
Zhang, C.; Liu, H.; Lu, F.; Zou, L.; Tian, J.
2017-12-01
Hadal trenches are part of the least investigated biosphere on Earth due to the great challenge of sampling. Limited studies on microbiology by far have suggested that the hadalsphere hosts a heterotrophic microbial community that is likely fed by organic matter from surface-sinking biomass or re-suspended and laterally transported sediments. The uniqueness of trench environment and its potential role in global carbon sequestration entitle a detailed study on microbial-driven carbon cycle of the trench system. In this study, we conducted a vertical sampling of the microbial community and measured the environmental factors from the epipelagic zone down to the hadal zone at the Mariana Trench. 16S rRNA gene composition showed high stratification at the first 1000 meters below surface (mbs) but a nearly uniformed microbial community composition was observed at the abyssopelagic and the hadalpelagic water columns. The deep-sea bacteria were generally chemoheterotrophs and the majority of them were similar to those present at the ocean surface, suggesting influence of epipelagic primary production on deep sea bacterial communication at the trench location. Several deep-sea-enriched but surface-depleted bacteria could be characterized by potential degraders of polysaccharides and n-alkanes. Therefore, recalcitrant hydrocarbons or carbohydrates are likely important carbon sources supporting the deep-sea biosphere. In spite of consistent community composition, a remarkable increase in biomass of small-sized microbial aggregates was detected at 8727 mbs. Enhanced CDOM proportions in the trench imply intensified microbial activity in hadal water compared to the above water column, which agree with the notion of possible extra carbon input from lateral transportation of slope material. These observations extend our understanding in carbon cycle driven by metabolically diverse microorganisms at the trench and may shed light on the complexity of hadal biogeochemistry.
Flores, Angel S P; Gwon, Eun-Mi; Sim, Dong-Min; Nisola, Grace; Galera, Melvin M; Chon, Seung-Se; Chung, Wook-Jin; Pak, Dae-Won; Ahn, Zou Sam
2006-01-01
A full-scale and two pilot-scale upflow sulfur-oxidizing denitrification (SOD) columns were evaluated using metal plating wastewater as feed. The sludge was autotrophically enriched, and inoculated in the SOD columns attached to the effluent line of three metal plating wastewater treatment facilities. The effects of activated carbon and aeration were also studied, and found effective for the removal of suspended solids and ammonia, respectively. The results showed that the constituents, such as the total nitrogen, nitrates, nitrites, ammonia, chemical oxygen demand (COD), and heavy metals, were effectively removed. The pH was observed to be maintained at 7-8 due to the alkalinity supplied by the sulfur-calcium carbonate (SC) pellet. The denitrification efficiency and start-up period were observed to be affected by the influent quality. Chromium, iron, nickel, copper, and zinc--the major heavy metal components of the influent--were effectively reduced at certain concentrations. Other metal ions were also detected and reduced to undetectable concentrations, but no trends in the comparison with denitrification were observed. From the results it can be concluded that SOD is effective for the removal of nitrogen, particularly nitrates, without a drastic pH change, and can effectively remove minute concentrations of heavy metals and COD in metal plating wastewaters.
NASA Astrophysics Data System (ADS)
Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.
2015-12-01
Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we contend that creating believable soil carbon predictions requires a robust, transparent, and community-available benchmarking framework. I will present an ILAMB evaluation of several of the above-mentioned approaches in ACME, and attempt to motivate community adoption of this evaluation approach.
NASA Astrophysics Data System (ADS)
Atekwana, E.; Atekwana, E.; Werkema, D.; Duris, J.; Rossbach, S.; Sauck, W.; Koretsky, C.; Cassidy, D.; Means, J.; Sherrod, L.
2003-04-01
In this study, we describe the results of a mesoscale pilot experiment designed to investigate the influence of biogeochemical processes on electrical conductivity of soils impacted by hydrocarbons. This is an interdisciplinary study integrating geophysics, geochemistry, and microbiology which was undertaken to: 1) verify microbial hydrocarbon degradation by monitoring changes in microbial types, population, and community structure, 2) document temporal changes in the electrical conductivity of soils, and 3) document changes in pore fluid geochemistry using major ions and stable carbon isotopes. We constructed duplicate soil columns as follows: Columns 1 and 2 had no bacteria, no diesel; columns 3 and 4 had diesel and no bacteria; columns 5 and 6 had bacteria and no diesel; and columns 7 and 8 had bacteria and diesel. Soil cores were sampled at 5 cm intervals and analyzed for bacteria using the most probable number (MPN) and the rDNA intergenic spacer region analyses (RISA) techniques. The MPN method showed an increase in the percentage of alkane degraders with time, and accounted for 1.2x (120%) the number of heterotrophic bacteria in colums 7 and 8 compared to less than 15% for the other columns. The RISA analysis of the communities in columns 7 and 8 showed a shift towards less diversity over time in response to the contaminant stress to a composition that is more capable of the utilization of an alkane as a carbon source. These results confirm microbial mineralization of diesel within contaminated columns. Electrical conductivity measurements were made using a Wenner array at 2 cm spacing. The electrical measurements show an initial decrease in conductivity. This is consistent with the diesel replacing the more conductive pore waters and changes in water saturation, especially within the unsaturated zone. However, a slow increase in conductivity was observed in column 7 overtime compared to the other columns. The slight increase in electrical conductivity for the contaminated column may be attributed to microbial degradation of hydrocarbon and secondary weathering of the soil minerals. However, the magnitude in the shift of the pore fluid chemistry does not appear to directly translate to changes in soil electrical conductivity. At present, since the experiment is still ongoing, we expect that as more degradation and mineral weathering occur in the soils columns, we should be able to model the magnitude of the pore fluid chemical change on the soil conductivity.
Maximizing performance in supercritical fluid chromatography using low-density mobile phases.
Gritti, Fabrice; Fogwill, Michael; Gilar, Martin; Jarrell, Joseph A
2016-10-14
The performance of a 3.0mm×150mm column packed with 1.8μm fully porous HSS-SB-C 18 particles was investigated in supercritical fluid chromatography (SFC) with low-density, highly expansible carbon dioxide. These conditions are selected for the analysis of semi-volatile compounds. Elevated temperatures (>100°C) were then combined with low column back pressures (<100bar). In this work, the inlet temperature of pure carbon dioxide was set at 107°C, the active back pressure regulator (ABPR) pressure was fixed at 100bar, and the flow rate was set at 2.1mL/min at 12°C (liquefied carbon dioxide) and at an inlet column pressure close to 300bar. Nine n-alkylbenzenes (from benzene to octadecylbenzene) were injected under linear (no sample overload) conditions. The severe steepness of the temperature gradients across the column diameter were predicted from a simplified heat transfer model. Such conditions dramatically lower the column performance by affecting the symmetry of the peak shape. In order to cope with this problem, three different approaches were experimentally tested. They include (1) the decoupling and the proper selection of the inlet eluent temperature with respect to the oven temperature, (2) the partial thermal insulation of the column using polyethylene aerogel, and (3) the application of a high vacuum (10 -5 Torr provided by a turbo-molecular pump) in a housing chamber surrounding the whole column body. The results reveal that (1) the column efficiency can be maximized by properly selecting the difference between the eluent and the oven temperatures, (2) the mere wrapping of the column with an excellent insulating material is insufficient to fully eliminate heat exchanges by conduction and the undesirable radial density gradients across the column i.d., and (3) the complete thermal insulation of the SFC column under high vacuum allows to maximize the column efficiency by maintaining the integrity of the peak shape. Copyright © 2016 Elsevier B.V. All rights reserved.
Enhancing the Properties of Carbon and Gold Substrates by Surface Modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harnisch, Jennifer Anne
2001-01-01
The properties of both carbon and gold substrates are easily affected by the judicious choice of a surface modification protocol. Several such processes for altering surface composition have been published in literature. The research presented in this thesis primarily focuses on the development of on-column methods to modify carbon stationary phases used in electrochemically modulated liquid chromatography (EMLC). To this end, both porous graphitic carbon (PGC) and glassy carbon (GC) particles have been modified on-column by the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the Kolbe reaction). Once modified, the carbon stationary phases show enhanced chromatographic performancemore » both in conventional liquid chromatographic columns and EMLC columns. Additionally, one may also exploit the creation of aryl films to by electroreduction of arenediazonium salts in the creation of nanostructured materials. The formation of mercaptobenzene film on the surface of a GC electrode provides a linking platform for the chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry of the gold can be further altered by self-assembled monolayer (SAM) formation via the chemisorption of a second thiol species. Finally, the properties of gold films can be altered such that they display carbon-like behavior through the formation of benzenehexathiol (BHT) SAMs. BHT chemisorbs to the gold surface in a previously unprecedented planar fashion. Carbon and gold substrates can be chemically altered by several methodologies resulting in new surface properties. The development of modification protocols and their application in the analytical arena is considered herein.« less
NASA Astrophysics Data System (ADS)
Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.; Turner, T. J.; Yaqoob, T.
2003-09-01
We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-Ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2-1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km s-1) and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectroscopic Explorer and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with proposal 9279.
NASA Astrophysics Data System (ADS)
Senten, C.; de Mazière, M.; Dils, B.; Hermans, C.; Kruglanski, M.; Neefs, E.; Scolas, F.; Vandaele, A. C.; Vanhaelewyn, G.; Vigouroux, C.; Carleer, M.; Coheur, P. F.; Fally, S.; Barret, B.; Baray, J. L.; Delmas, R.; Leveau, J.; Metzger, J. M.; Mahieu, E.; Boone, C.; Walker, K. A.; Bernath, P. F.; Strong, K.
2008-01-01
Ground-based high spectral resolution Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique to obtain information on the total column abundances and on the vertical distribution of various constituents in the atmosphere. This work presents results from two short-term FTIR measurement campaigns in 2002 and 2004, held at the (sub)tropical site Ile de La Réunion (21°S, 55°E). These campaigns represent the first FTIR observations carried out at this site. The results include total column amounts from the surface up to 100 km of ozone (O3), methane (CH4), nitrous oxide (N2O), carbon monoxide (CO), ethane (C2H6), hydrogen chloride (HCl), hydrogen fluoride (HF) and nitric acid (HNO3), as well as some vertical profile information for the first four mentioned trace gases. The data are characterised in terms of the vertical information content and associated error budget. In the 2004 time series, the seasonal increase of the CO concentration was observed by the end of October, along with a sudden rise that has been attributed to biomass burning events in southern Africa and Madagascar. This attribution was based on trajectory modeling. In the same period, other biomass burning gases such as C2H6 also show an enhancement in their total column amounts which is highly correlated with the increase of the CO total columns. The observed total column values for CO are consistent with correlative data from MOPITT (Measurements Of Pollution In The Troposphere). Comparisons between our ground-based FTIR observations and space-borne observations from ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) and HALOE (Halogen Occultation Experiment) confirm the feasibility of the FTIR measurements at Ile de La Réunion.
Echols, Kathy R.; Gale, Robert W.; Tillitt, Donald E.; Schwartz, Ted R.; O'Laughlin, Jerome
1997-01-01
The Ah (aryl-hydrocarbon) hydroxylase-receptor active polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were fractionated by an automated high-performance liquid chromatography (HPLC) system using the Hypercarb™ porous graphitic carbon (PGC) column. This commercially available column was used to fractionate the di-, mono-, and non-ortho PCBs into three fractions for gas chromatography (GC)/electron capture detection analysis, and a fourth fraction containing the PCDDs/PCDFs for GC/mass spectrometry analysis. The recoveries of the PCBs ranged from 68 to 96%, and recoveries of the PCDDs/PCDFs ranged from 74 to 123%. The PGC column has the advantage of faster separations (110 min versus 446 min) and less solvent use (275 ml versus 1,100 ml) compared with automated fractionation of these compounds on activated carbon (PX-21), while still affording good separation of the classes. The PGC column may have an advantage over the pyrenyl-based HPLC method because it has a greater loading capacity (400 μg total PCBs versus 250 μg). Overall, the PGC is a standard column that provides reproducible fractionation of PCDD/PCDFs and PCBs for analytical measurement in environmental samples.
Jacotot, Adrien; Marchand, Cyril; Allenbach, Michel
2018-08-01
We performed a preliminary study to quantify CO 2 and CH 4 emissions from the water column within a Rhizophora spp. mangrove forest. Mean CO 2 and CH 4 emissions during the studied period were 3.35±3.62mmolCm -2 h -1 and 18.30±27.72μmolCm -2 h -1 , respectively. CO 2 and CH 4 emissions were highly variable and mainly driven by tides (flow/ebb, water column thickness, neap/spring). Indeed, an inverse relationship between the magnitude of the emissions and the thickness of the water column above the mangrove soil was observed. δ 13 CO 2 values ranged from -26.88‰ to -8.6‰, suggesting a mixing between CO 2 -enriched pore waters and lagoon incoming waters. In addition, CO 2 and CH 4 emissions were significantly higher during ebb tides, mainly due to the progressive enrichment of the water column by diffusive fluxes as its residence time over the forest floor increased. Eventually, we observed higher CO 2 and CH 4 emissions during spring tides than during neap tides, combined to depleted δ 13 CO 2 values, suggesting a higher contribution of soil-produced gases to the emissions. These higher emissions may result from higher renewable of the electron acceptor and enhanced exchange surface between the soil and the water column. This study shows that CO 2 and CH 4 emissions from the water column were not negligible and must be considered in future carbon budgets in mangroves. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rees, Frédéric; Simonnot, Marie-Odile; Morel, Jean-Louis
2014-05-01
Biochar has been claimed to be not only a promising carbon sequestration or fertilizing agent in soils but also a high capacity sorbent, of particular interest for the management of contaminated soils. Several studies have described its positive effects on the mobility of different potentially toxic elements in soils, but many doubts remain about the underlying mechanisms. In particular, the distinction between the actual adsorption of elements on biochar and their biochar-induced retention on soil particles is often impossible to achieve. We studied here the dynamic interactions between one biochar produced at 450°C from a mix of hard wood and soft wood, and two soils contaminated by Cd, Pb and Zn which were sampled near a smelter and only differed from their pH. In order to distinguish between the actual immobilization of elements on biochar and their modified retention on soil particles, we developed a two-column leaching experiment using calcium nitrate as the initial leaching solution. The first column was filled with one of the two soils, and was linked in a closed loop with the second column containing a mass of pure biochar equivalent to 10% of the soil mass. The leaching solution circulated first in the soil column, then through the biochar column and again in the soil column and so on, so that it became progressively equilibrated with both soil and biochar. Each experiment lasted for 12 days at a flow rate of 1 mL/min. The pH and electrical conductivity of the leaching solution was continuously monitored at the outlet of the biochar column, and samples of the leaching solution were regularly taken for further analysis, both before and after having passed each of the columns. Our results show that the chemical equilibrium between soil and biochar was obtained in a short time for major elements such as Na, K and Mg, whereas for heavy metals and other elements as well as for pH and dissolved carbon, the equilibrium was still not reached at the end of the experiment. This observation highlights the slow, diffusive nature of biochar chemical interactions with the soil. The comparison of samples enabled us to quantify the immobilization of elements on biochar from its indirect effect on the retention capacity of the soil, mostly due to the increase of pH and the dynamics of inorganic and organic carbon in the solution. Altogether, these results provide new information about the complex effects of biochar on soil properties and about its efficiency in the context of soil remediation.
Malic Acid Carbon Dots: From Super-resolution Live-Cell Imaging to Highly Efficient Separation.
Zhi, Bo; Cui, Yi; Wang, Shengyang; Frank, Benjamin P; Williams, Denise N; Brown, Richard P; Melby, Eric S; Hamers, Robert J; Rosenzweig, Zeev; Fairbrother, D Howard; Orr, Galya; Haynes, Christy L
2018-06-15
As-synthesized malic acid carbon dots are found to possess photoblinking properties that are outstanding and superior compared to those of conventional dyes. Considering their excellent biocompatibility, malic acid carbon dots are suitable for super-resolution fluorescence localization microscopy under a variety of conditions, as we demonstrate in fixed and live trout gill epithelial cells. In addition, during imaging experiments, the so-called "excitation wavelength-dependent" emission was not observed for individual as-made malic acid carbon dots, which motivated us to develop a time-saving and high-throughput separation technique to isolate malic acid carbon dots into fractions of different particle size distributions using C 18 reversed-phase silica gel column chromatography. This post-treatment allowed us to determine how particle size distribution influences the optical properties of malic acid carbon dot fractions, that is, optical band gap energies and photoluminescence behaviors.
NASA Technical Reports Server (NTRS)
Wilson, Emily L.; Melroy, Hilary R.; Miller, J. Houston; McLinden, Matthew L.; Ott, Lesley E.; Holben, Brent
2012-01-01
We present progress in the development of a passive, miniaturized Laser Heterodyne Radiometer (mini-LHR) that will measure key greenhouse gases (C02, CH4, CO) in the atmospheric column as well as their respective altitude profiles, and O2 for a measure of atmospheric pressure. Laser heterodyne radiometry is a spectroscopic method that borrows from radio receiver technology. In this technique, a weak incoming signal containing information of interest is mixed with a stronger signal (local oscillator) at a nearby frequency. In this case, the weak signal is sunlight that has undergone absorption by a trace gas of interest and the local oscillator is a distributive feedback (DFB) laser that is tuned to a wavelength near the absorption feature of the trace gas. Mixing the sunlight with the laser light, in a fast photoreceiver, results in a beat signal in the RF. The amplitude of the beat signal tracks the concentration of the trace gas in the atmospheric column. The mini-LHR operates in tandem with AERONET, a global network of more than 450 aerosol sensing instruments. This partnership simplifies the instrument design and provides an established global network into which the mini-LHR can rapidly expand. This network offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern as well as an uninterrupted data record that will both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3, and ASCENDS. Currently, the only ground global network that routinely measures multiple greenhouse gases in the atmospheric column is TCCON (Total Column Carbon Observing Network) with 18 operational sites worldwide and two in the US. Cost and size of TCCON installations will limit the potential for expansion, We offer a low-cost $30Klunit) solution to supplement these measurements with the added benefit of an established aerosol optical depth measurement. Aerosols induce a radiative effect that is an important modulator of regional carbon cycles. Changes in the diffuse radiative flux fraction (DRF) due to aerosol loading have the potential to alter the terrestrial carbon exchange.
NASA Astrophysics Data System (ADS)
Schreiner, K. M.; Bramburger, A.; Ozersky, T.; Sheik, C.; Steinman, B. A.
2016-02-01
Lake Superior is the largest freshwater lake in the world, supporting economically important fisheries and providing drinking water to hundreds of thousands of people. In recent decades, summer surface water temperature and the intensity and duration of water column stratification in the lake has increased steadily. These physical changes have resulted in significant perturbations to lower trophic level ecosystem characteristics. Recent observations of Great Lakes plankton assemblages have revealed multi-decadal patterns of community reorganization, with increased relative abundance of taxa characteristic of warmer waters. These changes, coupled with changing nutrient concentrations and colonization by non-native taxa, threaten to shift trophic structure and carbon dynamics at the bottom of the food web. To this end, this study seeks to quantify the impacts of this ecosystem shift on carbon fixation, the biological pump, and organic carbon cycling in Lake Superior. Utilizing a combined sampling approach, in the summer of 2015 we collected water, sediment, and biological samples across a nearshore-to-offshore gradient in the western arm of Lake Superior. Analyses included the community composition of bacteria, archaea, phytoplankton, and zooplankton; water column carbon and nutrient speciation; algal pigments and pigment degradation products; and net primary productivity. The collection of surface sediments allowed for additional assessment of benthic-pelagic coupling. The novel combination of this wide-ranging set of analyses to a locally and globally important water body like Lake Superior allowed us to fully assess the interactions between lower trophic level biology and carbon and nutrient cycling throughout the water column. Preliminary data indicates that microbial community composition was variable across the western arm of Lake Superior and showed signs of stratification at individual stations (>100 m deep). Sample collection occurred soon after lake stratification in July 2015, and the presence of a deep chlorophyll maximum was noted. The results shed light on the functioning of the biological pump and nutrient and carbon dynamics in a changing ecosystem and provides insight on how further change in Lake Superior and other aquatic systems will affect ecosystem function and services.
3D Orbit Visualization for Earth-Observing Missions
NASA Technical Reports Server (NTRS)
Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.
2011-01-01
This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.
Houghton, J; Fike, D; Druschel, G; Orphan, V; Hoehler, T M; Des Marais, D J
2014-11-01
Modern laminated photosynthetic microbial mats are ideal environments to study how microbial activity creates and modifies carbon and sulfur isotopic signatures prior to lithification. Laminated microbial mats from a hypersaline lagoon (Guerrero Negro, Baja California, Mexico) maintained in a flume in a greenhouse at NASA Ames Research Center were sampled for δ(13) C of organic material and carbonate to assess the impact of carbon fixation (e.g., photosynthesis) and decomposition (e.g., bacterial respiration) on δ(13) C signatures. In the photic zone, the δ(13) C org signature records a complex relationship between the activities of cyanobacteria under variable conditions of CO2 limitation with a significant contribution from green sulfur bacteria using the reductive TCA cycle for carbon fixation. Carbonate is present in some layers of the mat, associated with high concentrations of bacteriochlorophyll e (characteristic of green sulfur bacteria) and exhibits δ(13) C signatures similar to DIC in the overlying water column (-2.0‰), with small but variable decreases consistent with localized heterotrophic activity from sulfate-reducing bacteria (SRB). Model results indicate respiration rates in the upper 12 mm of the mat alter in situ pH and HCO3- concentrations to create both phototrophic CO2 limitation and carbonate supersaturation, leading to local precipitation of carbonate minerals. The measured activity of SRB with depth suggests they variably contribute to decomposition in the mat dependent on organic substrate concentrations. Millimeter-scale variability in the δ(13) C org signature beneath the photic zone in the mat is a result of shifting dominance between cyanobacteria and green sulfur bacteria with the aggregate signature overprinted by heterotrophic reworking by SRB and methanogens. These observations highlight the impact of sedimentary microbial processes on δ(13) C org signatures; these processes need to be considered when attempting to relate observed isotopic signatures in ancient sedimentary strata to conditions in the overlying water column at the time of deposition and associated inferences about carbon cycling. © 2014 John Wiley & Sons Ltd.
A Remarkable Three Hour Thermonuclear Burst from 4U 1820-30
NASA Technical Reports Server (NTRS)
Strohmayer, Tod E.; Brown, Edward F.; White, Nicholas E. (Technical Monitor)
2002-01-01
We present a detailed observational and theoretical study of an approximately three hour long X-ray burst (the "super burst") observed by the Rossi X-ray Timing Explorer (RXTE) from the low mass X-ray binary (LMXB) 4U 1820-30. This is the longest X-ray burst ever observed from this source, and perhaps one of the longest ever observed in great detail from any source. We show that the super burst is thermonuclear in origin. Its peak luminosity of approximately 3.4 x 10(exp 38) ergs s(exp -1) is consistent with the helium Eddington limit for a neutron star at approximately 7 kpc, as well as the peak luminosity of other, shorter, thermonuclear bursts from the same source. The super burst begins in the decaying tail of a more typical (approximately equal to 20 s duration) thermonuclear burst. These shorter, more frequent bursts are well known helium flashes from this source. The level of the accretion driven flux as well as the observed energy release of upwards of 1.5 x 10(exp 42) ergs indicate that helium could not be the energy source for the super burst. We outline the physics relevant to carbon production and burning on helium accreting neutron stars and present calculations of the thermal evolution and stability of a carbon layer and show that this process is the most likely explanation for the super burst. Ignition at the temperatures in the deep carbon "ocean" requires greater than 30 times the mass of carbon inferred from the observed burst energetics unless the He flash is able to trigger a deflagration from a much smaller mass of carbon. We show, however, that for large columns of accreted carbon fuel, a substantial fraction of the energy released in the carbon burning layer is radiated away as neutrinos, and the heat that is conducted from the burning layer in large part flows inward, only to be released on timescales longer than the observed burst. Thus the energy released during the event possibly exceeds that observed in X-rays by more than a factor of ten, making the scenario of burning a large mass of carbon at great depths consistent with the observed fluence without invoking any additional trigger. A strong constraint on this scenario is the recurrence time: to accrete an ignition column of 1013 g cm (exp -1) takes approximately 13/(M/3 x 10(exp 17) g s(exp -1) yr. Spectral analysis during the super burst reveals the presence of a broad emission line between 5.8 - 6.4 keV and an edge at 8 - 9 keV likely due to reflection of the burst flux from the inner accretion disk in 4U 1820-30. We believe this is the first time such a signature has been unambiguously detected in the spectrum of an X-ray burst.
Mirza, Babur S; Sorensen, Darwin L; Dupont, R Ryan; McLean, Joan E
2016-03-01
Trichloroethene (TCE) in groundwater is a major health concern and biostimulation/bioaugmentation-based strategies have been evaluated to achieve complete reductive dechlorination with varying success. Different carbon sources were hypothesized to stimulate different extents of TCE reductive dechlorination. Ecological conditions that developed different dechlorination stages were investigated by quantitating Dehalococcoides 16S rRNA (Dhc) and reductive dehalogenase gene abundance, and by describing biogeochemical properties of laboratory columns in response to this biostimulation. Eight large columns (183 cm × 15.2 cm), packed with aquifer material from Hill AFB, Utah, that were continuously fed TCE for 7.5 years. Duplicate columns were biostimulated with whey or one of two different Newman Zone® emulsified oil formulations containing either nonionic surfactant (EOLN) or standard surfactant (EOL). Two columns were non-stimulated controls. Complete (whey amended), partial (EOLN amended), limited (EOL), and non-TCE dehalogenating systems (controls) developed over the course of the study. Bioaugmentation of half of the columns with Bachman Road culture 3 years prior to dismantling did not influence the extent of TCE dehalogenation. Multivariate analysis clustered samples by biostimulation treatments and extent of TCE dehalogenation. Dhc, tceA, and bvcA gene concentrations did not show a consistent relationship with TCE dehalogenation but the vcrA gene was more abundant in completely dehalogenating, whey-treated columns. The whey columns developed strongly reducing conditions producing Fe(II), sulfide, and methane. Biostimulation with different carbon and energy sources can support high concentrations of diverse Dhc, but carbon addition has a major influence on biogeochemical processes effecting the extent of TCE dehalogenation.
Motono, Tomohiro; Nagai, Takashi; Kitagawa, Shinya; Ohtani, Hajime
2015-07-01
Low-temperature high-performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at -35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low-temperature high-performance liquid chromatography at temperatures from -35 to -5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl-silica (C18 ) column provided reversed phase mode separation, and a bare silica-gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately -15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high-performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of Cabin Upsets on Adsorption Columns for Air Revitalization
NASA Technical Reports Server (NTRS)
LeVan, Douglas
1999-01-01
The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there. Modeling work was performed at the University of Virginia.
Preliminary Results from the NASA Orbiting Carbon Observatory-2 (OCO-2)
NASA Astrophysics Data System (ADS)
Crisp, D.; Eldering, A.; Gunson, M. R.
2014-12-01
The NASA Orbiting Carbon Observatory - 2 (OCO-2) was successfully launched from Vandenberg Air Force Base at 9:56:44 UTC on July 2, 2014. After a series of spacecraft checkout activities and orbit raising maneuvers, OCO-2 was inserted at the front of the 705-km Afternoon constellation (A-Train) on August 3rd. This presentation will summarize the science objectives, review the measurement approach, and introduce some preliminary data from the first few months of operation. OCO-2 was designed to return estimates of the column-averaged atmospheric carbon dioxide (CO2) dry air mole fraction (XCO2) with the precision, resolution, and coverage needed to quantify CO2 surface fluxes on regional scales. To meet these goals, it carries and points a 3-channel grating spectrometer that collects high resolution, co-bore-sighted spectra of reflected sunlight in the 765 nm O2 A-band and in the CO2 bands centered near 1610 and 2060 nm. Each channel records 24 spectra per second along a narrow (< 0.8-degree) track, returning about one million soundings each day. At least 10% of these soundings are expected to be sufficiently cloud free to yield full-column estimates of XCO2with single-sounding accuracies of 0.25 % on regional scales at monthly intervals. The instrument is calibrated using on-board sources and targets, the Moon, well-characterized surface sites (Pollock et al. this session), and comparisons with nearly-coincident observations from the Japanese Greenhouse gases Observing SATellite (GOSAT; Kuze et al. this session). Cloudy soundings are identified and screened out (Taylor et al. this session) and the remaining soundings are analyzed to yield spatially-resolved estimates of XCO2 and other geophysical products (c.f. Frankenberg et al. this session). OCO-2 XCO2 estimates are then validated against those from the Total Carbon Column Observing Network (TCCON) to assess their accuracy and precision (Wennberg et al. this session). Preliminary products from each step of this process will be introduced here. Before the end of 2014, the OCO-2 project will start delivering calibrated radiance spectra to the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) for distribution to the science community. Estimates of XCO2 will start being delivered to the GES DISC during the first quarter of 2015.
Maniquet, Adrien; Bruyer, Nicolas; Raffin, Guy; Baco-Antionali, Franck; Demesmay, Claire; Dugas, Vincent; Randon, Jérôme
2017-06-30
80% vinyltrimethoxysilane-based hybrid silica monoliths (80-VTMS), which have been initially developed for separation in reversed-phase liquid chromatography, have been investigated in high pressure gas chromatography separations (carrier gas pressure up to 60bar) and compared to silica monolithic columns. The behavior of both silica and 80-VTMS monolithic columns was investigated using helium, nitrogen and carbon dioxide as carrier gas. The efficiency of 80-VTMS monolithic columns was shown to vary differently than silica monolithic columns according to the temperature and the carrier gas used. Carrier gas nature was a significant parameter on the retention for both silica and vinyl columns in relation to its adsorption onto the stationary phase in such high pressure conditions. The comparison of retention and selectivity between 80-VTMS monoliths and silica was performed under helium using the logarithm of the retention factor according to the number of carbon atoms combined to Kovats indexes. The very good performances of these columns were demonstrated, allowing the separation of 8 compounds in less than 1min. Copyright © 2017 Elsevier B.V. All rights reserved.
Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiland, R.H.; Dingman, J.C.; Cronin, D.B.
1998-05-01
Very little information is available concerning the effect of acid gas loading on the physical properties of amine-treating solutions flowing through the absorption and regeneration columns used in gas processing. The densities and viscosities of partially carbonated monoethanolamine (MEA), diethanolamine (DEA), and N-methyldiethanolamine (MDEA) solutions were measured at 298 K. With increasing carbon dioxide loadings, significant increases in both density and viscosity were observed. These results were combined with literature data to produce correlations for alkanolamine solution density and viscosity as a function of amine concentration, carbon dioxide loading, and temperature. The resulting single-amine correlations were used to predict themore » densities and viscosities of DEA + MDEA and MEA + MDEA blends. Predictions are compared with data measured for these blends.« less
NASA Astrophysics Data System (ADS)
Bril, A.; Oshchepkov, S.; Yokota, T.; Yoshida, Y.; Morino, I.; Uchino, O.; Belikov, D. A.; Maksyutov, S. S.
2014-12-01
We retrieved the column-averaged dry air mole fraction of atmospheric carbon dioxide (XCO2) and methane (XCH4) from the radiance spectra measured by Greenhouse gases Observing SATellite (GOSAT) for 48 months of the satellite operation from June 2009. Recent version of the Photon path-length Probability Density Function (PPDF)-based algorithm was used to estimate XCO2 and optical path modifications in terms of PPDF parameters. We also present results of numerical simulations for over-land observations and "sharp edge" tests for sun-glint mode to discuss the algorithm accuracy under conditions of strong optical path modification. For the methane abundance retrieved from 1.67-µm-absorption band we applied optical path correction based on PPDF parameters from 1.6-µm carbon dioxide (CO2) absorption band. Similarly to CO2-proxy technique, this correction assumes identical light path modifications in 1.67-µm and 1.6-µm bands. However, proxy approach needs pre-defined XCO2 values to compute XCH4, whilst the PPDF-based approach does not use prior assumptions on CO2 concentrations.Post-processing data correction for XCO2 and XCH4 over land observations was performed using regression matrix based on multivariate analysis of variance (MANOVA). The MANOVA statistics was applied to the GOSAT retrievals using reference collocated measurements of Total Carbon Column Observing Network (TCCON). The regression matrix was constructed using the parameters that were found to correlate with GOSAT-TCCON discrepancies: PPDF parameters α and ρ, that are mainly responsible for shortening and lengthening of the optical path due to atmospheric light scattering; solar and satellite zenith angles; surface pressure; surface albedo in three GOSAT short wave infrared (SWIR) bands. Application of the post-correction generally improves statistical characteristics of the GOSAT-TCCON correlation diagrams for individual stations as well as for aggregated data.In addition to the analysis of the observations over 12 TCCON stations we estimated temporal and spatial trends (interannual XCO2 and XCH4 variations, seasonal cycles, latitudinal gradients) and compared them with modeled results as well as with similar estimates from other GOSAT retrievals.
NASA Technical Reports Server (NTRS)
Oremland, R. S.; Des Marais, D. J.
1983-01-01
The study of the distribution and isotopic composition of low molecular weight hydrocarbon gases at the Big Soda Lake, Nevada, has shown that while neither ethylene nor propylene were found in the lake, ethane, propane, isobutane and n-butane concentrations all increased with water column depth. It is concluded that methane has a biogenic origin in both the sediments and the anoxic water column, and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in delta C-13/CH4/ and CH4/(C2H6 + C3H8) with depth in the water column and sedimeents are probably due to bacterial processes, which may include anaerobic methane oxidation and different rates of methanogenesis, and C2-to-C4 alkane production by microorganisms.
Zhang, Zhen; Jiang, Hong; Liu, Jinxun; Zhang, Xiuying; Huang, Chunlin; Lu, Xuehe; Jin, Jiaxin; Zhou, Guomo
2014-01-01
Satellite observations of carbon dioxide (CO2) are important because of their potential for improving the scientific understanding of global carbon cycle processes and budgets. We present an analysis of the column-averaged dry air mole fractions of CO2 (denoted XCO2) of the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) retrievals, which were derived from a satellite instrument with relatively long-term records (2003–2009) and with measurements sensitive to the near surface. The spatial-temporal distributions of remotely sensed XCO2 have significant spatial heterogeneity with about 6–8% variations (367–397 ppm) during 2003–2009, challenging the traditional view that the spatial heterogeneity of atmospheric CO2 is not significant enough (2 and surface CO2 were found for major ecosystems, with the exception of tropical forest. In addition, when compared with a simulated terrestrial carbon uptake from the Integrated Biosphere Simulator (IBIS) and the Emissions Database for Global Atmospheric Research (EDGAR) carbon emission inventory, the latitudinal gradient of XCO2 seasonal amplitude was influenced by the combined effect of terrestrial carbon uptake, carbon emission, and atmospheric transport, suggesting no direct implications for terrestrial carbon sinks. From the investigation of the growth rate of XCO2 we found that the increase of CO2 concentration was dominated by temperature in the northern hemisphere (20–90°N) and by precipitation in the southern hemisphere (20–90°S), with the major contribution to global average occurring in the northern hemisphere. These findings indicated that the satellite measurements of atmospheric CO2 improve not only the estimations of atmospheric inversion, but also the understanding of the terrestrial ecosystem carbon dynamics and its feedback to atmospheric CO2.
Zhang, Huining; Zhang, Kefeng; Jin, Huixia; Gu, Li; Yu, Xin
2015-11-01
Dissolved organic nitrogen (DON) is potential precursor of disinfection byproducts (DBPs), especially nitrogenous DBPs. In this study, we investigated the impact of biofilters on DON concentration changes in a drinking water plant. A small pilot plant was constructed next to a sedimentation tank in a drinking water plant and included activated carbon, quartz sand, anthracite, and ceramsite biofilters. As the biofilter layer depth increased, the DON concentration first decreased and then increased, and the variation in DON concentration differed among the biofilters. In the activated carbon biofilter, the DON concentration was reduced by the largest amount in the first part of the column and increased by the largest amount in the second part of the column. The biomass in the activated carbon filter was less than that in the quartz sand filter in the upper column. The heterotrophic bacterial proportion among bacterial flora in the activated carbon biofilter was the largest, which might be due to the significant reduction in DON in the first part of the column. Overall, the results indicate that the DON concentration in biofiltered water can be controlled via the selection of appropriate biofilter media. We propose that a two-layer biofilter with activated carbon in the upper layer and another media type in the lower layer could best reduce the DON concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Paleosol Proxies for Low Elevation Paleoclimate East of the Andes, Northwestern Argentina
NASA Astrophysics Data System (ADS)
Rosario, J. J.; Jordan, T. E.; Garzione, C. N.; Higgins, P.; Hernandez, R.; Hernandez, J.
2009-12-01
Paleosols can be used as a proxy for paleoclimate, paleoenvironment, and geomorphological reconstructions. The weathering imprint in the minerals in paleosols can be used as a proxy for moisture conditions, while other environmental information can be obtained from stable isotopes in their minerals such as δ13C and δ18O. The goal of this study is to document changes in paleosol characteristics’ driven by climate change in NW Argentina over the time period between ~14 Ma and 5.1 Ma during a time of significant uplift and climate change in the Altiplano. During this time interval, landscape of the low elevation foreland basin changed as the consequence of the propagation of Andean thrust-fold deformation. Paleosols are interbedded in three stratigraphic sections that are described, sampled, and studied along the Iruya, Peña Colorada, and La Porcelana rivers, distributed from west to east, respectively. Field observations of the paleosols, stratigraphic column construction, thin section petrography and textures, x-ray diffraction (XRD), and stable isotopes together provide climatic proxies. These The stratigraphic columns represent a distributary depositional system, or megafan, whose syn-deformational nature is documented by Echevarría et al. (2003). Argillic-calcic paleosols developed on silty and sandy mudstones in the floodplain environment, with pedogenic calcium carbonate formed as nodules and rizoliths. The Microscopic features show that paleosols on the floodplain contain argillans. Semi-humid to semi-arid conditions are suggested by clay lessivage and calcium carbonate precipitation respectively. The mineralogy reflected by the XRD shows kaolinite, illite, and calcium carbonate in the western stratigraphic column that represents moderate climatic conditions (semi-humid to semi-arid). The coexistence of these minerals suggests seasonal variations in moisture. The eastern columns exhibit wetter soil conditions, including oxide minerals as well as hematite and goethite. Carbon isotopes show C3 vegetation with an increase in δ13C values most likely resulting from increasing seasonality in more recent times. There is little variation in δ18O values through time. In conclusion, these proxies show that soils were developed on interchannel areas, with illuviation of clays during the wet season and precipitation of calcium carbonate during the dry season. Although the megafan migrated eastward and the Altiplano rose, oxygen isotopes suggest that neither rainfall amount nor source of water vapor changed through the approximately 10 million years time interval.
Onodera, S; Nagatsuka, A; Rokuhara, T; Asakura, T; Hirayama, N; Suzuki, S
1993-07-16
Amberlite XAD resin and activated carbon columns were tested for their abilities to concentrate trace organic pollutants in chlorinated water. Both XAD-2 and XAD-7 resin columns (20 ml) were capable of adsorbing about 30% of total organic halogen (TOX) present in 20 l of drinking water (pH 7) containing about 100 micrograms/l of TOX, whereas the carbon column (10 ml) adsorbed over 90% of TOX. The adsorption capacity of XAD-7 resin was found to be strongly dependent on the solution pH, as compared with those of XAD-2 and carbon adsorbents. Soxhlet and sonication extractions were also evaluated for their abilities to recover the adsorbed organics from the adsorbents, by measurements of TOX, chromatographable compounds and mutagenicity in the eluates. Soxhlet extraction gave higher recoveries than sonication, as measured with the above indices, but these differences were generally small (ca. 20%), with exception of the carbon extracts. The XAD-2 and XAD-7 extracts of drinking water also showed about 3-4 times higher mutagenic activity than the carbon extracts.
NASA Astrophysics Data System (ADS)
Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi
2017-06-01
Carbon chains in the warm carbon chain chemistry (WCCC) region has been searched in the 42-44 GHz region by using Green Bank 100 m telescope. Long carbon chains C_{7}H, C_{6}H, CH_{3}CCCCH, and linear-C_{6}H_{2} and cyclic species C_{3}H and C_{3}H_{2}O have been detected in the low-mass star forming region L1527, performing the WCCC. C_{7}H was detected for the first time in molecular clouds. The column density of C_{7}H is derived to be 6.2 × 10^{10} cm^{-2} by using the detected J = 24.5-23.5 and 25.5-24.5 rotational lines. The ^{2}Π_{1/2} electronic state of C_{6}H, locating 21.6 K above the ^{2}Π_{3/2} electronic ground state, and the K_a = 0 line of the para species of linear-C_{6}H_{2} were also detected firstly in molecular clouds. The column densities of the ^{2}Π_{1/2} and ^{2}Π_{3/2} states of C_{6}H in L1527 were derived to be 1.6 × 10^{11} and 1.1 × 10^{12} cm^{-2}, respectively. The total column density of linear-C_{6}H_{2} is obtained to be 1.86 × 10^{11} cm^{-2}. While the abundance ratios of carbon chains in between L1527 and the starless dark cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP) have a trend of decrease by extension of carbon-chain length, column densities of CH_{3}CCCCH and C_{6}H are on the trend. However, the column densities of linear-C_{6}H_{2}, and C_{7}H are as abundant as those of TMC-1 CP in spite of long carbon chain, i.e., they are not on the trend. The abundances of linear-C_{6}H_{2} and C_{7}H show that L1527 is rich for long carbon chains as well as TMC-1 CP.
NASA Astrophysics Data System (ADS)
Baker, D. F.; Oda, T.; O'Dell, C.; Wunch, D.; Jacobson, A. R.; Yoshida, Y.; Partners, T.
2012-12-01
Measurements of column CO2 concentration from space are now being taken at a spatial and temporal density that permits regional CO2 sources and sinks to be estimated. Systematic errors in the satellite retrievals must be minimized for these estimates to be useful, however. CO2 retrievals from the TANSO instrument aboard the GOSAT satellite are compared to similar column retrievals from the Total Carbon Column Observing Network (TCCON) as the primary method of validation; while this is a powerful approach, it can only be done for overflights of 10-20 locations and has not, for example, permitted validation of GOSAT data over the oceans or deserts. Here we present a complementary approach that uses a global atmospheric transport model and flux inversion method to compare different types of CO2 measurements (GOSAT, TCCON, surface in situ, and aircraft) at different locations, at the cost of added transport error. The measurements from any single type of data are used in a variational carbon data assimilation method to optimize surface CO2 fluxes (with a CarbonTracker prior), then the corresponding optimized CO2 concentration fields are compared to those data types not inverted, using the appropriate vertical weighting. With this approach, we find that GOSAT column CO2 retrievals from the ACOS project (version 2.9 and 2.10) contain systematic errors that make the modeled fit to the independent data worse. However, we find that the differences between the GOSAT data and our prior model are correlated with certain physical variables (aerosol amount, surface albedo, correction to total column mass) that are likely driving errors in the retrievals, independent of CO2 concentration. If we correct the GOSAT data using a fit to these variables, then we find the GOSAT data to improve the fit to independent CO2 data, which suggests that the useful information in the measurements outweighs the negative impact of the remaining systematic errors. With this assurance, we compare the flux estimates given by assimilating the ACOS GOSAT retrievals to similar ones given by NIES GOSAT column retrievals, bias-corrected in a similar manner. Finally, we have found systematic differences on the order of a half ppm between column CO2 integrals from 18 TCCON sites and those given by assimilating NOAA in situ data (both surface and aircraft profile) in this approach. We assess how these differences change in switching to a newer version of the TCCON retrieval software.
Impact of Microbial Growth on Subsurface Perfluoroalkyl Acid Transport
NASA Astrophysics Data System (ADS)
Weathers, T. S.; Higgins, C. P.; Sharp, J.
2014-12-01
The fate and transport of poly and perfluoroalkyl substances (PFASs) in the presence of active microbial communities has not been widely investigated. These emerging contaminants are commonly utilized in aqueous film-forming foams (AFFF) and have often been detected in groundwater. This study explores the transport of a suite of perfluorocarboxylic acids and perfluoroalkylsulfonates, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), in microbially active settings. Single point organic carbon normalized sorption coefficients derived by exposing inactive cellular material to PFASs result in more than an order of magnitude increase in sorption compared to soil organic carbon sorption coefficients found in literature. For example, the sorption coefficients for PFOS are 4.05±0.07 L/kg and 2.80±0.08 L/kg for cellular organic carbon and soil organic carbon respectively. This increase in sorption, coupled with enhanced extracellular polymeric substance production observed during growth of a common hydrocarbon degrading soil microbe exposed to source-level concentrations of PFASs (10 mg/L of 11 analytes, 110 mg/L total) may result in PFAS retardation in situ. To address the upscaling of this phenomenon, flow-through columns packed with low-organic carbon sediment and biostimulated with 10 mg/L glucose were exposed to PFAS concentrations from 15 μg/L to 10 mg/L of each 11 analytes. Breakthrough and tailing of each analyte was measured and modeled with Hydrus-1D to explore sorption coefficients over time for microbially active columns.
Carbon budget of sea-ice algae in spring: Evidence of a significant transfer to zooplankton grazers
NASA Astrophysics Data System (ADS)
Michel, C.; Legendre, L.; Ingram, R. G.; Gosselin, M.; Levasseur, M.
1996-08-01
The fate of ice-bottom algae, before and after release from the first-year sea ice into the water column, was assessed during the period of ice-algal growth and decline in Resolute Passage (Canadian Arctic). During spring 1992 (from April to June), algae in the bottom ice layer and those suspended and sinking in the upper water column (top 15 m) were sampled approximately every 4 days. Ice-bottom chlorophyll a reached a maximum concentration of 160 mg m-2 in mid-May, after which it decreased to lower values. In the water column, chlorophyll a concentrations were low until the period of ice-algal decline (˜0.1 mg m-3), with most biomass in the <5-μm fraction. In both the suspended and sinking material, large increases of algal biomass occurred at the beginning of June, following the release of ice-algae into the water column. The input of ice-algal derived carbon to the upper water column and the proportions exported through sinking or remaining in suspension were assessed using a carbon budget for the two periods of ice-algal growth and decline. For each period the output terms closely balanced the input. The carbon budget showed that most of the biomass introduced into the upper water column remained suspended (>65% of total export) and that ice-algae were ingested by under-ice grazers after release from the ice. These results stress the importance of ice algae for pelagic consumers during the early stages of ice melt and show that the transfer of ice algae to higher trophic levels extends beyond the period of maximum algal production in the ice bottom.
Han, Young-Soo; Tokunaga, Tetsu K
2014-12-01
Renewed interest in managing C balance in soils is motivated by increasing atmospheric concentrations of CO2 and consequent climate change. Here, experiments were conducted in soil columns to determine C mass balances with and without addition of CaSO4-minerals (anhydrite and gypsum), which were hypothesized to promote soil organic carbon (SOC) retention and soil inorganic carbon (SIC) precipitation as calcite under slightly alkaline conditions. Changes in C contents in three phases (gas, liquid and solid) were measured in unsaturated soil columns tested for one year and comprehensive C mass balances were determined. The tested soil columns had no C inputs, and only C utilization by microbial activity and C transformations were assumed in the C chemistry. The measurements showed that changes in C inventories occurred through two processes, SOC loss and SIC gain. However, the measured SOC losses in the treated columns were lower than their corresponding control columns, indicating that the amendments promoted SOC retention. The SOC losses resulted mostly from microbial respiration and loss of CO2 to the atmosphere rather than from chemical leaching. Microbial oxidation of SOC appears to have been suppressed by increased Ca(2+) and SO4(2)(-) from dissolution of CaSO4 minerals. For the conditions tested, SIC accumulation per m(2) soil area under CaSO4-treatment ranged from 130 to 260 g C m(-1) infiltrated water (20-120 g C m(-1) infiltrated water as net C benefit). These results demonstrate the potential for increasing C sequestration in slightly alkaline soils via CaSO4-treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Parinos, C.; Gogou, A.; Krasakopoulou, E.; Lagaria, A.; Giannakourou, A.; Karageorgis, A. P.; Psarra, S.
2017-10-01
The abundance of Transparent Exopolymer Particles (TEP) was determined on a seasonal basis (autumn, spring and summer) along a north-south transect in the NE Aegean Sea and the vicinity of the Dardanelles Straits. Their distribution patterns were studied in respect to hydrographic conditions and water mass characteristics in the area, as well as particulate organic carbon (POC) concentrations, changes in standing stocks of chlorophyll-α and bacterial production. TEP concentrations ranged from 15.4 to 188 μg GX eq L-1. Their spatial distribution patterns within the euphotic zone displayed significant seasonal variability, which appears to closely reflect the temporal variation of the water column structure, resulting from the encounter and interplay of the Black Sea and Levantine Water masses, and the associated biogeochemical processes. Minimum TEP concentrations during autumn could be likely attributed to a minor quantity of TEP and/or its dissolved precursors exuded by phytoplankton and their enhanced degradation due to their long residence time in the water column. During spring, high TEP production was mediated by actively growing phytoplankton, while during summer a positive link to the intense stratification of the water column and the enhanced bacterial growth within the Black Sea Water layer was observed. The results reported in this study highlight the fact that TEP carbon represents a significant fraction of the POC pool. Moreover, TEP production is critical in promoting particle coagulation rates, playing an important role in carbon cycling/transportation out of the euphotic zone.
Contrasting carbon cycle responses of the tropical continents to the 2015-2016 El Niño.
Liu, Junjie; Bowman, Kevin W; Schimel, David S; Parazoo, Nicolas C; Jiang, Zhe; Lee, Meemong; Bloom, A Anthony; Wunch, Debra; Frankenberg, Christian; Sun, Ying; O'Dell, Christopher W; Gurney, Kevin R; Menemenlis, Dimitris; Gierach, Michelle; Crisp, David; Eldering, Annmarie
2017-10-13
The 2015-2016 El Niño led to historically high temperatures and low precipitation over the tropics, while the growth rate of atmospheric carbon dioxide (CO 2 ) was the largest on record. Here we quantify the response of tropical net biosphere exchange, gross primary production, biomass burning, and respiration to these climate anomalies by assimilating column CO 2 , solar-induced chlorophyll fluorescence, and carbon monoxide observations from multiple satellites. Relative to the 2011 La Niña, the pantropical biosphere released 2.5 ± 0.34 gigatons more carbon into the atmosphere in 2015, consisting of approximately even contributions from three tropical continents but dominated by diverse carbon exchange processes. The heterogeneity of the carbon-exchange processes indicated here challenges previous studies that suggested that a single dominant process determines carbon cycle interannual variability. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Paetzold, Johannes C.; Chen, Jia; Ruisinger, Veronika
2017-04-01
The Orbiting Carbon Observatory 2 (OCO-2) is a NASA satellite mission dedicated to make global, space-based observations of atmospheric, column-averaged carbon dioxide (XCO2). In addition, the OCO-2 also measures Solar Induced Chlorophyll Fluorescence (SIF). In our research we have studied the combination of OCO-2's XCO2 and SIF measurements for numerous urban areas on the different continents. Applying GIS and KML visualization techniques as well as statistical approaches we are able to reliably detect anthropogenic CO2 emissions in CO2 column concentration enhancements over urban areas. Moreover, we detect SIF decreases over urban areas compared to their rural vicinities. We are able to obtain those findings for urban areas on different continents, of diverse sizes, dissimilar topographies and urban constructions. Our statistical analysis finds robust XCO2 enhancements of up to 3 ppm for urban areas in Europe, Asia and North America. Furthermore, the analysis of SIF indicates that urban construction, population density and seasonality influence urban vegetation, which can be observed from space. Additionally, we find that OCO-2's SIF measurements have the potential to identify and approximate green areas within cities. For Berlin's Grunewald Forest as well as Mumbai's Sanjay Gandhi and Tungareshwar National Parks we observe enhancements in SIF measurements at sub-city scales.
NASA Astrophysics Data System (ADS)
Nirmel, S.; Selz, V.
2016-12-01
Polar phytoplankton play instrumental roles in global biogeochemical cycles, sometimes serving as massive carbon sinks via the biological pump. In addition to phytoplankton, sea ice supports a significant amount of ice algae, the essential primary producers for the ecosystem in winter and early spring. While sea ice habitat declines on regional scales, the fate of sea ice algae post-ice melt remains relatively unknown, despite its importance in understanding how the biological pump might be affected by sea ice loss. Through a series of settling column experiments on the icebreaker Nathaniel B. Palmer, we aimed to address the question: What controls the fate of the carbon-rich ice algae across the Western Antarctic Peninsula (WAP) during ice melt? We focused on whether species composition affects the sinking potential of ice algal communities. Using FlowCAM imagery, we classified samples collected from the buoyant, neutral, and negatively buoyant portions of the settling columns into genus-level taxonomic classes. We used image parameters and geometric shape equations to calculate the biovolume of each taxonomic group. We further explored relationships between taxa-specific sinking potentials, environmental parameters (temperature and nutrients), and physiological properties of associated algal communities (as described by Fast Rate Repetition fluorometry). Results indicate that colonial Phaeocystis antarctica tends to dominate lower regions of the settling column. Moreover, we observe strong correlations between geographic location and both nutrients and phytoplankton physiology. We found that these three factors are indeed related to taxa-specific buoyancy and sinking indices. An understanding of these relationships sheds more light on the role P. antarctica (a carbon-rich bloom-forming genus) plays in the biological pump; higher sinking rates suggest greater carbon export to depth, while lower sinking rates increase the likelihood of carbon being respired back into the environment by heterotrophs at the surface. This study advances our knowledge on the roles sea ice algae and phytoplankton play in biogeochemical cycles and offers a glimpse into how such cycles may function in a changing climate.
Dinasquet, Julie; Richert, Inga; Logares, Ramiro; Yager, Patricia; Bertilsson, Stefan; Riemann, Lasse
2017-06-01
The number of icebergs produced from ice-shelf disintegration has increased over the past decade in Antarctica. These drifting icebergs mix the water column, influence stratification and nutrient condition, and can affect local productivity and food web composition. Data on whether icebergs affect bacterioplankton function and composition are scarce, however. We assessed the influence of iceberg drift on bacterial community composition and on their ability to exploit carbon substrates during summer in the coastal Southern Ocean. An elevated bacterial production and a different community composition were observed in iceberg-influenced waters relative to the undisturbed water column nearby. These major differences were confirmed in short-term incubations with bromodeoxyuridine followed by CARD-FISH. Furthermore, one-week bottle incubations amended with inorganic nutrients and carbon substrates (a mix of substrates, glutamine, N-acetylglucosamine, or pyruvate) revealed contrasting capacity of bacterioplankton to utilize specific carbon substrates in the iceberg-influenced waters compared with the undisturbed site. Our study demonstrates that the hydrographical perturbations introduced by a drifting iceberg can affect activity, composition, and substrate utilization capability of marine bacterioplankton. Consequently, in a context of global warming, increased frequency of drifting icebergs in polar regions holds the potential to affect carbon and nutrient biogeochemistry at local and possibly regional scales. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Parametric uncertainties in global model simulations of black carbon column mass concentration
NASA Astrophysics Data System (ADS)
Pearce, Hana; Lee, Lindsay; Reddington, Carly; Carslaw, Ken; Mann, Graham
2016-04-01
Previous studies have deduced that the annual mean direct radiative forcing from black carbon (BC) aerosol may regionally be up to 5 W m-2 larger than expected due to underestimation of global atmospheric BC absorption in models. We have identified the magnitude and important sources of parametric uncertainty in simulations of BC column mass concentration from a global aerosol microphysics model (GLOMAP-Mode). A variance-based uncertainty analysis of 28 parameters has been performed, based on statistical emulators trained on model output from GLOMAP-Mode. This is the largest number of uncertain model parameters to be considered in a BC uncertainty analysis to date and covers primary aerosol emissions, microphysical processes and structural parameters related to the aerosol size distribution. We will present several recommendations for further research to improve the fidelity of simulated BC. In brief, we find that the standard deviation around the simulated mean annual BC column mass concentration varies globally between 2.5 x 10-9 g cm-2 in remote marine regions and 1.25 x 10-6 g cm-2 near emission sources due to parameter uncertainty Between 60 and 90% of the variance over source regions is due to uncertainty associated with primary BC emission fluxes, including biomass burning, fossil fuel and biofuel emissions. While the contributions to BC column uncertainty from microphysical processes, for example those related to dry and wet deposition, are increased over remote regions, we find that emissions still make an important contribution in these areas. It is likely, however, that the importance of structural model error, i.e. differences between models, is greater than parametric uncertainty. We have extended our analysis to emulate vertical BC profiles at several locations in the mid-Pacific Ocean and identify the parameters contributing to uncertainty in the vertical distribution of black carbon at these locations. We will present preliminary comparisons of emulated BC vertical profiles from the AeroCom multi-model ensemble and Hiaper Pole-to-Pole (HIPPO) observations.
NASA Astrophysics Data System (ADS)
Ramanathan, A. K.; Mao, J.; Abshire, J. B.; Kawa, S. R.
2015-12-01
Remote sensing measurements of CO2 from space can help improve our understanding of the carbon cycle and help constrain the global carbon budget. However, such measurements need to be sufficiently accurate to detect small (1 ppm) changes in the CO2 mixing ratio (XCO2) against a large background (~ 400 ppm). Satellite measurements of XCO2 using passive spectrometers, such as those from the Japanese GOSAT (Greenhouse gas Observing Satellite) and the NASA OCO-2 (Orbiting Carbon Observatory-2) are limited to daytime sunlit portions of the Earth and are susceptible to biases from clouds and aerosols. For this reason, NASA commissioned the formulation study of ASCENDS a space-based lidar mission. NASA Goddard Space Flight Center's CO2 Sounder lidar is one candidate approach for the ASCENDS mission. The NASA GSFC CO2 Sounder measures the CO2 mixing ratio using a pulsed multi-wavelength integrated path differential absorption (IPDA) approach. The CO2 Sounder has flown in the 2011, 2013 and 2014 ASCENDS airborne campaigns over the continental US, and has produced measurements in close agreement with in situ measurements of the CO2 column. In 2014, the CO2 Sounder upgraded its laser with a precision step-locked diode laser source to improve the lidar wavelength position accuracy. It also improved its optical receiver with a low-noise, high efficiency, HgCdTe avalanche photo diode detector. The combination of these two technologies enabled lidar XCO2 measurements with unprecedented accuracy. In this presentation, we show analysis from the ASCENDS 2014 field campaign, exploring: (1) Horizontal XCO2 gradients measured by the lidar, (2) Comparisons of lidar XCO2 measurements against the Parameterized Chemistry Transport Model (PCTM), and (3) Lidar column water vapor measurements using a HDO absorption line that occurs next to the CO2 absorption line. This can reduce the uncertainty in the dry air column used in XCO2 retrievals.
Cold Spots in the Martian Polar Regions: Evidence of Carbon Dioxide Depletion?
NASA Technical Reports Server (NTRS)
Weiss, Benjamin P.; Ingersoll, Andrew P.
2000-01-01
Regions of very low, rapidly varying brightness temperatures have been observed near the martian winter poles by several spacecraft. One possibility is that the CO2 condensation temperature is lowered by depletion of CO2 in the air at the surface. We estimate the rate at which this low-molecular-weight air would disperse into the high-molecular-weight air above and show that it is generally faster than the rate of supply. This dispersal could be prevented if there is a strong temperature inversion (warm air above colder air) near the surface. Without an inversion, the entire atmospheric column could become depleted. However, depleted columns take a long time to form, and they are inconsistent with the rapid fluctuations in the cold spot locations and temperatures. Because low-altitude temperature inversions cannot be ruled out by existing observations, CO2 depletion is still a viable explanation for the martian cold spots.
NASA Astrophysics Data System (ADS)
Zhang, Yang; Hong, Chaopeng; Yahya, Khairunnisa; Li, Qi; Zhang, Qiang; He, Kebin
2016-08-01
An online-coupled meteorology-chemistry model, WRF/Chem-MADRID, has been deployed for real time air quality forecast (RT-AQF) in southeastern U.S. since 2009. A comprehensive evaluation of multi-year RT-AQF shows overall good performance for temperature and relative humidity at 2-m (T2, RH2), downward surface shortwave radiation (SWDOWN) and longwave radiation (LWDOWN), and cloud fraction (CF), ozone (O3) and fine particles (PM2.5) at surface, tropospheric ozone residuals (TOR) in O3 seasons (May-September), and column NO2 in winters (December-February). Moderate-to-large biases exist in wind speed at 10-m (WS10), precipitation (Precip), cloud optical depth (COT), ammonium (NH4+), sulfate (SO42-), and nitrate (NO3-) from the IMPROVE and SEARCH networks, organic carbon (OC) at IMPROVE, and elemental carbon (EC) and OC at SEARCH, aerosol optical depth (AOD) and column carbon monoxide (CO), sulfur dioxide (SO2), and formaldehyde (HCHO) in both O3 and winter seasons, column nitrogen dioxide (NO2) in O3 seasons, and TOR in winters. These biases indicate uncertainties in the boundary layer and cloud process treatments (e.g., surface roughness, microphysics cumulus parameterization), emissions (e.g., O3 and PM precursors, biogenic, mobile, and wildfire emissions), upper boundary conditions for all major gases and PM2.5 species, and chemistry and aerosol treatments (e.g., winter photochemistry, aerosol thermodynamics). The model shows overall good skills in reproducing the observed multi-year trends and inter-seasonal variability in meteorological and radiative variables such as T2, WS10, Precip, SWDOWN, and LWDOWN, and relatively well in reproducing the observed trends in surface O3 and PM2.5, but relatively poor in reproducing the observed column abundances of CO, NO2, SO2, HCHO, TOR, and AOD. The sensitivity simulations using satellite-constrained boundary conditions for O3 and CO show substantial improvement for both spatial distribution and domain-mean performance statistics. The model's forecasting skills for air quality can be further enhanced through improving model inputs (e.g., anthropogenic emissions for urban areas and upper boundary conditions of chemical species), meteorological forecasts (e.g., WS10, Precip) and meteorologically-dependent emissions (e.g., biogenic and wildfire emissions), and model physics and chemical treatments (e.g., gas-phase chemistry in winter conditions, cloud processes and their interactions with radiation and aerosol).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinnison, D.E.; Wuebbles, D.J.; Johnston, H.S.
1992-02-01
This study tests the transport processes in the LLNL two-dimensional chemical-radiative-transport model using recently reanalyzed carbon-14 and strontium-90 data. These radioactive tracers were produced bythe atmospheric nuclear bomb tests of 1952--58 and 1961--62, and they were measured at a few latitudes up to 35 kilometers over the period 1955--1970. Selected horizontal and vertical eddy diffusion coefficients were varied in the model to test their sensitivity to short and long term transpose of carbon-14. A sharp transition of K[sub zz] and K[sub yy] through the tropopause, as opposed to a slow transition between the same limiting values, shows a distinct improvementmore » in the calculated carbon-14 distributions, a distinct improvement in the calculated seasonal and latitudinal distribution of ozone columns (relative to TOMS observations), and a very large difference in the calculated ozone reduction by a possible fleet of High Speed Civil Transports. Calculated northern hemisphere carbon-14 is more sensitive to variation of K[sub yy] than are global ozone columns. Strontium-90 was used to test the LLNL tropopause height at four different latitudes. Starting with the 1960 background distribution of carbon-14, we calculate the input of carbon-14 as the sum of each nuclear test of the 1961--62 series, using two bomb-cloud rise models. With the Seitz bomb-rise formulation in the LLNL model, we find good agreement between calculated and observedcarbon-14 (with noticeable exceptions at the north polar tropopause and the short-term mid-latitude mid-stratosphere) between 1963 and 1970.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinnison, D.E.; Wuebbles, D.J.; Johnston, H.S.
