P. Ciais; A. J. Dolman; A. Bombelli; R. Duren; A. Peregon; P. J. Rayner; C. Miller; N. Gobron; G. Kinderman; G. Marland; N. Gruber; F. Chevallier; R. J. Andres; G. Balsamo; L. Bopp; F.-M. Bréon; G. Broquet; R. Dargaville; T. J. Battin; A. Borges; H. Bovensmann; M. Buchwitz; J. Butler; J. G. Canadell; R. B. Cook; R. DeFries; R. Engelen; K. R. Gurney; C. Heinze; M. Heimann; A. Held; M. Henry; B. Law; S. Luyssaert; J. Miller; T. Moriyama; C. Moulin; R. B. Myneni; C. Nussli; M. Obersteiner; D. Ojima; Y. Pan; J.-D. Paris; S. L. Piao; B. Poulter; S. Plummer; S. Quegan; P. Raymond; M. Reichstein; L. Rivier; C. Sabine; D. Schimel; O. Tarasova; R. Valentini; R. Wang; G. van der Werf; D. Wickland; M. Williams; C. Zehner
2014-01-01
A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires...
Nonautonomous linear system of the terrestrial carbon cycle
NASA Astrophysics Data System (ADS)
Luo, Y.
2012-12-01
Carbon cycle has been studied by uses of observation through various networks, field and laboratory experiments, and simulation models. Much less has been done on theoretical thinking and analysis to understand fundament properties of carbon cycle and then guide observatory, experimental, and modeling research. This presentation is to explore what would be the theoretical properties of terrestrial carbon cycle and how those properties can be used to make observatory, experimental, and modeling research more effective. Thousands of published data sets from litter decomposition and soil incubation studies almost all indicate that decay processes of litter and soil organic carbon can be well described by first order differential equations with one or more pools. Carbon pool dynamics in plants and soil after disturbances (e.g., wildfire, clear-cut of forests, and plows of soil for cropping) and during natural recovery or ecosystem restoration also exhibit characteristics of first-order linear systems. Thus, numerous lines of empirical evidence indicate that the terrestrial carbon cycle can be adequately described as a nonautonomous linear system. The linearity reflects the nature of the carbon cycle that carbon, once fixed by photosynthesis, is linearly transferred among pools within an ecosystem. The linear carbon transfer, however, is modified by nonlinear functions of external forcing variables. In addition, photosynthetic carbon influx is also nonlinearly influenced by external variables. This nonautonomous linear system can be mathematically expressed by a first-order linear ordinary matrix equation. We have recently used this theoretical property of terrestrial carbon cycle to develop a semi-analytic solution of spinup. The new methods have been applied to five global land models, including NCAR's CLM and CABLE models and can computationally accelerate spinup by two orders of magnitude. We also use this theoretical property to develop an analytic framework to decompose modeled carbon cycle into a few traceable components so as to facilitate model intercompsirosn, benchmark analysis, and data assimilation of global land models.
Matrix approach to uncertainty assessment and reduction for modeling terrestrial carbon cycle
NASA Astrophysics Data System (ADS)
Luo, Y.; Xia, J.; Ahlström, A.; Zhou, S.; Huang, Y.; Shi, Z.; Wang, Y.; Du, Z.; Lu, X.
2017-12-01
Terrestrial ecosystems absorb approximately 30% of the anthropogenic carbon dioxide emissions. This estimate has been deduced indirectly: combining analyses of atmospheric carbon dioxide concentrations with ocean observations to infer the net terrestrial carbon flux. In contrast, when knowledge about the terrestrial carbon cycle is integrated into different terrestrial carbon models they make widely different predictions. To improve the terrestrial carbon models, we have recently developed a matrix approach to uncertainty assessment and reduction. Specifically, the terrestrial carbon cycle has been commonly represented by a series of carbon balance equations to track carbon influxes into and effluxes out of individual pools in earth system models. This representation matches our understanding of carbon cycle processes well and can be reorganized into one matrix equation without changing any modeled carbon cycle processes and mechanisms. We have developed matrix equations of several global land C cycle models, including CLM3.5, 4.0 and 4.5, CABLE, LPJ-GUESS, and ORCHIDEE. Indeed, the matrix equation is generic and can be applied to other land carbon models. This matrix approach offers a suite of new diagnostic tools, such as the 3-dimensional (3-D) parameter space, traceability analysis, and variance decomposition, for uncertainty analysis. For example, predictions of carbon dynamics with complex land models can be placed in a 3-D parameter space (carbon input, residence time, and storage potential) as a common metric to measure how much model predictions are different. The latter can be traced to its source components by decomposing model predictions to a hierarchy of traceable components. Then, variance decomposition can help attribute the spread in predictions among multiple models to precisely identify sources of uncertainty. The highly uncertain components can be constrained by data as the matrix equation makes data assimilation computationally possible. We will illustrate various applications of this matrix approach to uncertainty assessment and reduction for terrestrial carbon cycle models.
NASA Astrophysics Data System (ADS)
Ollinger, S. V.; Silverberg, S.; Albrechtova, J.; Freuder, R.; Gengarelly, L.; Martin, M.; Randolph, G.; Schloss, A.
2007-12-01
The global carbon cycle is a key regulator of the Earth's climate and is central to the normal function of ecological systems. Because rising atmospheric CO2 is the principal cause of climate change, understanding how ecosystems cycle and store carbon has become an extremely important issue. In recent years, the growing importance of the carbon cycle has brought it to the forefront of both science and environmental policy. The need for better scientific understanding has led to establishment of numerous research programs, such as the North American Carbon Program (NACP), which seeks to understand controls on carbon cycling under present and future conditions. Parallel efforts are greatly needed to integrate state-of-the-art science on the carbon cycle and its importance to climate with education and outreach efforts that help prepare society to make sound decisions on energy use, carbon management and climate change adaptation. Here, we present a new effort that joins carbon cycle scientists with the International GLOBE Education program to develop carbon cycle activities for K-12 classrooms. The GLOBE Carbon Cycle project is focused on bringing cutting edge research and research techniques in the field of terrestrial ecosystem carbon cycling into the classroom. Students will collect data about their school field site through existing protocols of phenology, land cover and soils as well as new protocols focused on leaf traits, and ecosystem growth and change. They will also participate in classroom activities to understand carbon cycling in terrestrial ecosystems, these will include plant- a-plant experiments, hands-on demonstrations of various concepts, and analysis of collected data. In addition to the traditional GLOBE experience, students will have the opportunity to integrate their data with emerging and expanding technologies including global and local carbon cycle models and remote sensing toolkits. This program design will allow students to explore research questions from local to global scales with both present and future environmental conditions.
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Ihli, Monica; Hendrick, Oscar; Delgado-Arias, Sabrina; Escobar, Vanessa M.; Griffith, Peter
2015-01-01
The North American Carbon Program (NACP) was formed to further the scientific understanding of sources, sinks, and stocks of carbon in Earth's environment. Carbon cycle science integrates multidisciplinary research, providing decision-support information for managing climate and carbon-related change across multiple sectors of society. This investigation uses the conceptual framework of com-munities of practice (CoP) to explore the role that the NACP has played in connecting researchers into a carbon cycle knowledge network, and in enabling them to conduct physical science that includes ideas from social science. A CoP describes the communities formed when people consistently engage in shared communication and activities toward a common passion or learning goal. We apply the CoP model by using keyword analysis of abstracts from scientific publications to analyze the research outputs of the NACP in terms of its knowledge domain. We also construct a co-authorship network from the publications of core NACP members, describe the structure and social pathways within the community. Results of the content analysis indicate that the NACP community of practice has substantially expanded its research on human and social impacts on the carbon cycle, contributing to a better understanding of how human and physical processes interact with one another. Results of the co-authorship social network analysis demonstrate that the NACP has formed a tightly connected community with many social pathways through which knowledge may flow, and that it has also expanded its network of institutions involved in carbon cycle research over the past seven years.
pyhector: A Python interface for the simple climate model Hector
Willner, Sven N.; Hartin, Corinne; Gieseke, Robert
2017-04-01
Here, pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary productionmore » and respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system. The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willner, Sven N.; Hartin, Corinne; Gieseke, Robert
Here, pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary productionmore » and respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system. The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2.« less
Carbon Prices: Dynamic analysis of European and Californian markets
NASA Astrophysics Data System (ADS)
Sousa, Rita Mafalda Dionisio de
Carbon markets' goal is to promote the reduction of emissions of greenhouse gases where it is most cost-efficient. This makes the price of the tradable good - carbon dioxide equivalent (CO2e) - a key variable in management and risk decisions, in markets related to activities connected with the burning of fossil fuels, such as power generation. This work aims to improve the analysis of carbon prices' dynamics, considering the possibility of multidirectional effects between prices of CO2e, energy (primary and final), offsets licenses and the economy performance, in various frequencies. The two main research questions are: (i) what drives carbon price variations? (ii) what variations do carbon prices drive? We used two comple-mentary methodologies: (a) a vector autoregression model (of common use in macroeconomics and financial markets but not in carbon-energy relations), which allows the analysis of causality and of impulse-response functions of daily prices; and (b) an innovative multivariate wavelet analysis, which allows us to understand the relationship and causal link between the variables in the time and frequency dimensions, particularly in longer cycles (4 8 and 8 20 months), not perceived in previous studies. As case studies we considered the European (EU ETS) and Califor-nia (AB32) carbon markets. This is the first research to present the analysis of the referred US market. The analysis covers the 2008-2013 period, intentionally excluding the EU ETS phase I, for greater consistency of results. Results suggest that the economy and electricity drive the price of European carbon, while gas and oil have a greater role in California. So, there is a greater influence of final energy prices in the most mature market. We also observe that the price of CERs does not affect the European carbon price. On the other hand, this study shows for the first time that carbon prices have impacts on electricity prices over longer cycles (8 20 months) and in coal over short cycles (limited to the first days). It is suggested that the carbon market has more significant effects in longer cycles. The price of European carbon also has impact in CERs prices. The results are statistically significant and relevant, and will improve the quality of decision making of all parties involved in the energy and carbon markets - polluters and regulators included.
Modeling carbon cycle process of soil profile in Loess Plateau of China
NASA Astrophysics Data System (ADS)
Yu, Y.; Finke, P.; Guo, Z.; Wu, H.
2011-12-01
SoilGen2 is a process-based model, which could reconstruct soil formation under various climate conditions, parent materials, vegetation types, slopes, expositions and time scales. Both organic and inorganic carbon cycle processes could be simulated, while the later process is important in carbon cycle of arid and semi-arid regions but seldom being studied. After calibrating parameters of dust deposition rate and segments depth affecting elements transportation and deposition in the profile, modeling results after 10000 years were confronted with measurements of two soil profiles in loess plateau of China, The simulated trends of organic carbon and CaCO3 in the profile are similar to measured values. Relative sensitivity analysis for carbon cycle process have been done and the results show that the change of organic carbon in long time scale is more sensitive to precipitation, temperature, plant carbon input and decomposition parameters (decomposition rate of humus, ratio of CO2/(BIO+HUM), etc.) in the model. As for the inorganic carbon cycle, precipitation and potential evaporation are important for simulation quality, while the leaching and deposition of CaCO3 are not sensitive to pCO2 and temperature of atmosphere.
NASA/GSFC Research Activities for the Global Ocean Carbon Cycle: A Prospectus for the 21st Century
NASA Technical Reports Server (NTRS)
Gregg, W. W.; Behrenfield, M. J.; Hoge, F. E.; Esaias, W. E.; Huang, N. E.; Long, S. R.; McClain, C. R.
2000-01-01
There are increasing concerns that anthropogenic inputs of carbon dioxide into the Earth system have the potential for climate change. In response to these concerns, the GSFC Laboratory for Hydrospheric Processes has formed the Ocean Carbon Science Team (OCST) to contribute to greater understanding of the global ocean carbon cycle. The overall goals of the OCST are to: 1) detect changes in biological components of the ocean carbon cycle through remote sensing of biooptical properties, 2) refine understanding of ocean carbon uptake and sequestration through application of basic research results, new satellite algorithms, and improved model parameterizations, 3) develop and implement new sensors providing critical missing environmental information related to the oceanic carbon cycle and the flux of CO2 across the air-sea interface. The specific objectives of the OCST are to: 1) establish a 20-year time series of ocean color, 2) develop new remote sensing technologies, 3) validate ocean remote sensing observations, 4) conduct ocean carbon cycle scientific investigations directly related to remote sensing data, emphasizing physiological, empirical and coupled physical/biological models, satellite algorithm development and improvement, and analysis of satellite data sets. These research and mission objectives are intended to improve our understanding of global ocean carbon cycling and contribute to national goals by maximizing the use of remote sensing data.
Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moisseytsev, A.; Sienicki, J. J.; Lv, Q.
Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO 2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO 2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO 2 Brayton cycle is that it enablesmore » dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately« less
NASA Astrophysics Data System (ADS)
Durden, D.; Muraoka, H.; Scholes, R. J.; Kim, D. G.; Loescher, H. W.; Bombelli, A.
2017-12-01
The development of an integrated global carbon cycle observation system to monitor changes in the carbon cycle, and ultimately the climate system, across the globe is of crucial importance in the 21stcentury. This system should be comprised of space and ground-based observations, in concert with modelling and analysis, to produce more robust budgets of carbon and other greenhouse gases (GHGs). A global initiative, the GEO Carbon and GHG Initiative, is working within the framework of Group on Earth Observations (GEO) to promote interoperability and provide integration across different parts of the system, particularly at domain interfaces. Thus, optimizing the efforts of existing networks and initiatives to reduce uncertainties in budgets of carbon and other GHGs. This is a very ambitious undertaking; therefore, the initiative is separated into tasks to provide actionable objectives. Task 3 focuses on the optimization of in-situ observational networks. The main objective of Task 3 is to develop and implement a procedure for enhancing and refining the observation system for identified essential carbon cycle variables (ECVs) that meets user-defined specifications at minimum total cost. This work focuses on the outline of the implementation plan, which includes a review of essential carbon cycle variables and observation technologies, mapping the ECVs performance, and analyzing gaps and opportunities in order to design an improved observing system. A description of the gap analysis of in-situ observations that will begin in the terrestrial domain to address issues of missing coordination and large spatial gaps, then extend to ocean and atmospheric observations in the future, will be outlined as the subsequent step to landscape mapping of existing observational networks.
Engine Cycle Analysis for a Particle Bed Reactor Nuclear Rocket
1991-03-01
0 DTIC USERS UNCLASSIFIED 22a. NAME OF RESPONSIBLE INDIVIDUAL ZZb. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL Lt Timothy J . Lawrence 805-275...Cycle with 2000 MW PBR and Uncooled Nozzle J : Output for Bleed Cycle with 2000 MW PBR and Cooled Nozzle K: Output for Expander Cycle with 2000 MW PBR L...Mars with carbon dioxide, the primary component of the Martian atmosphere. Carbon dioxide would delivera smaller ! j , but its use would eliminate the
Fu, Yanfen; Li, Yi; Lidstrom, Mary
2017-07-01
Methanotrophs are a group of bacteria that use methane as sole carbon and energy source. Type I methanotrophs are gamma-proteobacterial methanotrophs using the ribulose monophosphate cycle (RuMP) cycle for methane assimilation. In order to facilitate metabolic engineering in the industrially promising Type I methanotroph Methylomicrobium buryatense 5GB1, flux analysis of cellular metabolism is needed and 13 C tracer analysis is a foundational tool for such work. This biological system has a single-carbon input and a special network topology that together pose challenges to the current well-established methodology for 13 C tracer analysis using a multi-carbon input such as glucose, and to date, no 13 C tracer analysis of flux in a Type I methanotroph has been reported. In this study, we showed that by monitoring labeling patterns of several key intermediate metabolites in core metabolism, it is possible to quantitate the relative flux ratios for important branch points, such as the malate node. In addition, it is possible to assess the operation of the TCA cycle, which has been thought to be incomplete in Type I methanotrophs. Surprisingly, our analysis provides direct evidence of a complete, oxidative TCA cycle operating in M. buryatense 5GB1 using methane as sole carbon and energy substrate, contributing about 45% of the total flux for de novo malate production. Combined with mutant analysis, this method was able to identify fumA (METBUDRAFT_1453/MBURv2__60244) as the primary fumarase involved in the oxidative TCA cycle, among 2 predicted fumarases, supported by 13 C tracer analysis on both fumA and fumC single knockouts. Interrupting the oxidative TCA cycle leads to a severe growth defect, suggesting that the oxidative TCA cycle functions to not only provide precursors for de novo biomass synthesis, but also to provide reducing power to the system. This information provides new opportunities for metabolic engineering of M. buryatense for the production of industrially relevant products. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Lepesqueur, Laura Soares; de Figueiredo, Viviane Maria Gonçalves; Ferreira, Leandro Lameirão; Sobrinho, Argemiro Soares da Silva; Massi, Marcos; Bottino, Marco Antônio; Nogueira Junior, Lafayette
2015-01-01
To determine the effect of maintaining torque after mechanical cycling of abutment screws that are coated with diamondlike carbon and coated with diamondlike carbon doped with diamond nanoparticles, with external and internal hex connections. Sixty implants were divided into six groups according to the type of connection (external or internal hex) and the type of abutment screw (uncoated, coated with diamondlike carbon, and coated with diamondlike carbon doped with diamond nanoparticles). The implants were inserted into polyurethane resin and crowns of nickel chrome were cemented on the implants. The crowns had a hole for access to the screw. The initial torque and the torque after mechanical cycling were measured. The torque values maintained (in percentages) were evaluated. Statistical analysis was performed using one-way analysis of variance and the Tukey test, with a significance level of 5%. The largest torque value was maintained in uncoated screws with external hex connections, a finding that was statistically significant (P = .0001). No statistically significant differences were seen between the groups with and without coating in maintaining torque for screws with internal hex connections (P = .5476). After mechanical cycling, the diamondlike carbon with and without diamond doping on the abutment screws showed no improvement in maintaining torque in external and internal hex connections.
NASA Astrophysics Data System (ADS)
Ichii, K.; Kondo, M.; Ueyama, M.; Kato, T.; Ito, A.; Sasai, T.; Sato, H.; Kobayashi, H.; Saigusa, N.
2014-12-01
Long term record of satellite-based terrestrial vegetation are important to evaluate terrestrial carbon cycle models. In this study, we demonstrate how multiple satellite observation can be used for evaluating past changes in gross primary productivity (GPP) and detecting robust anomalies in terrestrial carbon cycle in Asia through our model-data synthesis analysis, Asia-MIP. We focused on the two different temporal coverages: long-term (30 years; 1982-2011) and decadal (10 years; 2001-2011; data intensive period) scales. We used a NOAA/AVHRR NDVI record for long-term analysis and multiple satellite data and products (e.g. Terra-MODIS, SPOT-VEGETATION) as historical satellite data, and multiple terrestrial carbon cycle models (e.g. BEAMS, Biome-BGC, ORCHIDEE, SEIB-DGVM, and VISIT). As a results of long-term (30 years) trend analysis, satellite-based time-series data showed that approximately 40% of the area has experienced a significant increase in the NDVI, while only a few areas have experienced a significant decreasing trend over the last 30 years. The increases in the NDVI were dominant in the sub-continental regions of Siberia, East Asia, and India. Simulations using the terrestrial biosphere models also showed significant increases in GPP, similar to the results for the NDVI, in boreal and temperate regions. A modeled sensitivity analysis showed that the increases in GPP are explained by increased temperature and precipitation in Siberia. Precipitation, solar radiation, CO2fertilization and land cover changes are important factors in the tropical regions. However, the relative contributions of each factor to GPP changes are different among the models. Year-to-year variations of terrestrial GPP were overall consistently captured by the satellite data and terrestrial carbon cycle models if the anomalies are large (e.g. 2003 summer GPP anomalies in East Asia and 2002 spring GPP anomalies in mid to high latitudes). The behind mechanisms can be consistently explained by the models if the anomalies are caused in the low temperature regions (e.g. spring in Northern Asia). However, water-driven or radiation-driven GPP anomalies lacks consistent explanation among models. Therefore, terrestrial carbon cycle models require improvement of the sensitivity of climate anomalies to carbon cycles.
Using the 5E Learning Cycle Sequence with Carbon Dioxide
ERIC Educational Resources Information Center
Schlenker, Richard M.; Blanke, Regina; Mecca, Peter
2007-01-01
The authors used the 5E learning cycle (engage, explore, explain, extend, and evaluate) and a pulmonary carbon dioxide mystery to introduce eighth grade students to the study of chemistry. The activity engages students in measurement, data collection, data analysis, media and internet research, research design, and report writing as they search…
Wang, Yan; Xu, Hao; Wu, Xu; Zhu, Yimei; Gu, Baojing; Niu, Xiaoyin; Liu, Anqin; Peng, Changhui; Ge, Ying; Chang, Jie
2011-05-01
Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha(-1) yr(-1) for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Pawson, S.; Gunson, M.; Potter, C.; Jucks, K.
2012-01-01
The importance of greenhouse gas increases for climate motivates NASA s observing strategy for CO2 from space, including the forthcoming Orbiting Carbon Observatory (OCO-2) mission. Carbon cycle monitoring, including attribution of atmospheric concentrations to regional emissions and uptake, requires a robust modeling and analysis infrastructure to optimally extract information from the observations. NASA's Carbon-Monitoring System Flux-Pilot Project (FPP) is a prototype for such analysis, combining a set of unique tools to facilitate analysis of atmospheric CO2 along with fluxes between the atmosphere and the terrestrial biosphere or ocean. NASA's analysis system is unique, in that it combines information and expertise from the land, oceanic, and atmospheric branches of the carbon cycle and includes some estimates of uncertainty. Numerous existing space-based missions provide information of relevance to the carbon cycle. This study describes the components of the FPP framework, assessing the realism of computed fluxes, thus providing the basis for research and monitoring applications. Fluxes are computed using data-constrained terrestrial biosphere models and physical ocean models, driven by atmospheric observations and assimilating ocean-color information. Use of two estimates provides a measure of uncertainty in the fluxes. Along with inventories of other emissions, these data-derived fluxes are used in transport models to assess their consistency with atmospheric CO2 observations. Closure is achieved by using a four-dimensional data assimilation (inverse) approach that adjusts the terrestrial biosphere fluxes to make them consistent with the atmospheric CO2 observations. Results will be shown, illustrating the year-to-year variations in land biospheric and oceanic fluxes computed in the FPP. The signals of these surface-flux variations on atmospheric CO2 will be isolated using forward modeling tools, which also incorporate estimates of transport error. The results will be discussed in the context of interannual variability of observed atmospheric CO2 distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fricke, Brian A; Abdelaziz, Omar; Vineyard, Edward Allan
In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerantsmore » for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.« less
Scenarios for low carbon and low water electric power plant ...