1992-02-01
This study tests the transport processes in the LLNL two-dimensional chemical-radiative-transport model using recently reanalyzed carbon-14 and strontium-90 data. These radioactive tracers were produced bythe atmospheric nuclear bomb tests of 1952--58 and 1961--62, and they were measured at a few latitudes up to 35 kilometers over the period 1955--1970. Selected horizontal and vertical eddy diffusion coefficients were varied in the model to test their sensitivity to short and long term transpose of carbon-14. A sharp transition of K{sub zz} and K{sub yy} through the tropopause, as opposed to a slow transition between the same limiting values, shows a distinct improvementmore » in the calculated carbon-14 distributions, a distinct improvement in the calculated seasonal and latitudinal distribution of ozone columns (relative to TOMS observations), and a very large difference in the calculated ozone reduction by a possible fleet of High Speed Civil Transports. Calculated northern hemisphere carbon-14 is more sensitive to variation of K{sub yy} than are global ozone columns. Strontium-90 was used to test the LLNL tropopause height at four different latitudes. Starting with the 1960 background distribution of carbon-14, we calculate the input of carbon-14 as the sum of each nuclear test of the 1961--62 series, using two bomb-cloud rise models. With the Seitz bomb-rise formulation in the LLNL model, we find good agreement between calculated and observedcarbon-14 (with noticeable exceptions at the north polar tropopause and the short-term mid-latitude mid-stratosphere) between 1963 and 1970.« less
Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges
2012-08-10
The pressure drop and temperature drop on columns packed with 3- and 5-micron particles were measured using neat CO(2) at a flow rate of 5 mL/min, at temperatures from 20°C to 100°C, and outlet pressures from 80 to 300 bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath either bare or covered with foam insulation. The results show that the pressure drop depends on the outlet pressure, the operating temperature, and the thermal environment. A temperature drop was observed for all conditions studied. The temperature drop was relatively small (less than 3°C) for combinations of low temperature and high pressure. Larger temperature drops and density drops occurred at higher temperatures and low to moderate pressures. Covering the column with thermal insulation resulted in larger temperature drops and corresponding smaller density drops. At 20°C the temperature drop was never more than a few degrees. The largest temperature drops occurred for both columns when insulated at 80°C and 80 bar, reaching a maximum value of 21°C for the 5-micron column, and 26°C for the 3-micron column. For an adiabatic column, the temperature drop depends on the pressure drop, the thermal expansion coefficient, and the density and the heat capacity of the mobile phase fluid, and can be described by a simple mathematical relationship. For a fixed operating temperature and outlet pressure, the temperature drop increases monotonically with the pressure drop. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kraemer, S. B.; Crenshaw, D. M.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K.; George, I. M.; Turner, T. J.; Yaqoob, T.; Dunn, J. P.
2002-12-01
We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, obtained with the Space Telescope Imaging Spectrograph at high spectral resolution (λ /Δ λ = 30,000 - 46,000), simultaneously with Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner high-ionization narrow-line region (NLR). Assuming the NLR is fully covered, we find nonunity covering factors in the cores of several components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous C IV and N V columns for component 1 (at -1040 km s-1), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim (based on nonsimultaneous observations of N V and C IV). We find that dust-free models of the absorbers severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include dust (and thereby heavily deplete carbon) are successful in matching all of the observed ionic columns, and result in substantially lower ionization parameters and total column densities compared to dust-free models. Interestingly, these models yield the exact amount of dust needed to produce the observed reddening of the inner NLR, assuming a Galactic dust to gas ratio. The models produce little O VII and O VIII, indicating that none of the dusty UV absorbers is associated with a classic X-ray warm absorber.
NASA Technical Reports Server (NTRS)
Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.
2003-01-01
We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km/s), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models, and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers.
NASA Technical Reports Server (NTRS)
Pawson, Steven; Nielsen, J. Eric
2011-01-01
Attribution of observed atmospheric carbon concentrations to emissions on the country, state or city level is often inferred using "inversion" techniques. Such computations are often performed using advanced mathematical techniques, such as synthesis inversion or four-dimensional variational analysis, that invoke tracing observed atmospheric concentrations backwards through a transport model to a source region. It is, to date, not well understood how well such techniques can represent fine spatial (and temporal) structure in the inverted flux fields. This question is addressed using forward-model computations with idealized tracers emitted at the surface in a large number of grid boxes over selected regions and examining how distinctly these emitted tracers can be detected downstream. Initial results show that tracers emitted in half-degree grid boxes over a large region of the Eastern USA cannot be distinguished from each other, even at short distances over the Atlantic Ocean, when they are emitted in grid boxes separated by less than five degrees of latitude - especially when only total-column observations are available. A large number of forward model simulations, with varying meteorological conditions, are used to assess how distinctly three types observations (total column, upper tropospheric column, and surface mixing ratio) can separate emissions from different sources. Inferences inverse modeling and source attribution will be drawn.
Ibrahim, Taleb H; Sabri, Muhammad A; Khamis, Mustafa I
2018-05-10
Multiwalled carbon nanotubes and their magnetite derivatives were employed as adsorbents for emulsified oil removal from produced water. The experimental parameters for maximum emulsified oil removal efficiency and effective regeneration of these adsorbents were determined. The optimum parameters in terms of adsorbent dosage, contact time, salinity, pH and temperature were 3.0 g/L, 20.0 min, 0 ppm, 7.0 and 25°C for both adsorbents. Due to their low density, multiwalledcarbon nanotubes could not be successfully employed in packed bed columns. The magnetite derivative has a larger density and hence, for the removal of emulsified oil from produced water packed bed column studies were performed utilizing multiwalled carbon magnetite nanotubes. The packed bed column efficiency and behaviour were evaluated using Thomas, Clark, Yan et al. and Bohart and Adams models. The Yan model was found to best describe the column experimental data. The adsorbents were regenerated using n-hexane and reused several times for oil removal from produced water without any significant decrease in their initial adsorption capacities.
Behavior of short silica monolithic columns in high pressure gas chromatography.
Maniquet, Adrien; Bruyer, Nicolas; Raffin, Guy; Baco-Antoniali, Franck; Demesmay, Claire; Dugas, Vincent; Randon, Jérôme
2016-08-19
In order to analyze light hydrocarbons mixtures with silica monolithic columns, a conventional gas chromatograph was modified to work with carrier gas pressure as high as 60bar. To understand hydrodynamic flow and retention with short columns (less than 30cm), special attention was required due to the temperature difference between the oven area and the FID detector which contain a significant length of the column. Efficiency and selectivity using various carrier gases (helium, nitrogen and carbon dioxide) at different inlet pressure for different oven temperature were studied. Carrier gas nature was a very significant parameter: on one side, linked to adsorption mechanism for gases like nitrogen and carbon dioxide onto the stationary phase modifying retention and selectivity, on the other side in relation to the minimum theoretical plate height which was as low as 15μm (66 000 platem(-1)) using carbon dioxide as carrier gas. The chromatographic system was then used to separate methane, ethane, ethylene, acetylene, propane, cyclopropane, and butane in less than 30s. Copyright © 2016 Elsevier B.V. All rights reserved.
Gas chromatographic column for the Viking 1975 molecular analysis experiment
NASA Technical Reports Server (NTRS)
Novotny, M.; Hayes, J. M.; Bruner, F.; Simmonds, P. G.
1975-01-01
A gas chromatographic column has been developed for use in the remote analysis of the Martian surface. The column, which utilizes a liquid-modified organic adsorbent (Tenax) as the stationary phase, provides efficient transmission and resolution of nanogram quantities of organic materials in the presence of millionfold excesses of water and carbon dioxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... GREENHOUSE GAS REPORTING Suppliers of Petroleum Products § 98.398 Definitions. All terms used in this subpart... MM-1 Table MM-1 to Subpart MM of Part 98—Default Factors for Petroleum Products and Natural Gas Liquids 1 2 Products Column A: density(metric tons/bbl) Column B:carbon share (% of mass) Column C...
Hosono, Eiji; Wang, Yonggang; Kida, Noriyuki; Enomoto, Masaya; Kojima, Norimichi; Okubo, Masashi; Matsuda, Hirofumi; Saito, Yoshiyasu; Kudo, Tetsuichi; Honma, Itaru; Zhou, Haoshen
2010-01-01
A triaxial LiFePO4 nanowire with a multi wall carbon nanotube (VGCF:Vapor-grown carbon fiber) core column and an outer shell of amorphous carbon was successfully synthesized through the electrospinning method. The carbon nanotube core oriented in the direction of the wire played an important role in the conduction of electrons during the charge-discharge process, whereas the outer amorphous carbon shell suppressed the oxidation of Fe2+. An electrode with uniformly dispersed carbon and active materials was easily fabricated via a single process by heating after the electrospinning method is applied. Mossbauer spectroscopy for the nanowire showed a broadening of the line width, indicating a disordered coordination environment of the Fe ion near the surface. The electrospinning method was proven to be suitable for the fabrication of a triaxial nanostructure.
The OCO-2 tracks large increase in carbon release to the atmosphere during the 2014-2016 El Niño
NASA Astrophysics Data System (ADS)
Patra, Prabir
2017-04-01
The powerful El Niño event of 2015-2016 - the third most intense since the 1950s - has exerted a large impact on the Earth's natural climate system. The column-averaged CO2 dry-air mole fraction (XCO2) observations from the recently launched Orbiting Carbon Observatory-2 (OCO-2) satellite, from the Greenhouse gases observing satellite (GOSAT) and from the ground-based Total Carbon Column Observing Network (TCCON) are analyzed together with in situ observations for the period of September 2014 to October 2016 (25 months). From the differences between satellite (OCO-2) observations and simulations using an atmospheric chemistry-transport model, we estimate that, relative to the mean annual fluxes for 2013, over the period July 2015 to June 2016, the most recent El Niño has contributed to an excess CO2 emission from the Earth's surface (land+ocean) to the atmosphere in the range of 2.4 ± 0.2 PgC (1 Pg = 1015 g). The excess CO2 flux resulted primarily from reduction in vegetation uptake due to drought, and to a lesser degree from increased biomass burning. It is about the half of the CO2 flux anomaly (range: 4.4-6.7 PgC) estimated for the 1997/1998 El Niño. The annual total sink is estimated to be 3.9 ± 0.2 PgC for the assumed fossil fuel emission of 10.1 PgC in contrast to an average sink of more than 6 PgC yr-1 during 'reference' period of 2013-2014. The major uncertainty in attribution arise from error in anthropogenic emission trends, satellite data and atmospheric transport. We believe improvements in modeling atmospheric-CO2 are needed to enable attribution at smaller, regional scales.
NASA Astrophysics Data System (ADS)
Bonte, M.; van Breukelen, B. M.; Van Der Wielen, P. W. J. J.; Stuyfzand, P. J.
2012-04-01
Aquifer thermal energy storage (ATES) uses groundwater to store energy for heating or cooling purposes in the built environment. ATES systems are often located in the same aquifers used for public drinking water supply, leading to urgent questions on its environmental impacts. This contribution presents the results of research on the biogeochemical impacts of ATES in anoxic column experiments at 5, 12, 25, and 60° C. In- and effluents are analyzed for major ions, trace elements, heavy metals, dissolved organic carbon (DOC) and UV extinction. Terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes and analysis of adenosine triphosphate (ATP) were used to detect changes in the microbiological population and activity. Results from the column experiments at 5, 25, and 60° C compared to the reference column at 12° C showed a number of changes in biogeochemical conditions: At 5° C, only changes were observed in alkalinity and calcium concentrations, resulting from calcite dissolution. The 25° C and 60° C column effluents from a sediment containing Fe-(hydr)oxides showed an increase in arsenic concentrations, well above the drinking water limit. This is due to either (reductive) dissolution of, or desorption from, iron(hydro)xides containing arsenic. In addition, at these two temperatures sulfate reduction occurred while this was undetectable at 5 and 12° C within the given timeframe (25 days) and analytical accuracy. The carbon source for sulfate reduction is inferred to be sedimentary organic carbon. Increasing DOC with residence time in the 60° C effluent suggests that at 60° C the terminal sulfate reduction step is rate limiting, while at 25° C the enzymatic hydrolization step in sulfate reducing bacteria is overall rate limiting. Specific ultraviolet absorption (SUVA, the ratio of UV extinction and DOC) however shows a clear decrease in reactivity of the humic acid fraction in DOC. This means that the DOC accumulation at 60° C could also be interpreted as a shift from pure microbial mediated organic carbon hydrolysis to chemical organic carbon respiration, yielding less reactive humic acids. The results from the T-RFLP and ATP analyses showed that the microbial population at 60° C was clearly different and less active than at lower temperatures. Overall, it is concluded that water quality can change when higher temperatures (>25 °C) are invoked on anoxic sediments. Impacts from cold storage are limited. This implies that care should be taken when positioning ATES systems at higher temperatures in aquifers that are used for public drinking water supply.
NASA Astrophysics Data System (ADS)
Yang, E. G.; Kort, E. A.; Ware, J.; Ye, X.; Lauvaux, T.; Wu, D.; Lin, J. C.; Oda, T.
2017-12-01
Anthropogenic carbon dioxide (CO2) emissions are greatly perturbing the Earth's carbon cycle. Rising emissions from the developing world are increasing uncertainties in global CO2 emissions. With the rapid urbanization of developing regions, methods of constraining urban CO2 emissions in these areas can address critical uncertainties in the global carbon budget. In this study, we work toward constraining urban CO2 emissions in the Middle East by comparing top-down observations and bottom-up simulations of total column CO2 (XCO2) in four cities (Riyadh, Cairo, Baghdad, and Doha), both separately and in aggregate. This comparison involves quantifying the relationship for all available data in the period of September 2014 until March 2016 between observations of XCO2 from the Orbiting Carbon Observatory-2 (OCO-2) satellite and simulations of XCO2 using the Stochastic Time-Inverted Lagrangian Transport (STILT) model coupled with Global Data Assimilation System (GDAS) reanalysis products and multiple CO2 emissions inventories. We discuss the extent to which our observation/model framework can distinguish between the different emissions representations and determine optimized emissions estimates for this domain. We also highlight the implications of our comparisons on the fidelity of the bottom-up inventories used, and how these implications may inform the use of OCO-2 data for urban regions around the world.
Lorphensri, Oranuj; Sabatini, David A; Kibbey, Tohren C G; Osathaphan, Khemarath; Saiwan, Chintana
2007-05-01
The sorption and transport of three pharmaceutical compounds (acetaminophen, an analgesic; nalidixic acid, an antibiotic; and 17alpha-ethynyl estradiol, a synthetic hormone) were examined by batch sorption experiments and solute displacement in columns of silica, alumina, and low organic carbon aquifer sand at neutral pH. Silica and alumina were used to represent negatively-charged and positively-charged fractions of subsurface media. Column transport experiments were also conducted at pH values of 4.3, 6.2, and 8.2 for the ionizable nalidixic acid. The computer program UFBTC was used to fit the breakthrough data under equilibrium and nonequilibrium conditions with linear/nonlinear sorption. Good agreement was observed between the retardation factors derived from column model studies and estimated from equilibrium batch sorption studies. The sorption and transport of nalidixic acid was observed to be highly pH dependent, especially when the pH was near the pK(a) of nalidixic acid (5.95). Thus, near a compound's pK(a) it is especially important that the batch studies be performed at the same pH as the column experiment. While for ionic pharmaceuticals, ion exchange to oppositely-charged surfaces, appears to be the dominant adsorption mechanism, for neutral pharmaceuticals (i.e., acetaminophen, 17alpha-ethynyl estradiol) the sorption correlated well with the K(ow) of the pharmaceuticals, suggesting hydrophobically motivated sorption as the dominant mechanism.
Detection of a new carbon-chain molecule, CCO
NASA Technical Reports Server (NTRS)
Ohishi, Masatoshi; Ishikawa, Shin-Ichi; Yamada, Chikashi; Kanamori, Hideto; Irvine, William M.; Brown, Ronald D.; Godfrey, Peter D.; Kaifu, Norio; Suzuki, Hiroko
1991-01-01
A new carbon-chain molecule, CCO 3Sigma(-), has been detected in the cold dark molecular cloud TMC-1. The excitation temperature and the column density of CCO are, respectively, about 6 K and about 6 x 10 to the 11th/sq cm. This column density corresponds to a fractional abundance relative to H2 of about 6 x 10 to the -11th. This value is two orders of magnitude less than the abundance of the related carbon-chain molecule CCS, and about half that of C3O. The formation mechanism for CCO is discussed.
NASA Astrophysics Data System (ADS)
van Bree, L. G. J.; Peterse, F.; van der Meer, M. T. J.; Middelburg, J. J.; Negash, A. M. D.; De Crop, W.; Cocquyt, C.; Wieringa, J. J.; Verschuren, D.; Sinninghe Damsté, J. S.
2018-07-01
We studied the distribution and stable carbon-isotopic (δ13C) composition of various lipid biomarkers in suspended particulate matter (SPM) from the water column of Lake Chala, a permanently stratified crater lake in equatorial East Africa, to evaluate their capacity to reflect seasonality in water-column processes and associated changes in the lake's phytoplankton community. This lake has large seasonal variation in water-column dynamics (stratified during wet seasons and mixing during dry seasons) with associated phytoplankton succession. We analyzed lipid biomarkers in SPM collected monthly at 5 depths (0-80 m) from September 2013 to January 2015. Seasonal variation in total phytoplankton biovolume is strongly reflected in the concentration of phytadienes, a derivative of the general photosynthetic pigment chlorophyll. The wax and wane of several specific biomarker lipids between June and December 2014 reflect pronounced phytoplankton succession after deep mixing, starting with a long and sustained chlorophyte bloom (reflected by C23:1, C25:1 and C27:1n-alkenes, and C21 and C23n-alkanes), followed by a peak in diatoms between July and October (loliolide and isololiolide), and then eustigmatophytes (C30 and C32 1,15 diols) once stratification resumes in October. Peak abundance of the C19:1n-alkene during shallow mixing of the water column in January-February 2014 can be tentatively linked to the seasonal distribution of cyanobacteria. The concentration, seasonal variability, and low δ13C values of the C28 fatty acid in the SPM suggest that this biomarker is produced in the water column of Lake Chala instead of having the typically assumed vascular plant origin. The δ13C signature of particulate carbon and all aquatic biomarkers become increasingly more negative (by up to 16‰) during mixing-induced episodes of high productivity, whereas enrichment would be expected during such blooms. This reversed fractionation may be attributed to chemically enhanced diffusion, which generates depleted HCO3- under high pH (>9) conditions, as occur in the epilimnion of Lake Chala during periods of high productivity. The influence of this process can potentially explain previously observed 13C-depleted carbon signatures in the paleorecord of Lake Chala, and should be considered prior to paleorecord interpretation of organic-matter δ13C values derived (partially) from aquatic organisms in high-pH, i.e. alkaline, lakes.
Lakshmanan, Shyam; Murugesan, Thanapalan
2016-12-01
Activated carbon from coconut shell was used to investigate the adsorption of chlorate from a chlor-alkali plant's brine stream. The effect of pH, flowrate, chlorate and chloride concentration on the breakthrough curves were studied in small-scale column trials. The results obtained show enhanced adsorption at low flowrates, higher chlorate concentrations, and at a pH of 10. These studies show that introducing an activated carbon adsorption column just before the saturator would remove sufficient quantities of chlorate to allow more of the chlor-alkali plant's brine stream to be reused. From column dynamic studies, the Thomas model showed close approximation when the chlorate in the effluent was higher than breakthrough concentrations and there was close correlation at high influent concentration. The q o (maximum adsorption capacity) values were close to those obtained experimentally, indicating close representation of the breakthrough curve by the Thomas model.
We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column net metabolism and the formation of hypoxia (dissolved oxygen <2 ml O2 L-1) in the region. Rates of water column community respiration (R) and primary p...
Pseudowollastonite Carbonation Could Enable New Frontiers in Carbon Storage
NASA Astrophysics Data System (ADS)
Plattenberger, D.; Tao, Z.; Ling, F. T.; Peters, C. A.; Clarens, A. F.
2017-12-01
One of the primary challenges of CO2 mineral trapping is that precipitation reactions are reversible. A wide range of solid magnesium, iron, or calcium carbonates (such as magnesite, MgCO3) can be synthesized by reacting mineral silicates (such as olivine, Mg2SiO4) with CO2 to produce mineral carbonates. However, if CO2 remains present at high concentrations, as would be the case in many subsurface environments, the carbonate minerals could re-dissolve, making the precipitated carbonates impermanent forms of storage. In this work, we study pseudowollastonite (CaSiO3), a crystalline form of calcium silicate that is common in slags, cement, and calcium-rich volcanic formations, for its potential to produce other secondary mineral phases that may be resistant to dissolution under low pH conditions. These secondary mineral precipitation phases have morphologies and X-ray diffraction patterns that resemble both calcium silicate hydrate gels as well as crystalline calcium silicate carbonate hydrates. The combination of these phases forms a complex system that may resist acid attack while providing strength and limiting flow in the subsurface environment. High pressure and temperature column experiments carried out in our lab show that pseudowollastonite carbonation effectively lowers permeability in columns of sintered glass beads. Many of the pore throats are clogged by precipitates, as seen using micro X-ray tomography of intact columns and electron microscopy of thin sections. The spatial distribution of the products suggests that calcite forms toward the inlet of the columns where the pCO2 is highest. This forms a barrier that reduces, but does not eliminate, the availability of CO2 deeper in the porous media where the secondary phases precipitate. The existence of the calcite zone drives the reduction in permeability and the depth of this zone is self-limiting, which could have important implications for limiting leakage and unwanted migration of CO2 in some instances.
Talebi, Mohsen; Patil, Rahul A; Sidisky, Leonard M; Berthod, Alain; Armstrong, Daniel W
2017-12-06
Twelve bis- or dicationic ionic liquids (ILs) including eight based on imidazolium, a single one based on phosphonium, and three based on pyrrolidinium cationic units were prepared with the bis(trifluoromethyl sulfonyl) imide anion. The two identical cationic moieties were attached by different alkyl spacers having three or five carbons and differing alkyl substituents attached to the spacer. The SLB-IL111 column, as the most polar commercial stationary phase known, was included in the study for comparison. Isothermal separations of a rapeseed oil fatty acid methyl ester (FAME) sample were used to study and compare the 12 IL-based column performances and selectivities. The retention times of the most retained methyl esters of lignoceric (C24:0) and erucic (C22:1) acids were used to estimate the IL polarity. The phosphonium dicationic IL column was, by far, the least polar. Imidazolium-based dicationic IL columns were the most polar. Polarity and selectivity for the FAME separation were somewhat related. The separation of a 37-FAME standard mixture allowed the investigation of selectivity variations observed on the 12 IL-based columns under temperature gradients up to 230 °C. The remarkable selectivity of the IL-based columns is demonstrated by the detailed analysis of the cis/trans C18:1 isomers of a partially hydrogenated vegetable oil sample on 30-m columns, separations competing with that done following an "official method" performed on a 100-m column. Graphical abstract Separation of fatty acid methyl esters on a 30-m 3m 2 C 5 (mpy) 2 . 2NTf 2 branched-chain dicationic IL-based column. Branched chain dicationic ILs show great selectivity for separation of cis/trans, ω-3/ω-6, and detailed analysis of cis/trans fats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jiying; Reardon, Patrick; McKinley, James P.
Particulate phosphorus (PP) in the water column is an essential component of phosphorus (P) cycling in aquatic ecosystems yet its composition and transformations remain largely uncharacterized. To understand the roles of suspended particulates on regeneration of inorganic P (Pi) into the water column as well as sequestration into more stable mineral precipitates, we studied seasonal variation in both organic and inorganic P speciation in suspended particles in three sites in the Chesapeake Bay using sequential P extraction, 1D (31P) and 2D (1H-31P) nuclear magnetic resonance (NMR) spectroscopies, and electron microprobe analyses (EMPA). Remineralization efficiency of particulate P average 8% andmore » 56% in shallow and deep sites respectively, suggesting the importance of PP remineralization is in resupplying water column Pi. Strong temporal and spatial variability of organic P composition, distributions, and remineralization efficiency were observed relating to water column parameters such as temperature and redox conditions: concentration of orthophosphate monoesters and diesters, and diester-to-monoester (D/M) ratios decreased with depth. Both esters and the D/M ratios were lower in the hypoxic July and September. In contrast, pyrophosphate and orthophosphate increased with depth, and polyphosphates was high in the anoxic water column. Sequential extraction and EMPA analyses of the suspended particles suggest presence of Ca-bound phosphate in the water column. We hypothesize authigenic precipitation of carbonate fluorapatite and/or its precursor mineral(s) in Pi rich water column, supported by our thermodynamic calculations. Our results, overall, reveal the important role suspended particles play in P remineralization and P sequestration in the Chesapeake Bay water column, provide important implications on P bioavailability and P sinks in similar eutrophic coastal environments.« less
Modelling aspects regarding the control in 13C isotope separation column
NASA Astrophysics Data System (ADS)
Boca, M. L.
2016-08-01
Carbon represents the fourth most abundant chemical element in the world, having two stable and one radioactive isotope. The 13Carbon isotopes, with a natural abundance of 1.1%, plays an important role in numerous applications, such as the study of human metabolism changes, molecular structure studies, non-invasive respiratory tests, Alzheimer tests, air pollution and global warming effects on plants [9] A manufacturing control system manages the internal logistics in a production system and determines the routings of product instances, the assignment of workers and components, the starting of the processes on not-yet-finished product instances. Manufacturing control does not control the manufacturing processes themselves, but has to cope with the consequences of the processing results (e.g. the routing of products to a repair station). In this research it was fulfilled some UML (Unified Modelling Language) diagrams for modelling the C13 Isotope Separation column, implement in STARUML program. Being a critical process and needing a good control and supervising, the critical parameters in the column, temperature and pressure was control using some PLC (Programmable logic controller) and it was made some graphic analyze for this to observe some critical situation than can affect the separation process. The main parameters that need to be control are: -The liquid nitrogen (N2) level in the condenser. -The electrical power supplied to the boiler. -The vacuum pressure.
Assessing soil and groundwater contamination from biofuel spills.
Chen, Colin S; Shu, Youn-Yuen; Wu, Suh-Huey; Tien, Chien-Jung
2015-03-01
Future modifications of fuels should include evaluation of the proposed constituents for their potential to damage environmental resources such as the subsurface environment. Batch and column experiments were designed to simulate biofuel spills in the subsurface environment and to evaluate the sorption and desorption behavior of target fuel constituents (i.e., monoaromatic and polyaromatic hydrocarbons) in soil. The extent and reversibility of the sorption of aromatic biofuel constituents onto soil were determined. When the ethanol content in ethanol-blended gasoline exceeded 25%, enhanced desorption of the aromatic constituents to water was observed. However, when biodiesel was added to diesel fuel, the sorption of target compounds was not affected. In addition, when the organic carbon content of the soil was higher, the desorption of target compounds into water was lower. The empirical relationships between the organic-carbon normalized sorption coefficient (Koc) and water solubility and between Koc and the octanol-water partition coefficient (Kow) were established. Column experiments were carried out for the comparison of column effluent concentration/mass from biofuel-contaminated soil. The dissolution of target components depended on chemical properties such as the hydrophobicity and total mass of biofuel. This study provides a basis for predicting the fate and transport of hydrophobic organic compounds in the event of a biofuel spill. The spill scenarios generated can assist in the assessment of biofuel-contaminated sites.
Anaerobic biodegradation of cyanide under methanogenic conditions.
Fallon, R D; Cooper, D A; Speece, R; Henson, M
1991-01-01
Upflow, anaerobic, fixed-bed, activated charcoal biotreatment columns capable of operating at free cyanide concentrations of greater than 100 mg liter-1 with a hydraulic retention time of less than 48 h were developed. Methanogenesis was maintained under a variety of feed medium conditions which included ethanol, phenol, or methanol as the primary reduced carbon source. Under optimal conditions, greater than 70% of the inflow free cyanide was removed in the first 30% of the column height. Strongly complexed cyanides were resistant to removal. Ammonia was the nitrogen end product of cyanide transformation. In cell material removed from the charcoal columns, [14C]bicarbonate was the major carbon end product of [14C]cyanide transformation. PMID:1872600
A survey of carbon monoxide emission in dark clouds. [cosmic dust
NASA Technical Reports Server (NTRS)
Dickman, R. L.
1975-01-01
Results are reported of a CO and (C-13)O survey of 68 dark clouds from the Lynds catalog. CO was detected in 63 of the 64 sources in which it was searched for, and the (C-13)O line was seen in 52 of 55 clouds. There is a rather narrow distribution of CO peak line radiation temperatures about a mean of 6 K; this may reflect the presence of a roughly uniform kinetic temperature of 9.5 K in the sources. Despite the probably subthermal excitation temperature of the (C-13)O transition observed, derived (C-13)O column densities are most likely good to within a factor of 2. Typical CO column densities for the clouds surveyed are 5 x 10 to the 17-th power per sq cm, assuming a terrestrial carbon isotope ratio. All 68 clouds have previously been studied by Dieter in 6-cm H2CO absorption; a comparison of line widths shows the (C-13)O lines to generally be wider than their formaldehyde counterparts. Possible explanations of this fact in terms of internal cloud motions are discussed.
NASA Technical Reports Server (NTRS)
Chatfield, Robert B.; Podolske, James R. (Technical Monitor)
1995-01-01
The intercontinental buildup of tropospheric ozone, carbon monoxide, and other pollutants over the South Atlantic has been attributed to biomass burning over distant continents. We address several of the large questions regarding the nature and budget of this buildup have remained: What is the role of turning In South America or various portions of Africa in this accumulation? What are the relative roles of shallow and deep convection for emplacing various compounds in the free troposphere? Can we understand the ozone budget? We report the first simulations of a three-dimensional pollutant transport model, (GRACES) transport which is driven by fully reconstructed meteorology for the TRACE-A/SAFARI period of 1992. Greater detail is provided by a two-dimensional, detailed-chemistry model of more restricted regions of Africa. We find a predominant role for African emissions affecting the Atlantic during this period. Boundary-layer venting via PBL convection tends to build the observed carbon monoxide column over the ocean, while deep cumulonimbus processes tend to explain rather more of the ozone column.
NASA Astrophysics Data System (ADS)
Dickson, Alexander J.; Rees-Owen, Rhian L.; März, Christian; Coe, Angela L.; Cohen, Anthony S.; Pancost, Richard D.; Taylor, Kyle; Shcherbinina, Ekaterina
2014-06-01
Records of the paleoenvironmental changes that occurred during the Paleocene-Eocene Thermal Maximum (PETM) are preserved in sedimentary rocks along the margins of the former Tethys Ocean and Peri-Tethys. This paper presents new geochemical data that constrain paleoproductivity, sediment delivery, and seawater redox conditions, from three sites that were located in the Peri-Tethys region. Trace and major element, iron speciation, and biomarker data indicate that water column anoxia was established during episodes when inputs of land-derived higher plant organic carbon and highly weathered detrital clays and silts became relatively higher. Anoxic conditions are likely to have been initially caused by two primary processes: (i) oxygen consumption by high rates of marine productivity, initially stimulated by the rapid delivery of terrestrially derived organic matter and nutrients, and (ii) phosphorus regeneration from seafloor sediments. The role of the latter process requires further investigation before its influence on the spread of deoxygenated seawater during the PETM can be properly discerned. Other oxygen-forcing processes, such as temperature/salinity-driven water column stratification and/or methane oxidation, are considered to have been relatively less important in the study region. Organic carbon enrichments occur only during the initial stages of the PETM as defined by the negative carbon isotope excursions at each site. The lack of observed terminal stage organic carbon enrichment does not support a link between PETM climate recovery and the sequestration of excess atmospheric CO2 as organic carbon in this region; such a feedback may, however, have been important in the early stages of the PETM.
Seasonal occurrence of anoxygenic photosynthesis in Tillari and Selaulim reservoirs, Western India
NASA Astrophysics Data System (ADS)
Kurian, S.; Roy, R.; Repeta, D. J.; Gauns, M.; Shenoy, D. M.; Suresh, T.; Sarkar, A.; Narvenkar, G.; Johnson, C. G.; Naqvi, S. W. A.
2012-07-01
Phytoplankton and bacterial pigment compositions were determined by high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) in two freshwater reservoirs (Tillari Dam and Selaulim Dam), which are located at the foothills of the Western Ghats in India. These reservoirs experience anoxia in the hypolimnion during summer. Water samples were collected from both reservoirs during anoxic periods while one of them (Tillari Reservoir) was also sampled in winter, when convective mixing results in well-oxygenated conditions throughout the water column. During the period of anoxia (summer), bacteriochlorophyll (BChl) e isomers and isorenieratene, characteristic of brown sulfur bacteria, were dominant in the anoxic (sulfidic) layer of the Tillari Reservoir under low light intensities. The winter observations showed the dominance of small cells of Chlorophyll b-containing green algae and cyanobacteria, with minor presence of fucoxanthin-containing diatoms and peridinin-containing dinoflagellates. Using total BChl e concentration observed in June, the standing stock of brown sulfur bacteria carbon in the anoxic compartment of Tillari Reservoir was estimated to be 2.27 gC m-2, which is much higher than the similar estimate for carbon derived from oxygenic photosynthesis (0.82 gC m-2. The Selaulim Reservoir also displayed similar characteristics with the presence of BChl e isomers and isorenieratene in the anoxic hypolimnion during summer. Although sulfidic conditions prevailed in the water column below the thermocline, the occurrence of photo-autotrophic bacteria was restricted only to mid-depths (maximal concentration of BChl e isomers was detected at 0.2% of the surface incident light). This shows that the vertical distribution of photo-autotrophic sulfur bacteria is primarily controlled by light penetration in the water column where the presence of H2S provides a suitable biogeochemical environment for them to flourish.
A fully automated FTIR system for remote sensing of greenhouse gases in the tropics
NASA Astrophysics Data System (ADS)
Geibel, M. C.; Gerbig, C.; Feist, D. G.
2010-07-01
This article introduces a new fully automated FTIR system that is part of the Total Carbon Column Observing Network. It will provide continuous ground-based measurements of column-averaged volume mixing ratio for CO2, CH4 and several other greenhouse gases in the tropics. Housed in a 20-foot shipping container it was developed as a transportable system that could be deployed almost anywhere in the world. We describe the automation concept which relies on three autonomous subsystems and their interaction. Crucial components like a sturdy and reliable solar tracker dome are described in detail. First results of total column measurements at Jena, Germany show that the instrument works well and can provide diurnal as well as seasonal cycle for CO2. Instrument line shape measurements with an HCl cell suggest that the instrument stays well-aligned over several months. After a short test campaign for side by side intercomaprison with an existing TCCON instrument in Australia, the system will be transported to its final destination Ascension Island.
Effect of substrate depth and rain-event history on the pollutant abatement of green roofs.
Seidl, Martin; Gromaire, Marie-Christine; Saad, Mohamed; De Gouvello, Bernard
2013-12-01
This study compares the effectiveness of two different thickness of green roof substrate with respect to nutrient and heavy metal retention and release. To understand and evaluate the long term behaviour of green roofs, substrate columns with the same structure and composition as the green roofs, were exposed in laboratory to artificial rain. The roofs act as a sink for C, N, P, zinc and copper for small rain events if the previous period was principally dry. Otherwise the roofs may behave as a source of pollutants, principally for carbon and phosphorus. Both field and column studies showed an important retention for Zn and Cu. The column showed, however, lower SS, DOC and metal concentrations in the percolate than could be observed in the field even if corrected for run-off. This is most probably due to the difference in exposition history and weathering processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Chao; Liu, Changli; Han, Guilin; Liu, Congqiang
2017-09-01
Carbonate weathering, as a significant vector for the movement of carbon both between and within ecosystems, is strongly influenced by agricultural fertilization, since the addition of fertilizers tends to change the chemical characteristics of soil such as the pH. Different fertilizers may exert a different impact on carbonate weathering, but these discrepancies are as yet not well-known. In this study, a field column experiment was conducted to explore the response of carbonate weathering to the addition of different fertilizers. We compared 11 different treatments, including a control treatment, using three replicates per treatment. Carbonate weathering was assessed by measuring the weight loss of limestone and dolostone tablets buried at the bottom of soil-filled columns. The results show that the addition of urea, NH4NO3, NH4HCO3, NH4Cl and (NH4)2CO3 distinctly increased carbonate weathering, which was attributed to the nitrification of NH4+. The addition of Ca3(PO4)2, Ca-Mg-P and K2CO3 induced carbonate precipitation due to the common ion effect. The addition of (NH4)3PO4 and NaNO3 had a relatively small impact on carbonate weathering in comparison to those five NH4-based fertilizers above. The results of NaNO3 treatment raise a new question: the negligible impact of nitrate on carbonate weathering may result in an overestimation of the impact of N fertilizer on CO2 consumption by carbonate weathering on the regional/global scale if the effects of NO3 and NH4 are not distinguished.
NASA Astrophysics Data System (ADS)
Druhan, Jennifer L.; Bill, Markus; Lim, HsiaoChien; Wu, Cindy; Conrad, Mark E.; Williams, Kenneth H.; DePaolo, Donald J.; Brodie, Eoin L.
2014-01-01
Here we report a combined analysis of carbon mass balance based on isotopic labeling and microbiological characterization during organic carbon stimulated bioreduction of a subsurface sediment in a large laboratory column experimental system. This combination of approaches allows quantification of both the cycling of carbon through multiple redox pathways and the associated spatial and temporal evolution of bacterial communities in response to this nutrient source. Carbon isotope mass balance facilitated by the use of 13C-labeled acetate as the electron donor showed evidence for a net loss of sediment organic carbon over the course of the amendment experiment. Furthermore, these data clearly demonstrated a source of isotopically labeled inorganic carbon that was not attributable to primary metabolism by acetate-oxidizing microorganisms. Fluid samples collected weekly over the duration of the 43-day amendment at <20 cm intervals along the flow path were analyzed for microbial composition by pyrosequencing of ribosomal RNA genes. The microbial community composition was transient, with distinct occurrences of Azoarcus, Geobacter and multiple sulfate reducing species over the course of the experiment. In combination with DNA sequencing data, the anomalous carbon cycling process is shown to occur exclusively during the period of predominant Geobacter species growth. Pyrosequencing indicated, and targeted cloning and sequencing confirmed the presence of several bacteriovorous protozoa, including species of the Breviata, Planococcus and Euplotes genera. Cloning and qPCR analysis demonstrated that Euplotes species were most abundant and displayed a growth trajectory that closely followed that of the Geobacter population. These results suggest a previously undocumented secondary turnover of biomass carbon related to protozoan grazing that was not sufficiently prevalent to be observed in bulk concentrations of carbon species in the system, but was clearly identified in the partitioning of carbon isotopes. This study demonstrates evidence for predator-prey relationships that impact subsurface microbial community dynamics and provides a novel indication of the impact of this relationship on the flux of carbon through a system via the microbial biomass pool. Overall, our approach provides high temporal and spatial sampling resolution at field relevant flow rates, while minimizing effects of mixing and transverse dispersion. The result is a quantitative carbon budget accounting for a diversity of processes that should be considered for inclusion in reactive transport models that aim to predict carbon turnover, nutrient flux, and redox reactions in natural and stimulated subsurface systems. the mobilization of previously stabilized, sediment-bound carbon; a carbon mass balance for a through-flowing sediment column over the course of a 43-day amendment using 13C-labeled acetate; a phylogenetic microbial community structure at <20 cm sampling resolution with distance away from the organic carbon source weekly over the 43-day amendment; protozoan grazing on the active Geobacteraceae population and the rapid turnover of microbial biomass carbon as a secondary cycling pathway. Such a high resolution, combined analysis of microbial populations and the associated carbon mass balance in a through-flowing system at field relevant flow rates provides novel, quantitative insights into the interface between biogeochemical cycling and bulk carbon fluxes in the near-surface environment.
Glycolipid class profiling by packed-column subcritical fluid chromatography.
Deschamps, Frantz S; Lesellier, Eric; Bleton, Jean; Baillet, Arlette; Tchapla, Alain; Chaminade, Pierre
2004-06-18
The potential of packed-column subcritical fluid chromatography (SubFC) for the separation of lipid classes has been assessed in this study. Three polar stationary phases were checked: silica, diol, and poly(vinyl alcohol). Carbon dioxide (CO2) with methanol as modifier was used as mobile phase and detection performed by evaporative light scattering detection. The influence of methanol content, temperature, and pressure on the chromatographic behavior of sphingolipids and glycolipids were investigated. A complete separation of lipid classes from a crude wheat lipid extract was achieved using a modifier gradient from 10 to 40% methanol in carbon dioxide. Solute selectivity was improved using coupled silica and diol columns in series. Because the variation of eluotropic strength depending on the fluid density changes, a normalized separation factor product (NSP) was used to select the nature, the number and the order of the columns to reach the optimum glycolipid separation.
Reduced carbon uptake during the 2010 Northern Hemisphere summer from GOSAT
NASA Astrophysics Data System (ADS)
Guerlet, S.; Basu, S.; Butz, A.; Krol, M.; Hahne, P.; Houweling, S.; Hasekamp, O. P.; Aben, I.
2013-05-01
Column-averaged dry air mole fractions of carbon dioxide (XCO2) measured by the Greenhouse Gases Observing Satellite (GOSAT) reveal significant interannual variation (IAV) of CO2uptake during the Northern Hemisphere summer between 2009 and 2010. The XCO2drawdown in 2010 is shallower than in 2009 by 2.4 ppm and 3.0 ppm over North America and Eurasia, respectively. Reduced carbon uptake in the summer of 2010 is most likely due to the heat wave in Eurasia driving biospheric fluxes and fire emissions. A joint inversion of GOSAT and surface data estimates an integrated biospheric and fire emission anomaly in April-September of 0.89 ±0.20 PgC over Eurasia. In contrast, inversions of surface measurements alone fail to replicate the observed XCO2IAV and underestimate emission IAV over Eurasia. This shows the value of GOSAT XCO2in constraining the response of land-atmosphere exchange of CO2 to climate events.
Carbon Composition of Particulate Organic Carbon in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Rogers, K.; Montoya, J. P.; Weber, S.; Bosman, S.; Chanton, J.
2016-02-01
The Deepwater Horizon blowout released 5.0x1011 g C from gaseous hydrocarbons and up to 6.0x1011g C from oil into the water column. Another carbon source, adding daily to the water column, leaks from the natural hydrocarbon seeps that pepper the seafloor of the Gulf of Mexico. How much of this carbon from the DWH and natural seeps is assimilated into particulate organic carbon (POC) in the water column? We filtered seawater collected in 2010, 2012, and 2013 from seep and non-seep sites, collecting POC on 0.7µm glass microfiber filters and analyzing the POC for stable and radiocarbon isotopes. Mixing models based on carbon isotopic endmembers of methane, oil, and modern production were used to estimate the percentage of hydrocarbon incorporated into POC. Significant differences were seen between POC from shallow and deep waters and between POC collected from seep, non-seep, and blowout sites; however yearly differences were not as evident suggesting the GOM has a consistent supply of depleted carbon. Stable carbon isotopes signatures of POC in the Gulf averaged -23.7±2.5‰ for shallow samples and -26.65±2.9‰ for deep POC samples, while radiocarbon signatures averaged -100.4±146.1‰ for shallow and -394.6±197‰ for deep samples. POC in the northern Gulf are composed of 23-91% modern carbon, 2-21% methane, and 0-71% oil. Oil plays a major role in the POC composition of the GOM, especially at the natural seep GC600.
History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions
Wilkin, R.T.; Arthur, M.A.; Dean, W.E.
1997-01-01
A detailed study of size distributions of framboidal pyrite in Holocene Black Sea sediments establishes the timing of a change from deposition under an oxic water column to deposition under an anoxic and sulfidic water column. In the most recent carbonate-rich sediments (Unit I) and in the organic carbon-rich sapropel (Unit II), framboid size distributions are remarkably uniform (mean diameter= 5 ??m); over 95% of the framboids in Unit I and Unit II are < 7 ??m in diameter. These properties of framboidal pyrite are consistent with framboid nucleation and growth within an anoxic and sulfidic water column, followed by transport to the sediment-water interface, cessation of pyrite growth due to the exhaustion of reactive iron, and subsequent burial. In contrast, the organic carbon-poor sediments of lacustrine Unit III contain pyrite framboids that are generally much larger in size (mean diameter = 10 ??m). In Unit III, over 95% of the framboids are < 25 ??m in diameter, 40% of framboids are between 7 ??m and 25 ??m, and framboids up to 50 ??m in diameter are present. This distribution of sizes suggests framboid nucleation and growth within anoxic sediment porewaters. These new data on size distributions of framboidal pyrite confirm that the development of water-column anoxia in the Black Sea coincided with the initiation of deposition of laminated Unit II sapropels.
NASA Astrophysics Data System (ADS)
Cavagna, A.-J.; Dehairs, F.; Woule-Ebongué, V.; Bouillon, S.; Planchon, F.; Delille, B.; Bouloubassi, I.
2012-02-01
The combination of concentrations and δ13C signatures of Particulate Organic Carbon (POC) and sterols provides a powerful approach to study ecological and environmental changes both in the modern and ancient ocean, but its application has so far been restricted to the surface area. We applied this tool to study the biogeochemical changes in the modern ocean water column during the BONUS-GoodHope survey (Feb-Mar 2008) from Cape Basin to the northern part of the Weddell Gyre. Cholesterol and brassicasterol were chosen as ideal biomarkers of the heterotrophic and autotrophic carbon pools, respectively, because of their ubiquitous and relatively refractory nature. We document depth distributions of concentrations (relative to bulk POC) and δ13C signatures of cholesterol and brassicasterol from the Cape Basin to the northern Weddell Gyre combined with CO2 aq. surface concentration variation. While relationships between surface water CO2 aq. and δ13C of bulk POC and biomarkers have been previously established for surface waters, our data show that these remain valid in deeper waters, suggesting that δ13C signatures of certain biomarkers could be developed as proxies for surface water CO2 aq. Our data suggest a key role of zooplankton fecal aggregates in carbon export for this part of the Southern Ocean. We observed a general increase in sterol δ13C signatures with depth, which is likely related to a combination of particle size effects, selective feeding on larger cells by zooplankton, and growth rate related effects Additionally, in the southern part of the transect south of the Polar Front (PF), the release of sea-ice algae is hypothesized to influence the isotopic signature of sterols in the open ocean. Overall, combined use of δ13C and concentrations measurements of both bulk organic C and specific sterol markers throughout the water column shows the promising potential of analyzing δ13C signatures of individual marine sterols to explore the recent history of plankton and the fate of organic matter in the SO.
ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS
Bailes, R.H.; Ellis, D.A.; Long, R.S.
1958-12-16
Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.
Microbial and sponge loops modify fish production in phase-shifting coral reefs.
Silveira, Cynthia B; Silva-Lima, Arthur W; Francini-Filho, Ronaldo B; Marques, Jomar S M; Almeida, Marcelo G; Thompson, Cristiane C; Rezende, Carlos E; Paranhos, Rodolfo; Moura, Rodrigo L; Salomon, Paulo S; Thompson, Fabiano L
2015-10-01
Shifts from coral to algae dominance of corals reefs have been correlated to fish biomass loss and increased microbial metabolism. Here we investigated reef benthic and planktonic primary production, benthic dissolved organic carbon (DOC) release and bacterial growth efficiency in the Abrolhos Bank, South Atlantic. Benthic DOC release rates are higher while water column bacterial growth efficiency is lower at impacted reefs. A trophic model based on the benthic and planktonic primary production was able to predict the observed relative fish biomass in healthy reefs. In contrast, in impacted reefs, the observed omnivorous fish biomass is higher, while that of the herbivorous/coralivorous fish is lower than predicted by the primary production-based model. Incorporating recycling of benthic-derived carbon in the model through microbial and sponge loops explains the difference and predicts the relative fish biomass in both reef types. Increased benthic carbon release rates and bacterial carbon metabolism, but decreased bacterial growth efficiency could lead to carbon losses through respiration and account for the uncoupling of benthic and fish production in phase-shifting reefs. Carbon recycling by microbial and sponge loops seems to promote an increase of small-bodied fish productivity in phase-shifting coral reefs. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Farrell, T. B.; Quick, A. M.; Reeder, W. J.; Tonina, D.; Benner, S. G.; Feris, K. P.
2013-12-01
It has been estimated that 10% of greenhouse gas N2O emissions take place within river networks, with the majority of these processes occurring in the hyporheic zone (HZ). These emissions are the result of microbially-mediated nitrogen transformations (i.e. nitrification and denitrification) and yet the role of microbial distribution and function in this complex system is not well understood. We hypothesized that the concentration and availability of organic carbon influences the production of redox gradients, DIN (via mineralization, nitrification, and loss of DIN via denitrification), and ultimately N2O production in the HZ by controlling the distribution and activity of denitrifying microbial communities. Further, we hypothesized that by linking the distribution of denitrifying microbial communities and their associated functional genes (i.e. the relative abundance of N2O vs. N2 producing genetic elements) to flow dynamics and biogeochemical processes, we can begin to better understand what controls N2O production in hyporheic networks. To address these hypotheses we performed a series of column experiments designed to determine the influence of carbon concentration on redox gradient development and N2O flux along a one-dimensional flow path. Intact sediment cores were amended with 0.01%, 0.05%, 0.15%, and 0.5% dry mass riparian vegetation (>90% Populus sp.) to serve as an endogenous particulate organic matter (POM) source. During quasi-steady state conditions dissolved oxygen (DO), NH4+, NO3-, and N2O levels were measured. As predicted, a positive relationship between the level of POM amendment and development of a gradient of oxic and anoxic conditions was observed. There was negligible N2O production within columns inoculated with 0.01% and 0.05% DOC likely because these POC treatments were too low to create anoxic conditions necessary to stimulate denitrification. Maximum N2O flux was observed with the 0.15% POC treatment. Both oxic and anoxic conditions were present in this treatment; conditions suitable for both nitrification and denitrification. However, N2O production was only observed where DO was below detection indicating denitrification as the source of N2O rather than nitrification. Minimal N2O flux was observed in the 0.5% POC treatment. This column was mostly anoxic, likely not supporting nitrification, and thereby limiting denitrification potential. During denitrification, expression of nitrous oxide reductase can enzymatically mediate the reduction of N2O to N2 and is encoded for by the nosZ gene. On-going work includes quantifying the distribution of the nosZ gene within each treatment to determine if the relative abundance of this genetic element correlates with N2O production or if production is primarily controlled by carbon availability and redox conditions.
Changes in metal mobility associated with bark beetle-induced tree mortality.
Mikkelson, Kristin M; Bearup, Lindsay A; Navarre-Sitchler, Alexis K; McCray, John E; Sharp, Jonathan O
2014-05-01
Recent large-scale beetle infestations have caused extensive mortality to conifer forests resulting in alterations to dissolved organic carbon (DOC) cycling, which in turn can impact metal mobility through complexation. This study analyzed soil-water samples beneath impacted trees in concert with laboratory flow-through soil column experiments to explore possible impacts of the bark beetle infestation on metal release and transport. The columns mimicked field conditions by introducing pine needle leachate and artificial rainwater through duplicate homogenized soil columns and measuring effluent metal (focusing on Al, Cu, and Zn) and DOC concentrations. All three metals were consistently found in higher concentrations in the effluent of columns receiving pine needle leachate. In both the field and laboratory, aluminum mobility was largely correlated with the hydrophobic fraction of the DOC, while copper had the largest correlation with total DOC concentrations. Geochemical speciation modeling supported the presence of DOC-metal complexes in column experiments. Copper soil water concentrations in field samples supported laboratory column results, as they were almost twice as high under grey phase trees than under red phase trees further signifying the importance of needle drop. Pine needle leachate contained high concentrations of Zn (0.1 mg l(-1)), which led to high effluent zinc concentrations and sorption of zinc to the soil matrix representing a future potential source for release. In support, field soil-water samples underneath beetle-impacted trees where the needles had recently fallen contained approximately 50% more zinc as samples from under beetle-impacted trees that still held their needles. The high concentrations of carbon in the pine needle leachate also led to increased sorption in the soil matrix creating the potential for subsequent carbon release. While unclear if manifested in adjacent surface waters, these results demonstrate an increased potential for Zn, Cu, and Al mobility, along with increased deposition of metals and carbon beneath beetle-impacted trees.
Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments
NASA Astrophysics Data System (ADS)
Larson, T. E.
2012-12-01
Transport of carbon dioxide through porous media can be affected by diffusion, advection and adsorption processes. Developing new tools to understand which of these processes dominates migration of CO2 or other gases in the subsurface is important to a wide range of applications including CO2 storage. Whereas advection rates are not affected by isotope substitution in CO2, adsorption and diffusion constants are. For example, differences in the binary diffusion constant calculated between C12O2-He and C13O2-He results in a carbon isotope fractionation whereby the front of the chromatographic peak is enriched in carbon-12 and the tail of the peak is enriched in carbon-13. Interestingly, adsorption is shown to have an opposite, apparent inverse affect whereby the lighter isotopologues of CO2 are preferentially retained by the chromatographic column and the heavier isotopologues are eluted first. This apparent inverse chromatographic effect has been ascribed to Van der Waals dispersion forces. Smaller molar volumes of the heavier isotopologues resulting from increased bond strength (shorter bond length) effectively decreases Van der Waals forces in heavier isotopologues compared to lighter isotopologues. Here we discuss the possible application of stable isotope values measured across chromatographic peaks to differentiate diffusion-dominated from adsorption-dominated transport processes for CO2. Separate 1-dimensional flow-through columns were packed with quartz and illite, and one remained empty. Dry helium was used as a carrier gas. Constant flow rate, temperature and column pressure were maintained. After background CO2 concentrations were minimized and constant, a sustained pulse of CO2 was injected at the head of the column and the effluent was sampled at 4 minute intervals for CO2 concentration, and carbon and oxygen isotope ratios. The quartz-sand packed and empty columns resulted in similar trends in concentration and isotope ratios whereby CO2 concentrations steadily increased and became constant after two pore volumes of CO2 flushed through the column. Carbon and oxygen isotope values of the front of the peak (first pore volume) are 2‰ and 5‰ lower than the injected CO2 values, respectively. These results are fit very well using a mass transfer model that only includes binary diffusion between CO2 and helium that account for isotope substitution in the reduced mass coefficient. In contrast to these diffusion-dominated systems, CO2 break through curves from the illite packed column show strong adsorption effects that include a +180‰ increase in the carbon isotope ratio at the front of the peak followed by a 20‰ decrease. Up to 20 pore volumes of CO2 were flushed through the column before the carbon and oxygen isotope values stabilized to their starting values. These adsorption effects cannot be modeled using mass isotope effects alone, and instead must include additional parameters such as volume effects. These results demonstrate the importance of understanding the isotopic effects of CO2 in different substrates, and potentially offers a tracer tool that can be used to quantify surface area, transport distance, and surface reactivity of CO2. Additional applications may include more affectively determining transfer rates of CO2 across low permeability zones.
A new fully automated FTIR system for total column measurements of greenhouse gases
NASA Astrophysics Data System (ADS)
Geibel, M. C.; Gerbig, C.; Feist, D. G.
2010-10-01
This article introduces a new fully automated FTIR system that is part of the Total Carbon Column Observing Network (TCCON). It will provide continuous ground-based measurements of column-averaged volume mixing ratio for CO2, CH4 and several other greenhouse gases in the tropics. Housed in a 20-foot shipping container it was developed as a transportable system that could be deployed almost anywhere in the world. We describe the automation concept which relies on three autonomous subsystems and their interaction. Crucial components like a sturdy and reliable solar tracker dome are described in detail. The automation software employs a new approach relying on multiple processes, database logging and web-based remote control. First results of total column measurements at Jena, Germany show that the instrument works well and can provide parts of the diurnal as well as seasonal cycle for CO2. Instrument line shape measurements with an HCl cell suggest that the instrument stays well-aligned over several months. After a short test campaign for side by side intercomaprison with an existing TCCON instrument in Australia, the system will be transported to its final destination Ascension Island.
CO2 Absorption from Biogas by Glycerol: Conducted in Semi-Batch Bubble Column
NASA Astrophysics Data System (ADS)
puji lestari, Pratiwi; Mindaryani, Aswati; Wirawan, S. K.
2018-03-01
Biogas is a renewable energy source that has been developed recently. The main contents of Biogas itself are Methane and carbon dioxide (CO2) where Methane is the main component of biogas with CO2 as the highest impurities. The quality of biogas depends on the CO2 content, the lower CO2 levels, the higher biogas quality. Absorption is one of the methods to reduce CO2 level. The selections of absorbent and appropriate operating parameters are important factors in the CO2 absorption from biogas. This study aimed to find out the design parameters for CO2 absorption using glycerol that represented by the overall mass transfer coefficient (KLa) and Henry’s constant (H). This study was conducted in semi-batch bubble column. Mixed gas was contacted with glycerol in a bubble column. The concentration of CO2 in the feed gas inlet and outlet columns were analysed by Gas Chromatograph. The variables observed in this study were superficial gas velocity and temperatures. The results showed that higher superficial gas velocity and lower temperature increased the rate of absorption process and the amount of CO2 absorbed.
NASA Technical Reports Server (NTRS)
McMillan, W. W.; McCourt, M. L.; Revercomb, H. E.; Knuteson, R. O.; Christian, T. J.; Doddridge, B. G.; Hobbs, P. V.; Lukovich, P. C.; Novelli, P. C.; Piketh, S. J.
2003-01-01
Retrieved tropospheric carbon monoxide (CO) column densities are presented for more than 9000 spectra obtained by the University of Wisconsin-Madison (UWis) Scanning High-Resolution Interferometer Sounder (SHIS) during a flight on the NASA ER-2 on 7 September 2000 as part of the Southern African Regional Science Initiative (SAFARI 2000) dry season field campaign. Enhancements in tropospheric column CO were detected in the vicinity of a controlled biomass burn in the Timbavati Game Reserve in northeastern South Africa and over the edge of the river of smoke in south central Mozambique. Relatively clean air was observed over the far southern coast of Mozambique. Quantitative comparisons are presented with in situ measurements from five different instruments flying on two other aircraft: the University of Washington Convair-580 (CV) and the South African Aerocommander JRB in the vicinity of the Timbavati fire. Measured tropospheric CO columns (extrapolated from 337 to 100 mb) of 2.1 x 10(exp 18) per square centimeter in background air and up to 1.5 x 10(exp 19) per square centimeter in the smoke plume agree well with SHIS retrieved tropospheric CO columns of (2.3 plus or minus 0.25) x 10(exp 18) per square centimeter over background air near the fire and (1.5 plus or minus 0.35) x 10(exp 19) per square centimeter over the smoke plume. Qualitative comparisons are presented with three other in situ CO profiles obtained by the South African JRA aircraft over Mozambique and northern South Africa showing the influence of the river of smoke.
Using NDACC column measurements of carbonyl sulfide to estimate its sources and sinks
NASA Astrophysics Data System (ADS)
Wang, Yuting; Marshall, Julia; Palm, Mathias; Deutscher, Nicholas; Roedenbeck, Christian; Warneke, Thorsten; Notholt, Justus; Baker, Ian; Berry, Joe; Suntharalingam, Parvadha; Jones, Nicholas; Mahieu, Emmanuel; Lejeune, Bernard; Hannigan, James; Conway, Stephanie; Strong, Kimberly; Campbell, Elliott; Wolf, Adam; Kremser, Stefanie
2016-04-01
Carbonyl sulfide (OCS) is taken up by plants during photosynthesis through a similar pathway as carbon dioxide (CO2), but is not emitted by respiration, and thus holds great promise as an additional constraint on the carbon cycle. It might act as a sort of tracer of photosynthesis, a way to separate gross primary productivity (GPP) from the net ecosystem exchange (NEE) that is typically derived from flux modeling. However the estimates of OCS sources and sinks still have significant uncertainties, which make it difficult to use OCS as a photosynthetic tracer, and the existing long-term surface-based measurements are sparse. The NDACC-IRWG measures the absorption of OCS in the atmosphere, and provides a potential long-term database of OCS total/partial columns, which can be used to evaluate OCS fluxes. We have retrieved OCS columns from several NDACC sites around the globe, and compared them to model simulation with OCS land fluxes based on the simple biosphere model (SiB). The disagreement between the measurements and the forward simulations indicates that (1) the OCS land fluxes from SiB are too low in the northern boreal region; (2) the ocean fluxes need to be optimized. A statistical linear flux model describing OCS is developed in the TM3 inversion system, and is used to estimate the OCS fluxes. We performed flux inversions using only NOAA OCS surface measurements as an observational constraint and with both surface and NDACC OCS column measurements, and assessed the differences. The posterior uncertainties of the inverted OCS fluxes decreased with the inclusion of NDACC data comparing to those using surface data only, and could be further reduced if more NDACC sites were included.
Fletcher, Paul D I; Savory, Luke D; Woods, Freya; Clarke, Andrew; Howe, Andrew M
2015-03-17
With the aim of elucidating the details of enhanced oil recovery by surfactant solution flooding, we have determined the detailed behavior of model systems consisting of a packed column of calcium carbonate particles as the porous rock, n-decane as the trapped oil, and aqueous solutions of the anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The AOT concentration was varied from zero to above the critical aggregation concentration (cac). The salt content of the aqueous solutions was varied to give systems of widely different, post-cac oil-water interfacial tensions. The systems were characterized in detail by measuring the permeability behavior of the packed columns, the adsorption isotherms of AOT from the water to the oil-water interface and to the water-calcium carbonate interface, and oil-water-calcium carbonate contact angles. Measurements of the percent oil recovery by pumping surfactant solutions into calcium carbonate-packed columns initially filled with oil were analyzed in terms of the characterization results. We show that the measured contact angles as a function of AOT concentration are in reasonable agreement with those calculated from values of the surface energy of the calcium carbonate-air surface plus the measured adsorption isotherms. Surfactant adsorption onto the calcium carbonate-water interface causes depletion of its aqueous-phase concentration, and we derive equations which enable the concentration of nonadsorbed surfactant within the packed column to be estimated from measured parameters. The percent oil recovery as a function of the surfactant concentration is determined solely by the oil-water-calcium carbonate contact angle for nonadsorbed surfactant concentrations less than the cac. For surfactant concentrations greater than the cac, additional oil removal occurs by a combination of solubilization and emulsification plus oil mobilization due to the low oil-water interfacial tension and a pumping pressure increase.
The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission
NASA Technical Reports Server (NTRS)
Crisp, David
2003-01-01
A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.
NASA Astrophysics Data System (ADS)
Brankovits, David; Pohlman, John W.; Niemann, Helge; Leigh, Mary Beth; Casso, Michael; Alvarez Noguera, Fernando; Lehmann, Moritz F.; Iliffe, Thomas M.
2016-04-01
In coastal karst terrains, anchialine caves that meander in density stratified aquifers provide an exceptional opportunity for scientists to study in situ biogeochemical processes within the groundwater. The Caribbean coast of Mexico's Yucatan Peninsula contains over 1000 km of mapped cave passages, the densest known accumulation of anchialine caves in the world. A decades-old study based on the simple observation of 13C-depleted biomass in the cave-adapted fauna suggested biogeochemical processes related to methane-linked carbon cycling and/or other chemoautotrophic pathways as a source of energy and carbon. In this study, we utilized cave diving and a novel sampling device (the Octopipi) to obtain cm-scale water column profiles of methane, DOC and DIC concentrations and stable carbon isotope ratios to identify the energy sources and microbial processes that sustain life in these subterranean estuaries. High concentrations (up to 9522 nM) low-δ13C (as low as -67.5 permil) methane near the ceiling of the cave (in the fresh water section of the stratified water column) and evidence for methane oxidation in the brackish water portion of the water column suggest methane availability and consumption. Profiles obtained by the Octopipi demonstrate that virtually all of the methane (˜99%) is oxidized at the interface of anoxic freshwater and hypoxic brackish water masses. The high-methane water mass near the ceiling also contained elevated concentrations of DOC (851 μM) that displayed comparatively high δ13C (-27.8 to -28.2 permil), suggesting terrestrial organic matter input from the overlying soils. Low-methane brackish and saline water was characterized by lower DOC concentration (15 to 97 μM), yet with similar δ13C (-25.9 to -27.2 permil), suggesting significant terrestrial organic matter consumption or removal with increasing depth, from fresh to saline water, within the water column. The presence of 13C-depleted fatty acids (e.g., C16:1ω7c with δ13C-values as low as -54.1 permil) and deuterium-depleted δD values (e.g., as low as δD = -225 permil) from tissues of cave-adapted shrimps suggest that methanotrophic bacteria contributed a substantial fraction of their diet. Molecular microbial community analyses are underway to identify the taxonomic associations and syntrophy effects within a subterranean microbial loop that provides carbon and energy to the anchialine food web. These findings provide novel insight into the carbon cycle and methane dynamics for a largely unknown, yet widespread coastal habitat beneath the Earth's surface.
NASA Astrophysics Data System (ADS)
Pilskaln, C. H.; Wang, A. Z.; Lawson, G. L.; Hayashi, K.; Salisbury, J.
2016-02-01
Recent studies indicate that the U.S. Northeast coastal region, particularly the Gulf of Maine (GoME), may be more susceptible to ocean acidification (OA) than previously thought due to the low buffer capacity, low pH, and low calcium carbonate saturation measured in the region. In particular, sub-surface waters of the GoME already experience under-saturation with respect to aragonite in spring and summer and recent data suggest that water-column aragonite dissolution may occur throughout the year, even when aragonite is slightly over-saturated. This dissolution process appears associated with organic carbon remineralization in the extensive benthic nepheloid layers and may thus represent a major control over the calcium carbonate (CaCO3) budget of deep, near-bottom waters of the GoME. These findings are surprising for shallow, non-upwelling shelf systems and have important implications for the CaCO3 cycle, shell-building organisms, and the GoME planktonic ecosystem. Additionally, freshening of the GoME over the past several decades due to an increase in low-salinity water input originating in the Labrador Sea may further decrease seawater pH and aragonite saturation in the gulf. We present a variety of biogeochemical data that suggest linkages between potential water column CaCO3 dissolution and their impacts on the GoME carbon cycle.
Zauner, Jordan; Lusk, Ryan; Koski, Steven; Poe, Donald P
2012-11-30
When a packed column is operated at temperatures and pressures near the critical point in supercritical fluid chromatography, the thermal environment in which it is placed has a significant impact on retention and efficiency. We measured the retention factors, plate heights, and related parameters for elution of a test mixture of alkylbenzenes with 5% methanol/95% carbon dioxide mobile phase on a 250 mm × 4.6 mm i.d. column packed with 5-micron Luna-C18 particles. Separations were performed at outlet pressures from 100 to 150 bar and a column oven temperature of 323K. For a bare column thermostated with convective air, significant efficiency losses were observed for outlet pressures equal to or less than 120 bar. These large efficiency losses are attributed to radial temperature gradients. Addition of foam insulation resulted in significant improvements in efficiency. Operating the column in still air using a commercially available column heater provided the best overall performance, with no measurable efficiency loss over the entire range of pressures studied. A reduced plate height of 1.88 was obtained at an optimum flow rate of 3.0 mL/min at 100 bar outlet pressure and with the temperature of the incoming mobile phase set approximately 2.3K above the temperature of the column oven. Retention time repeatability for all three thermal conditions was equal to or less than 0.5% RSD. These results demonstrate that it is possible to perform fast, efficient separations with excellent repeatability using SFC under near-critical conditions if the thermal environment is optimized to minimize the generation of radial temperature gradients. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Smith, Michael D.; Daerden, Frank; Neary, Lori; Khayat, Alain
2018-02-01
Radiative transfer modeling of near-infrared spectra taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument onboard Mars Reconnaissance Orbiter (MRO) enables the column-integrated abundance of carbon monoxide (CO) and water vapor (H2O) to be retrieved. These results provide a detailed global description of the seasonal and spatial distribution of CO in the Mars atmosphere and new information about the interannual variability of H2O. The CRISM retrievals show the seasonally and globally averaged carbon monoxide mixing ratio to be near 800 ppm, but with strong seasonal variations, especially at high latitudes. At low latitudes, the carbon monoxide mixing ratio varies in response to the mean seasonal cycle of surface pressure and shows little variation with topography. At high latitudes, carbon monoxide is depleted in the summer hemisphere by a factor of two or more, while in the winter hemisphere there is relatively higher mixing ratio in regions with low-lying topography. Water vapor shows only modest interannual variations, with the largest observed difference being unusually dry conditions in the wake of the Mars Year 28 global dust storm. Modeling results from the GEM-Mars general circulation model generally reproduce the observed seasonal and spatial trends and provide insight into the underlying physical processes.
NASA Astrophysics Data System (ADS)
Parker, H. A.; Hedelius, J.; Viatte, C.; Wunch, D.; Wennberg, P. O.; Chen, J.; Wofsy, S.; Jones, T.; Franklin, J.; Dubey, M. K.; Roehl, C. M.; Podolske, J. R.; Hillyard, P. W.; Iraci, L. T.
2015-12-01
Measurement, reporting and verification (MRV) of anthropogenic emissions and natural sources and sinks of carbon dioxide (CO2) and methane (CH4) are crucial to predict climate change and develop transparent accounting policies to contain climate forcing. Remote sensing technologies are monitoring column averaged dry air mole fractions of CO2 and CH4 (XCO2 & XCH4) from ground and space (OCO-2 and GOSAT) with solar spectroscopy enabling direct MRV. However, current ground based coverage is sparse due to the need for large and expensive high-resolution spectrometers that are part of the Total Column Carbon Observing Network (TCCON, Bruker 125HR). This limits our MRV and satellite validation abilities, both regionally and globally. There are striking monitoring gaps in Asia, South America and Africa where the CO2 emissions are growing and there is a large uncertainty in fluxes from land use change, biomass burning and rainforest vulnerability. To fill this gap we evaluate the precision, accuracy and stability of compact, affordable and easy to use low-resolution spectrometers (Bruker EM27/SUN) by comparing with XCO2 and XCH4 retrieved from much larger high-resolution TCCON instruments. As these instruments will be used in a variety of locations, we evaluate their performance by comparing with 2 previous and 4 current United States TCCON sites in different regions up to 2700 km apart. These sites range from polluted to unpolluted, latitudes of 32 to 46°N, and altitudes of 230 to 2241 masl. Comparisons with some of these sites cover multiple years allowing assessment of the EM27/SUN performance not only in various regions, but also over an extended period of time and with different seasonal influences. Results show that our 2 EM27/SUN instruments capture the diurnal variability of the aforementioned constituents very well, but with offsets from TCCON and long-term variability which may be due in part to the extensive movement these spectrometers were subjected to. These off-the-shelf spectrometers should dramatically expand the coverage of regional XCO2 and XCH4 observations, particularly in gap regions. Increased temporal and spacial resolution on global carbon data will lead to more reliable information when considering climate change policy and funding.
40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass
Code of Federal Regulations, 2011 CFR
2011-07-01
... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...
40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass
Code of Federal Regulations, 2013 CFR
2013-07-01
... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...
40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass
Code of Federal Regulations, 2014 CFR
2014-07-01
... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...
40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass
Code of Federal Regulations, 2012 CFR
2012-07-01
... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...
Overview of NASA's Carbon Monitoring System Flux-Pilot Project
NASA Technical Reports Server (NTRS)
Pawson, Steven; Gunson, Michael R.; Jucks, Kenneth
2011-01-01
NASA's space-based observations of physical, chemical and biological parameters in the Earth System along with state-of-the-art modeling capabilities provide unique capabilities for analyses of the carbon cycle. The Carbon Monitoring System is developing an exploratory framework for detecting carbon in the environment and its changes, with a view towards contributing to national and international monitoring activities. The Flux-Pilot Project aims to provide a unified view of land-atmosphere and ocean-atmosphere carbon exchange, using observation-constrained models. Central to the project is the application of NASA's satellite observations (especially MODIS), the ACOS retrievals of the JAXA-GOSAT observations, and the "MERRA" meteorological reanalysis produced with GEOS-S. With a primary objective of estimating uncertainty in computed fluxes, two land- and two ocean-systems are run for 2009-2010 and compared with existing flux estimates. An transport model is used to evaluate simulated CO2 concentrations with in-situ and space-based observations, in order to assess the realism of the fluxes and how uncertainties in fluxes propagate into atmospheric concentrations that can be more readily evaluated. Finally, the atmospheric partial CO2 columns observed from space are inverted to give new estimates of surface fluxes, which are evaluated using the bottom-up estimates and independent datasets. The focus of this presentation will be on the science goals and current achievements of the pilot project, with emphasis on how policy-relevant questions help focus the scientific direction. Examples include the issue of what spatio-temporal resolution of fluxes can be detected from polar-orbiting satellites and whether it is possible to use space-based observations to separate contributions to atmospheric concentrations of (say) fossil-fuel and biological activity
Precipitated Silica from Pumice and Carbon Dioxide Gas (Co2) in Bubble Column Reactor
NASA Astrophysics Data System (ADS)
Dewati, R.; Suprihatin, S.; Sumada, K.; Muljani, S.; Familya, M.; Ariani, S.
2018-01-01
Precipitated silica from silica and carbon dioxide gas has been studied successfully. The source of silica was obtained from pumice stone while precipitation process was carried out with carbon dioxide gas (CO2). The sodium silicate solution was obtained by extracting the silica from pumice stone with sodium hydroxide (NaOH) solution and heated to 100 °C for 1 h. The carbon dioxide gas is injected into the aqueous solution of sodium silicate in a bubble column reactor to form precipitated silica. m2/g. The results indicate that the products obtained are precipitate silica have surface area in the range of 100 - 227 m2/g, silica concentration more than 80%, white in appearance, and silica concentration reached 90% at pH 7.
NASA Astrophysics Data System (ADS)
Morino, I.; Velazco, V. A.; Schwandner, F. M.; Macatangay, R. C.; Griffith, D. W. T.
2015-12-01
TCCON (Total Carbon Column Observing Network) measurements of CO2 and CH4 have been and are currently used extensively and globally for satellite validation, for comparison with atmospheric chemistry models and to study atmosphere-biosphere exchanges of carbon. With the global effort to cap greenhouse gas emissions, TCCON has become vital for validating satellite-based greenhouse gas data from past, current and future missions like Japanese GOSAT (Greenhouse Gas Observing SATellite) and GOSAT-2, NASA's OCO-2 (Orbiting Carbon Observatory-2) and OCO-3, ESA's Carbon Monitoring Satellite (CarbonSat), Chinese TanSat, and others. The lack of reliable validation data for the satellite-based greenhouse gas observing missions in the tropical regions is a common limitation in global carbon-cycle modeling studies that have a tropical component. The international CO2 modeling community have specified a requirement for "expansion of the CO2 observation network within the tropics" to reduce uncertainties in regional estimates of CO2 sources and sinks using atmospheric transport models. A TCCON site in the western tropical Pacific is a logical next step in obtaining additional knowledge that would greatly contribute to the understanding of the Earth's atmosphere and better constraining a major tropical region experiencing tremendous economic and population growth. Here, we present a complete site assessment for a possible TCCON site in the Philippines and our decision on the site where a new TCCON FTS will be installed. This site assessment was conducted in cooperation with the Energy Development Corporation (EDC, Philippines), National Institute for Environmental Studies (NIES, Japan), University of Wollongong (UoW, Australia), NASA's Jet Propulsion Laboratory (JPL), the University of the Philippines (UP-IESM), the TCCON science team, and the GOSAT-2 science team.
First results from Orbiting Carbon Observatory-2 (OCO-2) and prospects for OCO-3
NASA Astrophysics Data System (ADS)
Eldering, Annmarie; Basilio, Ralph; Schimel, David; O'Dell, Chris
2017-04-01
Since September 6, 2014, NASA's Orbiting Carbon Observatory-2 (OCO-2) instrument has been routinely returning almost one million soundings of the column averaged CO2 dry air mole fraction, XCO2, over the sunlit hemisphere each day. On monthly time scales, 7 to 21% of these soundings are sufficiently cloud free to yield full-column estimates of XCO2 of the with single sounding random errors near 0.5 parts per million (ppm) at solar zenith angles as large as 70 degrees. These XCO2 estimates are being validated against results obtained from the Total Carbon Column Observing Network (TCCON) and other standards to assess their accuracy and correct regional scale biases. After correction, the median bias between OCO-2 and TCCON XCO2 estimates is less than 0.5 ppm, and root-mean-square (RMS) differences are typically less than 1.5 ppm. The OCO-2 data are now being used to investigate the impacts of the 2015/2016 El Nino on the carbon cycle, as well as examples of local emission enhancements and the seasonal patterns of solar induced fluorescence. Highlights of the latest science findings will be presented. The Orbiting Carbon Observatory-3 (OCO-3) instrument will explore, for the first time, daily variations in the release and uptake of carbon dioxide by plants and trees in the major tropical rainforests of South America, Africa, and Southeast Asia, the largest stores of aboveground carbon on our planet. NASA will develop and assemble the instrument using spare materials from OCO-2 and host the instrument on the International Space Station (ISS) (earliest launch readiness in early 2018.) The low-inclination ISS orbit lets OCO-3 sample the tropics and sub-tropics across the full range of daylight hours with dense observations at northern and southern mid-latitudes (+/- 52°). At the same time, OCO-3 will also collect measurements of solar-induced chlorophyll fluorescence (SIF) over these areas. The instrument utilizes an agile, 2-axis pointing mechanism (PMA), providing the capability to look towards the bright reflection from the ocean and validation targets. The PMA also allows for a snapshot mapping mode to collect dense datasets over 100km by 100km areas. Measurements over urban centers could aid in making estimates of fossil fuel CO2 emissions. This is critical because the largest urban areas (25 megacities) account for 75% of the global total fossil fuel CO2 emissions, and rapid growth (> 10% per year) is expected in developing regions over the coming 10 years. Similarly, the snapshot mapping mode can be used to sample regions of interest for the terrestrial carbon cycle. For example, snapshot maps of 100km by 100km could be gathered in the Amazon or key agricultural regions. In addition, there is potential to utilize data from ISS instruments ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station) and GEDI (Global Ecosystem Dynamics Investigation), which measure other key variables of the control of carbon uptake by plants, to complement OCO-3 data in science analysis.
Biochars made from agro-industrial by-products remove chlorine and lower water toxicity
NASA Astrophysics Data System (ADS)
Tzachristas, Andreas; Xirou, Maria; Manariotis, Ioannis D.; Dailianis, Stefanos; Karapanagioti, Hrissi K.
2016-04-01
Chlorination is the most common disinfection process for water and treated wastewater. For the industrial use of water in food production, chlorine can add undesired taste and odor to the final product. For this reason, dechlorination is desired for food industries that use municipal tap water. For treated wastewater discharge or reuse, chlorine can be toxic to the receiving aqueous systems and to the irrigated plants. In both the above cases, dechlorination is also required. Traditionally activated carbon has been used as the ideal material for the removal of chlorine. The main mechanisms that describe the interaction between activated carbon and HOCl or OCl- are described by the following equations (AWWA, 1990): HOCl + C* → C*O + H+ + Cl- (1), OCl- + C* → C*O + Cl- (2) Where C* and C*O represent the activated carbon surface and a surface oxide, respectively. The present study proposes the use of agro-industrial by-products for the production of biochars that will be used for dechlorination of tap-water used for food-industry production. Different raw materials such as malt spent rootlets, coffee residue, olive and grape seeds, etc. are used for the production of biochar. Various temperatures and air-to-solid ratios are tested for optimizing biochar production. Batch tests as well as a column test are employed to study the dechlorination efficiency and kinetics of the different raw and biochar materials as well as those of commercial activated carbons. As chlorine concentration increases the removal also increases linearily. After 1 and 24 hours of contact the chlorine relative removal efficiencies for the biochar made from olive seeds are 50 and 77 ± 4%, respectively. It seems that the removal kinetics are faster during the first hour; then, removal continues but with a slower rate. Most of the biochars tested (with 3 mg of solid in 20 mL of chlorine solution at initial concentration Co=1.5 mg/L) demonstrated removal efficiencies with an average of 9.4 ± 0.5 mg/g. For the two commercial activated carbons, removal efficiencies were 11.4 ± 0.2 mg/g. The column experiment also showed positive results; no breakthrough has been observed after 1L of chlorine solution has passed through a column packed with 4 g of biochar made from the pyrolysis of grape seeds. Toxicity tests were also performed with the chlorine solution before and after passing through this column. The toxicity of the solution decreased after passing through the column packed with biochar suggesting that no toxic compounds are formed during the removal of chlorine by the biochar. The overall idea of this study is the sustainable use of the solid by-products of a food industry or producer to treat water or treated wastewater in order to enhance its quality and lower its toxicity. American Water Works Association (AWWA) 1990 Water quality and treatment, a handbook of community water supplies, Fourth edition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, H.; Hedelius, J.
During the summer of 2015, a field campaign took place to help characterize off-the-shelf portable solar-viewing Fourier Transform Spectrometer (FTS) instruments (EM27/SUN). These instruments retrieve greenhouse gas (GHG) abundances from direct solar spectra. A focus of this campaign was to test possible dependence on different atmospheric conditions. Along with the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site in Oklahoma, experiments were conducted in Pasadena, California; Park Falls, Wisconsin; and the Armstrong Flight Research Center (AFRC), California. These locations are home to instruments in the Total Column Carbon Observing Network (TCCON). TCCONmore » measurements were used as standards for the portable (EM27/SUN) measurements. Comparisons between the two types of instruments are crucial in the attempt to use the portable instruments to broaden the capabilities of GHG measurements for monitoring, reporting, and verification of carbon in the atmosphere. This campaign was aimed at testing the response of the portable FTS to different atmospheric conditions both local and regional. Measurements made at ARM SGP provided data in an agricultural environment with a relatively clean atmosphere with respect to pollution. Due to the homogeneity of the region surrounding Lamont, Oklahoma, portable FTS measurements were less effected by large changes in column GHG abundances from air mass movement between regions. These conditions aided in characterizing potential artificial solar zenith angle dependence of the retrievals. Data collected under atmospheric conditions at ARM SGP also provide for the analysis of cloud interference on solar spectra. In situ measurements were also made using a Picarro isotopic methane analyzer to determine surface-level in situ GHG concentrations and possible influences due to local agriculture and nearby towns. Data collected in this campaign have been presented via a poster at the American Geophysical Union Fall Meeting in 2015 and is included in a paper that is in preparation to be submitted to Atmospheric Measurement Techniques in 2016.« less
``Recycling'' Geophysics: Monitoring and Isotopic Analysis of Engineered Biological Systems
NASA Astrophysics Data System (ADS)
Doherty, R.; Singh, K. P.; Ogle, N.; Ntarlagiannis, D.
2010-12-01
The emerging sub discipline of biogeophysics has provoked debate on the mechanisms of microbial processes that may contribute to geophysical signatures. At field scales geophysical signatures are often non unique due to the many parameters (physical, chemical, and biological) that are involved. It may be easier to apply geophysical techniques such as electrodic potential (EP), self potential (SP) and induced polarization (IP) to engineered biological systems where there is a degree of control over the design of the physical and chemical domain. Here we present results of a column experiment that was designed to anaerobically biodegrade dissolved organic matter in landfill leachate. The column utilises a recycled porous media (concrete) to help sequester organic carbon. Electrodic potential, self potential and induced polarisation are used in conjunction with chemical and isotopic techniques to monitor the effectiveness of this approach. Preliminary carbon and oxygen isotopic analysis on concrete from the column in contact with leachate show isotopic enrichment suggesting abiotic precipitation of carbonates.
NASA Technical Reports Server (NTRS)
Kniffen, D. A.; Fichtel, C. E.; Thompson, D. J.
1976-01-01
Theoretical considerations and analysis of the results of gamma ray astronomy suggest that the galactic cosmic rays are dynamically coupled to the interstellar matter through the magnetic fields, and hence the cosmic ray density should be enhanced where the matter density is greatest on the scale of galactic arms. This concept has been explored in a galactic model using recent 21 cm radio observations of the neutral hydrogen and 2.6 mm observations of carbon monoxide, which is considered to be a tracer of molecular hydrogen. The model assumes: (1) cosmic rays are galactic and not universal; (2) on the scale of galactic arms, the cosmic ray column (surface) density is proportional to the total interstellar gas column density; (3) the cosmic ray scale height is significantly larger than the scale height of the matter; and (4) ours is a spiral galaxy characterized by an arm to interarm density ratio of about 3:1.
NASA Technical Reports Server (NTRS)
Zsargo, J.; Federman, S. R.; Cardelli, Jason A.
1997-01-01
High quality spectra of interstellar absorption from C I toward beta(sup 1) S(sub co), rho O(sub ph) A, and chi O(sub ph) were obtained with the Goddard High Resolution Spectrograph on HST. Many weak lines were detected within the observed wavelength intervals: 1150-1200 A for beta(sup 1) S(sub co) and 1250-1290 A for rho O(sub ph) A and chi O(sub ph). Curve-of-growth analyses were performed in order to extract accurate column densities and Doppler parameters from lines with precise laboratory-based f-values. These column densities and b-values were used to obtain a self-consistent set of f-values for all the observed C I lines. A particularly important constraint was the need to reproduce data for more than one line of sight. For about 50% of the lines, the derived f-values differ appreciably from the values quoted by Morton.
NASA Technical Reports Server (NTRS)
Ott, Lesley; Pawson, Steven; Collatz, Jim; Watson, Gregg; Menemenlis, Dimitris; Brix, Holger; Rousseaux, Cecile; Bowman, Kevin; Bowman, Kevin; Liu, Junjie;
2014-01-01
NASAs Carbon Monitoring System (CMS) Flux Pilot Project (FPP) was designed to better understand contemporary carbon fluxes by bringing together state-of-the art models with remote sensing datasets. Here we report on simulations using NASAs Goddard Earth Observing System Model, version 5 (GEOS-5) which was used to evaluate the consistency of two different sets of observationally constrained land and ocean fluxes with atmospheric CO2 records. Despite the strong data constraint, the average difference in annual terrestrial biosphere flux between the two land (NASA Ames CASA and CASA-GFED) models is 1.7 Pg C for 2009-2010. Ocean models (NOBM and ECCO2-Darwin) differ by 35 in their global estimates of carbon flux with particularly strong disagreement in high latitudes. Based upon combinations of terrestrial and ocean fluxes, GEOS-5 reasonably simulated the seasonal cycle observed at northern hemisphere surface sites and by the Greenhouse gases Observing SATellite (GOSAT) while the model struggled to simulate the seasonal cycle at southern hemisphere surface locations. Though GEOS-5 was able to reasonably reproduce the patterns of XCO2 observed by GOSAT, it struggled to reproduce these aspects of AIRS observations. Despite large differences between land and ocean flux estimates, resulting differences in atmospheric mixing ratio were small, typically less than 5 ppmv at the surface and 3 ppmv in the XCO2 column. A statistical analysis based on the variability of observations shows that flux differences of these magnitudes are difficult to distinguish from natural variability, regardless of measurement platform.
Hung, Chuan-Hsi; Zukowski, Janusz; Jensen, David S; Miles, Andrew J; Sulak, Clayton; Dadson, Andrew E; Linford, Matthew R
2015-09-01
Three mixed-mode high-performance liquid chromatography columns packed with superficially porous carbon/nanodiamond/amine-polymer particles were used to separate mixtures of cannabinoids. Columns evaluated included: (i) reversed phase (C18 ), weak anion exchange, 4.6 × 33 mm, 3.6 μm, and 4.6 × 100 mm, 3.6 μm, (ii) reversed phase, strong anion exchange (quaternary amine), 4.6×33 mm, 3.6 μm, and (iii) hydrophilic interaction liquid chromatography, 4.6 × 150 mm, 3.6 μm. Different selectivities were achieved under various mobile phase and stationary phase conditions. Efficiencies and peak capacities were as high as 54 000 N/m and 56, respectively. The reversed phase mixed-mode column (C18 ) retained tetrahydrocannabinolic acid strongly under acidic conditions and weakly under basic conditions. Tetrahydrocannabinolic acid was retained strongly on the reversed phase, strong anion exchange mixed-mode column under basic polar organic mobile phase conditions. The hydrophilic interaction liquid chromatography column retained polar cannabinoids better than the (more) neutral ones under basic conditions. A longer reversed phase (C18 ) mixed-mode column (4.6 × 100 mm) showed better resolution for analytes (and a contaminant) than a shorter column. Fast separations were achieved in less than 5 min and sometimes 2 min. A real world sample (bubble hash extract) was also analyzed by gradient elution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Kaye S.; Zhu, Wenyi; Barnett, Mark O.
2013-05-13
Experimental approach Column experiments were devised to investigate the role of changing fluid composition on mobility of uranium through a sequence of geologic media. Fluids and media were chosen to be relevant to the ground water plume emanating from the former S-3 ponds at the Oak Ridge Integrated Field Research Challenge (ORIFC) site. Synthetic ground waters were pumped upwards at 0.05 mL/minute for 21 days through layers of quartz sand alternating with layers of uncontaminated soil, quartz sand mixed with illite, quartz sand coated with iron oxides, and another soil layer. Increases in pH or concentration of phosphate, bicarbonate, ormore » acetate were imposed on the influent solutions after each 7 pore volumes while uranium (as uranyl) remained constant at 0.1mM. A control column maintained the original synthetic groundwater composition with 0.1mM U. Pore water solutions were extracted to assess U retention and release in relation to the advective ligand or pH gradients. Following the column experiments, subsamples from each layer were characterized using microbeam X-ray absorption spectroscopy (XANES) in conjunction with X-ray fluorescence mapping and compared to sediment core samples from the ORIFC, at SSRL Beam Line 2-3. Results U retention of 55-67mg occurred in phosphate >pH >control >acetate >carbonate columns. The mass of U retained in the first-encountered quartz layer in all columns was highest and increased throughout the experiment. The rate of increase in acetate- and bicarbonate-bearing columns declined after ligand concentrations were raised. U also accumulated in the first soil layer; the pH-varied column retained most, followed by the increasing-bicarbonate column. The mass of U retained in the upper layers was far lower. Speciation of U, interpreted from microbeam XANES spectra and XRF maps, varied within and among the columns. Evidence of minor reduction to U(IV) was observed in the first-encountered quartz layer in the phosphate, bicarbonate, and pH columns while only U(VI) was observed in the control and acetate columns. In the soil layer, the acetate and bicarbonate columns both indicate minor reduction to U(IV), but U(VI) predominated in all columns. In the ORIFC soils, U was consistently present as U(VI); sorption appears to be the main mechanism of association for U present with Fe and/or Mn, while U occurring with P appears in discrete particles consistent with a U mineral phase. U in soil locations with no other elemental associations shown by XRF are likely uranium oxide phases.« less
Adsorption of Cd (II) on Modified Granular Activated Carbons: Isotherm and Column Study.
Rodríguez-Estupiñán, Paola; Erto, Alessandro; Giraldo, Liliana; Moreno-Piraján, Juan Carlos
2017-12-20
In this work, equilibrium and dynamic adsorption tests of cadmium Cd (II) on activated carbons derived from different oxidation treatments (with either HNO₃, H₂O₂, or NaOCl, corresponding to GACoxN, GACoxP, and GACoxCl samples) are presented. The oxidation treatments determined an increase in the surface functional groups (mainly the acidic ones) and a decrease in the pH PZC (except for the GACoxCl sample). A slight alteration of the textural parameters was also observed, which was more significant for the GACoxCl sample, in terms of a decrease of both Brunauer-Emmett-Teller ( BET ) surface area and micropore volume. Adsorption isotherms were determined for all the adsorbents and a significant increase in the adsorption performances of the oxidized samples with respect to the parent material was observed. The performances ranking was GACoxCl > GACoxP > GACoxN > GAC, likely due to the chemical surface properties of the adsorbents. Dynamic tests in a fixed bed column were carried out in terms of breakthrough curves at constant Cd inlet concentration and flow rate. GACoxCl and GACoxN showed a significantly higher value of the breakpoint time, likely due to the higher adsorption capacity. Finally, the dynamic tests were analyzed in light of a kinetic model. In the adopted experimental conditions, the results showed that mass transfer is controlled by internal pore diffusion, in which surface diffusion plays a major role.
1985-03-20
lasing action, indicates an enhancement of the CVI 182 A line, and also population inversion for the Li-like CIV, OVI, FVII and NeVIII ions. Time...shot. Results with the carbon fibers were encouraging in that a maximum gain-length product of ki - 3.0 (k = 7.5 cm- 1 ) at 182 A was observed. The...particular, the OVI 173 A line, increased by a factor of 2 to 3 in comparison to our earlier data. V. 8 The CVI 182 A line was observed in time integrated
NASA Astrophysics Data System (ADS)
Skarke, A. D.; Ruppel, C. D.; Brothers, D. S.
2014-12-01
Recent analysis of water column backscatter data and remotely operated vehicle (ROV) video imagery collected by NOAA Ship Okeanos Explorer between 2011 and 2013 revealed methane discharge from the seafloor at over 570 gas seep locations along the northern US Atlantic margin. To the best of our knowledge, such large-scale seepage has not previously been observed on a passive margin outside the Arctic or not spatially associated with a petroleum basin. This seepage has implications for the global carbon cycle, ocean chemistry (e.g., acidification), and in some cases, the climate system. Using data collected by Okeanos Explorer and NOAA's Deep Discoverer ROV, we combine water column backscatter data with video imagery and seafloor backscatter data to estimate gas flux and constrain the geoacoustic properties of the seabed at methane discharge sites. The total methane flux from the northern US Atlantic margin seeps is conservatively estimated at ~15-90 Mg y-1, based on observations of gas bubble volume, discharge rates, and discharge points per site. However, fewer than 1% of the identified seep sites have been inspected with a ROV, and this estimate is likely to be revised upward as the characteristics of the seeps are further constrained. Another important observation to emerge from our analysis is the lack of spatial correlation between seep sites and the ~5000 pockmarks mapped on the northern part of the US Atlantic margin. In this region, pockmarks, which are often easily identified by geophysical imaging of the seafloor, should not be considered potential target sites for finding undiscovered areas of seepage. Conversely, discrete patches of elevated relative seafloor acoustic backscatter amplitude do appear to be correlated with the spatial distribution of methane seeps, implying anomalous seafloor characteristic at seep loci. This finding is consistent with ROV video observations of authigenic carbonate outcrops and extensive chemosynthetic bivalve communities at seep sites, which create a seafloor substrate with higher acoustic impedance. This result suggests that seafloor acoustic reflectivity data, which are far more commonly collected and archived than water column backscatter data, might be used diagnostically to identify and constrain the distribution of seafloor locations of methane discharge.
NASA Astrophysics Data System (ADS)
Kawakami, S.; Shiomi, K.; Suto, H.; Kuze, A.; Hillyard, P. W.; Tanaka, T.; Podolske, J. R.; Iraci, L. T.; Albertson, R. T.
2014-12-01
The total columns of carbon dioxide (XCO2) and methane (XCH4) were measured with a compact Fourier transform spectrometer (FTS) at NASA Armstrong Flight Research Center (AFRC) and Railroad Valley, Nevada, USA (RRV) during a vicarious calibration campaign in June 2014. The campaign was performed to estimate changes in the radiometric response of the Thermal and Near Infrared Sensor for carbon Observations Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI) aboard Greenhouse gases Observing SATellite (GOSAT). TANSO-FTS measures spectra of radiance scattered by the Earth surface with high- and medium-gain depending on the surface reflectance. At high reflectance areas, such as deserts over north Africa and Australia, TANSO-FTS collects spectra with medium-gain. There was differences on atmospheric pressure and XCO2 retrieved from spectra obtained between high-gain and medium-gain. Because the retrieved products are useful for evaluating the difference of spectral qualities between high- and medium-gain, this work is an attempt to collect validation data for spectra with medium-gain of TANSO-FTS at remote and desert area with a compact and medium-spectral resolution instrument. As a compact FTS, EM27/SUN was used. It was manufactured and newly released on April 1, 2014 by Bruker. It is robust and operable in a high temperature environment. It was housed in a steel box to protect from dust and rain and powered by Solar panels. It can be operated by such a remote and desert area, like a RRV. Over AFRC and RRV, vertical profiles of CO2 and CH4 were measured using the Alpha Jet research aircraft as part of the Alpha Jet Atmospheric eXperiment (AJAX) of ARC, NASA. The values were calibrated to standard gases. To make the results comparable to WMO (World Meteorological Organization) standards, the retrieved XCO2 and XCH4 values are divided by a calibration factor. This values were determined by comparisons with in situ profiles measured by the aircraft. At AFRC it was operated by the side of a ground-based Total Carbon Column Observing Network (TCCON) FTS (Bruker IFS 125HR) and the diurnal variation agreed well . In this presentation, we will show results on XCO2 and XCH4 observations made by a compact FTS at AFRC and RRV and comparison of GOSAT and TCCON FTS.
[Modeling the Influencing Factors of Karstification and Karst Carbon Cycle in Laboratory].
Zhao, Rui-yi; Lü, Xian-fu; Duan, Yi-fan
2015-08-01
To analyze the influencing factors of karstification and karst carbon cycle, a simulation experiment was carried out and 6 soil columns were designed. The results showed that the content of H2O4, hydrodynamic condition and thickness of the soil had important influence on karstification and karst carbon cycle. For the soil columns which were covered by the same thickness of soil, the concentrations of Ca2+ + Mg2+ and SO4(2-) followed the order of B20-2 > B20-1 > B20-3, B50-2 > B50-1 > B50-3. This meant that input of H2SO4 enhanced the karstification and increasing infiltration water had significant dilution effect on the chemical properties. For the soil columns with different thickness of soil but with the same slag pile and hydrodynamic conditions, the concentrations of Ca2+ + Mg2+ and SO4(2-) followed the order of B50-1 > B20-1, B50-2 > B20-2, B50-3 > B20-3. It was demonstrated that more carbonate rock was dissolved under the thick soil columns. In addition, the net consumption of CO2 mainly depended on the content of H2SO4 in this experiment due to slight contribution of H2CO3 to carbonate rock dissolution. More content of H2SO4 brought about less net consumption of C02, but B50-2 was an exception. Organic matter and other nutrients might be input into deep soil with the slag pile, and they promoted the production of soil C)2. Therefore, more CO2 was consumed due to the increased contribution of H2CO to karstification.
NASA Astrophysics Data System (ADS)
Raut, U.; Fulvio, D.; Loeffler, M. J.; Baragiola, R. A.
2012-06-01
We report the synthesis of carbon dioxide on an amorphous carbon-13 substrate coated with amorphous water ice from irradiation with 100 keV protons at 20 K and 120 K. The quantitative studies show that the CO2 is dispersed in the ice; its column density increases with ion fluence to a maximum value (in 1015 molecules cm-2) of ~1 at 20 K and ~3 at 120 K. The initial yield is 0.05 (0.1) CO2 per incident H+ at 20 (120) K. The CO2 destruction process, which limits the maximum column density, occurs with an effective cross section of ~2.5 (4.1) × 10-17 cm2 at 20 (120) K. We discuss radiation-induced oxidation by reactions of radicals in water with the carbon surface and demonstrate that these reactions can be a significant source of condensed carbon dioxide in interstellar grains and in icy satellites in the outer solar system.
Black Carbon Concentration from Worldwide Aerosol Robotic Network (AERONET)
NASA Technical Reports Server (NTRS)
Schuster, Greg; Dubovik, Oleg; Holben, Brent; Clothiaux, Eugene
2008-01-01
Worldwide black carbon concentration measurements are needed to assess the efficacy of the carbon emissions inventory and transport model output. This requires long-term measurements in many regions, as model success in one region or season does not apply to all regions and seasons. AERONET is an automated network of more than 180 surface radiometers located throughout the world. The sky radiance measurements obtained by AERONET are inverted to provide column-averaged aerosol refractive indices and size distributions for the AERONET database, which we use to derive column-averaged black carbon concentrations and specific absorptions that are constrained by the measured radiation field. This provides a link between AERONET sky radiance measurements and the elemental carbon concentration of transport models without the need for an optics module in the transport model. Knowledge of both the black carbon concentration and aerosol absorption optical depth (i.e., input and output of the optics module) will enable improvements to the transport model optics module.
NASA Astrophysics Data System (ADS)
Kuze, A.; Suto, H.; Kataoka, F.; Shiomi, K.; Kondo, Y.; Crisp, D.; Butz, A.
2017-12-01
Atmospheric methane (CH4) has an important role in global radiative forcing of climate but its emission estimates have larger uncertainties than carbon dioxide (CO2). The area of anthropogenic emission sources is usually much smaller than 100 km2. The Thermal And Near infrared Sensor for carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT) has measured CO2 and CH4 column density using sun light reflected from the earth's surface. It has an agile pointing system and its footprint can cover 87-km2 with a single detector. By specifying pointing angles and observation time for every orbit, TANSO-FTS can target various CH4 point sources together with reference points every 3 day over years. We selected a reference point that represents CH4 background density before or after targeting a point source. By combining satellite-measured enhancement of the CH4 column density and surface measured wind data or estimates from the Weather Research and Forecasting (WRF) model, we estimated CH4emission amounts. Here, we picked up two sites in the US West Coast, where clear sky frequency is high and a series of data are available. The natural gas leak at Aliso Canyon showed a large enhancement and its decrease with time since the initial blowout. We present time series of flux estimation assuming the source is single point without influx. The observation of the cattle feedlot in Chino, California has weather station within the TANSO-FTS footprint. The wind speed is monitored continuously and the wind direction is stable at the time of GOSAT overpass. The large TANSO-FTS footprint and strong wind decreases enhancement below noise level. Weak wind shows enhancements in CH4, but the velocity data have large uncertainties. We show the detection limit of single samples and how to reduce uncertainty using time series of satellite data. We will propose that the next generation instruments for accurate anthropogenic CO2 and CH4 flux estimation have improve spatial resolution (˜1km2 ) to further enhance column density changes. We also propose adding imaging capability to monitor plume orientation. We will present laboratory model results and a sampling pattern optimization study that combines local emission source and global survey observations.
Huo, Zhixia; Wan, Qianhong; Chen, Lei
2018-06-08
Polymethylsilsesquioxanes (PMSQ) are potentially useful materials for liquid chromatography owing to their unique chemical, electrical and mechanical properties. Surprisingly however, no systematic studies on the use of spherical PMSQ particles as chromatographic packing have been reported. Accordingly, we present a comprehensive study aimed to characterize the chromatographic properties of this material in high performance liquid chromatography (HPLC) and to compare them with those observed on methyl (C 1 ) bonded silica phase under comparable conditions. Porous spherical particles were synthesized by a two-step hydrolysis and condensation procedure from methyltrimethoxysilane (MTMS) as a sole precursor. The as-synthesized microspheres possess spherical shape, narrow size distribution, mesoporous structure, high surface area (817 m 2 g -1 ) and reasonable carbon load (16.6%). They can be used directly as the HPLC stationary phase without the need for size classification. The PMSQ phase exhibits typical reversed-phase chromatographic properties with higher methylene selectivity and low silanol activity compared with the C 1 column. The retention mechanism for basic compounds was systematically evaluated by studying the effect of pH, ionic and solvent strength of the mobile phase. Basic compounds displayed lower retention factor and symmetric peak shape on the PMSQ column whereas longer retention and strong tailing peaks were observed on the C 1 column. The difference in retention behavior between the two columns is explained in terms of different principal retention mechanisms. Because of the low silanol activity, retention of basic compounds on the PMSQ column is governed solely by a reversed-phase mechanism. By contrast, multiple interactions including reversed-phase, cation exchange and simultaneous reversed-phase/cationic exchange interaction contribute to the retention on the C 1 column, as previously observed on other silica based reversed-phases. Furthermore, the PMSQ phase exhibited significantly enhanced stability under alkaline conditions compared with its silica-based counterpart. Taken together, the favorable morphology and pore structure combined with the benefits of low silanol activity, high pH stability and prolonged column lifetime make the newly developed PMSQ phase a promising and viable alternative to silica based reversed-phase packings for separation of basic compounds. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, James A.; Mailloux, Brian J.; Onstott, Tullis C.
2005-02-01
Twenty eight bacterial and Br transport experiments were performed in the field to determine the effects of physical and chemical heterogeneity of the aquifer sediment. The experiments were performed using groundwater from two field locations to examine the effects of groundwater chemistry on transport. Groundwater was extracted from multilevel samplers and pumped through 7 cm long columns of intact sediment or re-packed sieved and coated or uncoated sediment from the underlying aquifer. Two bacterial strains, Comamonas sp. DA001 and Paenibacillus polymyxa FER-02, were injected along with Br into the influent end of the columns to examine the effect of cellmore » morphology and surface properties on bacterial transport. The effect of column sediment grain size and mineral coatings coupled with groundwater geochemistry were also delineated. Significant irreversible attachment of DA001 was observed in the Fe oxyhydroxide coated columns, but only in the sub-oxic groundwater where the concentrations of dissolved organic carbon (DOC) were ca. 1 ppm. In the oxic groundwater where DOC was ca. 8 ppm, little attachment of DA001 to the Fe oxyhydroxide coated columns was observed. This indicates that DOC can significantly reduce bacterial attachment due electrostatic interactions. The larger and more negatively charged FER-02 displayed increasing attachment with decreasing grain size regardless of DOC concentration, and modeling of FER-02 attachment revealed that the presence of Fe and Al coatings on the sediment also promoted attachment. Finally, the presence of Al coatings and Al containing minerals appeared to significantly retard the Br tracer regardless of the concentration of DOC. These findings suggest that DOC in shallow oxic groundwater aquifers can significantly enhance the transport of bacteria by reducing attachment to Fe, Mn and Al oxyhydroxides. This effect is profound for weakly charged, hydrophilic bacteria and may contribute to differences in observations between laboratory experiments verses field-scale investigations particularly if the groundwater pH remains circum-neutral and Fe oxyhydroxide phases exist. These observations validate the novel approach taken in the experiments outlined here of performing laboratory-scale experiments on site to facilitate the use of fresh groundwater and thus be more representative of in situ groundwater conditions.« less
Lidar Observations of Atmospheric CO2 Column During 2014 Summer Flight Campaigns
NASA Technical Reports Server (NTRS)
Lin, Bing; Harrison, F. Wallace; Fan, Tai-Fang
2015-01-01
Advanced knowledge in atmospheric CO2 is critical in reducing large uncertainties in predictions of the Earth' future climate. Thus, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) from space was recommended by the U.S. National Research Council to NASA. As part of the preparation for the ASCENDS mission, NASA Langley Research Center (LaRC) and Exelis, Inc. have been collaborating in development and demonstration of the Intensity-Modulated Continuous-Wave (IM-CW) lidar approach for measuring atmospheric CO2 column from space. Airborne laser absorption lidars such as the Multi-Functional Fiber Laser Lidar (MFLL) and ASCENDS CarbonHawk Experiment Simulator (ACES) operating in the 1.57 micron CO2 absorption band have been developed and tested to obtain precise atmospheric CO2 column measurements using integrated path differential absorption technique and to evaluate the potential of the space ASCENDS mission. This presentation reports the results of our lidar atmospheric CO2 column measurements from 2014 summer flight campaign. Analysis shows that for the 27 Aug OCO-2 under flight over northern California forest regions, significant variations of CO2 column approximately 2 ppm) in the lower troposphere have been observed, which may be a challenge for space measurements owing to complicated topographic condition, heterogeneity of surface reflection and difference in vegetation evapotranspiration. Compared to the observed 2011 summer CO2 drawdown (about 8 ppm) over mid-west, 2014 summer drawdown in the same region measured was much weak (approximately 3 ppm). The observed drawdown difference could be the results of the changes in both meteorological states and the phases of growing seasons. Individual lidar CO2 column measurements of 0.1-s integration were within 1-2 ppm of the CO2 estimates obtained from on-board in-situ sensors. For weak surface reflection conditions such as ocean surfaces, the 1- s integrated signal-to-noise ratio (SNR) of lidar measurements at 11 km altitude reached 376, which was equivalent to a 10-s CO2 error 0.33 ppm. For the entire processed 2014 summer flight campaign data, the mean differences between lidar remote sensed and in-situ estimated CO2 values were about -0.013 ppm. These results indicate that current laser absorption lidar approach could meet space measurement requirements for CO2 science goals.
Schneider, E E; Cerqueira, A C F P; Dezotti, M
2011-01-01
This work evaluated the performance of a Moving Bed Biofilm Reactor (MBBR) in the treatment of an oil refinery wastewater. Also, it investigated the possibility of reuse of the MBBR effluent, after ozonation in series with a biological activated carbon (BAC) column. The best performance of the MBBR was achieved with a hydraulic retention time (HRT) of 6 hours, employing a bed to bioreactor volume ratio (V(B)/V(R)) of 0.6. COD and N-NH₄(+) MBBR effluent concentrations ranged from 40 to 75 mg L⁻¹ (removal efficiency of 69-89%) and 2 to 6 mg L⁻¹ (removal efficiency of 45-86%), respectively. Ozonation carried out for 15 min with an ozone concentration of 5 mg L⁻¹ was able to improve the treated wastewater biodegradability. The treatment performance of the BAC columns was practically the same for ozonated and non ozonated MBBR effluents. The dissolved organic carbon (DOC) content of the columns of the activated carbon columns (CAG) was in the range of 2.1-3.8 mg L⁻¹, and the corresponding DOC removal efficiencies were comprised between 52 and 75%. The effluent obtained at the end of the proposed treatment presented a quality, which meet the requirements for water reuse in the oil refinery.
Copic, Davor; Maggini, Laura; De Volder, Michael
2018-03-01
Carbon nanotube (CNT)-based filters have the potential to revolutionize water treatment because of their high capacity and fast kinetics in sorption of organic, inorganic, and biological pollutants. To date, CNT filters either rely on CNTs dispersed in liquids, which are difficult to recover and cause safety concerns, or on CNT buckypaper, which offers high efficiency, but suffers from an intrinsic trade-off between filter permeability and capacity. Here, a new approach is presented that bypasses this trade-off and achieves buckypaper-like efficiency combined with filter-column-like permeability and capacity. For this, CNTs are first assembled into porous microspheres and then are packed into microfluidic column filters. These microcolumns exhibit large flow-through filtration efficiencies, while maintaining membrane permeabilities an order of magnitude larger then CNT buckypaper and specific permeabilities double that of activated carbon for similar flowrates (232 000 L m -2 h -1 bar -1 , 1.23 × 10 -12 m 2 ). Moreover, in a test to remove sodium dodecyl sulfate (SDS) from water, these microstructured CNT columns outperform activated carbon columns. This improved filtration efficiency and permeability is an important step toward a broader implementation of CNT-based filtration devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
kurosu, T. P.; Miller, C. E.; Dinardo, S.
2013-12-01
The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is an aircraft-based Earth Venture 1 mission to study the carbon balance of the Alaskan Arctic ecosystem, with a particular focus on carbon release from melting permafrost. Operating from its base in Fairbanks, AK, the CARVE aircraft covers a range of principle flight paths in the Alaskan interior, the Yukon River valley, and northern Alaska coast around Barrow and Dead Horse. Flight paths are chosen to maximize ecosystem variability and and cover burn-recovery/regrowth sequences. CARVE observations cover the Arctic Spring/Summer/Fall seasons, with multiple flights per season and principle flight paths. Science operations started in 05/2012 and are currently envisaged to continue until 2015. The CARVE suite of instruments includes flask measurements and in situ gas analyzers for CO2, CH4 and CO observations, an active/passive L-band radar for surface conditions (freeze/thaw state), and a three-band polarizing Fourier Transform Spectrometer (FTS) for column measurements of CO2, CH4, CO, and interfering species (e.g., H2O). The FTS covers the spectral regions of 4,200-4,900 cm-1 (CH4, CO), 5,800-6,400 cm-1 (CO2), and 12,900-13,200 cm-1 (O2), with a spectral resolution of 0.2 cm-1. Aircraft-based FTS science observations in Alaska have been performed since 23-05-2012. First-version data products from all CARVE instruments derived from observations during the 2012 campaign were publicly released earlier in 2013. The FTS has performed well during flight conditions, particularly with respect to vibration damping. Outstanding challenges include the need for improved spectral and radiometric calibration, as well as compensating for low signal-to-noise spectra acquired under Alaskan flight conditions. We present results from FTS column observations of CO2, CH4, and CO, observed during the 2012 and 2013 campaigns, including preliminary comparisons of CARVE FTS measurements with satellite observations of CO2 from TANSO/GOSAT as well as results from CARVE in situ measurements. CARVE Science Team: L. Bruhwiler, NOAA ESRL I. Fung, UC Berkeley C. Koven, Lawrence Berkeley Laboratory I. Leifer, UC Santa Barbara K. McDonald, CCNY J. Miller, NOAA ESRL W. Oechel, San Diego State University E. Podest, JPL J. Randerson, UC Irvine P. Rayner, Melbourne University D. Rider, JPL C. Sweeney, NOAA ESRL P. Wennberg, Caltech S. Wofsy, Harvard University R. Chang, Harvard University A. Karion, NOAA ESRL T. P. Kurosu, JPL N. Steiner, CCNY J. Henderson, AER J. Fisher, JPL
Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography
Liu, Huaping; Nishide, Daisuke; Tanaka, Takeshi; Kataura, Hiromichi
2011-01-01
Monostructured single-wall carbon nanotubes (SWCNTs) are important in both scientific research and electronic and biomedical applications; however, the bulk separation of SWCNTs into populations of single-chirality nanotubes remains challenging. Here we report a simple and effective method for the large-scale chirality separation of SWCNTs using a single-surfactant multicolumn gel chromatography method utilizing one surfactant and a series of vertically connected gel columns. This method is based on the structure-dependent interaction strength of SWCNTs with an allyl dextran-based gel. Overloading an SWCNT dispersion on the top column results in the adsorption sites of the column becoming fully occupied by the nanotubes that exhibit the strongest interaction with the gel. The unbound nanotubes flow through to the next column, and the nanotubes with the second strongest interaction with the gel are adsorbed in this stage. In this manner, 13 different (n, m) species were separated. Metallic SWCNTs were finally collected as unbound nanotubes because they exhibited the lowest interaction with the gel. PMID:21556063
Miniaturized Laser Heterodyne Radiometer for Measurements of CO2 in the Atmospheric Column
NASA Technical Reports Server (NTRS)
Wilson, E. L.; Mclinden, M. L.; Miller, J. H.; Allan, G. R.; Lott, L. E.; Melroy, H. R.; Clarke, G. B.
2013-01-01
We have developed a low-cost, miniaturized laser heterodyne radiometer for highly sensitive measurements of carbon dioxide (CO2) in the atmospheric column. In this passive design, sunlight that has undergone absorption by CO2 in the atmosphere is collected and mixed with continuous wave laser light that is step-scanned across the absorption feature centered at 1,573.6 nm. The resulting radio frequency beat signal is collected as a function of laser wavelength, from which the total column mole fraction can be de-convolved. We are expanding this technique to include methane (CH4) and carbon monoxide (CO), and with minor modifications, this technique can be expanded to include species such as water vapor (H2O) and nitrous oxide (N2O).
Free-standing carbon nanotube composite sensing skin for distributed strain sensing in structures
NASA Astrophysics Data System (ADS)
Burton, Andrew R.; Minegishi, Kaede; Kurata, Masahiro; Lynch, Jerome P.
2014-04-01
The technical challenges of managing the health of critical infrastructure systems necessitate greater structural sensing capabilities. Among these needs is the ability for quantitative, spatial damage detection on critical structural components. Advances in material science have now opened the door for novel and cost-effective spatial sensing solutions specially tailored for damage detection in structures. However, challenges remain before spatial damage detection can be realized. Some of the technical challenges include sensor installations and extensive signal processing requirements. This work addresses these challenges by developing a patterned carbon nanotube composite thin film sensor whose pattern has been optimized for measuring the spatial distribution of strain. The carbon nanotube-polymer nanocomposite sensing material is fabricated on a flexible polyimide substrate using a layer-by-layer deposition process. The thin film sensors are then patterned into sensing elements using optical lithography processes common to microelectromechanical systems (MEMS) technologies. The sensor array is designed as a series of sensing elements with varying width to provide insight on the limitations of such patterning and implications of pattern geometry on sensing signals. Once fabrication is complete, the substrate and attached sensor are epoxy bonded to a poly vinyl composite (PVC) bar that is then tested with a uniaxial, cyclic load pattern and mechanical response is characterized. The fabrication processes are then utilized on a larger-scale to develop and instrument a component-specific sensing skin in order to observe the strain distribution on the web of a steel beam. The instrumented beam is part of a larger steel beam-column connection with a concrete slab in composite action. The beam-column subassembly is laterally loaded and strain trends in the web are observed using the carbon nanotube composite sensing skin. The results are discussed in the context of understanding the properties of the thin film sensor and how it may be advanced toward structural sensing applications.
NASA Astrophysics Data System (ADS)
Salas, P.; Oonk, J. B. R.; van Weeren, R. J.; Wolfire, M. G.; Emig, K. L.; Toribio, M. C.; Röttgering, H. J. A.; Tielens, A. G. G. M.
2018-04-01
Quantitative understanding of the interstellar medium requires knowledge of its physical conditions. Low-frequency carbon radio recombination lines (CRRLs) trace cold interstellar gas and can be used to determine its physical conditions (e.g. electron temperature and density). In this work, we present spatially resolved observations of the low-frequency (≤390 MHz) CRRLs centred around C268α, C357α, C494α, and C539α towards Cassiopeia A on scales of ≤1.2 pc. We compare the spatial distribution of CRRLs with other interstellar medium tracers. This comparison reveals a spatial offset between the peak of the CRRLs and other tracers, which is very characteristic for photodissociation regions and that we take as evidence for CRRLs being preferentially detected from the surfaces of molecular clouds. Using the CRRLs, we constrain the gas electron temperature and density. These constraints on the gas conditions suggest variations of less than a factor of 2 in pressure over ˜1 pc scales, and an average hydrogen density of 200-470 cm-3. From the electron temperature and density maps, we also constrain the ionized carbon emission measure, column density, and path length. Based on these, the hydrogen column density is larger than 1022 cm-2, with a peak of ˜4 × 1022 cm-2 towards the south of Cassiopeia A. Towards the southern peak, the line-of-sight length is ˜40 pc over a ˜2 pc wide structure, which implies that the gas is a thin surface layer on a large (molecular) cloud that is only partially intersected by Cassiopeia A. These observations highlight the utility of CRRLs as tracers of low-density extended H I and CO-dark gas halo's around molecular clouds.
Ether Lipids of Planktonic Archaea in the Marine Water Column
Hoefs, M.; Schouten, S.; De Leeuw, J. W.; King, L. L.; Wakeham, S. G.; Damste, J.
1997-01-01
Acyclic and cyclic biphytanes derived from the membrane ether lipids of archaea were found in water column particulate and sedimentary organic matter from several oxic and anoxic marine environments. Compound-specific isotope analyses of the carbon skeletons suggest that planktonic archaea utilize an isotopically heavy carbon source such as algal carbohydrates and proteins or dissolved bicarbonate. Due to their high preservation potential, these lipids provide a fossil record of planktonic archaea and suggest that they have thrived in marine environments for more than 50 million years. PMID:16535669
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, R.M.; Wujcik, W.J.; Lowe, W.L.
1990-05-01
The primary objective of this task was to determine the feasibility of using GAC to treat ground water contaminated by explosives at the Milan Army Ammunition Plant (MAAP) in Milan, Tennessee. Laboratory GAC isotherm studies were conducted and two carbons, Atochem, Inc. GAC 830 and Calgon Filtrasorb 300, were selected for further testing in continuous flow GAC columns. Three pilot scale continuous flow GAC column tests were performed at MAAP using the two carbons selected from the laboratory GAC isotherm studies. The results from the laboratory and pilot studies are presented in this report. They show that concurrent removal ofmore » explosives such as TNT, RDX, HMX, Tetryl, and nitrobenzenes from ground water using continuous flow granular activated carbon is feasible.« less
NASA Technical Reports Server (NTRS)
Pawson, Steven; Ott, Lesley E.; Zhu, Zhengxin; Bowman, Kevin; Brix, Holger; Collatz, G. James; Dutkiewicz, Stephanie; Fisher, Joshua B.; Gregg, Watson W.; Hill, Chris;
2011-01-01
Forward GEOS-5 AGCM simulations of CO2, with transport constrained by analyzed meteorology for 2009-2010, are examined. The CO2 distributions are evaluated using AIRS upper tropospheric CO2 and ACOS-GOSAT total column CO2 observations. Different combinations of surface C02 fluxes are used to generate ensembles of runs that span some uncertainty in surface emissions and uptake. The fluxes are specified in GEOS-5 from different inventories (fossil and biofuel), different data-constrained estimates of land biological emissions, and different data-constrained ocean-biology estimates. One set of fluxes is based on the established "Transcom" database and others are constructed using contemporary satellite observations to constrain land and ocean process models. Likewise, different approximations to sub-grid transport are employed, to construct an ensemble of CO2 distributions related to transport variability. This work is part of NASA's "Carbon Monitoring System Flux Pilot Project,"
Removal of benzocaine from water by filtration with activated carbon
Howe, G.E.; Bills, T.D.; Marking, L.L.
1990-01-01
Benzocaine is a promising candidate for registration with the U.S. Food and Drug Administration for use as an anesthetic in fish culture, management, and research. A method for the removal of benzocaine from hatchery effluents could speed registration of this drug by eliminating requirements for data on its residues, tolerances, detoxification, and environmental hazards. Carbon filtration effectively removes many organic compounds from water. This study tested the effectiveness of three types of activated carbon for removing benzocaine from water by column filtration under controlled laboratory conditions. An adsorptive capacity was calculated for each type of activated carbon. Filtrasorb 400 (12 x 40 mesh; U.S. standard sieve series) showed the greatest capacity for benzocaine adsorption (76.12 mg benzocaine/g carbon); Filtrasorb 300 (8 x 30 mesh) ranked next (31.93 mg/g); and Filtrasorb 816 (8 x 16 mesh) absorbed the least (1.0 mg/g). Increased adsorptive capacity was associated with smaller carbon particle size; however, smaller particle size also impeded column flow. Carbon filtration is a practical means for removing benzocaine from treated water.
PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
HALGREN DL
2010-03-12
The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the samemore » six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.« less
NASA Astrophysics Data System (ADS)
Collatz, G. J.; Kawa, S. R.; Liu, Y.; Zeng, F.; Ivanoff, A.
2013-12-01
We evaluate our understanding of the land biospheric carbon cycle by benchmarking a model and its variants to atmospheric CO2 observations and to an atmospheric CO2 inversion. Though the seasonal cycle in CO2 observations is well simulated by the model (RMSE/standard deviation of observations <0.5 at most sites north of 15N and <1 for Southern Hemisphere sites) different model setups suggest that the CO2 seasonal cycle provides some constraint on gross photosynthesis, respiration, and fire fluxes revealed in the amplitude and phase at northern latitude sites. CarbonTracker inversions (CT) and model show similar phasing of the seasonal fluxes but agreement in the amplitude varies by region. We also evaluate interannual variability (IAV) in the measured atmospheric CO2 which, in contrast to the seasonal cycle, is not well represented by the model. We estimate the contributions of biospheric and fire fluxes, and atmospheric transport variability to explaining observed variability in measured CO2. Comparisons with CT show that modeled IAV has some correspondence to the inversion results >40N though fluxes match poorly at regional to continental scales. Regional and global fire emissions are strongly correlated with variability observed at northern flask sample sites and in the global atmospheric CO2 growth rate though in the latter case fire emissions anomalies are not large enough to account fully for the observed variability. We discuss remaining unexplained variability in CO2 observations in terms of the representation of fluxes by the model. This work also demonstrates the limitations of the current network of CO2 observations and the potential of new denser surface measurements and space based column measurements for constraining carbon cycle processes in models.
Column with CNT/magnesium oxide composite for lead(II) removal from water.
Saleh, Tawfik A; Gupta, Vinod K
2012-05-01
In this study, manganese dioxide-coated multiwall carbon nanotube (MnO(2)/CNT) nanocomposite has been successfully synthesized. The as-produced nanocomposite was characterized by different characteristic tools, such as X-ray diffraction, SEM, and FTIR. The MnO(2)/CNT nanocomposite was utilized as a fixed bed in a column system for removal of lead(II) from water. The experimental conditions were investigated and optimized. The pH range between 3 and 7 was studied; the optimum removal was found when the pH was equal to 6 and 7. The thickness of MnO(2)/CNT nanocomposite compact layer was also changed to find the optimum parameter for higher removal. It was observed that the slower the flow rates of the feed solution the higher the removal because of larger contact time.
The Orbiting Carbon Observatory Mission: Watching the Earth Breathe Mapping CO2 from Space
NASA Technical Reports Server (NTRS)
Boain, Ron
2007-01-01
Approach: Collect spatially resolved, high resolution spectroscopic observations of CO2 and O2 absorption in reflected sunlight. Use these data to resolve spatial and temporal variations in the column averaged CO2 dry air mole fraction, X(sub CO2) over the sunlit hemisphere. Employ independent calibration and validation approaches to produce X(sub CO2) estimates with random errors and biases no larger than 1-2 ppm (0.3-0.5%) on regional scales at monthly intervals.
NASA Astrophysics Data System (ADS)
Ye, X.; Lauvaux, T.; Kort, E. A.; Lin, J. C.; Oda, T.; Yang, E.; Wu, D.
2016-12-01
Rapid economic development has given rise to a steady increase of global carbon emissions, which have accumulated in the atmosphere for the past 200 years. Urbanization has concentrated about 70% of the global fossil-fuel CO2 emissions in large metropolitan areas distributed around the world, which represents the most significant anthropogenic contribution to climate change. However, highly uncertain quantifications of urban CO2 emissions are commonplace for numerous cities because of poorly-documented inventories of energy consumption. Therefore, accurate estimates of carbon emissions from global observing systems are a necessity if mitigation strategies are meant to be implemented at global scales. Space-based observations of total column averaged CO2 concentration (XCO2) provide a very promising and powerful tool to quantify urban CO2 fluxes. For the first time, measurements from the Orbiting Carbon Observatory 2 (OCO-2) mission are assimilated in a high resolution inverse modeling system to quantify fossil-fuel CO2 emissions of multiple cities around the globe. The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emission inventory is employed as a first guess, while the atmospheric transport is simulated using the WRF-Chem model at 1-km resolution. Emission detection and quantification is performed with an Ensemble Kalman Filter method. We demonstrate here the potential of the inverse approach for assimilating thousands of OCO-2 retrievals along tracks near metropolitan areas. We present the detection potential of the system with real-case applications near power plants and present inverse emissions using actual OCO-2 measurements on various urban landscapes. Finally, we will discuss the potential of OCO-2-like satellite instruments for monitoring temporal variations of fossil-fuel CO2 emissions over multiple years, which can provide valuable insights for future satellite observation strategies.
Abiotic versus biotic drivers of ocean pH variation under fast sea ice in McMurdo Sound, Antarctica.
Matson, Paul G; Washburn, Libe; Martz, Todd R; Hofmann, Gretchen E
2014-01-01
Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes--in this case algal photosynthesis--to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound.
Abiotic versus Biotic Drivers of Ocean pH Variation under Fast Sea Ice in McMurdo Sound, Antarctica
Matson, Paul G.; Washburn, Libe; Martz, Todd R.; Hofmann, Gretchen E.
2014-01-01
Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes – in this case algal photosynthesis – to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound. PMID:25221950
Hernández Fariñas, Tania; Ribeiro, Lourenço; Soudant, Dominique; Belin, Catherine; Bacher, Cédric; Lampert, Luis; Barillé, Laurent
2017-10-01
Suspended marine benthic microalgae in the water column reflect the close relationship between the benthic and pelagic components of coastal ecosystems. In this study, a 12-year phytoplankton time-series was used to investigate the contribution of benthic microalgae to the pelagic system at a site along the French-Atlantic coast. Furthermore, all taxa identified were allocated into different growth forms in order to study their seasonal patterns. The highest contribution of benthic microalgae was observed during the winter period, reaching up to 60% of the carbon biomass in the water column. The haptobenthic growth form showed the highest contribution in terms of biomass, dominant in the fall-winter period when the turbidity and the river flow were high. The epipelic growth form did not follow any seasonal pattern. The epiphytic diatom Licmophora was most commonly found during summer. As benthic microalgae were found in the water column throughout the year, the temporal variation detected in the structure of pelagic assemblages in a macrotidal ecosystem was partly derived from the differentiated contribution of several benthic growth forms. © 2017 Phycological Society of America.
40 CFR 86.1322-84 - Carbon monoxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... be used. (2) Zero the carbon monoxide analyzer with either zero-grade air or zero-grade nitrogen. (3... columns is one form of corrective action which may be taken.) (b) Initial and periodic calibration. Prior... calibrated. (1) Adjust the analyzer to optimize performance. (2) Zero the carbon monoxide analyzer with...
Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels.