In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle and power plant equipment manufacturing phase is substantially lower on a life cycle basis. An outstanding question is: how do regional shifts to lower carbon electric power mixes affect the relative contribution of the upstream life cycle water use? To test this, we examine a range of scenarios comparing a baseline with scenarios of carbon reduction and water use constraints using the MARKet ALlocation (MARKAL) energy systems model with ORD's 2014 U.S. 9-region database (EPAUS9r). The results suggest that moving toward a low carbon and low water electric power mix may increase the non-operational water use. In particular, power plant manufacturing water use for concentrating solar power, and fuel cycle water use for biomass feedstock, could see sharp increases under scenarios of high deployment of these low carbon options. Our analysis addresses the following questions. First, how does moving to a lower carbon electricity generation mix affect the overall regional electric power water use from a life cycle perspective? Second, how does constraining the operational water use for power plants affect the mix, if at all? Third, how does the life cycle water use differ among regions under
Low-carbon building assessment and multi-scale input-output analysis
NASA Astrophysics Data System (ADS)
Chen, G. Q.; Chen, H.; Chen, Z. M.; Zhang, Bo; Shao, L.; Guo, S.; Zhou, S. Y.; Jiang, M. M.
2011-01-01
Presented as a low-carbon building evaluation framework in this paper are detailed carbon emission account procedures for the life cycle of buildings in terms of nine stages as building construction, fitment, outdoor facility construction, transportation, operation, waste treatment, property management, demolition, and disposal for buildings, supported by integrated carbon intensity databases based on multi-scale input-output analysis, essential for low-carbon planning, procurement and supply chain design, and logistics management.
NASA Astrophysics Data System (ADS)
Hoffman, F. M.; Randerson, J. T.; Moore, J. K.; Goulden, M.; Fu, W.; Koven, C.; Swann, A. L. S.; Mahowald, N. M.; Lindsay, K. T.; Munoz, E.
2017-12-01
Quantifying interactions between global biogeochemical cycles and the Earth system is important for predicting future atmospheric composition and informing energy policy. We applied a feedback analysis framework to three sets of Historical (1850-2005), Representative Concentration Pathway 8.5 (2006-2100), and its extension (2101-2300) simulations from the Community Earth System Model version 1.0 (CESM1(BGC)) to quantify drivers of terrestrial and ocean responses of carbon uptake. In the biogeochemically coupled simulation (BGC), the effects of CO2 fertilization and nitrogen deposition influenced marine and terrestrial carbon cycling. In the radiatively coupled simulation (RAD), the effects of rising temperature and circulation changes due to radiative forcing from CO2, other greenhouse gases, and aerosols were the sole drivers of carbon cycle changes. In the third, fully coupled simulation (FC), both the biogeochemical and radiative coupling effects acted simultaneously. We found that climate-carbon sensitivities derived from RAD simulations produced a net ocean carbon storage climate sensitivity that was weaker and a net land carbon storage climate sensitivity that was stronger than those diagnosed from the FC and BGC simulations. For the ocean, this nonlinearity was associated with warming-induced weakening of ocean circulation and mixing that limited exchange of dissolved inorganic carbon between surface and deeper water masses. For the land, this nonlinearity was associated with strong gains in gross primary production in the FC simulation, driven by enhancements in the hydrological cycle and increased nutrient availability. We developed and applied a nonlinearity metric to rank model responses and driver variables. The climate-carbon cycle feedback gain at 2300 was 42% higher when estimated from climate-carbon sensitivities derived from the difference between FC and BGC than when derived from RAD. We re-analyzed other CMIP5 model results to quantify the effects of such nonlinearities on their projected climate-carbon cycle feedback gains.
NASA Astrophysics Data System (ADS)
Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.
2010-07-01
Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine - based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four eddy flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and a modified model (based on model parameter tuning using eddy flux data). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.
NASA Astrophysics Data System (ADS)
Izumi, Kentaro; Kemp, David B.; Itamiya, Shoma; Inui, Mutsuko
2018-01-01
A pronounced excursion in the carbon-isotope composition of biospheric carbon and coeval seawater warming during the early Toarcian (∼183 Ma) has been linked to the large-scale transfer of 12C-enriched carbon to the oceans and atmosphere. A European bias in the distribution of available data means that the precise pattern, tempo and global expression of this carbon cycle perturbation, and the associated environmental responses, remain uncertain. Here, we present a new cm-scale terrestrial-dominated carbon-isotope record through an expanded lower Toarcian section from Japan that displays a negative excursion pattern similar to marine and terrestrial carbon-isotope records documented from Europe. These new data suggest that 12C-enriched carbon was added to the biosphere in at least one rapid, millennial-scale pulse. Sedimentological analysis indicates a close association between the carbon-isotope excursion and high-energy sediment transport and enhanced fluvial discharge. Together, these data support the hypothesis that a sudden strengthening of the global hydrological cycle occurred in direct and immediate response to rapid carbon release and atmospheric warming.
A study of power cycles using supercritical carbon dioxide as the working fluid
NASA Astrophysics Data System (ADS)
Schroder, Andrew Urban
A real fluid heat engine power cycle analysis code has been developed for analyzing the zero dimensional performance of a general recuperated, recompression, precompression supercritical carbon dioxide power cycle with reheat and a unique shaft configuration. With the proposed shaft configuration, several smaller compressor-turbine pairs could be placed inside of a pressure vessel in order to avoid high speed, high pressure rotating seals. The small compressor-turbine pairs would share some resemblance with a turbocharger assembly. Variation in fluid properties within the heat exchangers is taken into account by discretizing zero dimensional heat exchangers. The cycle analysis code allows for multiple reheat stages, as well as an option for the main compressor to be powered by a dedicated turbine or an electrical motor. Variation in performance with respect to design heat exchanger pressure drops and minimum temperature differences, precompressor pressure ratio, main compressor pressure ratio, recompression mass fraction, main compressor inlet pressure, and low temperature recuperator mass fraction have been explored throughout a range of each design parameter. Turbomachinery isentropic efficiencies are implemented and the sensitivity of the cycle performance and the optimal design parameters is explored. Sensitivity of the cycle performance and optimal design parameters is studied with respect to the minimum heat rejection temperature and the maximum heat addition temperature. A hybrid stochastic and gradient based optimization technique has been used to optimize critical design parameters for maximum engine thermal efficiency. A parallel design exploration mode was also developed in order to rapidly conduct the parameter sweeps in this design space exploration. A cycle thermal efficiency of 49.6% is predicted with a 320K [47°C] minimum temperature and 923K [650°C] maximum temperature. The real fluid heat engine power cycle analysis code was expanded to study a theoretical recuperated Lenoir cycle using supercritical carbon dioxide as the working fluid. The real fluid cycle analysis code was also enhanced to study a combined cycle engine cascade. Two engine cascade configurations were studied. The first consisted of a traditional open loop gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 65.0% using a peak temperature of 1,890K [1,617°C]. The second configuration consisted of a hybrid natural gas powered solid oxide fuel cell and gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 73.1%. Both configurations had a minimum temperature of 306K [33°C]. The hybrid stochastic and gradient based optimization technique was used to optimize all engine design parameters for each engine in the cascade such that the entire engine cascade achieved the maximum thermal efficiency. The parallel design exploration mode was also utilized in order to understand the impact of different design parameters on the overall engine cascade thermal efficiency. Two dimensional conjugate heat transfer (CHT) numerical simulations of a straight, equal height channel heat exchanger using supercritical carbon dioxide were conducted at various Reynolds numbers and channel lengths.
The impact of agricultural soil erosion on the global carbon cycle
Van Oost, Kristof; Quine, T.A.; Govers, G.; De Gryze, S.; Six, J.; Harden, J.W.; Ritchie, J.C.; McCarty, G.W.; Heckrath, G.; Kosmas, C.; Giraldez, J.V.; Marques Da Silva, J.R.; Merckx, R.
2007-01-01
Agricultural soil erosion is thought to perturb the global carbon cycle, but estimates of its effect range from a source of 1 petagram per year -1 to a sink of the same magnitude. By using caesium-137 and carbon inventory measurements from a large-scale survey, we found consistent evidence for an erosion-induced sink of atmospheric carbon equivalent to approximately 26% of the carbon transported by erosion. Based on this relationship, we estimated a global carbon sink of 0.12 (range 0.06 to 0.27) petagrams of carbon per year-1 resulting from erosion in the world's agricultural landscapes. Our analysis directly challenges the view that agricultural erosion represents an important source or sink for atmospheric CO2.
NASA Astrophysics Data System (ADS)
Grogan, D. S.; Whiteside, J. H.; Musher, D.; Rosengard, S. Z.; Vankeuren, M. A.; Pancost, R. D.
2010-12-01
The lacustrine Green River Formation is known to span ≥15 million years through the early-middle Eocene, and recent work on radioisotopic dating has provided a framework on which to build ties to the orbitally-tuned marine Eocene record. Here we present a spliced stack of Fischer assay data from drilled cores of the Green River Formation that span both an East-West and a North-South transect of the Uinta Basin of Utah. Detailed work on two cores demonstrate that Fischer assay measurements covary with total organic carbon and bulk carbon isotopes, allowing us to use Fisher assay results as a representative carbon cycling proxy throughout the stack. We provide an age model for this core record by combining radioisotopic dates of tuff layers with frequency analysis of Fischer assay measurements. Identification of orbital frequencies tied directly to magnetochrons through radioisotopic dates allows for a direct comparison of the terrestrial to the marine Eocene record. Our analysis indicates that the marker beds used to correlate the stack cores represent periods of enhanced lake productivity and extreme carbon burial; however, unlike the hyperthermal events that are clearly marked in the marine Eocene record, the hydrocarbon-rich "Mahogany Bed" period of burial does not correspond to a clear carbon isotope excursion. This suggests that the terrestrial realm may have experienced extreme ecological responses to relatively small perturbations in the carbon cycle during the Early Eocene Climatic Optimum. To investigate the ecological responses to carbon cycle perturbations through the hydrocarbon rich beds, we analyzed a suite of microbial biomarkers, finding evidence for cyanobacteria, dinoflagellates, and potentially green sulfur bacteria. These taxa indicate fluctuating oxic/anoxic conditions in the lake during abrupt intervals of carbon burial, suggesting a lake biogeochemical regime with no modern analogues.
Global covariation of carbon turnover times with climate in terrestrial ecosystems.
Carvalhais, Nuno; Forkel, Matthias; Khomik, Myroslava; Bellarby, Jessica; Jung, Martin; Migliavacca, Mirco; Mu, Mingquan; Saatchi, Sassan; Santoro, Maurizio; Thurner, Martin; Weber, Ulrich; Ahrens, Bernhard; Beer, Christian; Cescatti, Alessandro; Randerson, James T; Reichstein, Markus
2014-10-09
The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes. We find that the overall mean global carbon turnover time is 23(+7)(-4) years (95 per cent confidence interval). On average, carbon resides in the vegetation and soil near the Equator for a shorter time than at latitudes north of 75° north (mean turnover times of 15 and 255 years, respectively). We identify a clear dependence of the turnover time on temperature, as expected from our present understanding of temperature controls on ecosystem dynamics. Surprisingly, our analysis also reveals a similarly strong association between turnover time and precipitation. Moreover, we find that the ecosystem carbon turnover times simulated by state-of-the-art coupled climate/carbon-cycle models vary widely and that numerical simulations, on average, tend to underestimate the global carbon turnover time by 36 per cent. The models show stronger spatial relationships with temperature than do observation-based estimates, but generally do not reproduce the strong relationships with precipitation and predict faster carbon turnover in many semi-arid regions. Our findings suggest that future climate/carbon-cycle feedbacks may depend more strongly on changes in the hydrological cycle than is expected at present and is considered in Earth system models.
Stibal, Marek; Telling, Jon; Cook, Joe; Mak, Ka Man; Hodson, Andy; Anesio, Alexandre M
2012-01-01
Microbes in supraglacial ecosystems have been proposed to be significant contributors to regional and possibly global carbon cycling, and quantifying the biogeochemical cycling of carbon in glacial ecosystems is of great significance for global carbon flow estimations. Here we present data on microbial abundance and productivity, collected along a transect across the ablation zone of the Greenland ice sheet (GrIS) in summer 2010. We analyse the relationships between the physical, chemical and biological variables using multivariate statistical analysis. Concentrations of debris-bound nutrients increased with distance from the ice sheet margin, as did both cell numbers and activity rates before reaching a peak (photosynthesis) or a plateau (respiration, abundance) between 10 and 20 km from the margin. The results of productivity measurements suggest an overall net autotrophy on the GrIS and support the proposed role of ice sheet ecosystems in carbon cycling as regional sinks of CO(2) and places of production of organic matter that can be a potential source of nutrients for downstream ecosystems. Principal component analysis based on chemical and biological data revealed three clusters of sites, corresponding to three 'glacier ecological zones', confirmed by a redundancy analysis (RDA) using physical data as predictors. RDA using data from the largest 'bare ice zone' showed that glacier surface slope, a proxy for melt water flow, accounted for most of the variation in the data. Variation in the chemical data was fully explainable by the determined physical variables. Abundance of phototrophic microbes and their proportion in the community were identified as significant controls of the carbon cycling-related microbial processes.
U.S. Eastern Continental Shelf Carbon Cycling (USECoS): Modeling, Data Assimilation, and Analysis
NASA Technical Reports Server (NTRS)
Mannino, Antonio
2008-01-01
Although the oceans play a major role in the uptake of fossil fuel CO2 from the atmosphere, there is much debate about the contribution from continental shelves, since many key shelf fluxes are not yet well quantified: the exchange of carbon across the land-ocean and shelf-slope interfaces, air-sea exchange of CO2, burial, and biological processes including productivity. Our goal is to quantify these carbon fluxes along the eastern U.S. coast using models quantitatively verified by comparison to observations, and to establish a framework for predicting how these fluxes may be modified as a result of climate and land use change. Our research questions build on those addressed with previous NASA funding for the USECoS (U.S. Eastern Continental Shelf Carbon Cycling) project. We have developed a coupled biogeochemical ocean circulation model configured for this study region and have extensively evaluated this model with both in situ and remotely-sensed data. Results indicate that to further reduce uncertainties in the shelf component of the global carbon cycle, future efforts must be directed towards 1) increasing the resolution of the physical model via nesting and 2) making refinements to the biogeochemical model and quantitatively evaluating these via the assimilation of biogeochemical data (in situ and remotely-sensed). These model improvements are essential for better understanding and reducing estimates of uncertainties in current and future carbon transformations and cycling in continental shelf systems. Our approach and science questions are particularly germane to the carbon cycle science goals of the NASA Earth Science Research Program as well as the U.S. Climate Change Research Program and the North American Carbon Program. Our interdisciplinary research team consists of scientists who have expertise in the physics and biogeochemistry of the U.S. eastern continental shelf, remote-sensing data analysis and data assimilative numerical models.
NASA Astrophysics Data System (ADS)
Hu, Changzheng; Qu, Weiguo; Rajagopalan, Ramakrishnan; Randall, Clive
2014-12-01
Symmetric EDLCs made using high purity carbon electrodes derived from coconut char were tested using 1 M Tetraethylammonium hexafluorophosphate dissolved in two different solvents namely acetonitrile and propylene carbonate. The cell voltage of the capacitor made using propylene carbonate can be extended to 3.5 V and it exhibited good cycling and thermal stability upto 70 °C while the voltage was limited to below 3.0 V in acetonitrile. XPS analysis of the positive and negative electrodes of EDLCs post cycling showed that the primary degradation products were related to ring opening reactions in propylene carbonate based electrolytes while water played a key role in degradation of acetonitrile based EDLCs.
NASA Technical Reports Server (NTRS)
Latto, Rebecca; Romanou, Anastasia
2018-01-01
In this paper, we present a database of the basic regimes of the carbon cycle in the ocean, the 'ocean carbon states', as obtained using a data mining/pattern recognition technique in observation-based as well as model data. The goal of this study is to establish a new data analysis methodology, test it and assess its utility in providing more insights into the regional and temporal variability of the marine carbon cycle. This is important as advanced data mining techniques are becoming widely used in climate and Earth sciences and in particular in studies of the global carbon cycle, where the interaction of physical and biogeochemical drivers confounds our ability to accurately describe, understand, and predict CO2 concentrations and their changes in the major planetary carbon reservoirs. In this proof-of-concept study, we focus on using well-understood data that are based on observations, as well as model results from the NASA Goddard Institute for Space Studies (GISS) climate model. Our analysis shows that ocean carbon states are associated with the subtropical-subpolar gyre during the colder months of the year and the tropics during the warmer season in the North Atlantic basin. Conversely, in the Southern Ocean, the ocean carbon states can be associated with the subtropical and Antarctic convergence zones in the warmer season and the coastal Antarctic divergence zone in the colder season. With respect to model evaluation, we find that the GISS model reproduces the cold and warm season regimes more skillfully in the North Atlantic than in the Southern Ocean and matches the observed seasonality better than the spatial distribution of the regimes. Finally, the ocean carbon states provide useful information in the model error attribution. Model air-sea CO2 flux biases in the North Atlantic stem from wind speed and salinity biases in the subpolar region and nutrient and wind speed biases in the subtropics and tropics. Nutrient biases are shown to be most important in the Southern Ocean flux bias.
Molten salt power towers operating at 600–650 °C: Salt selection and cost benefits
Turchi, Craig S.; Vidal, Judith; Bauer, Matthew
2018-03-14
This analysis examines the potential benefit of adopting the supercritical carbon dioxide (sCO 2) Brayton cycle at 600-650 degrees C compared to the current state-of-the-art power tower operating a steam-Rankine cycle with solar salt at approximately 574 degrees C. The analysis compares a molten-salt power tower configuration using direct storage of solar salt (60:40 wt% sodium nitrate: potassium nitrate) or single-component nitrate salts at 600 degrees C or alternative carbonate- or chloride-based salts at 650 degrees C.
Molten salt power towers operating at 600–650 °C: Salt selection and cost benefits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turchi, Craig S.; Vidal, Judith; Bauer, Matthew
This analysis examines the potential benefit of adopting the supercritical carbon dioxide (sCO 2) Brayton cycle at 600-650 degrees C compared to the current state-of-the-art power tower operating a steam-Rankine cycle with solar salt at approximately 574 degrees C. The analysis compares a molten-salt power tower configuration using direct storage of solar salt (60:40 wt% sodium nitrate: potassium nitrate) or single-component nitrate salts at 600 degrees C or alternative carbonate- or chloride-based salts at 650 degrees C.
Averill, Colin
2014-10-01
Allocation trade-offs shape ecological and biogeochemical phenomena at local to global scale. Plant allocation strategies drive major changes in ecosystem carbon cycling. Microbial allocation to enzymes that decompose carbon vs. organic nutrients may similarly affect ecosystem carbon cycling. Current solutions to this allocation problem prioritise stoichiometric tradeoffs implemented in plant ecology. These solutions may not maximise microbial growth and fitness under all conditions, because organic nutrients are also a significant carbon resource for microbes. I created multiple allocation frameworks and simulated microbial growth using a microbial explicit biogeochemical model. I demonstrate that prioritising stoichiometric trade-offs does not optimise microbial allocation, while exploiting organic nutrients as carbon resources does. Analysis of continental-scale enzyme data supports the allocation patterns predicted by this framework, and modelling suggests large deviations in soil C loss based on which strategy is implemented. Therefore, understanding microbial allocation strategies will likely improve our understanding of carbon cycling and climate. © 2014 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Latto, Rebecca; Romanou, Anastasia
2018-03-01
In this paper, we present a database of the basic regimes of the carbon cycle in the ocean, the ocean carbon states
, as obtained using a data mining/pattern recognition technique in observation-based as well as model data. The goal of this study is to establish a new data analysis methodology, test it and assess its utility in providing more insights into the regional and temporal variability of the marine carbon cycle. This is important as advanced data mining techniques are becoming widely used in climate and Earth sciences and in particular in studies of the global carbon cycle, where the interaction of physical and biogeochemical drivers confounds our ability to accurately describe, understand, and predict CO2 concentrations and their changes in the major planetary carbon reservoirs. In this proof-of-concept study, we focus on using well-understood data that are based on observations, as well as model results from the NASA Goddard Institute for Space Studies (GISS) climate model. Our analysis shows that ocean carbon states are associated with the subtropical-subpolar gyre during the colder months of the year and the tropics during the warmer season in the North Atlantic basin. Conversely, in the Southern Ocean, the ocean carbon states can be associated with the subtropical and Antarctic convergence zones in the warmer season and the coastal Antarctic divergence zone in the colder season. With respect to model evaluation, we find that the GISS model reproduces the cold and warm season regimes more skillfully in the North Atlantic than in the Southern Ocean and matches the observed seasonality better than the spatial distribution of the regimes. Finally, the ocean carbon states provide useful information in the model error attribution. Model air-sea CO2 flux biases in the North Atlantic stem from wind speed and salinity biases in the subpolar region and nutrient and wind speed biases in the subtropics and tropics. Nutrient biases are shown to be most important in the Southern Ocean flux bias. All data and analysis scripts are available at https://data.giss.nasa.gov/oceans/carbonstates/ (DOI: https://doi.org/10.5281/zenodo.996891).
Disrupted carbon cycling in restored and unrestored urban streams: Critical timescales and controls
Larsen, L. G.; Harvey, Judson
2017-01-01
Carbon fixation and respiration in flowing waterways play significant roles in global and regional carbon budgets, yet how land use and watershed management interact with temporal disturbances (storms) to influence metabolism remains poorly understood. Here, we combine long-term with synoptic sampling of metabolism and its variable controls in neighboring watersheds of the Chesapeake Bay to resolve limiting factors and critical timescales associated with recovery from disturbance. We found that, relative to predictions of the river continuum concept, focal streams have “disrupted” carbon cycles, with carbon balances closer to zero, and, in some cases, tighter coupling between gross primary production (GPP) and ecosystem respiration (ER), attributable to carbon limitation. Carbon became limiting to ER where flashy storm hydrographs and simplified channel geomorphology inhibited accumulation of fine sediment. Shannon entropy analysis of timescales revealed that fine sediment served as a time-release capsule for nutrients and carbon over 4–6 months, fueling biogeochemical transformations. Loss of fines through hydraulic disturbance had up to 30-d impacts on GPP and 50-d impacts on ER in the stream with carbon limitation. In contrast, where GPP and ER were not tightly coupled, recovery occurred within 1 d. Results suggest that a complex interplay between nutrient and carbon limitation and mechanical and chemical disturbance governs patterns and consequences of disrupted carbon cycling in urban streams. Carbon limitation and tight GPP/ER coupling enhance the vulnerability of stream ecosystem functions, but best management practices that target stormflow reduction and channel geomorphic diversity can break that coupling and minimize carbon cycle disruptions.
D'Alessio, Maya; Nordeste, Ricardo; Doxey, Andrew C; Charles, Trevor C
2017-01-01
Polyhydroxybutyrate (PHB) and glycogen polymers are produced by bacteria as carbon storage compounds under unbalanced growth conditions. To gain insights into the transcriptional mechanisms controlling carbon storage in Sinorhizobium meliloti , we investigated the global transcriptomic response to the genetic disruption of key genes in PHB synthesis and degradation and in glycogen synthesis. Under both nitrogen-limited and balanced growth conditions, transcriptomic analysis was performed with genetic mutants deficient in PHB synthesis ( phbA , phbB , phbAB , and phbC ), PHB degradation ( bdhA , phaZ , and acsA2 ), and glycogen synthesis ( glgA1 ). Three distinct genomic regions of the pSymA megaplasmid exhibited altered expression in the wild type and the PHB cycle mutants that was not seen in the glycogen synthesis mutant. An Fnr family transcriptional motif was identified in the upstream regions of a cluster of genes showing similar transcriptional patterns across the mutants. This motif was found at the highest density in the genomic regions with the strongest transcriptional effect, and the presence of this motif upstream of genes in these regions was significantly correlated with decreased transcript abundance. Analysis of the genes in the pSymA regions revealed that they contain a genomic overrepresentation of Fnr family transcription factor-encoding genes. We hypothesize that these loci, containing mostly nitrogen utilization, denitrification, and nitrogen fixation genes, are regulated in response to the intracellular carbon/nitrogen balance. These results indicate a transcriptional regulatory association between intracellular carbon levels (mediated through the functionality of the PHB cycle) and the expression of nitrogen metabolism genes. IMPORTANCE The ability of bacteria to store carbon and energy as intracellular polymers uncouples cell growth and replication from nutrient uptake and provides flexibility in the use of resources as they are available to the cell. The impact of carbon storage on cellular metabolism would be reflected in global transcription patterns. By investigating the transcriptomic effects of genetically disrupting genes involved in the PHB carbon storage cycle, we revealed a relationship between intracellular carbon storage and nitrogen metabolism. This work demonstrates the utility of combining transcriptome sequencing with metabolic pathway mutations for identifying underlying gene regulatory mechanisms.
Mississippi Basin Carbon Project science plan
Sundquist, E.T.; Stallard, R.F.; Bliss, N.B.; Markewich, H.W.; Harden, J.W.; Pavich, M.J.; Dean, M.D.
1998-01-01
Understanding the carbon cycle is one of the most difficult challenges facing scientists who study the global environment. Lack of understanding of global carbon cycling is perhaps best illustrated by our inability to balance the present-day global CO2 budget. The amount of CO2 produced by burning fossil fuels and by deforestation appears to exceed the amount accumulating in the atmosphere and oceans. The carbon needed to balance the CO2 budget (the so-called "missing" carbon) is probably absorbed by land plants and ultimately deposited in soils and sediments. Increasing evidence points toward the importance of these terrestrial processes in northern temperate latitudes. Thus, efforts to balance the global CO2 budget focus particular attention on terrestrial carbon uptake in our own North American "backyard."The USGS Mississippi Basin Carbon Project conducts research on the carbon budget in soils and sediments of the Mississippi River basin. The project focuses on the effects of land-use change on carbon storage and transport, nutrient cycles, and erosion and sedimentation throughout the Mississippi River Basin. Particular emphasis is placed on understanding the interactions among changes in erosion, sedimentation, and soil dynamics. The project includes spatial analysis of a wide variety of geographic data sets, estimation of whole-basin and sub-basin carbon and sediment budgets, development and implementation of terrestrial carbon-cycle models, and site-specific field studies of relevant processes. The USGS views this project as a "flagship" effort to demonstrate its capabilities to address the importance of the land surface to biogeochemical problems such as the global carbon budget.
Multiscale assessment of water limitations on forest carbon cycling in the western United States
NASA Astrophysics Data System (ADS)
Berner, L. T.; Law, B. E.
2016-12-01
Water is a key environmental constraint on carbon uptake, storage, and release by forests in the western United States. Climate in this region is becoming warmer and drier, thus highlighting the need to better understand how forest carbon cycling responds to variation in water availability. Here, we describe how forest carbon cycling varied spatially along local to regional gradients in climatic water availability. We examined local variation in net primary productivity (NPP) and aboveground biomass (AGB) using 12 intensive field plots in Oregon's Cascade Mountains. Regional analysis of forest NPP and AGB was based on federal forest inventories (>8,000 plots) in Washington, Oregon, and California, multiple biomass maps and MODIS NPP (2003-2012). We also quantified annual forest AGB mortality due to bark beetles and fires across the region from 2003-2012 by combining several disturbance and biomass data sets. Over each spatial extent, forest NPP and AGB increased curvilinearly with average growing-year climate moisture index, computed as the cumulative difference between precipitation and potential evapotranspiration from October-September and averaged over preceding decades. Thus, climatic water availability strongly constrains forest carbon uptake and storage, particularly in the driest areas, but also in the wettest. Forest AGB mortality rates from bark beetles and fires peaked in moderately dry forests and then declining rapidly in the wettest areas. Annual forest AGB mortality from bark beetles was about twice as high as from fires. Bark beetle impacts were most pronounced in the Rock Mountains, while fire impacts were most pronounced in western portion of the region. Our multiscale analysis based on field inventory and remote sensing data sets demonstrates that climatic water availability is a key environmental constraint on forest carbon cycling in the western US. Consequently, continued warming and drying can be expected to have substantial impacts on forest carbon cycling in this region over the coming century.
NASA Astrophysics Data System (ADS)
Smallman, Thomas Luke; Exbrayat, Jean-François; Bloom, Anthony; Williams, Mathew
2017-04-01
Forests are a critical component of the global carbon cycle, storing significant amounts of carbon, split between living biomass and dead organic matter. The carbon budget of forests is the most uncertain component of the global carbon cycle - it is currently impossible to quantify accurately the carbon source/sink strength of forest biomes due to their heterogeneity and complex dynamics. It has been a major challenge to generate robust carbon budgets across landscapes due to data scarcity. Models have been used for estimating carbon budgets, but outputs have lacked an assessment of uncertainty, making a robust assessment of their reliability and accuracy challenging. Here a Metropolis Hastings - Markov Chain Monte Carlo (MH-MCMC) data assimilation framework has been used to combine remotely sensed leaf area index (MODIS), biomass (where available) and deforestation estimates, in addition to forest planting information from the UK's national forest inventory, an estimate of soil carbon from the Harmonized World Database (HWSD) and plant trait information with a process model (DALEC) to produce a constrained analysis with a robust estimate of uncertainty of the UK forestry carbon budget between 2000 and 2010. Our analysis estimates the mean annual UK forest carbon sink at -3.9 MgC ha-1 yr-1 with a 95 % confidence interval between -4.0 and -3.1 MgC ha-1yr-1. The UK national forest inventory (NFI) estimates the mean UK forest carbon sink to be between -1.4 and -5.5 MgC ha-1 yr-1. The analysis estimate for total forest biomass stock in 2010 is estimated at 229 (177/232) TgC, while the NFI an estimated total forest biomass carbon stock of 216 TgC. Leaf carbon area (LCA) is a key plant trait which we are able to estimate using our analysis. Comparison of median estimates for (LCA) retrieved from the analysis and a UK land cover map show higher and lower values for LCA are estimated areas dominated by needle leaf and broad leaf forests forest respectively, consistent with ecological expectations. Moreover, LCA is positively and negatively correlated with leaf-life span and allocation of photosynthate to foliage respectively, supported by field observations. This emergence of key plant traits and correlations between traits increases our confidence in the robustness of this analysis. Furthermore, this framework also allows us to search for additional emergent properties from the analysis such as spatial variation of retrieved drought tolerance. Finally our analysis is able to identify components of the carbon cycle with the largest uncertainty e.g. allocation of photosynthate to wood and wood residence times, providing targets for future observations (e.g. ESA's BIOMASS mission). Our Bayesian analysis system is ideally suited for assimilation of multiple biomass estimates and their associated uncertainties to reduce both the overall analysis uncertainty and bias in estimates biomass stocks.
NASA Astrophysics Data System (ADS)
Rafique, Rashid; Xia, Jianyang; Hararuk, Oleksandra; Asrar, Ghassem R.; Leng, Guoyong; Wang, Yingping; Luo, Yiqi
2016-07-01
Representations of the terrestrial carbon cycle in land models are becoming increasingly complex. It is crucial to develop approaches for critical assessment of the complex model properties in order to understand key factors contributing to models' performance. In this study, we applied a traceability analysis which decomposes carbon cycle models into traceable components, for two global land models (CABLE and CLM-CASA') to diagnose the causes of their differences in simulating ecosystem carbon storage capacity. Driven with similar forcing data, CLM-CASA' predicted ˜ 31 % larger carbon storage capacity than CABLE. Since ecosystem carbon storage capacity is a product of net primary productivity (NPP) and ecosystem residence time (τE), the predicted difference in the storage capacity between the two models results from differences in either NPP or τE or both. Our analysis showed that CLM-CASA' simulated 37 % higher NPP than CABLE. On the other hand, τE, which was a function of the baseline carbon residence time (τ'E) and environmental effect on carbon residence time, was on average 11 years longer in CABLE than CLM-CASA'. This difference in τE was mainly caused by longer τ'E of woody biomass (23 vs. 14 years in CLM-CASA'), and higher proportion of NPP allocated to woody biomass (23 vs. 16 %). Differences in environmental effects on carbon residence times had smaller influences on differences in ecosystem carbon storage capacities compared to differences in NPP and τ'E. Overall, the traceability analysis showed that the major causes of different carbon storage estimations were found to be parameters setting related to carbon input and baseline carbon residence times between two models.
Rafique, Rashid; Xia, Jianyang; Hararuk, Oleksandra; ...
2016-07-29
Representations of the terrestrial carbon cycle in land models are becoming increasingly complex. It is crucial to develop approaches for critical assessment of the complex model properties in order to understand key factors contributing to models' performance. In this study, we applied a traceability analysis which decomposes carbon cycle models into traceable components, for two global land models (CABLE and CLM-CASA') to diagnose the causes of their differences in simulating ecosystem carbon storage capacity. Driven with similar forcing data, CLM-CASA' predicted – 31 % larger carbon storage capacity than CABLE. Since ecosystem carbon storage capacity is a product of net primary productivitymore » (NPP) and ecosystem residence time ( τ E), the predicted difference in the storage capacity between the two models results from differences in either NPP or τ E or both. Our analysis showed that CLM-CASA'simulated 37 % higher NPP than CABLE. On the other hand, τ E, which was a function of the baseline carbon residence time ( τ' E) and environmental effect on carbon residence time, was on average 11 years longer in CABLE than CLM-CASA'. This difference in τ E was mainly caused by longer τ' E of woody biomass (23 vs. 14 years in CLM-CASA'), and higher proportion of NPP allocated to woody biomass (23 vs. 16 %). Differences in environmental effects on carbon residence times had smaller influences on differences in ecosystem carbon storage capacities compared to differences in NPP and τ' E. Altogether, the traceability analysis showed that the major causes of different carbon storage estimations were found to be parameters setting related to carbon input and baseline carbon residence times between two models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafique, Rashid; Xia, Jianyang; Hararuk, Oleksandra
Representations of the terrestrial carbon cycle in land models are becoming increasingly complex. It is crucial to develop approaches for critical assessment of the complex model properties in order to understand key factors contributing to models' performance. In this study, we applied a traceability analysis which decomposes carbon cycle models into traceable components, for two global land models (CABLE and CLM-CASA') to diagnose the causes of their differences in simulating ecosystem carbon storage capacity. Driven with similar forcing data, CLM-CASA' predicted – 31 % larger carbon storage capacity than CABLE. Since ecosystem carbon storage capacity is a product of net primary productivitymore » (NPP) and ecosystem residence time ( τ E), the predicted difference in the storage capacity between the two models results from differences in either NPP or τ E or both. Our analysis showed that CLM-CASA'simulated 37 % higher NPP than CABLE. On the other hand, τ E, which was a function of the baseline carbon residence time ( τ' E) and environmental effect on carbon residence time, was on average 11 years longer in CABLE than CLM-CASA'. This difference in τ E was mainly caused by longer τ' E of woody biomass (23 vs. 14 years in CLM-CASA'), and higher proportion of NPP allocated to woody biomass (23 vs. 16 %). Differences in environmental effects on carbon residence times had smaller influences on differences in ecosystem carbon storage capacities compared to differences in NPP and τ' E. Altogether, the traceability analysis showed that the major causes of different carbon storage estimations were found to be parameters setting related to carbon input and baseline carbon residence times between two models.« less
NASA Astrophysics Data System (ADS)
Sánchez, D.; Muñoz de Escalona, J. M.; Chacartegui, R.; Muñoz, A.; Sánchez, T.
A proposal for high efficiency hybrid systems based on molten carbonate fuel cells is presented in this paper. This proposal is based on adopting a closed cycle bottoming gas turbine using supercritical carbon dioxide as working fluid as opposed to open cycle hot air turbines typically used in this type of power generators. First, both bottoming cycles are compared for the same operating conditions, showing that their performances do not differ as much as initially expected, even if the initial objective of reducing compression work is accomplished satisfactorily. In view of these results, a profound review of research and industrial literature is carried out in order to determine realistic specifications for the principal components of the bottoming systems. From this analysis, it is concluded that an appropriate set of specifications must be developed for each bottoming cycle as the performances of compressor, turbine and recuperator differ significantly from one working fluid to another. Thus, when the operating conditions are updated, the performances of the resulting systems show a remarkable advantage of carbon dioxide based systems over conventional air units. Actually, the proposed hybrid system shows its capability to achieve 60% net efficiency, what represents a 10% increase with respect to the reference system.
Spatially-resolved carbon flow through a hypersaline phototrophic microbial mat
NASA Astrophysics Data System (ADS)
Moran, J.; Lindemann, S. R.; Cory, A. B.; Courtney, S.; Cole, J. K.; Fredrickson, J.
2013-12-01
Hot Lake is a hypersaline, meromictic lake located in an endorheic basin in north-central Washington. Low annual rainfall and high evaporation rates contribute to the lake's high salinity. The predominant dissolved salt is magnesium sulfate, of which monimolimnion waters may seasonally exceed 2 M concentrations. Induced by its high salinity and meromictic nature, Hot Lake displays an inverse thermal gradient with deep horizons seasonally exceeding 50 °C. Despite extreme conditions, dense benthic microbial mats composed of cyanobacteria, anoxygenic photoheterotrophs, and bacterial heterotroph populations develop in the lake. These mats can exceed 1 cm in thickness and display vertical stratification in color due to bacterial pigmentation. Typical mat stratification includes an orange surface layer underlain by green and purple layers at increasing depth. Carbonates, including aragonite and magnesite, are observed within the mat and their formation is likely induced or influenced by microbial metabolic activities and associated pH excursions. We are exploring the role Hot Lake's microbial mats play in carbon cycling. Cyanobacteria are the dominant CO2-fixing organisms in the mat and we seek to understand the spatial and metabolic controls on how the carbon initially fixed by mat cyanobacteria is transferred to associated heterotrophic populations spread throughout the mat strata. Secondly, we seek to understand the overall net carbon balance of the mat through a growing season. We are using a stable isotope probing approach for assessing carbon uptake and migration through representative mat samples. We performed a series of ex situ incubations of freshly harvested mat samples in lake water amended with 13C-labeled bicarbonate or substrates commonly consumed by heterotrophs (including acetate and glucose) and using multiple stable isotope techniques to track label uptake, residence time, remineralization, and location within the mat. In addition to bulk isotope analysis (via elemental analysis IRMS and gas bench IRMS) we are employing laser ablation IRMS (LA-IRMS) to provide a spatially-resolved accounting of label uptake through the mat cross section. This technique permits isotope analysis at the 50 μm scale, and can provide multiple isotope analyses within each mat strata. By coupling LA-IRMS analysis with laminar sectioning of the mat and amplicon sequencing of the rrnA gene, we seek to establish linkages between phylogeny and function over the course of a diel cycle with highlighted emphasis on evidence of carbon transfer between mat laminae and the phylotypes that inhabit them. We are also using a series of carbon accumulation microcosms to quantify net carbon fixation over the seasonal cycle. These microcosms are deployed at multiple depths to provide an accounting of carbon cycling under the specific geochemical conditions experienced at variable depth. Coupling the data from these individual microcosms to our bathymetric survey of Hot Lake permits us to estimate total mat carbon fixation, and therefore to begin to assess the impact of the mat on the greater lake carbon cycle.
NASA Astrophysics Data System (ADS)
Barnet, J.; Littler, K.; Kroon, D.; Leng, M. J.; Westerhold, T.; Roehl, U.; Zachos, J. C.
2017-12-01
The "greenhouse" world of the latest Cretaceous-Early Paleogene ( 70-34 Ma) was characterised by multi-million year variability in climate and the carbon-cycle. Throughout this interval the pervasive imprint of orbital-cyclicity, particularly eccentricity and precession, is visible in elemental and stable isotope data obtained from multiple deep-sea sites. Periodic "hyperthermal" events, occurring largely in-step with these orbital cycles, have proved particularly enigmatic, and may be the closest, albeit imperfect, analogues for anthropogenic climate change. This project utilises CaCO3-rich marine sediments recovered from ODP Site 1262 at a paleo-depth of 3600 m on the Walvis Ridge, South Atlantic, of late Maastrichtian-mid Paleocene age ( 67-60 Ma). We have derived high-resolution (2.5-4 kyr) carbon and oxygen isotope data from the epifaunal benthic foraminifera species Nuttallides truempyi. Combining the new record with the existing Late Paleocene-Early Eocene record generated from the same site by Littler et al. (2014), yields a single-site reference curve detailing 13.5 million years of orbital cyclicity in paleoclimate and carbon cycle from the latest Cretaceous to near the peak warmth of the Early Paleogene greenhouse. Spectral analysis of this new combined dataset allows us to identify long (405-kyr) eccentricity, short (100-kyr) eccentricity, and precession (19-23-kyr) as the principle forcing mechanisms governing pacing of the background climate and carbon-cycle during this time period, with a comparatively weak obliquity (41-kyr) signal. Cross-spectral analysis suggests that changes in climate lead the carbon cycle throughout most of the record, emphasising the role of the release of temperature-sensitive carbon stores as a positive feedback to an initial warming induced by changes in orbital configuration. The expression of comparatively understudied Early Paleocene events, including the Dan-C2 Event, Latest Danian Event, and Danian/Selandian Transition Event, are also identified within this new record, confirming the global nature and orbital pacing of the Latest Danian Event and Danian/Selandian Transition Event, but questioning the Dan-C2 event as a global hyperthermal.
[Modeling of carbon cycling in terrestrial ecosystem: a review].
Mao, Liuxi; Sun, Yanling; Yan, Xiaodong
2006-11-01
Terrestrial carbon cycling is one of the important issues in global change research, while carbon cycling modeling has become a necessary method and tool in understanding this cycling. This paper reviewed the research progress in terrestrial carbon cycling, with the focus on the basic framework of simulation modeling, two essential models of carbon cycling, and the classes of terrestrial carbon cycling modeling, and analyzed the present situation of terrestrial carbon cycling modeling. It was pointed out that the future research direction could be based on the biophysical modeling of dynamic vegetation, and this modeling could be an important component in the earth system modeling.
Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Bobby; Pasch, James Jay; Kruizenga, Alan Michael
2016-01-01
This report outlines the thermodynamics of a supercritical carbon dioxide (sCO 2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO 2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related tomore » both Helium and to sCO 2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO 2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO 2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation« less
Redesigning Urban Carbon Cycles: from Waste Stream to Commodity
NASA Astrophysics Data System (ADS)
Brabander, D. J.; Fitzstevens, M. G.
2013-12-01
While there has been extensive research on the global scale to quantify the fluxes and reservoirs of carbon for predictive climate change models, comparably little attention has been focused on carbon cycles in the built environment. The current management of urban carbon cycles presents a major irony: while cities produce tremendous fluxes of organic carbon waste, their populations are dependent on imported carbon because most urban have limited access to locally sourced carbon. The persistence of outdated management schemes is in part due to the fact that reimagining the handling of urban carbon waste streams requires a transdisciplinary approach. Since the end of the 19th century, U.S. cities have generally relied on the same three options for managing organic carbon waste streams: burn it, bury it, or dilute it. These options still underpin the framework for today's design and management strategies for handling urban carbon waste. We contend that urban carbon management systems for the 21st century need to be scalable, must acknowledge how climate modulates the biogeochemical cycling of urban carbon, and should carefully factor local political and cultural values. Urban waste carbon is a complex matrix ranging from wastewater biosolids to municipal compost. Our first goal in designing targeted and efficient urban carbon management schemes has been examining approaches for categorizing and geochemically fingerprinting these matrices. To date we have used a combination of major and trace element ratio analysis and bulk matrix characteristics, such as pH, density, and loss on ignition, to feed multivariable statistical analysis in order to identify variables that are effective tracers for each waste stream. This approach was initially developed for Boston, MA, US, in the context of identifying components of municipal compost streams that were responsible for increasing the lead inventory in the final product to concentrations that no longer permitted its use in supporting urban agriculture. We are now extending this approach to additional large U.S. and European urban centers where different philosophical and technological approaches to managing urban waste carbon have resulted in a range of infrastructures, from highly distributed systems (Germany) to centralized mega facilities (London). Ultimately, this research will lead to a decision-making matrix model that will permit cities to customize their urban carbon waste stream facilities and transform this waste into a usable commodity.