Sánchez-Polo, M; Rivera-Utrilla, J; Salhi, E; von Gunten, U
2006-08-01
The aim of this study is to analyze the use of Ag-doped activated carbon aerogels for bromide and iodide removal from drinking water and to study how the activation of Ag-doped aerogels affects their behavior. It has been observed that the carbonization treatment and activation process of Ag-doped aerogels increased the surface area value ( [Formula: see text] ), whereas the volume of meso-(V(2)) and macropores (V(3)) decreased slightly. Chemical characterization of the materials revealed that carbonization and especially activation process considerably increased the surface basicity of the sample. Original sample (A) presented acidic surface properties (pH(PZC)=4.5) with 21% surface oxygen, whereas the sample that underwent activation showed mainly basic surface chemical properties (pH(PZC)=9.5) with only 6% of surface oxygen. Carbonization and especially, activation process considerable increased the adsorption capacity of bromide and iodide ions. This would mainly be produced by (i) an increase in the microporosity of the sample, which increases Ag-adsorption sites available to halide anions, and (ii) a rise of the basicity of the sample, which produces an increase in attractive electrostatic interactions between the aerogel surface, positively charged at the working pH (pH(solution)
Lower-tropospheric CO 2 from near-infrared ACOS-GOSAT observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulawik, Susan S.; O'Dell, Chris; Payne, Vivienne H.
We present two new products from near-infrared Greenhouse Gases Observing Satellite (GOSAT) observations: lowermost tropospheric (LMT, from 0 to 2.5 km) and upper tropospheric–stratospheric ( U, above 2.5 km) carbon dioxide partial column mixing ratios. We compare these new products to aircraft profiles and remote surface flask measurements and find that the seasonal and year-to-year variations in the new partial column mixing ratios significantly improve upon the Atmospheric CO 2 Observations from Space (ACOS) and GOSAT (ACOS-GOSAT) initial guess and/or a priori, with distinct patterns in the LMT and U seasonal cycles that match validation data. For land monthly averages,more » we find errors of 1.9, 0.7, and 0.8 ppm for retrieved GOSAT LMT, U, and XCO 2; for ocean monthly averages, we find errors of 0.7, 0.5, and 0.5 ppm for retrieved GOSAT LMT, U, and XCO 2. In the southern hemispheric biomass burning season, the new partial columns show similar patterns to MODIS fire maps and MOPITT multispectral CO for both vertical levels, despite a flat ACOS-GOSAT prior, and a CO–CO 2 emission factor comparable to published values. The difference of LMT and U, useful for evaluation of model transport error, has also been validated with a monthly average error of 0.8 (1.4) ppm for ocean (land). LMT is more locally influenced than U, meaning that local fluxes can now be better separated from CO 2 transported from far away.« less
Lower-tropospheric CO 2 from near-infrared ACOS-GOSAT observations
Kulawik, Susan S.; O'Dell, Chris; Payne, Vivienne H.; ...
2017-04-27
We present two new products from near-infrared Greenhouse Gases Observing Satellite (GOSAT) observations: lowermost tropospheric (LMT, from 0 to 2.5 km) and upper tropospheric–stratospheric ( U, above 2.5 km) carbon dioxide partial column mixing ratios. We compare these new products to aircraft profiles and remote surface flask measurements and find that the seasonal and year-to-year variations in the new partial column mixing ratios significantly improve upon the Atmospheric CO 2 Observations from Space (ACOS) and GOSAT (ACOS-GOSAT) initial guess and/or a priori, with distinct patterns in the LMT and U seasonal cycles that match validation data. For land monthly averages,more » we find errors of 1.9, 0.7, and 0.8 ppm for retrieved GOSAT LMT, U, and XCO 2; for ocean monthly averages, we find errors of 0.7, 0.5, and 0.5 ppm for retrieved GOSAT LMT, U, and XCO 2. In the southern hemispheric biomass burning season, the new partial columns show similar patterns to MODIS fire maps and MOPITT multispectral CO for both vertical levels, despite a flat ACOS-GOSAT prior, and a CO–CO 2 emission factor comparable to published values. The difference of LMT and U, useful for evaluation of model transport error, has also been validated with a monthly average error of 0.8 (1.4) ppm for ocean (land). LMT is more locally influenced than U, meaning that local fluxes can now be better separated from CO 2 transported from far away.« less
NASA Astrophysics Data System (ADS)
Inoue, Makoto; Morino, Isamu; Uchino, Osamu; Nakatsuru, Takahiro; Yoshida, Yukio; Yokota, Tatsuya; Wunch, Debra; Wennberg, Paul O.; Roehl, Coleen M.; Griffith, David W. T.; Velazco, Voltaire A.; Deutscher, Nicholas M.; Warneke, Thorsten; Notholt, Justus; Robinson, John; Sherlock, Vanessa; Hase, Frank; Blumenstock, Thomas; Rettinger, Markus; Sussmann, Ralf; Kyrö, Esko; Kivi, Rigel; Shiomi, Kei; Kawakami, Shuji; De Mazière, Martine; Arnold, Sabrina G.; Feist, Dietrich G.; Barrow, Erica A.; Barney, James; Dubey, Manvendra; Schneider, Matthias; Iraci, Laura T.; Podolske, James R.; Hillyard, Patrick W.; Machida, Toshinobu; Sawa, Yousuke; Tsuboi, Kazuhiro; Matsueda, Hidekazu; Sweeney, Colm; Tans, Pieter P.; Andrews, Arlyn E.; Biraud, Sebastien C.; Fukuyama, Yukio; Pittman, Jasna V.; Kort, Eric A.; Tanaka, Tomoaki
2016-08-01
We describe a method for removing systematic biases of column-averaged dry air mole fractions of CO2 (XCO2) and CH4 (XCH4) derived from short-wavelength infrared (SWIR) spectra of the Greenhouse gases Observing SATellite (GOSAT). We conduct correlation analyses between the GOSAT biases and simultaneously retrieved auxiliary parameters. We use these correlations to bias correct the GOSAT data, removing these spurious correlations. Data from the Total Carbon Column Observing Network (TCCON) were used as reference values for this regression analysis. To evaluate the effectiveness of this correction method, the uncorrected/corrected GOSAT data were compared to independent XCO2 and XCH4 data derived from aircraft measurements taken for the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) project, the National Oceanic and Atmospheric Administration (NOAA), the US Department of Energy (DOE), the National Institute for Environmental Studies (NIES), the Japan Meteorological Agency (JMA), the HIAPER Pole-to-Pole observations (HIPPO) program, and the GOSAT validation aircraft observation campaign over Japan. These comparisons demonstrate that the empirically derived bias correction improves the agreement between GOSAT XCO2/XCH4 and the aircraft data. Finally, we present spatial distributions and temporal variations of the derived GOSAT biases.
Simultaneous assimilation of AIRS and GOSAT CO2 observations with Ensemble Kalman filter
NASA Astrophysics Data System (ADS)
Liu, J.; Kalnay, E.; Fung, I.; Kang, J.
2012-12-01
Lack of CO2 vertical information could lead to bias in the surface CO2 flux estimation (Stephens et al., 2007). Liu et al. (2012) showed that assimilating AIRS CO2 observations, which are sensitive to middle to upper troposphere CO2, improves CO2 concentration, especially in the middle to upper troposphere. GOSAT is sensitive to CO2 over the whole column, but the spatial coverage is sparser than AIRS. In this study, we assimilate AIRS and GOSAT CO2 observations simultaneously along with surface flask CO2 observations and meteorology observations with Ensemble Kalman filter (EnKF) to constrain CO2 vertical profiles simulated by NCAR carbon-climate model. We will show the impact of assimilating AIRS and GOSAT CO2 on the CO2 vertical gradient, seasonal cycle and spatial gradient by assimilating only GOSAT or AIRS and comparing to the control experiment. The quality of CO2 analysis will be examined by validating against independent CO2 aircraft observations, and analyzing the relationship between CO2 analysis fields and major circulation, such as Madden Julian Oscillation. We will also discuss the deficiencies of the observation network in understanding the carbon cycle.
Mermillod-Blondin, F; Mauclaire, L; Montuelle, B
2005-05-01
Biogeochemical processes mediated by microorganisms in river sediments (hyporheic sediments) play a key role in river metabolism. Because biogeochemical reactions in the hyporheic zone are often limited to the top few decimetres of sediments below the water-sediment interface, slow filtration columns were used in the present study to quantify biogeochemical processes (uptakes of O2, DOC, and nitrate) and the associated microbial compartment (biomass, respiratory activity, and hydrolytic activity) at a centimetre scale in heterogeneous (gravel and sand) sediments. The results indicated that slow filtration columns recreated properly the aerobic-anaerobic gradient classically observed in the hyporheic zone. O2 and NO3- consumptions (256 +/- 13 microg of O2 per hour and 14.6 +/- 6.1 microg of N-NO3- per hour) measured in columns were in the range of values measured in different river sediments. Slow filtration columns also reproduced the high heterogeneity of the hyporheic zone with the presence of anaerobic pockets in sediments where denitrification and fermentation processes occurred. The respiratory and hydrolytic activities of bacteria were strongly linked with the O2 consumption in the experimental system, highlighting the dominance of aerobic processes in our river sediments. In comparison with these activities, the bacterial biomass (protein content) integrated both aerobic and anaerobic processes and could be used as a global microbial indicator in our system. Finally, slow filtration columns are an appropriate tool to quantify in situ rates of biogeochemical processes and to determine the relationship between the microbial compartment and the physico-chemical environment in coarse river sediments.
Targeted Control of Permeability Using Carbonate Dissolution/Precipitation Reactions
NASA Astrophysics Data System (ADS)
Clarens, A. F.; Tao, Z.; Plattenberger, D.
2016-12-01
Targeted mineral precipitation reactions are a promising approach for controlling fluid flow in the deep subsurface. Here we studied the potential to use calcium and magnesium bearing silicates as cation donors that would react with aqueous phase CO2 under reservoir conditions to form solid carbonate precipitates. Preliminary experiments in high pressure and temperature columns suggest that these reactions can effectively lower the permeability of a porous media. Wollastonite (CaSiO3) was used as the model silicate, injected as solid particles into the pore space of a packed column, which was then subsequently flooded with CO2(aq). The reactions occur spontaneously, leveraging the favorable kinetics that occur at the high temperature and pressure conditions characteristic of the deep subsurface, to form solid phase calcium carbonate (CaCO3) and amorphous silica (SiO2) within the pore space. Both x-ray tomography imaging of reacted columns and electron microscopy imaging of thin sections were used to characterize where dissolution/precipitation occurred within the porous media. The spatial distribution of the products was closely tied to the flow rate and the duration of the experiment. The SiO2 product precipitated in close spatial proximity to the CaSiO3 reactant. The CaCO3 product, which is sensitive to the low pH and high pCO2 brine, precipitated out of solution further down the column as Ca2+ ions moved with the brine. The permeability of the columns decreased by several orders of magnitude after injecting the CaSiO3 particles. Following carbonation, the permeability decreased even further as precipitates filled flow paths within the pore network. A pore network model was developed to help understand the interplay between precipitation kinetics and flow in altering the permeability of the porous media. The effect of particle concentration and size, pore size, reaction time, and pCO2, are explored on pore/fracture aperture and reaction extent. To provide better control of these dynamics and ultimately devise a mechanism to deliver carbonation seed particles into leakage pathways, we are exploring the potential to functionalize the silicate particles using temperature sensitive polymer coatings.
Vertical Distribution of Black and Brown Carbon over Shanghai during Winter
NASA Astrophysics Data System (ADS)
Zheng, M.; Yan, C.; Wang, D.; Fu, Q.
2016-12-01
Carbonaceous aerosols (i.e., black carbon, BC, and organic aerosol, OA) have significant impact on Earth's energy budget by scattering and absorbing solar radiation. Extensive carbonaceous aerosols have been emitted in mainland China. It is essential to study the column burden of carbonaceous aerosol and associated light absorption to better understand its radiative forcing. In this study, a tethered balloon-based field campaign was conducted over a Chinese megacity, Shanghai, in December of 2015, with the primary goal to investigate the vertical profile of air pollutants within the lower troposphere, especially during the polluted days. A 7-wavelength Aethalometer (AE-31) were adopted in the observation to obtain vertical profiles of atmospheric carbonaceous aerosols within the lower troposphere. Light absorption by black and brown carbon, the light absorbing organic components, were distinguished and separated based on difference between light absorption at 450 nm versus 880 nm. Light absorption of brown carbon relative to black carbon were also estimated to pose the importance of brown carbon. Besides, diurnal variation of black and brown carbon vertical profiles would also be discussed, with consideration of variation of height of planetary boundary layer.
Codevilla, Cristiane Franco; Lemos, Alice Machado; Delgado, Leila Schreiner; Rolim, Clarice Madalena Bueno; Adams, Andréa Inês Horn; Bergold, Ana Maria
2011-08-01
A stability-indicating liquid chromatographic method has been developed for the quantitative determination of lodenafil carbonate in tablets. The method employs a Synergi Fusion C18 column (250 × 4.6 mm, i.d., 4 μm particle size), with mobile phase consisting of a mixture of methanol-acetic acid 0.1% pH 4.0 (65:35, v/v) and UV detection at 290 nm, using a photodiode array detector. A linear response (r = 0.9999) was observed in the range of 10-80 μg/mL. The method showed good recoveries (average 100.3%) and also intra and inter-day precision (RSD < 2.0%). Validation parameters as specificity and robustness were also determined. Specificity analysis showed that no impurities or degradation products were co-eluting with the lodenafil carbonate peak. The method was found to be stability-indicating and due to its simplicity and accuracy can be applied for routine quality control analysis of lodenafil carbonate in tablets.
NASA Astrophysics Data System (ADS)
Coe, H.; Allan, J. D.; Whitehead, J.; Alfarra, M. R. R.; Villegas, E.; Kong, S.; Williams, P. I.; Ting, Y. C.; Haslett, S.; Taylor, J.; Morgan, W.; McFiggans, G.; Spracklen, D. V.; Reddington, C.
2015-12-01
The mixing state of black carbon is uncertain yet has a significant influence on the efficiency with which a particle absorbs light. In turn, this may make a significant contribution to the uncertainty in global model predictions of the black carbon radiative budget. Previous modelling studies that have represented this mixing state using a core-shell approach have shown that aged black carbon particles may be considerably enhanced compared to freshly emitted black carbon due to the addition of co-emitted, weakly absorbing species. However, recent field results have demonstrated that any enhancement of absorption is minor in the ambient atmosphere. Resolving these differences in absorption efficiency is important as they will have a major impact on the extent to which black carbon heats the atmospheric column. We have made morphology-independent measurements of refractory black carbon mass and associated weakly absorbing material in single particles from laboratory-generated diesel soot and black carbon particles in ambient air influenced by traffic and wood burning sources and related these to the optical properties of the particles. We compared our calculated optical properties with optical models that use varying mixing state assumptions and by characterising the behaviour in terms of the relative amounts of weakly absorbing material and black carbon in a particle we show a sharp transition in mixing occurs. We show that the majority of black carbon particles from traffic-dominated sources can be treated as externally mixed and show no absorption enhancement, whereas models assuming internal mixing tend to give the best estimate of the absorption enhancement of thickly coated black carbon particles from biofuel or biomass burning. This approach reconciles the differences in absorption enhancement previously observed and offers a systematic way of treating the differences in behaviour observed.
Consistent satellite XCO 2 retrievals from SCIAMACHY and GOSAT using the BESD algorithm
Heymann, J.; Reuter, M.; Hilker, M.; ...
2015-02-13
Consistent and accurate long-term data sets of global atmospheric concentrations of carbon dioxide (CO 2) are required for carbon cycle and climate related research. However, global data sets based on satellite observations may suffer from inconsistencies originating from the use of products derived from different satellites as needed to cover a long enough time period. One reason for inconsistencies can be the use of different retrieval algorithms. We address this potential issue by applying the same algorithm, the Bremen Optimal Estimation DOAS (BESD) algorithm, to different satellite instruments, SCIAMACHY on-board ENVISAT (March 2002–April 2012) and TANSO-FTS on-board GOSAT (launched inmore » January 2009), to retrieve XCO 2, the column-averaged dry-air mole fraction of CO 2. BESD has been initially developed for SCIAMACHY XCO 2 retrievals. Here, we present the first detailed assessment of the new GOSAT BESD XCO 2 product. GOSAT BESD XCO 2 is a product generated and delivered to the MACC project for assimilation into ECMWF's Integrated Forecasting System (IFS). We describe the modifications of the BESD algorithm needed in order to retrieve XCO 2 from GOSAT and present detailed comparisons with ground-based observations of XCO 2 from the Total Carbon Column Observing Network (TCCON). We discuss detailed comparison results between all three XCO 2 data sets (SCIAMACHY, GOSAT and TCCON). The comparison results demonstrate the good consistency between the SCIAMACHY and the GOSAT XCO 2. For example, we found a mean difference for daily averages of −0.60 ± 1.56 ppm (mean difference ± standard deviation) for GOSAT-SCIAMACHY (linear correlation coefficient r = 0.82), −0.34 ± 1.37 ppm ( r = 0.86) for GOSAT-TCCON and 0.10 ± 1.79 ppm ( r = 0.75) for SCIAMACHY-TCCON. The remaining differences between GOSAT and SCIAMACHY are likely due to non-perfect collocation (±2 h, 10° × 10° around TCCON sites), i.e., the observed air masses are not exactly identical, but likely also due to a still non-perfect BESD retrieval algorithm, which will be continuously improved in the future. Our overarching goal is to generate a satellite-derived XCO 2 data set appropriate for climate and carbon cycle research covering the longest possible time period. We therefore also plan to extend the existing SCIAMACHY and GOSAT data set discussed here by using also data from other missions (e.g., OCO-2, GOSAT-2, CarbonSat) in the future.« less
NASA Astrophysics Data System (ADS)
Fehrenbacher, J. S.; Spero, H. J.
2017-12-01
Planktic foraminifera carbon (δ13CFORAM) and oxygen (δ18OFORAM) isotope records play a vital role in paleoceanographic reconstructions. The δ18OFORAM values are typically minimally offset from equilibrium δ18O-calcite and are widely applied in oceanographic reconstructions of upper water column hydrography. In contrast, δ13CFORAM are underutilized in paleoceanographic reconstructions. δ13CFORAM are more difficult to interpret due to species-specific δ13CFORAM offsets from the δ13C of the dissolved inorganic carbon of seawater (δ13CDIC). In this study, we analyzed the δ18OFORAM and δ13CFORAM of individual foraminifera shells from a suite of planktic foraminifer species obtained from core top (Holocene) intervals from Eastern Equatorial Pacific (TR163-19), Western Caribbean (ODP 999A), and Equatorial Indian Ocean (ODP 714A) cores. We also include published records from the Western Equatorial Pacific (MW91-9 15GGC). We find the δ13CFORAM offsets from the local water column δ13CDIC are large, variable, region specific, and are correlated to the ambient carbonate ion concentration ([CO32-]) of seawater. We show that the regional offsets from δ13CDIC are due to the carbonate ion effect (CIE) on δ13CFORAM (Spero et al., 1997; Bijma et al., 1999) and variations in water column [CO32-]. More importantly, our results demonstrate that regional and/or culture based δ13CFORAM offsets from δ13CDIC are not applicable globally. Rather, owing to regional differences in water column [CO32-] and species-specific relationships between [CO32-] and δ13CFORAM, δ13CFORAM must be corrected for the regional CIE in order to infer vertical δ13CDIC gradients or to compare δ13CFORAM records from one region to another. Laboratory culture suggests the carbonate ion effect on δ18OFORAM is 1/3 that of δ13CFORAM (Spero et al., 1997). Thus, in order to obtain correct δ18OFORAM temperatures or δ18OSW (when used in conjunction with Mg/Ca) the δ18OFORAM offsets from δ18OCALCITE-EQ must also be corrected for offsets due to the carbonate ion effect. Finally, we use the regional d13CFORAM offsets from d13CDIC to correct for the CIE and reassess the δ13CFORAM and δ18OFORAM gradients from previously published down core records in the EEP (TR163-19; Spero et al., 2003).
NASA Astrophysics Data System (ADS)
Philip, S.; Johnson, M. S.; Potter, C. S.; Genovese, V. B.
2016-12-01
Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in situ observations.
NASA Technical Reports Server (NTRS)
Philip, Sajeev; Johnson, Matthew S.; Potter, Christopher S.; Genovese, Vanessa
2016-01-01
Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in situ observations.
Microbial growth associated with granular activated carbon in a pilot water treatment facility.
Wilcox, D P; Chang, E; Dickson, K L; Johansson, K R
1983-01-01
The microbial dynamics associated with granular activated carbon (GAC) in a pilot water treatment plant were investigated over a period of 16 months. Microbial populations were monitored in the influent and effluent waters and on the GAC particles by means of total plate counts and ATP assays. Microbial populations between the influent and effluent waters of the GAC columns generally increased, indicating microbial growth. The dominant genera of microorganisms isolated from interstitial waters and GAC particles were Achromobacter, Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Micrococcus, Microcyclus, Paracoccus, and Pseudomonas. Coliform bacteria were found in small numbers in the effluents from some of the GAC columns in the later months of the study. Oxidation of influent waters with ozone and maintenance of aerobic conditions on the GAC columns failed to appreciably enhance the microbial growth on GAC. PMID:6625567
Kandji, El Hadji Babacar; Plante, Benoit; Bussière, Bruno; Beaudoin, Georges; Dupont, Pierre-Philippe
2017-04-01
The geochemical behavior of ultramafic waste rocks and the effect of carbon sequestration by these waste rocks on the water drainage quality were investigated using laboratory-scale kinetic column tests on samples from the Dumont Nickel Project (RNC Minerals, QC, Canada). The test results demonstrated that atmospheric CO 2 dissolution induced the weathering of serpentine and brucite within the ultramafic rocks, generating high concentrations of Mg and HCO 3 - with pH values ranging between 9 and 10 in the leachates that promote the precipitation of secondary Mg carbonates. These alkaline pH values appear to have prevented the mobilization of many metals; Fe, Ni, Cu, and Zn were found at negligible concentrations in the leachates. Posttesting characterization using chemical analyses, diffuse reflectance infrared Fourier transform (DRIFT), and scanning electron microscope (SEM) observations confirmed the precipitation of secondary hydrated Mg carbonates as predicted by thermodynamic calculations. The formation of secondary Mg carbonates induced cementation of the waste particles, resulting in the development of a hardpan.
Design and evaluation of a bolted joint for a discrete carbon-epoxy rod-reinforced hat section
NASA Technical Reports Server (NTRS)
Rousseau, Carl Q.; Baker, Donald J.
1996-01-01
The use of prefabricated pultruded carbon-epoxy rods has reduced the manufacturing complexity and costs of stiffened composite panels while increasing the damage tolerance of the panels. However, repairability of these highly efficient discrete stiffeners has been a concern. Design, analysis, and test results are presented in this paper for a bolted-joint repair for the pultruded rod concept that is capable of efficiently transferring axial loads in a hat-section stiffener on the upper skin segment of a heavily loaded aircraft wing component. A tension and a compression joint design were evaluated. The tension joint design achieved approximately 1.0% strain in the carbon-epoxy rod-reinforced hat-section and failed in a metal fitting at 166% of the design ultimate load. The compression joint design failed in the carbon-epoxy rod-reinforced hat-section test specimen area at approximately 0.7% strain and at 110% of the design ultimate load. This strain level of 0.7% in compression is similar to the failure strain observed in previously reported carbon-epoxy rod-reinforced hat-section column tests.
Kayillo, Sindy; Dennis, Gary R; Shalliker, R Andrew
2006-09-08
In this manuscript the retention and selectivity of a set of linear and non-linear PAHs were evaluated on five different reversed-phase columns. These phases included C18 and C18 Aqua stationary phases, as well as three phenyl phases: Propyl-phenyl, Synergi polar-RP and Cosmosil 5PBB phase. Overall, the results revealed that the phenyl-type columns offered better separation performance for the linear PAHs, while the separation of the structural isomer PAHs was enhanced on the C18 columns. The Propyl-phenyl column was found to have the highest molecular-stationary phase interactions, as evidenced by the greatest rate of change in 'S' (0.71) as a function of the molecular weight in the PAH homologous series, despite having the lowest surface coverage (3% carbon load) (where S is the slope of a plot of logk versus the solvent composition). In contrast, the C18 Aqua column, having the highest surface coverage (15% carbon load) was found to have the second lowest molecular-stationary phase interactions (rate of change in S=0.61). Interestingly, the Synergi polar-RP column, which also is a phenyl stationary phase behaved more 'C18-like' than 'phenyl-like' in many of the tests undertaken. This is probably not unexpected since all five phases were reversed phase.
Physicochemical factors affecting ethanol adsorption by activated carbon.
Bradley, K J; Hamdy, M K; Toledo, R T
1987-03-01
Powder and granular activated charcoal were evaluated for ethanol adsorptivity from aqueous mixtures using an adsorption isotherm. Ethanol adsorption capacity was more pronounced at 25 degrees C as compared to 5, 15, and 40 degrees C. When pH of the ethanol-buffer mixture (0.09 ionic strength) was changed from acidic (2.3) to neutral and then to alkaline (11.2), ethanol adsorption was decreased. Increasing ionic strength of the ethanol-buffer mixtures from 0.05 to 0.09 enhanced ethanol adsorption but a further increase to 0.14 showed no significant effect. Ethanol adsorption was more efficient from an aqueous ethanol mixture as compared to semidefined and nondefined fermentation worts, respectively. Heating granular charcoal to 400 degrees C for 1 h and 600 degrees C for 3 h in N(2) increased ethanol adsorptivity and heating to 1000 degrees C (1 h) in CO(2) decreased it when ethanol was removed from dilute solutions by simple pass adsorption in a carbon packed column. Granular charcoal was superior to powdered charcoal and an inverse relationship was noted between the weight of the granular carbon bed in the column and ethanol adsorbed/g carbon. Decreasing the column feed flow rate from 7.5 to 2.0 L aqueous ethanol/min increased the adsorption rate.
HIMMELI v1.0: HelsinkI Model of MEthane buiLd-up and emIssion for peatlands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raivonen, Maarit; Smolander, Sampo; Backman, Leif
Wetlands are one of the most significant natural sources of methane (CH 4) to the atmosphere. They emit CH 4 because decomposition of soil organic matter in waterlogged anoxic conditions produces CH 4, in addition to carbon dioxide (CO 2). Production of CH 4 and how much of it escapes to the atmosphere depend on a multitude of environmental drivers. Models simulating the processes leading to CH 4 emissions are thus needed for upscaling observations to estimate present CH 4 emissions and for producing scenarios of future atmospheric CH 4 concentrations. Aiming at a CH 4 model that can bemore » added to models describing peatland carbon cycling, we composed a model called HIMMELI that describes CH 4 build-up in and emissions from peatland soils. It is not a full peatland carbon cycle model but it requires the rate of anoxic soil respiration as input. Driven by soil temperature, leaf area index (LAI) of aerenchymatous peatland vegetation, and water table depth (WTD), it simulates the concentrations and transport of CH 4, CO 2, and oxygen (O 2) in a layered one-dimensional peat column. Here, we present the HIMMELI model structure and results of tests on the model sensitivity to the input data and to the description of the peat column (peat depth and layer thickness), and demonstrate that HIMMELI outputs realistic fluxes by comparing modeled and measured fluxes at two peatland sites. As HIMMELI describes only the CH 4-related processes, not the full carbon cycle, our analysis revealed mechanisms and dependencies that may remain hidden when testing CH 4 models connected to complete peatland carbon models, which is usually the case. Our results indicated that (1) the model is flexible and robust and thus suitable for different environments; (2) the simulated CH 4 emissions largely depend on the prescribed rate of anoxic respiration; (3) the sensitivity of the total CH 4 emission to other input variables is mainly mediated via the concentrations of dissolved gases, in particular, the O 2 concentrations that affect the CH 4 production and oxidation rates; (4) with given input respiration, the peat column description does not significantly affect the simulated CH 4 emissions in this model version.« less
HIMMELI v1.0: HelsinkI Model of MEthane buiLd-up and emIssion for peatlands
NASA Astrophysics Data System (ADS)
Raivonen, Maarit; Smolander, Sampo; Backman, Leif; Susiluoto, Jouni; Aalto, Tuula; Markkanen, Tiina; Mäkelä, Jarmo; Rinne, Janne; Peltola, Olli; Aurela, Mika; Lohila, Annalea; Tomasic, Marin; Li, Xuefei; Larmola, Tuula; Juutinen, Sari; Tuittila, Eeva-Stiina; Heimann, Martin; Sevanto, Sanna; Kleinen, Thomas; Brovkin, Victor; Vesala, Timo
2017-12-01
Wetlands are one of the most significant natural sources of methane (CH4) to the atmosphere. They emit CH4 because decomposition of soil organic matter in waterlogged anoxic conditions produces CH4, in addition to carbon dioxide (CO2). Production of CH4 and how much of it escapes to the atmosphere depend on a multitude of environmental drivers. Models simulating the processes leading to CH4 emissions are thus needed for upscaling observations to estimate present CH4 emissions and for producing scenarios of future atmospheric CH4 concentrations. Aiming at a CH4 model that can be added to models describing peatland carbon cycling, we composed a model called HIMMELI that describes CH4 build-up in and emissions from peatland soils. It is not a full peatland carbon cycle model but it requires the rate of anoxic soil respiration as input. Driven by soil temperature, leaf area index (LAI) of aerenchymatous peatland vegetation, and water table depth (WTD), it simulates the concentrations and transport of CH4, CO2, and oxygen (O2) in a layered one-dimensional peat column. Here, we present the HIMMELI model structure and results of tests on the model sensitivity to the input data and to the description of the peat column (peat depth and layer thickness), and demonstrate that HIMMELI outputs realistic fluxes by comparing modeled and measured fluxes at two peatland sites. As HIMMELI describes only the CH4-related processes, not the full carbon cycle, our analysis revealed mechanisms and dependencies that may remain hidden when testing CH4 models connected to complete peatland carbon models, which is usually the case. Our results indicated that (1) the model is flexible and robust and thus suitable for different environments; (2) the simulated CH4 emissions largely depend on the prescribed rate of anoxic respiration; (3) the sensitivity of the total CH4 emission to other input variables is mainly mediated via the concentrations of dissolved gases, in particular, the O2 concentrations that affect the CH4 production and oxidation rates; (4) with given input respiration, the peat column description does not significantly affect the simulated CH4 emissions in this model version.
HIMMELI v1.0: HelsinkI Model of MEthane buiLd-up and emIssion for peatlands
Raivonen, Maarit; Smolander, Sampo; Backman, Leif; ...
2017-12-22
Wetlands are one of the most significant natural sources of methane (CH 4) to the atmosphere. They emit CH 4 because decomposition of soil organic matter in waterlogged anoxic conditions produces CH 4, in addition to carbon dioxide (CO 2). Production of CH 4 and how much of it escapes to the atmosphere depend on a multitude of environmental drivers. Models simulating the processes leading to CH 4 emissions are thus needed for upscaling observations to estimate present CH 4 emissions and for producing scenarios of future atmospheric CH 4 concentrations. Aiming at a CH 4 model that can bemore » added to models describing peatland carbon cycling, we composed a model called HIMMELI that describes CH 4 build-up in and emissions from peatland soils. It is not a full peatland carbon cycle model but it requires the rate of anoxic soil respiration as input. Driven by soil temperature, leaf area index (LAI) of aerenchymatous peatland vegetation, and water table depth (WTD), it simulates the concentrations and transport of CH 4, CO 2, and oxygen (O 2) in a layered one-dimensional peat column. Here, we present the HIMMELI model structure and results of tests on the model sensitivity to the input data and to the description of the peat column (peat depth and layer thickness), and demonstrate that HIMMELI outputs realistic fluxes by comparing modeled and measured fluxes at two peatland sites. As HIMMELI describes only the CH 4-related processes, not the full carbon cycle, our analysis revealed mechanisms and dependencies that may remain hidden when testing CH 4 models connected to complete peatland carbon models, which is usually the case. Our results indicated that (1) the model is flexible and robust and thus suitable for different environments; (2) the simulated CH 4 emissions largely depend on the prescribed rate of anoxic respiration; (3) the sensitivity of the total CH 4 emission to other input variables is mainly mediated via the concentrations of dissolved gases, in particular, the O 2 concentrations that affect the CH 4 production and oxidation rates; (4) with given input respiration, the peat column description does not significantly affect the simulated CH 4 emissions in this model version.« less
Chlorophyll-a thin layers in the Magellan fjord system: The role of the water column stratification
NASA Astrophysics Data System (ADS)
Ríos, Francisco; Kilian, Rolf; Mutschke, Erika
2016-08-01
Fjord systems represent hotspots of primary productivity and organic carbon burial. However, the factors which control the primary production in mid-latitude fjords are poorly understood. In this context, results from the first fine-scale measurements of bio-oceanographic features in the water column of fjords associated with the Strait of Magellan are presented. A submersible fluorescence probe (FP) was used to measure the Chlorophyll-a (Chl-a) concentration in situ, along with conductivity, temperature, hydrostatic pressure (depth) and dissolved oxygen (CTD-O2) of the water column. The Austral spring results of 14 FP-CTD-O2 profiles were used to define the vertical and horizontal patches of the fluorescent pigment distribution and their spatial relations with respect to the observed hydrographic features. Three zones with distinct water structures were defined. In all zones, the 'brown' spectral group (diatoms and dinoflagellates) predominated accounting for >80 wt% of the phytoplankton community. Thin layers with high Chl-a concentration were detected in 50% of the profiles. These layers harbored a substantial amount (30-65 wt%) of the phytoplankton biomass. Stratification was positively correlated to the occurrence of Chl-a thin layers. In stable and highly stratified water columns the integrated Chl-a concentration was higher and frequently located within thin layers whereas well mixed water columns displayed lower values and more homogeneous vertical distribution of Chl-a. These results indicate that mixing/stability processes are important factors accounting to the vertical distribution of Chl-a in Magellan fjords.
40 CFR 86.122-78 - Carbon monoxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sensitive range to be used. (2) Zero the carbon monoxide analyzer with either zero-grade air or zero-grade... conditioning columns is one form of corrective action which may be taken.) (b) Initial and periodic calibration... calibrated. (1) Adjust the analyzer to optimize performance. (2) Zero the carbon monoxide analyzer with...
Plankton dynamics and carbon flux in an area of upwelling off the coast of Morocco
NASA Astrophysics Data System (ADS)
Head, E. J. H.; Harrison, W. G.; Irwin, B. I.; Horne, E. P. W.; Li, W. K. W.
1996-11-01
A carbon flux study was carried out off the coast of Morocco, at 31°N, in a region characterized by the presence of a persistent cyclonic eddy. Two short-term (4 and 3 day) deployments of free-floating sediment traps were combined with water column sampling and rate process measurements as the ship followed the traps. For a period of 36 h between trap deployments, a hydrographic section was run along 31°30'N as part of a larger scale survey being carried out simultaneously on the R.V. A. von Humboldt. The first trap deployment was near the eastern margin of the eddy and the traps moved to the north and west in a frontal jet associated with its northern boundary. After the second deployment, which was at the recovery point of the first, the traps moved to the west and then to the southwest. Throughout the study, chlorophyll concentrations varied between 27 and 125 mg m -2 (0-100 m), with highest concentrations in the upwelled water nearest the coast and in upwelled water generated within the cyclonic eddy. Particulate organic carbon (POC) and particulate organic nitrogen (PON) concentrations were relatively uniform (13.6±1.8 and 1.63±28 g m -2 with phytoplankton carbon accounting for 16-85% of total POC. Bacterial carbon was ˜ 5% of total POC and mesozooplankton carbon concentrations were equivalent to ˜9% of total POC. Microzooplankton biomass was not assessed but POC:PON ratios in the water column were often high, suggesting there was sometimes a large detrital component in the POC. Primary production rates varied between 1.0 and 2.5 g C m -2 day -1. Bacterial consumption accounted for ˜50% of primary production. Metabolic rates suggested that copepods were ingesting more than 0.4 g C m -2 day -1. while filtration rates suggested that ingestion of phytoplankton carbon was only ˜0.2 g C m -2day -1, even when phytoplankton constituted ˜85% of the POC. f-ratios (based on uptake rates for 15N-nitrate and ammonia) were between 0.1 and 0.4, and excretion by mesozooplankton could account for ˜ 40% of the daily ammonium uptake by phytoplankton. HPLC pigment analysis showed that when chlorophyll biomass was high, diatoms were dominant, whereas when it was low, small prymnesiophytes, chlorophytes and diatoms were all important. The composition of the fluoresecent pigments in material in the sediment traps indicated that intact phytoplankton and copepod faecal pellets were the main sources but the relative rates of sedimentation of pigment, POC and PON for the two trapping periods did not reflect differences that were observed in the overlying water column. This was likely to be the result of spatial heterogeneity and strong horizontal currents heterogeneity and strong horizontal currents within the euphotic zone. Thus, material collected at 100 m probably did not originate in the water column immediately overlying the traps and trapping efficiencies might also have been variable.
Measurement of Carbon Dioxide Column via Space Borne Laser Absorption
NASA Technical Reports Server (NTRS)
Heaps, WIlliam S.
2007-01-01
In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. In order to uncover the 'missing sink that is responsible for the large discrepancies in the budget as we presently understand it calculation has indicated that measurement accuracy on the order of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of .25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget in order to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong requirements on the laser system used for the measurement. This work presents an analysis of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics Several systems for meeting these requirements that are under investigation at various institutions in the US as well as Europe will be discussed.
NASA Astrophysics Data System (ADS)
Singh, Upendra N.; Refaat, Tamer F.; Ismail, Syed; Petros, Mulugeta; Davis, Kenneth J.; Kawa, Stephan R.; Menzies, Robert T.
2018-04-01
Modeling of a space-based high-energy 2-μm triple-pulse Integrated Path Differential Absorption (IPDA) lidar was conducted to demonstrate carbon dioxide (CO2) measurement capability and to evaluate random and systematic errors. A high pulse energy laser and an advanced MCT e-APD detector were incorporated in this model. Projected performance shows 0.5 ppm precision and 0.3 ppm bias in low-tropospheric column CO2 mixing ratio measurements from space for 10 second signal averaging over Railroad Valley (RRV) reference surface.
1983-09-01
1.2 . 7*96.69 Ŕ.40 2.43 1.16 1.7 T*100 96.40 S.45 6.22 1.4 701100049 940 .36 4.11 1.0 MKWTP Finished Water (See Table H4-20 for Results) Nu mbrs ...carbon submerged in water when loading. This provides for a uniformly packed column. c. Continue adding carbon and column sections until the desired...difficult to evaluate. Because influent to the aeration basin is submerged at an underflow baffle, it was necessary to inject the tracer at the upstream
NASA Astrophysics Data System (ADS)
Azizian, Mohammad F.; Semprini, Lewis
2016-07-01
Tetrachloroethene (PCE) and carbon tetrachloride (CT) were simultaneously transformed in a packed column that was bioaugmented with the Evanite culture (EV). The data presented here have been obtained over a period of 1930 days. Initially the column was continuously fed synthetic groundwater with PCE (0.1 mM), sulfate (SO42 -) (0.2 mM) and formate (2.1 mM) or lactate (1.1 mM), but not CT. In these early stages of the study the effluent H2 concentrations ranged from 7 to 19 nM, and PCE was transformed to ethene (ETH) (81 to 85%) and vinyl chloride (VC) (11 to 17%), and SO42 - was completely reduced when using either lactate or formate as electron donors. SO42 - reduction occurred concurrently with cis-DCE and VC dehalogenation. Formate was a more effective substrate for promoting dehalogenation based on electron donor utilization efficiency. Simultaneous PCE and CT tests found CT (0.015 mM) was completely transformed with 20% observed as chloroform (CF) and trace amounts of chloromethane (CM) and dichloromethane (DCM), but no methane (CH4) or carbon disulfide (CS2). PCE transformation to ETH improved with CT addition in response to increases in H2 concentrations to 160 nM that resulted from acetate formation being inhibited by either CT or CF. Lactate fermentation was negatively impacted after CT transformation tests, with propionate accumulating, and H2 concentrations being reduced to below 1 nM. Under these conditions both SO42 - reduction and dehalogenation were negatively impacted, with sulfate reduction not occurring and PCE being transformed to cis-dichloroethene (c-DCE) (52%) and VC (41%). Upon switching to formate, H2 concentrations increased to 40 nM, and complete SO42 - reduction was achieved, while PCE was transformed to ETH (98%) and VC (1%), with no acetate detected. Throughout the study PCE dehalogenation to ethene was positively correlated with the effluent H2 concentrations.
NASA Astrophysics Data System (ADS)
Cordiner, M. A.; Charnley, S. B.; Kisiel, Z.; McGuire, B. A.; Kuan, Y.-J.
2017-12-01
The 100 m Robert C. Byrd Green Bank Telescope K-band (KFPA) receiver was used to perform a high-sensitivity search for rotational emission lines from complex organic molecules in the cold interstellar medium toward TMC-1 (cyanopolyyne peak), focussing on the identification of new carbon-chain-bearing species as well as molecules of possible prebiotic relevance. We report a detection of the carbon-chain oxide species HC7O and derive a column density of (7.8+/- 0.9)× {10}11 cm-2. This species is theorized to form as a result of associative electron detachment reactions between oxygen atoms and C7H-, and/or reaction of C6H2 + with CO (followed by dissociative electron recombination). Upper limits are given for the related HC6O, C6O, and C7O molecules. In addition, we obtained the first detections of emission from individual 13C isotopologues of HC7N, and derive abundance ratios HC7N/HCCC13CCCCN = 110 ± 16 and HC7N/HCCCC13CCCN = 96 ± 11, indicative of significant 13C depletion in this species relative to the local interstellar elemental 12C/13C ratio of 60-70. The observed spectral region covered two transitions of HC11N, but emission from this species was not detected, and the corresponding column density upper limit is 7.4× {10}10 {{cm}}-2 (at 95% confidence). This is significantly lower than the value of 2.8× {10}11 {{cm}}-2 previously claimed by Bell et al. and confirms the recent nondetection of HC11N in TMC-1 by Loomis et al. Upper limits were also obtained for the column densities of malononitrile and the nitrogen heterocycles quinoline, isoquinoline, and pyrimidine.
NASA Astrophysics Data System (ADS)
Choi, Yongjoo; Ghim, Young Sung
2016-11-01
Columnar concentrations of absorbing and scattering components of fine mode aerosols were estimated using Aerosol Robotic Network (AERONET) data for a site downwind of Seoul. The study period was between March 2012 and April 2013 including the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia campaign in March to May 2012. The Maxwell Garnett mixing rule was assumed for insoluble components embedded in a host solution, while the volume average mixing rule was assumed for the aqueous solution of soluble components. During the DRAGON-Asia campaign the surface concentrations of major components of fine particles were measured. The columnar mass fractions of black carbon (BC), organic carbon (OC), mineral dust (MD), and ammonium sulfate (AS) were 1.5, 5.9, 6.6, and 52%, respectively, which were comparable to the mass fractions measured at the surface for BC, OC, and secondary inorganic aerosols at 2.3, 18, and 55%. The vertical distributions of BC and AS were investigated by employing the concept of a column height. While the column height for BC was similar to the planetary boundary layer (PBL) height, that for AS was 4.4 times higher than the PBL height and increased with air temperature from March to May. The monthly variations of the columnar mass concentrations during the study period were generally well explained in term of meteorology and emission characteristics. However, certain variations of MD were different from those typically observed primarily because only fine mode aerosols were considered.
Li, Dong; Stanford, Ben; Dickenson, Eric; Khunjar, Wendell O; Homme, Carissa L; Rosenfeldt, Erik J; Sharp, Jonathan O
2017-04-15
Water treatment combining advanced oxidative processes with subsequent exposure to biological activated carbon (BAC) holds promise for the attenuation of recalcitrant pollutants. Here we contrast oxidation and subsequent biofiltration of treated wastewater effluent employing either ozone or UV/H 2 O 2 followed by BAC during pilot-scale implementation. Both treatment trains largely met target water quality goals by facilitating the removal of a suite of trace organics and bulk water parameters. N-nitrosodimethylamine (NDMA) formation was observed in ozone fed BAC columns during biofiltration and to a lesser extent in UV/H 2 O 2 fed columns and was most pronounced at 20 min of empty bed contact time (EBCT) when compared to shorter EBCTs evaluated. While microbial populations were highly similar in the upper reaches, deeper samples revealed a divergence within and between BAC filtration systems where EBCT was identified to be a significant environmental predictor for shifts in microbial populations. The abundance of Nitrospira in the top samples of both columns provides an explanation for the oxidation of nitrite and corresponding increases in nitrate concentrations during BAC transit and support interplay between nitrogen cycling with nitrosamine formation. The results of this study demonstrate that pretreatments using ozone versus UV/H 2 O 2 impart modest differences to the overall BAC microbial population structural and functional attributes, and further highlight the need to evaluate NDMA formation prior to full-scale implementation of BAC in potable reuse applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization of methane emissions in Los Angeles with airborne hyperspectral imaging
NASA Astrophysics Data System (ADS)
Saad, K.; Tratt, D. M.; Buckland, K. N.; Roehl, C. M.; Wennberg, P. O.; Wunch, D.
2017-12-01
As urban areas develop regulations to limit atmospheric methane (CH4), accurate quantification of anthropogenic emissions will be critical for program development and evaluation. However, relating emissions derived from process-level metadata to those determined from assimilating atmospheric observations of CH4 concentrations into models is particularly difficult. Non-methane hydrocarbons (NMHCs) can help differentiate between thermogenic and biogenic CH4 emissions, as they are primarily co-emitted with the former; however, these trace gases are subject to the same limitations as CH4. Remotely-sensed hyperspectral imaging bridges these approaches by measuring emissions plumes directly with spatial coverage on the order of 10 km2 min-1. We identify the sources of and evaluate emissions plumes measured by airborne infrared hyperspectral imagers flown over the Los Angeles (LA) metropolitan area, which encompasses various CH4 sources, including petroleum and natural gas wells and facilities. We quantify total CH4 and NMHC emissions, as well as their relative column densities, at the point-source level to create fingerprints of source types. We aggregate these analyses to estimate the range of variability in chemical composition across source types. These CH4 and NMHC emissions factors are additionally compared to their tropospheric column abundances measured by the Total Carbon Column Observing Network (TCCON) Pasadena Fourier transform infrared spectrometer, which provides a footprint for the LA basin.
NASA Astrophysics Data System (ADS)
Sallée, J.-B.; Shuckburgh, E.; Bruneau, N.; Meijers, A. J. S.; Bracegirdle, T. J.; Wang, Z.; Roy, T.
2013-04-01
The ability of the models contributing to the fifth Coupled Models Intercomparison Project (CMIP5) to represent the Southern Ocean hydrological properties and its overturning is investigated in a water mass framework. Models have a consistent warm and light bias spread over the entire water column. The greatest bias occurs in the ventilated layers, which are volumetrically dominated by mode and intermediate layers. The ventilated layers have been observed to have a strong fingerprint of climate change and to impact climate by sequestrating a significant amount of heat and carbon dioxide. The mode water layer is poorly represented in the models and both mode and intermediate water have a significant fresh bias. Under increased radiative forcing, models simulate a warming and lightening of the entire water column, which is again greatest in the ventilated layers, highlighting the importance of these layers for propagating the climate signal into the deep ocean. While the intensity of the water mass overturning is relatively consistent between models, when compared to observation-based reconstructions, they exhibit a slightly larger rate of overturning at shallow to intermediate depths, and a slower rate of overturning deeper in the water column. Under increased radiative forcing, atmospheric fluxes increase the rate of simulated upper cell overturning, but this increase is counterbalanced by diapycnal fluxes, including mixed-layer horizontal mixing, and mostly vanishes.
Lowering N2O emissions from soils using eucalypt biochar: the importance of redox reactions
Quin, P; Joseph, S; Husson, O; Donne, S; Mitchell, D; Munroe, P; Phelan, D; Cowie, A; Van Zwieten, L
2015-01-01
Agricultural soils are the primary anthropogenic source of atmospheric nitrous oxide (N2O), contributing to global warming and depletion of stratospheric ozone. Biochar addition has shown potential to lower soil N2O emission, with the mechanisms remaining unclear. We incubated eucalypt biochar (550 °C) – 0, 1 and 5% (w/w) in Ferralsol at 3 water regimes (12, 39 and 54% WFPS) – in a soil column, following gamma irradiation. After N2O was injected at the base of the soil column, in the 0% biochar control 100% of expected injected N2O was released into headspace, declining to 67% in the 5% amendment. In a 100% biochar column at 6% WFPS, only 16% of the expected N2O was observed. X-ray photoelectron spectroscopy identified changes in surface functional groups suggesting interactions between N2O and the biochar surfaces. We have shown increases in -O-C = N /pyridine pyrrole/NH3, suggesting reactions between N2O and the carbon (C) matrix upon exposure to N2O. With increasing rates of biochar application, higher pH adjusted redox potentials were observed at the lower water contents. Evidence suggests that biochar has taken part in redox reactions reducing N2O to dinitrogen (N2), in addition to adsorption of N2O. PMID:26615820
The impact of three commercially-available nanoparticles (NPs) on trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) was investigated. TCE Adsorption isotherm and column breakthrough experiments were conducted in the presence and absence of silicon dioxide (S...
Cost effective design and operation of Granular Activated Carbon (GAC) facilities requires the selection of GAC that is optimal for a specific site. Rapid small-scale column tests (RSSCTs) are widely used for GAC assessment due to several advantages, including the ability to simu...
Cost effective design and operation of Granular Activated Carbon (GAC) facilities requires the selection of GAC that is optimal for a specific site. Rapid small-scale column tests (RSSCTs) are widely used for GAC assessment due to several advantages, including the ability to simu...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Canhai
This report is prepared for the demonstration of hierarchical prediction of carbon capture efficiency of a solvent-based absorption column. A computational fluid dynamics (CFD) model is first developed to simulate the core phenomena of solvent-based carbon capture, i.e., the CO2 physical absorption and chemical reaction, on a simplified geometry of wetted wall column (WWC) at bench scale. Aqueous solutions of ethanolamine (MEA) are commonly selected as a CO2 stream scrubbing liquid. CO2 is captured by both physical and chemical absorption using highly CO2 soluble and reactive solvent, MEA, during the scrubbing process. In order to provide confidence bound on themore » computational predictions of this complex engineering system, a hierarchical calibration and validation framework is proposed. The overall goal of this effort is to provide a mechanism-based predictive framework with confidence bound for overall mass transfer coefficient of the wetted wall column (WWC) with statistical analyses of the corresponding WWC experiments with increasing physical complexity.« less
GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff
An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO 2, and is used exclusively for CO 2 in this paper. Retrieval of CO 2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate thatmore » there are approximately 3° of freedom for the CO 2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO 2 from measurements in the 1.61 μ (6220 cm -1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO 2 profile retrievals with sufficient precision for applications to carbon dynamics. As a result, we finish by discussing ongoing research which may allow CO 2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.« less
NASA Astrophysics Data System (ADS)
Singh, U. N.; Petros, M.; Refaat, T. F.; Yu, J.; Ismail, S.
2017-09-01
The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption features for the gas at this wavelength region [1]. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers [2]. Currently, LaRC team is engaged in designing, developing and demonstrating a triple-pulsed 2-micron direct detection Integrated Path Differential Absorption (IPDA) lidar to measure the weighted-average column dry-air mixing ratios of carbon dioxide (XCO2) and water vapor (XH2O) from an airborne platform [1, 3-5]. This novel technique allows measurement of the two most dominant greenhouse gases, simultaneously and independently, using a single instrument. This paper will provide status and details of the development of this airborne 2-micron triple-pulse IPDA lidar. The presented work will focus on the advancement of critical IPDA lidar components. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plans for IPDA lidar ground integration, testing and flight validation will also be discussed. This work enables new Earth observation measurements, while reducing risk, cost, size, volume, mass and development time of required instruments.
GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra
Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff; ...
2016-08-02
An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO 2, and is used exclusively for CO 2 in this paper. Retrieval of CO 2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate thatmore » there are approximately 3° of freedom for the CO 2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO 2 from measurements in the 1.61 μ (6220 cm -1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO 2 profile retrievals with sufficient precision for applications to carbon dynamics. As a result, we finish by discussing ongoing research which may allow CO 2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.« less
Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes
Domagalski, Joseph L.; Orem, W.H.; Eugster, H.P.
1989-01-01
Samples of Recent sediments, representing up to 1000 years of accumulation, were collected from three closed basin lakes (Mono Lake, CA, Walker Lake, NV, and Great Salt Lake, UT) to assess the effects of brine composition on the accumulation of total organic carbon, the concentration of dissolved organic carbon, humic acid structure and diagenesis, and trace metal complexation. The Great Salt Lake water column is a stratified Na-Mg-Cl-SO4 brine with low alkalinity. Algal debris is entrained in the high density (1.132-1.190 g/cc) bottom brines, and in this region maximum organic matter decomposition occurs by anaerobic processes, with sulfate ion as the terminal electron acceptor. Organic matter, below 5 cm of the sediment-water interface, degrades at a very slow rate in spite of very high pore-fluid sulfate levels. The organic carbon concentration stabilizes at 1.1 wt%. Mono Lake is an alkaline (Na-CO3-Cl-SO4) system. The water column is stratified, but the bottom brines are of lower density relative to the Great Salt Lake, and sedimentation of algal debris is rapid. Depletion of pore-fluid sulfate, near l m of core, results in a much higher accumulation of organic carbon, approximately 6 wt%. Walker Lake is also an alkaline system. The water column is not stratified, and decomposition of organic matter occurs by aerobic processes at the sediment-water interface and by anaerobic processes below. Total organic carbon and dissolved organic carbon concentrations in Walker Lake sediments vary with location and depth due to changes in input and pore-fluid sulfate concentrations. Nuclear magnetic resonance studies (13C) of humic substances and dissolved organic carbon provide information on the source of the Recent sedimentary organic carbon (aquatic vs. terrestrial), its relative state of decomposition, and its chemical structure. The spectra suggest an algal origin with little terrestrial signature at all three lakes. This is indicated by the ratio of aliphatic to aromatic carbon and the absence of chemical structures indicative of the lignin of vascular plants. The dissolved organic carbon of the Mono Lake pore fluids is structurally related to humic acid and is also related to carbohydrate metabolism. The alkaline pore fluids, due to high pH, solubilize high molecular weight organic matter from the sediments. This hydrophilic material is a metal complexing agent. Despite very high algal productivities, organic carbon accumulation can be low in stratified lakes if the anoxic bottom waters are hypersaline with high concentrations of sulfate ion. Labile organic matter is recycled to the water column and the sedimentary organic matter is relatively nonsusceptible to bacterial metabolism. As a result, pore-fluid dissolved organic carbon and metal-organic complexation are low. ?? 1989.
Characterising the Structure of Molecular Clouds
NASA Astrophysics Data System (ADS)
Wong, Graeme Francis
The Interstellar Medium contains the building blocks of matter in our Galaxy and plays a vital role in the evolution of low mass star formation. The poorly studied molecular clouds of Lupus and Chamaeleon contain ongoing low mass star formation, and are in close proximity to our Solar System. While on the other hand the Carina molecular cloud, poorly observed in radio wavelength, is an active region of star formation and host some of the brightest stars known within our Galaxy. Using tracers like carbon monoxide, atomic neutral carbon, and ammonia, we are able to measure the temperature and density of the gas cloud. This information allows us to understand the initial conditions of the formation of low mass stars. Observations conducted with the 22-m Mopra radio telescope (located at the edge of the Warrumbungle Mountains near Coonabarabran), in the Carbon monoxide (CO) isotopologues 12 CO, 13 CO, C17O, and C18O (1-0) transitions, have mapped the Chamaeleon II cloud, an intermediate mass cloud within the Chamaeleon. Through the sub-arcminute maps, comparisons have been made to previous low resolution (2.5') maps which have been to resolve some of the dense clumps previously identified. Optical depth, column density, and excitation temperature derived from the CO maps, are consistent with previous results. A detailed comparison between identified C18O clumps have shown the different conditions occurring within the clumps, some of which contain or are located near a population of young stellar objects. The Northern region of the Carina Nebular Complex, was observed with NANTEN2, a 4-m radio telescope (located in the Chilean Atacama desert), in the 12CO (4-3) and [C I] 3P1-3P0 emission lines. Previous observations towards this region has either been at poor resolution or had limited coverage. The presented observations, strike a balance between the two; observing in sub-arcmin resolution (0.6') and with an area of 0.9° X 0.5° mapped. Excitation temperature of the 12CO (4-3) and column density of [C I] 3P1-3P0 have been derived. Discussions have been made of the complex morphology of the Northern Carina Nebular Complex region, compared to optical features, and supported the assertion of the HII region (Car I) expanding into the molecular cloud. The selected areas within the Lupus molecular clouds (regions I, III and IV) were observed with the DSS43 (also known as Tid-70m), the largest steerable single dish radio telescope (70-m) in the Southern Hemisphere located at Canberra Deep Space Communication Complex (CDSCC) near Canberra, in the ammonia transitions (1,1) and (2,2). Due to the observation modes and limited amount of time available for the Astronomical community, the targeted areas were mapped in a series of position-switching strips. Column density, kinetic and rotation temperatures were derived, which were compared and analysed to low-resolution maps towards the dense clumps. As Tid-70m had limited observing capabilities, this project has been able to improve the observation capabilities by implementing on-the-fly (OTF) mapping. With its size and unique capabilities, implementing OTF mapping will increase the efficiency of observations. Test observations were carried out towards the well known sources of Orion A, and Sagittarius A through the newly implemented OTF observing mode. Analysis and comparison of Orion A and Sagittarius A, shows consistency with the new maps produced.
NASA Astrophysics Data System (ADS)
Koley, Susmita; Ghosh, Indranil
Quick and periodic inflow-outflow of adsorbate in an adsorbent column createsa differential temperature between the two ends of it, allowing for the generation of continuous sorption cooling in a single adsorbent tube. The concept has been proven experimentally and theoretically for near room temperature applications using activated carbon-nitrogen. The feasibility of generating continuous solid sorption cooling in a single adsorbent tube in the cryogenic domainhas been studied theoretically with a different adsorbent-adsorbate pair, namely, activated carbon-hydrogen. Precooling of gaseous hydrogen (before it enters the adsorbent column) and removal of the heat of adsorption has been achieved using liquid nitrogen. Theoretical estimation shows nearly 20 K temperature difference between the two ends under no load condition. Finally, parametric variations have been performed.
Ghude, Sachin D; Kulkarni, Santosh H; Kulkarni, Pavan S; Kanawade, Vijay P; Fadnavis, Suvarna; Pokhrel, Samir; Jena, Chinmay; Beig, G; Bortoli, D
2011-09-01
The present study is an attempt to examine some of the probable causes of the unusually low tropospheric column ozone observed over eastern India during the exceptional drought event in July 2002. We examined horizontal wind and omega (vertical velocity) anomalies over the Indian region to understand the large-scale dynamical processes which prevailed in July 2002. We also examined anomalies in tropospheric carbon monoxide (CO), an important ozone precursor, and observed low CO mixing ratio in the free troposphere in 2002 over eastern India. It was found that instead of a normal large-scale ascent, the air was descending in the middle and lower troposphere over a vast part of India. This configuration was apparently responsible for the less convective upwelling of precursors and likely caused less photochemical ozone formation in the free troposphere over eastern India in July 2002. The insight gained from this case study will hopefully provide a better understanding of the process controlling the distribution of the tropospheric ozone over the Indian region.
Uncertainty Analysis for the Miniaturized Laser Heterodyne Radiometer (mini-LHR)
NASA Technical Reports Server (NTRS)
Clarke, G. B.; Wilson E. L.; Miller, J. H.; Melroy, H. R.
2014-01-01
Presented here is a sensitivity analysis for the miniaturized laser heterodyne radiometer (mini-LHR). This passive, ground-based instrument measures carbon dioxide (CO2) in the atmospheric column and has been under development at NASA/GSFC since 2009. The goal of this development is to produce a low-cost, easily-deployable instrument that can extend current ground measurement networks in order to (1) validate column satellite observations, (2) provide coverage in regions of limited satellite observations, (3) target regions of interest such as thawing permafrost, and (4) support the continuity of a long-term climate record. In this paper an uncertainty analysis of the instrument performance is presented and compared with results from three sets of field measurements. The signal-to-noise ratio (SNR) and corresponding uncertainty for a single scan are calculated to be 329.4+/-1.3 by deploying error propagation through the equation governing the SNR. Reported is an absorbance noise of 0.0024 for 6 averaged scans of field data, for an instrument precision of approximately 0.2 ppmv for CO2.
High Resolution CO2 Simulation for Detecting Emission Hotspots Signal in GOSAT XCO2 Data
NASA Astrophysics Data System (ADS)
Janardanan Achari, R.; Kaiser, J. W.; Maksyutov, S. S.; Ito, A.; Ganshin, A.; Zhuravlev, R.; Yoshida, Y.
2014-12-01
Emissions due to combustion of fossil fuel and biomass are two major sources of atmospheric carbon dioxide. The trace gases emitted by biomass burning have a significant influence on the atmosphere which currently accounts for ~25% of the annual anthropogenic emission of CO2into the atmosphere. Also some of the world's most carbon-dense ecosystems like South America and Africa are increasingly susceptible to fire. Though observing atmospheric greenhouse gas dry air mole fractions from space is an approach in practice, the problem of delineating the contribution from the flux arising from different sources has always been a matter of interest. Here we demonstrate the capability of a space-borne CO2 observational platform (Greenhouse gas Observing SATellite, GOSAT) to detect emissions of CO2 due to biomass burning. We made an attempt to detect fire emission signal of CO2 in GOSAT observed total column dry air mole fractions of CO2 (XCO2) for a period June 2009 through December 2012. We performed Lagrangian time inverted simulation (trajectory between 2-3 days) of CO2 transport using FLEXPART for GOSAT observation locations using high resolution (0.1 degree) biomass burning (GFAS V1.1) fluxes. The resulting total column mixing ratios of CO2 (ΔXCO2,model) were grouped into 0.2 ppm bins over spatial regions of 10x10 degree. The result was compared to anomalies of GOSAT XCO2, calculated as ΔXCO2,obs=XCO2,obs-local background (omitting influence from other regimes of emission), collectively for the analysis period and for large continental regions where these detected signals predominate. GOSAT data showed good agreement with modeled ΔXCO2 till about 0.9 ppm (for example regression slope of 0.989 for African continent up to 0.7 ppm) , beyond this, the number of observations with higher ΔXCO2drops and hence poor correspondence to model values. Our analysis points towards the potential of dedicated greenhouse gas observing satellites providing larger number observations like the OCO-2 which can better observe narrow plumes downwind of CO2 emission hotspots, resulting in larger number of high concentration observations.
GHG Emission Source Observations of Western U.S. using the GOSAT Agile Pointing System
NASA Astrophysics Data System (ADS)
Kuze, A.; Shiomi, K.; Suto, H.; Kikuchi, N.; Hashimoto, M.; Kataoka, F.; Bruegge, C. J.; Schwandner, F. M.; Hedelius, J.; Iraci, L. T.; Yates, E. L.; Tanaka, T.; Gore, W.; Leifer, I.; Crisp, D.
2016-12-01
As it is still difficult to cover the Earth's entire surface with high spectral resolution spectrometers such as the Greenhouse gases Observing SATellite (GOSAT), an optimized sampling strategy is still needed. This strategy exploits the agile, 2-axis pointing system to obtain as much spatial and temporal coverage as possible given the 4-second sampling frequency and the orbit's 3 day ground track repeat cycle. For the first 5 years in orbit, GOSAT has improved the accuracy of its column averaged carbon dioxide (CO2) and methane (CH4) dry air mole fraction measurements by updating the instrument calibration, retrieval algorithm and radiative transfer forward calculations. These data have been used to demonstrate flux inversions using satellite observations with using the nominal grid observation pattern. After switching to the secondary pointing system in January 2015, the pointing pattern has been updated every day to increase the number of target observations for understanding greenhouse gases (GHG) emission over the west coast of North America (GOSAT paths 35, 36 and 37), where ground-based and airplane observation data are available. Targets are categorized as follows. (1) Radiometric calibration and Total Carbon Column Observing Network (TCCON) validation from two different observing geometries: forward and backward over Railroad Valley, Nevada (RRV), the NASA Armstrong Flight Research Center (AFRC), and the California Institute of Technology; (2) Coincident observations with OCO-2 over RRV for radiometric calibration; (3) Possible CH4emission source: oil field, coal mining, landfill, rice field, cattle and feed lot; (4) Megacities: Sacramento, Los Angeles, and San Diego; (5) Reference points as background: Mojavi desert (AFRC) and Catalina Island The data set now includes more than 100 clear sky soundings. We will present seasonal variations and anomalies that GOSAT observed and discuss an ideal reference point to understand GHG local emissions and transportation. We will also discuss the dependence of information content on sun and viewing geometry. Reference: A. Kuze, et al., "Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space," Atmos. Meas. Tech., 9, 2445-2461, (2016).