Dodder, Rebecca S; Barnwell, Jessica T; Yelverton, William H
2016-11-01
Electric sector water use, in particular for thermoelectric operations, is a critical component of the water-energy nexus. On a life cycle basis per unit of electricity generated, operational (e.g., cooling system) water use is substantially higher than water demands for the fuel cycle (e.g., natural gas and coal) and power plant manufacturing (e.g., equipment and construction). However, could shifting toward low carbon and low water electric power operations create trade-offs across the electricity life cycle? We compare business-as-usual with scenarios of carbon reductions and water constraints using the MARKet ALlocation (MARKAL) energy system model. Our scenarios show that, for water withdrawals, the trade-offs are minimal: operational water use accounts for over 95% of life cycle withdrawals. For water consumption, however, this analysis identifies potential trade-offs under some scenarios. Nationally, water use for the fuel cycle and power plant manufacturing can reach up to 26% of the total life cycle consumption. In the western United States, nonoperational consumption can even exceed operational demands. In particular, water use for biomass feedstock irrigation and manufacturing/construction of solar power facilities could increase with high deployment. As the United States moves toward lower carbon electric power operations, consideration of shifting water demands can help avoid unintended consequences.
NASA Astrophysics Data System (ADS)
Minaya, Veronica; Corzo, Gerald; van der Kwast, Johannes; Galarraga, Remigio; Mynett, Arthur
2014-05-01
Simulations of carbon cycling are prone to uncertainties from different sources, which in general are related to input data, parameters and the model representation capacities itself. The gross carbon uptake in the cycle is represented by the gross primary production (GPP), which deals with the spatio-temporal variability of the precipitation and the soil moisture dynamics. This variability associated with uncertainty of the parameters can be modelled by multivariate probabilistic distributions. Our study presents a novel methodology that uses multivariate Copulas analysis to assess the GPP. Multi-species and elevations variables are included in a first scenario of the analysis. Hydro-meteorological conditions that might generate a change in the next 50 or more years are included in a second scenario of this analysis. The biogeochemical model BIOME-BGC was applied in the Ecuadorian Andean region in elevations greater than 4000 masl with the presence of typical vegetation of páramo. The change of GPP over time is crucial for climate scenarios of the carbon cycling in this type of ecosystem. The results help to improve our understanding of the ecosystem function and clarify the dynamics and the relationship with the change of climate variables. Keywords: multivariate analysis, Copula, BIOME-BGC, NPP, páramos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahowald, Natalie; Rothenberg, D.; Lindsay, Keith
2011-02-01
Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climatemore » feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.« less
Frank, Dorothea; Reichstein, Markus; Bahn, Michael; Thonicke, Kirsten; Frank, David; Mahecha, Miguel D; Smith, Pete; van der Velde, Marijn; Vicca, Sara; Babst, Flurin; Beer, Christian; Buchmann, Nina; Canadell, Josep G; Ciais, Philippe; Cramer, Wolfgang; Ibrom, Andreas; Miglietta, Franco; Poulter, Ben; Rammig, Anja; Seneviratne, Sonia I; Walz, Ariane; Wattenbach, Martin; Zavala, Miguel A; Zscheischler, Jakob
2015-08-01
Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon-climate feedbacks. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedman, Adam J. E.; Tan, BoonFei; Thompson, Janelle R.
Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected super-critical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO 2- water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four membersmore » of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. In conclusion, the existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling.« less
Freedman, Adam J. E.; Tan, BoonFei; Thompson, Janelle R.
2017-05-02
Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected super-critical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO 2- water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four membersmore » of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. In conclusion, the existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling.« less
NASA Astrophysics Data System (ADS)
Smallman, Luke; Williams, Mathew
2016-04-01
Forests are a critical component of the global carbon cycle, storing significant amounts of carbon, split between living biomass and dead organic matter. The carbon budget of forests is the most uncertain component of the global carbon cycle - it is currently impossible to quantify accurately the carbon source/sink strength of forest biomes due to their heterogeneity and complex dynamics. It has been a major challenge to generate robust carbon budgets across landscapes due to data scarcity. Models have been used but outputs have lacked an assessment of uncertainty, making a robust assessment of their reliability and accuracy challenging. Here a Metropolis Hastings - Markov Chain Monte Carlo (MH-MCMC) data assimilation framework has been used to combine remotely sensed leaf area index (MODIS), biomass (where available) and deforestation estimates, in addition to forest planting and clear-felling information from the UK's national forest inventory, an estimate of soil carbon from the Harmonized World Database (HWSD) and plant trait information with a process model (DALEC) to produce a constrained analysis with a robust estimate of uncertainty of the UK forestry carbon budget between 2000 and 2010. Our analysis estimates the mean annual UK forest carbon sink at -3.9 MgC ha-1yr-1 with a 95 % confidence interval between -4.0 and -3.1 MgC ha-1 yr-1. The UK national forest inventory (NFI) estimates the mean UK forest carbon sink to be between -1.4 and -5.5 MgC ha-1 yr-1. The analysis estimate for total forest biomass stock in 2010 is estimated at 229 (177/232) TgC, while the NFI an estimated total forest biomass carbon stock of 216 TgC. Leaf carbon area (LCA) is a key plant trait which we are able to estimate using our analysis. Comparison of median estimates for LCA retrieved from the analysis and a UK land cover map show higher and lower values for LCA are estimated areas dominated by needle leaf and broad leaf forests forest respectively, consistent with ecological expectations. Moreover, the retrieved LCA is positively correlated with leaf-life span and negatively correlated with allocation of photosynthate to foliage, supported by field observations. This emergence of key plant traits and correlations between traits increases our confidence in the robustness of this analysis. Furthermore, this framework also allows us to search for additional emergent properties from the analysis such as spatial variation of retrieved drought tolerance. Finally our analysis is able to identify components of the carbon cycle with the largest uncertainty providing targets for future observations (e.g. remotely sensed biomass). Our Bayesian analysis system is ideally suited for assimilation of multiple biomass estimates and their associated uncertainties to reduce both uncertainty in the state of the system but also process parameters (e.g. wood residence time).
Drivers of multi-century trends in the atmospheric CO2 mean annual cycle in a prognostic ESM
NASA Astrophysics Data System (ADS)
Liptak, Jessica; Keppel-Aleks, Gretchen; Lindsay, Keith
2017-03-01
The amplitude of the mean annual cycle of atmospheric CO2 is a diagnostic of seasonal surface-atmosphere carbon exchange. Atmospheric observations show that this quantity has increased over most of the Northern Hemisphere (NH) extratropics during the last 3 decades, likely from a combination of enhanced atmospheric CO2, climate change, and anthropogenic land use change. Accurate climate prediction requires accounting for long-term interactions between the environment and carbon cycling; thus, analysis of the evolution of the mean annual cycle in a fully prognostic Earth system model may provide insight into the multi-decadal influence of environmental change on the carbon cycle. We analyzed the evolution of the mean annual cycle in atmospheric CO2 simulated by the Community Earth System Model (CESM) from 1950 to 2300 under three scenarios designed to separate the effects of climate change, atmospheric CO2 fertilization, and land use change. The NH CO2 seasonal amplitude increase in the CESM mainly reflected enhanced primary productivity during the growing season due to climate change and the combined effects of CO2 fertilization and nitrogen deposition over the mid- and high latitudes. However, the simulations revealed shifts in key climate drivers of the atmospheric CO2 seasonality that were not apparent before 2100. CO2 fertilization and nitrogen deposition in boreal and temperate ecosystems were the largest contributors to mean annual cycle amplification over the midlatitudes for the duration of the simulation (1950-2300). Climate change from boreal ecosystems was the main driver of Arctic CO2 annual cycle amplification between 1950 and 2100, but CO2 fertilization had a stronger effect on the Arctic CO2 annual cycle amplitude during 2100-2300. Prior to 2100, the NH CO2 annual cycle amplitude increased in conjunction with an increase in the NH land carbon sink. However, these trends decoupled after 2100, underscoring that an increasing atmospheric CO2 annual cycle amplitude does not necessarily imply a strengthened terrestrial carbon sink.
NASA Astrophysics Data System (ADS)
Jiang, Jiang; Huang, Yuanyuan; Ma, Shuang; Stacy, Mark; Shi, Zheng; Ricciuto, Daniel M.; Hanson, Paul J.; Luo, Yiqi
2018-03-01
The ability to forecast ecological carbon cycling is imperative to land management in a world where past carbon fluxes are no longer a clear guide in the Anthropocene. However, carbon-flux forecasting has not been practiced routinely like numerical weather prediction. This study explored (1) the relative contributions of model forcing data and parameters to uncertainty in forecasting flux- versus pool-based carbon cycle variables and (2) the time points when temperature and CO2 treatments may cause statistically detectable differences in those variables. We developed an online forecasting workflow (Ecological Platform for Assimilation of Data (EcoPAD)), which facilitates iterative data-model integration. EcoPAD automates data transfer from sensor networks, data assimilation, and ecological forecasting. We used the Spruce and Peatland Responses Under Changing Experiments data collected from 2011 to 2014 to constrain the parameters in the Terrestrial Ecosystem Model, forecast carbon cycle responses to elevated CO2 and a gradient of warming from 2015 to 2024, and specify uncertainties in the model output. Our results showed that data assimilation substantially reduces forecasting uncertainties. Interestingly, we found that the stochasticity of future external forcing contributed more to the uncertainty of forecasting future dynamics of C flux-related variables than model parameters. However, the parameter uncertainty primarily contributes to the uncertainty in forecasting C pool-related response variables. Given the uncertainties in forecasting carbon fluxes and pools, our analysis showed that statistically different responses of fast-turnover pools to various CO2 and warming treatments were observed sooner than slow-turnover pools. Our study has identified the sources of uncertainties in model prediction and thus leads to improve ecological carbon cycling forecasts in the future.
NASA Astrophysics Data System (ADS)
Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng
2014-08-01
A series of core-shell carbon coated amorphous CoSnO3 (CoSnO3@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO3@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g-1 after 100 cycles.
Electrochemical performance studies of MnO{sub 2} nanoflowers recovered from spent battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Gomaa A.M.; Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524; Tan, Ling Ling
2014-12-15
Highlights: • MnO{sub 2} is recovered from spent zinc–carbon batteries as nanoflowers structure. • Recovered MnO{sub 2} nanoflowers show high specific capacitance. • Recovered MnO{sub 2} nanoflowers show stable electrochemical cycling up to 900 cycles. • Recovered MnO{sub 2} nanoflowers show low resistance in EIS data. - Abstract: The electrochemical performance of MnO{sub 2} nanoflowers recovered from spent household zinc–carbon battery is studied by cyclic voltammetry, galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy. MnO{sub 2} nanoflowers are recovered from spent zinc–carbon battery by combination of solution leaching and electrowinning techniques. In an effort to utilize recovered MnO{sub 2} nanoflowers asmore » energy storage supercapacitor, it is crucial to understand their structure and electrochemical performance. X-ray diffraction analysis confirms the recovery of MnO{sub 2} in birnessite phase, while electron microscopy analysis shows the MnO{sub 2} is recovered as 3D nanostructure with nanoflower morphology. The recovered MnO{sub 2} nanoflowers exhibit high specific capacitance (294 F g{sup −1} at 10 mV s{sup −1}; 208.5 F g{sup −1} at 0.1 A g{sup −1}) in 1 M Na{sub 2}SO{sub 4} electrolyte, with stable electrochemical cycling. Electrochemical data analysis reveal the great potential of MnO{sub 2} nanoflowers recovered from spent zinc–carbon battery in the development of high performance energy storage supercapacitor system.« less
Markewich, H.W.; Buell, G.R.
2001-01-01
Terrestrial carbon sequestration has a potential role in reducing the recent increase in atmospheric carbon dioxide (CO2) that is, in part, contributing to global warming. Because the most stable long-term surface reservoir for carbon is the soil, changes in agriculture and forestry can potentially reduce atmospheric CO2 through increased soil-carbon storage. If local governments and regional planning agencies are to effect changes in land-use management that could mitigate the impacts of increased greenhouse gas (GHG) emissions, it is essential to know how carbon is cycled and distributed on the landscape. Only then can a cost/benefit analysis be applied to carbon sequestration as a potential land-use management tool for mitigation of GHG emissions. For the past several years, the U.S. Geological Survey (USGS) has been researching the role of terrestrial carbon in the global carbon cycle. Data from these investigations now allow the USGS to begin to (1) 'map' carbon at national, regional, and local scales; (2) calculate present carbon storage at land surface; and (3) identify those areas having the greatest potential to sequester carbon.
NASA Astrophysics Data System (ADS)
Gu, H.; Zhou, Y.; Williams, C. A.
2017-12-01
Accurate assessment of forest carbon storage and uptake is central to policymaking aimed at mitigating climate change and understanding the role forests play in the global carbon cycle. Disturbance events are highly heterogeneous in space and time, impacting forest carbon dynamics and challenging the quantification and reporting of carbon stocks and fluxes. This study documents annual carbon stocks and fluxes from 1986 and 2010 mapped at 30-m resolution across southeastern US forests, characterizing how they respond to disturbances and ensuing regrowth. Forest inventory data (FIA) are used to parameterize a carbon cycle model (CASA) to represent post-disturbance carbon trajectories of carbon pools and fluxes with time following harvest, fire and bark beetle disturbances of varying severity and across forest types and site productivity settings. Time since disturbance at 30 meters is inferred from two remote-sensing data sources: disturbance year (NAFD, MTBS and ADS) and biomass (NBCD 2000) intersected with FIA-derived curves of biomass accumulation with stand age. All of these elements are combined to map carbon stocks and fluxes at a 30-m resolution for the year 2010, and to march backward in time for continuous, annual reporting. Results include maps of annual carbon stocks and fluxes for forests of the southeastern US, and analysis of spatio-temporal patterns of carbon sources/sinks at local and regional scales.
Frank, Dorothea; Reichstein, Markus; Bahn, Michael; Thonicke, Kirsten; Frank, David; Mahecha, Miguel D; Smith, Pete; van der Velde, Marijn; Vicca, Sara; Babst, Flurin; Beer, Christian; Buchmann, Nina; Canadell, Josep G; Ciais, Philippe; Cramer, Wolfgang; Ibrom, Andreas; Miglietta, Franco; Poulter, Ben; Rammig, Anja; Seneviratne, Sonia I; Walz, Ariane; Wattenbach, Martin; Zavala, Miguel A; Zscheischler, Jakob
2015-01-01
Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon–climate feedbacks. PMID:25752680
Benjamin Bright; J. A. Hicke; A. T. Hudak
2012-01-01
Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field...
Nordeste, Ricardo
2017-01-01
ABSTRACT Polyhydroxybutyrate (PHB) and glycogen polymers are produced by bacteria as carbon storage compounds under unbalanced growth conditions. To gain insights into the transcriptional mechanisms controlling carbon storage in Sinorhizobium meliloti, we investigated the global transcriptomic response to the genetic disruption of key genes in PHB synthesis and degradation and in glycogen synthesis. Under both nitrogen-limited and balanced growth conditions, transcriptomic analysis was performed with genetic mutants deficient in PHB synthesis (phbA, phbB, phbAB, and phbC), PHB degradation (bdhA, phaZ, and acsA2), and glycogen synthesis (glgA1). Three distinct genomic regions of the pSymA megaplasmid exhibited altered expression in the wild type and the PHB cycle mutants that was not seen in the glycogen synthesis mutant. An Fnr family transcriptional motif was identified in the upstream regions of a cluster of genes showing similar transcriptional patterns across the mutants. This motif was found at the highest density in the genomic regions with the strongest transcriptional effect, and the presence of this motif upstream of genes in these regions was significantly correlated with decreased transcript abundance. Analysis of the genes in the pSymA regions revealed that they contain a genomic overrepresentation of Fnr family transcription factor-encoding genes. We hypothesize that these loci, containing mostly nitrogen utilization, denitrification, and nitrogen fixation genes, are regulated in response to the intracellular carbon/nitrogen balance. These results indicate a transcriptional regulatory association between intracellular carbon levels (mediated through the functionality of the PHB cycle) and the expression of nitrogen metabolism genes. IMPORTANCE The ability of bacteria to store carbon and energy as intracellular polymers uncouples cell growth and replication from nutrient uptake and provides flexibility in the use of resources as they are available to the cell. The impact of carbon storage on cellular metabolism would be reflected in global transcription patterns. By investigating the transcriptomic effects of genetically disrupting genes involved in the PHB carbon storage cycle, we revealed a relationship between intracellular carbon storage and nitrogen metabolism. This work demonstrates the utility of combining transcriptome sequencing with metabolic pathway mutations for identifying underlying gene regulatory mechanisms. Author Video: An author video summary of this article is available. PMID:28905000
Li, Haixing; Liang, Zhijun; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei
2016-01-01
Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites, and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00, and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate, and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism, and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention, and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799) were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant growth and development.
A U.S. Carbon Cycle Science Plan
NASA Astrophysics Data System (ADS)
Michalak, Anna M.; Jackson, Rob; Marland, Gregg; Sabine, Christopher
2009-03-01
First Meeting of the Carbon Cycle Science Working Group; Washington, D. C., 17-18 November 2008; The report “A U.S. carbon cycle science plan” (J. L. Sarmiento and S. C. Wofsy, U.S. Global Change Res. Program, Washington, D. C., 1999) outlined research priorities and promoted coordinated carbon cycle research across federal agencies for nearly a decade. Building on this framework and subsequent reports (available at http://www.carboncyclescience.gov/docs.php), the Carbon Cycle Science Working Group (CCSWG) was formed in 2008 to develop an updated strategy for the next decade. The recommendations of the CCSWG will go to agency managers who have collective responsibility for setting national carbon cycle science priorities and for sponsoring much of the carbon cycle research in the United States.
Yang, Qichun; Zhang, Xuesong; Xu, Xingya; ...
2017-05-29
Riverine carbon cycling is an important, but insufficiently investigated component of the global carbon cycle. Analyses of environmental controls on riverine carbon cycling are critical for improved understanding of mechanisms regulating carbon processing and storage along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC) concentration data from 1402 United States Geological Survey (USGS) gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S.) surface waters. DOC concentrations exhibit high spatial variability, with an average of 6.42 ± 6.47 mg C/ L (Mean ± Standard Deviation). In general,more » high DOC concentrations occur in the Upper Mississippi River basin and the Southeastern U.S., while low concentrations are mainly distributed in the Western U.S. Single-factor analysis indicates that slope of drainage areas, wetlands, forests, percentage of first-order streams, and instream nutrients (such as nitrogen and phosphorus) pronouncedly influence DOC concentrations, but the explanatory power of each bivariate model is lower than 35%. Analyses based on the general multi-linear regression models suggest DOC concentrations are jointly impacted by multiple factors. Soil properties mainly show positive correlations with DOC concentrations; forest and shrub lands have positive correlations with DOC concentrations, but urban area and croplands demonstrate negative impacts; total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers, which may be caused by changing carbon sources and removal rates by river orders. In sum, our results reveal that general multi-linear regression analysis of twenty one terrestrial and aquatic environmental factors can partially explain (56%) the DOC concentration variation. In conclusion, this study highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.« less
The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries
NASA Astrophysics Data System (ADS)
Anderies, J. M.; Carpenter, S. R.; Steffen, Will; Rockström, Johan
2013-12-01
We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries.
CARVE: The Carbon in Arctic Reservoirs Vulnerability Experiment
NASA Technical Reports Server (NTRS)
Miller, Charles E.; Dinardo, Steven J.
2012-01-01
The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. CARVE's objectives are to: (1) Directly test hypotheses attributing the mobilization of vulnerable Arctic carbon reservoirs to climate warming; (2) Deliver the first direct measurements and detailed maps of CO2 and CH4 sources on regional scales in the Alaskan Arctic; and (3) Demonstrate new remote sensing and modeling capabilities to quantify feedbacks between carbon fluxes and carbon cycle-climate processes in the Arctic (Figure 1). We describe the investigation design and results from 2011 test flights in Alaska.
High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle
NASA Astrophysics Data System (ADS)
Brinck, Katharina; Fischer, Rico; Groeneveld, Jürgen; Lehmann, Sebastian; Dantas de Paula, Mateus; Pütz, Sandro; Sexton, Joseph O.; Song, Danxia; Huth, Andreas
2017-03-01
Deforestation in the tropics is not only responsible for direct carbon emissions but also extends the forest edge wherein trees suffer increased mortality. Here we combine high-resolution (30 m) satellite maps of forest cover with estimates of the edge effect and show that 19% of the remaining area of tropical forests lies within 100 m of a forest edge. The tropics house around 50 million forest fragments and the length of the world's tropical forest edges sums to nearly 50 million km. Edge effects in tropical forests have caused an additional 10.3 Gt (2.1-14.4 Gt) of carbon emissions, which translates into 0.34 Gt per year and represents 31% of the currently estimated annual carbon releases due to tropical deforestation. Fragmentation substantially augments carbon emissions from tropical forests and must be taken into account when analysing the role of vegetation in the global carbon cycle.
Oxygenation of the Root Zone and TCE Remediation: A Plant Model of Rhizosphere Dynamics
2008-03-01
Behavior Test .......................................................................................... 128 IV. Results and Analysis ...Circadian Rhythms and Diurnal Cycles. Just as humans have a rhythmic response to the environment, plants also have a periodic cycle governed by light...characteristics, fatty acid carbon lengths, G + C values, and 16S rRNA sequences. 16S RNA sequence analysis has identified eight genera of methanotrophs
Ocean Carbon States: Data Mining in Observations and Numerical Simulations Results
NASA Astrophysics Data System (ADS)
Latto, R.; Romanou, A.
2017-12-01
Advanced data mining techniques are rapidly becoming widely used in Climate and Earth Sciences with the purpose of extracting new meaningful information from increasingly larger and more complex datasets. This is particularly important in studies of the global carbon cycle, where any lack of understanding of its combined physical and biogeochemical drivers is detrimental to our ability to accurately describe, understand, and predict CO2 concentrations and their changes in the major carbon reservoirs. The analysis presented here evaluates the use of cluster analysis as a means of identifying and comparing spatial and temporal patterns extracted from observational and model datasets. As the observational data is organized into various regimes, which we will call "ocean carbon states", we gain insight into the physical and/or biogeochemical processes controlling the ocean carbon cycle as well as how well these processes are simulated by a state-of-the-art climate model. We find that cluster analysis effectively produces realistic, dynamic regimes that can be associated with specific processes at different temporal scales for both observations and the model. In addition, we show how these regimes can be used to illustrate and characterize the model biases in the model air-sea flux of CO2. These biases are attributed to biases in salinity, sea surface temperature, wind speed, and nitrate, which are then used to identify the physical processes that are inaccurately reproduced by the model. In this presentation, we provide a proof-of-concept application using simple datasets, and we expand to more complex ones, using several physical and biogeochemical variable pairs, thus providing considerable insight into the mechanisms and phases of the ocean carbon cycle over different temporal and spatial scales.