Rattier, M; Reungoat, J; Keller, J; Gernjak, W
2014-05-01
The objective of this study was to determine the extent to which a suite of organic micropollutants (MPs) can be removed by biological filtration and the role of bioavailability and ammonia oxidizing microorganisms (AOMs) in the biodegradation process. During approximately one year, laboratory-scale columns with 8 min empty bed contact time (EBCT) and packed with anthracite as filter media were used for treating a tertiary effluent spiked with a broad range of MPs at a target concentration of 2 μg L(-1). In parallel columns, aerobic biomass growth was inhibited by using either the biocide sodium azide (500 mg L(-1) NaN3) or allylthiourea (5 mg L(-1) ATU), specifically inhibiting nitrifying bacteria. Once the biomass had colonized the media, around 15% of the dissolved organic carbon (DOC) contained in the untreated tertiary effluent was removed by non-inhibited columns. The removal of several MPs increased over time indicating the relevance of biological activity for the removal of MPs, while the negative control, the NaN3 inhibited column, showed no significant removal. Out of 33 MPs, 19 were recalcitrant (<25%) to biodegradation under aerobic conditions with the others exhibiting a diverse range of removal efficiency up to 95%. Through inhibition by ATU it was shown that nitrifying bacteria were clearly having a role in the degradation of several MPs, whereas the removal of other MPs was not affected by the presence of the nitrification inhibitor. A relationship between the qualitative assessment of sorption of MPs on granular activated carbon (GAC) and their removal efficiency by biodegradation on anthracite was observed. This result suggested that the affinity of the MPs for GAC media could be a useful indicator of the bioavailability of compounds during biofiltration on anthracite. Copyright © 2014 Elsevier Ltd. All rights reserved.
Spalding, B P; Spalding, I R
2001-01-15
Strontium-90 is a major hazardous contaminant of radioactive wastewater and its processing sludges at many Department of Energy (DOE) facilities. In the past, such contaminated wastewater and sludge have been disposed in soil seepage pits, lagoons, or cribs often under highly perturbed alkaline conditions (pH > 12) where 90Sr solubility is low and its adsorption to surrounding soil is high. As natural weathering returns these soils to near-neutral or slightly acidic conditions, the adsorbed and precipitated calcium and magnesium phases, in which 90Sr is carried, change significantly in both nature and amounts. No comprehensive computational method has been formulated previously to quantitatively simulate the dynamics of 90Sr in the soil-groundwater environment under such dynamic and wide-ranging conditions. A computational code, the Hydrologic Utility Model for Demonstrating Integrated Nuclear Geochemical Environmental Responses (HUMDINGER), was composed to describe the changing equilibria of 90Sr in soil based on its causative chemical reactions including soil buffering, pH-dependent cation-exchange capacity, cation selectivity, and the precipitation/dissolution of calcium carbonate, calcium hydroxide, and magnesium hydroxide in response to leaching groundwater characteristics including pH, acid-neutralizing capacity, dissolved cations, and inorganic carbonate species. The code includes a simulation of one-dimensional transport of 90Sr through a soil column as a series of soil mixing cells where the equilibrium soluble output from one cell is applied to the next cell. Unamended soil leaching and highly alkaline soil treatments, including potassium hydroxide, sodium silicate, and sodium aluminate, were simulated and compared with experimental findings using large (10 kg) soil columns that were leached with 90Sr-contaminated groundwater after treatment. HUMDINGER's simulations were in good agreement with dynamic experimental observations of soil exchange capacity, exchangeable cations, total 90Sr, and pH values of layers within the soil columns and of column effluents.
Studies on carbon FRP (CFRP) prestressed concrete bridge columns and piles in marine environment.
DOT National Transportation Integrated Search
1998-11-01
The main objective of this study was to investigate the feasibility of using concrete piles pretensioned with Carbon Fiber Reinforced Plastics (CFRP) tendons. The study reviews the available literature on mechanical properties of CFRP reinforcement, ...
VOLATILE-RICH CIRCUMSTELLAR GAS IN THE UNUSUAL 49 CETI DEBRIS DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberge, Aki; Grady, Carol A.; Welsh, Barry Y.
2014-11-20
We present Hubble Space Telescope Space Telescope Imaging Spectrograph far-UV spectra of the edge-on disk around 49 Ceti, one of the very few debris disks showing submillimeter CO emission. Many atomic absorption lines are present in the spectra, most of which arise from circumstellar gas lying along the line-of-sight to the central star. We determined the line-of-sight C I column density, estimated the total carbon column density, and set limits on the O I column density. Surprisingly, no line-of-sight CO absorption was seen. We discuss possible explanations for this non-detection, and present preliminary estimates of the carbon abundances in themore » line-of-sight gas. The C/Fe ratio is much greater than the solar value, suggesting that 49 Cet harbors a volatile-rich gas disk similar to that of β Pictoris.« less
Effects of Cabin Upsets on Adsorption Columns for Air Revitalization
NASA Technical Reports Server (NTRS)
LeVan, M. Douglas
1999-01-01
The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there by W. Scot Appel under the direction of Dr. John E. Finn. Modeling work was performed at the University of Virginia and at Vanderbilt University by W. Scot Appel under the direction of M. Douglas LeVan. All three participants collaborated in all of the various phases of the research. The most comprehensive document describing the research is the Ph.D. dissertation of W. Scot Appel. Results have been published in several papers and presented in talks at technical conferences. All documents have been transmitted to Dr. John E. Finn.
Lima, Lisandra; Baêta, Bruno E L; Lima, Diego R S; Afonso, Robson J C F; de Aquino, Sérgio F; Libânio, Marcelo
2016-01-01
The aim of this study was to evaluate the performance of two forms of basic granular activated carbon (GAC), mineral (pH = 10.5) and vegetal (pH = 9), for the removal of three pharmaceuticals, as sulphamethoxazole (SMX), diclofenac (DCF) and 17β-estradiol (E2), from two different matrices: fortified distilled (2.4-3.0 mg L(-1) and pH from 5.5 to 6.5) and natural (∼1.0 mg L(-1) and pH from 7.1 to 7.2) water in a bench scale. The Rapid Small-Scale Column Test used to assess the ability of mineral and vegetal GAC on removal of such pharmaceuticals led to removal capacities varying from 14.9 to 23.5 mg g(-1) for E2, from 23.7 to 24.2 mg g(-1) for DCF and from 20.5 to 20.6 mg g(-1) for SMX. Removal efficiencies of 71%, 88% and 74% for DCF, SMX and E2, respectively, were obtained at breakthrough point when using mineral GAC, whereas for the vegetal GAC the figures were 76%, 77% and 65%, respectively. The carbon usage rate at the breakthrough point varied from 11.9 to 14.5 L g(-1) for mineral GAC and from 8.8 to 14.8 L g(-1) for vegetal GAC. Mineral CAG also exhibited the best performance when treating fortified natural water, since nearly complete removal was observed for all contaminants in the column operated for 22 h at a carbon usage rate of 2.9 L g(-1).
The Orbiting Carbon Observatory: NASA's First Dedicated Carbon Dioxide Mission
NASA Technical Reports Server (NTRS)
Crisp, D.
2008-01-01
The Orbiting Carbon Observatory is scheduled for launch from Vandenberg Air Force Base in California in January 2009. This Earth System Science Pathfinder (ESSP) mission carries and points a single instrument that incorporates 3 high-resolution grating spectrometers designed to measure the absorption of reflected sunlight by near-infrared carbon dioxide (CO2) and molecular oxygen bands. These spectra will be analyzed to retrieve estimates of the column-averaged CO2 dry air mole fraction, X(sub CO2). Pre-flight qualification and calibration tests completed in early 2008 indicate that the instrument will provide high quality X(sub CO2) data. The instrument was integrated into the spacecraft, and the completed Observatory was qualified and tested during the spring and summer of 2008, in preparation for delivery to the launch site in the fall of this year. The Observatory will initially be launched into a 635 km altitude, near-polar orbit. The on-board propulsion system will then raise the orbit to 705 km and insert OCO into the Earth Observing System Afternoon Constellation (A-Train). The first routine science observations are expected about 45 days after launch. Calibrated spectral radiances will be archived starting about 6 months later. An exploratory X(sub CO2) product will be validated and then archived starting about 3 months after that.
The Orbiting Carbon Observatory: NASA's first dedicated carbon dioxide mission
NASA Astrophysics Data System (ADS)
Crisp, D.
2008-10-01
The Orbiting Carbon Observatory is scheduled for launch from Vandenberg Air Force Base in California in January 2009. This Earth System Science Pathfinder (ESSP) mission carries and points a single instrument that incorporates 3 high-resolution grating spectrometers designed to measure the absorption of reflected sunlight by near-infrared carbon dioxide (CO2) and molecular oxygen bands. These spectra will be analyzed to retrieve estimates of the column-averaged CO2 dry air mole fraction, XCO2. Pre-flight qualification and calibration tests completed in early 2008 indicate that the instrument will provide high quality XCO2 data. The instrument was integrated into the spacecraft, and the completed Observatory was qualified and tested during the spring and summer of 2008, in preparation for delivery to the launch site in the fall of this year. The Observatory will initially be launched into a 635 km altitude, near-polar orbit. The on-board propulsion system will then raise the orbit to 705 km and insert OCO into the Earth Observing System Afternoon Constellation (A-Train). The first routine science observations are expected about 45 days after launch. Calibrated spectral radiances will be archived starting about 6 months later. An exploratory XCO2 product will be validated and then archived starting about 3 months after that.
Surface carbon influences on the reductive transformation of TCE in the presence of granular iron.
Firdous, R; Devlin, J F
2018-04-05
To gain insight into the processes of transformations in zero-valent iron systems, electrolytic iron (EI) has been used as a surrogate for the commercial products actually used in barriers. This substitution facilitates mechanistic studies, but may not be fully representative of all the relevant processes at work in groundwater remediation. To address this concern, the kinetic iron model (KIM) was used to investigate sorption and reactivity differences between EI and Connelly brand GI, using TCE as a probe compound. It was observed that retardation factors (R app ) for GI varied non-linearly with influent concentrations to the columns (C o ), and declined significantly as GI aged. In contrast, R app values for EI were small and insensitive to C o , and changed minimally with iron aging. Moreover, although declines in the rate constants (k) and increases in the sorption coefficients were observed for both iron types, they were most pronounced in the case of EI. SEM scans of the EI surface before and after aging (90 days) established the appearance of carbon on the older surface. This work provides evidence that iron with a higher surface carbon content outperforms pure iron, suggesting that the carbon is actively involved in promoting TCE reduction. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cyronak, Tyler; Santos, Isaac R.; Erler, Dirk V.; Maher, Damien T.; Eyre, Bradley D.
2014-04-01
The impact of groundwater on pCO2 variability was assessed in two coral reef lagoons with distinct drivers of submarine groundwater discharge (SGD). Diel variability of pCO2 in the two ecosystems was explained by a combination of biological drivers and SGD inputs. In Rarotonga, a South Pacific volcanic island, 222Rn-derived SGD was driven primarily by a steep terrestrial hydraulic gradient, and the water column was influenced by the high pCO2 (5501 µatm) of the fresh groundwater. In Heron Island, a Great Barrier Reef coral cay, SGD was dominated by seawater recirculation through the sediments (i.e., tidal pumping), and pCO2 was mainly impacted through the stimulation of biological processes. The Rarotonga water column had a higher average pCO2 (549 µatm) than Heron Island (471 µatm). However, pCO2 exhibited a greater diel range in Heron Island (778 µatm) than in Rarotonga (507 µatm). The Rarotonga water column received 29.0 ± 8.2 mmol free-CO2 m-2 d-1 from SGD, while the Heron Island water column received 12.1 ± 4.2 mmol free-CO2 m-2 d-1. Over the course of this study, both systems were sources of CO2 to the atmosphere with SGD-derived free-CO2 most likely contributing a large portion to the air-sea CO2 flux. Studies measuring the carbon chemistry of coral reefs (e.g., metabolism and calcification rates) may need to consider the effects of groundwater inputs on water column carbonate chemistry. Local drivers of coral reef carbonate chemistry such as SGD may offer more approachable management solutions to mitigating the effects of ocean acidification on coral reefs.
Device and method for treatment of gases
Vegge, Olaf Trygve; Brinch, Jon Christian
2007-01-30
The device and method of the present invention employs a column having a gas inlet in its lower part and a gas outlet in its upper part. Carbon particles are introduced into the column through a supply pipe. The supply pipe is movable so that by manipulating the height of the supply pipe in conjunction with discharging particulate matter through the column, the height of the bed of particulate matter in the column can be adjusted so that the retention time of the off gas in the particulate bed is constant. By maintaining a constant retention time of the off gas in the bed, complete conversion of the off gas is achieved.
Reconciliation of the carbon budget in the ocean's twilight zone.
Giering, Sarah L C; Sanders, Richard; Lampitt, Richard S; Anderson, Thomas R; Tamburini, Christian; Boutrif, Mehdi; Zubkov, Mikhail V; Marsay, Chris M; Henson, Stephanie A; Saw, Kevin; Cook, Kathryn; Mayor, Daniel J
2014-03-27
Photosynthesis in the surface ocean produces approximately 100 gigatonnes of organic carbon per year, of which 5 to 15 per cent is exported to the deep ocean. The rate at which the sinking carbon is converted into carbon dioxide by heterotrophic organisms at depth is important in controlling oceanic carbon storage. It remains uncertain, however, to what extent surface ocean carbon supply meets the demand of water-column biota; the discrepancy between known carbon sources and sinks is as much as two orders of magnitude. Here we present field measurements, respiration rate estimates and a steady-state model that allow us to balance carbon sources and sinks to within observational uncertainties at the Porcupine Abyssal Plain site in the eastern North Atlantic Ocean. We find that prokaryotes are responsible for 70 to 92 per cent of the estimated remineralization in the twilight zone (depths of 50 to 1,000 metres) despite the fact that much of the organic carbon is exported in the form of large, fast-sinking particles accessible to larger zooplankton. We suggest that this occurs because zooplankton fragment and ingest half of the fast-sinking particles, of which more than 30 per cent may be released as suspended and slowly sinking matter, stimulating the deep-ocean microbial loop. The synergy between microbes and zooplankton in the twilight zone is important to our understanding of the processes controlling the oceanic carbon sink.
Final report on "Carbon Data Assimilation with a Coupled Ensemble Kalman Filter"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalnay, Eugenia; Kang, Ji-Sun; Fung, Inez
2014-07-23
We proposed (and accomplished) the development of an Ensemble Kalman Filter (EnKF) approach for the estimation of surface carbon fluxes as if they were parameters, augmenting the model with them. Our system is quite different from previous approaches, such as carbon flux inversions, 4D-Var, and EnKF with approximate background error covariance (Peters et al., 2008). We showed (using observing system simulation experiments, OSSEs) that these differences lead to a more accurate estimation of the evolving surface carbon fluxes at model grid-scale resolution. The main properties of the LETKF-C are: a) The carbon cycle LETKF is coupled with the simultaneous assimilationmore » of the standard atmospheric variables, so that the ensemble wind transport of the CO2 provides an estimation of the carbon transport uncertainty. b) The use of an assimilation window (6hr) much shorter than the months-long windows used in other methods. This avoids the inevitable “blurring” of the signal that takes place in long windows due to turbulent mixing since the CO2 does not have time to mix before the next window. In this development we introduced new, advanced techniques that have since been adopted by the EnKF community (Kang, 2009, Kang et al., 2011, Kang et al. 2012). These advances include “variable localization” that reduces sampling errors in the estimation of the forecast error covariance, more advanced adaptive multiplicative and additive inflations, and vertical localization based on the time scale of the processes. The main result has been obtained using the LETKF-C with all these advances, and assimilating simulated atmospheric CO2 observations from different observing systems (surface flask observations of CO2 but no surface carbon fluxes observations, total column CO2 from GoSAT/OCO-2, and upper troposphere AIRS retrievals). After a spin-up of about one month, the LETKF-C succeeded in reconstructing the true evolving surface fluxes of carbon at a model grid resolution. When applied to the CAM3.5 model, the LETKF gave very promising results as well, although only one month is available.« less
Final Technical Report [Carbon Data Assimilation with a Coupled Ensemble Kalman Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalnay, Eugenia
2013-08-30
We proposed (and accomplished) the development of an Ensemble Kalman Filter (EnKF) approach for the estimation of surface carbon fluxes as if they were parameters, augmenting the model with them. Our system is quite different from previous approaches, such as carbon flux inversions, 4D-Var, and EnKF with approximate background error covariance (Peters et al., 2008). We showed (using observing system simulation experiments, OSSEs) that these differences lead to a more accurate estimation of the evolving surface carbon fluxes at model grid-scale resolution. The main properties of the LETKF-C are: a) The carbon cycle LETKF is coupled with the simultaneous assimilationmore » of the standard atmospheric variables, so that the ensemble wind transport of the CO2 provides an estimation of the carbon transport uncertainty. b) The use of an assimilation window (6hr) much shorter than the months-long windows used in other methods. This avoids the inevitable “blurring” of the signal that takes place in long windows due to turbulent mixing since the CO2 does not have time to mix before the next window. In this development we introduced new, advanced techniques that have since been adopted by the EnKF community (Kang, 2009, Kang et al., 2011, Kang et al. 2012). These advances include “variable localization” that reduces sampling errors in the estimation of the forecast error covariance, more advanced adaptive multiplicative and additive inflations, and vertical localization based on the time scale of the processes. The main result has been obtained using the LETKF-C with all these advances, and assimilating simulated atmospheric CO2 observations from different observing systems (surface flask observations of CO2 but no surface carbon fluxes observations, total column CO2 from GoSAT/OCO-2, and upper troposphere AIRS retrievals). After a spin-up of about one month, the LETKF-C succeeded in reconstructing the true evolving surface fluxes of carbon at a model grid resolution. When applied to the CAM3.5 model, the LETKF gave very promising results as well, although only one month is available.« less
Yang, Peilin; McCabe, Terry; Pursch, Matthias
2011-11-01
Commercial C(18) columns packed with superficially porous particles of different sizes and shell thicknesses (Ascentis Express, Kinetex, and Poroshell 120) or sub-2-μm totally porous particles (Acquity BEH) were systematically compared using a small molecule mixture and a complex natural product mixture as text probes. Significant efficiency loss was observed on 2.1-mm id columns even with a low dispersion ultra-high pressure liquid chromatography system. The Kinetex 4.6-mm id column packed with 2.6-μm particles exhibited the best overall efficiency for small molecule separations and the Poroshell 120 column showed better performance for mid-size natural product analytes. The Kinetex 2.1-mm id column packed with 1.7-μm particles did not deliver the expected performance and the possible reasons besides extra column effect have been proved to be frictional heating effect and poor column packing quality. Different column retentivities and selectivities have been observed on the four C(18) columns of different brands for the natural product separation. Column batch-to-batch variability that has been previously observed on the Ascentis Express column was also observed on the Kinetex and Poroshell 120 column. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Wooyong; Jung, Hun Bok; Martin, Paul F.
2011-11-01
Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C)more » for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron-sized calcite on the outside surface of cement, which resulted in the decrease in BJH pore volume and BET surface area. Cement carbonation and pore structure change are significantly dependent on pressure and temperature conditions as well as the phase of CO{sub 2}, which controls the balance between precipitation and dissolution in cement matrix. Geochemical modeling result suggests that ratio of solid (cement)-to-solution (carbonated water) has a significant effect on cement carbonation, thus the cement-CO{sub 2} reaction experiment needs to be conducted under realistic conditions representing the in-situ wellbore environment of carbon sequestration field site. Total porosity and air permeability for a duplicate cement column with water-to-cement ratio of 0.38 measured after oven-drying by Core Laboratories using Boyle's Law technique and steady-state method were 31% and 0.576 mD. A novel method to measure the effective liquid permeability of a cement column using X-ray micro-tomography images after injection of pressurized KI (potassium iodide) is under development by PNNL. Preliminary results indicate the permeability of a cement column with water-to-cement ratio of 0.38 is 4-8 mD. PNNL will apply the method to understand the effective permeability change of Portland cement by CO{sub 2}(g) reaction under a variety of pressure and temperature conditions to develop a more reliable well-bore leakage risk model.« less
NASA Technical Reports Server (NTRS)
Mu, M.; Randerson, J. T.; vanderWerf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.;
2011-01-01
Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003.2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS) ]derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top ]down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.
NASA Technical Reports Server (NTRS)
Mu, M.; Randerson, J. T.; van der Werf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.;
2011-01-01
Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We distributed monthly GFED3 emissions during 2003-2009 on a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) active fire observations. We found that patterns of daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of bunting in savannas. On diurnal timescales, our analysis of the GOES active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.
NASA Technical Reports Server (NTRS)
Fisher, J. A.; Jacob, D. J.; Purdy, M. T.; Kopacz, M.; LeSager, P.; Carouge, C.; Holmes, C. D.; Yantosca, R. M.; Batchelor, R. L.; Strong, K.;
2009-01-01
We use aircraft observations of carbon monoxide (CO) from the NASA ARCTAS and NOAA ARCPAC campaigns in April 2008 together with multiyear (2003-2008) CO satellite data from the AIRS instrument and a global chemical transport model (GEOS-Chem) to better understand the sources, transport, and interannual variability of pollution in the Arctic in spring. Model simulation of the aircraft data gives best estimates of CO emissions in April 2008 of 26 Tg month-1 for Asian anthropogenic, 9.1 for European anthropogenic, 4.2 for North American anthropogenic, 9.3 for Russian biomass burning (anomalously large that year), and 21 for Southeast Asian biomass burning. We find that Asian anthropogenic emissions are the dominant source of Arctic CO pollution everywhere except in surface air where European anthropogenic emissions are of similar importance. Synoptic pollution influences in the Arctic free troposphere include contributions of comparable magnitude from Russian biomass burning and from North American, European, and Asian anthropogenic sources. European pollution dominates synoptic variability near the surface. Analysis of two pollution events sampled by the aircraft demonstrates that AIRS is capable of observing pollution transport to the Arctic in the mid-troposphere. The 2003-2008 record of CO from AIRS shows that interannual variability averaged over the Arctic cap is very small. AIRS CO columns over Alaska are highly correlated with the Ocean Nino Index, suggesting a link between El Nino and northward pollution transport. AIRS shows lower-than-average CO columns over Alaska during April 2008, despite the Russian fires, due to a weakened Aleutian Low hindering transport from Asia and associated with the moderate 2007-2008 La Nina. This suggests that Asian pollution influence over the Arctic may be particularly large under strong El Nino conditions.
Methanotrophy within the water column of a large meromictic tropical lake (Lake Kivu, East Africa)
NASA Astrophysics Data System (ADS)
Morana, C.; Borges, A. V.; Roland, F. A. E.; Darchambeau, F.; Descy, J.-P.; Bouillon, S.
2015-04-01
The permanently stratified Lake Kivu is one of the largest freshwater reservoirs of dissolved methane (CH4) on Earth. Yet CH4 emissions from its surface to the atmosphere have been estimated to be 2 orders of magnitude lower than the CH4 upward flux to the mixed layer, suggesting that microbial CH4 oxidation is an important process within the water column. A combination of natural abundance stable carbon isotope analysis (δ13C) of several carbon pools and 13CH4-labelling experiments was carried out during the rainy and dry season to quantify (i) the contribution of CH4-derived carbon to the biomass, (ii) methanotrophic bacterial production (MBP), and (iii) methanotrophic bacterial growth efficiency (MBGE), defined as the ratio between MBP and gross CH4 oxidation. We also investigated the distribution and the δ13C of specific phospholipid fatty acids (PLFAs), used as biomarkers for aerobic methanotrophs. Maximal MBP rates were measured in the oxycline, suggesting that CH4 oxidation was mainly driven by oxic processes. Moreover, our data revealed that methanotrophic organisms in the water column oxidized most of the upward flux of CH4, and that a significant amount of CH4-derived carbon was incorporated into the microbial biomass in the oxycline. The MBGE was variable (2-50%) and negatively related to CH4 : O2 molar ratios. Thus, a comparatively smaller fraction of CH4-derived carbon was incorporated into the cellular biomass in deeper waters, at the bottom of the oxycline where oxygen was scarce. The aerobic methanotrophic community was clearly dominated by type I methanotrophs and no evidence was found for an active involvement of type II methanotrophs in CH4 oxidation in Lake Kivu, based on fatty acids analyses. Vertically integrated over the water column, the MBP was equivalent to 16-60% of the average phytoplankton particulate primary production. This relatively high magnitude of MBP, and the substantial contribution of CH4-derived carbon to the overall biomass in the oxycline, suggest that methanotrophic bacteria could potentially sustain a significant fraction of the pelagic food web in the deep, meromictic Lake Kivu.
Material Transport in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Rohde, V.; Dux, R.; Mayer, M.; Neu, R.; PA~ 1/4 tterich, T.; Schneider, W.; ASDEX Upgrade-Team,
Today carbon is the most common first wall material in fusion experiments, whereas the first wall of the next step device will consist of a mixture of elements. Especially tungsten has been shown to be an alternative to low-Z materials. However, even with 40% of tungsten coated plasma facing components, carbon is still the dominant impurity at ASDEX Upgrade. A consistent picture of the carbon migration in ASDEX Upgrade has been achieved. Primary carbon sources are the protection limiters at the low field side of the main chamber. Eroded carbon is distributed all over the main chamber. So, the initially tungsten coated central column acts as the main carbon source during discharges, even though a considerable amount of tungsten surfaces persists. Carbon coverage of the central column can significantly change on a shot to shot basis. The divertor target plates act as a strong carbon sink. Deposits are found at the inner and outer divertor, which may be re-eroded forming precursors for layer production at remote areas. In ASDEX Upgrade, deposits on the subdivertor structure are formed by hydro-carbons with a high effective sticking coefficient. A parasitic plasma at these locations may enhance the surface loss probability by surface activation. At more remote areas, such as the pump ducts, a very small deposition is found. Non sticking hydro-carbons are effectively pumped by the cryopump and turbo molecular pumps.
Pastrana-Martínez, L M; López-Ramón, M V; Fontecha-Cámara, M A; Moreno-Castilla, C
2010-02-01
There has been little research into the effects of the water hardness and alkalinity of surface waters on the adsorption of herbicides on activated carbons. The aim of this study was to determine the influence of these water characteristics on fluroxypyr adsorption on different activated carbons. At low fluroxypyr surface concentrations, the amount adsorbed from distilled water was related to the surface hydrophobicity. Surface area of carbons covered by fluroxypyr molecules ranged from 60 to 65%. Variations in fluroxypyr solubility with water hardness and alkalinity showed a salting-in effect. Calcium, magnesium and bicarbonate ions were adsorbed to a varied extent on the activated carbons. The presence of fluroxypyr in solution decreased their adsorption due to a competition effect. K(F) from the Freundlich equation linearly increased with water hardness due to salt-screened electrostatic repulsions between charged fluroxypyr molecules. The amount adsorbed from distilled water was largest at high fluroxypyr solution concentrations, because there was no competition between inorganic ions and fluroxypyr molecules. The column breakthrough volume and the amount adsorbed at breakthrough were smaller in tap versus distilled water. Carbon consumption was lower with activated carbon cloth than with the use of granular activated carbon. (c) 2009 Elsevier Ltd. All rights reserved.
Carbon dioxide stripping in aquaculture -- part II: development of gas transfer models
Colt, John; Watten, Barnaby; Pfeiffer, Tim
2012-01-01
The basic mass transfer equation for gases such as oxygen and carbon dioxide can be derived from integration of the driving force equation. Because of the physical characteristics of the gas transfer processes, slightly different models are used for aerators tested under the non steady-state procedures, than for packed columns, or weirs. It is suggested that the standard condition for carbon dioxide should be 20 °C, 1 atm, CCO2=20 mg/kg, and XCO2=0.000285. The selection of the standard condition for carbon dioxide based on a fixed mole fraction ensures that standardized carbon dioxide transfer rates will be comparable even though the value of C*CO2 in the atmosphere is increasing with time. The computation of mass transfer for carbon dioxide is complicated by the impact of water depth and gas phase enrichment on the saturation concentration within the unit, although the importance of either factor depends strongly on the specific type of aerator. For some types of aerators, the most accurate gas phase model remains to be determined for carbon dioxide. The assumption that carbon dioxide can be treated as a non-reactive gas in packed columns may apply for cold acidic waters but not for warm alkaline waters.
Influence of different irrigation levels on the root water uptake and the physiology of root-chicory
NASA Astrophysics Data System (ADS)
Vandoorne, B.; Dekoninck, N.; Lutts, S.; Capelle, B.; Javaux, M.
2009-04-01
In the context of global warming and given recent heat waves observed in Western Europe, the relationship between the soil water status and the plant health has recently received more attention, especially for cash crops like chicory. In this study we particularly investigated the impact of soil water status on the chicory root water uptake and density and made a link with physiological and yield parameters. During five months, we imposed different irrigation levels to 10 plants of chicory (Cichorium intybus var. sativum) growing in greenhouses. Each seed, coming from an autogamous selection in this allogamous species, was sown in a column of 1.42m height and 0.4m diameter filled with yellow sand and irrigated from the bottom with Hoagland solution. On those 10 columns, we measured the distribution of soil moisture with TDR (8 columns) and ERT (2 columns) probes. Lateral windows also allowed us to follow the root growth. The column weights were also monitored in order to quantify the plant transpiration. During the experiment, several physiological indices were also followed like the gas exchange (CO2 and transpiration), the chlorophyll fluorescence, the stomatal conductance, the plastochron, and the Leaf Area Index (LAI). At the end of the experiment, the complete root length density and the water content profiles were measured. We had also a look to the osmotic potential, the pigments content and the isotopic discrimination of carbon in the leaves, which gives information about the level of stress. At a biochemical point of view, we measured the content in enzymes involves in inulin metabolism and sugars synthesis. We observed that the plants suffering from a slight water stress developed better. A simple1-D model was built which describes the root growth in function of the irrigation level and of the soil and atmospheric boundary conditions.
Validation of XCO2 derived from SWIR of GOSAT TANSO-FTS with aircraft measurement data
NASA Astrophysics Data System (ADS)
Inoue, M.; Morino, I.; Uchino, O.; Miyamoto, Y.; Yoshida, Y.; Yokota, T.; Machida, T.; Sawa, Y.; Matsueda, H.; Sweeney, C.; Tans, P. P.; Andrews, A. E.; Patra, P. K.
2011-12-01
Column-averaged mixing ratios of carbon dioxide (XCO2) are retrieved from the Short-Wavelength InfraRed (SWIR) spectrum of Thermal And Near-infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT). They are compared with the aircraft data measured by the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) project, National Oceanic and Atmospheric Administration (NOAA), and National Institute for Environmental Studies (NIES). Because limited aircraft measurement was conducted within a few hours of the GOSAT overpass time, we prepared temporally interpolated aircraft-based XCO2 data by fitting with the function that contains yearly trend and annual/semiannual sinusoidal variations to compare with GOSAT XCO2. As for the GOSAT XCO2 data, those retrieved within ±2 degrees or ±5 degrees latitude/longitude box centered at each observation site were used. In order to compare the aircraft data with the satellite data, the GOSAT column averaging kernels (CAK) should be taken into account to calculate the aircraft-based XCO2. However, it is hard to apply GOSAT CAK with temporally interpolated aircraft data. Therefore, we evaluated the GOSAT CAK impact on the aircraft-based XCO2 calculation by using CONTRAIL data over Narita (35.8N, 140.4E) where the maximum temporally match-upped data are available. The difference in the aircraft-based XCO2 with and without GOSAT CAK is lower by approximately 0.3 ppm. Here, we made a comparison between GOSAT XCO2 and aircraft-based XCO2 without GOSAT CAK. Although GOSAT data are underestimated by approximately 7-9 ppm for comparison in every site, there is a good correlation between both datasets in some sites, such as high-latitude regions of North America, Europe, Siberia, and ocean regions. A direct comparison between GOSAT and aircraft XCO2 at all observation sites shows that GOSAT SWIR XCO2 is biased low by about 8 ppm.
NASA Astrophysics Data System (ADS)
Borsdorff, Tobias; Andrasec, Josip; aan de Brugh, Joost; Hu, Haili; Aben, Ilse; Landgraf, Jochen
2018-05-01
In the perspective of the upcoming TROPOMI Sentinel-5 Precursor carbon monoxide data product, we discuss the benefit of using CO total column retrievals from cloud-contaminated SCIAMACHY 2.3 µm shortwave infrared spectra to detect atmospheric CO enhancements on regional and urban scales due to emissions from cities and wildfires. The study uses the operational Sentinel-5 Precursor algorithm SICOR, which infers the vertically integrated CO column together with effective cloud parameters. We investigate its capability to detect localized CO enhancements distinguishing between clear-sky observations and observations with low (< 1.5 km) and medium-high clouds (1.5-5 km). As an example, we analyse CO enhancements over the cities Paris, Los Angeles and Tehran as well as the wildfire events in Mexico-Guatemala 2005 and Alaska-Canada 2004. The CO average of the SCIAMACHY full-mission data set of clear-sky observations can detect weak CO enhancements of less than 10 ppb due to air pollution in these cities. For low-cloud conditions, the CO data product performs similarly well. For medium-high clouds, the observations show a reduced CO signal both over Tehran and Los Angeles, while for Paris no significant CO enhancement can be detected. This indicates that information about the vertical distribution of CO can be obtained from the SCIAMACHY measurements. Moreover, for the Mexico-Guatemala fires, the low-cloud CO data captures a strong outflow of CO over the Gulf of Mexico and the Pacific Ocean and so provides complementary information to clear-sky retrievals, which can only be obtained over land. For both burning events, enhanced CO values are even detectable with medium-high-cloud retrievals, confirming a distinct vertical extension of the pollution. The larger number of additional measurements, and hence the better spatial coverage, significantly improve the detection of wildfire pollution using both the clear-sky and cloudy CO retrievals. Due to the improved instrument performance of the TROPOMI instrument with respect to its precursor SCIAMACHY, the upcoming Sentinel-5 Precursor CO data product will allow improved detection of CO emissions and their vertical extension over cities and fires, making new research applications possible.
Airborne Infrared Spectroscopy of 1994 Western Wildfires
NASA Technical Reports Server (NTRS)
Worden, Helen; Beer, Reinhard; Rinsland, Curtis P.
1997-01-01
In the summer of 1994 the 0.07/ cm resolution infrared Airborne Emission Spectrometer (AES) acquired spectral data over two wildfires, one in central Oregon on August 3 and the other near San Luis Obispo, California, on August 15. The spectrometer was on board a NASA DC-8 research aircraft, flying at an altitude of 12 km. The spectra from both fires clearly show features due to water vapor, carbon dioxide, carbon monoxide, ammonia, methanol, formic acid, and ethylene at significantly higher abundance and temperature than observed in downlooking spectra of normal atmospheric and ground conditions. Column densities are derived for several species, and molar ratios are compared with previous biomass fire measurements. We believe that this is the first time such data have been acquired by airborne spectral remote sensing.
NASA Astrophysics Data System (ADS)
Sadro, S.; MacIntyre, S.
2014-12-01
Alaskan arctic lakes lay covered by up to three meters of ice and snow for approximately two-thirds of the year, yet comparatively little is known about their ecosystem metabolism during this period. We combined the use of free-water measurements of dissolved oxygen (DO) and the laboratory incubation of sediment cores to characterize spatial and temporal patterns in the ecosystem respiration (ER) of five arctic lakes spanning a gradient in size from 1 to 150 ha. Seasonal rates of ER throughout the water column ranged from < 0.001 to 0.034 mg L-1 h-1; sediment ER ranged from mg 6.1 m-2 h-1 to 50.7 mg m-2 h-1. Although there were significant differences in sediment ER among lakes, average water column ER did not differ significantly. Seasonal patterns of DO draw down were most often linear. However, within the water column above the deepest basin of each lake, rates were higher during autumn - winter than winter - spring, with the lowest rates typically found in the upper 70% of the water column and the highest rates near the bottom. ER measured near the bottom along the slope of lake basins was lower than that at the center of lake basins and closer in magnitude to water column ER. Spatial patters in free-water rates were reflected by sediment ER, which was 21 - 66 % higher in cores collected from the deepest point of lake basins than in sediments collected at shallower locations found at the margin of basins. These observations suggest that two mechanisms operating in tandem account for the higher apparent rates of DO drawdown found within lake basins during the winter. Higher local rates of sediment ER and, similar to observations in other lakes, the transport of DO depleted waters from lake margins to deep basins. Together they contribute to the formation of hypoxia in the deeper basins of lakes and the concentration of other respiratory products, with important implications for energy flow within lakes and carbon budgets across the arctic.
NASA Astrophysics Data System (ADS)
Mitchell, G. A.; Gharib, J. J.; Doolittle, D. F.
2015-12-01
Methane gas flux from the seafloor to atmosphere is an important variable for global carbon cycle and climate models, yet is poorly constrained. Methodologies used to estimate seafloor gas flux commonly employ a combination of acoustic and optical techniques. These techniques often use hull-mounted multibeam echosounders (MBES) to quickly ensonify large volumes of the water column for acoustic backscatter anomalies indicative of gas bubble plumes. Detection of these water column anomalies with a MBES provides information on the lateral distribution of the plumes, the midwater dimensions of the plumes, and their positions on the seafloor. Seafloor plume locations are targeted for visual investigations using a remotely operated vehicle (ROV) to determine bubble emission rates, venting behaviors, bubble sizes, and ascent velocities. Once these variables are measured in-situ, an extrapolation of gas flux is made over the survey area using the number of remotely-mapped flares. This methodology was applied to a geophysical survey conducted in 2013 over a large seafloor crater that developed in response to an oil well blowout in 1983 offshore Papua New Guinea. The site was investigated by multibeam and sidescan mapping, sub-bottom profiling, 2-D high-resolution multi-channel seismic reflection, and ROV video and coring operations. Numerous water column plumes were detected in the data suggesting vigorously active vents within and near the seafloor crater (Figure 1). This study uses dual-frequency MBES datasets (Reson 7125, 200/400 kHz) and ROV video imagery of the active hydrocarbon seeps to estimate total gas flux from the crater. Plumes of bubbles were extracted from the water column data using threshold filtering techniques. Analysis of video images of the seep emission sites within the crater provided estimates on bubble size, expulsion frequency, and ascent velocity. The average gas flux characteristics made from ROV video observations is extrapolated over the number of individual flares detected acoustically and extracted to estimate gas flux from the survey area. The gas flux estimate from the water column filtering and ROV observations yields a range of 2.2 - 6.6 mol CH4 / min.
NASA Astrophysics Data System (ADS)
Heerspink, B. P.; Wang, D.; Ware, D.; Marina, O.; Perkins, G.; WoldeGabriel, G. W.; Goering, T.; Boukhalfa, H.
2017-12-01
High-explosive compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were used extensively in weapons research and testing at Los Alamos National Laboratory (LANL) in Los Alamos, NM. Liquid effluents containing RDX released at LANL's Technical Area 16 (TA-16) resulted in the contamination of alluvial, perched-intermediate, and regional groundwater bodies. Past investigations have shown persistent RDX contamination in the perched-intermediate zone located between 225 to 311 m below ground surface, where transport studies have shown that RDX and its degradation products transport conservatively. In this study, we compared RDX degradation by chemical treatments using reduction by sodium dithionite, oxidation by potassium permanganate, and alkaline hydrolysis by carbonate/bicarbonate buffering, with microbial degradation under biostimulated conditions. The experiments were conducted using groundwater and sediments representative of the contaminated aquifer beneath TA-16. Batch testing showed that all chemical treatments degraded RDX very rapidly, with half-lives ranging from 50 minutes to 22 hours. Comparatively, RDX degradation in biostimulated reactors under strict anaerobic conditions was significantly slower, with half-lives of about 3 weeks. Results from column experiments with chemically treated sediments deviated from the results of the batch testing. Dithionite treated sediments reduced RDX with no breakthrough observed before clogging occurred at 50 pour volumes. Treatments by oxidation using potassium permanganate, and hydrolysis under buffered alkaline conditions, were less effective with complete RDX breakthrough after 2 pore volumes. No known degradation products were observed in the column effluents. RDX degradation in biostimulated columns was very effective initially for both treatments. However, the column biostimulated with safflower oil clogged very rapidly. The column biostimulated with molasses was very effective when molasses was continuously supplied but less effective after molasses injection stopped. Degradation products (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine [MNX]; hexahydro-1,3-dinitro-5-nitro-1,3,5-triazine [DNX]; 2,4,6-trinitroxylene [TNX]) were visible in the effluents from the biostimulated columns.
NASA Astrophysics Data System (ADS)
Hernández-Almeida, I.; Sierro, F.-J.; Cacho, I.; Flores, J.-A.
2014-10-01
Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt IRD events during cold periods of the Early Pleistocene. We used Mg / Ca-based temperatures of deep-dwelling (Neogloboquadrina pachyderma sinistral) planktonic foraminifera and paired Mg / Ca-δ18O measurements to estimate the subsurface temperatures and δ18O of seawater at Site U1314. Carbon isotopes on benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg / Ca-based temperatures and δ18O of seawater suggest increased temperatures and salinities during ice-rafting, likely due to enhanced northward subsurface transport of subtropical waters during periods of AMOC reduction. Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of ice-rafted detritus (IRD). Warm waters accumulated at subsurface would result in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. Release of heat and salt stored at subsurface would help to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during the MIS3.
Carbon Chemistry in IRC+10216: Infrared Detection of Diacetylene
Fonfría, J. P.; Agúndez, M.; Cernicharo, J.; Richter, M. J.; Lacy, J. H.
2018-01-01
We present the detection of C4H2 for first time in the envelope of the C-rich AGB star IRC+10216 based on high spectral resolution mid-IR observations carried out with the Texas Echelon-cross-Echelle Spectrograph (TEXES) mounted on the Infrared Telescope Facility (IRTF). The obtained spectrum contains 24 narrow absorption features above the detection limit identified as lines of the ro-vibrational C4H2 band ν6+ν8(σu+). The analysis of these lines through a ro-vibrational diagram indicates that the column density of C4H2 is (2.4 ± 1.5) × 1016 cm−2. Diacetylene is distributed in two excitation populations accounting for 20 and 80% of the total column density and with rotational temperatures of 47 ± 7 and 420 ± 120 K, respectively. This two-folded rotational temperature suggests that the absorbing gas is located beyond ≃0·"4≃20R⋆ from the star with a noticeable cold contribution outwards from ≃ 10″ ≃ 500R⋆. This outer shell matches up with the place where cyanoacetylenes and carbon chains are known to form due to the action of the Galactic dissociating radiation field on the neutral gas coming from the inner layers of the envelope. PMID:29882548
Carbon Chemistry in IRC+10216: Infrared Detection of Diacetylene
NASA Astrophysics Data System (ADS)
Fonfría, J. P.; Agúndez, M.; Cernicharo, J.; Richter, M. J.; Lacy, J. H.
2018-01-01
We present the detection of C4H2 for first time in the envelope of the C-rich AGB star IRC+10216, based on high spectral resolution mid-infrared observations carried out with the Texas Echelon-cross-Echelle Spectrograph mounted on the Infrared Telescope Facility. The obtained spectrum contains 24 narrow absorption features above the detection limit, identified as lines of the ro-vibrational C4H2 band {ν }6+{ν }8({σ }u+). The analysis of these lines through a ro-vibrational diagram indicates that the column density of C4H2 is (2.4 ± 1.5) × 1016 cm‑2. Diacetylene is distributed in two excitation populations accounting for 20% and 80% of the total column density and with rotational temperatures of 47 ± 7 and 420 ± 120 K, respectively. This two-folded rotational temperature suggests that the absorbing gas is located beyond ≃0.″4 ≃ 20 R ⋆ from the star, with a noticeable cold contribution outwards from ≃10″ ≃ 500 R ⋆. This outer shell matches up with the place where cyanoacetylenes and carbon chains are known to form due to the action of the Galactic dissociating radiation field on the neutral gas coming from the inner layers of the envelope.
NASA Astrophysics Data System (ADS)
Protsenko, Elizaveta; Yakubov, Shamil; Lessin, Gennady; Yakushev, Evgeniy; Sokołowski, Adam
2017-04-01
A one-dimensional fully-coupled benthic pelagic biogeochemical model BROM (Bottom RedOx Model) was used for simulations of seasonal variability of biogeochemical parameters in the upper sediment, Bottom Boundary Layer and the water column in the Gdansk Deep of the Baltic Sea. This model represents key biogeochemical processes of transformation of C, N, P, Si, O, S, Mn, Fe and the processes of vertical transport in the water column and the sediments. The hydrophysical block of BROM was forced by the output calculated with model GETM (General Estuarine Transport Model). In this study we focused on parameters of carbonate system at Baltic Sea, and mainly on their distributions near the sea-water interface. For validating of BROM we used field data (concentrations of main nutrients at water column and porewater of upper sediment) from the Gulf of Gdansk. The model allowed us to simulate the baseline ranges of seasonal variability of pH, Alkalinity, TIC and calcite/aragonite saturation as well as vertical fluxes of carbon in a region potentially selected for the CCS storage. This work was supported by project EEA CO2MARINE and STEMM-CCS.
Gu, Haiwei; Huang, Yuan; Filgueira, Marcelo; Carr, Peter W.
2012-01-01
In this study, we examined the effect of first dimension column selectivity in reversed phase (RP) online comprehensive two dimensional liquid chromatography (LC × LC). The second dimension was always a carbon clad metal oxide reversed phase material. The hydrophobic subtraction model (HSM) and the related phase selective triangles were used to guide the selection of six different RP first dimension columns. Various kinds of samples were investigated and thus two different elution conditions were needed to cause full elution from the first dimension columns. We compared LC × LC chromatograms, contours plots, and fcoverage plots by measuring peak capacities, peak numbers, relative spatial coverage, correlation values, etc. The major finding of this study is that the carbon phase due to its rather different selectivity from other reversed phases is reasonably orthogonal to a variety of common types of bonded reversed phases. Thus quite surprisingly the six different first dimension stationary phases all showed generally similar separation patterns when paired to the second dimension carbon phase. This result greatly simplifies the task of choosing the correct pair of phases for RP × RP. PMID:21840009
Inoue, Makoto; Morino, Isamu; Uchino, Osamu; ...
2016-08-01
We describe a method for removing systematic biases of column-averaged dry air mole fractions of CO 2 (XCO 2) and CH 4 (XCH 4) derived from short-wavelength infrared (SWIR) spectra of the Greenhouse gases Observing SATellite (GOSAT). We conduct correlation analyses between the GOSAT biases and simultaneously retrieved auxiliary parameters. We use these correlations to bias correct the GOSAT data, removing these spurious correlations. Data from the Total Carbon Column Observing Network (TCCON) were used as reference values for this regression analysis. To evaluate the effectiveness of this correction method, the uncorrected/corrected GOSAT data were compared to independent XCO 2more » and XCH 4 data derived from aircraft measurements taken for the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) project, the National Oceanic and Atmospheric Administration (NOAA), the US Department of Energy (DOE), the National Institute for Environmental Studies (NIES), the Japan Meteorological Agency (JMA), the HIAPER Pole-to-Pole observations (HIPPO) program, and the GOSAT validation aircraft observation campaign over Japan. These comparisons demonstrate that the empirically derived bias correction improves the agreement between GOSAT XCO 2/XCH 4 and the aircraft data. Finally, we present spatial distributions and temporal variations of the derived GOSAT biases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Makoto; Morino, Isamu; Uchino, Osamu
We describe a method for removing systematic biases of column-averaged dry air mole fractions of CO 2 (XCO 2) and CH 4 (XCH 4) derived from short-wavelength infrared (SWIR) spectra of the Greenhouse gases Observing SATellite (GOSAT). We conduct correlation analyses between the GOSAT biases and simultaneously retrieved auxiliary parameters. We use these correlations to bias correct the GOSAT data, removing these spurious correlations. Data from the Total Carbon Column Observing Network (TCCON) were used as reference values for this regression analysis. To evaluate the effectiveness of this correction method, the uncorrected/corrected GOSAT data were compared to independent XCO 2more » and XCH 4 data derived from aircraft measurements taken for the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) project, the National Oceanic and Atmospheric Administration (NOAA), the US Department of Energy (DOE), the National Institute for Environmental Studies (NIES), the Japan Meteorological Agency (JMA), the HIAPER Pole-to-Pole observations (HIPPO) program, and the GOSAT validation aircraft observation campaign over Japan. These comparisons demonstrate that the empirically derived bias correction improves the agreement between GOSAT XCO 2/XCH 4 and the aircraft data. Finally, we present spatial distributions and temporal variations of the derived GOSAT biases.« less
Retention and effective diffusion of model metabolites on porous graphitic carbon.
Lunn, Daniel B; Yun, Young J; Jorgenson, James W
2017-12-29
The study of metabolites in biological samples is of high interest for a wide range of biological and pharmaceutical applications. Reversed phase liquid chromatography is a common technique used for the separation of metabolites, but it provides little retention for polar metabolites. An alternative to C18 bonded phases, porous graphitic carbon has the ability to provide significant retention for both non-polar and polar analytes. The goal of this work is to study the retention and effective diffusion properties of porous graphitic carbon, to see if it is suitable for the wide injection bands and long run times associated with long, packed capillary-scale separations. The retention of a set of standard metabolites was studied for both stationary phases over a wide range of mobile phase conditions. This data showed that porous graphitic carbon benefits from significantly increased retention (often >100 fold) under initial gradient conditions for these metabolites, suggesting much improved ability to focus a wide injection band at the column inlet. The effective diffusion properties of these columns were studied using peak-parking experiments with the standard metabolites under a wide range of retention conditions. Under the high retention conditions, which can be associated with retention after injection loading for gradient separations, D eff /D m ∼0.1 for both the C18-bonded and porous graphitic carbon columns. As C18 bonded particles are widely, and successfully utilized for long gradient separations without issue of increasing peak width from longitudinal diffusion, this suggests that porous graphitic carbon should be amenable for long runtime gradient separations as well. Copyright © 2017 Elsevier B.V. All rights reserved.
The 2014 ASCENDS Field Campaign - a Carbon Dioxide Laser Absorption Spectrometer Perspective
NASA Astrophysics Data System (ADS)
Spiers, G. D.; Menzies, R. T.; Jacob, J. C.; Geier, S.; Fregoso, S. F.
2014-12-01
NASA's ASCENDS mission has been flying several candidate lidar instruments on board the NASA DC-8 aircraft to obtain column integrated measurements of Carbon Dioxide. Each instrument uses a different approach to making the measurement and combined they have allowed for the informed development of the ASCENDS mission measurement requirements(1). The JPL developed Carbon Dioxide Laser Absorption Spectrometer, CO2LAS is one of these instruments. The CO2LAS measures the weighted, column averaged carbon dioxide between the aircraft and the ground using a continuous-wave heterodyne technique. The instrument operates at a 2.05 micron wavelength optimized for enhancing sensitivity to boundary layer carbon dioxide. Since the 2013 field campaign the instrument has undergone significant upgrades that improve the data collection efficiency and instrument stability and has recently been re-integrated onto the NASA DC-8 for the August 2014 ASCENDS field campaign. This presentation will summarize the instrument and algorithm improvements and review the 2014 field campaign flights and preliminary results. (1) Abshire, J.B. et al., "An overview of NASA's ASCENDS Mission lidar measurement requirements", submitted to 2014 Fall AGU Conference.
NASA Astrophysics Data System (ADS)
Yang, Dongxu; Zhang, Huifang; Liu, Yi; Chen, Baozhang; Cai, Zhaonan; Lü, Daren
2017-08-01
Monitoring atmospheric carbon dioxide (CO2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS), and CarbonTracker-China (CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite (GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%-30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO2 (column-averaged CO2 dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO2 product is used in carbon flux estimation by CT-China. The net ecosystem CO2 exchange is -0.34 Pg C yr-1 (±0.08 Pg C yr-1), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.
NASA Astrophysics Data System (ADS)
Semprini, L.; Azizian, M.
2012-12-01
The demonstration of transformation of chlorinated aliphatic compounds (CAHs) in the subsurface is a challenge, especially when the products are carbon dioxide (CO2) and chloride ion. The groundwater contaminant carbon tetrachloride (CT) is of particular interest since a broad range of transformation products can be potentially formed under anaerobic conditions. The ability to demonstrate the transformation of CT to CO2 as a non toxic endproduct, is also of great interest. Results will be presented from a continuous flow column study where 13C labeled CT was used to demonstrate its transformation to CO2. The column was packed with a quartz sand and bioaugmented the Evanite Culture (EV) that is capable of transforming tetrachloroethene (PCE) to ethene. The column was continously fed a synthetic groundwater that was amended with PCE (0.10 mM) and either formate (1.5 mM) or lactate (1.1 mM), which ferments to produce hydrogen (H2) as the ultimate electron donor. Earlier CT transformation studies with the column, in the absence of sulfate reduction, and with formate added as a donor found CT (0.015 mM) was over 98% transformed with about 20% converted to chloroform (CF) (0.003 mM) and with a transient detection of chloromethane (CM). Methane and carbon disulfide, as potential products, were not detected. Neither CT nor CF inhibited the reductive dehalogenation of PCE to ethene. A series of transient studies conducted after these initial CT transformation tests, but in the absence of CT, showed formate remained an effective substrate for maintaining sulfate reduction and PCE transformation. Lactate, which was effectively fermented prior to CT addition, was not effectively fermented, with propionate accumulating as a fermentation product. When lactate was added, PCE was mainly transformed to cis-dichloroethene (cis-DCE) and VC, and sulfate reduction did not occur. In order to restore effective lactate fermentation the column was then bioaugmented with an EV culture that was capable of lactate fermentation. After bioaugmentation, effective lactate fermentation, sulfate reduction and PCE transformation to ethene was achieved. Unlabeled CT (0.015 mM) addition was then started and complete transformation was achieved with a transient build-up of CF and chloromethane, which were subsequently removed below their detection limits. CT continued to be completely transformed after the influent concentration was increased to 0.03 mM. 13C labeled CT (0.03 mM) was then added to the column. GC-MS analysis showed that 13C labeled CO2 was formed at near stoichiometric levels to the CT that was transformed. The results clearly demonstrate that CT can being transformed to CO2 at high CT concentrations, while maintaining effective PCE dehalogenation, sulfate reduction and lactate fermentation. The results also illustrate the great potential of using 13C labeled compounds in subsurface investigations.
NASA Astrophysics Data System (ADS)
Oh, Young-Suk; Takele Kenea, S.; Goo, Tae-Young; Chung, Kyu-Sun; Rhee, Jae-Sang; Ou, Mi-Lim; Byun, Young-Hwa; Wennberg, Paul O.; Kiel, Matthäus; DiGangi, Joshua P.; Diskin, Glenn S.; Velazco, Voltaire A.; Griffith, David W. T.
2018-04-01
Since the late 1990s, the meteorological observatory established in Anmyeondo (36.5382° N, 126.3311° E, and 30 m above mean sea level) has been monitoring several greenhouse gases such as CO2, CH4, N2O, CFCs, and SF6 as a part of the Global Atmosphere Watch (GAW) Program. A high resolution ground-based (g-b) Fourier transform spectrometer (FTS) was installed at this observation site in 2013 and has been operated within the frame work of the Total Carbon Column Observing Network (TCCON) since August 2014. The solar spectra recorded by the g-b FTS cover the spectral range 3800 to 16 000 cm-1 at a resolution of 0.02 cm-1. In this work, the GGG2014 version of the TCCON standard retrieval algorithm was used to retrieve total column average CO2 and CH4 dry mole fractions (XCO2, XCH4) and from the FTS spectra. Spectral bands of CO2 (at 6220.0 and 6339.5 cm-1 center wavenumbers, CH4 at 6002 cm-1 wavenumber, and O2 near 7880 cm-1 ) were used to derive the XCO2 and XCH4. In this paper, we provide comparisons of XCO2 and XCH4 between the aircraft observations and g-b FTS over Anmyeondo station. A comparison of 13 coincident observations of XCO2 between g-b FTS and OCO-2 (Orbiting Carbon Observatory) satellite measurements are also presented for the measurement period between February 2014 and November 2017. OCO-2 observations are highly correlated with the g-b FTS measurements (r2 = 0.884) and exhibited a small positive bias (0.189 ppm). Both data set capture seasonal variations of the target species with maximum and minimum values in spring and late summer, respectively. In the future, it is planned to further utilize the FTS measurements for the evaluation of satellite observations such as Greenhouse Gases Observing Satellite (GOSAT, GOSAT-2). This is the first report of the g-b FTS observations of XCO2 species over the Anmyeondo station.
Nanocatalysis for Primary and Secondary High Energy Lithium Oxygen Cells
2011-04-01
Synthesis of sulfoxyphenyldiazonium Chloride 2.2.3 Assessment of -COOH and –SO3H surface groups on carbon .- Attempts to prepare sulfoxyphenyl...alumina column before used for electrolyte preparation. Synthesis of the electrolyte solvent, methyl n- propyl carbonate (MPC).- The ele- ctrolyte co...2 2.0 EXPERIMENTAL APPROACH AND PROCEDURES ............................ 3 2.1 Synthesis of the Hollow Carbon Sphere
Characterization of retentivity of reversed phase liquid chromatography columns.
Ying, P T; Dorsey, J G
1991-03-01
There are dozens of commercially available reversed phase columns, most marketed as C-8 or C-18 materials, but with no useful way of classifying their retentivity. A useful way of ranking these columns in terms of column "strength" or retentivity is presented. The method utilizes a value for ln k'(w), the estimated retention of a solute from a mobile phase of 100% water, and the slope of the plot of ln k' vsE(T)(30), the solvent polarity. The method is validated with 26 solutes varying in ln k'(w) from about 2 to over 20, on 14 different reversed phase columns. In agreement with previous work, it is found that the phase volume ratio of the column is the most important parameter in determining retentivity. It is strongly suggested that manufacturers adopt a uniform method of calculating this value and that it be made available in advertising, rather than the uninterpretable "% carbon".
Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics
NASA Astrophysics Data System (ADS)
Witte, J. C.; Schoeberl, M. R.; Douglass, A. R.; Gleason, J. F.; Krotkov, N. A.; Gille, J. C.; Pickering, K. E.; Livesey, N.
2009-09-01
For the August-September 2008 Olympic and the Paralympic Games held in Beijing, China, strict controls on pollutant emissions and motor vehicle traffic were imposed on Beijing and neighboring provinces to the South to improve the air quality in and around the city. Satellite measurements over Beijing between July and September showed 43% reductions of tropospheric column nitrogen dioxide, compared to the past three years. When neighboring provinces to the south are included in our analyses, satellite measurements show boundary layer sulfur dioxide reductions of 13% and carbon monoxide reductions of 12% at 700 hPa. Thus, based on satellites observations alone, noticeable reductions in these pollutant tracers were measured during both games.
De Vittor, Cinzia; Relitti, Federica; Kralj, Martina; Covelli, Stefano; Emili, Andrea
2016-07-01
In the shallow environment, the nutrient and carbon exchanges at the sediment-water interface contribute significantly to determine the trophic status of the whole water column. The intensity of the allochthonous input in a coastal environment subjected to strong anthropogenic pressures determines an increase in the benthic oxygen demand leading to depressed oxygen levels in the bottom waters. Anoxic conditions resulting from organic enrichment can enhance the exchange of nutrients between sediments and the overlying water. In the present study, carbon and nutrient fluxes at the sediment-water interface were measured at two experimental sites, one highly and one moderately contaminated, as reference point. In situ benthic flux measurements of dissolved species (O2, DIC, DOC, N-NO3 (-), N-NO2 (-), N-NH4 (+), P-PO4 (3-), Si-Si(OH)4, H2S) were conducted using benthic chambers. Furthermore, undisturbed sediment cores were collected for analyses of total and organic C, total N, and biopolymeric carbon (carbohydrates, proteins, and lipids) as well as of dissolved species in porewaters and supernatant in order to calculate the diffusive fluxes. The sediments were characterized by suboxic to anoxic conditions with redox values more negative in the highly contaminated site, which was also characterized by higher biopolymeric carbon content (most of all lipids), lower C/N ratios and generally higher diffusive fluxes, which could result in a higher release of contaminants. A great difference was observed between diffusive and in situ benthic fluxes suggesting the enhancing of fluxes by bioturbation and the occurrence of biogeochemically important processes at the sediment-water interface. The multi-contamination of both inorganic and organic pollutants, in the sediments of the Mar Piccolo of Taranto (declared SIN in 1998), potentially transferable to the water column and to the aquatic trophic chain, is of serious concern for its ecological relevance, also considering the widespread fishing and mussel farming activities in the area.
NASA Astrophysics Data System (ADS)
Yager, P. L.; Sherrell, R. M.; Stammerjohn, S. E.
2016-02-01
The Amundsen Sea hosts the most productive polynya in all of coastal Antarctica, with its vibrant green waters exceeding 20 µg Chl a per liter. It is also one of the global regions most vulnerable to climate change, experiencing rapid losses in both sea ice cover and nearby ice sheets. During the Amundsen Sea Polynya International Research Expedition (ASPIRE) in austral summer 2010-11, we aimed to determine mechanisms driving the production and fate of this extraordinary algal bloom, with an eye towards predicting how this system will respond to further change. Here we summarize and synthesize results from the expedition, highlight results now being published in a special ASPIRE feature in the journal Elementa, and present an effort to balance the carbon budget for the region. We collected water column profiles for total dissolved inorganic carbon (DIC) and nutrients, particulate and dissolved organic matter, chlorophyll a, macrozooplankton, and microbial biomass. We also measured primary and secondary production, community respiration rates, vertical particle flux and fecal pellet production and grazing. With observations arranged along a gradient of increasing integrated nitrate depletion, changes in DIC in the upper water column (ranging from 0.2 to 4.7 mol C m-2) and gas exchange are compared to nutrient and organic matter inventories to estimate export. Comparisons to short-term (days) drifting traps and a year-long moored sediment trap capturing the downward flux confirmed that a high fraction (up to 60%) of the net community production was exported to sub-euphotic depths during the early part of the bloom in this productive region. The ultimate fate of this carbon is also estimated. We discuss the importance of this carbon sequestration, particularly in light of changing climate conditions in this region, informed by ongoing data synthesis and modeling efforts (INSPIRE).
Removal of toxic chemicals from water with activated carbon
Dawson, V.K.; Marking, L.L.; Bills, T.D.
1976-01-01
Activated carbon was effective in removing fish toxicants and anesthetics from water solutions. Its capacity to adsorb 3-trifluoromethyl-4-nitrophenol (TFM), antimycin, NoxfishA? (5% rotenone), Dibrorms, juglone, MSa??222, and benzocaine ranged from 0.1 to 64 mg per gram of carbon. The adsorptive capacity (end point considered as a significant discharge) of activated carbon for removal of TFM was determined at column depths of 15, 30, and 60 cm; temperatures of 7, 12, 17, and 22 C; pH's of 6.5, 7.5, 8.5, and 9.5; and flow rates of 50, 78, 100, 200, and 940 ml/min. Adsorptive capacity increased when the contact time was increased by reducing the flow rate or increasing the column depth. The adsorptive capacity was not significantly influenced by temperature but was substantially higher at pH 6.5 than at the other pH's tested. A practical and efficient filter for purifying chemically treated water was developed.
Carbon isotope dynamics in the water column and surface sediments of marginal seas
NASA Astrophysics Data System (ADS)
Lipka, Marko; Liu, Bo; Schmiedinger, Iris; Böttcher, Michael E.