Freedman, Adam J.E.; Tan, BoonFei
2017-01-01
Summary Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO2 reservoirs, which serve as analogs for the long‐term fate of sequestered scCO2, harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO2‐water separators at a natural scCO2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO2 and N2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO2 reservoir indicates that potential impacts of the deep biosphere on CO2 fate and transport should be taken into consideration as a component of GCS planning and modelling. PMID:28229521
Sternberg, Leonel O'Reilly; Deniro, Michael J.; Ting, Irwin P.
1984-01-01
Carbon and hydrogen isotope ratios of cellulose nitrate and oxygen isotope ratios of cellulose from species of greenhouse plants having different photosynthetic modes were determined. When hydrogen isotope ratios are plotted against carbon isotope ratios, four clusters of points are discernible, each representing different photosynthetic modes: C3 plants, C4 plants, CAM plants, and C3 plants that can shift to CAM or show the phenomenon referred to as CAM-cycling. The combination of oxygen and carbon isotope ratios does not distinguish among the different photosynthetic modes. Analysis of the carbon and hydrogen isotope ratios of cellulose nitrate should prove useful for screening different photosynthetic modes in field specimens that grew near one another. This method will be particularly useful for detection of plants which show CAM-cycling. PMID:16663360
Levicán, Gloria; Ugalde, Juan A; Ehrenfeld, Nicole; Maass, Alejandro; Parada, Pilar
2008-01-01
Background Carbon and nitrogen fixation are essential pathways for autotrophic bacteria living in extreme environments. These bacteria can use carbon dioxide directly from the air as their sole carbon source and can use different sources of nitrogen such as ammonia, nitrate, nitrite, or even nitrogen from the air. To have a better understanding of how these processes occur and to determine how we can make them more efficient, a comparative genomic analysis of three bioleaching bacteria isolated from mine sites in Chile was performed. This study demonstrated that there are important differences in the carbon dioxide and nitrogen fixation mechanisms among bioleaching bacteria that coexist in mining environments. Results In this study, we probed that both Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans incorporate CO2 via the Calvin-Benson-Bassham cycle; however, the former bacterium has two copies of the Rubisco type I gene whereas the latter has only one copy. In contrast, we demonstrated that Leptospirillum ferriphilum utilizes the reductive tricarboxylic acid cycle for carbon fixation. Although all the species analyzed in our study can incorporate ammonia by an ammonia transporter, we demonstrated that Acidithiobacillus thiooxidans could also assimilate nitrate and nitrite but only Acidithiobacillus ferrooxidans could fix nitrogen directly from the air. Conclusion The current study utilized genomic and molecular evidence to verify carbon and nitrogen fixation mechanisms for three bioleaching bacteria and provided an analysis of the potential regulatory pathways and functional networks that control carbon and nitrogen fixation in these microorganisms. PMID:19055775
Large historical growth in global terrestrial gross primary production
Campbell, J. E.; Berry, J. A.; Seibt, U.; ...
2017-04-05
Growth in terrestrial gross primary production (GPP) may provide a negative feedback for climate change. It remains uncertain, however, to what extent biogeochemical processes can suppress global GPP growth. In consequence, model estimates of terrestrial carbon storage and carbon cycle –climate feedbacks remain poorly constrained. Here we present a global, measurement-based estimate of GPP growth during the twentieth century based on long-term atmospheric carbonyl sulphide (COS) records derived from ice core, firn, and ambient air samples. Here, we interpret these records using a model that simulates changes in COS concentration due to changes in its sources and sinks, including amore » large sink that is related to GPP. We find that the COS record is most consistent with climate-carbon cycle model simulations that assume large GPP growth during the twentieth century (31% ± 5%; mean ± 95% confidence interval). Finally, while this COS analysis does not directly constrain estimates of future GPP growth it provides a global-scale benchmark for historical carbon cycle simulations.« less
Large historical growth in global terrestrial gross primary production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, J. E.; Berry, J. A.; Seibt, U.
Growth in terrestrial gross primary production (GPP) may provide a negative feedback for climate change. It remains uncertain, however, to what extent biogeochemical processes can suppress global GPP growth. In consequence, model estimates of terrestrial carbon storage and carbon cycle –climate feedbacks remain poorly constrained. Here we present a global, measurement-based estimate of GPP growth during the twentieth century based on long-term atmospheric carbonyl sulphide (COS) records derived from ice core, firn, and ambient air samples. Here, we interpret these records using a model that simulates changes in COS concentration due to changes in its sources and sinks, including amore » large sink that is related to GPP. We find that the COS record is most consistent with climate-carbon cycle model simulations that assume large GPP growth during the twentieth century (31% ± 5%; mean ± 95% confidence interval). Finally, while this COS analysis does not directly constrain estimates of future GPP growth it provides a global-scale benchmark for historical carbon cycle simulations.« less
Application of thermal analysis techniques in activated carbon production
Donnals, G.L.; DeBarr, J.A.; Rostam-Abadi, M.; Lizzio, A.A.; Brady, T.A.
1996-01-01
Thermal analysis techniques have been used at the ISGS as an aid in the development and characterization of carbon adsorbents. Promising adsorbents from fly ash, tires, and Illinois coals have been produced for various applications. Process conditions determined in the preparation of gram quantities of carbons were used as guides in the preparation of larger samples. TG techniques developed to characterize the carbon adsorbents included the measurement of the kinetics of SO2 adsorption, the performance of rapid proximate analyses, and the determination of equilibrium methane adsorption capacities. Thermal regeneration of carbons was assessed by TG to predict the life cycle of carbon adsorbents in different applications. TPD was used to determine the nature of surface functional groups and their effect on a carbon's adsorption properties.
Design and analysis of synthetic carbon fixation pathways
Bar-Even, Arren; Noor, Elad; Lewis, Nathan E.; Milo, Ron
2010-01-01
Carbon fixation is the process by which CO2 is incorporated into organic compounds. In modern agriculture in which water, light, and nutrients can be abundant, carbon fixation could become a significant growth-limiting factor. Hence, increasing the fixation rate is of major importance in the road toward sustainability in food and energy production. There have been recent attempts to improve the rate and specificity of Rubisco, the carboxylating enzyme operating in the Calvin–Benson cycle; however, they have achieved only limited success. Nature employs several alternative carbon fixation pathways, which prompted us to ask whether more efficient novel synthetic cycles could be devised. Using the entire repertoire of approximately 5,000 metabolic enzymes known to occur in nature, we computationally identified alternative carbon fixation pathways that combine existing metabolic building blocks from various organisms. We compared the natural and synthetic pathways based on physicochemical criteria that include kinetics, energetics, and topology. Our study suggests that some of the proposed synthetic pathways could have significant quantitative advantages over their natural counterparts, such as the overall kinetic rate. One such cycle, which is predicted to be two to three times faster than the Calvin–Benson cycle, employs the most effective carboxylating enzyme, phosphoenolpyruvate carboxylase, using the core of the naturally evolved C4 cycle. Although implementing such alternative cycles presents daunting challenges related to expression levels, activity, stability, localization, and regulation, we believe our findings suggest exciting avenues of exploration in the grand challenge of enhancing food and renewable fuel production via metabolic engineering and synthetic biology. PMID:20410460
Maximum warming occurs about one decade after carbon dioxide emission
NASA Astrophysics Data System (ADS)
Ricke, K.; Caldeira, K.
2014-12-01
There has been a long tradition of estimating the amount of climate change that would result from various carbon dioxide emission or concentration scenarios but there has been relatively little quantitative analysis of how long it takes to feel the consequences of an individual carbon dioxide emission. Using conjoined results of recent carbon-cycle and physical-climate model intercomparison projects, we find the median time between an emission and maximum warming is 10.1 years, with a 90% probability range of 6.6 to 30.7 years. We evaluate uncertainties in timing and amount of warming, partitioning them into three contributing factors: carbon cycle, climate sensitivity and ocean thermal inertia. To characterize the carbon cycle uncertainty associated with the global temperature response to a carbon dioxide emission today, we use fits to the time series of carbon dioxide concentrations from a CO2-impulse response function model intercomparison project's 15 ensemble members (1). To characterize both the uncertainty in climate sensitivity and in the thermal inertia of the climate system, we use fits to the time series of global temperature change from the Coupled Model Intercomparison Project phase 5 (CMIP5; 2) abrupt4xco2 experiment's 20 ensemble's members separating the effects of each uncertainty factors using one of two simple physical models for each CMIP5 climate model. This yields 6,000 possible combinations of these three factors using a standard convolution integral approach. Our results indicate that benefits of avoided climate damage from avoided CO2 emissions will be manifested within the lifetimes of people who acted to avoid that emission. While the relevant time lags imposed by the climate system are substantially shorter than a human lifetime, they are substantially longer than the typical political election cycle, making the delay and its associated uncertainties both economically and politically significant. References: 1. Joos F et al. (2013) Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos Chem Phys 13:2793-2825. 2. Taylor KE, Stouffer RJ, Meehl GA (2011) An Overview of CMIP5 and the Experiment Design. Bull Am Meteorol Soc 93:485-498.
Global distribution of carbon turnover times in terrestrial ecosystems
NASA Astrophysics Data System (ADS)
Carvalhais, Nuno; Forkel, Matthias; Khomik, Myroslava; Bellarby, Jessica; Jung, Martin; Migliavacca, Mirco; Mu, Mingquan; Saatchi, Sassan; Santoro, Maurizio; Thurner, Martin; Weber, Ulrich; Ahrens, Bernhard; Beer, Christian; Cescatti, Alessandro; Randerson, James T.; Reichstein, Markus
2015-04-01
The response of the carbon cycle in terrestrial ecosystems to climate variability remains one of the largest uncertainties affecting future projections of climate change. This feedback between the terrestrial carbon cycle and climate is partly determined by the response of carbon uptake and by changes in the residence time of carbon in land ecosystems, which depend on climate, soil, and vegetation type. Thus, it is of foremost importance to quantify the turnover times of carbon in terrestrial ecosystems and its spatial co-variability with climate. Here, we develop a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times (τ) to investigate its co-variation with climate at global scale. Assuming a balance between uptake (gross primary production, GPP) and emission fluxes, τ can be defined as the ratio between the total stock (C_total) and the output or input fluxes (GPP). The estimation of vegetation (C_veg) stocks relies on new remote sensing-based estimates from Saatchi et al (2011) and Thurner et al (2014), while soil carbon stocks (C_soil) are estimated based on state of the art global (Harmonized World Soil Database) and regional (Northern Circumpolar Soil Carbon Database) datasets. The uptake flux estimates are based on global observation-based fields of GPP (Jung et al., 2011). Globally, we find an overall mean global carbon turnover time of 23-4+7 years (95% confidence interval). A strong spatial variability globally is also observed, from shorter residence times in equatorial regions to longer periods at latitudes north of 75°N (mean τ of 15 and 255 years, respectively). The observed latitudinal pattern reflect the clear dependencies on temperature, showing increases from the equator to the poles, which is consistent with our current understanding of temperature controls on ecosystem dynamics. However, long turnover times are also observed in semi-arid and forest-herbaceous transition regions. Furthermore, based on a local correlation analysis, our results reveal a similarly strong association between τ and precipitation. A further analysis of carbon turnover times as simulated by state-of-the-art coupled climate carbon-cycle models from the CMIP5 experiments reveals wide variations between models and a tendency to underestimate the global τ by 36%. The latitudinal patterns correlate significantly with the observation-based patterns. However, the models show stronger associations between τ and temperature than the observation-based estimates. In general, the stronger relationship between τ and precipitation is not reproduced and the modeled turnover times are significantly faster in many semi-arid regions. Ultimately, these results suggest a strong role of the hydrological cycle in the carbon cycle-climate interactions, which is not currently reproduced by Earth system models.
Cycle analysis of MCFC/gas turbine system
NASA Astrophysics Data System (ADS)
Musa, Abdullatif; Alaktiwi, Abdulsalam; Talbi, Mosbah
2017-11-01
High temperature fuel cells such as the solid oxide fuel cell (SOFC) and the molten carbonate fuel cell (MCFC) are considered extremely suitable for electrical power plant application. The molten carbonate fuel cell (MCFC) performances is evaluated using validated model for the internally reformed (IR) fuel cell. This model is integrated in Aspen Plus™. Therefore, several MCFC/Gas Turbine systems are introduced and investigated. One of this a new cycle is called a heat recovery (HR) cycle. In the HR cycle, a regenerator is used to preheat water by outlet air compressor. So the waste heat of the outlet air compressor and the exhaust gases of turbine are recovered and used to produce steam. This steam is injected in the gas turbine, resulting in a high specific power and a high thermal efficiency. The cycles are simulated in order to evaluate and compare their performances. Moreover, the effects of an important parameters such as the ambient air temperature on the cycle performance are evaluated. The simulation results show that the HR cycle has high efficiency.
An introduction to global carbon cycle management
Sundquist, Eric T.; Ackerman, Katherine V.; Parker, Lauren; Huntzinger, Deborah N.
2009-01-01
Past and current human activities have fundamentally altered the global carbon cycle. Potential future efforts to control atmospheric CO2 will also involve significant changes in the global carbon cycle. Carbon cycle scientists and engineers now face not only the difficulties of recording and understanding past and present changes but also the challenge of providing information and tools for new management strategies that are responsive to societal needs. The challenge is nothing less than managing the global carbon cycle.
The long-term carbon cycle, fossil fuels and atmospheric composition.
Berner, Robert A
2003-11-20
The long-term carbon cycle operates over millions of years and involves the exchange of carbon between rocks and the Earth's surface. There are many complex feedback pathways between carbon burial, nutrient cycling, atmospheric carbon dioxide and oxygen, and climate. New calculations of carbon fluxes during the Phanerozoic eon (the past 550 million years) illustrate how the long-term carbon cycle has affected the burial of organic matter and fossil-fuel formation, as well as the evolution of atmospheric composition.
Microbial formation of labile organic carbon in Antarctic glacial environments
Smith, H.J.; Foster, R.; McKnight, D.M.; Lisle, John T.; Littmann, S.; Kuypers, M.M.M.; Foreman, C.M.
2017-01-01
Roughly six petagrams of organic carbon are stored within ice worldwide. This organic carbon is thought to be of old age and highly bioavailable. Along with storage of ancient and new atmospherically deposited organic carbon, microorganisms may contribute substantially to the glacial organic carbon pool. Models of glacial microbial carbon cycling vary from net respiration to net carbon fixation. Supraglacial streams have not been considered in models although they are amongst the largest ecosystems on most glaciers and are inhabited by diverse microbial communities. Here we investigate the biogeochemical sequence of organic carbon production and uptake in an Antarctic supraglacial stream in the McMurdo Dry Valleys using nanometre-scale secondary ion mass spectrometry, fluorescence spectroscopy, stable isotope analysis and incubation experiments. We find that heterotrophic production relies on highly labile organic carbon freshly derived from photosynthetic bacteria rather than legacy organic carbon. Exudates from primary production were utilized by heterotrophs within 24 h, and supported bacterial growth demands. The tight coupling of microbially released organic carbon and rapid uptake by heterotrophs suggests a dynamic local carbon cycle. Moreover, as temperatures increase there is the potential for positive feedback between glacial melt and microbial transformations of organic carbon.
Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0)
Alivisatos, Paul
2018-05-08
Paul Alivisatos, LBNL Director speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 4, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Wang, Li; Cheung, Man Kit; Liu, Rulong; Wong, Chong Kim; Kwan, Hoi Shan; Hwang, Jiang-Shiou
2017-04-01
Shallow-water hydrothermal vents (HTVs) are an ecologically important habitat with a geographic origin similar to that of deep-sea HTVs. Studies on shallow-water HTVs have not only facilitated understanding of the influences of vents on local ecosystems but also helped to extend the knowledge on deep-sea vents. In this study, the diversity of bacterial communities in the sediments of shallow-water HTVs off Kueishan Island, Taiwan, was investigated by examining the 16S ribosomal RNA gene as well as key functional genes involved in chemoautotrophic carbon fixation (aclB, cbbL and cbbM). In the vent area, Sulfurovum and Sulfurimonas of Epsilonproteobacteria appeared to dominate the benthic bacterial community. Results of aclB gene analysis also suggested involvement of these bacteria in carbon fixation using the reductive tricarboxylic acid (rTCA) cycle. Analysis of the cbbM gene showed that Alphaproteobacterial members such as the purple non-sulfur bacteria were the major chemoautotrophic bacteria involving in carbon fixation via the Calvin-Benson-Bassham (CBB) cycle. However, they only accounted for <2% of the total bacterial community in the vent area. These findings suggest that the rTCA cycle is the major chemoautotrophic carbon fixation pathway in sediments of the shallow-water HTVs off Kueishan Island.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brun, Klaus; McClung, Aaron; Davis, John
2014-03-31
The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmapmore » for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features such as blade cooling. The overall technical readiness of the supercritical oxy-combustion cycle is TRL 2, Technology Concept, due to the maturity level of the supercritical oxy-combustor for solid fuels, and several critical supporting components, as identified in the Technical Gap Analysis. The supercritical oxycombustor for solid fuels operating at pressures near 100 atm is a unique component of the supercritical oxy-combustion cycle. In addition to the low TRL supercritical oxy-combustor, secondary systems were identified that would require adaptation for use with the supercritical oxycombustion cycle. These secondary systems include the high pressure pulverized coal feed, high temperature cyclone, removal of post-combustion particulates from the high pressure cyclone underflow stream, and micro-channel heat exchangers tolerant of particulate loading. Bench scale testing was utilized to measure coal combustion properties at elevated pressures in a CO{sub 2} environment. This testing included coal slurry preparation, visualization of coal injection into a high pressure fluid, and modification of existing test equipment to facilitate the combustion properties testing. Additional bench scale testing evaluated the effectiveness of a rotary atomizer for injecting a coal-water slurry into a fluid with similar densities, as opposed to the typical application where the high density fluid is injected into a low density fluid. The swirl type supercritical oxy-combustor was developed from initial concept to an advanced design stage through numerical simulation using FLUENT and Chemkin to model the flow through the combustor and provide initial assessment of the coal combustion reactions in the flow path. This effort enabled the initial combustor mechanical layout, initial pressure vessel design, and the conceptual layout of a pilot scale test loop. A pilot scale demonstration of the supercritical oxy-combustion cycle is proposed as the next step in the technology development. This demonstration would advance the supercritical oxy-combustion cycle and the supercritical oxy-combustor from a current TRL of 2, Technology Concept, to TRL 6, Pilot Scale System Demonstrated in a Relevant Environment, and enable the evaluation and continued refinement of the supercritical oxy-combustor and critical secondary systems.« less
Analytically tractable climate-carbon cycle feedbacks under 21st century anthropogenic forcing
NASA Astrophysics Data System (ADS)
Lade, Steven J.; Donges, Jonathan F.; Fetzer, Ingo; Anderies, John M.; Beer, Christian; Cornell, Sarah E.; Gasser, Thomas; Norberg, Jon; Richardson, Katherine; Rockström, Johan; Steffen, Will
2018-05-01
Changes to climate-carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate-carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate-carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate-carbon feedback; and concentration-carbon feedbacks may be more sensitive to future climate change than climate-carbon feedbacks. Simple models such as that developed here also provide workbenches
for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.
Life cycle analysis of switchgrass converted via pyrolysis, gasification, and fermentation
USDA-ARS?s Scientific Manuscript database
The US is promoting and developing low carbon fuel sources. Perennial bioenergy crops such as switchgrass (Panicum virgatum L.) are one viable source for low carbon transportation fuels. The objective is to determine the net greenhouse gas (GHG) emissions from different conversion methods (pyrolysi...
Improving Estimates and Forecasts of Lake Carbon Pools and Fluxes Using Data Assimilation
NASA Astrophysics Data System (ADS)
Zwart, J. A.; Hararuk, O.; Prairie, Y.; Solomon, C.; Jones, S.
2017-12-01
Lakes are biogeochemical hotspots on the landscape, contributing significantly to the global carbon cycle despite their small areal coverage. Observations and models of lake carbon pools and fluxes are rarely explicitly combined through data assimilation despite significant use of this technique in other fields with great success. Data assimilation adds value to both observations and models by constraining models with observations of the system and by leveraging knowledge of the system formalized by the model to objectively fill information gaps. In this analysis, we highlight the utility of data assimilation in lake carbon cycling research by using the Ensemble Kalman Filter to combine simple lake carbon models with observations of lake carbon pools. We demonstrate the use of data assimilation to improve a model's representation of lake carbon dynamics, to reduce uncertainty in estimates of lake carbon pools and fluxes, and to improve the accuracy of carbon pool size estimates relative to estimates derived from observations alone. Data assimilation techniques should be embraced as valuable tools for lake biogeochemists interested in learning about ecosystem dynamics and forecasting ecosystem states and processes.
Carbon footprint hotspots of prefabricated sandwich panels for hostel construction in Perlis
NASA Astrophysics Data System (ADS)
Razali, Norashikin; Ayob, Afizah; Chandra, Muhammad Erwan Shah; Zaki, Mohd Faiz Mohammad; Ahmad, Abdul Ghapar
2017-10-01
Sustainable design and construction have gained increasing research interest, and reduction of carbon from building construction has become the main focus of environmental strategies in Malaysia. This study uses life cycle assessment and life cycle inventory analysis frameworks to estimate the amount of carbon footprint expressed in carbon dioxide equivalent tons (CO2e) produced by manufacturing prefabricated Industrialized Building System sandwich panels and its installation for a five-story hostel in Perlis, Malaysia. Results show that the carbon footprint hotspots were centered on boiler machine operation and cement with 4.52 and 369.04 tons CO2e, respectively. This finding is due to the extensive energy used for steam heating and high engine rating for the boiler. However, for cement, the carbon footprint hotspots are caused by the large quantity of cement applied in shotcrete mixture and its high extraction and production CO2 emission values. The overall onsite materials generated 96.36% of the total carbon footprint. These carbon footprint hotspot results constitute a necessary base for the Malaysian government in accomplishing an adequate dimensioning of carbon emissions in the building sector.