2017-04-01
The microbial mineralization of organic matter in marine sediments leads to the accumulation of dissolved inorganic carbon (DIC) and other metabolites into the interstitial waters. Pore water profiles sensitively reflect the zones of dominant biogeochemical processes, net trans-formation rates, and diffusive and advective transport of dissolved species across the sediment-water interface. They are controlled by different factors like sedimentology, bottom water currents and redox conditions, microbial activity, and the availability of electron acceptors/donors. The biogeochemical processes create steep gradients in DIC and its carbon isotope composition. One boundary condition for transport processes in the sediment is defined by the composition of the water column, which is under impact by physical mixing processes (e.g., salinity gradient; sediment-water exchange), biological activity and carbon dioxide exchange at the water-atmosphere interface. We present here the results of detailed biogeochemical investigations of vertical water column and pore water profiles from two brackish marginal seas: the Baltic Sea and the Black Sea. The water column on a transect between the North Sea and the southern Baltic Sea as well within the Black Sea were investigated on three cruises with RV MS Merian (MSM33, MSM50, MSM51). In addition, biogeochemical processes and associated element fluxes across the sediment-water interface were studied in key regions of Baltic Sea and Black Sea using pore water and sediment samples retrieved from sediment cores that were collected with a multi-coring device. Water samples were analyzed for metals, nutrients, and metabolites concentrations as well as stable carbon isotope composition of DIC to allow a modeling of steady-state transformation, volumetric transformation rates and element fluxes. The isotope composition of the dissolved inorganic carbon system shows a gradient between the North and the Baltic Sea, following the salinity during winter time. Element fluxes across the sediment-water interface depend on bottom water redox conditions, sedimentology and organic contents. Advective fluxes induced by sedimentation events, macro zoobenthos and wave action can affect the top sections of the sediment, thereby modifying shallow concentration gradients. By means of non-steady state modelling of pore water profiles we were able to identify the impact of mixing processes and sedimentation events in the oxic part of the Baltic Sea. In the Black Sea, on the other hand, anaerobic processes control the dynamics in DI13C under permanent euxinic conditions. A Keeling plot analysis was performed on pore waters to identify the δ13C of DIC released upon oxidation of DOC or methane. The carbon isotope composition of DIC is found to be a highly sensitive tool for understanding carbon cycling in the water column and sediments. Acknowledgements: The study is supported by BMBF during FONA-SECOS project, DFG (cruises MSM33, MSM50 and MSM51) and Leibniz IOW.
Louda, J.W.; Loitz, J.W.; Melisiotis, A.; Orem, W.H.
2004-01-01
The fine grained carbonate mud sediments of central Florida Bay are resuspended quite easily. However, this disturbance is usually limited to the surficial ('floc') layer, as the underlying sediments appear to be stabilized by an hydrogelation involving the bulk organic matter. That gelation has occurred within these sediments is suggested from their physical behavior and an observed mathematical relationship between the percentages of organic carbon (C org) and water. Specifically, when extruded from a core barrel, the sediment maintains its integrity and has the consistency of a fine spackling compound. However, upon homogenization, as with a stirring rod prior to sieving, these sediments break into two distinct phases, 1/2-2/3 milky water and 1/3-1/2 sediment grains, by volume. The relationship observed between Corg and water was modeled as both linear (% water = (0.0777) Corg + 0.2984, R2 = 0.8664) and logarithmic (% water = 0.2489 Ln Corg + 0.2842, R2 = 0.9455) functions. As this relationship tends to be asymptotic at higher Corg (>3.5% dry)/water values (>60%) and given an higher correlation, the relationship appears better modeled as a logarithmic function. Values of C org from 1.2 to over 6.5%dry wt. and water contents from 30 to over 70%wt. were observed. The calculated intercept revealed that, without organic carbon (viz. hydrogel formation), these carbonates would likely contain only ???30% water by weight ('m' from linear model). This gelation is proposed to involve exopolymeric substances (EPS), likely polysaccharides, derived from diatoms and cyanobacteria of the microphytobenthos. A cyanobacterial-diatomaceous biofilm/mat underlain by purple sulfur bacteria was shown, by pigment based chemotaxonomy, to form the main components of the microphytobenthos. Additional water column detrital biomass, also mainly cyanobacteria and diatoms, is admixed with the living microphytobenthos in a flocculent/nephloid layer above the sediments prior to final incorporation into the gel-stabilized sediment column. Loss of seagrass cover appears to have allowed higher energy wave induced effects to reach the water-(nephloid)-sediment interface and increase overall turbidity in the bay. The effects of these gelatinized organics upon sediment stability, pore water chemistry and dissolved species flux in/out of the sediments are discussed as areas for future research which takes this (hydro-) gelation phenomenon into account.
Schaffer, Mario; Kröger, Kerrin Franziska; Nödler, Karsten; Ayora, Carlos; Carrera, Jesús; Hernández, Marta; Licha, Tobias
2015-05-01
Soil aquifer treatment is widely applied to improve the quality of treated wastewater in its reuse as alternative source of water. To gain a deeper understanding of the fate of thereby introduced organic micropollutants, the attenuation of 28 compounds was investigated in column experiments using two large scale column systems in duplicate. The influence of increasing proportions of solid organic matter (0.04% vs. 0.17%) and decreasing redox potentials (denitrification vs. iron reduction) was studied by introducing a layer of compost. Secondary effluent from a wastewater treatment plant was used as water matrix for simulating soil aquifer treatment. For neutral and anionic compounds, sorption generally increases with the compound hydrophobicity and the solid organic matter in the column system. Organic cations showed the highest attenuation. Among them, breakthroughs were only registered for the cationic beta-blockers atenolol and metoprolol. An enhanced degradation in the columns with organic infiltration layer was observed for the majority of the compounds, suggesting an improved degradation for higher levels of biodegradable dissolved organic carbon. Solely the degradation of sulfamethoxazole could clearly be attributed to redox effects (when reaching iron reducing conditions). The study provides valuable insights into the attenuation potential for a wide spectrum of organic micropollutants under realistic soil aquifer treatment conditions. Furthermore, the introduction of the compost layer generally showed positive effects on the removal of compounds preferentially degraded under reducing conditions and also increases the residence times in the soil aquifer treatment system via sorption. Copyright © 2015 Elsevier Ltd. All rights reserved.
Removal of Cr(VI) from groundwater by Fe(0)
NASA Astrophysics Data System (ADS)
Gao, Yanjiao; Liu, Rui
2017-11-01
This research was conducted to investigate the treatment of hexavalent chromium (Cr(VI)) by iron powder (Fe(0)) columns of simulated permeable reactive barriers with and without calcium carbonate (CaCO3). Two columns filled with Fe(0) were used as Cr(VI) removal equipment running at a flow velocity of 10 ml/min at room temperature. After 200 days running of the two columns, the results showed that Fe(0) was an effective material for Cr(VI) reduction with an average removal rate of above 84.6%. The performance of Column 2 with CaCO3 was better than Column 1 without CaCO3 in terms of average Cr(VI) removal rate. The presence of CaCO3 buffered the increasing pH caused by Fe(0) corrosion in Column 2 and enhanced the removal rate of Column 2. Scanning Electron Microscopy (SEM) images of Fe(0) in the three stages of running of the two columns illustrated that the coat layer of Column 1 was a little thicker than that of Column 2. Energy-dispersive spectrometry (EDS) results showed that the surface of Fe(0) of Column 2 contained more chromium elements. Raman spectroscopy found that all iron oxide was generated on the Fe(0) surface of Column 1 and Column 2 and chromium class objects were only detected on Fe(0) surface in Column 2.
NASA Astrophysics Data System (ADS)
Hedelius, J.; Wennberg, P. O.; Wunch, D.; Roehl, C. M.; Podolske, J. R.; Hillyard, P.; Iraci, L. T.
2017-12-01
Greenhouse gas (GHG) emissions from California's South Coast Air Basin (SoCAB) have been studied extensively using a variety of tower, aircraft, remote sensing, emission inventory, and modeling studies. It is impractical to survey GHG fluxes from all urban areas and hot-spots to the extent the SoCAB has been studied, but it can serve as a test location for scaling methods globally. We use a combination of remote sensing measurements from ground (Total Carbon Column Observing Network, TCCON) and space-based (Observing Carbon Observatory-2, OCO-2) sensors in an inversion to obtain the carbon dioxide flux from the SoCAB. We also perform a variety of sensitivity tests to see how the inversion performs using different model parameterizations. Fluxes do not significantly depend on the mixed layer depth, but are sensitive to the model surface layers (<5 m). Carbon dioxide fluxes are larger than those from bottom-up inventories by about 20%, and along with CO has a significant weekend:weekday effect. Methane fluxes have little weekend changes. Results also include flux estimates from sub-regions of the SoCAB. Larger top-down than bottom-up fluxes highlight the need for additional work on both approaches. Higher top-down fluxes could arise from sampling bias, model bias, or may show bottom-up values underestimate sources. Lessons learned here may help in scaling up inversions to hundreds of urban systems using space-based observations.
Reductive Dechlorination of Carbon Tetrachloride by Soil With Ferrous and Bisulfide
NASA Astrophysics Data System (ADS)
Choi, K.; Lee, W.
2008-12-01
Batch and column experiments were conducted to investigate the effect of concentration of reductants, contact time to activate reductive capacity, and pH on reductive dechlorination by soil with Fe(II) and HS- in this study. Carbon tetrachloride (CT) was used as a representative target organic compound. Sorption kinetic and isotherm tests were performed to investigate the influence of adsorption on the soil surface. Target compound in the soil suspension reached sorption equilibrium in 4 hours and the type of isotherm was well fitted by a linear type isotherm. In batch experiment, kinetic rate constants for the reductive dechlorination of CT increased with increasing the concentration of the reductants (Fe(II) and HS-). However, Fe(II) was a much more effective reductant, producing higher k values than those of HS-. The contact time of one day for the soil with HS- and that of four hours with Fe(II) showed the highest reaction rates. Additionally, the rate constants increased with the increase of pH in soil suspension with Fe(II) (5.2~8) and HS- (8.3~10.3), respectively. In column experiment, the soil column with Fe(II) showed larger bed volumes (13.76) to reach a column breakthrough than that with HS- indicating the treatment of Fe(II) is more effective for the reductive dechlorination of CT. To enhance reductive capacity of soil column under an acidic condition, CaO addition to the column treated with Fe(II) showed better results for the reductive dechlorination of CT than that of HS-. Fe(II) showed better CT dechlorination than HS- in batch and column reactors therefore, it can be used as an effective reducing agent for the treatment of soil contaminated with chlorinated organic compounds.
Interaction between carboxyl-functionalized carbon black nanoparticles and porous media
NASA Astrophysics Data System (ADS)
Kim, Song-Bae; Kang, Jin-Kyu; Yi, In-Geol
2015-04-01
Carbon nanomaterials, such as carbon nanotubes, fullerene, and graphene, have received considerable attention due to their unique physical and chemical characteristics, leading to mass production and widespread application in industrial, commercial, and environmental fields. During their life cycle from production to disposal, however, carbon nanomaterials are inevitably released into water and soil environments, which have resulted in concern about their health and environmental impacts. Carbon black is a nano-sized amorphous carbon powder that typically contains 90-99% elemental carbon. It can be produced from incomplete combustion of hydrocarbons in petroleum and coal. Carbon black is widely used in chemical and industrial products or applications such as ink pigments, coating plastics, the rubber industry, and composite reinforcements. Even though carbon black is strongly hydrophobic and tends to aggregate in water, it can be dispersed in aqueous media through surface functionalization or surfactant use. The aim of this study was therefore to investigate the transport behavior of carboxyl-functionalized carbon black nanoparticles (CBNPs) in porous media. Column experiments were performed for potassium chloride (KCl), a conservative tracer, and CBNPs under saturated flow conditions. Column experiments was conducted in duplicate using quartz sand, iron oxide-coated sand (IOCS), and aluminum oxide-coated sand (AOCS) to examine the effect of metal (Fe, Al) oxide presence on the transport of CBNPs. Breakthrough curves (BTCs) of CBNPs and chloride were obtained by monitoring effluent, and then mass recovery was quantified from these curves. Additionally, interaction energy profiles for CBNP-porous media were calculated using DLVO theory for sphere-plate geometry. The BTCs of chloride had relative peak concentrations ranging from 0.895 to 0.990. Transport parameters (pore-water velocity v, hydrodynamic dispersion coefficient D) obtained by the model fit from the tracer BTCs were 0.274±0.007 cm min-1 and 0.102±0.025 cm2 min-1, respectively. Mass recoveries of chloride were in the range of 94.7 to 101.9%, indicating that chloride behaved as a conservative tracer and that the column experiments were successful. The BTCs of CBNPs had different relative peak concentrations depending on the porous media used in the experiments. In quartz sand, the relative peak concentration was 0.768±0.005. The mass recovery of CBNPs in quartz sand was 83.1±2.7%, whereas no breakthrough of CBNPs (mass recovery = 0 %) was observed in IOCS or AOCS at the same flow rate, indicating that all CBNPs were retained in the IOCS and AOCS columns under the experimental conditions. These results indicate that metal (Fe, Al) oxides can play a significant role in the attachment of CBNPs to porous media. For the given solution conditions, both CBNPs and quartz sand were negatively charged with zeta potentials of -31.8±0.1 and -39.0±0.6 mV, respectively. Therefore, the electrostatic interactions between CBNPs and quartz sand were repulsive. Meanwhile, both IOCS and ACOS were positively charged with zeta potentials of 10.1±1.3 and 39.9±1.9 mV, respectively, such that the interaction between CBNPs and metal oxide-coated sands was electrostatically attractive, resulting in enhancement of CBNP attachment to the coated sands. Interaction energy profiles for CBNP-porous media were calculated using DLVO theory for sphere-plate geometry. Interaction energy profiles demonstrated that the interaction energy for CBNP-quartz sand was repulsive with a primary maximum (energy barrier) of 63.2 KBT, whereas the interaction energies for CBNP-IOCS and CBNP-AOCS were attractive with no energy barriers. Acknowledgement This research was supported by the National Institute of Environmental Research, Korea Ministry of Environment, in 2014.
An innovative molybdenum column liner for oxygen and hydrogen stable isotope analysis by pyrolysis.
Stuart-Williams, Hilary; Wong, S Chin; Farquhar, Graham D; Keitel, Claudia; Clayton, Stephen
2008-04-01
The most widely used method for pyrolysing samples for hydrogen or oxygen isotopic analysis involves heating them to greater than 1300 degrees C in a helium stream passed through a glassy carbon tube in an alumina casing. There are a number of difficulties with this. Glassy carbon tubes are expensive and interaction between the carbon tube and the outer casing produces unwanted carbon monoxide by reduction of the alumina at high temperatures. The latter effect is overwhelming if temperatures of 1400 degrees C or greater are used for pyrolysis. We experimented with lining alumina casings with pure molybdenum sheet. It is relatively cheap, conforms well to the interior of the reactor tube (to avoid carrier and sample bypassing of the carbon pack), resists high temperatures and neither oxidises excessively nor absorbs the gases. The main disadvantages are that silver sample cups must be used and that the molybdenum degrades over time by formation of the carbide. We can maintain sharp peaks, high precision and good accuracy over more than 700 solid samples for both hydrogen and oxygen. The reactors last longer for water injections. The molybdenum in the columns does not contribute greatly to memory effects. The precision of analysis is dependent on other factors as well as the pyrolysis column, but for oxygen we typically achieve approximately <0.2 per thousand (sucrose), <0.25 per thousand (water) and <0.25 per thousand (leaf), sometimes using only a linear correction of drift, after dividing the run into 1 to 3 segments.
NASA Astrophysics Data System (ADS)
Kawa, S. R.; Baker, D. F.; Chatterjee, A.; Crowell, S.
2016-12-01
The measurement of atmospheric greenhouse gases (GHG), principally CO2 and CH4, from space using active (lidar) sensing techniques has several potentially significant advantages in comparison to missions using passive instrument approaches. A great deal of progress has been made in development of the active methods since the US National Academy of Sciences (NAS) 2007 Decadal Survey recommended the ASCENDS mission (Active Sensing of Carbon Emissions, Nights, Days, and Seasons) for NASA's next generation CO2 observing system. Active GHG missions remain in consideration by the current NAS Decadal Survey for Earth Science 2017. In this presentation, we update the measurement characteristics expected for active GHG sensing, test how these measurements will enhance our ability to quantify GHG surface fluxes, and examine the potential role of active sensing to address carbon cycle issues as required for confident projection of carbon-climate interactions. Over the past decade, laser CO2 instrument concepts, retrieval approaches, and measurement techniques have matured significantly, driven by technology advances and by analysis of data from airborne simulators. Performance simulations updated to match the latest developments show substantially lower random errors, better spatial resolution, and more information content for global XCO2 data than just a few years ago. Observing System Simulation Experiments using global flux inversion models show corresponding improvements in resolving surface fluxes and reducing flux uncertainties for the expected lidar data. Simulations including prospective systematic (bias) errors, which are expected to be lesser for the lidar system compared to passive measurements, provide guidance for instrument design requirements. We will comment on the impact of errors in knowledge of the atmospheric state including the need for coincident measurements of O2 column in order to normalize the column abundances to dry air mole fraction. We will also comment on the potential impact of future active missions for CH4. The results indicate that active systems will provide GHG measurements of high quality and spatial sampling that will contribute substantially to knowledge of carbon flux distributions and their dependence on underlying physical processes in critical regions.
Design and Evaluation of a Bolted Joint for a Discrete Carbon-Epoxy Rod-Reinforced Hat Section
NASA Technical Reports Server (NTRS)
Baker, Donald J.; Rousseau, Carl Q.
1996-01-01
The use of pre-fabricated pultruded carbon-epoxy rods has reduced the manufacturing complexity and costs of stiffened composite panels while increasing the damage tolerance of the panels. However, repairability of these highly efficient discrete stiffeners has been a concern. Design, analysis, and test results are presented in this paper for a bolted-joint repair for the pultruded rod concept that is capable of efficiently transferring axial loads in a hat-section stiffener on the upper skin segment of a heavily loaded aircraft wing component. A tension and a compression joint design were evaluated. The tension joint design achieved approximately 1.0 percent strain in the carbon-epoxy rod-reinforced hat-section and failed in a metal fitting at 166 percent of the design ultimate load. The compression joint design failed in the carbon-epoxy rod-reinforced hat-section test specimen area at approximately 0.7 percent strain and at 110 percent of the design ultimate load. This strain level of 0.7 percent in compression is similar to the failure strain observed in previously reported carbon-epoxy rod-reinforced hat-section column tests.
A flow-through column electrolytic cell for supercritical fluid chromatography.
Yamamoto, Kazuhiro; Ueki, Tatsuya; Higuchi, Naoyuki; Takahashi, Kouji; Kotani, Akira; Hakamata, Hideki
2017-10-01
A novel flow-through column electrolytic cell was proposed as a detector to obtain current signals for supercritical fluid chromatography. The electrochemical cell consisted of two electrodes and its holder, and a working and a counter electrode were fabricated from 192 carbon strings, which were composed of 400 carbon fibers of 10 μm in diameter filled into a heat-shrinkable tube. These electrodes were placed in the center of a holder made from polyether ether ketone blocks and they were separated by polytetrafluoroethylene membrane filters. To evaluate the sensitivity of this cell, a standard solution of ferrocene was injected into the supercritical fluid chromatography system connected to the electrolytic cell. The ferrocene was eluted through a silica gel column using a mixture of a mobile phase of supercritical CO 2 and a modifier of methanol containing ammonium acetate. The current peak area of ferrocene correlated to the ferrocene concentration in the range of 10-400 μmol/L (r = 0.999). Moreover, the limit of detection on the column estimated from a signal-to-noise ratio of 3 was 9.8 × 10 -13 mol. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Dong-Mei; Hao, Gang; Shi, Qing-Hong; Sun, Yan
2007-03-30
Novel superporous cellulose (SC) matrix has been fabricated by water-in-oil emulsification-thermal regeneration using granules of calcium carbonate as porogenic agents. As a control, microporous cellulose (MC) bead was fabricated in the absence of calcium carbonate. Simultaneously, double cross-linking was applied to enhance the mechanical strength of the particles. The photographs by scanning electron microscopy of the SC bead illustrated that there were more "craters" of several microns scattering on the surface of the beads. It led to a higher water content and effective porosity of the SC medium. The two beads were then modified with diethylaminoethyl (DEAE) group to prepare anion exchangers. The dynamic uptake results of bovine serum albumin (BSA) exhibited that the pore diffusivity of BSA in the DEAE-SC bead was two to three times larger than that in the DEAE-MC bead. In addition, the column packed with the DEAE-SC showed lower backpressure, higher column efficiency and dynamic binding capacity than the column packed with the DEAE-MC at a flow rate range of 150-900cm/h. Moreover, the column efficiency of the DEAE-SC column was independent of flow velocity up to a flow rate of 1200cm/h. All the results exhibited the superior characteristics of the SC bead as a potential medium for high-speed protein chromatography.
Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media
NASA Astrophysics Data System (ADS)
Busch, Jan; Meißner, Tobias; Potthoff, Annegret; Oswald, Sascha E.
2014-08-01
Injection of nanoscale zero-valent iron (nZVI) has recently gained great interest as emerging technology for in-situ remediation of chlorinated organic compounds from groundwater systems. Zero-valent iron (ZVI) is able to reduce organic compounds and to render it to less harmful substances. The use of nanoscale particles instead of granular or microscale particles can increase dechlorination rates by orders of magnitude due to its high surface area. However, classical nZVI appears to be hampered in its environmental application by its limited mobility. One approach is colloid supported transport of nZVI, where the nZVI gets transported by a mobile colloid. In this study transport properties of activated carbon colloid supported nZVI (c-nZVI; d50 = 2.4 μm) are investigated in column tests using columns of 40 cm length, which were filled with porous media. A suspension was pumped through the column under different physicochemical conditions (addition of a polyanionic stabilizer and changes in pH and ionic strength). Highest observed breakthrough was 62% of the injected concentration in glass beads with addition of stabilizer. Addition of mono- and bivalent salt, e.g. more than 0.5 mM/L CaCl2, can decrease mobility and changes in pH to values below six can inhibit mobility at all. Measurements of colloid sizes and zeta potentials show changes in the mean particle size by a factor of ten and an increase of zeta potential from - 62 mV to - 80 mV during the transport experiment. However, results suggest potential applicability of c-nZVI under field conditions.
CO2 profile retrievals from TCCON spectra
NASA Astrophysics Data System (ADS)
Dohe, Susanne; Hase, Frank; Sepúlveda, Eliezer; García, Omaira; Wunch, Debra; Wennberg, Paul; Gómez-Peláez, Angel; Abshire, James B.; Wofsy, Steven C.; Schneider, Matthias; Blumenstock, Thomas
2014-05-01
The Total Carbon Column Observing Network (TCCON) is a global network of ground-based Fourier Transform Spectrometers recording direct solar spectra in the near-infrared spectral region. With stringent requirements on the instrumentation, data processing and calibration, accurate and precise column-averaged abundances of CO2, CH4, N2O, HF, CO, H2O, and HDO are retrieved being an essential contribution for the validation of satellite data (e.g. GOSAT, OCO-2) and carbon cycle research (Olsen and Randerson, 2004). However, the determined column-averaged dry air mole fraction (DMF) contains no information about the vertical CO2 profile, due to the use of a simple scaling retrieval within the common TCCON analysis, where the fitting algorithm GFIT (e.g. Yang et al., 2005) is used. In this presentation we will apply a different procedure for calculating trace gas abundances from the measured spectra, the fitting algorithm PROFFIT (Hase et. al., 2004) which has been shown to be in very good accordance with GFIT. PROFFIT additionally offers the ability to perform profile retrievals in which the pressure broadening effect of absorption lines is used to retrieve vertical gas profiles, being of great interest especially for the CO2 modelling community. A new analyzing procedure will be shown and retrieved vertical CO2 profiles of the TCCON sites Izaña (Tenerife, Canary Islands, Spain) and Lamont (Oklahoma, USA) will be presented and compared with simultaneously performed surface in-situ measurements and CO2 profiles from different aircraft campaigns. References: - Hase, F. et al., J.Q.S.R.T. 87, 25-52, 2004. - Olsen, S.C. and Randerson, J.T., J.G.Res., 109, D023012, 2004. - Yang, Z. et al., J.Q.S.R.T., 90, 309-321, 2005.
Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media.
Busch, Jan; Meißner, Tobias; Potthoff, Annegret; Oswald, Sascha E
2014-08-01
Injection of nanoscale zero-valent iron (nZVI) has recently gained great interest as emerging technology for in-situ remediation of chlorinated organic compounds from groundwater systems. Zero-valent iron (ZVI) is able to reduce organic compounds and to render it to less harmful substances. The use of nanoscale particles instead of granular or microscale particles can increase dechlorination rates by orders of magnitude due to its high surface area. However, classical nZVI appears to be hampered in its environmental application by its limited mobility. One approach is colloid supported transport of nZVI, where the nZVI gets transported by a mobile colloid. In this study transport properties of activated carbon colloid supported nZVI (c-nZVI; d50=2.4μm) are investigated in column tests using columns of 40cm length, which were filled with porous media. A suspension was pumped through the column under different physicochemical conditions (addition of a polyanionic stabilizer and changes in pH and ionic strength). Highest observed breakthrough was 62% of the injected concentration in glass beads with addition of stabilizer. Addition of mono- and bivalent salt, e.g. more than 0.5mM/L CaCl2, can decrease mobility and changes in pH to values below six can inhibit mobility at all. Measurements of colloid sizes and zeta potentials show changes in the mean particle size by a factor of ten and an increase of zeta potential from -62mV to -80mV during the transport experiment. However, results suggest potential applicability of c-nZVI under field conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Spatial and seasonal variability of dissolved organic matter in the Cariaco Basin
NASA Astrophysics Data System (ADS)
Lorenzoni, Laura; Taylor, Gordon T.; Benitez-Nelson, Claudia; Hansell, Dennis A.; Montes, Enrique; Masserini, Robert; Fanning, Kent; Varela, Ramón; Astor, Yrene; GuzmáN, Laurencia; Muller-Karger, Frank E.
2013-06-01
organic carbon (DOC), nitrogen (DON), and phosphorus (DOP) were measured monthly at the CARIACO Time Series station (10°30'N, 64°40'W) in the southeastern Caribbean Sea between 2005 and 2012. Marked seasonal variability in DOC concentrations was observed, with lower values (~66 µM) in the upper water column (<75 m) during the upwelling season (December-April) due to the injection of cool, DOC-impoverished Subtropical Underwater from the Caribbean Sea. During the rainy season (May-November) waters were stratified and upper layer DOC concentrations increased to ~71 µM. Interannual variability in surface (1 m) concentrations of DOC was also observed in response to the variable strength in upwelling and stratification that the Cariaco Basin experienced. DON and DOP showed no such seasonality. At depths >350 m, DOC concentrations were 56 ± 4.7 µM, roughly 10 µM higher than those in the Caribbean Sea over the same depth range. DON and DOP showed similar vertical profiles to that of DOC, with higher concentrations (6.8 ± 1.2 µM N and 0.15 ±0.09 µM P) in the upper water column and invariant, lower concentrations at depth (4.8 ± 1.6 µM N and 0.10 ± 0.08 µM P). Wind-driven advection of surface DOC out of the Cariaco Basin was estimated to support a net export ~15 Gmol C yr-1 into the Caribbean Sea; this rate is comparable to the flux of settling particulate organic carbon to depths >275 m within the basin.
NASA Astrophysics Data System (ADS)
Hamdan, L. J.; Sikaroodi, M.; Coffin, R. B.; Gillevet, P. M.
2010-12-01
A culture-independent phylogenetic study of microbial communities in water samples and sediment cores recovered from the Beaufort Sea slope east of Point Barrow, Alaska was conducted. The goal of the work was to describe community composition in sediment and water samples and determine the influence of local environmental conditions on microbial populations. Archaeal and bacterial community composition was studied using length heterogeneity-polymerase chain reaction (LH-PCR) and multitag pyrosequencing (MTPS). Sediment samples were obtained from three piston cores on the slope (~1000m depth) arrayed along an east-west transect and one core from a depth of approximately 2000m. Discrete water samples were obtained using a CTD-rosette from three locations adjacent to piston core sites. Water sample were selected at three discrete depths within a vertically stratified (density) water column. The microbial community in near surface waters was distinct from the community observed in deeper stratified layers of the water column. Multidimensional scaling analysis (MDS) revealed that water samples from mid and deep stratified layers bore high similarity to communities in cores collected in close proximity. Overall, the highest diversity (bacteria and archaea) was observed in a core which had elevated methane concentration relative to other locations. Geochemical (e.g., bulk organic and inorganic carbon pools, nutrients, metabolites) and physical data (e.g. depth, water content) were used to reveal the abiotic factors structuring microbial communities. The analysis indicates that sediment water content (porosity) and inorganic carbon concentration are the most significant structuring elements on Beaufort shelf sedimentary microbial communities.
Quantifying microbe-mineral interactions leading to remotely detectable induced polarization signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ntarlagiannis, Dimitrios; Moysey, Stephen; Dean, Delphine
2013-11-14
The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealizedmore » systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for spherical grains versus the actual geometry associated with the nano-pores in the silica gel, though other polarization processes, e.g., proton hopping along the surface (Skold et al., 2013), may also be a contributing factor. As an alternative model-independent approach to confirming the link between surface sorption and SIP we initiated a study that will continue (unfunded) beyond the completion of this project to independently measure the accumulation of gamma emitting isotopes on the silica gel during the SIP monitoring experiments. Though our analyses of the project data are ongoing, our preliminary analyses are generally supportive of the grain (Stern layer) polarization theory of SIP. Experiments focused on evaluating the impact of physical modifications of the medium on polarization included etching and biotic and abiotic facilitated precipitation of carbonate and iron oxides to alter the roughness and electrical conductivity of the surfaces. These experiments were performed for both silica gel and glass beads, the latter of which lacked the interior porosity and high surface area of the silica gel. The results appear to be more nuanced that the chemical modifications of the system. In general, however, it was found that deposition of iron oxides and etching had relatively minimal or negative impacts on the polarization response of the medium, whereas carbonate coatings increased the polarization response. These results were generally consistent with changes in surface charge observed via AFM. Abiotic and biotic column flow through experiments demonstrated that precipitation of carbonate within the medium significantly impacted the real and imaginary conductivity over time in a manner generally consistent with the carbonate precipitation as observed from the batch grain coating experiments. Biotic effects were not observed to provide distinctly different signatures, but may have contributed to differences in the rate of changes observed with SIP. AFM was used in a variety of different ways to investigate the grain surfaces throughout the course of the project. Standard imaging methods were used to evaluate surface roughness and charge density, which showed that these data could provide qualitative insights about consistency between surface trends and the electrical behavior at the column scale (for the case of glass beads). Polarization and conductive force microscopy (PCFM) measurements were developed by the original project PI (Treavor Kendall), which illustrated the importance of the initial few monolayers of water on the mineral surface for producing surface conductivity. The technique allowed for initial local estimates of complex electrical conductivity on mineral surfaces, but could not be pursued after Kendall left the project due to phase locking limitations with the AFM instrument at Clemson and an inability to perform measurements in solution, which limited their value for linking the measurements to column-scale SIP responses. As a result, co-PI Dean developed a new methodology for making AFM measurements within an externally applied electric field. In this method, the charged tip of an AFM probe is brought within the proximity of a polarization domain while an external electric field is applied to the sample. The premise of the approach is that the tip will be attracted to or rebound from charge accumulations on the surface, which allow for detection of the local polarization response. Initial experiments showed promise in terms of the general trends of responses observed, though we have not yet been able to develop a quantitative interpretation technique that can be applied to predicting column scale responses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moysey, Stephen; Dean, Delphine; Dimitrios, Ntarlagiannis
2013-11-13
The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealizedmore » systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for spherical grains versus the actual geometry associated with the nano-pores in the silica gel, though other polarization processes, e.g., proton hopping along the surface (Skold et al., 2013), may also be a contributing factor. As an alternative model-independent approach to confirming the link between surface sorption and SIP we initiated a study that will continue (unfunded) beyond the completion of this project to independently measure the accumulation of gamma emitting isotopes on the silica gel during the SIP monitoring experiments. Though our analyses of the project data are ongoing, our preliminary analyses are generally supportive of the grain (Stern layer) polarization theory of SIP. Experiments focused on evaluating the impact of physical modifications of the medium on polarization included etching and biotic and abiotic facilitated precipitation of carbonate and iron oxides to alter the roughness and electrical conductivity of the surfaces. These experiments were performed for both silica gel and glass beads, the latter of which lacked the interior porosity and high surface area of the silica gel. The results appear to be more nuanced that the chemical modifications of the system. In general, however, it was found that deposition of iron oxides and etching had relatively minimal or negative impacts on the polarization response of the medium, whereas carbonate coatings increased the polarization response. These results were generally consistent with changes in surface charge observed via AFM. Abiotic and biotic column flow through experiments demonstrated that precipitation of carbonate within the medium significantly impacted the real and imaginary conductivity over time in a manner generally consistent with the carbonate precipitation as observed from the batch grain coating experiments. Biotic effects were not observed to provide distinctly different signatures, but may have contributed to differences in the rate of changes observed with SIP. AFM was used in a variety of different ways to investigate the grain surfaces throughout the course of the project. Standard imaging methods were used to evaluate surface roughness and charge density, which showed that these data could provide qualitative insights about consistency between surface trends and the electrical behavior at the column scale (for the case of glass beads). Polarization and conductive force microscopy (PCFM) measurements were developed by the original project PI (Treavor Kendall), which illustrated the importance of the initial few monolayers of water on the mineral surface for producing surface conductivity. The technique allowed for initial local estimates of complex electrical conductivity on mineral surfaces, but could not be pursued after Kendall left the project due to phase locking limitations with the AFM instrument at Clemson and an inability to perform measurements in solution, which limited their value for linking the measurements to column-scale SIP responses. As a result, co-PI Dean developed a new methodology for making AFM measurements within an externally applied electric field. In this method, the charged tip of an AFM probe is brought within the proximity of a polarization domain while an external electric field is applied to the sample. The premise of the approach is that the tip will be attracted to or rebound from charge accumulations on the surface, which allow for detection of the local polarization response. Initial experiments showed promise in terms of the general trends of responses observed, though we have not yet been able to develop a quantitative interpretation technique that can be applied to predicting column scale responses.« less
Comparison of the release of constituents from granular materials under batch and column testing.
Lopez Meza, Sarynna; Garrabrants, Andrew C; van der Sloot, Hans; Kosson, David S
2008-01-01
Column leaching testing can be considered a better basis for assessing field impact data than any other available batch test method and thus provides a fundamental basis from which to estimate constituent release under a variety of field conditions. However, column testing is time-intensive compared to the more simplified batch testing, and may not always be a viable option when making decisions for material reuse. Batch tests are used most frequently as a simple tool for compliance or quality control reasons. Therefore, it is important to compare the release that occurs under batch and column testing, and establish conservative interpretation protocols for extrapolation from batch data when column data are not available. Five different materials (concrete, construction debris, aluminum recycling residue, coal fly ash and bottom ash) were evaluated via batch and column testing, including different column flow regimes (continuously saturated and intermittent unsaturated flow). Constituent release data from batch and column tests were compared. Results showed no significant difference between the column flow regimes when constituent release data from batch and column tests were compared. In most cases batch and column testing agreed when presented in the form of cumulative release. For arsenic in carbonated materials, however, batch testing underestimates the column constituent release for most LS ratios and also on a cumulative basis. For cases when As is a constituent of concern, column testing may be required.
Reliability of a four-column classification for tibial plateau fractures.
Martínez-Rondanelli, Alfredo; Escobar-González, Sara Sofía; Henao-Alzate, Alejandro; Martínez-Cano, Juan Pablo
2017-09-01
A four-column classification system offers a different way of evaluating tibial plateau fractures. The aim of this study is to compare the intra-observer and inter-observer reliability between four-column and classic classifications. This is a reliability study, which included patients presenting with tibial plateau fractures between January 2013 and September 2015 in a level-1 trauma centre. Four orthopaedic surgeons blindly classified each fracture according to four different classifications: AO, Schatzker, Duparc and four-column. Kappa, intra-observer and inter-observer concordance were calculated for the reliability analysis. Forty-nine patients were included. The mean age was 39 ± 14.2 years, with no gender predominance (men: 51%; women: 49%), and 67% of the fractures included at least one of the posterior columns. The intra-observer and inter-observer concordance were calculated for each classification: four-column (84%/79%), Schatzker (60%/71%), AO (50%/59%) and Duparc (48%/58%), with a statistically significant difference among them (p = 0.001/p = 0.003). Kappa coefficient for intr-aobserver and inter-observer evaluations: Schatzker 0.48/0.39, four-column 0.61/0.34, Duparc 0.37/0.23, and AO 0.34/0.11. The proposed four-column classification showed the highest intra and inter-observer agreement. When taking into account the agreement that occurs by chance, Schatzker classification showed the highest inter-observer kappa, but again the four-column had the highest intra-observer kappa value. The proposed classification is a more inclusive classification for the posteromedial and posterolateral fractures. We suggest, therefore, that it be used in addition to one of the classic classifications in order to better understand the fracture pattern, as it allows more attention to be paid to the posterior columns, it improves the surgical planning and allows the surgical approach to be chosen more accurately.
Davis, S. E.; Childers, D.L.; Noe, G.B.
2006-01-01
Our goal was to quantify the coupled process of litter turnover and leaching as a source of nutrients and fixed carbon in oligotrophic, nutrient-limited wetlands. We conducted poisoned and non-poisoned incubations of leaf material from four different perennial wetland plants (Eleocharis spp., Cladium jamaicense, Rhizophora mangle and Spartina alterniflora) collected from different oligotrophic freshwater and estuarine wetland settings. Total phosphorus (TP) release from the P-limited Everglades plant species (Eleocharis spp., C. jamaicense and R. mangle) was much lower than TP release by the salt marsh plant S. alterniflora from N-limited North Inlet (SC). For most species and sampling times, total organic carbon (TOC) and TP leaching losses were much greater in poisoned than non-poisoned treatments, likely as a result of epiphytic microbial activity. Therefore, a substantial portion of the C and P leached from these wetland plant species was bio-available to microbial communities. Even the microbes associated with S. alterniflora from N-limited North Inlet showed indications of P-limitation early in the leaching process, as P was removed from the water column. Leaves of R. mangle released much more TOC per gram of litter than the other species, likely contributing to the greater waterborne [DOC] observed by others in the mangrove ecotone of Everglades National Park. Between the two freshwater Everglades plants, C. jamaicense leached nearly twice as much P than Eleocharis spp. In scaling this to the landscape level, our observed leaching losses combined with higher litter production of C. jamaicense compared to Eleocharis spp. resulted in a substantially greater P leaching from plant litter to the water column and epiphytic microbes. In conclusion, leaching of fresh plant litter can be an important autochthonous source of nutrients in freshwater and estuarine wetland ecosystems. ?? Springer 2006.
Li, Yinong; Tian, Chen; Liu, Weizhen; Xu, Si; Xu, Yunyun; Cui, Rongxin; Lin, Zhang
2018-01-01
Nano-Mg(OH) 2 is attracting great attention as adsorbent for pre-concentration and recovery of rare earth elements (REEs) from low-concentration solution, due to its superior removal efficiency for REEs and environmental friendliness. However, the nanoparticles also cause some severe problems during application, including aggregation, blockage in fixed-bed column, as well as the difficulties in separation and reuse. Herein, in order to avoid the mentioned problems, a carbon cloth (CC) supported nano-Mg(OH) 2 (nano-Mg(OH) 2 @CC) was synthesized by electrodeposition. The X-ray diffraction and scanning electron microscopy analysis demonstrated that the interlaced nano-sheet of Mg(OH) 2 grew firmly and uniformly on the surface of carbon cloth fibers. Batch adsorption experiments of Eu(III) indicated that the nano-Mg(OH) 2 @CC composite maintained the excellent adsorption performance of nano-Mg(OH) 2 toward Eu(III). After adsorption, the Eu containing composite was calcined under nitrogen atmosphere. The content of Eu 2 O 3 in the calcined material was as high as 99.66%. Fixed-bed column experiments indicated that no blockage for Mg(OH) 2 @CC composite was observed during the treatment, while the complete blockage of occurred to nano-Mg(OH) 2 at an effluent volume of 240 mL. Moreover, the removal efficiency of Mg(OH) 2 @CC was still higher than 90% until 4,200 mL of effluent volume. This work provides a promising method for feasible application of nanoadsorbents in fixed-bed process to recycle low-concentration REEs from wastewater.
NASA Astrophysics Data System (ADS)
Li, Yinong; Tian, Chen; Liu, Weizhen; Xu, Si; Xu, Yunyun; Cui, Rongxin; Lin, Zhang
2018-04-01
Nano-Mg(OH)2 is attracting great attention as adsorbent for pre-concentration and recovery of rare earth elements (REEs) from low-concentration solution, due to its superior removal efficiency for REEs and environmental friendliness. However, the nanoparticles also cause some severe problems during application, including aggregation, blockage in fixed-bed column, as well as the difficulties in separation and reuse. Herein, in order to avoid the mentioned problems, a carbon cloth (CC) supported nano-Mg(OH)2 (nano-Mg(OH)2@CC) was synthesized by electrodeposition. The X-ray diffraction and scanning electron microscopy analysis demonstrated that the interlaced nano-sheet of Mg(OH)2 grew firmly and uniformly on the surface of carbon cloth fibers. Batch adsorption experiments of Eu(III) indicated that the nano-Mg(OH)2@CC composite maintained the excellent adsorption performance of nano-Mg(OH)2 toward Eu(III). After adsorption, the Eu containing composite was calcined under nitrogen atmosphere. The content of Eu2O3 in the calcined material was as high as 99.66%. Fixed-bed column experiments indicated that no blockage for Mg(OH)2@CC composite was observed during the treatment, while the complete blockage of occurred to nano-Mg(OH)2 at an effluent volume of 240 mL. Moreover, the removal efficiency of Mg(OH)2@CC was still higher than 90% until 4200 mL of effluent volume. This work provides a promising method for feasible application of nanoadsorbents in fixed-bed process to recycle low-concentration REEs from wastewater.
Li, Yinong; Tian, Chen; Liu, Weizhen; Xu, Si; Xu, Yunyun; Cui, Rongxin; Lin, Zhang
2018-01-01
Nano-Mg(OH)2 is attracting great attention as adsorbent for pre-concentration and recovery of rare earth elements (REEs) from low-concentration solution, due to its superior removal efficiency for REEs and environmental friendliness. However, the nanoparticles also cause some severe problems during application, including aggregation, blockage in fixed-bed column, as well as the difficulties in separation and reuse. Herein, in order to avoid the mentioned problems, a carbon cloth (CC) supported nano-Mg(OH)2 (nano-Mg(OH)2@CC) was synthesized by electrodeposition. The X-ray diffraction and scanning electron microscopy analysis demonstrated that the interlaced nano-sheet of Mg(OH)2 grew firmly and uniformly on the surface of carbon cloth fibers. Batch adsorption experiments of Eu(III) indicated that the nano-Mg(OH)2@CC composite maintained the excellent adsorption performance of nano-Mg(OH)2 toward Eu(III). After adsorption, the Eu containing composite was calcined under nitrogen atmosphere. The content of Eu2O3 in the calcined material was as high as 99.66%. Fixed-bed column experiments indicated that no blockage for Mg(OH)2@CC composite was observed during the treatment, while the complete blockage of occurred to nano-Mg(OH)2 at an effluent volume of 240 mL. Moreover, the removal efficiency of Mg(OH)2@CC was still higher than 90% until 4,200 mL of effluent volume. This work provides a promising method for feasible application of nanoadsorbents in fixed-bed process to recycle low-concentration REEs from wastewater. PMID:29721492
Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.
Yadav, Anant; Choudhary, Piyush; Atri, Neelam; Teir, Sebastian; Mutnuri, Srikanth
2016-11-01
The objective of the present study was to set up a small-scale pilot reactor at ONGC Hazira, Surat, for capturing CO 2 from vent gas. The studies were carried out for CO 2 capture by either using microalgae Chlorella sp. or a consortium of microalgae (Scenedesmus quadricauda, Chlorella vulgaris and Chlorococcum humicola). The biomass harvested was used for anaerobic digestion to produce biogas. The carbonation column was able to decrease the average 34 vol.% of CO 2 in vent gas to 15 vol.% of CO 2 in the outlet gas of the carbonation column. The yield of Chlorella sp. was found to be 18 g/m 2 /day. The methane yield was 386 l CH 4 /kg VS fed of Chlorella sp. whereas 228 l CH 4 /kg VS fed of the consortium of algae.
Enhanced Fluorescence Properties of Carbon Dots in Polymer Films
Liu, Yamin; Wang, Ping; Shiral Fernando, K. A.; LeCroy, Gregory E.; Maimaiti, Halidan; Harruff-Miller, Barbara A.; Lewis, William K.; Bunker, Christopher E.; Hou, Zhi-Ling; Sun, Ya-Ping
2016-01-01
Carbon dots of small carbon nanoparticles surface-functionalized with 2,2′-(ethylenedioxy)bis(ethylamine) (EDA) were synthesized, and the as-synthesized sample was separated on an aqueous gel column to obtain fractions of the EDA-carbon dots with different fluorescence quantum yields. As already discussed in the literature, the variations in fluorescence performance among the fractions were attributed to the different levels and/or effectiveness of the surface functionalization-passivation in the carbon dots. These fractions, as well as carbon nanoparticles without any deliberate surface functionalization, were dispersed into poly(vinyl alcohol) (PVA) for composite films. In the PVA film matrix, the carbon dots and nanoparticles exhibited much enhanced fluorescence emissions in comparison with their corresponding aqueous solutions. The increased fluorescence quantum yields in the films were determined quantitatively by using a specifically designed and constructed film sample holder in the emission spectrometer. The observed fluorescence decays of the EDA-carbon dots in film and in solution were essentially the same, suggesting that the significant enhancement in fluorescence quantum yields from solution to film is static in nature. Mechanistic implications of the results, including a rationalization in terms of the compression effect on the surface passivation layer (similar to a soft corona) in carbon dots when embedded in the more restrictive film environment resulting in more favorable radiative recombinations of the carbon particle surface-trapped electrons and holes, and also potential technological applications of the brightly fluorescent composite films are highlighted and discussed. PMID:28133537
Fenton-Driven Chemical Regeneration of MTBE-Spent Granular Activated Carbon -- A Pilot Study
MTBE-spent granular activated carbon (GAC) underwent 3 adsorption/oxidation cycles. Pilot-scale columns were intermittently placed on-line at a ground water pump and treat facility, saturated with MTBE, and regenerated with H2O2 under different chemical, physical, and operational...
Johansson, K; Jönsson-Pettersson, G; Gorton, L; Marko-Varga, G; Csöregi, E
1993-12-01
A reagentless carbon paste electrode chemically modified with covalently bound alcohol oxidase and horse-radish peroxidase was examined as a selective sensor in flow injection and column liquid chromatography. A combination of carbodiimide, glutaraldehyde, and polyethyleneimine was used for immobilizing the enzymes in the paste. The surface of the electrodes was protected by first forming a layer of electropolymerized ortho-phenylenediamine followed by deposition of a cation exchange membrane (Eastman AQ 29D). The electrodes were used for detection of hydrogen peroxide, methanol, ethanol, propanol, isopropanol, and butanol. Preliminary investigations of the use of this sensor for bioprocess control are reported.
NASA Technical Reports Server (NTRS)
Yu, Jirong; Singh, Upendra; Petros, Mulugeta; Refaat, Tamer
2015-01-01
The study of global warming needs precisely and accurately measuring greenhouse gases concentrations in the atmosphere. CO2 and H2O are important greenhouse gases that significantly contribute to the carbon cycle and global radiation budget on Earth. NRC Decadal Survey recommends a mission for Active Sensing of Carbon Dioxide (CO2) over Nights, Days and Seasons (ASCENDS). 2 micron laser is a viable IPDA transmitter to measure CO2 and H2O column density from space. The objective is to demonstrate a first airborne direct detection 2 micron IPDA lidar for CO2 and H2O measurements.
Analysis of triacylglycerols on porous graphitic carbon by high temperature liquid chromatography.
Merelli, Bérangère; De Person, Marine; Favetta, Patrick; Lafosse, Michel
2007-07-20
The retention behaviour of several triacylglycerols (TAGs) and fats on Hypercarb, a porous graphitic carbon column (PGC), was investigated in liquid chromatography (LC) under isocratic elution mode with an evaporative light scattering detector (ELSD). Mixtures of chloroform/isopropanol were selected as mobile phase for a suitable retention time to study the influence of temperature. The retention was different between PGC and non-aqueous reversed phase liquid chromatography (NARP-LC) on octadecyl phase. The retention of TAGs was investigated in the interval 30-70 degrees C. Retention was greatly affected by temperature: it decreases as the column temperature increases. Selectivity of TAGs was also slightly influenced by the temperature. Moreover, this chromatographic method is compatible with a mass spectrometer (MS) detector by using atmospheric pressure chemical ionisation (APCI): same fingerprints of cocoa butter and shea butter were obtained with LC-ELSD and LC-APCI-MS. These preliminary results showed that the PGC column could be suitable to separate quickly triacylglycerols in high temperature conditions coupled with ELSD or MS detector.
Linking Water Table Dynamics to Carbon Cycling in Artificial Soil Column Incubations
NASA Astrophysics Data System (ADS)
Geertje, Pronk; Adrian, Mellage; Tatjana, Milojevic; Fereidoun, Rezanezhad; Cappellen Philippe, Van
2016-04-01
The biogeochemistry of wetlands soils is closely tied to their hydrology. Water table fluctuations that cause flooding and drying of these systems may lead to enhanced degradation of organic matter and release of greenhouse gasses (e.g. CO2, CH4) to the atmosphere. However, predicting the influence of water table fluctuations on the biogeochemical functioning of soils requires an understanding of the interactions of soil hydrology with biogeochemical and microbial processes. To determine the effects of water table dynamics on carbon cycling, we are carrying out state-of-the-art automated soil column experiments with fully integrated monitoring of hydro-bio-geophysical process variables under both constant and oscillating water table conditions. An artificial, homogeneous mixture consisting of minerals and organic matter is used to provide a well-defined starting material. The artificial soils are composed of quartz sand, montmorillonite, goethite and humus from a forested riparian zone, from which we also extracted the microbial inoculum added to the soil mixture. The artificial soils are packed into 60 cm high, 7.5 cm wide columns. In the currently ongoing experiment, three replicate columns are incubated while keeping the water table constant water at mid-depth, while another three columns alternate between drained and saturated conditions. Micro-sensors installed at different depths below the soil surface record time-series redox potentials (Eh) varying between oxidizing (~+700 mV) and reducing (~-200 mV) conditions. Continuous O2 levels throughout the soil columns are monitored using high-resolution, luminescence-based, Multi Fiber Optode (MuFO) microsensors. Pore waters are collected periodically with MicroRhizon samplers from different depths, and analyzed for pH, EC, dissolved inorganic and organic carbon and ion/cation compositions. These measurements allow us to track the changes in pore water geochemistry and relate them to differences in carbon cycling between the contrasting water table regimes. Particular attention is given to the mobilization and redistribution of iron from the initially homogeneously distributed goethite. In addition, small solid-phase samples are collected monthly from the saturated and unsaturated zones of the soil columns to characterize the microbial communities and changes in soil microstructure and organo-mineral associations. Headspace gas measurements are used to derive the effluxes of CO2 and CH4 during the experiment. Together, the experimental data will provide a comprehensive picture of the early development of the soil and the accompanying establishment of biogeochemical gradients under dynamic hydrological conditions. They will allow us to relate the degradation of soil organic matter and greenhouse gas emissions to the saturation conditions and redox chemistry under controlled conditions. The experiment is in progress with an expected total duration of 6 months.
Data Retrieval Algorithm and Uncertainty Analysis for a Miniaturized, Laser Heterodyne Radiometer
NASA Astrophysics Data System (ADS)
Miller, J. H.; Melroy, H.; Wilson, E. L.; Clarke, G. B.
2013-12-01
In a collaboration between NASA Goddard Space Flight Center and George Washington University, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrally-resolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. Further, because the LHR technique has the potential for sub-Doppler spectral resolution, the possibility exists for interrogating line shapes to extract altitude profiles of the greenhouse gases. From late 2012 through 2013 the instrument was deployed for a variety of field measurements including at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument (notably spectral sweep time and absorbance noise) has been observed. For the latter, the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. This presentation presents an overview of the measurement campaigns in the context of the data retrieval algorithm under development at GW for the calculation of column concentrations from them. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. In our initial work we began with coding developed under the LOWTRAN and MODTRAN programs by the AFOSR (and others). We also assumed temperature and pressure profiles from the 1976 US Standard Atmosphere and used the US Naval Observatory database for local zenith angle calculations to initialize path trajectory calculations. In our newest version of the retrieval algorithm, the Python programming language module PySolar is used for the path geometry calculations. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data that has been compiled every 6 hours. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm as implemented in the SciPy Python module. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio frequency bandwidth and describe additional future goals in instrument development and deployment targets.
2010-01-01
We examined the analysis of nucleotides and nucleotide sugars by chromatography on porous graphitic carbon with mass spectrometric detection, a method that evades contamination of the MS instrument with ion pairing reagent. At first, adenosine triphosphate (ATP) and other triphosphate nucleotides exhibited very poor chromatographic behavior on new columns and could hardly be eluted from columns previously cleaned with trifluoroacetic acid. Satisfactory performance of both new and older columns could, however, be achieved by treatment with reducing agent and, unexpectedly, hydrochloric acid. Over 40 nucleotides could be detected in cell extracts including many isobaric compounds such as ATP, deoxyguanosine diphosphate (dGTP), and phospho-adenosine-5′-phosphosulfate or 3′,5′-cyclic adenosine 5'-monophosphate (AMP) and its much more abundant isomer 2′,3′-cylic AMP. A fast sample preparation procedure based on solid-phase extraction on carbon allowed detection of very short-lived analytes such as cytidine 5'-monophosphate (CMP)-2-keto-deoxy-octulosonic acid. In animal cells and plant tissues, about 35 nucleotide sugars were detected, among them rarely considered metabolites such as uridine 5'-diphosphate (UDP)-l-arabinopyranose, UDP-l-arabinofuranose, guanosine 5'-diphosphate (GDP)-l-galactofuranose, UDP-l-rhamnose, and adenosine diphosphate (ADP)-sugars. Surprisingly, UDP-arabinopyranose was also found in Chinese hamster ovary (CHO) cells. Due to the unique structural selectivity of graphitic carbon, the method described herein distinguishes more nucleotides and nucleotide sugars than previously reported approaches. PMID:21043458
Stable isotopic biogeochemistry of carbon and nitrogen in a perennially ice-covered Antarctic lake.
Wharton, R A; Lyons, W B; Des Marais, D J
1993-01-01
Lake Hoare (77 degrees 38' S, 162 degrees 53' E) is an amictic, oligotrophic, 34-m-deep, closed-basin lake in Taylor Valley, Antarctica. Its perennial ice cover minimizes wind-generated currents and reduces light penetration, as well as restricts sediment deposition into the lake and the exchange of atmospheric gases between the water column and the atmosphere. The biological community of Lake Hoare consists solely of microorganisms -- both planktonic populations and benthic microbial mats. Lake Hoare is one of several perennially ice-covered lakes in the McMurdo Dry Valleys that represent the end-member conditions of cold desert and saline lakes. The dry valley lakes provide a unique opportunity to examine lacustrine processes that operate at all latitudes, but under an extreme set of environmental conditions. The dry valley lakes may also offer a valuable record of catchment and global changes in the past and present. Furthermore, these lakes are modern-day equivalents of periglacial lakes that are likely to have been common during periods of glacial maxima at temperate latitudes. We have analyzed the dissolved inorganic carbon (DIC) of Lake Hoare for delta 13C and the organic matter of the sediments and sediment-trap material for delta 13C and delta 15N. The delta 13C of the DIC indicates that 12C is differentially removed in the shallow, oxic portions of the lake via photosynthesis. In the anoxic portions of the lake (27-34 m) a net addition of 12C to the DIC pool occurs via organic matter decomposition. The dissolution of CaCO3 at depth also contributes to the DIC pool. Except near the Canada Glacier where a substantial amount of allochthonous organic matter enters the lake, the organic carbon being deposited on the lake bottom at different sites is isotopically similar, suggesting an autochthonous source for the organic carbon. Preliminary inorganic carbon flux calculations suggest that a high percentage of the organic carbon fixed in the water column is remineralized as it falls through the water column. At nearby Lake Fryxell, the substantial (relative to Lake Hoare) glacial meltstream input overprints Fryxell's shallow-water biological delta 13C signal with delta 13C-depleted DIC. In contrast, Lake Hoare is not significantly affected by surface-water input and mixing, and therefore the delta 13C patterns observed arise primarily from biological dynamics within the lake. Organic matter in Lake Hoare is depleted in 15N, which we suggest is partially the result of the addition of relatively light inorganic nitrogen into the lake system from terrestrial sources.
Stable isotopic biogeochemistry of carbon and nitrogen in a perennially ice-covered Antarctic lake
NASA Technical Reports Server (NTRS)
Wharton, R. A. Jr; Lyons, W. B.; Des Marais, D. J.; Wharton RA, J. r. (Principal Investigator)
1993-01-01
Lake Hoare (77 degrees 38' S, 162 degrees 53' E) is an amictic, oligotrophic, 34-m-deep, closed-basin lake in Taylor Valley, Antarctica. Its perennial ice cover minimizes wind-generated currents and reduces light penetration, as well as restricts sediment deposition into the lake and the exchange of atmospheric gases between the water column and the atmosphere. The biological community of Lake Hoare consists solely of microorganisms -- both planktonic populations and benthic microbial mats. Lake Hoare is one of several perennially ice-covered lakes in the McMurdo Dry Valleys that represent the end-member conditions of cold desert and saline lakes. The dry valley lakes provide a unique opportunity to examine lacustrine processes that operate at all latitudes, but under an extreme set of environmental conditions. The dry valley lakes may also offer a valuable record of catchment and global changes in the past and present. Furthermore, these lakes are modern-day equivalents of periglacial lakes that are likely to have been common during periods of glacial maxima at temperate latitudes. We have analyzed the dissolved inorganic carbon (DIC) of Lake Hoare for delta 13C and the organic matter of the sediments and sediment-trap material for delta 13C and delta 15N. The delta 13C of the DIC indicates that 12C is differentially removed in the shallow, oxic portions of the lake via photosynthesis. In the anoxic portions of the lake (27-34 m) a net addition of 12C to the DIC pool occurs via organic matter decomposition. The dissolution of CaCO3 at depth also contributes to the DIC pool. Except near the Canada Glacier where a substantial amount of allochthonous organic matter enters the lake, the organic carbon being deposited on the lake bottom at different sites is isotopically similar, suggesting an autochthonous source for the organic carbon. Preliminary inorganic carbon flux calculations suggest that a high percentage of the organic carbon fixed in the water column is remineralized as it falls through the water column. At nearby Lake Fryxell, the substantial (relative to Lake Hoare) glacial meltstream input overprints Fryxell's shallow-water biological delta 13C signal with delta 13C-depleted DIC. In contrast, Lake Hoare is not significantly affected by surface-water input and mixing, and therefore the delta 13C patterns observed arise primarily from biological dynamics within the lake. Organic matter in Lake Hoare is depleted in 15N, which we suggest is partially the result of the addition of relatively light inorganic nitrogen into the lake system from terrestrial sources.
Lirio, Stephen; Fu, Chung-Wei; Lin, Jhih-Yun; Hsu, Meng-Ju; Huang, Hsi-Ya
2016-07-13
In this study, the application of different activated carbon-polymer (AC-polymer) monoliths as adsorbents for the solid-phase microextraction (SPME) of phthalate esters (PAEs) in water sample were investigated. The activated carbon (AC) was embedded in organic polymers, poly(butyl methacrylate-co-ethylene dimethacrylate) (poly(BMA-EDMA)) or poly(styrene-co-divinylbenzene) (poly(STY-DVB)), via a 5-min microwave-assisted or a 15-min water bath heating polymerization. Preliminary investigation on the performance of the native poly(BMA-EDMA) and poly(STY-DVB) demonstrated remarkable adsorption efficiencies for PAEs. However, due to the strong hydrophobic, π-π, and hydrogen bonding interactions between the analytes and polymers, low extraction recoveries were achieved. In contrast, the presence of AC in native polymers not only enhanced the adsorption efficiencies but also assisted the PAE desorption, especially for AC-poly(STY-DVB) with extraction recovery ranged of 76.2-99.3%. Under the optimized conditions, the extraction recoveries for intra-, inter-day and column-to-column were in the range of 76.5-100.8% (<3.7% RSDs), 77.2-97.6% (<5.6% RSDs) and 75.5-99.7% (<6.2% RSDs), respectively. The developed AC-poly(STY-DVB) monolithic column showed good mechanical stability, which can be reused for more than 30 extraction times without any significant loss in the extraction recoveries of PAEs. The AC-poly(STY-DVB) monolithic column was successfully applied in SPME of PAEs in water sample with extraction recovery ranged of 78.8%-104.6% (<5.5% RSDs). Copyright © 2016 Elsevier B.V. All rights reserved.
Slow Physics: Recording the Ascent and Descent of a Water Column
ERIC Educational Resources Information Center
Lindén, Johan; Källman, Kjell-Mikael; Holm, Erik
2018-01-01
A glass filled with carbon dioxide gas upside down on a plate of water constitutes an excellent demonstration of the solubility of gases. If the water level on the plate is maintained the CO[subscript 2] will slowly dissolve and the column of water will rise inside the glass, without quite reaching the ceiling, before an opposite process sets in:…
NASA Astrophysics Data System (ADS)
Audry, S.; Pokrovsky, O. S.; Shirokova, L. S.; Kirpotin, S. N.; Dupré, B.
2011-11-01
This study reports the very first results on high-resolution sampling of sediments and their porewaters from three thermokarst (thaw) lakes representing different stages of ecosystem development located within the Nadym-Pur interfluve of the Western Siberia plain. Up to present time, the lake sediments of this and other permafrost-affected regions remain unexplored regarding their biogeochemical behavior. The aim of this study was to (i) document the early diagenesic processes in order to assess their impact on the organic carbon stored in the underlying permafrost, and (ii) characterize the post-depositional redistribution of trace elements and their impact on the water column. The estimated organic carbon (OC) stock in thermokarst lake sediments of 14 ± 2 kg m-2 is low compared to that reported for peat soils from the same region and denotes intense organic matter (OM) mineralization. Mineralization of OM in the thermokarst lake sediments proceeds under anoxic conditions in all the three lakes. In the course of the lake development, a shift in mineralization pathways from nitrate and sulfate to Fe- and Mn-oxyhydroxides as the main terminal electron acceptors in the early diagenetic reactions was suggested. This shift was likely promoted by the diagenetic consumption of nitrate and sulfate and their gradual depletion in the water column due to progressively decreasing frozen peat lixiviation occurring at the lake's borders. Trace elements were mobilized from host phases (OM and Fe- and Mn-oxyhydroxides) and partly sequestered in the sediment in the form of authigenic Fe-sulfides. Arsenic and Sb cycling was also closely linked to that of OM and Fe- and Mn-oxyhydroxides. Shallow diagenetic enrichment of particulate Sb was observed in the less mature stages. As a result of authigenic sulfide precipitation, the sediments of the early stage of ecosystem development were a sink for water column Cu, Zn, Cd, Pb and Sb. In contrast, at all stages of ecosystem development, the sediments were a source of dissolved Co, Ni and As to the water column. However, the concentrations of these trace elements remained low in the bottom waters, indicating that sorption processes on Fe-bounding particles and/or large-size organo-mineral colloids could mitigate the impact of post-depositional redistribution of toxic elements on the water column.
NASA Astrophysics Data System (ADS)
Audry, S.; Pokrovsky, O. S.; Shirokova, L. S.; Kirpotin, S. N.; Dupré, B.
2011-08-01
This study reports the very first results on high-resolution sampling of sediments and their porewaters from three thermokarst (thaw) lakes representing different stages of ecosystem development located within the Nadym-Pur interfluve of the Western Siberia plain. Up to present time, the lake sediments of this and other permafrost-affected regions remain unexplored regarding their biogeochemical behavior. The aim of this study was to (i) document the early diagenesic processes in order to assess their impact on the organic carbon stored in the underlying permafrost, and (ii) characterize the post-depositional redistribution of trace elements and their impact on the water column. The estimated organic carbon (OC) stock in thermokarst lake sediments of 14 ± 2 kg m-2 is low compared to that reported for peat soils from the same region and denotes intense organic matter (OM) mineralization. Mineralization of OM in the thermokarst lake sediments proceeds under anoxic conditions in all the three lakes. In the course of the lake development, a shift in mineralization pathways was evidenced from nitrate and sulfate to Fe- and Mn-oxyhydroxides as the main terminal electron acceptors in the early diagenetic reactions. This shift was promoted by the diagenetic consumption of nitrate and sulfate and their gradual depletion in the water column due to progressively decreasing frozen peat lixiviation occurring at the lake's borders. Trace elements were mobilized from host phases (OM and Fe- and Mn-oxyhydroxides) and partly sequestered in the sediment in the form of authigenic Fe-sulfides. Arsenic and Sb cycling was also closely linked to that of OM and Fe- and Mn-oxyhydroxides. Shallow diagenetic enrichment of particulate Sb was observed in the less mature stages. As a result of authigenic sulfide precipitation, the sediments of the early stage of ecosystem development were a sink for water column Cu, Zn, Cd, Pb and Sb. In contrast, at all stages of ecosystem development, the sediments were a source of dissolved Co, Ni and As to the water column. However, the concentrations of these trace elements remained low in the bottom waters, indicating that sorption processes on Fe-bounding particles and/or large-size organo-mineral colloids could mitigate the impact of post-depositional redistribution of toxic elements on the water column.