NASA Astrophysics Data System (ADS)
Pointer, Robyn; Hesselbo, Stephen; Littler, Kate; Pieńkowski, Grzegorz; Hodbod, Marta
2016-04-01
Carbon-isotope analysis of fossil plant material from a Polish core provides new evidence of a perturbation to the atmospheric carbon-cycle at the Triassic-Jurassic boundary (~201 Ma). The Triassic-Jurassic boundary was a time of extreme climate change which also coincided with the end-Triassic mass extinction. The new data will allow us to identify climatic changes in the Polish Basin across the Triassic-Jurassic boundary and evaluate these changes on a broader scale by comparison to data from other sites located around the world. The Niekłan borehole core, located in the southern Polish Basin, provides a ~200 metre-long terrestrial record spanning the Rhaetian and Hettangian, including the Triassic-Jurassic boundary (~208-199 Ma). The Niekłan core consists of interbedded fluvial and lacustrine sediments containing preserved plant material and thus provides an excellent opportunity to study both terrestrial palaeoenvironmental changes in the Polish Basin and perturbations in the carbon-cycle more broadly. Carbon-isotope analysis of macrofossil plant material and microscopic woody phytoclasts from the Niekłan core reveals a negative carbon-isotope excursion (CIE) of ~-3‰ at the end of the Rhaetian, before a gradual return to more positive values thereafter. The negative CIE suggests an injection of isotopically-light carbon into the atmosphere occurred just before the Triassic-Jurassic boundary. Likely sources of this carbon include volcanogenic gases, methane released from gas hydrates, or a combination of the two. The negative CIE seen in plant material at Niekłan is also recorded in a variety of geological materials from contemporaneous sites world-wide. These time-equivalent, but geographically separated, records indicate that the negative CIE recorded in the Niekłan plant material is the result of a regional or global carbon-cycle perturbation and is not merely a local signal. Future work will focus on using a range of palaeoenvironmental proxies in order to produce a detailed record of climate change at the Triassic-Jurassic boundary to complement the new fossil plant carbon-isotope record from the Niekłan core. A new, detailed, multi-proxy record from the Polish Basin will allow us to quantify the climate changes occurring in the basin across the Triassic-Jurassic boundary.
NASA Astrophysics Data System (ADS)
Druhan, Jennifer L.; Bill, Markus; Lim, HsiaoChien; Wu, Cindy; Conrad, Mark E.; Williams, Kenneth H.; DePaolo, Donald J.; Brodie, Eoin L.
2014-01-01
Here we report a combined analysis of carbon mass balance based on isotopic labeling and microbiological characterization during organic carbon stimulated bioreduction of a subsurface sediment in a large laboratory column experimental system. This combination of approaches allows quantification of both the cycling of carbon through multiple redox pathways and the associated spatial and temporal evolution of bacterial communities in response to this nutrient source. Carbon isotope mass balance facilitated by the use of 13C-labeled acetate as the electron donor showed evidence for a net loss of sediment organic carbon over the course of the amendment experiment. Furthermore, these data clearly demonstrated a source of isotopically labeled inorganic carbon that was not attributable to primary metabolism by acetate-oxidizing microorganisms. Fluid samples collected weekly over the duration of the 43-day amendment at <20 cm intervals along the flow path were analyzed for microbial composition by pyrosequencing of ribosomal RNA genes. The microbial community composition was transient, with distinct occurrences of Azoarcus, Geobacter and multiple sulfate reducing species over the course of the experiment. In combination with DNA sequencing data, the anomalous carbon cycling process is shown to occur exclusively during the period of predominant Geobacter species growth. Pyrosequencing indicated, and targeted cloning and sequencing confirmed the presence of several bacteriovorous protozoa, including species of the Breviata, Planococcus and Euplotes genera. Cloning and qPCR analysis demonstrated that Euplotes species were most abundant and displayed a growth trajectory that closely followed that of the Geobacter population. These results suggest a previously undocumented secondary turnover of biomass carbon related to protozoan grazing that was not sufficiently prevalent to be observed in bulk concentrations of carbon species in the system, but was clearly identified in the partitioning of carbon isotopes. This study demonstrates evidence for predator-prey relationships that impact subsurface microbial community dynamics and provides a novel indication of the impact of this relationship on the flux of carbon through a system via the microbial biomass pool. Overall, our approach provides high temporal and spatial sampling resolution at field relevant flow rates, while minimizing effects of mixing and transverse dispersion. The result is a quantitative carbon budget accounting for a diversity of processes that should be considered for inclusion in reactive transport models that aim to predict carbon turnover, nutrient flux, and redox reactions in natural and stimulated subsurface systems. the mobilization of previously stabilized, sediment-bound carbon; a carbon mass balance for a through-flowing sediment column over the course of a 43-day amendment using 13C-labeled acetate; a phylogenetic microbial community structure at <20 cm sampling resolution with distance away from the organic carbon source weekly over the 43-day amendment; protozoan grazing on the active Geobacteraceae population and the rapid turnover of microbial biomass carbon as a secondary cycling pathway. Such a high resolution, combined analysis of microbial populations and the associated carbon mass balance in a through-flowing system at field relevant flow rates provides novel, quantitative insights into the interface between biogeochemical cycling and bulk carbon fluxes in the near-surface environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortega, Jesus; Khivsara, Sagar; Christian, Joshua
A supercritical carbon dioxide (sCO 2) Brayton cycle is an emerging high energy-density cycle undergoing extensive research due to the appealing thermo-physical properties of sCO 2 and single phase operation. Development of a solar receiver capable of delivering sCO 2 at 20 MPa and 700 °C is required for implementation of the high efficiency (~50%) solar powered sCO 2 Brayton cycle. In this work, extensive candidate materials are review along with tube size optimization using the ASME Boiler and Pressure Vessel Code. Moreover, temperature and pressure distribution obtained from the thermal-fluid modeling (presented in a complementary publication) are used tomore » evaluate the thermal and mechanical stresses along with detailed creep-fatigue analysis of the tubes. The lifetime performance of the receiver tubes were approximated using the resulting body stresses. A cyclic loading analysis is performed by coupling the Strain-Life approach and the Larson-Miller creep model. The structural integrity of the receiver was examined and it was found that the stresses can be withstood by specific tubes, determined by a parametric geometric analysis. Furthermore, the creep-fatigue analysis displayed the damage accumulation due to cycling and the permanent deformation on the tubes showed that the tubes can operate for the full lifetime of the receiver.« less
Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; ...
2016-06-06
A supercritical carbon dioxide (sCO 2) Brayton cycle is an emerging high energy-density cycle undergoing extensive research due to the appealing thermo-physical properties of sCO 2 and single phase operation. Development of a solar receiver capable of delivering sCO 2 at 20 MPa and 700 °C is required for implementation of the high efficiency (~50%) solar powered sCO 2 Brayton cycle. In this work, extensive candidate materials are review along with tube size optimization using the ASME Boiler and Pressure Vessel Code. Moreover, temperature and pressure distribution obtained from the thermal-fluid modeling (presented in a complementary publication) are used tomore » evaluate the thermal and mechanical stresses along with detailed creep-fatigue analysis of the tubes. The lifetime performance of the receiver tubes were approximated using the resulting body stresses. A cyclic loading analysis is performed by coupling the Strain-Life approach and the Larson-Miller creep model. The structural integrity of the receiver was examined and it was found that the stresses can be withstood by specific tubes, determined by a parametric geometric analysis. Furthermore, the creep-fatigue analysis displayed the damage accumulation due to cycling and the permanent deformation on the tubes showed that the tubes can operate for the full lifetime of the receiver.« less
NASA Astrophysics Data System (ADS)
Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Migliavacca, M.; Thurner, M.; Beer, C.; Jung, M.; Mu, M.; Randerson, J. T.; Saatchi, S. S.; Santoro, M.; Reichstein, M.
2012-12-01
The turnover rates of carbon in terrestrial ecosystems and their sensitivity to climate are instrumental properties for diagnosing the interannual variability and forecasting trends of biogeochemical processes and carbon-cycle-climate feedbacks. We propose to globally look at the spatial distribution of turnover rates of carbon to explore the association between bioclimatic regimes and the rates at which carbon cycles in terrestrial ecosystems. Based on data-driven approaches of ecosystem carbon fluxes and data-based estimates of ecosystem carbon stocks it is possible to build fully observationally supported diagnostics. These data driven diagnostics support the benchmarking of CMIP5 model outputs (Coupled Model Intercomparison Project Phase 5) with observationally based estimates. The models' performance is addressed by confronting spatial patterns of carbon fluxes and stocks with data, as well as the global and regional sensitivities of turnover rates to climate. Our results show strong latitudinal gradients globally, mostly controlled by temperature, which are not always paralleled by CMIP5 simulations. In northern colder regions is also where the largest difference in temperature sensitivity between models and data occurs. Interestingly, there seem to be two different statistical populations in the data (some with high, others with low apparent temperature sensitivity of carbon turnover rates), where the different models only seem to describe either one or the other population. Additionally, the comparisons within bioclimatic classes can even show opposite patterns between turnover rates and temperature in water limited regions. Overall, our analysis emphasizes the role of finding patterns and intrinsic properties instead of plain magnitudes of fluxes for diagnosing the sensitivities of terrestrial biogeochemical cycles to climate. Further, our regional analysis suggests a significant gap in addressing the partial influence of water in the ecosystem carbon turnover rates especially in very cold or water limited regions.
Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock.
Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L; de Bruijn, Ino; Andersson, Anders F; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan
2016-10-14
The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present.
Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock
Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan
2016-01-01
The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present. PMID:27739431
NASA Astrophysics Data System (ADS)
Cavallaro, N.; Shrestha, G.; Stover, D. B.; Zhu, Z.; Ombres, E. H.; Deangelo, B.
2015-12-01
The 2nd State of the Carbon Cycle Report (SOCCR-2) is focused on US and North American carbon stocks and fluxes in managed and unmanaged systems, including relevant carbon management science perspectives and tools for supporting and informing decisions. SOCCR-2 is inspired by the US Carbon Cycle Science Plan (2011) which emphasizes global scale research on long-lived, carbon-based greenhouse gases, carbon dioxide and methane, and the major pools and fluxes of the global carbon cycle. Accordingly, the questions framing the Plan inform this report's topical roadmap, with a focus on US and North America in the global context: 1) How have natural processes and human actions affected the global carbon cycle on land, in the atmosphere, in the oceans and in the ecosystem interfaces (e.g. coastal, wetlands, urban-rural)? 2) How have socio-economic trends affected the levels of the primary carbon-containing gases, carbon dioxide and methane, in the atmosphere? 3) How have species, ecosystems, natural resources and human systems been impacted by increasing greenhouse gas concentrations, the associated changes in climate, and by carbon management decisions and practices? To address these aspects, SOCCR-2 will encompass the following broad assessment framework: 1) Carbon Cycle at Scales (Global Perspective, North American Perspective, US Perspective, Regional Perspective); 2) Role of carbon in systems (Soils; Water, Oceans, Vegetation; Terrestrial-aquatic Interfaces); 3) Interactions/Disturbance/Impacts from/on the carbon cycle. 4) Carbon Management Science Perspective and Decision Support (measurements, observations and monitoring for research and policy relevant decision-support etc.). In this presentation, the Carbon Cycle Interagency Working Group and the U.S. Global Change Research Program's U.S. Carbon Cycle Science Program Office will highlight the scientific context, strategy, structure, team and production process of the report, which is part of the USGCRP's Sustained National Climate Assessment process.
NASA Astrophysics Data System (ADS)
Xin, Shengchang; Yang, Na; Gao, Fei; Zhao, Jing; Li, Liang; Teng, Chao
2017-08-01
Three-dimensional carbon nanotube frameworks have been prepared via pyrolysis of polypyrrole nanotube aerogels that are synthesized by the simultaneous self-degraded template synthesis and hydrogel assembly followed by freeze-drying. The microstructure and composition of the materials are investigated by thermal gravimetric analysis, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, and specific surface analyzer. The results confirm the formation of three-dimensional carbon nanotube frameworks with low density, high mechanical properties, and high specific surface area. Compared with PPy aerogel precursor, the as-prepared three-dimensional carbon nanotube frameworks exhibit outstanding adsorption capacity towards organic dyes. Moreover, electrochemical tests show that the products possess high specific capacitance, good rate capability and excellent cycling performance with no capacitance loss over 1000 cycles. These characteristics collectively indicate the potential of three-dimensional polypyrrole-derived carbon nanotube framework as a promising macroscopic device for the applications in environmental and energy storages.
A New U.S. Carbon Cycle Science Plan
NASA Astrophysics Data System (ADS)
Michalak, A. M.; Jackson, R.; Marland, G.; Sabine, C.
2009-05-01
The report "A U.S. carbon cycle science plan" (J. L. Sarmiento and S. C. Wofsy, U.S. Global Change Res. Program, Washington, D. C., 1999) outlined research priorities and promoted coordinated carbon cycle research across federal agencies in the United States for nearly a decade. Building on this framework and subsequent reports (http://www.carboncyclescience.gov/docs.php), a working group comprised of 27 scientists was formed in 2008 under the United States Carbon Cycle Science Program to review the 1999 Science Plan, and to develop an updated strategy for carbon cycle research for the period from 2010 to 2020. This comprehensive review is being conducted with wide input from the research and stakeholder communities. The recommendations of the Carbon Cycle Science Working Group (CCSWG) will go to U.S. agency managers who have collective responsibility for setting national carbon cycle science priorities and for sponsoring much of the carbon cycle research in the United States. This presentation will provide an update on the ongoing planning process, will outline the steps that the CCSWG is undertaking in building consensus towards an updated U.S. Carbon Cycle Science Plan, and will seek input on the best ways in which to coordinate efforts with ongoing and upcoming research in Canada and Mexico, as well as with ongoing work globally.
ELEVATED CO2 AND TEMPERATURE ALTER THE RESPONSE OF PINUS PONDEROSA TO OZONE: A SIMULATION ANALYSIS
Forests regulate numerous biogeochemical cycles, storing and cycling large quantities of carbon, water, and nutrients, however, there is concern how climate change, elevated CO2 and tropospheric O3 will affect these processes. We investigated the potential impact of O3 in combina...
Simulation of groundwater flow and evaluation of carbon sink in Lijiang Rivershed, China
NASA Astrophysics Data System (ADS)
Hu, Bill X.; Cao, Jianhua; Tong, Juxiu; Gao, Bing
2016-04-01
It is important to study water and carbon cycle processes for water resource management, pollution prevention and global warming influence on southwest karst region of China. Lijiang river basin is selected as our study region. Interdisciplinary field and laboratory experiments with various technologies are conducted to characterize the karst aquifers in detail. Key processes in the karst water cycle and carbon cycle are determined. Based on the MODFLOW-CFP model, new watershed flow and carbon cycle models are developed coupled subsurface and surface water flow models, flow and chemical/biological models. Our study is focused on the karst springshed in Mao village. The mechanisms coupling carbon cycle and water cycle are explored. Parallel computing technology is used to construct the numerical model for the carbon cycle and water cycle in the small scale watershed, which are calibrated and verified by field observations. The developed coupling model for the small scale watershed is extended to a large scale watershed considering the scale effect of model parameters and proper model structure simplification. The large scale watershed model is used to study water cycle and carbon cycle in Lijiang rivershed, and to calculate the carbon flux and carbon sinks in the Lijiang river basin. The study results provide scientific methods for water resources management and environmental protection in southwest karst region corresponding to global climate change. This study could provide basic theory and simulation method for geological carbon sequestration in China karst region.
Ying Ouyang
2012-01-01
Understanding the dynamics of naturally occurring dissolved organic carbon (DOC) in a river is central to estimating surface water quality, aquatic carbon cycling, and global climate change. Currently, determination of the DOC in surface water is primarily accomplished by manually collecting samples for laboratory analysis, which requires at least 24 h. In other words...
NASA Astrophysics Data System (ADS)
Shrestha, G.; Cavallaro, N.; Ste-Marie, C.
2016-12-01
Carbon cycle science has been a research priority in the U.S. for decades. Interagency coordination interests and research needs in U.S. carbon cycle science led to the establishment of the U.S. Carbon Cycle Science Program, the North American Carbon Program (NACP), the Ocean Carbon and Biogeochemistry Program (OCB) and other intergovernmental collaboration platforms such as CarboNA, involving the U.S., Mexico and Canada. This presentation highlights some of these activities, and the historical context, the institutional frameworks and the operational mechanisms that have helped to facilitate and advance large scale collaborative research in carbon cycle in the U.S. and North America.
Combustion and Carbon Cycle 2.0 and Computation in CC 2.0 (Carbon Cycle 2.0)
Cheng, Robert K.; Meza, Juan
2018-05-04
Robert Cheng and Juan Meza provide two presentations in one session at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
A Call to Action: Carbon Cycle 2.0 (Carbon Cycle 2.0)
Alivisatos, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-21
Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
A Future with (out) Carbon Cycle 2.0 (Carbon Cycle 2.0)
Collins, Bill [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-21
Bill Collins, Head of LBNL's Climate Sciences Department, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
Cai, Hao; Wang, Michael Q
2014-10-21
The climate impact assessment of vehicle/fuel systems may be incomplete without considering short-lived climate forcers of black carbon (BC) and primary organic carbon (POC). We quantified life-cycle BC and POC emissions of a large variety of vehicle/fuel systems with an expanded Greenhouse gases, Regulated Emissions, and Energy use in Transportation model developed at Argonne National Laboratory. Life-cycle BC and POC emissions have small impacts on life-cycle greenhouse gas (GHG) emissions of gasoline, diesel, and other fuel vehicles, but would add 34, 16, and 16 g CO2 equivalent (CO2e)/mile, or 125, 56, and 56 g CO2e/mile with the 100 or 20 year Global Warming Potentials of BC and POC emissions, respectively, for vehicles fueled with corn stover-, willow tree-, and Brazilian sugarcane-derived ethanol, mostly due to BC- and POC-intensive biomass-fired boilers in cellulosic and sugarcane ethanol plants for steam and electricity production, biomass open burning in sugarcane fields, and diesel-powered agricultural equipment for biomass feedstock production/harvest. As a result, life-cycle GHG emission reduction potentials of these ethanol types, though still significant, are reduced from those without considering BC and POC emissions. These findings, together with a newly expanded GREET version, help quantify the previously unknown impacts of BC and POC emissions on life-cycle GHG emissions of U.S. vehicle/fuel systems.
Freedman, Adam J E; Tan, BoonFei; Thompson, Janelle R
2017-06-01
Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 , harbor a 'deep carbonated biosphere' with carbon cycling potential. We sampled subsurface fluids from scCO 2 -water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Variations in microbial carbon sources and cycling in the deep continental subsurface
NASA Astrophysics Data System (ADS)
Simkus, Danielle N.; Slater, Greg F.; Lollar, Barbara Sherwood; Wilkie, Kenna; Kieft, Thomas L.; Magnabosco, Cara; Lau, Maggie C. Y.; Pullin, Michael J.; Hendrickson, Sarah B.; Wommack, K. Eric; Sakowski, Eric G.; van Heerden, Esta; Kuloyo, Olukayode; Linage, Borja; Borgonie, Gaetan; Onstott, Tullis C.
2016-01-01
Deep continental subsurface fracture water systems, ranging from 1.1 to 3.3 km below land surface (kmbls), were investigated to characterize the indigenous microorganisms and elucidate microbial carbon sources and their cycling. Analysis of phospholipid fatty acid (PLFA) abundances and direct cell counts detected varying biomass that was not correlated with depth. Compound-specific carbon isotope analyses (δ13C and Δ14C) of the phospholipid fatty acids (PLFAs) and carbon substrates combined with genomic analyses did identify, however, distinct carbon sources and cycles between the two depth ranges studied. In the shallower boreholes at circa 1 kmbls, isotopic evidence indicated microbial incorporation of biogenic CH4 by the in situ microbial community. At the shallowest site, 1.05 kmbls in Driefontein mine, this process clearly dominated the isotopic signal. At slightly deeper depths, 1.34 kmbls in Beatrix mine, the isotopic data indicated the incorporation of both biogenic CH4 and dissolved inorganic carbon (DIC) derived from CH4 oxidation. In both of these cases, molecular genetic analysis indicated that methanogenic and methanotrophic organisms together comprised a small component (<5%) of the microbial community. Thus, it appears that a relatively minor component of the prokaryotic community is supporting a much larger overall bacterial community in these samples. In the samples collected from >3 kmbls in Tau Tona mine (TT107, TT109 Bh2), the CH4 had an isotopic signature suggesting a predominantly abiogenic origin with minor inputs from microbial methanogenesis. In these samples, the isotopic enrichments (δ13C and Δ14C) of the PLFAs relative to CH4 were consistent with little incorporation of CH4 into the biomass. The most 13C-enriched PLFAs were observed in TT107 where the dominant CO2-fixation pathway was the acetyl-CoA pathway by non-acetogenic bacteria. The differences in the δ13C of the PLFAs and the DIC and DOC for TT109 Bh2 were ∼-24‰ and 0‰, respectively. The dominant CO2-fixation pathways were 3-HP/4-HB cycle > acetyl-CoA pathway > reductive pentose phosphate cycle.
Coupling between the continental carbon and water cycles
NASA Astrophysics Data System (ADS)
Gentine, P.; Lemordant, L. A.; Green, J. K.
2017-12-01
The continental carbon adn water cycles are fundamentally coupled through leaf gas exchange at the stomata level. IN this presnetation we will emphasize the importance of this coupling for the future of the water cycle (runoff, evaporation, soil moisture) and in turn the implications for the carbon cycle and the capacity of continents to act as a carbon dioxyde sink in the future. Opprtunites from coupled carbon-water monitoring platforms will be then emphasized.
NASA Astrophysics Data System (ADS)
MacBean, N.; Scott, R. L.; Biederman, J. A.; Vuichard, N.; Hudson, A.; Barnes, M.; Fox, A. M.; Smith, W. K.; Peylin, P. P.; Maignan, F.; Moore, D. J.