NASA Astrophysics Data System (ADS)
Hill, V. J.; Steele, M.; Light, B.
2016-02-01
As part of the Arctic Observing Network, a new ice-tethered buoy has been developed for monitoring the role of sunlight in regulating ocean temperature, phytoplankton growth, and carbon cycling. A 20 or 50 m string (depending on local bathymetry) supports sensors both within and below the ice for the hourly measurement of downwelling irradiance, temperature, Chlorophyll a, light backscattering, and dissolved organic material (DOM). Two buoys were deployed in March 2014 and two in March 2015. Because the buoys are engineered to survive melting out of first year ice, they have successfully provided complete seasonal records of water column warming, phytoplankton abundance and photo-oxidation patterns in the Pacific Arctic Region. The data collected will be used to determine whether reduced ice extent and thinner ice are driving increases in under ice warming, accelerating bottom ice ablation, increasing available photosynthetic radiation to support large under ice blooms, and to quantify photo-oxidation of the DOM pool. Observations so far have revealed strong under ice daily warming as high as ±0.5 °C driven by local solar radiation. Water column absorption was dominated by colored dissolved organic material which served to trap solar radiation in the upper water column. Chlorophyll concentrations observed in June and July indicated high phytoplankton abundance beneath the ice. Light intensity at this time was not sufficient to support growth rates high enough to produce the 8 to 10 mg m-3 of chlorophyll observed. We hypothesize that phytoplankton were advected under the ice from the ice edge. However, once there phytoplankton were able to sustain low growth rates leading to nutrient limitation before open water status was reached. Strong daily cycles of photo-oxidation have also been observed in the late summer that indicate the fast cycling of highly labile DOM in the open waters of the Pacific Arctic Region.
NASA Astrophysics Data System (ADS)
Hansman, Roberta L.; Thurber, Andrew R.; Levin, Lisa A.; Aluwihare, Lihini I.
2017-02-01
The potential influence of methane seeps on carbon cycling is a key question for global assessments, but the study of carbon cycling in surface sediments and the water column of cold seep environments is complicated by the high temporal and spatial variability of fluid and gas fluxes at these sites. In this study we directly examined carbon sources supporting benthic and planktonic food webs at venting methane seeps using isotopic and molecular approaches that integrate this variability. At four seep environments located along North and Central America, microorganisms from two size fractions were collected over several days from 2800 to 9050 l of seawater to provide a time-integrated measure of key microbial groups and the carbon sources supporting the overall planktonic microbial community. In addition to water column measurements, the extent of seafloor methane release was estimated at two of the sites by examining the stable carbon isotopic signature (δ13C) of benthic metazoan infauna. This signature reveals carbon sources fueling the base of the food chain and thus provides a metric that represents a time-integrated view of the dominant microbial processes within the sediment. The stable carbon isotopic composition of microbial DNA (δ13C-DNA), which had values between -17.0 and -19.5‰, indicated that bulk planktonic microbial production was not ultimately linked to methane or other 13C-depleted seep-derived carbon sources. Instead these data support the importance of organic carbon derived from either photo- or chemoautotrophic CO2 fixation to the planktonic food web. Results of qPCR of microbial DNA sequences coding for a subunit of the particulate methane monooxygenase gene (pmoA) showed that only a small percentage of the planktonic microbial community were potential methane oxidizers possessing pmoA (<5% of 16S rRNA gene copies). There was an overall decrease of 13C-depleted carbon fueling the benthic metazoan community from 3 to 5 cm below the seafloor to the sediment surface, reflecting limited use of isotopically depleted carbon at the sediment surface. Rare methane emission as indicated by limited aerobic methane oxidation acts to corroborate our findings for the planktonic microbial community.
Aliphatic Hydrocarbon Content of Interstellar Dust
NASA Astrophysics Data System (ADS)
Günay, B.; Schmidt, T. W.; Burton, M. G.; Afşar, M.; Krechkivska, O.; Nauta, K.; Kable, S. H.; Rawal, A.
2018-06-01
There is considerable uncertainty as to the amount of carbon incorporated in interstellar dust. The aliphatic component of the carbonaceous dust is of particular interest because it produces a significant 3.4 μm absorption feature when viewed against a background radiation source. The optical depth of the 3.4 μm absorption feature is related to the number of aliphatic carbon C-H bonds along the line of sight. It is possible to estimate the column density of carbon locked up in the aliphatic hydrocarbon component of interstellar dust from quantitative analysis of the 3.4 μm interstellar absorption feature providing that the absorption coefficient of aliphatic hydrocarbons incorporated in the interstellar dust is known. We report laboratory analogues of interstellar dust by experimentally mimicking interstellar/circumstellar conditions. The resultant spectra of these dust analogues closely match those from astronomical observations. Measurements of the absorption coefficient of aliphatic hydrocarbons incorporated in the analogues were carried out by a procedure combining FTIR and 13C NMR spectroscopies. The absorption coefficients obtained for both interstellar analogues were found to be in close agreement (4.76(8) × 10-18 cm group-1 and 4.69(14) × 10-18 cm group-1), less than half those obtained in studies using small aliphatic molecules. The results thus obtained permit direct calibration of the astronomical observations, providing rigorous estimates of the amount of aliphatic carbon in the interstellar medium.
Constraining CO emission estimates using atmospheric observations
NASA Astrophysics Data System (ADS)
Hooghiemstra, P. B.
2012-06-01
We apply a four-dimensional variational (4D-Var) data assimilation system to optimize carbon monoxide (CO) emissions and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. In the first study only a limited amount of surface network observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global Monitoring Division (GMD) is used to test the 4D-Var system. Uncertainty reduction up to 60% in yearly emissions is observed over well-constrained regions and the inferred emissions compare well with recent studies for 2004. However, since the observations only constrain total CO emissions, the 4D-Var system has difficulties separating anthropogenic and biogenic sources in particular. The inferred emissions are validated with NOAA aircraft data over North America and the agreement is significantly improved from the prior to posterior simulation. Validation with the Measurements Of Pollution In The Troposphere (MOPITT) instrument shows a slight improved agreement over the well-constrained Northern Hemisphere and in the tropics (except for the African continent). However, the model simulation with posterior emissions underestimates MOPITT CO total columns on the remote Southern Hemisphere (SH) by about 10%. This is caused by a reduction in SH CO sources mainly due to surface stations on the high southern latitudes. In the second study, we compare two global inversions to estimate carbon monoxide (CO) emissions for 2004. Either surface flask observations from NOAA or CO total columns from the MOPITT instrument are assimilated in a 4D-Var framework. In the Southern Hemisphere (SH) three important findings are reported. First, due to their different vertical sensitivity, the stations-only inversion increases SH biomass burning emissions by 108 Tg CO/yr more than the MOPITT-only inversion. Conversely, the MOPITT-only inversion results in SH natural emissions (mainly CO from oxidation of NMVOCs) that are 185 Tg CO/yr higher compared to the stations-only inversion. Second, MOPITT-only derived biomass burning emissions are reduced with respect to the prior which is in contrast to previous (inverse) modeling studies. Finally, MOPITT derived total emissions are significantly higher for South America and Africa compared to the stations-only inversion. This is likely due to a positive bias in the MOPITT V4 product. This bias is also apparent from validation with surface stations and ground-truth FTIR columns. In the final study we present the first inverse modeling study to estimate CO emissions constrained by both surface (NOAA) and satellite (MOPITT) observations using a bias correction scheme. This approach leads to the identification of a positive bias of maximum 5 ppb in MOPITT column-averaged CO mixing ratios in the remote Southern Hemisphere (SH). The 4D-Var system is used to estimate CO emissions over South America in the period 2006-2010 and to analyze the interannual variability (IAV) of these emissions. We infer robust, high spatial resolution CO emission estimates that show slightly smaller IAV due to fires compared to the Global Fire Emissions Database (GFED3) prior emissions. Moreover, CO emissions probably associated with pre-harvest burning of sugar cane plantations are underestimated in current inventories by 50-100%.
Pico-CSIA: Picomolar Scale Compound-Specific Isotope Analyses
NASA Astrophysics Data System (ADS)
Baczynski, A. A.; Polissar, P. J.; Juchelka, D.; Schwieters, J. B.; Hilkert, A.; Freeman, K. H.
2016-12-01
The basic approach to analyzing molecular isotopes has remained largely unchanged since the late 1990s. Conventional compound-specific isotope analyses (CSIA) are conducted using capillary gas chromatography (GC), a combustion interface, and an isotope-ratio mass spectrometer (IRMS). Commercially available GC-IRMS systems are comprised of components with inner diameters ≥0.25 mm and employ helium flow rates of 1-4 mL/min. These flow rates are an order of magnitude larger than what the IRMS can accept. Consequently, ≥90% of the sample is lost through the open split, and 1-10s of nanomoles of carbon are required for analysis. These sample requirements are prohibitive for many biomarkers, which are often present in picomolar concentrations. We utilize the resolving power and low flows of narrow-bore capillary GC to improve the sensitivity of CSIA. Narrow bore capillary columns (<0.25 mm ID) allow low helium flow rates of ≤0.5mL/min for more efficient sample transfer to the ion source of the IRMS while maintaining the high linear flow rates necessary to preserve narrow peak widths ( 250 ms). The IRMS has been fitted with collector amplifiers configured to 25 ms response times for rapid data acquisition across narrow peaks. Previous authors (e.g., Sacks et al., 2007) successfully demonstrated improved sensitivity afforded by narrow-bore GC columns. They reported an accuracy and precision of 1.4‰ for peaks with an average width at half maximum of 720 ms for 100 picomoles of carbon on column. Our method builds on their advances and further reduces peak widths ( 600 ms) and the amount of sample lost prior to isotopic analysis. Preliminary experiments with 100 picomoles of carbon on column show an accuracy and standard deviation <1‰. With further improvement, we hope to demonstrate robust isotopic analysis of 10s of picomoles of carbon, more than 2 orders of magnitude lower than commercial systems. The pico-CSIA method affords high-precision isotopic analyses for picomoles of carbon in organic biomarkers, which significantly lowers sample size requirements and broadens analytical windows in paleoclimate, astrobiological, and biogeochemical research.
NASA Astrophysics Data System (ADS)
Paull, Charles K.; Ussler, William; Peltzer, Edward T.; Brewer, Peter G.; Keaten, Rendy; Mitts, Patrick J.; Nealon, Jeffrey W.; Greinert, Jens; Herguera, Juan-Carlos; Elena Perez, M.
2007-06-01
Extensive ROV-based sampling and exploration of the seafloor was conducted along an eroded transform-parallel fault scarp on the northeastern side of the Guaymas Basin in the Gulf of California to observe the nature of fluids venting from the seafloor, measure the record left by methane-venting on the carbonates from this area, and determine the association with gas hydrate. One gas vent vigorous enough to generate a water-column gas plume traceable for over 800 m above the seafloor was found to emanate from a ˜10-cm-wide orifice on the eroded scarp face. Sediment temperature measurements and topography on a sub-bottom reflector recorded in a transform-parallel seismic reflection profile identified a subsurface thermal anomaly beneath the gas vent. Active chemosynthetic biological communities (CBCs) and extensive authigenic carbonates that coalesce into distinct chemoherm structures were encountered elsewhere along the eroded transform-parallel scarp. The carbon isotopic composition of methane bubbles flowing vigorously from the gas vent (-53.6±0.8‰ PDB) is comparable to methane found in sediment cores taken within the CBCs distributed along the scarp (-51.9±8.1‰ PDB). However, the δ13C value of the CO 2 in the vent gas (+12.4±1.1‰ PDB) is very distinct from those for dissolved inorganic carbon (DIC) (-35.8‰ to -2.9‰ PDB) found elsewhere along the scarp, including underneath CBCs. The δ13C values of the carbonate-rich sediments and rocks exposed on the seafloor today also span an unusually large range (-40.9‰ to +12.9‰ PDB) and suggest two distinct populations of authigenic carbonate materials were sampled. Unconsolidated sediments and some carbonate rocks, which have lithologic evidence for near-seafloor formation, have negative δ13C values, while carbonate rocks that clearly formed in the subsurface have positive δ13C values (up to +23.0‰) close to that measured for CO 2 in the vent gas. There appears to be two carbon sources for the authigenic carbonates: (1) deeply-sourced, isotopically heavy CO 2 (˜+12‰); and (2) isotopically light DIC derived from local anaerobic oxidation of methane at the sulfate-methane interface in the shallow subsurface. Addition of isotopically light methane-derived carbon at the seafloor may completely mask the isotopically heavy CO 2 signature (+12.4‰) in the underlying sediments. Thus, the authigenic carbonates may have formed from the same methane- and carbon dioxide-bearing fluid, but under different migration and alteration conditions, depending on how it migrated through the sediment column.
NASA Astrophysics Data System (ADS)
Peltzer, Edward T.; Hayward, Nancy A.
Total organic carbon (TOC) was analyzed on four transects along 140°W in 1992 using a high temperature combustion/discrete injection (HTC/DI) analyzer. For two of the transects, the analyses were conducted on-board ship. Mixed-layer concentrations of organic carbon varied from about 80 μM C at either end of the transect (12°N and 12°S) to about 60 μM C at the equator. Total organic carbon concentrations decreased rapidly below the mixed-layer to about 38-40 μM C at 1000 m across the transect. Little variation was observed below this depth; deep water concentrations below 2000m were virtually monotonic at about 36 μM C. Repeat measurements made on subsequent cruises consistently found the same concentrations at 1000 m or deeper, but substantial variations were observed in the mixed-layer and the upper water column above 400 m depth. Linear mixing models of total organic carbon versus σθ exhibited zones of organic carbon formation and consumption. TOC was found to be inversely correlated with apparent oxygen utilization (AOU) in the region between the mixed-layer and the oxygen minimum. In the mixed-layer, TOC concentrations varied seasonally. Part of the variations in TOC at the equator was driven by changes in the upwelling rate in response to variations in physical forcing related to an El Niño and to the passage of tropical instability waves. TOC export fluxes, calculated from simple box models, averaged 8±4 mmol C m -2day -1 at the equator and also varied seasonally. These export fluxes account for 50-75% of the total carbon deficit and are consistent with other estimates and model predictions.
Reduction of Plutonium in Acidic Solutions by Mesoporous Carbons
Parsons-Moss, Tashi; Jones, Stephen; Wang, Jinxiu; ...
2015-12-19
Batch contact experiments with several porous carbon materials showed that carbon solids spontaneously reduce the oxidation state of plutonium in 1-1.5 M acid solutions, without significant adsorption. The final oxidation state and rate of Pu reduction varies with the solution matrix, and also depends on the surface chemistry and surface area of the carbon. It was demonstrated that acidic Pu(VI) solutions can be reduced to Pu(III) by passing through a column of porous carbon particles, offering an easy alternative to electrolysis with a potentiostat.
NASA Astrophysics Data System (ADS)
Obland, Michael D.; Campbell, Joel; Kooi, Susan; Fan, Tai-Fang; Carrion, William; Hicks, Jonathan; Lin, Bing; Nehrir, Amin R.; Browell, Edward V.; Meadows, Byron; Davis, Kenneth J.
2018-04-01
This work describes advances in critical lidar technologies and techniques developed as part of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons CarbonHawk Experiment Simulator system for measuring atmospheric column carbon dioxide (CO2) mixing ratios. This work provides an overview of these technologies and results from recent test flights during the NASA Atmospheric Carbon and Transport - America (ACT-America) Earth Venture Suborbital summer 2016 flight campaign.
Poikāne, Rita; Carstensen, Jacob; Dahllöf, Ingela; Aigars, Juris
2005-07-01
The dynamics (fate) of trace metals in suspended particulate matter within the Gulf of Riga has not yet been adequately addressed in the scientific literature. Therefore, during a two year period (2001-2002) samples of suspended particulate matter and surface sediments for trace metal analysis were collected in the Gulf of Riga and the Daugava river, and these data were combined with background information from the national marine monitoring program in Latvia. This paper presents a descriptive study of solid phase trace metals (aluminium, iron, cadmium, chromium, copper, manganese, nickel, lead and zinc) dynamics and their spatial distribution within the Gulf of Riga based on Principal Component Analysis and Cluster analysis. Fluvial particulate matter and particulate Al, Fe, Cr and Ni were brought into the Gulf of Riga mainly during spring flood and thereafter quickly diluted by the water masses of the Gulf of Riga. Fine-grained suspended material and particulate Al and Fe were well mixed and evenly distributed through all deepwater basins of the Gulf of Riga. The increase of particulate Mn below the thermocline in August and a strong negative correlation with dissolved oxygen concentrations suggested that particulate Mn in the water column and the sediments were regulated mainly by changing oxic-anoxic conditions in the sediments of the Gulf of Riga. The observed correlation between Al and Fe in the water column is in contrast to that observed in the nepheloid layer where Fe correlated with Mn, obviously due to fast diagenetic processes on sediment surface. The observed negative correlation of Cd and Zn with total carbon and total nitrogen in the nepheloid layer might indicate different sedimentation mechanisms of these elements, however, this assumption is still inconclusive.
Upan, Jantima; Reanpang, Preeyaporn; Chailapakul, Orawon; Jakmunee, Jaroon
2016-01-01
Flow injection amperometric (FI-Amp) sensor was developed for sensitive and selective determination of hydroquinone. A simple screen printed carbon electrode (SPCE) was modified with various nanomaterials for improvement of sensitivity on the determination of quinone. As a result, the appropriate sensitivity is obtained from the SPCE modified with carbon nanotube (CNT) which indicated that CNT contributed to the transfer of electron to quinone. The reproducibility (n=9) and repeatability (n=111) of SPCE-CNT were obtained at 4.4% and 3.6%RSD, respectively. The SPCE-CNT electrode and enzymatic column were incorporated to the FI-Amp system to determine hydroquinone. Laccase was immobilized on silica gel using a cross-linking method by glutaraldehyde modification and then packed in the column. The laccase column has high efficiency for catalytic oxidation of hydroquinone to quinone, which further detects by amperometric detection. Parameters affecting response of the proposed sensor, i.e., pH, ionic strength, and temperature have been optimized. The proposed system provided a wide linear range between 1 and 50 µM with detection limit of 0.1 µM. Satisfactory recoveries in the range of 91.2-103.8% were obtained for the analysis of water sample. Copyright © 2015 Elsevier B.V. All rights reserved.
Patange Subba Rao, Sheethal Prasad; Lewis, James; Haddad, Ziad; Paringe, Vishal; Mohanty, Khitish
2014-10-01
The aim of the study was to evaluate inter-observer reliability and intra-observer reproducibility between the three-column classification and Schatzker classification systems using 2D and 3D CT models. Fifty-two consecutive patients with tibial plateau fractures were evaluated by five orthopaedic surgeons. All patients were classified into Schatzker and three-column classification systems using x-rays and 2D and 3D CT images. The inter-observer reliability was evaluated in the first round and the intra-observer reliability was determined during the second round 2 weeks later. The average intra-observer reproducibility for the three-column classification was from substantial to excellent in all sub classifications, as compared with Schatzker classification. The inter-observer kappa values increased from substantial to excellent in three-column classification and to moderate in Schatzker classification The average values for three-column classification for all the categories are as follows: (I-III) k2D = 0.718, 95% CI 0.554-0.864, p < 0.0001 and average 3D = 0.874, 95% CI 0.754-0.890, p < 0.0001. For Schatzker classification system, the average values for all six categories are as follows: (I-VI) k2D = 0.536, 95% CI 0.365-0.685, p < 0.0001 and average k3D = 0.552 95% CI 0.405-0.700, p < 0.0001. The values are statistically significant. Statistically significant inter-observer values in both rounds were noted with the three-column classification, making it statistically an excellent agreement. The intra-observer reproducibility for the three-column classification improved as compared with the Schatzker classification. The three-column classification seems to be an effective way to characterise and classify fractures of tibial plateau.
Seasonal controls of the short term variability of pCO2 at the Scotian Shelf
NASA Astrophysics Data System (ADS)
Thomas, H.; Craig, S.; Greenan, B. J. W.; Burt, W.; Herndl, G. J.; Higginson, S.; Salt, L.; Shadwick, E. H.; Urrego-Blanco, J.
2012-04-01
Much of the surface ocean carbon cycle variability can be attributed to the availability of sunlight, through processes such as heat fluxes or photosynthesis, which regulate the ocean carbon cycle over a wide range of time scales. The critical processes occurring on timescales of a day or less, however, have undergone few investigations, and most of those have been limited to a time span of several days to months, or exceptionally, for longer periods. Optical methods have helped to infer short-term biological variability, however lacking corresponding investigations of oceanic CO2 system. Here, we employ high-frequency CO2 system and optical observations covering the full seasonal cycle on the Scotian Shelf, Northwestern Atlantic Ocean, in order to unravel daily periodicity of the surface ocean carbon cycle and its effects on annual budgets. We show that significant daily periodicity occurs only if the water column is sufficiently stable as observed during seasonal warming. During that time biological CO2 drawdown, or net community production (NCP), is delayed for several hours relative to the daylight cycle due the daily build-up of essential Chlorophyll a, to cell physiology and to grazing effects, all restricting or hindering photosynthesis in the early morning hours. NCP collapses in summer by more than 90%, when the mixed layer depth reaches the seasonal minimum, which eventually makes the observed daily periodicity of the CO2 system vanish.
Huebner, H J; Mayura, K; Pallaroni, L; Ake, C L; Lemke, S L; Herrera, P; Phillips, T D
2000-01-01
Patulin, a heterocyclic lactone produced by various species of Penicillium and Aspergillus fungi, is often detected in apple juices and ciders. Previous research has shown the effectiveness of granular activated carbon for reducing patulin levels in aqueous solutions, apple juices, and ciders. In this study, ultrafine activated carbon was bonded onto granular quartz to produce a composite carbon adsorbent (CCA) with a high carbonaceous surface area, good bed porosity, and increased bulk density. CCA in fixed-bed adsorption columns was evaluated for efficacy in reducing patulin levels from aqueous solutions and apple juice. Columns containing 1.0, 0.5, and 0.25 g of CCA were continuously loaded with a patulin solution (10 microg/ml) and eluted at a flow rate of 1 ml/min. Results indicated that 50% breakthrough capacities for patulin on 1.0-, 0.5-, and 0.25-g CCA columns were 137.5, 38.5, and 19.9 microg, respectively. The effectiveness of CCA to adsorb patulin and prevent toxic effects was confirmed in vitro using adult hydra in culture. Hydra were sensitive to the effects of patulin, with a minimal affective concentration equal to 0.7 microg/ml; CCA adsorption prevented patulin toxicity until 76% breakthrough capacity was achieved. Fixed-bed adsorption with 1.0 g of CCA was also effective in reducing patulin concentrations (20 microg/liter) in a naturally contaminated apple juice, and breakthrough capacities were shown to increase with temperature. Additionally, CCA offered a higher initial breakthrough capacity than pelleted activated carbon when compared in parallel experiments. This study suggests that CCA used in fixed-bed adsorption systems effectively reduced patulin levels in both aqueous solutions and naturally contaminated apple juice; however, the appearance and taste of apple juice may be affected by the treatment process.
Ballasting by cryogenic gypsum enhances carbon export in a Phaeocystis under-ice bloom.
Wollenburg, J E; Katlein, C; Nehrke, G; Nöthig, E-M; Matthiessen, J; Wolf-Gladrow, D A; Nikolopoulos, A; Gázquez-Sanchez, F; Rossmann, L; Assmy, P; Babin, M; Bruyant, F; Beaulieu, M; Dybwad, C; Peeken, I
2018-05-16
Mineral ballasting enhances carbon export from the surface to the deep ocean; however, little is known about the role of this process in the ice-covered Arctic Ocean. Here, we propose gypsum ballasting as a new mechanism that likely facilitated enhanced vertical carbon export from an under-ice phytoplankton bloom dominated by the haptophyte Phaeocystis. In the spring 2015 abundant gypsum crystals embedded in Phaeocystis aggregates were collected throughout the water column and on the sea floor at a depth below 2 km. Model predictions supported by isotopic signatures indicate that 2.7 g m -2 gypsum crystals were formed in sea ice at temperatures below -6.5 °C and released into the water column during sea ice melting. Our finding indicates that sea ice derived (cryogenic) gypsum is stable enough to survive export to the deep ocean and serves as an effective ballast mineral. Our findings also suggest a potentially important and previously unknown role of Phaeocystis in deep carbon export due to cryogenic gypsum ballasting. The rapidly changing Arctic sea ice regime might favour this gypsum gravity chute with potential consequences for carbon export and food partitioning between pelagic and benthic ecosystems.
Lin, Wenlin Yvonne; Heng, Kim Soon; Nguyen, Minh Quan; Ho, Jin Rui Ivan; Mohamed Noh, Omar Ahmad Bin; Zhou, Xue Dong; Liu, Alec; Ren, Fei; Wang, Jing-Yuan
2017-04-01
Batch and column tests were conducted on untreated incineration bottom ash (IBA) samples from two incineration plants in Singapore, using seawater as the leachant. The main objective of this study was to investigate the change in the leaching behavior of certain elements (i.e. As, Cd, Cr, Cu, Ni, Pb, Sb, Se and Zn) when IBA comes into contact with seawater. Such an investigation using seawater as leachant was not commonly carried out when investigating leaching behavior in IBA. The leaching tests were then carried out on the same IBA samples using DI water, as a comparison. Lower level of leaching was observed for Pb and Zn when seawater was used as the leachant. Cr and Sb showed significant cumulative release at Liquid-to-Solids (L/S) ratio 5 in the seawater column leaching. The influence of Dissolved Organic Carbon (DOC) on Cu leaching seems to decrease after L/S 2 when using seawater in the column test. Although the leaching behavior of IBA was affected when seawater was used, for the column test, there was no significant difference during the initial release when compared to DI water. The initial L/S fractions collected were important as the low L/S ratios represent the pore water concentration and the maximum output in an actual application. The results from this study would be useful for the future study on using IBA in marine applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baylon, Jorge L.; Stremme, Wolfgang; Grutter, Michel; Hase, Frank; Blumenstock, Thomas
2017-07-01
In this investigation we analyze two common optical configurations to retrieve CO2 total column amounts from solar absorption infrared spectra. The noise errors using either a KBr or a CaF2 beam splitter, a main component of a Fourier transform infrared spectrometer (FTIR), are quantified in order to assess the relative precisions of the measurements. The configuration using a CaF2 beam splitter, as deployed by the instruments which contribute to the Total Carbon Column Observing Network (TCCON), shows a slightly better precision. However, we show that the precisions in XCO2 ( = 0.2095 ṡ Total Column CO2Total Column O2) retrieved from > 96 % of the spectra measured with a KBr beam splitter fall well below 0.2 %. A bias in XCO2 (KBr - CaF2) of +0.56 ± 0.25 ppm was found when using an independent data set as reference. This value, which corresponds to +0.14 ± 0.064 %, is slightly larger than the mean precisions obtained. A 3-year XCO2 time series from FTIR measurements at the high-altitude site of Altzomoni in central Mexico presents clear annual and diurnal cycles, and a trend of +2.2 ppm yr-1 could be determined.
NASA Astrophysics Data System (ADS)
Patra, P. K.; Crisp, D.; W Kaiser, J.; Wunch, D.; Saeki, T.; Ichii, K.; Sekiya, T.; Wenneberg, P.; Griffith, D. W. T.; Feist, D. G.; Pollard, D.; Velazco, V. A.; De Maziere, M.; Sha, M. K.; Roehl, C. M.; Chatterjee, A.
2016-12-01
Uncertainties in estimates of regional fluxes of carbon dioxide (CO2) and other greenhouse gases derived from direct inventory methods or inferred from atmospheric observations has hindered the implementation of effective policy for reduction of emissions from anthropogenic activity. To improve the resolution and coverage of the atmospheric CO2 measurements for reducing CO2 flux uncertainty, NASA launched the OCO-2 satellite in 2014, and OCO-2 has been routinely returning almost one million soundings each day over the sunlit hemisphere. A powerful El Niño event in 2015-2016 - the third most intense since the 1950s - has exerted a large impact on the Earth's natural climate system. Here, we analyze column-averaged CO2 dry-air mole fraction (XCO2) observations during the period from September 2014 to February 2016 (18 months) together with ground-based remote sensing and in situ observations. From the differences between observations and simulations from an atmospheric chemistry-transport model, we estimated, that relative to the mean annual fluxes for 2011-2013, this El Niño has contributed to an excess CO2 flux from the Earth's surface (land+ocean) to the atmosphere in the range of 2.24-3.32 PgC (1 Pg = 1015 g). This anomalous CO2 flux results primarily from reduction in vegetation uptake due to drought and biomass burning. Improvements in modeling atmospheric-CO2 are required to attribute CO2 source changes at regional scales.
NASA Astrophysics Data System (ADS)
Nuttin, Laurence; Maccali, Jenny; Hillaire-Marcel, Claude
2015-05-01
A ∼9 m-long sediment core spanning the last ∼37 ka has been raised from the lower Labrador continental slope, off the Hudson Strait shelf edge. It has been analyzed for its U, Th and Pa isotope contents, along with current sedimentological parameters, as a means to retrieve information about sedimentological changes in response to northeastern Laurentide Ice Sheet (LIS) margin instabilities. The sequence yielded a high-resolution record of subglacial detrital carbonate pulses from Hudson Strait assigned to "Heinrich events" H2 and H1, whereas H0 was missing. Large variations in bulk sediment U- and Th-contents as well as in 234U/238U activity ratio are observed throughout the sequence, leading to large uncertainties when calculating excesses in 231Pa and 230Th (231Paxs and 230Thxs) over their supported and in-growth fractions (i.e., inherited from detrital minerals and produced from authigenic and diagenetic U-uptake). In particular, 234U excesses or deficits vs 238U (-115‰ < δ234U < +126‰) are observed throughout the sequence, suggesting occasional U-uptake from the water column and/or some late diagenetic mobility along discrete redox gradients, despite the overall low and little variable organic carbon content (0.3 ± 0.1%) observed. The above uncertainties in 231Paxs and 230Thxs estimates and the large variability in geochemical and sedimentary fluxes off the northeastern LIS margin, lead us to downgrade the potential paleoceanographic information yielded by these isotopes in such a setting. Nonetheless, the H2 and H1 layers are highlighted by very low initial excesses in both 230Thxs and 231Paxs, indicating their extremely fast deposition. Throughout most of the sedimentary sequence, the calculated initial 230Thxs fluxes are nearly in balance with 230Th production in the overlying water column. Exceptions are the H2 layer, an interval succeeding H1, and the post-glacial sediment. The estimated initial (231Paxs/230Thxs) ratios are generally lower than their production rate in the water column (i.e., 0.092), indicating nearly continuous preferential export of 231Paxs over the last ∼37 cal ka BP, thus the persistence of some deep currents throughout the interval.
The geochemistry of methane in Lake Fryxell, an amictic, permanently ice-covered, antarctic lake
Smith, R.L.; Miller, L.G.; Howes, B.L.
1993-01-01
The abundance and distribution of dissolved CH4 were determined from 1987-1990 in Lake Fryxell, Antarctica, an amictic, permanently ice-covered lake in which solute movement is controlled by diffusion. CH4 concentrations were < 1 ??M in the upper oxic waters, but increased below the oxycline to 936 ??M at 18 m. Sediment CH4 was 1100 ??mol (1 sed)-1 in the 0-5 cm zone. Upward flux from the sediment was the source of the CH4, NH4 +, and DOC in the water column; CH4 was 27% of the DOC+CH4 carbon at 18 m. Incubations with surficial sediments indicated that H14CO3 - reduction was 0.4 ??mol (1 sed)-1 day-1 or 4?? the rate of acetate fermentation to CH4. There was no measurable CH4 production in the water column. However, depth profiles of CH4, NH4, and DIC normalized to bottom water concentrations demonstrated that a significant CH4 sink was evident in the anoxic, sulfate-containing zone of the water column (10-18 m). The ??13CH4 in this zone decreased from -72 % at 18 m to -76% at 12 m, indicating that the consumption mechanism did not result in an isotopic enrichment of 13CH4. In contrast, ??13CH4 increased to -55 % at 9 m due to aerobic oxidation, though this was a minor aspect of the CH4 cycle. The water column CH4 profile was modeled by coupling diffusive flux with a first order consumption term; the best-fit rate constant for anaerobic CH4 consumption was 0.012 yr-1. On a total carbon basis, CH4 consumption in the anoxic water column exerted a major effect on the flux of carbonaceous material from the underlying sediments and serves to exemplify the importance of CH4 to carbon cycling in Lake Fryxell. ?? 1993 Kluwer Academic Publishers.
NASA Astrophysics Data System (ADS)
Mari, X.; Guinot, B. P.; Thuoc, C. V.; Brune, J.; Lefebvre, J. P.; Raimbault, P.; Niggemann, J.; Dittmar, T.
2016-02-01
Black Carbon (BC) is an aerosol emitted during biomass burning and fossil fuel combustion. The atmospheric lifetime of Black Carbon (BC) ranges from a few days in rainy climates up to one month in dry regions, and on a global scale wet deposition of atmospheric BC accounts for about 80% of the BC input to the ocean. The rain-mediated input of BC to the ocean was studied in a coastal site located in a regional hotspot of atmospheric BC concentration, North Vietnam. We monitored changes in atmospheric and marine BC during a 24-h cycle impacted by a short and heavy rainfall event. During the rainfall event, atmospheric BC concentration decreased by a factor of 8 (i.e. from 5230 to 660 µg BC m-3). This cleaning of the air column was immediately followed by a significant increase (by a factor of 2 to 4) of particulate BC (PBC) and POC concentrations in the surface microlayer (SML) and at 1.5 m depth. In the SML, this event was also followed by a significant increase of DOC and dissolved BC (DBC) concentrations. Interestingly, the concentration of DOC decreased by >10% after the rainfall at 1.5 m depth, suggesting an adsorption of DOC onto sinking PBC. Concomitantly with the increase in particulate BC, nutrient concentrations increased by a factor of 2 in the SML, while no change was observed in the underlying water column. After the rainfall, the particle size spectra, measured along the water column with a LISST (Laser In-Situ Scattering and Transmissometry probe), changed in that the concentration of small particles (<5 µm) decreased and the concentration of large particles (>100 µm) increased. This alteration of the particle size spectra was restricted to a thin layer of about 20 cm thickness, probably corresponding to a BC-enriched layer adsorbing DOC and small particles, and stimulating aggregation during sinking from the surface to deeper water layers. The concentrations of POC, DOC, PBC, DBC and nutrients reached pre-rainfall levels 4 hours after the event.
Fate of 90Sr and U(VI) in Dounreay sediments following saline inundation and erosion.
Eagling, Jane; Worsfold, Paul J; Blake, William H; Keith-Roach, Miranda J
2013-08-01
There is concern that sea level rise associated with projected climate change will lead to the inundation, flooding and erosion of soils and sediments contaminated with radionuclides at coastal nuclear sites, such as Dounreay (UK), with seawater. Here batch and column experiments were designed to simulate these scenarios and sequential extractions were used to identify the key radionuclide solid phase associations. Strontium was exchangeable and was mobilised rapidly by ion exchange with seawater Mg(2+) in both batch and column experiments. In contrast, U was more strongly bound to the sediments and mobilisation was initially limited by the influence of the sediment on the pH of the water. Release was only observed when the pH increased above 6.9, suggesting that the formation of soluble U(VI)-carbonate species was important. Under dynamic flow conditions, long term release was significant (47%), but controlled by slow desorption kinetics from a range of binding sites. Copyright © 2013 Elsevier Ltd. All rights reserved.
Using RSSCTs to predict field-scale GAC control of DBP formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummings, L.; Summers, R.S.
1994-06-01
The primary objective of this study was to evaluate the use of the rapid small-scale column test (RSSCT) for predicting the control of disinfection by-product (DBP) formation by granular activated carbon (GAC). DBP formation was assessed by using a simulated distribution system (SDS) test and measuring trihalomethanes and total organic halide in the influent and effluent of the laboratory- and field-scale columns. It was observed that for the water studied, the RSSCTs effectively predicted the nonabsorbable fraction, time to 50 percent breakthrough, and the shape of the breakthrough curve for DBP formation. The advantage of RSSCTs is that conclusions aboutmore » the amenability of a GAC for DBP control can be reached in a short time period instead of at the end of a long-term pilot study. The authors recommend that similar studies be conducted with a range of source waters because the effectiveness of GAC is site-specific.« less
Search for correlated UV and x ray absorption of NGC 3516
NASA Technical Reports Server (NTRS)
Martin, Christopher; Halpern, Jules P.; Kolman, Michiel
1991-01-01
NGC 3516, a low-luminosity Seyfert galaxy, is one of a small fraction of Seyfert galaxies that exhibit broad absorption in a resonance line. In order to determine whether the UV and x ray absorption in NGC 3516 are related, 5 IUE observations were obtained, quasi-simultaneously with 4 Ginga observations. The results are presented and discussed. The following subject areas are covered: short-term UV variability; emission lines; galactic absorption lines; the C IV, N V, and Si IV absorption features; lower limit on the carbon column density; estimate of the distance from the absorber to the continuum source; variability in the continuum and absorption; a comparison with BAL QSO's; and the x ray-UV connection.
NASA Astrophysics Data System (ADS)
Graeber, Daniel; Poulsen, Jane R.; Rasmussen, Jes J.; Kronvang, Brian; Zak, Dominik; Kamjunke, Norbert
2016-04-01
In the recent years it has become clear that the largest part of the terrestrial dissolved organic carbon (DOC) pool is removed on the way from the land to the ocean. Yet it is still unclear, where in the freshwater systems terrestrial DOC is actually taken up, and for streams DOC uptake was assumed to happen mostly at the stream bottom (benthic zone). However, a recent monitoring study implies that water column but not benthic bacteria are strongly affected by the amount and composition of DOM entering streams from the terrestrial zone. We conducted an experiment to compare the reaction of the bacterial production and heterotrophic uptake in the water column and the benthic zone to a standardized source of terrestrial DOC (leaf leachate from Beech litter). In detail, we sampled gravel and water from eight streams with a gradient in stream size and land use. For each stream four different treatments were incubated at 16°C for three days and each stream: filtered stream water with gravel stones (representing benthic zone bacteria) or unfiltered stream water (representing water column bacteria), both either with (n = 5) or, without (n = 3) leaf leachate. We found that the bacterial uptake of leaf litter DOC was higher for the benthic zone likely due to the higher bacterial production compared to the water column. In contrast, the bacterial production per amount of leaf leachate DOC taken up was significantly higher for the bacteria in the water column than for those in the benthic zone. This clearly indicates a higher growth efficiency with the leaf leachate DOC for the bacteria in the water column than in the benthic zone. We found a high variability for the growth efficiency in the water column, which was best explained by a negative correlation of the DOC demand with stream width (R² = 0.86, linear correlation of log-transformed data). This was not the case for the benthic zone bacteria (R² = 0.02). This implies that water column bacteria in very small streams are more dependent on terrestrial DOC sources for their growth than those in larger streams. Based on this experiment and literature data we hypothesize that: I) The response of the bacterial production to terrestrial DOC in the water column is stronger than for the benthic zone and is decreasing with increasing stream size, likely due to the increase of autochthonous DOC production within the stream. II) Independent of stream size there is only a small reaction to terrestrial DOC for the bacterial production in the benthic zone, either due to internal DOC production or a stronger dependency on particulate organic carbon. We propose that this terrestrial DOC dependency concept is generally applicable, however, its potential underlying mechanisms and concept predictions need to be tested further for other stream and river ecosystems.
NASA Astrophysics Data System (ADS)
Huber, Christian; Druhan, Jennifer L.; Fantle, Matthew S.
2017-11-01
Diagenetic reactions in marine sediments, such as the recrystallization of carbonates, can impact the accuracy of paleo-environmental and paleo-climatic reconstructions by geochemical proxies. The extent to which the recrystallization of carbonates affects the chemistry of sedimentary archives depends on the reaction rate, extent of isotopic disequilibrium, and duration of reaction. The reaction rate, which is obviously critical, can be constrained by the elemental and isotopic compositions of pore fluids. Such constraints are affected by assumptions regarding the temperature in the sedimentary column relative to the temperature of formation, the burial rate, pore fluid advection, the composition of the sediments (carbonate-rich versus siliciclastic), and the porosity of the sediment column. In this study, we use a steady-state analytical solution to the diagenetic equations to constrain depth-dependent reaction rates (and extents of recrystallization) based on the Ca isotopic compositions of pore fluids in sedimentary columns at multiple ocean drilling sites (Sites 807, 984, 1170, and 1171), which encompass a diverse range of sedimentary compositions and conditions. We find that carbonates in siliciclastic sediments are generally less altered by diagenesis than their carbonate-rich counterparts. The discrepancy in recrystallization rates between siliciclastic and carbonate-rich sedimentary sections is, however, significantly smaller than previously estimated, suggesting that siliciclastic archives are not immune to diagenetic effects. While we find that diagenesis can decouple contemporaneous proxies of sea surface temperature (Mg/Ca and δ18O), our calculations also reveal that δ18O-based temperature estimates are more robust in siliciclastic sections relative to carbonate-rich sections. Sensitivity tests of the calculated extent of recrystallization suggest that uncertainties in porosity and burial rate are generally the greatest sources of error to proxy reconstruction from diagenetically altered sediments. The conclusions drawn using the analytical solution are benchmarked against a depth-dependent, forward numerical model using the CrunchFlow software (Steefel et al., 2015); ultimately, this comparison demonstrates that the assumptions necessary in deriving the analytical solutions have a relatively minor impact on the resulting conclusions.
NASA Technical Reports Server (NTRS)
Cordiner, M. A.; Charnley, S. B.; Kisiel, Z.; McGuire, B. A.; Kuan, Y. -J.
2017-01-01
The 100-meter Robert C. Byrd Green Bank Telescope K-band (KFPA) receiver was used to perform a high-sensitivity search for rotational emission lines from complex organic molecules in the cold interstellar medium toward TMC-1 (Taurus Molecular Cloud - cyanopolyyne peak), focussing on the identification of new carbon-chain-bearing species as well as molecules of possible prebiotic relevance. We report a detection of the carbon-chain oxide species HC7O and derive a column density of (7.8 plus or minus 0.9) times 10 (sup 11) per square centimeter. This species is theorized to form as a result of associative electron detachment reactions between oxygen atoms and C7H minus, and/or reaction of C6H2 plus with CO (followed by dissociative electron recombination). Upper limits are given for the related HC6O, C6O, and C7O molecules. In addition, we obtained the fi�rst detections of emission from individual (sup 13) C isotopologues of HC7N, and derive abundance ratios HC7N/HCCCC (sup 13) CCCN equal to 110 plus or minus 16 and HC7N/HCCCC (sup 13) CCCN equal to 96 plus or minus 11, indicative of significant (sup 13) C depletion in this species relative to the local interstellar elemental (sup 12) C divided by (sup 13) C ratio of 60-70. The observed spectral region covered two transitions of HC11N, but emission from this species was not detected, and the corresponding column density upper limit is 7.4 times 10 (sup 10) per square centimeter (at 95 percent confidence). This is significantly lower than the value of 2.8 times 10 (sup 11) per square centimeter previously claimed by Bell et al. and con�rms the recent nondetection of HC11N in TMC-1 by Loomis et al. Upper limits were also obtained for the column densities of malononitrile and the nitrogen heterocycles quinoline, isoquinoline, and pyrimidine.
NASA Astrophysics Data System (ADS)
Taylor, Thomas E.; O'Dell, Christopher W.; Frankenberg, Christian; Partain, Philip T.; Cronk, Heather Q.; Savtchenko, Andrey; Nelson, Robert R.; Rosenthal, Emily J.; Chang, Albert Y.; Fisher, Brenden; Osterman, Gregory B.; Pollock, Randy H.; Crisp, David; Eldering, Annmarie; Gunson, Michael R.
2016-03-01
The objective of the National Aeronautics and Space Administration's (NASA) Orbiting Carbon Observatory-2 (OCO-2) mission is to retrieve the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2) from satellite measurements of reflected sunlight in the near-infrared. These estimates can be biased by clouds and aerosols, i.e., contamination, within the instrument's field of view. Screening of the most contaminated soundings minimizes unnecessary calls to the computationally expensive Level 2 (L2) XCO2 retrieval algorithm. Hence, robust cloud screening methods have been an important focus of the OCO-2 algorithm development team. Two distinct, computationally inexpensive cloud screening algorithms have been developed for this application. The A-Band Preprocessor (ABP) retrieves the surface pressure using measurements in the 0.76 µm O2 A band, neglecting scattering by clouds and aerosols, which introduce photon path-length differences that can cause large deviations between the expected and retrieved surface pressure. The Iterative Maximum A Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) retrieves independent estimates of the CO2 and H2O column abundances using observations taken at 1.61 µm (weak CO2 band) and 2.06 µm (strong CO2 band), while neglecting atmospheric scattering. The CO2 and H2O column abundances retrieved in these two spectral regions differ significantly in the presence of cloud and scattering aerosols. The combination of these two algorithms, which are sensitive to different features in the spectra, provides the basis for cloud screening of the OCO-2 data set.To validate the OCO-2 cloud screening approach, collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, were compared to results from the two OCO-2 cloud screening algorithms. With tuning of algorithmic threshold parameters that allows for processing of ≃ 20-25 % of all OCO-2 soundings, agreement between the OCO-2 and MODIS cloud screening methods is found to be ≃ 85 % over four 16-day orbit repeat cycles in both the winter (December) and spring (April-May) for OCO-2 nadir-land, glint-land and glint-water observations.No major, systematic, spatial or temporal dependencies were found, although slight differences in the seasonal data sets do exist and validation is more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice and have complex topography. To further analyze the performance of the cloud screening algorithms, an initial comparison of OCO-2 observations was made to collocated measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). These comparisons highlight the strength of the OCO-2 cloud screening algorithms in identifying high, thin clouds but suggest some difficulty in identifying some clouds near the surface, even when the optical thicknesses are greater than 1.
NASA Astrophysics Data System (ADS)
Taylor, T. E.; O'Dell, C. W.; Frankenberg, C.; Partain, P.; Cronk, H. Q.; Savtchenko, A.; Nelson, R. R.; Rosenthal, E. J.; Chang, A. Y.; Fisher, B.; Osterman, G.; Pollock, R. H.; Crisp, D.; Eldering, A.; Gunson, M. R.
2015-12-01
The objective of the National Aeronautics and Space Administration's (NASA) Orbiting Carbon Observatory-2 (OCO-2) mission is to retrieve the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2) from satellite measurements of reflected sunlight in the near-infrared. These estimates can be biased by clouds and aerosols within the instrument's field of view (FOV). Screening of the most contaminated soundings minimizes unnecessary calls to the computationally expensive Level 2 (L2) XCO2 retrieval algorithm. Hence, robust cloud screening methods have been an important focus of the OCO-2 algorithm development team. Two distinct, computationally inexpensive cloud screening algorithms have been developed for this application. The A-Band Preprocessor (ABP) retrieves the surface pressure using measurements in the 0.76 μm O2 A-band, neglecting scattering by clouds and aerosols, which introduce photon path-length (PPL) differences that can cause large deviations between the expected and retrieved surface pressure. The Iterative Maximum A-Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) retrieves independent estimates of the CO2 and H2O column abundances using observations taken at 1.61 μm (weak CO2 band) and 2.06 μm (strong CO2 band), while neglecting atmospheric scattering. The CO2 and H2O column abundances retrieved in these two spectral regions differ significantly in the presence of cloud and scattering aerosols. The combination of these two algorithms, which key off of different features in the spectra, provides the basis for cloud screening of the OCO-2 data set. To validate the OCO-2 cloud screening approach, collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, were compared to results from the two OCO-2 cloud screening algorithms. With tuning to allow throughputs of ≃ 30 %, agreement between the OCO-2 and MODIS cloud screening methods is found to be ≃ 85 % over four 16-day orbit repeat cycles in both the winter (December) and spring (April-May) for OCO-2 nadir-land, glint-land and glint-water observations. No major, systematic, spatial or temporal dependencies were found, although slight differences in the seasonal data sets do exist and validation is more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice and have complex topography. To further analyze the performance of the cloud screening algorithms, an initial comparison of OCO-2 observations was made to collocated measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). These comparisons highlight the strength of the OCO-2 cloud screening algorithms in identifying high, thin clouds but suggest some difficulty in identifying some clouds near the surface, even when the optical thicknesses are greater than 1.
NASA Astrophysics Data System (ADS)
Marcinowski, Jakub; Różycki, Zbigniew
2016-03-01
The paperdeals with tubular, cast-iron columns which should be reinforced due to the planned new structural function of these elements. According to the requirements of the monument conservator the general appearance of columns should not be altered significantly. Reinforcement with an external, thin coating (sleeve or jacket) made of composite (carbon fibre reinforced polymer - CFRP) was proposed. Details of the proposedtechniquewerepresented. The reinforcementeffect was verifiedin destructivetestsperformed on two columns without reinforcement and the two other columns reinforced with the chosentechnique. Due to the expected very high load capacity of the axially loaded column, the test rig was designed in such a manner that the force could be applied on big eccentricity. For this purpose a specialbase was prepared(comp. Fig. 1). Destructivetests have confirmed the high effectiveness of the adopted strengthening technique.
USDA-ARS?s Scientific Manuscript database
Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two 14C-labeled contaminants, the hydrophobic chlordecone (CLD) and the readily water-soluble sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). Th...
A number of mathematical models have been developed to predict activated carbon column performance using single-solute isotherm data as inputs. Many assumptions are built into these models to account for kinetics of adsorption and competition for adsorption sites. This work...
He, Ruo; Wooller, Matthew J; Pohlman, John W; Quensen, John; Tiedje, James M; Leigh, Mary Beth
2012-01-01
Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska's interior. The water column CH4 oxidation potential for these shallow (∼2 m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes. PMID:22592821
He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth
2012-01-01
Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska's interior. The water column CH4 oxidation potential for these shallow (~2m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes.
Wadhwa, Sham Kumar; Tuzen, Mustafa; Gul Kazi, Tasneem; Soylak, Mustafa
2013-11-15
Vanadium(V) ions as 8-hydroxyquinoline chelates were loaded on multiwalled carbon nanotubes (MWNTs) in a mini chromatographic column. Vanadium was determined by graphite furnace atomic absorption spectrometry (GFAAS). Various analytical parameters including pH of the working solutions, amounts of 8-hydroxyquinoline, eluent type, sample volume, and flow rates were investigated. The effects of matrix ions and some transition metals were also studied. The column can be reused 250 times without any loss in its sorption properties. The preconcentration factor was found as 100. Detection limit (3 s) and limit of quantification (10 s) for the vanadium in the optimal conditions were observed to be 0.012 µg L(-1) and 0.040 μg L(-1), respectively. The capacity of adsorption was 9.6 mg g(-1). Relative standard deviation (RSD) was found to be 5%. The validation of the method was confirmed by using NIST SRM 1515 Apple leaves, NIST SRM 1570a Spinach leaves and GBW 07605 Tea certified reference materials. The procedure was applied to the determination of vanadium in tap water and bottled drinking water samples. The procedure was also successfully applied to microwave digested food samples including black tea, coffee, tomato, cabbage, zucchini, apple and chicken samples. Copyright © 2013 Elsevier B.V. All rights reserved.
McClure, Ryan P; Hamre, Kathleen D; Niederlehner, B R; Munger, Zackary W; Chen, Shengyang; Lofton, Mary E; Schreiber, Madeline E; Carey, Cayelan C
2018-04-30
Metalimnetic oxygen minimum zones (MOMs) commonly develop during the summer stratified period in freshwater reservoirs because of both natural processes and water quality management. While several previous studies have examined the causes of MOMs, much less is known about their effects, especially on reservoir biogeochemistry. MOMs create distinct redox gradients in the water column which may alter the magnitude and vertical distribution of dissolved methane (CH 4 ) and carbon dioxide (CO 2 ). The vertical distribution and diffusive efflux of CH 4 and CO 2 was monitored for two consecutive open-water seasons in a eutrophic reservoir that develops MOMs as a result of the operation of water quality engineering systems. During both summers, elevated concentrations of CH 4 accumulated within the anoxic MOM, reaching a maximum of 120 μM, and elevated concentrations of CO 2 accumulated in the oxic hypolimnion, reaching a maximum of 780 μM. Interestingly, the largest observed diffusive CH 4 effluxes occurred before fall turnover in both years, while peak diffusive CO 2 effluxes occurred both before and during turnover. Our data indicate that MOMs can substantially change the vertical distribution of CH 4 and CO 2 in the water column in reservoirs, resulting in the accumulation of CH 4 in the metalimnion (vs. at the sediments) and CO 2 in the hypolimnion. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chevallier, Frédéric; Broquet, Grégoire; Pierangelo, Clémence; Crisp, David
2017-07-01
The column-average dry air-mole fraction of carbon dioxide in the atmosphere (XCO2) is measured by scattered satellite measurements like those from the Orbiting Carbon Observatory (OCO-2). We show that global continuous maps of XCO2 (corresponding to level 3 of the satellite data) at daily or coarser temporal resolution can be inferred from these data with a Kalman filter built on a model of persistence. Our application of this approach on 2 years of OCO-2 retrievals indicates that the filter provides better information than a climatology of XCO2 at both daily and monthly scales. Provided that the assigned observation uncertainty statistics are tuned in each grid cell of the XCO2 maps from an objective method (based on consistency diagnostics), the errors predicted by the filter at daily and monthly scales represent the true error statistics reasonably well, except for a bias in the high latitudes of the winter hemisphere and a lack of resolution (i.e., a too small discrimination skill) of the predicted error standard deviations. Due to the sparse satellite sampling, the broad-scale patterns of XCO2 described by the filter seem to lag behind the real signals by a few weeks. Finally, the filter offers interesting insights into the quality of the retrievals, both in terms of random and systematic errors.
NASA Astrophysics Data System (ADS)
Hernández-Almeida, I.; Sierro, F.-J.; Cacho, I.; Flores, J.-A.
2015-04-01
Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt ice-rafted detritus (IRD) events during cold periods of the early Pleistocene. We used paired Mg / Ca and δ18O measurements of Neogloboquadrina pachyderma (sinistral - sin.), deep-dwelling planktonic foraminifera, to estimate the subsurface temperatures and seawater δ18O from a sediment core from Gardar Drift, in the subpolar North Atlantic. Carbon isotopes of benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg / Ca-based temperatures and seawater δ18O suggest increased subsurface temperatures and salinities during ice-rafting, likely due to northward subsurface transport of subtropical waters during periods of weaker Atlantic Meridional Overturning Circulation (AMOC). Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of IRD. Subsurface accumulation of warm waters would have resulted in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. The release of heat stored at the subsurface to the atmosphere would have helped to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during Marine Isotope Stage (MIS) 3.
Atomic oxygen beam source for erosion simulation
NASA Technical Reports Server (NTRS)
Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.; Vaughn, J. A.
1991-01-01
A device for the production of low energy (3 to 10 eV) neutral atomic beams for surface modification studies is described that reproduces the flux of atomic oxygen in low Earth orbit. The beam is produced by the acceleration of plasma ions onto a negatively biased plate of high-Z metal; the ions are neutralized and reflected by the surface, retaining some fraction of their incident kinetic energy, forming a beam of atoms. The plasma is generated by a coaxial RF exciter which produces a magnetically-confined (4 kG) plasma column. At the end of the column, ions fall through the sheath to the plate, whose bias relative to the plasma can be varied to adjust the beam energy. The source provides a neutral flux approximately equal to 5 x 10(exp 16)/sq cm at a distance of 9 cm and a fluence approximately equal to 10(exp 20)/sq cm in five hours. The composition and energy of inert gas beams was diagnosed using a mass spectometer/energy analyzer. The energy spectra of the beams demonstrate energies in the range 5 to 15 eV, and qualitatively show expected dependences upon incident and reflecting atom species and potential drop. Samples of carbon film, carbon-based paint, Kapton, mylar, and teflon exposed to atomic O beams show erosion quite similar to that observed in orbit on the space shuttle.
Black shale deposition during Toarcian super-greenhouse driven by sea level
NASA Astrophysics Data System (ADS)
Hermoso, M.; Minoletti, F.; Pellenard, P.
2013-12-01
One of the most elusive aspects of the Toarcian oceanic anoxic event (T-OAE) is the paradox between carbon isotopes that indicate intense global primary productivity and organic carbon burial at a global scale, and the delayed expression of anoxia in Europe. During the earliest Toarcian, no black shales were deposited in the European epicontinental seaways, and most organic carbon enrichment of the sediments postdated the end of the overarching positive trend in the carbon isotopes that characterises the T-OAE. In the present study, we have attempted to establish a sequence stratigraphic framework for Early Toarcian deposits recovered from a core drilled in the Paris Basin using a combination of mineralogical (quartz and clay relative abundance) and geochemical (Si, Zr, Ti and Al) measurements. Combined with the evolution in redox sensitive elements (Fe, V and Mo), the data suggest that expression of anoxia was hampered in European epicontinental seas during most of the T-OAE (defined by the positive carbon isotope trend) due to insufficient water depth that prevented stratification of the water column. Only the first stratigraphic occurrence of black shales in Europe corresponds to the "global" event. This interval is characterised by >10% Total Organic Carbon (TOC) content that contains relatively low concentration of molybdenum compared to subsequent black shale horizons. Additionally, this first black shale occurrence is coeval with the record of the major negative Carbon Isotope Excursion (CIE), likely corresponding to a period of transient greenhouse intensification likely due to massive injection of carbon into the atmosphere-ocean system. As a response to enhanced weathering and riverine run-off, increased fresh water supply to the basin may have promoted the development of full anoxic conditions through haline stratification of the water column. In contrast, post T-OAE black shales during the serpentinum and bifrons Zones were restricted to epicontinental seas (higher Mo to TOC ratios) during a period of relative high sea level, and carbon isotopes returning to pre-T-OAE values. Comparing palaeoredox proxies with the inferred sequence stratigraphy for Sancerre suggests that episodes of short-term organic carbon enrichment were primarily driven by third-order sea level changes. These black shales exhibit remarkably well-expressed higher-frequency cyclicities in the oxygen availability in the water column whose nature has still to be determined through cyclostratigraphic analysis.
Quantification of the lithogenic carbon pump following a dust deposition event
NASA Astrophysics Data System (ADS)
Bressac, M.; Guieu, C.; Doxaran, D.; Bourrin, F.; Desboeufs, K.; Leblond, N.; Ridame, C.
2013-08-01
Lithogenic particles, such as desert dust, have been postulated to influence particulate organic carbon (POC) export to the deep ocean by acting as mineral ballasts. However, an accurate understanding and quantification of the POC-dust association that occurs within the upper ocean is required in order to affine the "ballast hypothesis". In the framework of the DUNE project, two artificial seedings were performed seven days apart within large mesocosms. A suite of optical and biogeochemical measurements were used to quantify surface POC export following simulated dust events within a low-nutrient low-chlorophyll ecosystem. The two successive seedings led to a 2.3-6.7 fold higher POC flux as compared to the POC flux observed in controlled mesocosms. A simple linear regression analysis revealed that the lithogenic fluxes explained more than 85% of the variance in POC fluxes. At the scale of a dust deposition event, we estimated that 42-50% of POC fluxes were strictly associated with lithogenic particles through an aggregation process. Lithogenic ballasting also likely impacted the remaining POC fraction which resulted from the fertilization effect. The observations support the "ballast hypothesis" and provide a quantitative estimation of the surface POC export abiotically triggered by dust deposition. In this work, we demonstrate that the strength of such a "lithogenic carbon pump" depends on the biogeochemical conditions of the water column at the time of deposition. Based on these observations, we suggest that this "lithogenic carbon pump" could represent a major component of the biological pump in oceanic areas subjected to intense atmospheric forcing.
Lightning-produced Carbon Species in the Atmosphere of Saturn
NASA Astrophysics Data System (ADS)
Delitsky, Mona; Baines, K. H.
2010-10-01
Recent studies by Baines et al (2009) indicate that thunderstorm-associated clouds on Saturn are spectrally dark from 0.7 to 4 um, darker than regular clouds. This darkening is found to be consistent with the presence of particles of elemental carbon, such as in the form of soot particles mixed in with spectrally bright condensates. This carbon is thought to be generated by lightning-induced dissociation of methane. Lightning on Saturn will input large amounts of energy to a narrow column of atmosphere and generate products at high energies such as radicals and ions. After the column cools down, the new chemical species recombine and are frozen into a new chemical equilibrium. Experimental studies in the literature of reactions of methane and other gases in plasma discharges (which simulate lightning) indicate that, even with high ratios of hydrogen/methane, the elemental carbon obtained will form solid dark particles that persist and have a very high C/H ratio. Basically, they are mostly pure carbon, in the form of soot, amorphous carbon, graphite, graphene, polycyclic aromatic hydrocarbons, carbon black, carbon onions, etc. Hydrogen will act as a sealant onto the particles and attach to dangling bonds on their growing surfaces. Even in experiments to form the most crystalline allotrope of carbon, that is, diamond, the presence of hydrogen does not inhibit diamond formation, even at the low pressures in the atmospheres of the Jovian planets or in the interstellar medium (Allamandola et al 1991). Therefore, some form of elemental carbon is likely produced in Saturnian storm clouds and may occur as dark particles of either amorphous carbon, PAHs or crystalline carbon in a form such as graphite. ..Refs: Baines et al., PSS 57, 1650-1658 (2009) ; Allamandola et al., Meteoritics 26, 313 (1991).
NASA Astrophysics Data System (ADS)
Kankaala, Paula; Lopez-Bellido, Jessica; Ojala, Anne; Tulonen, Tiina; Jones, Roger I.
2013-04-01
Physical forcing, related to lake size and morphometry, plays an important role in the landscape-scale biogeochemical processing and fluxes of terrestrial carbon in lakes. Boreal lakes are typically dimictic, with mixing of the water column in spring and autumn, but in small, sheltered, humic, forest lakes the spring mixing is often incomplete. This leads to a steep summer stratification and oxygen depletion in the hypolimnion of the lakes. As a result of anaerobic decomposition of organic matter, high concentrations of CH4are typical in these lakes. At the oxic-anoxic interface zone methanotrophic microbes oxidize CH4 to CO2 and partly incorporate CH4-C into microbial biomass, and thus potentially provide a diet source for pelagic consumers. We studied production at the base of the pelagic food web by methane oxidising bacteria (MOB), heterotrophic bacteria (HB) and phytoplankton (PP) in five boreal lakes with a dissolved organic carbon (DOC) concentration varying between 7 and 25 mg C L-1 and an area ranging from 0.004 to 13.4 km2. High MOB activity was detected in the water columns of the three smallest lakes having anoxia in the hypolimnion during summer. The highest MOB activities (ca. 2-12 μmol L-1 d-1) were observed when the CH4:O2 ratio varied between ca. 0.5-12. Seasonally, the highest MOB activities were measured during late-summer mixed layer deepening and autumnal mixing of the whole water column. The proportion of MOB in the total basal production was highest in the two smallest lakes (24-56 and 13-36%), having the steepest summertime stratification. The proportion MOB in the basal production decreased with lake size being 70% of basal production was by PP. In all studied lakes HB contributed only 10-23% of the total basal production, suggesting that a transfer of allochthonous DOC via HB plays only a modest role for the nutrition of the higher trophic levels.
NASA Astrophysics Data System (ADS)
Krings, T.; Gerilowski, K.; Buchwitz, M.; Reuter, M.; Tretner, A.; Erzinger, J.; Heinze, D.; Burrows, J. P.; Bovensmann, H.
2011-04-01
MAMAP is an airborne passive remote sensing instrument designed for measuring columns of methane (CH4) and carbon dioxide (CO2). The MAMAP instrument consists of two optical grating spectrometers: One in the short wave infrared band (SWIR) at 1590-1690 nm to measure CO2 and CH4 absorptions and another one in the near infrared (NIR) at 757-768 nm to measure O2 absorptions for reference purposes. MAMAP can be operated in both nadir and zenith geometry during the flight. Mounted on an airplane MAMAP can effectively survey areas on regional to local scales with a ground pixel resolution of about 29 m × 33 m for a typical aircraft altitude of 1250 m and a velocity of 200 km h-1. The retrieval precision of the measured column relative to background is typically ≲ 1% (1σ). MAMAP can be used to close the gap between satellite data exhibiting global coverage but with a rather coarse resolution on the one hand and highly accurate in situ measurements with sparse coverage on the other hand. In July 2007 test flights were performed over two coal-fired powerplants operated by Vattenfall Europe Generation AG: Jänschwalde (27.4 Mt CO2 yr-1) and Schwarze Pumpe (11.9 Mt CO2 yr-1), about 100 km southeast of Berlin, Germany. By using two different inversion approaches, one based on an optimal estimation scheme to fit Gaussian plume models from multiple sources to the data, and another using a simple Gaussian integral method, the emission rates can be determined and compared with emissions as stated by Vattenfall Europe. An extensive error analysis for the retrieval's dry column results (XCO2 and XCH4) and for the two inversion methods has been performed. Both methods - the Gaussian plume model fit and the Gaussian integral method - are capable of delivering reliable estimates for strong point source emission rates, given appropriate flight patterns and detailed knowledge of wind conditions.
Trampe, Erik C L; Larsen, Jens E N; Glaring, Mikkel A; Stougaard, Peter; Kühl, Michael
2016-01-01
The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1-2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals.
Trampe, Erik C. L.; Larsen, Jens E. N.; Glaring, Mikkel A.; Stougaard, Peter; Kühl, Michael
2016-01-01
The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1–2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals. PMID:27242741
Chronopoulou, Panagiota-Myrsini; Sanni, Gbemisola O; Silas-Olu, Daniel I; van der Meer, Jan Roelof; Timmis, Kenneth N; Brussaard, Corina P D; McGenity, Terry J
2015-01-01
The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experimental spill at sea. In contrast, there was a decrease in the dominant SAR11 phylotype and an increase in Pseudoalteromonas spp. in the oiled mesocosms (investigated by 16S rRNA gene analysis using denaturing gradient gel electrophoresis), as a consequence of the longer incubation, closer proximity of the samples to oil, and the lack of replenishment with seawater. A total of 216 strains were isolated from hydrocarbon enrichment cultures, predominantly belonging to the genus Pseudoaltero monas; most strains grew on PAHs, branched and straight-chain alkanes, as well as many other carbon sources. No obligate hydrocarbonoclastic bacteria were isolated or detected, highlighting the potential importance of cosmopolitan marine generalists like Pseudoalteromonas spp. in degrading hydrocarbons in the water column beneath an oil slick, and revealing the susceptibility to oil pollution of SAR11, the most abundant bacterial clade in the surface ocean. PMID:25251384
The role of internal variability for decadal carbon uptake anomalies in the Southern Ocean
NASA Astrophysics Data System (ADS)
Spring, Aaron; Hi, Hongmei; Ilyina, Tatiana
2017-04-01
The Southern Ocean is a major sink for anthropogenic CO2 emissions and hence it plays an essential role in modulating global carbon cycle and climate change. Previous studies based on observations (e.g., Landschützer et al. 2015) show pronounced decadal variations of carbon uptake in the Southern Ocean in recent decades and this variability is largely driven by internal climate variability. However, due to limited ensemble size of simulations, the variability of this important ocean sink is still poorly assessed by the state-of-the-art earth system models (ESMs). To assess the internal variability of carbon sink in the Southern Ocean, we use a large ensemble of 100 member simulations based on the Max Planck Institute-ESM (MPI-ESM). The large ensemble of simulations is generated via perturbed initial conditions in the ocean and atmosphere. Each ensemble member includes a historical simulation from 1850 to 2005 with an extension until 2100 under Representative Concentration Pathway (RCP) 4.5 future projections. Here we use model simulations from 1980-2015 to compare with available observation-based dataset. We found several ensemble members showing decadal decreasing trends in the carbon sink, which are similar to the trend shown in observations. This result suggests that MPI-ESM large ensemble simulations are able to reproduce decadal variation of carbon sink in the Southern Ocean. Moreover, the decreasing trends of Southern Ocean carbon sink in MPI-ESM are mainly contributed by region between 50-60°S. To understand the internal variability of the air-sea carbon fluxes in the Southern Ocean, we further investigate the variability of underlying processes, such as physical climate variability and ocean biological processes. Our results indicate two main drivers for the decadal decreasing trend of carbon sink: i) Intensified winds enhance upwelling of old carbon-rich waters, this leads to increase of the ocean surface pCO2; ii) Primary production is reduced in area from 50-60°S, probably induced by reduced euphotic water column stability; therefore the biological drawdown of ocean surface pCO2 is weakened accordingly and hence the ocean is in favor of carbon outgassing. Landschützer, et al. (2015): The reinvigoration of the Southern Ocean carbon sink, Science, 349, 1221-1224.
The AIRS Applications Pipeline, from Identification to Visualization to Distribution
NASA Astrophysics Data System (ADS)
Ray, S. E.; Pagano, T. S.; Fetzer, E. J.; Lambrigtsen, B.; Teixeira, J.
2014-12-01
The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. AIRS provides observations of temperature and water vapor along the atmospheric column and is sensitive to many atmospheric constituents in the mid-troposphere, including carbon monoxide, carbon dioxide and ozone. With a 12-year data record and daily, global observations in near real-time, we are finding that AIRS data can play a role in applications that fall under most of the NASA Applied Sciences focus areas. Currently in development are temperature inversion maps that can potentially correlate to respiratory health problems, dengue fever and West Nile virus outbreak prediction maps, maps that can be used to make assessments of air quality, and maps of volcanic ash burden. This poster will communicate the Project's approach and efforts to date of its applications pipeline, which includes identifying applications, utilizing science expertise, hiring outside experts to assist with development and dissemination, visualization along application themes, and leveraging existing NASA data frameworks and organizations to facilitate archiving and distribution. In addition, a new web-based browse tool being developed by the AIRS Project for easy access to application product imagery will also be described.
NASA Technical Reports Server (NTRS)
Goldberg, Daniel L.; Vinciguerra, Timothy P.; Anderson, Daniel C.; Hembeck, Linda; Canty, Timothy P.; Ehrman, Sheryl H.; Martins, Douglas K.; Stauffer, Ryan M.; Thompson, Anne M.; Salawitch, Ross J.;
2016-01-01
A Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10 simulation was assessed through comparison with data acquired during NASA's 2011 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Maryland field campaign. Comparisons for the baseline simulation (Carbon Bond 2005 (CB05) chemistry, Environmental Protection Agency 2011 National Emissions Inventory) show a model overestimate of NOy by +86.2% and an underestimate of HCHO by -28.3%. We present a new model framework (Carbon Bond 6 Revision 2 chemistry (CB6r2), Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 biogenic emissions, 50% reduction in mobile NOx, enhanced representation of isoprene nitrates) that better matches observations. The new model framework attributes 31.4% more surface ozone in Maryland to electric generating units (EGUs) and 34.6% less ozone to on-road mobile sources. Surface ozone becomes more NOx limited throughout the eastern United States compared to the baseline simulation. The baseline model therefore likely underestimates the effectiveness of anthropogenic NOx reductions as well as the current contribution of EGUs to surface ozone.
NASA Astrophysics Data System (ADS)
Grenier, M.; Della Penna, A.; Trull, T. W.
2014-12-01
Natural iron fertilisation from Southern Ocean islands results in high primary production and phytoplankton biomass accumulations readily visible in satellite ocean colour observations. These images reveal great spatial complexity with highly varying concentrations of chlorophyll, presumably reflecting both variations in iron supply and conditions favouring phytoplankton accumulation. To examine the second aspect, in particular the influences of variations in temperature and stratification, we deployed four autonomous profiling floats in the Antarctic Circumpolar Current near the Kerguelen plateau in the Indian sector of the Southern Ocean. Each "bio-profiler" measured more than 250 profiles of temperature (T), salinity (S), dissolved oxygen, chlorophyll fluorescence (Chl a), and particle backscatter in the top 300 m of the water column, sampling up to 5 profiles per day along meandering trajectories extending up to 1000 km. Comparison of surface Chl a estimates (top 50 m depth; analogous to values from satellite images) with total water column inventories revealed largely linear relationships, suggesting that dilution of chlorophyll by mixed layer depth variations plays only a minor role in the spatial distributions observed by satellite, and correspondingly that these images provide credible information on total and not just surface biomass accumulations. Regions of very high Chl a accumulation (1.5-10 μg L-1) were associated predominantly with a narrow T-S class of surface waters, which appears to derive from the northern Kerguelen plateau. In contrast, waters with only moderate Chl a enrichments (0.5-1.5 μg L-1) displayed no clear correlation with water properties, including no dependence on mixed layer depth, suggesting a diversity of sources of iron and/or its efficient dispersion across filaments of the plume. The lack of dependence on mixed layer depth also indicates a limited influence on production by light limitation. One float became trapped in a cyclonic eddy, allowing temporal evaluation of the water column in early autumn. During this period, decreasing surface Chl a inventories corresponded with decreases in oxygen inventories on sub-mixed layer density surfaces, consistent with significant export of organic matter and its respiration and storage as dissolved inorganic carbon in the ocean interior. These results are encouraging for the expanded use of autonomous observing platforms to study biogeochemical, carbon cycle, and ecological problems, although the complex blend of Lagrangian and Eulerian sampling achieved by the floats suggests that arrays rather than single floats will often be required.
NASA Astrophysics Data System (ADS)
Massart, S.; Agusti-Panareda, A.; Aben, I.; Butz, A.; Chevallier, F.; Crevosier, C.; Engelen, R.; Frankenberg, C.; Hasekamp, O.
2014-06-01
The Monitoring Atmospheric Composition and Climate Interim Implementation (MACC-II) delayed-mode (DM) system has been producing an atmospheric methane (CH4) analysis 6 months behind real time since June 2009. This analysis used to rely on the assimilation of the CH4 product from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard Envisat. Recently the Laboratoire de Météorologie Dynamique (LMD) CH4 products from the Infrared Atmospheric Sounding Interferometer (IASI) and the SRON Netherlands Institute for Space Research CH4 products from the Thermal And Near-infrared Sensor for carbon Observation (TANSO) were added to the DM system. With the loss of Envisat in April 2012, the DM system now has to rely on the assimilation of methane data from TANSO and IASI. This paper documents the impact of this change in the observing system on the methane tropospheric analysis. It is based on four experiments: one free run and three analyses from respectively the assimilation of SCIAMACHY, TANSO and a combination of TANSO and IASI CH4 products in the MACC-II system. The period between December 2010 and April 2012 is studied. The SCIAMACHY experiment globally underestimates the tropospheric methane by 35 part per billion (ppb) compared to the HIAPER Pole-to-Pole Observations (HIPPO) data and by 28 ppb compared the Total Carbon Column Observing Network (TCCON) data, while the free run presents an underestimation of 5 ppb and 1 ppb against the same HIPPO and TCCON data, respectively. The assimilated TANSO product changed in October 2011 from version v.1 to version v.2.0. The analysis of version v.1 globally underestimates the tropospheric methane by 18 ppb compared to the HIPPO data and by 15 ppb compared to the TCCON data. In contrast, the analysis of version v.2.0 globally overestimates the column by 3 ppb. When the high density IASI data are added in the tropical region between 30° N and 30° S, their impact is mainly positive but more pronounced and effective when combined with version v.2.0 of the TANSO products. The resulting analysis globally underestimates the column-averaged dry-air mole fractions of methane (xCH4) just under 1 ppb on average compared to the TCCON data, whereas in the tropics it overestimates xCH4 by about 3 ppb. The random error is estimated to be less than 7 ppb when compared to TCCON data.
Crimi, Michelle; Quickel, Mark; Ko, Saebom
2009-02-27
In situ chemical oxidation using permanganate is an increasingly employed approach to organic contaminant remediation at hazardous waste sites. Manganese dioxide (MnO2) particles form as a by-product of the reaction of permanganate with contaminants and naturally-reduced subsurface materials. These particles are of interest because they have the potential to deposit in the subsurface and impact the flow regime in/around permanganate injection, including the well screen, filter pack, and the surrounding subsurface formation. Control of these particles can allow for improved oxidant injection and transport, and contact between the oxidant and contaminants of concern. Sodium hexametaphosphate (HMP) has previously been identified as a promising aid to stabilize MnO2 in solution when included in the oxidizing solution, increasing the potential to inhibit particle deposition and impact subsurface flow. The goal of the experimental studies described herein was to investigate the ability of HMP to prevent particle deposition in transport studies using four different types of porous media. Permanganate was delivered to a contaminant source zone (trichloroethylene) located within four different media types with variations in sand, clay, organic carbon, and iron oxides (as goethite) content. Deposition of MnO2 within the columns was quantified with distance from the source zone. Experiments were repeated in replicate columns with the inclusion of HMP directly with the oxidant delivery solution, and MnO2 deposition was again quantified. While total MnO2 deposition within the 60 cm columns did not change significantly with the addition of HMP, deposition within the contaminant source zone decreased by 25-85%, depending on the specific media type. The greatest differences in deposition were observed in the goethite-containing and clay-containing columns. Columns containing these two media types experienced completely plugged flow in the oxidant-only delivery systems; however, the addition of HMP prevented this plugging within the columns, increasing the oxidant throughput.
Deep-convection events foster carbonate ion reduction in deep coral reefs
NASA Astrophysics Data System (ADS)
Perez, Fiz F.; Fontela, Marcos; Garcia-Ibañez, Maribel I.; Lherminier, Pascale; Zunino, Patricia; de la Paz, Mercedes; Padín, Xose A.; Alonso-Pérez, Fernando; Velo, Anton; Guallart, Elisa F.; Mercier, Herle
2017-04-01
Since millennial times, water mass circulation and deep-convection events have been transforming warm upper waters at high latitudes into cold and well-oxygenated deep waters. These processes have filled the deep North Atlantic Ocean with waters moderately saturated in calcium carbonate, thus promoting the growth of stony corals, which are hotspots of biodiversity. During the Anthropocene, the meridional circulation has been conveying cumulative amounts of more acidified waters with lower calcium carbonate saturation levels due to the incorporation of anthropogenic carbon dioxide, with very harsh conditions for deep cold-water corals projected by 2100. We evaluate the diminution of calcium carbonate saturation levels (aragonite form) due to the increase in anthropogenic carbon dioxide during the last two decades (2002-2016). We observe a strong decrease in the aragonite saturation levels concomitant with the reduction in the volume transport of aragonite-saturated waters. We estimate a 30-35% reduction in the transport of ion carbonate excess over the saturation levels with respect to the natural carbon cycle for the period 2002-2016. This reduction is associated with an increase in the downward transport of hydrogen ions. We also observe a heaving of the aragonite saturation horizons during the last 25 years, which is estimated at 6 m year-1 for the deep waters and 12-14 m year-1 for the intermediated waters. The harsh winters of 2015 and 2016 have fostered the fast addition of more acidified water into the lower layers of the North Atlantic through deep-convection events. In the future scenario of 2oC warming, the anthropogenic carbon dioxide in the water column would be double than today and the associated transport of hydrogen ions towards the bottom water would reduce the aragonite saturation levels to 60-80% with respect to preindustrial levels. This reduction in the aragonite saturation levels would suppose a strong diminution of the North Atlantic habitats where stony corals will be able to inhabit.
The absorption spectrum of the QSO PKS 2126-158 (z_em =3.27) at high resolution
NASA Astrophysics Data System (ADS)
D'Odorico, V.; Cristiani, S.; D'Odorico, S.; Fontana, A.; Giallongo, E.
1998-01-01
Spectra of the z_em = 3.268 quasar PKS 2126-158 have been obtained in the range lambda lambda 4300-6620 Angstroms with a resolution Rsmallimeq27000 and an average signal-to-noise ratio s/nsmallimeq 25 per resolution element. The list of the identified absorption lines is given together with their fitted column densities and Doppler widths. The modal value of the Doppler parameter distribution for the Lyalpha lines is smallimeq 25 km s(-1) . The column density distribution can be described by a power-law dn / dN ~ N(-beta ) with beta smallimeq 1.5. 12 metal systems have been identified, two of which were previously unknown. In order to make the column densities of the intervening systems compatible with realistic assumptions about the cloud sizes and the silicon to carbon overabundance, it is necessary to assume a jump beyond the He II edge in the spectrum of the UV ionizing background at z smallim 3 a factor 10 larger than the standard predictions for the integrated quasar contribution. An enlarged sample of C IV absorptions (71 doublets) has been used to analyze the statistical properties of this class of absorbers strictly related to galaxies. The column density distribution is well described by a single power-law, with beta =1.64 and the Doppler parameter distribution shows a modal value b_CIV smallimeq 14 km s(-1) . The two point correlation function has been computed in the velocity space for the individual components of C IV features. A significant signal is obtained for scales smaller than 200- 300 km s(-1) , xi (30< Delta v < 90 km\\ s(-1) ) = 33 +/- 3. A trend of decreasing clustering amplitude with decreasing column density is apparent, analogously to what has been observed for Lyalpha lines. Based on observations collected at the European Southern Observatory, La Silla, Chile (ESO No. 2-013-49K). Table 2 is only available in electronic from via anonymous ftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html
Investigation variation of carbon dioxide based on GOSAT data in peninsular Malaysia
NASA Astrophysics Data System (ADS)
Sim, C. K.; Lim, H. S.; MatJafri, M. Z.
2015-10-01
Carbon dioxide (CO2) is an inodorous and transparent gas, and naturally originates in our atmosphere. Due to its optical characteristics, CO2 is the most important greenhouse gas and play a key role in climate change due to an effective thermal infrared (IR) radiation absorber. Satellite observations of atmospheric carbon dioxide (CO2) can significantly improve our knowledge about the sources and sinks of CO2. The remote sensing satellite, namely Greenhouse Gases Observing Satellite (GOSAT) was employed to investigate the spatial and variations of CO2 column-averaged dry airmole fractions, denoted XCO2 over Peninsular Malaysia from January 2013 to December 2013. The analysis of CO2 in the study area shows the significant differences between northeast monsoon (NEM) and the southwest monsoon (SWM). During NEM season, cold air outbreaks from Siberia spreads to equatorial region in the form of north-easterly cold surge winds and associated with a low-level anticyclone over Southeast Asia. Inversely, air masses from the southwest contribute to long-range air pollution due to transportation of atmospheric CO2 by wind is associated with biomass burning in Sumatra, Indonesia. The GOSAT data and the Satellite measurements are able to measure the increase of the atmosphere CO2 values over different regions.
Acoustic scattering from mud volcanoes and carbonate mounds.
Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe
2006-12-01
Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively.
Li, Zhe; Zhang, Zengyu; Xiao, Yan; Guo, Jinsong; Wu, Shengjun; Liu, Jing
2014-05-01
Supersaturation and excess emission of greenhouse gases in freshwater reservoirs have received a great deal of attention in recent years. Although impoundment of reservoirs has been shown to contribute to the net emission of greenhouse gases, reservoir age, geographical distribution, submerged soil type and artificial regulation also have a great impact on their emissions. To examine how large scale reservoir operation impact the water column CO2 and its air-water interface flux, a field study was conducted in 2010 to evaluate potential ecological processes that regulate the partial pressure of CO2 (pCO2) in the water column in the Pengxi River backwater area (PBA), a typical tributary in the Three Gorges Reservoir, China. Measurements of total alkalinity (TA), pH and water temperature were applied to compute the pCO2. And this approach was also validated by calculation of pCO2 from the dissolved inorganic carbon data of samples. Partial least squares (PLS) regression was used to determine how the dynamics of the water pCO2 were related to the available variables. The estimated pCO2 in our sample ranged from 26 to 4,087 μatm in the surface water. During low water operation from July to early September, there was an obvious pCO2 stratification, and pCO2 in the surface was almost unsaturated. This phenomenon was also observed in the spring bloom during discharge period. Conversely, there was no significant pCO2 stratification and the entire water column was supersaturated during high water operation from November to the following February. Significant correlation was observed between the magnitude of pCO2, DO and chlorophyll a, suggesting that phytoplankton dynamics regulate pCO2 in the PBA. The average areal rate of CO2 emissions from the Pengxi River ranged from 18.06 to 48.09 mmol m(-2) day(-1), with an estimated gross CO2 emission from the water surface of 14-37 t day(-1) in this area in 2010. Photosynthesis and respiration rates by phytoplankton might be the dominant processes that regulated pCO2 in the water column. We conclude that pCO2 values in the surface water of Pengxi River could be regarded as potential sources of CO2 to the atmosphere were smaller or similar to those that have been reported for many other reservoirs to date.
McCleaf, Philip; Englund, Sophie; Östlund, Anna; Lindegren, Klara; Wiberg, Karin; Ahrens, Lutz
2017-09-01
Poly- and perfluoroalkyl substances (PFASs) have been detected in drinking water at relatively high concentrations throughout the world which has led to implementation of regulatory guidelines for specific PFASs in drinking water in several European countries and in the U.S. The Swedish National Food Agency has determined that the drinking water of over one third of the country's municipal consumers is at risk or already affected by PFAS contamination. The present study investigated the effects of perfluorocarbon chain length, functional group and isomer structure (branched or linear) on removal of multiple PFASs using granular activated carbon (GAC, Filtrasorb ® 400) and anion exchange (AE, Purolite ® A600) column experiments. The removal of 14 different PFASs, i.e. the C 3 C 11 , C 14 perfluoroalkyl carboxylic acids (PFCAs) (PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTeDA), perfluorooctane sulfonamide (FOSA), and the C 4 , C 6 , C 8 perfluoroalkyl sulfonic acids (PFSAs) (PFBS, PFHxS, PFOS), was monitored for a 217 day period. The results indicate the selective nature of PFAS removal as the absorbents are loaded with PFASs and dissolved organic carbon (DOC). A clear relationship between perfluorocarbon chain length and removal efficiency of PFASs using GAC and AE was found while PFASs with sulfonate functional groups displayed greater removal efficiency than those with carboxylate groups. Similarly, time to column breakthrough increased with increasing perfluorocarbon chain length and was greater for the PFSAs than the PFCAs for both GAC and AE. Shorter carbon chained PFASs such as PFBA, PFPeA, PFHxA showed desorption behavior and long-chained PFASs showed increased removal towards the end of the experiment indicating agglomeration or micelle development. Linear isomers of PFOS, PFHxS, and perfluorooctane sulfonamide (FOSA) had greater column removal efficiencies using GAC (and also for AE at greater bed volume throughput) than the branched and this difference increased at greater bed volume throughputs. The GAC and AE columns showed a poor correlation between DOC and PFAS removal efficiency. The results indicate that designers and operators of AE and GAC treatment processes must take into consideration the selective nature of PFAS removal and associated desorption of short-chain PFCAs during co-removal of multiple PFASs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluating non-equilibrium solute transport in small soil columns
NASA Astrophysics Data System (ADS)
Kamra, S. K.; Lennartz, B.; Van Genuchten, M. Th; Widmoser, P.
2001-04-01
Displacement studies on leaching of bromide and two pesticides (atrazine and isoproturon) were conducted under unsaturated steady state flow conditions in 24 small undisturbed soil columns (5.7 cm in diameter and 10 cm long) each collected from two sites differing in soil structure and organic carbon content in North Germany. There were large and irregular variabilities in the characteristics of both soils, as well as in the shapes of breakthrough curves (BTCs) of different columns, including some with early breakthrough and increased tailing, qualitatively indicating the presence of preferential flow. It was estimated that one preferential flow column (PFC) at site A, and four at site B, contributed, respectively to 11% and 58% of the accumulated leached fraction and to more than 80% of the maximum observed standard deviation (SD) in the field-scale concentration and mass flux of pesticides at two sites. The bromide BTCs of two sites were analyzed with the equilibrium convection-dispersion equation (CDE) and a non-equilibrium two-region/mobile-immobile model. Transport parameters of these models for individual BTCs were determined using a curve fitting program, CXTFIT, and by the time moment method. For the CDE based equilibrium model, the mean values of retardation factor, R, considered separately for all columns, PFCs or non-preferential flow columns (NPFCs) were comparable for the two methods; significant differences were observed in the values of dispersion coefficients of two sites using the two estimation methods. It was inferred from the estimated parameters of non-equilibrium model that 5-12% of water at site A, and 12% at site B, was immobile during displacement in NPFCs. The corresponding values for PFCs of two sites were much larger, ranging from 25% to 51% by CXTFIT and from 24% to 72% by the moment method, suggesting the role of certain mechanisms other than immobile water in higher degrees of non-equilibrium in these columns. Peclet numbers in PFCs of both sites were consistently smaller than five, indicating the inadequacy of the non-equilibrium model to incorporate the effect of all forms of non-equilibrium in PFCs. Overall, the BTCs of individual NPFCs, PFCs and of field average concentration at the two sites were better reproduced with parameters obtained from CXTFIT than by the moment method. The moment method failed to capture the peak concentrations in PFCs, but tended to describe the desorption and tail branches of BTCs better than the curve fitting approach.
NASA Astrophysics Data System (ADS)
Iwasaki, C.; Imasu, R.; Bril, A.; Yokota, T.; Yoshida, Y.; Morino, I.; Oshchepkov, S.; Rokotyan, N.; Zakharov, V.; Gribanov, K.
2017-12-01
Photon path length probability density function-Simultaneous (PPDF-S) method is one of effective algorithms for retrieving column-averaged concentrations of carbon dioxide (XCO2) and methane (XCH4) from Greenhouse gases Observing SATellite (GOSAT) spectra in Short Wavelength InfraRed (SWIR) [Oshchepkov et al., 2013]. In this study, we validated XCO2 and XCH4 retrieved by the PPDF-S method through comparison with the Total Carbon Column Observing Network (TCCON) data [Wunch et al., 2011] from 26 sites including additional site of the Ural Atmospheric Station at Kourovka [57.038°N and 59.545°E], Russia. Validation results using TCCON data show that bias and its standard deviation of PPDF-S data are respectively 0.48 and 2.10 ppm for XCO2, and -0.73 and 15.77 ppb for XCH4. The results for XCO2 are almost identical with those of Iwasaki et al. [2017] for which the validation data were limited at selected 11 sites. However, the bias of XCH4 shows opposite sign against that of Iwasaki et al. [2017]. Furthermore, the data at Kourouvka showed different features particularly for XCH4. In order to investigate the causes for the differences, we have carried out simulation studies mainly focusing on the effects of aerosols which modify the light path length of solar radiation [O'Brien and Rayner, 2002; Aben et al., 2007; Oshchepkov et al., 2008]. Based on the simulation studies using multiple radiation transfer code based on Discrete Ordinate Method (DOM), Polarization System for Transfer of Atmospheric Radiation3 (Pstar3) [Ota et al., 2010], sensitivity of aerosols to gas concentrations was examined.
Fundamental changes in the activity of the natrocarbonatite volcano Oldoinyo Lengai, Tanzania
Kervyn, M.; Ernst, G.G.J.; Keller, J.; Vaughan, R. Greg; Klaudius, J.; Pradal, E.; Belton, F.; Mattsson, H.B.; Mbede, E.; Jacobs, P.M.
2010-01-01
On September 4, 2007, after 25 years of effusive natrocarbonatite eruptions, the eruptive activity of Oldoinyo Lengai (OL), N Tanzania, changed abruptly to episodic explosive eruptions. This transition was preceded by a voluminous lava eruption in March 2006, a year of quiescence, resumption of natrocarbonatite eruptions in June 2007, and a volcano-tectonic earthquake swarm in July 2007. Despite the lack of ground-based monitoring, the evolution in OL eruption dynamics is documented based on the available field observations, ASTER and MODIS satellite images, and almost-daily photos provided by local pilots. Satellite data enabled identification of a phase of voluminous lava effusion in the 2 weeks prior to the onset of explosive eruptions. After the onset, the activity varied from 100 m high ash jets to 2–15 km high violent, steady or unsteady, eruption columns dispersing ash to 100 km distance. The explosive eruptions built up a ∼400 m wide, ∼75 m high intra-crater pyroclastic cone. Time series data for eruption column height show distinct peaks at the end of September 2007 and February 2008, the latter being associated with the first pyroclastic flows to be documented at OL. Chemical analyses of the erupted products, presented in a companion paper (Keller et al.2010), show that the 2007–2008 explosive eruptions are associated with an undersaturated carbonated silicate melt. This new phase of explosive eruptions provides constraints on the factors causing the transition from natrocarbonatite effusive eruptions to explosive eruptions of carbonated nephelinite magma, observed repetitively in the last 100 years at OL.
Enhanced export of carbon by salps during the northeast monsoon period in the northern Arabian Sea
NASA Astrophysics Data System (ADS)
Ramaswamy, V.; Sarin, M. M.; Rengarajan, R.
2005-07-01
A drifting sediment trap was deployed and 234Th activity in the water column was measured to calculate export flux of carbon at a time-series station in the northern Arabian Sea (lat. 21°30' N; long. 64°00' E) during the winter monsoon, 10-23 February 1997. The sampling period was characterised by an extensive salp swarm, and salp faecal pellets were the dominant contributors to the particulate matter in the sediment traps. Average 234Th flux out of the photic zone was 2300 dpm m -2 d -1 and average POC/ 234Th ratio in trap-derived particles was 0.14 mg/dpm. Average 234Th-derived export flux of carbon was about 332 mg m -2 d -1, representing 36% of the daily primary production (PP) (925 mg C m -2 d -1). Export of about one-third of the daily PP during the end of the winter monsoon could be due to the episodic nature of salp swarms. Salp swarms are frequently observed in the Arabian Sea and may be a significant pathway for rapid export of carbon from the euphotic zone.
NASA Astrophysics Data System (ADS)
Gonsalves, M.-J.; Paropkari, A. L.; Fernandes, C. E. G.; Loka Bharathi, P. A.; Krishnakumari, L.; Fernando, V.; Nampoothiri, G. E.
2011-08-01
The presence of a delicately poised mid-depth oxygen minimum zone (OMZ) makes the Arabian Sea a unique and important ecosystem. So far, various aspects responsible for its formation have been studied. However, the contributions from bacterial groups mediating its formation and maintaining its intensity are described for the first time in this study. Thus, we hypothesize that the bacterial dynamics along with organic carbon loading result in bringing about differences in the intensity of OMZ between two stations in the Eastern Arabian Sea (EAS). Water column from 2 stations, one from offshore and another from slope, in the EAS were examined for phytoplankton diversity and pertinent groups of culturable bacteria. Vertical profiles of dissolved oxygen, productivity, chlorophyll a, total organic carbon and different physiological groups of bacteria showed well-defined stratified patterns in tandem with physical and chemical stratifications of the water column. The phytoplankton diversity was higher at the slope station (SS) and was dominated by the heterotrophic dinoflagellates. The offshore station (OS) on the other hand, showed lower diversity dominated by diatoms ( p<0.05). This observation could imply relatively higher autotrophy at the OS. Our results show that OMZ from these 'oligotrophic' regions is dominated by anaerobic bacteria. We believe that these bacteria contribute to intensify the OMZ in the EAS. Further, a higher abundance of viable anaerobic bacteria (TVC anaero) and other anaerobic groups at the SS than the OS suggest that the OMZ is relatively much more intense near the slope. Besides, total organic carbon (TOC) load is three-fold higher at the SS than at OS implying its higher accumulation and lower degradability in slope waters. Settling of this more preserved organic carbon in mid-slope sediments in contact with OMZ results in one of the highest enrichments of sedimentary TOC in the world oceans.
Bony fish and their contribution to marine inorganic carbon cycling
NASA Astrophysics Data System (ADS)
Salter, Michael; Perry, Chris; Wilson, Rod; Harborne, Alistair
2016-04-01
Conventional understanding of the marine inorganic carbon cycle holds that CaCO3 (mostly as low Mg-calcite and aragonite) precipitates in the upper reaches of the ocean and sinks to a point where it either dissolves or is deposited as sediment. Thus, it plays a key role controlling the distribution of DIC in the oceans and in regulating their capacity to absorb atmospheric CO2. However, several aspects of this cycle remain poorly understood and have long perplexed oceanographers, such as the positive alkalinity anomaly observed in the upper water column of many of the world's oceans, above the aragonite and calcite saturation horizons. This anomaly would be explained by extensive dissolution of a carbonate phase more soluble than low Mg-calcite or aragonite, but major sources for such phases remain elusive. Here we highlight marine bony fish as a potentially important primary source of this 'missing' high-solubility CaCO3. Precipitation of CaCO3 takes place within the intestines of all marine bony fish as part of their normal physiological functioning, and global production models suggest it could account for up to 45 % of total new marine CaCO3 production. Moreover, high Mg-calcite containing >25 % mol% MgCO3 - a more soluble phase than aragonite - is a major component of these precipitates. Thus, fish CaCO3 may at least partially explain the alkalinity anomaly in the upper water column. However, the issue is complicated by the fact that carbonate mineralogy actually varies among fish species, with high Mg-calcite (HMC), low Mg-calcite (LMC), aragonite, and amorphous calcium carbonate (ACC) all being common products. Using data from 22 Caribbean fish species, we have generated a novel production model that resolves phase proportions. We evaluate the preservation/dissolution potential of these phases and consider potential implications for marine inorganic carbon cycling. In addition, we consider the dramatic changes in fish biomass structure that have resulted from overfishing throughout the past century, and how these changes could be affecting marine carbon cycling. Given that rising sea surface temperatures and 'ocean acidification' are both predicted to promote increased fish CaCO3 production rates, the role of fish in the marine inorganic carbon cycle could become increasingly important in the future. Consequently, it is conceivable that fish stock management could become an important carbon-regulating service employed in the face of challenges such as climate change mitigation, so it is vital that this role is properly comprehended.
Precision Column CO2 Measurement from Space Using Broad Band LIDAR
NASA Technical Reports Server (NTRS)
Heaps, William S.
2009-01-01
In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. To uncover the missing sink" that is responsible for the large discrepancies in the budget as we presently understand it, calculation has indicated that measurement accuracy of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of 0.25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong constraints on the laser system used for the measurement. This work presents an overview of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics. We are examining the possibility of making precise measurements of atmospheric carbon dioxide using a broad band source of radiation. This means that many of the difficulties in wavelength control can be treated in the detector portion of the system rather than the laser source. It also greatly reduces the number of individual lasers required to make a measurement. Simplifications such as these are extremely desirable for systems designed to operate from space.
Contribution of bacterial cells to lacustrine organic matter based on amino sugars and D-amino acids
NASA Astrophysics Data System (ADS)
Carstens, Dörte; Köllner, Krista E.; Bürgmann, Helmut; Wehrli, Bernhard; Schubert, Carsten J.
2012-07-01
Amino sugars (ASs), D-amino acids (D-AAs), and bacterial cell counts were measured in two Swiss lakes to study the contribution of bacterial cells to organic matter (OM) and the fate of ASs and bacterial amino biomarkers during OM degradation. Concentrations of individual ASs (glucosamine, galactosamine, muramic acid, and mannosamine) in the particulate and total OM pools were analyzed in water-column profiles of Lake Brienz (oligotrophic and oxic throughout the entire water column) and Lake Zug (eutrophic, stratified, and permanently anoxic below 170 m) in spring and in fall. Generally, carbon-normalized AS concentrations decreased with water depth, indicating the preferential decomposition of ASs. For Lake Brienz the relative loss of particulate ASs was higher than in Lake Zug, suggesting enhanced AS turnover in an oligotrophic environment. AS ratio changes in the water column revealed a replacement of plankton biomass with OM from heterotrophic microorganisms with increasing water depth. Similar to the ASs, highest carbon normalized D-AA concentrations were found in the upper water column with decreasing concentrations with depth and an increase close to the sediments. In Lake Zug, an increase in the percentage of D-AAs also showed the involvement of bacteria in OM degradation. Estimations of OM derived from bacterial cells using cell counts and the bacterial biomarkers muramic acid and D-AAs gave similar results. For Lake Brienz 0.2-14% of the organic carbon pool originated from bacterial cells, compared to only 0.1-5% in Lake Zug. Based on our estimates, muramic acid appeared primarily associated with bacterial biomass and not with refractory bacterial necromass. Our study underscores that bacteria are not only important drivers of OM degradation in lacustrine systems, they also represent a significant source of OM themselves, especially in oligotrophic lakes.
Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements
NASA Astrophysics Data System (ADS)
Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.
2015-12-01
Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.
NASA Astrophysics Data System (ADS)
Santos, Isaac R.; Eyre, Bradley D.; Glud, Ronnie N.
2012-11-01
Porewater flow enhances mineralization rates in organic-poor permeable sands. Here, a series of sediment column experiments were undertaken to assess the potential effect of advective porewater transport on denitrification in permeable carbonate sands collected from Heron Island (Great Barrier Reef). Experimental conditions (flow path length, advection rate, and temperature) were manipulated to represent conditions similar to near shore tropical environments. HgCl2-poisoned controls were used to assess whether reactions were microbially mediated. Overall, significant correlations were found between oxygen consumption and N2 production. The N:O2 slope of 0.114 implied that about 75% of all the nitrogen mineralized was denitrified. A 4-fold increase in sediment column length (from 10 to 40 cm) resulted in an overall increase in oxygen consumption (1.6-fold), TCO2 production (1.8-fold), and denitrification (1.9-fold). Oxic respiration increased quickly until advection reached 80 L m-2 h-1 and then plateaued at higher advection rates. Interestingly, denitrification peaked (up to 336 μmol N2 m-2 h-1) at intermediate advection rates (30-80 L m-2 h-1). We speculate that intermediate advection rates enhance the development of microniches (i.e., steep oxygen gradients) within porous carbonate sands, perhaps providing optimum conditions for denitrification. The denitrification peak fell within the broad range of advection rates (often on scales of 1-100 L m-2 h-1) typically found on continental shelves implying that carbonate sands may play a major, but as yet unquantified, role in oceanic nitrogen budgets.
The formation of molecules in interstellar clouds from singly and multiply ionized atoms
NASA Technical Reports Server (NTRS)
Langer, W. D.
1978-01-01
The suggestion is considered that multiply ionized atoms produced by K- and L-shell X-ray ionization and cosmic-ray ionization can undergo ion-molecule reactions and also initiate molecule production. The role of X-rays in molecule production in general is discussed, and the contribution to molecule production of the C(+) radiative association with hydrogen is examined. Such gas-phase reactions of singly and multiply ionized atoms are used to calculate molecular abundances of carbon-, nitrogen-, and oxygen-bearing species. The column densities of the molecules are evaluated on the basis of a modified version of previously developed isobaric cloud models. It is found that reactions of multiply ionized carbon with H2 can contribute a significant fraction of the observed CH in diffuse interstellar clouds in the presence of diffuse X-ray structures or discrete X-ray sources and that substantial amounts of CH(+) can be produced under certain conditions.
NASA's Earth Venture-1 (EV-1) Airborne Science Investigations
NASA Technical Reports Server (NTRS)
Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal
2011-01-01
In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)
Hydrodynamic control of microphytoplankton bloom in a coastal sea
NASA Astrophysics Data System (ADS)
Murty, K. Narasimha; Sarma, Nittala S.; Pandi, Sudarsana Rao; Chiranjeevulu, Gundala; Kiran, Rayaprolu; Muralikrishna, R.
2017-08-01
The influence of hydrodynamics on phytoplankton bloom occurrence/formation has not been adequately reported. Here, we document diurnal observations in the tropical Bay of Bengal's mid-western shelf region which reveal microphytoplankton cell density maxima in association with neap tide many times more than what could be accounted for by solar insolation and nutrient levels. When in summer, phytoplankton cells were abundant and the cell density of Guinardia delicatula reached critical value by tide caused zonation, aggregation happened to an intense bloom. Mucilaginous exudates from the alga due to heat and silicate stress likely promoted and stable water column and weak winds left undisturbed, the transient bloom. The phytoplankton aggregates have implication as food resource in the benthic region implying higher fishery potential, in carbon dioxide sequestration (carbon burial) and in efforts towards improving remote sensing algorithms for chlorophyll in the coastal region.
PFS/Mars Express first results: water vapour and carbon monoxide global distribution
NASA Astrophysics Data System (ADS)
Ignatiev, N. I.; Titov, D. V.; Formisano, V.; Moroz, V. I.; Lellouch, E.; Encrenaz, Th.; Fouchet, T.; Grassi, D.; Giuranna, M.; Atreya, S.; Pfs Team
Planetary Fourier Spectrometer onboard Mars Express, with its wide spectral range (1.2--45 um) and high spectral resolution (1.4 cm-1), makes it possible to study in a self-consistent manner the Martian atmosphere by means of simultaneous analysis of spectral features in several spectral regions. As concerned small species, we observe 30--50, 6.3, 2.56, 1.87 and 1.38 μ m H2O bands, and 4.7 and 2.35 μ m CO bands. The most favourable, with respect to the instrument performance, 2.56 μ m H2O and 4.7 μ m CO bands, are used to study the variations of column abundance of water vapour and carbon monoxide on a global scale from pole to pole. All necessary atmospheric parameters, namely temperature profiles, surface pressure, and dust density are obtained from the same spectra, whenever possible.
Impact of anthropogenic CO2 on the CaCO3 system in the oceans.
Feely, Richard A; Sabine, Christopher L; Lee, Kitack; Berelson, Will; Kleypas, Joanie; Fabry, Victoria J; Millero, Frank J
2004-07-16
Rising atmospheric carbon dioxide (CO2) concentrations over the past two centuries have led to greater CO2 uptake by the oceans. This acidification process has changed the saturation state of the oceans with respect to calcium carbonate (CaCO3) particles. Here we estimate the in situ CaCO3 dissolution rates for the global oceans from total alkalinity and chlorofluorocarbon data, and we also discuss the future impacts of anthropogenic CO2 on CaCO3 shell-forming species. CaCO3 dissolution rates, ranging from 0.003 to 1.2 micromoles per kilogram per year, are observed beginning near the aragonite saturation horizon. The total water column CaCO3 dissolution rate for the global oceans is approximately 0.5 +/- 0.2 petagrams of CaCO3-C per year, which is approximately 45 to 65% of the export production of CaCO3.
Physical aging and its influence on the reliability of network epoxies and epoxy-matrix composites
NASA Technical Reports Server (NTRS)
Heinemann, K.
1983-01-01
The matrix-dominated physical and mechanical properties of a carbon fiber reinforced epoxy composite and a neat epoxy resin were found to be affected by sub-Tg annealing in nitrogen and dark atmosphere. Postcured specimens of Thornel 300 carbon-fiber/Fiberite 934 epoxy as well as Fiberite 934 epoxy resin were quenched from above Tg and given annealing at 140 C, 110 C, or 80 C, for time up to one-hundred thousand minutes. No weight loss was observed during annealing at these temperatures. Significant variations were found in density, modulus, hardness, damping, moisture absorption ability, thermal expansivity. Moisture-epoxy interactious were also studied. The kinetics of aging as well as the molecular aggregation during this densification process were monitored by differential scanning calorimetry, dynamic mechanical analysis, density gradient column, microhardness tester, Instron, and solid-state nuclear magnetic resonance spectroscopy.
Carbonic anhydrase-facilitated CO2 absorption with polyacrylamide buffering bead capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilmore, Robert; Griffith, Craid; Liu, Zhu
2009-07-01
A novel CO2 separation concept is described wherein the enzyme carbonic anhydrase (CA) is used to increase the overall rate Of CO2 absorption after which hydrated CO2 reacts with regenerable amine-bearing polyacrylamide buffering beads (PABB). Following saturation of the material's immobilized tertiary amines, CA-bearing carrier water is separated and recycled to the absorption stage while CO2-loaded material is thermally regenerated. Process application of this concept would involve operation of two or more columns in parallel with thermal regeneration with low-pressure steam taking place after the capacity of a column of amine-bearing polymeric material was exceeded. PABB CO2- bearing capacity wasmore » evaluated by thermogravimetric analysis (TGA) for beads of three acrylamido buffering monomer ingredient concentrations: 0 mol/kg bead, 0.857 mol/kg bead, and 2 mol/kg bead. TGA results demonstrate that CO2- bearing capacity increases with increasing PABB buffering concentration and that up to 78% of the theoretical CO2- bearing capacity was realized in prepared PABB samples (0.857 mol/kg recipe). The highest observed CO2-bearing capacity of PABB was 1.37 mol of CO2 per kg dry bead. TGA was also used to assess the regenerability Of CO2-loaded PABB. Preliminary results suggest that CO2 is partially driven from PABB samples at temperatures as low as 55 degrees C, with complete regeneration occurring at 100 degrees C. Other physical characteristics of PABB are discussed. In addition, the effectiveness of bovine carbonic anhydrase for the catalysis Of CO2 dissolution is evaluated. Potential benefits and drawbacks of the proposed process are discussed. Published by Elsevier Ltd.« less
One-year operation of TANSO-FTS on GOSAT and follow-on mission feasibility
NASA Astrophysics Data System (ADS)
Shiomi, Kei; Nakajima, Masakatsu; Kuze, Akihiko; Takeshima, Toshiaki; Kawakami, Shuji; Suto, Hiroshi
2017-11-01
The Greenhouse gases Observing SATellite (GOSAT) was developed to contribute to monitoring of carbon dioxide and methane from space [1]. The mission objectives are global greenhouse gas measurements from space with precision of 1 % for CO2 and 2 % for CH4 in seasonal mean. The GOSAT carries Thermal And Near infrared Sensor for carbon Observation (TANSO) for precise measurement of greenhouse gases. Main instrument is Fourier Transfer Spectrometer (TANSO-FTS) to observe atmospheric absorption spectra of CO2 and CH4 with high spectral resolution of 0.2 cm-1, broad wavelength coverage of 0.76 - 14.3 microns, wide swath of 790 km and frequent revisit of 3 days. Cloud and Aerosol Imager (TANSO-CAI) is simultaneously on board for cloud detection and correction of optical thin cirrus and aerosol interference within the FTS instantaneous field of view. The GOSAT satellite was launched by H2A-15 rocket on January 23, 2009. The Level 1B products of calibrated spectra were released from September 2009 in public. The Level 2 products of CO2 and CH4 column densities were released from February 2010 [2]. The normal observation data is acquired over one year regularly from April 2009. The mission lifetime is 5 years.
NASA Technical Reports Server (NTRS)
Sodemann, H.; Pommier, M.; Arnold, S. R.; Monks, S. A.; Stebel, K.; Burkhart, J. F.; Hair, J. W.; Diskin, G. S.; Clerbaux, C.; Coheur, P.-F.;
2011-01-01
During the POLARCAT summer campaign in 2008, two episodes (2 5 July and 7 10 July 2008) occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes from Siberian forest fires and anthropogenic sources in East Asia embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications. Here we compare transport simulations of carbon monoxide (CO) from the Lagrangian transport model FLEXPART and the Eulerian chemical transport model TOMCAT with retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite. The main aspect of the comparison is how realistic horizontal and vertical structures are represented in the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are. The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the model simulations. However, finer-scale structures are too quickly diffused in the Eulerian model. Applying the IASI averaging kernels to the model data is essential for a meaningful comparison. Using aircraft data as a reference suggests that the satellite data are biased high, while TOMCAT is biased low. FLEXPART fits the aircraft data rather well, but due to added background concentrations the simulation is not independent from observations. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. In addition to the very good agreement between simulated and observed total column CO fields, the results also highlight the difficulty to identify a data set that most realistically represents the actual pollution state of the Arctic atmosphere.
Remote sensing of freeze-thaw transitions in Arctic soils using the complex resistivity method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yuxin; Hubbard, Susan S; Ulrich, Craig
2013-01-01
Our ability to monitor freeze - thaw transitions is critical to developing a predictive understanding of biogeochemical transitions and carbon dynamics in high latitude environments. In this study, we conducted laboratory column experiments to explore the potential of the complex resistivity method for monitoring the freeze - thaw transitions of the arctic permafrost soils. Samples for the experiment were collected from the upper active layer of Gelisol soils at the Barrow Environmental Observatory, Barrow Alaska. Freeze - thaw transitions were induced through exposing the soil column to controlled temperature environments at 4 C and -20 C. Complex resistivity and temperaturemore » measurements were collected regularly during the freeze - thaw transitions using electrodes and temperature sensors installed along the column. During the experiments, over two orders of magnitude of resistivity variations were observed when the temperature was increased or decreased between -20 C and 0 C. Smaller resistivity variations were also observed during the isothermal thawing or freezing processes that occurred near 0 C. Single frequency electrical phase response and imaginary conductivity at 1 Hz were found to be exclusively related to the unfrozen water in the soil matrix, suggesting that these geophysical 24 attributes can be used as a proxy for the monitoring of the onset and progression of the freeze - thaw transitions. Spectral electrical responses and fitted Cole Cole parameters contained additional information about the freeze - thaw transition affected by the soil grain size distribution. Specifically, a shift of the observed spectral response to lower frequency was observed during isothermal thawing process, which we interpret to be due to sequential thawing, first from fine then to coarse particles within the soil matrix. Our study demonstrates the potential of the complex resistivity method for remote monitoring of freeze - thaw transitions in arctic soils. Although conducted at the laboratory scale, this study provides the foundation for exploring the potential of the complex resistivity signals for monitoring spatiotemporal variations of freeze - thaw transitions over field-relevant scales.« less
Poe, Donald P
2005-06-17
A general theory for efficiency of nonuniform columns with compressible mobile phase fluids is applied to the elution of an unretained solute in packed-column supercritical fluid chromatography (pSFC). The theoretical apparent plate height under isothermal conditions is given by the Knox equation multiplied by a compressibility correction factor f1, which is equal to the ratio of the temporal-to-spatial average densities of the mobile phase. If isothermal conditions are maintained, large pressure drops in pSFC should not result in excessive efficiency losses for elution of unretained solutes.
NASA Astrophysics Data System (ADS)
Shi, Z.; Crowell, S.; Luo, Y.; Rayner, P. J.; Moore, B., III
2015-12-01
Uncertainty in predicted carbon-climate feedback largely stems from poor parameterization of global land models. However, calibration of global land models with observations has been extremely challenging at least for two reasons. First we lack global data products from systematical measurements of land surface processes. Second, computational demand is insurmountable for estimation of model parameter due to complexity of global land models. In this project, we will use OCO-2 retrievals of dry air mole fraction XCO2 and solar induced fluorescence (SIF) to independently constrain estimation of net ecosystem exchange (NEE) and gross primary production (GPP). The constrained NEE and GPP will be combined with data products of global standing biomass, soil organic carbon and soil respiration to improve the community land model version 4.5 (CLM4.5). Specifically, we will first develop a high fidelity emulator of CLM4.5 according to the matrix representation of the terrestrial carbon cycle. It has been shown that the emulator fully represents the original model and can be effectively used for data assimilation to constrain parameter estimation. We will focus on calibrating those key model parameters (e.g., maximum carboxylation rate, turnover time and transfer coefficients of soil carbon pools, and temperature sensitivity of respiration) for carbon cycle. The Bayesian Markov chain Monte Carlo method (MCMC) will be used to assimilate the global databases into the high fidelity emulator to constrain the model parameters, which will be incorporated back to the original CLM4.5. The calibrated CLM4.5 will be used to make scenario-based projections. In addition, we will conduct observing system simulation experiments (OSSEs) to evaluate how the sampling frequency and length could affect the model constraining and prediction.
40 CFR 86.522-78 - Carbon monoxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... performance on the most sensitive range. (2) Zero the carbon monoxide analyzer with either zero grade air or zero grade nitrogen. (3) Bubble a mixture of 3 percent CO2 in N2 through water at room temperature and... action. (Use of conditioning columns is one form of corrective action which may be taken.) (b) Initial...
Adsorption isotherm, adsorption kinetics and column breakthrough experiments evaluating trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) were conducted in the presence and absence of silica nanoparticles (SiO2 NPs). Zeta potential of the SiO
USDA-ARS?s Scientific Manuscript database
Water-saturated column experiments were conducted to investigate the effect of input concentration (Co) and sand grain size on the transport and retention of low concentrations (1, 0.01, and 0.005 mg L/1) of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNT) under repulsive electrostat...
Stability of peatland carbon to rising temperatures
R. M. Wilson; A. M. Hopple; M. M. Tfaily; S. D. Sebestyen; C. W. Schadt; L. Pfeifer-Meister; C. Medvedeff; K. J. McFarlane; J. E. Kostka; M. Kolton; R.K. Kolka; L. A. Kluber; J. K. Keller; T. P. Guilderson; N. A. Griffiths; J. P. Chanton; S. D. Bridgham; P. J. Hanson
2016-01-01
Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. We show that deep peat heating of a 2âm-thick peat column results in an exponential increase in CH4 emissions. However,...
Observing System Simulations for ASCENDS: Synthesizing Science Measurement Requirements (Invited)
NASA Astrophysics Data System (ADS)
Kawa, S. R.; Baker, D. F.; Schuh, A. E.; Crowell, S.; Rayner, P. J.; Hammerling, D.; Michalak, A. M.; Wang, J. S.; Eluszkiewicz, J.; Ott, L.; Zaccheo, T.; Abshire, J. B.; Browell, E. V.; Moore, B.; Crisp, D.
2013-12-01
The measurement of atmospheric CO2 from space using active (lidar) sensing techniques has several potentially significant advantages in comparison to current and planned passive CO2 instruments. Application of this new technology aims to advance CO2 measurement capability and carbon cycle science into the next decade. The NASA Active Sensing of Carbon Emissions, Nights, Days, and Seasons (ASCENDS) mission has been recommended by the US National Academy of Sciences Decadal Survey for the next generation of space-based CO2 observing systems. ASCENDS is currently planned for launch in 2022. Several possible lidar instrument approaches have been demonstrated in airborne campaigns and the results indicate that such sensors are quite feasible. Studies are now underway to evaluate performance requirements for space mission implementation. Satellite CO2 observations must be highly precise and unbiased in order to accurately infer global carbon source/sink fluxes. Measurement demands are likely to further increase in the wake of GOSAT, OCO-2, and enhanced ground-based in situ and remote sensing CO2 data. The objective of our work is to quantitatively and consistently evaluate the measurement capabilities and requirements for ASCENDS in the context of advancing our knowledge of carbon flux distributions and their dependence on underlying physical processes. Considerations include requirements for precision, relative accuracy, spatial/temporal coverage and resolution, vertical information content, interferences, and possibly the tradeoffs among these parameters, while at the same time framing a mission that can be implemented within a constrained budget. Here, we attempt to synthesize the results of observing system simulation studies, commissioned by the ASCENDS Science Requirements Definition Team, into a coherent set of mission performance guidelines. A variety of forward and inverse model frameworks are employed to reduce the potential dependence of the results on model specifics. Sensitivity to key instrument design variables is explored and quantified. Global random error measurement scenarios show significant improvement in resolving CO2 fluxes and reducing uncertainties for expected lidar instrument error levels. The improvement beyond that expected for OCO-2 with random errors only, however, is limited for regions where passive sampling is not limited by lack of sunlight or heavy cloud cover. Simulations including prospective systematic (bias) errors, which are expected to be lesser for the lidar system, provide guidance for instrument design requirements as well as reinforcing the priority for a comprehensive calibration/validation component to the mission. The necessity of including coincident lidar measurements of the O2 column, in order to normalize the CO2 column to dry air mole fraction, will also be discussed. The results indicate that within reasonable technological assumptions for the system performance, high measurement quality and quantity can be obtained that will fulfill the nominal ASCENDS objectives and provide substantial improvement in our knowledge of global carbon cycle processes.
Distinct Siderophores Contribute to Iron Cycling in the Mesopelagic at Station ALOHA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bundy, Randelle M.; Boiteau, Rene M.; McLean, Craig
The distribution of dissolved iron (Fe), total organic Fe-binding ligands, and siderophores were measured between the surface and 400 m at Station ALOHA, a long term ecological study site in the North Pacific Subtropical Gyre. Dissolved Fe concentrations were low throughout the water column and strong organic Fe-binding ligands exceeded dissolved Fe at all depths; varying from 0.9 nmol L -1 in the surface to 1.6 nmol L -1 below 150 m. Although Fe does not appear to limit microbial production, we nevertheless found siderophores at nearly all depths, indicating some populations of microbes were responding to Fe stress. Ferrioxaminemore » siderophores were most abundant in the upper water column, with concentrations between 0.1-2 pmol L -1, while a suite of amphibactins were found below 200 m with concentrations between 0.8-11 pmol L -1. The distinct vertical distribution of ferrioxamines and amphibactins may indicate disparate strategies for acquiring Fe from dust in the upper water column and recycled organic matter in the lower water column. Amphibactins were found to have conditional stability constants (log ) ranging from 12.0-12.5, while ferrioxamines had much stronger conditional stability constants ranging from 14.0-14.4, within the range of observed L1 ligands by voltammetry. We used our data to calculate equilibrium Fe speciation at Station ALOHA to compare the relative concentration of inorganic and siderophore complexed Fe. The results indicate that the concentration of Fe bound to siderophores was up to two orders of magnitude higher than inorganic Fe, suggesting that even if less bioavailable, siderophores were nevertheless a viable pathway for Fe acquisition by microbes at our study site. Finally, we observed rapid production of ferrioxamine E by particle-associated bacteria during incubation of freshly collected sinking organic matter. Fe-limitation may therefore be a factor in regulating carbon metabolism and nutrient regeneration in the mesopelagic.« less
NASA Astrophysics Data System (ADS)
Hess, A.; Höhener, P.; Hunkeler, D.; Zeyer, J.
1996-08-01
The in situ bioremediation of aquifers contaminated with petroleum hydrocarbons is commonly based on the infiltration of groundwater supplemented with oxidants (e.g., O 2, NO 3-) and nutrients (e.g., NH 4+, PO 43-). These additions stimulate the microbial activity in the aquifer and several field studies describing the resulting processes have been published. However, due to the heterogeneity of the subsurface and due to the limited number of observation wells usually available, these field data do not offer a sufficient spatial and temporal resolution. In this study, flow-through columns of 47-cm length equipped with 17 sampling ports were filled with homogeneously contaminated aquifer material from a diesel fuel contaminated in situ bioremediation site. The columns were operated over 96 days at 12°C with artificial groundwater supplemented with O 2, NO 3- and PO 43-. Concentration profiles of O 2, NO 3-, NO 2-, dissolved inorganic and organic carbon (DIC and DOC, respectively), protein, microbial cells and total residual hydrocarbons were measured. Within the first 12 cm, corresponding to a mean groundwater residence time of < 3.6 h, a steep O 2 decrease from 4.6 to < 0.3 mg l -1, denitrification, a production of DIC and DOC, high microbial cell numbers and a high removal of hydrocarbons were observed. Within a distance of 24 to 40.5 cm from the infiltration, O 2 was below 0.1 mg l -1 and a denitrifying activity was found. In the presence and in the absence of O 2, n-alkanes were preferentially degraded compared to branched alkanes. The results demonstrate that: (1) infiltration of aerobic groundwater into columns filled with aquifer material contaminated with hydrocarbons leads to a rapid depletion of O 2; (2) O 2 and NO 3- can serve as oxidants for the mineralization of hydrocarbons; and (3) the modelling of redox processes in aquifers has to consider denitrifying activity in presence of O 2.
Distinct Siderophores Contribute to Iron Cycling in the Mesopelagic at Station ALOHA
Bundy, Randelle M.; Boiteau, Rene M.; McLean, Craig; ...
2018-03-01
The distribution of dissolved iron (Fe), total organic Fe-binding ligands, and siderophores were measured between the surface and 400 m at Station ALOHA, a long term ecological study site in the North Pacific Subtropical Gyre. Dissolved Fe concentrations were low throughout the water column and strong organic Fe-binding ligands exceeded dissolved Fe at all depths; varying from 0.9 nmol L -1 in the surface to 1.6 nmol L -1 below 150 m. Although Fe does not appear to limit microbial production, we nevertheless found siderophores at nearly all depths, indicating some populations of microbes were responding to Fe stress. Ferrioxaminemore » siderophores were most abundant in the upper water column, with concentrations between 0.1-2 pmol L -1, while a suite of amphibactins were found below 200 m with concentrations between 0.8-11 pmol L -1. The distinct vertical distribution of ferrioxamines and amphibactins may indicate disparate strategies for acquiring Fe from dust in the upper water column and recycled organic matter in the lower water column. Amphibactins were found to have conditional stability constants (log ) ranging from 12.0-12.5, while ferrioxamines had much stronger conditional stability constants ranging from 14.0-14.4, within the range of observed L1 ligands by voltammetry. We used our data to calculate equilibrium Fe speciation at Station ALOHA to compare the relative concentration of inorganic and siderophore complexed Fe. The results indicate that the concentration of Fe bound to siderophores was up to two orders of magnitude higher than inorganic Fe, suggesting that even if less bioavailable, siderophores were nevertheless a viable pathway for Fe acquisition by microbes at our study site. Finally, we observed rapid production of ferrioxamine E by particle-associated bacteria during incubation of freshly collected sinking organic matter. Fe-limitation may therefore be a factor in regulating carbon metabolism and nutrient regeneration in the mesopelagic.« less
Jumaah, Firas; Jędrkiewicz, Renata; Gromadzka, Justyna; Namieśnik, Jacek; Essén, Sofia; Turner, Charlotta; Sandahl, Margareta
2017-09-20
This study demonstrates the effect of column selectivity and density of supercritical carbon dioxide (SC-CO 2 ) on the separation of monochloropropanediol (MCPD) esters, known as food toxicants, using SC-CO 2 without addition of cosolvent in ultrahigh performance supercritical fluid chromatography-mass spectrometry (UHPSFC-MS). This study shows that over 20 2-monochloropropanediol (2-MCPD) and 3-monochloropropanediol (3-MCPD) mono- and diesters are separated on a 2-picolylamine column in less than 12 min. The presence and position of a hydroxyl group in the structure, the number of unsaturated bonds, and the acyl chain length play a significant role in the separation of MCPD esters. The flow rate, backpressure, and column oven temperature, which affect the density of the mobile phase, were shown to have a substantial impact on retention, efficiency, and selectivity. The developed method was successfully applied for the determination of MCPD esters in refined oils and showed a close to excellent green analysis score using the Analytical Eco-Scale.
Chebrolu, Kranthi K; Yousef, Gad G; Park, Ryan; Tanimura, Yoshinori; Brown, Allan F
2015-09-15
A high-throughput, robust and reliable method for simultaneous analysis of five carotenoids, four chlorophylls and one tocopherol was developed for rapid screening large sample populations to facilitate molecular biology and plant breeding. Separation was achieved for 10 known analytes and four unknown carotenoids in a significantly reduced run time of 10min. Identity of the 10 analytes was confirmed by their UV-Vis absorption spectras. Quantification of tocopherol, carotenoids and chlorophylls was performed at 290nm, 460nm and 650nm respectively. In this report, two sub two micron particle core-shell columns, Kinetex from Phenomenex (1.7μm particle size, 12% carbon load) and Cortecs from Waters (1.6μm particle size, 6.6% carbon load) were investigated and their separation efficiencies were evaluated. The peak resolutions were >1.5 for all analytes except for chlorophyll-a' with Cortecs column. The ruggedness of this method was evaluated in two identical but separate instruments that produced CV<2 in peak retentions for nine out of 10 analytes separated. Copyright © 2015 Elsevier B.V. All rights reserved.
Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste.
Ahmad, A A; Hameed, B H
2010-03-15
In this work, the adsorption potential of bamboo waste based granular activated carbon (BGAC) to remove C.I. Reactive Black (RB5) from aqueous solution was investigated using fixed-bed adsorption column. The effects of inlet RB5 concentration (50-200mg/L), feed flow rate (10-30 mL/min) and activated carbon bed height (40-80 mm) on the breakthrough characteristics of the adsorption system were determined. The highest bed capacity of 39.02 mg/g was obtained using 100mg/L inlet dye concentration, 80 mm bed height and 10 mL/min flow rate. The adsorption data were fitted to three well-established fixed-bed adsorption models namely, Adam's-Bohart, Thomas and Yoon-Nelson models. The results fitted well to the Thomas and Yoon-Nelson models with coefficients of correlation R(2)>or=0.93 at different conditions. The BGAC was shown to be suitable adsorbent for adsorption of RB5 using fixed-bed adsorption column. (c) 2009 Elsevier B.V. All rights reserved.