2017-12-01
Recent studies based on analysis of atmospheric CO2 inversions, satellite data and terrestrial biosphere model simulations have suggested that semi-arid ecosystems play a dominant role in the interannual variability and long-term trend in the global carbon sink. These studies have largely cited the response of vegetation activity to changing moisture availability as the primary mechanism of variability. However, some land surface models (LSMs) used in these studies have performed poorly in comparison to satellite-based observations of vegetation dynamics in semi-arid regions. Further analysis is therefore needed to ensure semi-arid carbon cycle processes are well represented in global scale LSMs before we can fully establish their contribution to the global carbon cycle. In this study, we evaluated annual net ecosystem exchange (NEE) simulated by CMIP5 land surface models using observations from 20 Ameriflux sites across semi-arid southwestern North America. We found that CMIP5 models systematically underestimate the magnitude and sign of NEE inter-annual variability; therefore, the true role of semi-arid regions in the global carbon cycle may be even more important than previously thought. To diagnose the factors responsible for this bias, we used the ORCHIDEE LSM to test different climate forcing data, prescribed vegetation fractions and model structures. Climate and prescribed vegetation do contribute to uncertainty in annual NEE simulations, but the bias is primarily caused by incorrect timing and magnitude of peak gross carbon fluxes. Modifications to the hydrology scheme improved simulations of soil moisture in comparison to data. This in turn improved the seasonal cycle of carbon uptake due to a more realistic limitation on photosynthesis during water stress. However, the peak fluxes are still too low, and phenology is poorly represented for desert shrubs and grasses. We provide suggestions on model developments needed to tackle these issues in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qichun; Zhang, Xuesong; Xu, Xingya
Riverine carbon cycling is an important, but insufficiently investigated component of the global carbon cycle. Analyses of environmental controls on riverine carbon cycling are critical for improved understanding of mechanisms regulating carbon processing and storage along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC) concentration data from 1402 United States Geological Survey (USGS) gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S.) surface waters. DOC concentrations exhibit high spatial variability, with an average of 6.42 ± 6.47 mg C/ L (Mean ± Standard Deviation). In general,more » high DOC concentrations occur in the Upper Mississippi River basin and the Southeastern U.S., while low concentrations are mainly distributed in the Western U.S. Single-factor analysis indicates that slope of drainage areas, wetlands, forests, percentage of first-order streams, and instream nutrients (such as nitrogen and phosphorus) pronouncedly influence DOC concentrations, but the explanatory power of each bivariate model is lower than 35%. Analyses based on the general multi-linear regression models suggest DOC concentrations are jointly impacted by multiple factors. Soil properties mainly show positive correlations with DOC concentrations; forest and shrub lands have positive correlations with DOC concentrations, but urban area and croplands demonstrate negative impacts; total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers, which may be caused by changing carbon sources and removal rates by river orders. In sum, our results reveal that general multi-linear regression analysis of twenty one terrestrial and aquatic environmental factors can partially explain (56%) the DOC concentration variation. In conclusion, this study highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.« less
NASA Astrophysics Data System (ADS)
Meyer-Dombard, D. R.; Cardace, D.; Woycheese, K. M.; Vallalar, B.; Arcilla, C. A.
2017-12-01
Serpentinization in ophiolite-hosted regimes produces highly reduced, high pH fluids that are often characterized as having copious H2 and CH4 gas, little/no inorganic carbon, and limited electron acceptors. Subsurface microbial biomes shift as deeply-sourced fluids reach the oxygenated surface environment, where organisms capable of metabolizing O2 thrive (Woycheese et al., 2015). The relationship, connection, and communication between surface expressions (such as fluid seeps) and the subsurface biosphere is still largely unexplored. Our work in the Zambales and Palawan ophiolites (Philippines) defines surface habitats with geochemistry, targeted culturing efforts, and community analysis (Cardace et al., 2015; Woycheese et al., 2015). Fluids in the spring sources are largely `typical' and fall in the pH range of 9-11.5 with measurable gas escaping from the subsurface (H2 and CH4 > 10uM, CO2 > 1 mM; Cardace et al., 2015). Outflow channels extend from the source pools. These surface data encourage prediction of the subsurface metabolic landscape. To understand how carbon cycling in the subsurface and surface environments might be related, we focus on community analysis, culturing, and the geochemical context of the ecosystem. Shotgun metagenomic analyses indicate carbon cycling is reliant on methanogenesis, acetogenesis, sulfate reduction, and H2 and CH4 oxidation. Methyl coenzyme M reductase, and formylmethanofuran dehydrogenase were detected, and relative abundance increased near the near-anoxic spring source. In this tropical climate, cellulose is also a likely carbon source, possibly even in the subsurface. Enrichment cultures [pH 8-12] and strains [pH 8-10] from Zambales springs show degradation of cellulose and production of cellulase. DIC, DOC, and 13C of solid substrates show mixed autotrophic/heterotrophic activity. Results indicate a metabolically flexible surface community, and suggest details about carbon cycling in the subsurface.
Society and the Carbon Cycle: A Social Science Perspective
NASA Astrophysics Data System (ADS)
Romero-Lankao, P.
2017-12-01
Societal activities, actions, and practices affect the carbon cycle and the climate of North America in complex ways. Carbon is a key component for the functioning of croplands, grasslands, forests. Carbon fuels our industry, transportation (vehicles and roadways), buildings, and other structures. Drawing on results from the SOCCR-2, this presentation uses a social science perspective to address three scientific questions. How do human actions and activities affect the carbon cycle? How human systems such as cities, agricultural field and forests are affected by changes in the carbon cycle? How is carbon management enabled and constraint by socio-political dynamics?
Effect of mission cycling on the fatigue performance of SiC-coated carbon-carbon composites
NASA Technical Reports Server (NTRS)
Mahfuz, H.; Das, P. S.; Jeelani, S.; Baker, D. M.; Johnson, S. A.
1993-01-01
The effects of thermal and pressure cycling on the fatigue performance of carbon-carbon composites, and the influence of mission cycling on these effects, were investigated by subjecting both virgin and mission-cycled two-dimensional specimens of SiC-coated carbon-carbon composites to fatigue tests, conducted at room temperature in three-point bending, with a stress ratio of 0.2 and a frequency of 1 Hz. It was found that the fatigue strength of C-C composites is high (about 90 percent of the ultimate flexural strength), but decreased with the mission cycling. The lowering of the fatigue strength with mission cycling is attributed to the increase in interfacial bond strength due to thermal and pressure cycling of the material. The already high sensitivity of C-C composites to stress during cyclic loading increases further with the amount of mission cycling. Results of NDE suggest that the damage growth in virgin C-C, in the high-cycle range, is slow at the initial stage of the cyclic life, but propagates rapidly after certain threshold cycles of the fatigue life.
NASA Astrophysics Data System (ADS)
Rennie, V.; Paris, G.; Abramovitch, S.; Sessions, A. L.; Adkins, J. F.; Turchyn, A. V.
2014-12-01
The Paleogene witnessed large-scale environmental changes, including the beginning of long-term Cenozoic cooling. The carbon isotope composition of foraminiferal calcite suggests a major reorganization of the carbon cycle over the Paleogene, with enhanced organic carbon burial in the Paleocene, and subsequent oxidation of this organic carbon or increased volcanism throughout the Eocene. The sulfur cycle is linked to the carbon cycle via the breakdown of organic carbon during bacterial sulfate reduction. Over geological time, carbon and sulfur isotopic shifts are often coupled due to enhanced pyrite burial being coupled to enhanced organic carbon burial, and enhanced pyrite weathering being coupled to enhanced organic carbon weathering. However, over the Paleogene, carbon and sulfur isotopes are fully decoupled, with the sulfur isotope record showing only one major shift in the early Eocene, after most of the carbon isotope variability is complete. One complication of interpreting the evolution of the sulfur cycle over the Cenozoic, is the fact that the mineral proxies used (typically barite) may not be temporally coincident with those used to reconstruct the carbon cycle (typically carbonate). Furthermore, these minerals are preserved in different locations, and therefore often must be extracted from different sediment cores in different ocean basins, leading to age-model uncertainty when the records are merged. To properly ascertain the phasing between early Cenozoic changes in the carbon cycle and the sulfur cycle, we would ideally measure all isotope records on the same mineral. A new sulfur isotope analytical technique [1] has been optimised for foraminiferal calcite as a proxy for seawater δ34SSO4. The δ34SSO4 in foraminiferal calcite can then be tied to records of carbon isotopes from stratigraphically identical samples, resolving previous age model uncertainties. We present coupled carbon and sulfur isotope records from the same core over the early-to-mid Eocene, to better resolve the relative timing of changes in the carbon and sulfur cycles. We use a numerical model to explore the environmental changes necessary for the observed evolution in both the carbon and sulfur cycles. [1] Paris et al, 2013 Chemical Geology, 345, 50-61
NASA Astrophysics Data System (ADS)
Silverberg, S. K.; Ollinger, S. V.; Martin, M. E.; Gengarelly, L. M.; Schloss, A. L.; Bourgeault, J. L.; Randolph, G.; Albrechtova, J.
2009-12-01
National Science Content Standards identify systems as an important unifying concept across the K-12 curriculum. While this standard exists, there is a recognized gap in the ability of students to use a systems thinking approach in their learning. In a similar vein, both popular media as well as some educational curricula move quickly through climate topics to carbon footprint analyses without ever addressing the nature of carbon or the carbon cycle. If students do not gain a concrete understanding of carbon’s role in climate and energy they will not be able to successfully tackle global problems and develop innovative solutions. By participating in the GLOBE Carbon Cycle project, students learn to use a systems thinking approach, while at the same time, gaining a foundation in the carbon cycle and it's relation to climate and energy. Here we present the GLOBE Carbon Cycle project and materials, which incorporate a diverse set of activities geared toward upper middle and high school students with a variety of learning styles. A global carbon cycle adventure story and game let students see the carbon cycle as a complete system, while introducing them to systems thinking concepts including reservoirs, fluxes and equilibrium. Classroom photosynthesis experiments and field measurements of schoolyard vegetation brings the global view to the local level. And the use of computer models at varying levels of complexity (effects on photosynthesis, biomass and carbon storage in global biomes, global carbon cycle) not only reinforces systems concepts and carbon content, but also introduces students to an important scientific tool necessary for understanding climate change.
Karst medium characterization and simulation of groundwater flow in Lijiang Riversed, China
NASA Astrophysics Data System (ADS)
Hu, B. X.
2015-12-01
It is important to study water and carbon cycle processes for water resource management, pollution prevention and global warming influence on southwest karst region of China. Lijiang river basin is selected as our study region. Interdisciplinary field and laboratory experiments with various technologies are conducted to characterize the karst aquifers in detail. Key processes in the karst water cycle and carbon cycle are determined. Based on the MODFLOW-CFP model, new watershed flow and carbon cycle models are developed coupled subsurface and surface water flow models, flow and chemical/biological models. Our study is focused on the karst springshed in Mao village. The mechanisms coupling carbon cycle and water cycle are explored. Parallel computing technology is used to construct the numerical model for the carbon cycle and water cycle in the small scale watershed, which are calibrated and verified by field observations. The developed coupling model for the small scale watershed is extended to a large scale watershed considering the scale effect of model parameters and proper model structure simplification. The large scale watershed model is used to study water cycle and carbon cycle in Lijiang rivershed, and to calculate the carbon flux and carbon sinks in the Lijiang river basin. The study results provide scientific methods for water resources management and environmental protection in southwest karst region corresponding to global climate change. This study could provide basic theory and simulation method for geological carbon sequestration in China karst region.
Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption.
Fiuza, Raildo Alves; Medeiros de Jesus Neto, Raimundo; Correia, Laise Bacelar; Carvalho Andrade, Heloysa Martins
2015-09-15
Stones of yellow mombin, a native fruit of the tropical America and West Indies, were used as starting materials to produce activated carbons, subsequently used as adsorbent for CO2 capture. The carbonaceous materials were either chemically activated with HNO3, H3PO4 and KOH or physically activated with CO2. The carbon samples were characterized by SEM, EDX, TG/DTA, Raman spectroscopy, physical adsorption for textural analysis and by acid-base titrations. The CO2 adsorption capacity and adsorption cycles were investigated by TG. The results indicate that the capacity of CO2 adsorption may be maximized on highly basic surfaces of micropores smaller than 1 nm. The KOH activated carbon showed high and stable capacity of CO2 adsorption after 10 cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.
Roll-to-roll production of spray coated N-doped carbon nanotube electrodes for supercapacitors
NASA Astrophysics Data System (ADS)
Karakaya, Mehmet; Zhu, Jingyi; Raghavendra, Achyut J.; Podila, Ramakrishna; Parler, Samuel G.; Kaplan, James P.; Rao, Apparao M.
2014-12-01
Although carbon nanomaterials are being increasingly used in energy storage, there has been a lack of inexpensive, continuous, and scalable synthesis methods. Here, we present a scalable roll-to-roll (R2R) spray coating process for synthesizing randomly oriented multi-walled carbon nanotubes electrodes on Al foils. The coin and jellyroll type supercapacitors comprised such electrodes yield high power densities (˜700 mW/cm3) and energy densities (1 mW h/cm3) on par with Li-ion thin film batteries. These devices exhibit excellent cycle stability with no loss in performance over more than a thousand cycles. Our cost analysis shows that the R2R spray coating process can produce supercapacitors with 10 times the energy density of conventional activated carbon devices at ˜17% lower cost.
The 1994 Arctic Ocean Section. The First Major Scientific Crossing of the Arctic Ocean,
1996-09-01
contribute to the international effort to better understand the role of the Arctic Ocean in the global carbon cycle and climate change. Summar...Barium Distributions in the Arctic Ocean ? ........................ 32 Biology and the Carbon Cycle Cycling of Organic Carbon in the Central Arctic...of Heterotrophic Bacteria and Protists in the Arctic Ocean Carbon Cycle............. 40
NASA Astrophysics Data System (ADS)
Richey, J. D.; Upchurch, G. R.; Joeckel, R.; Smith, J. J.; Ludvigson, G. A.; Lomax, B. H.
2013-12-01
Past geological greenhouse intervals are associated with Ocean Anoxic Events (OAEs), which result from an increase in marine primary productivity and/or an increase in the preservation of organic matter. The end point is widespread black shale deposition combined with a long-term atmospheric positive δ13C excursion and an increase in the burial of 12C. Some OAEs show a negative δ13C excursion preceding the positive excursion, indicating a perturbation in the global carbon cycle prior to the initiation of these events. The Rose Creek (RCP) locality, southeastern Nebraska, is the only known terrestrial section that preserves OAE1d (Cretaceous, Albian-Cenomanian Boundary) and has abundant charcoal and plant cuticle. These features allow for a combined carbon isotope and stomatal index (SI) analysis to determine both changes in the cycling between carbon pools (C isotope analysis) and changes in paleo-CO2 via changes in SI. Preliminary (and ongoing) SI data analysis using dispersed cuticle of Pandemophyllum kvacekii (an extinct Laurel) collected at 30 cm intervals indicate changes in SI consistent with changes in CO2. Fitting our samples to a published RCP δ13C profile, pre-excursion CO2 concentrations are high. CO2 decreases to lower concentrations in the basal 1.2 m of the RCP section, where δ13Cbulk shows a negative excursion and δ13Ccharcoal remains at pre-excursion values. CO2 concentrations become higher toward the top of the negative δ13C excursion, where δ13Cbulk and δ13Ccharcoal are at their most negative values, and drop as the negative carbon excursion terminates. Using published transfer functions, we estimate that pre-excursion CO2 concentrations were a maximum of 900 ppm. In the basal 1.2 m of RCP, CO2 drops to a maximum of 480 ppm, and rises to a maximum of 710 ppm near the top of the negative excursion. As δ13C values rise towards pre-excursion values, CO2 declines to a maximum of 400 ppm. The trend in SI is comparable to the trend in δ13Ccharcoal and follows recognized patterns, while SI shows partial divergence from δ13Cbulk. These data, while preliminary, highlight the importance of considering isotope substrate when investigating carbon cycle perturbations.
NASA Astrophysics Data System (ADS)
Betts, R. A.; Cox, P. M.; Collins, M.; Harris, P. P.; Huntingford, C.; Jones, C. D.
A suite of simulations with the HadCM3LC coupled climate-carbon cycle model is used to examine the various forcings and feedbacks involved in the simulated precipitation decrease and forest dieback. Rising atmospheric CO2 is found to contribute 20% to the precipitation reduction through the physiological forcing of stomatal closure, with 80% of the reduction being seen when stomatal closure was excluded and only radiative forcing by CO2 was included. The forest dieback exerts two positive feedbacks on the precipitation reduction; a biogeophysical feedback through reduced forest cover suppressing local evaporative water recycling, and a biogeochemical feedback through the release of CO2 contributing to an accelerated global warming. The precipitation reduction is enhanced by 20% by the biogeophysical feedback, and 5% by the carbon cycle feedback from the forest dieback. This analysis helps to explain why the Amazonian precipitation reduction simulated by HadCM3LC is more extreme than that simulated in other GCMs; in the fully-coupled, climate-carbon cycle simulation, approximately half of the precipitation reduction in Amazonia is attributable to a combination of physiological forcing and biogeophysical and global carbon cycle feedbacks, which are generally not included in other GCM simulations of future climate change. The analysis also demonstrates the potential contribution of regional-scale climate and ecosystem change to uncertainties in global CO2 and climate change projections. Moreover, the importance of feedbacks suggests that a human-induced increase in forest vulnerability to climate change may have implications for regional and global scale climate sensitivity.
Carbon and nitrogen balances for six shrublands across Europe
NASA Astrophysics Data System (ADS)
Beier, Claus; Emmett, Bridget A.; Tietema, Albert; Schmidt, Inger K.; PeñUelas, Josep; LáNg, Edit KováCs; Duce, Pierpaolo; de Angelis, Paolo; Gorissen, Antonie; Estiarte, Marc; de Dato, Giovanbattista D.; Sowerby, Alwyn; KröEl-Dulay, GyöRgy; Lellei-KováCs, Eszter; Kull, Olevi; Mand, Pille; Petersen, Henning; Gjelstrup, Peter; Spano, Donatella
2009-12-01
Shrublands constitute significant and important parts of European landscapes providing a large number of important ecosystem services. Biogeochemical cycles in these ecosystems have gained little attention relative to forests and grassland systems, but data on such cycles are required for developing and testing ecosystem models. As climate change progresses, the potential feedback from terrestrial ecosystems to the atmosphere through changes in carbon stocks, carbon sequestration, and general knowledge on biogeochemical cycles becomes increasingly important. Here we present carbon and nitrogen balances of six shrublands along a climatic gradient across the European continent. The aim of the study was to provide a basis for assessing the range and variability in carbon storage in European shrublands. Across the sites the net carbon storage in the systems ranged from 1,163 g C m-2 to 18,546 g C m-2, and the systems ranged from being net sinks (126 g C m-2 a-1) to being net sources (-536 g C m-2 a-1) of carbon with the largest storage and sink of carbon at wet and cold climatic conditions. The soil carbon store dominates the carbon budget at all sites and in particular at the site with a cold and wet climate where soil C constitutes 95% of the total carbon in the ecosystem. Respiration of carbon from the soil organic matter pool dominated the carbon loss at all sites while carbon loss from aboveground litter decomposition appeared less important. Total belowground carbon allocation was more than 5 times aboveground litterfall carbon which is significantly greater than the factor of 2 reported in a global analysis of forest data. Nitrogen storage was also dominated by the soil pools generally showing small losses except when atmospheric N input was high. The study shows that in the future a climate-driven land cover change between grasslands and shrublands in Europe will likely lead to increased ecosystem C where shrublands are promoted and less where grasses are promoted. However, it also emphasizes that if feedbacks on the global carbon cycle are to be predicted it is critically important to quantify and understand belowground carbon allocation and processes as well as soil carbon pools, particularly on wet organic soils, rather than plant functional change as the soil stores dominate the overall budget and fluxes of carbon.
NASA Astrophysics Data System (ADS)
Scholze, Marko; Buchwitz, Michael; Dorigo, Wouter; Guanter, Luis; Quegan, Shaun
2017-07-01
The global carbon cycle is an important component of the Earth system and it interacts with the hydrology, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation and systematic and well error-characterised observations relevant to the carbon cycle. Relevant observations for assimilation include various in situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties).We briefly review the different existing data assimilation techniques and contrast them to model benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.(2005), emphasising the rapid advance in relevant space-based observations.
Simulated Effect of Carbon Cycle Feedback on Climate Response to Solar Geoengineering
NASA Astrophysics Data System (ADS)
Cao, Long; Jiang, Jiu
2017-12-01
Most modeling studies investigate climate effects of solar geoengineering under prescribed atmospheric CO2, thereby neglecting potential climate feedbacks from the carbon cycle. Here we use an Earth system model to investigate interactive feedbacks between solar geoengineering, global carbon cycle, and climate change. We design idealized sunshade geoengineering simulations to prevent global warming from exceeding 2°C above preindustrial under a CO2 emission scenario with emission mitigation starting from middle of century. By year 2100, solar geoengineering reduces the burden of atmospheric CO2 by 47 PgC with enhanced carbon storage in the terrestrial biosphere. As a result of reduced atmospheric CO2, consideration of the carbon cycle feedback reduces required insolation reduction in 2100 from 2.0 to 1.7 W m-2. With higher climate sensitivity the effect from carbon cycle feedback becomes more important. Our study demonstrates the importance of carbon cycle feedback in climate response to solar geoengineering.
Carbon Capture (Carbon Cycle 2.0)
Smit, Berend
2018-04-26
Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
NASA Astrophysics Data System (ADS)
Hu, X. B.
2017-12-01
It is required to understanding water cycle and carbon cycle processes for water resource management and pollution prevention and global warming influence in southwest karst region of China. Lijiang river basin is selected as our study region. Interdisciplinary field and laboratory experiments with various technologies are conducted to characterize the karst aquifers in detail. Key processes in the karst water cycle and carbon cycle are determined. Based on the MODFLOW-CFP model, new watershed flow and carbon cycle models are developed coupled subsurface and surface water flow models. Our study focus on the karst springshed in Mao village, the mechanisms coupling carbon cycle and water cycle are explored. This study provides basic theory and simulation method for water resource management and groundwater pollution prevention in China karst region.
Forests regulate numerous biogeochemical cycles, storing and cycling carbon, water, and nutrients, however, there is concern how climate change, elevated CO2 and tropospheric O3 will affect these processes. We investigated the potential impact of increased O3 in combination wit...
On the linkages between the global carbon-nitrogen-phosphorus cycles
NASA Astrophysics Data System (ADS)
Tanaka, Katsumasa; Mackenzie, Fred; Bouchez, Julien; Knutti, Reto
2013-04-01
State-of-the-art earth system models used for long-term climate projections are becoming ever more complex in terms of not only spatial resolution but also the number of processes. Biogeochemical processes are beginning to be incorporated into these models. The motivation of this study is to quantify how climate projections are influenced by biogeochemical feedbacks. In the climate modeling community, it is virtually accepted that climate-Carbon (C) cycle feedbacks accelerate the future warming (Cox et al. 2000; Friedlingstein et al. 2006). It has been demonstrated that the Nitrogen (N) cycle suppresses climate-C cycle feedbacks (Thornton et al. 2009). On the contrary, biogeochemical studies show that the coupled C-N-Phosphorus (P) cycles are intimately interlinked via biosphere and the N-P cycles amplify C cycle feedbacks (Ver et al. 1999). The question as to whether the N-P cycles enhance or attenuate C cycle feedbacks is debated and has a significant implication for projections of future climate. We delve into this problem by using the Terrestrial-Ocean-aTmosphere Ecosystem Model 3 (TOTEM3), a globally-aggregated C-N-P cycle box model. TOTEM3 is a process-based model that describes the biogeochemical reactions and physical transports involving these elements in the four domains of the Earth system: land, atmosphere, coastal ocean, and open ocean. TOTEM3 is a successor of earlier TOTEM models (Ver et al. 1999; Mackenzie et al. 2011). In our presentation, we provide an overview of fundamental features and behaviors of TOTEM3 such as the mass balance at the steady state and the relaxation time scales to various types of perturbation. We also show preliminary results to investigate how the N-P cycles influence the behavior of the C cycle. References Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. Journal of Climate, 19, 3337-3353. Mackenzie FT, De Carlo EH, Lerman A (2011) Coupled C, N, P, and O biogeochemical cycling at the land-ocean interface. In: Wolanski E, McLusky DS (eds) Treatise on Estuarine and Coastal Science, vol 5. Academic Press, Waltham, pp 317-342. Thornton PE, Doney SC, Lindsay K, Moore JK, Mahowald N, Randerson JT, Fung I, Lamarque JF, Feddema JJ, Lee YH (2009) Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences, 6, 2099-2120. Ver LMB, Mackenzie FT, Lerman A (1999) Biogeochemical responses of the carbon cycle to natural and human perturbations: Past, present, and future. American Journal of Science, 299, 762-801.
A Sedimentary Carbon Inventory for a Scottish Sea Loch
NASA Astrophysics Data System (ADS)
Smeaton, Craig; Austin, William; Davies, Althea; Baltzer, Agnes
2015-04-01
Coastal oceans are sites of biogeochemical cycling, as terrestrial, atmospheric, and marine carbon cycles interact. Important processes that affect the carbon cycle in the coastal ocean include upwelling, river input, air-sea gas exchange, primary production, respiration, sediment burial, export, and sea-ice dynamics. The magnitude and variability of many carbon fluxes are accordingly much higher in coastal oceans than in open ocean environments. Having high-quality observations of carbon stocks and fluxes in the coastal environment is important both for understanding coastal ocean carbon balance and for reconciling continent-scale carbon budgets. Despite the ecological, biological, and economic importance of coastal oceans, the magnitude and variability of many of the coastal carbon stocks are poorly quantified in most regions in comparison to terrestrial and deep ocean carbon stocks. The first stage in understanding the carbon dynamics in coastal waters is to quantify the existing carbon stocks. The coastal sediment potentially holds a significant volume of carbon; yet there has been no comprehensive attempt to quantitatively determine the volume of carbon held in those coastal sediments as echoed by Bauer et al., (2013) "the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood". We set out to create the first sedimentary carbon inventory for a sea loch (fjord); through a combination of geophysics and biogeochemistry. Two key questions must be answered to achieve this goal; how much sediment is held within the loch and what percentage of that sediment carbon? The restrictive geomorphology of sea lochs (fjords) provides the perfect area to develop this methodology and answer these fundamental questions. Loch Sunart the longest of the Scottish sea lochs is our initial test site due to existing geophysical data being available for analysis. Here we discuss the development of the joint geophysics and biogeochemical methodology and how it was applied to Loch Sunart. The methodology was applied to seismic geophysics data collected in 2009 (Baltzer et al. 2010,) and data compiled through biogeochemical analysis of sediment cores collected from Loch Sunart. Through the combination of these datasets we have undertaken calculations to quantify the total sediment mass and the percentage of carbon contained in that sediment. Through this work we have created the first holistic sedimentary carbon inventory for a sea loch; which is the first step to tackling the larger questions around coastal carbon. Baltzer, A, Bates, R, Mokeddem, Z, Clet-Pellerin, M, Walter-Simonnet, A-V, Bonnot-Courtois, C and Austin, WEN 2010, Using seismic facies and pollen analyses to evaluate climatically driven change in a Scottish sea loch (fjord) over the last 20 ka, Geological Society, London, Special Publications, 344, (1), pp. 355-369. Bauer, JE, Cai, W-J, Raymond, P a, Bianchi, TS, Hopkinson, CS and Regnier, P a G 2013, The changing carbon cycle of the coastal ocean., Nature, 504, (7478), pp. 61-70.
Temperature and rainfall interact to control carbon cycling in tropical forests.
Taylor, Philip G; Cleveland, Cory C; Wieder, William R; Sullivan, Benjamin W; Doughty, Christopher E; Dobrowski, Solomon Z; Townsend, Alan R
2017-06-01
Tropical forests dominate global terrestrial carbon (C) exchange, and recent droughts in the Amazon Basin have contributed to short-term declines in terrestrial carbon dioxide uptake and storage. However, the effects of longer-term climate variability on tropical forest carbon dynamics are still not well understood. We synthesised field data from more than 150 tropical forest sites to explore how climate regulates tropical forest aboveground net primary productivity (ANPP) and organic matter decomposition, and combined those data with two existing databases to explore climate - C relationships globally. While previous analyses have focused on the effects of either temperature or rainfall on ANPP, our results highlight the importance of interactions between temperature and rainfall on the C cycle. In cool forests (< 20 °C), high rainfall slowed rates of C cycling, but in warm tropical forests (> 20 °C) it consistently enhanced both ANPP and decomposition. At the global scale, our analysis showed an increase in ANPP with rainfall in relatively warm sites, inconsistent with declines in ANPP with rainfall reported previously. Overall, our results alter our understanding of climate - C cycle relationships, with high precipitation accelerating rates of C exchange with the atmosphere in the most productive biome on earth. © 2017 John Wiley & Sons Ltd/CNRS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xiaohui; Kim, Dul-Sun; Ahn, Hyo-Jun
2014-10-15
Highlights: • A highly porous carbon (HPC) with regular spherical morphology was synthesized. • Sulfur/HPC composites were prepared by melt–diffusion method. • Sulfur/HPC composites showed improved cyclablity and long-term cycle life. - Abstract: Sulfur composite material with a highly porous carbon sphere as the conducting container was prepared. The highly porous carbon sphere was easily synthesized with resorcinol–formaldehyde precursor as the carbon source. The morphology of the carbon was observed with field emission scanning electron microscope and transmission electron microscope, which showed a well-defined spherical shape. Brunauer–Emmett–Teller analysis indicated that it possesses a high specific surface area of 1563 m{supmore » 2} g{sup −1} and a total pore volume of 2.66 cm{sup 3} g{sup −1} with a bimodal pore size distribution, which allow high sulfur loading and easy transportation of lithium ions. Sulfur carbon composites with varied sulfur contents were prepared by melt–diffusion method and lithium sulfur cells with the sulfur composites showed improved cyclablity and long-term cycle life.« less
Assessing Students' Disciplinary and Interdisciplinary Understanding of Global Carbon Cycling
ERIC Educational Resources Information Center
You, Hye Sun; Marshall, Jill A.; Delgado, Cesar
2018-01-01
Global carbon cycling describes the movement of carbon through atmosphere, biosphere, geosphere, and hydrosphere; it lies at the heart of climate change and sustainability. To understand the global carbon cycle, students will require "interdisciplinary knowledge." While standards documents in science education have long promoted…
NASA Astrophysics Data System (ADS)
Probst, A. J.; Jerett, J.; Castelle, C. J.; Thomas, B. C.; Sharon, I.; Brown, C. T.; Anantharaman, K.; Emerson, J. B.; Hernsdorf, A. W.; Amano, Y.; Suzuki, Y.; Tringe, S. G.; Woyke, T.; Banfield, J. F.
2015-12-01
Subsurface environments span the planet but remain little understood from the perspective of the capacity of the resident organisms to fix CO2. Here we investigated the autotrophic capacity of microbial communities in range of a high-CO2 subsurface environments via analysis of 250 near-complete microbial genomes (151 of them from distinct species) that represent the most abundant organisms over a subsurface depth transect. More than one third of the genomes belonged to the so-called candidate phyla radiation (CPR), which have limited metabolic capabilities. Approximately 30% of the community members are autotrophs that comprise 70% of the microbiome with metabolism likely supported by sulfur and nitrogen respiration. Of the carbon fixation pathways, the Calvin Benson Basham Cycle was most common, but the Wood-Ljungdhal pathway was present in the greatest phylogenetic diversity of organisms. Unexpectedly, one organism from a novel phylum sibling to the CPR is predicted to fix carbon by the reverse TCA cycle. The genome of the most abundant organism, an archaeon designated "Candidatus Altiarchaeum hamiconexum", was also found in subsurface samples from other continents including Europe and Asia. The archaeon was proven to be a carbon fixer using a novel reductive acetyl-CoA pathway. These results provide evidence that carbon dioxide is the major carbon source in these environments and suggest that autotrophy in the subsurface represents a substantial carbon dioxide sink affecting the global carbon cycle.
A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Liang
2014-10-01
A cost-effective approach to obtain electrode materials with excellent electrochemical performance is critical to the development of supercapacitors (SCs). Here we report the preparation of a three-dimensional (3D) honeycomb-like porous carbon (HLPC) by the simple carbonization of pomelo peel followed by KOH activation. Structural characterization indicates that the as-prepared HLPC with a high specific surface area (SSA) up to 2725 m2 g-1 is made up of interconnected microporous carbon walls. Chemical analysis shows that the HLPC is doped with nitrogen and also has oxygen-containing groups. Electrochemical measurements show that the HLPC not only exhibits a high specific capacitance of 342 F g-1 and 171 F cm-3 at 0.2 A g-1 but also shows considerable rate capability with a retention of 62% at 20 A g-1 as well as good cycling performance with 98% retention over 1000 cycles at 10 A g-1 in 6 M KOH. Furthermore, an as-fabricated HLPC-based symmetric SC device delivers a maximum energy density of ~9.4 Wh kg-1 in the KOH electrolyte. Moreover, the outstanding cycling stability (only 2% capacitance decay over 1000 cycles at 5 A g-1) of the SC device makes it promising for use in a high-performance electrochemical energy system.A cost-effective approach to obtain electrode materials with excellent electrochemical performance is critical to the development of supercapacitors (SCs). Here we report the preparation of a three-dimensional (3D) honeycomb-like porous carbon (HLPC) by the simple carbonization of pomelo peel followed by KOH activation. Structural characterization indicates that the as-prepared HLPC with a high specific surface area (SSA) up to 2725 m2 g-1 is made up of interconnected microporous carbon walls. Chemical analysis shows that the HLPC is doped with nitrogen and also has oxygen-containing groups. Electrochemical measurements show that the HLPC not only exhibits a high specific capacitance of 342 F g-1 and 171 F cm-3 at 0.2 A g-1 but also shows considerable rate capability with a retention of 62% at 20 A g-1 as well as good cycling performance with 98% retention over 1000 cycles at 10 A g-1 in 6 M KOH. Furthermore, an as-fabricated HLPC-based symmetric SC device delivers a maximum energy density of ~9.4 Wh kg-1 in the KOH electrolyte. Moreover, the outstanding cycling stability (only 2% capacitance decay over 1000 cycles at 5 A g-1) of the SC device makes it promising for use in a high-performance electrochemical energy system. Electronic supplementary information (ESI) available: Experimental section and additional table and figures (Fig. S1-S8). See DOI: 10.1039/c4nr04541f
NASA Astrophysics Data System (ADS)
Loustau, D.; Moreaux, V.; Bosc, A.; Trichet, P.; Kumari, J.; Rabemanantsoa, T.; Balesdent, J.; Jolivet, C.; Medlyn, B. E.; Cavaignac, S.; Nguyen-The, N.
2012-12-01
For predicting the future of the forest carbon cycle in forest ecosystems, it is necessary to account for both the climate and management impacts. Climate effects are significant not only at a short time scale but also at the temporal horizon of a forest life cycle e.g. through shift in atmospheric CO2 concentration, temperature and precipitation regimes induced by the enhanced greenhouse effect. Intensification of forest management concerns an increasing fraction of temperate and tropical forests and untouched forests represents only one third of the present forest area. Predicting tools are therefore needed to project climate and management impacts over the forest life cycle and understand the consequence of management on the forest ecosystem carbon cycle. This communication summarizes the structure, main components and properties of a carbon transfer model that describes the processes controlling the carbon cycle of managed forest ecosystems. The model, GO+, links three main components, (i) a module describing the vegetation-atmosphere mass and energy exchanges in 3D, (ii) a plant growth module and a (iii) soil carbon dynamics module in a consistent carbon scheme of transfer from atmosphere back into the atmosphere. It was calibrated and evaluated using observed data collected on coniferous and broadleaved forest stands. The model predicts the soil, water and energy balance of entire rotations of managed stands from the plantation to the final cut and according to a range of management alternatives. It accounts for the main soil and vegetation management operations such as soil preparation, understorey removal, thinnings and clearcutting. Including the available knowledge on the climatic sensitivity of biophysical and biogeochemical processes involved in atmospheric exchanges and carbon cycle of forest ecosystems, GO+ can produce long-term backward or forward simulations of forest carbon and water cycles under a range of climate and management scenarios. This model applications to the prediction and analysis of climate scenarios impacts on southwestern European forests underlines the role of management alternatives, precipitation regime, CO2 concentration and atmospheric humidity .Frequency of soil preparation operations and understorey management play a major role in controlling the net carbon flux into the atmosphere at the juvenile stage ( 0 to 10 y-old) whereas climate and rotation duration control the functioning of adult phase. The model predicts that a drier and warmer climate will reduce the forest productivity and deplete soil and carbon stocks in managed forest from Southwestern Europe within decades, such effects being amplified for most intensive management alternatives. This work was part of the European research project GHG-Europe (EU contract No. 244122) and the French national project FAST co-funded by the Ecology, Agriculture and Forestry Ministries and the Region Aquitaine.
Salvati, Luca; Barone, Pier Matteo; Ferrara, Carlotta
2015-05-01
Topsoil organic carbon (TOC) and soil organic carbon (SOC) are fundamental in the carbon cycle influencing soil functions and attributes. Many factors have effects on soil carbon content such as climate, parent material, land topography and the human action including agriculture, which sometimes caused a severe loss in soil carbon content. This has resulted in a significant differentiation in TOC or SOC at the continental scale due to the different territorial and socioeconomic conditions. The present study proposes an exploratory data analysis assessing the relationship between the spatial distribution of soil organic carbon and selected socioeconomic attributes at the local scale in Italy with the aim to provide differentiated responses for a more sustainable use of land. A strengths, weaknesses, opportunities and threats (SWOT) analysis contributed to understand the effectiveness of local communities responses for an adequate comprehension of the role of soil as carbon sink.
Yang, Dewei; Xu, Lingxing; Gao, Xueli; Guo, Qinghai; Huang, Ning
2018-06-01
Waste-related greenhouse gas (GHG) emissions have been recognized as one of the prominent contributors to global warming. Current urban waste regulations, however, face increasing challenges from stakeholders' trade-offs and hierarchic management. A combined method, i.e., life cycle inventories and scenario analysis, was employed to investigate waste-related GHG emissions during 1995-2015 and to project future scenarios of waste-driven carbon emissions by 2050 in a pilot low carbon city, Xiamen, China. The process-based carbon analysis of waste generation (prevention and separation), transportation (collection and transfer) and disposal (treatment and recycling) shows that the main contributors of carbon emissions are associated with waste disposal processes, solid waste, the municipal sector and Xiamen Mainland. Significant spatial differences of waste-related CO 2e emissions were observed between Xiamen Island and Xiamen Mainland using the carbon intensity and density indexes. An uptrend of waste-related CO 2e emissions from 2015 to 2050 is identified in the business as usual, waste disposal optimization, waste reduction and the integrated scenario, with mean annual growth rates of 8.86%, 8.42%, 6.90% and 6.61%, respectively. The scenario and sensitivity analysis imply that effective waste-related carbon reduction requires trade-offs among alternative strategies, actions and stakeholders in a feasible plan, and emphasize a priority of waste prevention and collection in Xiamen. Our results could benefit to the future modeling of urban multiple wastes and life-cycle carbon control in similar cities within and beyond China. Copyright © 2018 Elsevier B.V. All rights reserved.
Hendry, John I; Prasannan, Charulata; Ma, Fangfang; Möllers, K Benedikt; Jaiswal, Damini; Digmurti, Madhuri; Allen, Doug K; Frigaard, Niels-Ulrik; Dasgupta, Santanu; Wangikar, Pramod P
2017-10-01
Cyanobacteria, which constitute a quantitatively dominant phylum, have attracted attention in biofuel applications due to favorable physiological characteristics, high photosynthetic efficiency and amenability to genetic manipulations. However, quantitative aspects of cyanobacterial metabolism have received limited attention. In the present study, we have performed isotopically non-stationary 13 C metabolic flux analysis (INST- 13 C-MFA) to analyze rerouting of carbon in a glycogen synthase deficient mutant strain (glgA-I glgA-II) of the model cyanobacterium Synechococcus sp. PCC 7002. During balanced photoautotrophic growth, 10-20% of the fixed carbon is stored in the form of glycogen via a pathway that is conserved across the cyanobacterial phylum. Our results show that deletion of glycogen synthase gene orchestrates cascading effects on carbon distribution in various parts of the metabolic network. Carbon that was originally destined to be incorporated into glycogen gets partially diverted toward alternate storage molecules such as glucosylglycerol and sucrose. The rest is partitioned within the metabolic network, primarily via glycolysis and tricarboxylic acid cycle. A lowered flux toward carbohydrate synthesis and an altered distribution at the glucose-1-phosphate node indicate flexibility in the network. Further, reversibility of glycogen biosynthesis reactions points toward the presence of futile cycles. Similar redistribution of carbon was also predicted by Flux Balance Analysis. The results are significant to metabolic engineering efforts with cyanobacteria where fixed carbon needs to be re-routed to products of interest. Biotechnol. Bioeng. 2017;114: 2298-2308. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Carbon Cycle Science in Support of Decision-Making
NASA Astrophysics Data System (ADS)
Brown, M. E.; West, T. O.; McGlynn, E.; Gurwick, N. P.; Duren, R. M.; Ocko, I.; Paustian, K.
2016-12-01
There has been an extensive amount of basic and applied research conducted on biogeochemical cycles, land cover change, watershed to earth system modeling, climate change, and energy efficiency. Concurrently, there continues to be interest in how to best reduce net carbon emissions, including maintaining or augmenting global carbon stocks and decreasing fossil fuel emissions. Decisions surrounding reductions in net emissions should be grounded in, and informed by, existing scientific knowledge and analyses in order to be most effective. The translation of scientific research to decision-making is rarely direct, and often requires coordination of objectives or intermediate research steps. For example, complex model output may need to be simplified to provide mean estimates for given activities; biogeochemical models used for climate change prediction may need to be altered to estimate net carbon flux associated with particular activities; or scientific analyses may need to aggregate and analyze data in a different manner to address specific questions. In the aforementioned cases, expertise and capabilities of researchers and decision-makers are both needed, and early coordination and communication is most effective. Initial analysis of existing science and current decision-making needs indicate that (a) knowledge that is co-produced by scientists and decision-makers has a higher probability of being usable for decision making, (b) scientific work in the past decade to integrate activity data into models has resulted in more usable information for decision makers, (c) attribution and accounting of carbon cycle fluxes is key to using carbon cycle science for decision-making, and (d) stronger, long-term links among research on climate and management of carbon-related sectors (e.g., energy, land use, industry, and buildings) are needed to adequately address current issues.
pyhector: A Python interface for the simple climate model Hector
DOE Office of Scientific and Technical Information (OSTI.GOV)
N Willner, Sven; Hartin, Corinne; Gieseke, Robert
2017-04-01
Pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary production andmore » respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system (Hartin et al. 2016). The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2. These were developed to cover the range of baseline and mitigation emissions scenarios and are widely used in climate change research and model intercomparison projects. Using DataFrames from the Python library Pandas (McKinney 2010) as a data structure for the scenarios simplifies generating and adapting scenarios. Other parameters of the Hector model can easily be modified when running the model. Pyhector can be installed using pip from the Python Package Index.3 Source code and issue tracker are available in Pyhector's GitHub repository4. Documentation is provided through Readthedocs5. Usage examples are also contained in the repository as a Jupyter Notebook (Pérez and Granger 2007; Kluyver et al. 2016). Courtesy of the Mybinder project6, the example Notebook can also be executed and modified without installing Pyhector locally.« less
ERIC Educational Resources Information Center
Savasci, Funda
2014-01-01
The purposes of this activity are to help middle school students understand the carbon cycle and realize how human activities affect the carbon cycle. This activity consists of two parts. The first part of the activity focuses on the carbon cycle, especially before the Industrial Revolution, while the second part of the activity focuses on how…
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...
Accounting for indirect land-use change in the life cycle assessment of biofuel supply chains
Sanchez, Susan Tarka; Woods, Jeremy; Akhurst, Mark; Brander, Matthew; O'Hare, Michael; Dawson, Terence P.; Edwards, Robert; Liska, Adam J.; Malpas, Rick
2012-01-01
The expansion of land used for crop production causes variable direct and indirect greenhouse gas emissions, and other economic, social and environmental effects. We analyse the use of life cycle analysis (LCA) for estimating the carbon intensity of biofuel production from indirect land-use change (ILUC). Two approaches are critiqued: direct, attributional life cycle analysis and consequential life cycle analysis (CLCA). A proposed hybrid ‘combined model’ of the two approaches for ILUC analysis relies on first defining the system boundary of the resulting full LCA. Choices are then made as to the modelling methodology (economic equilibrium or cause–effect), data inputs, land area analysis, carbon stock accounting and uncertainty analysis to be included. We conclude that CLCA is applicable for estimating the historic emissions from ILUC, although improvements to the hybrid approach proposed, coupled with regular updating, are required, and uncertainly values must be adequately represented; however, the scope and the depth of the expansion of the system boundaries required for CLCA remain controversial. In addition, robust prediction, monitoring and accounting frameworks for the dynamic and highly uncertain nature of future crop yields and the effectiveness of policies to reduce deforestation and encourage afforestation remain elusive. Finally, establishing compatible and comparable accounting frameworks for ILUC between the USA, the European Union, South East Asia, Africa, Brazil and other major biofuel trading blocs is urgently needed if substantial distortions between these markets, which would reduce its application in policy outcomes, are to be avoided. PMID:22467143
Accounting for indirect land-use change in the life cycle assessment of biofuel supply chains.
Sanchez, Susan Tarka; Woods, Jeremy; Akhurst, Mark; Brander, Matthew; O'Hare, Michael; Dawson, Terence P; Edwards, Robert; Liska, Adam J; Malpas, Rick
2012-06-07
The expansion of land used for crop production causes variable direct and indirect greenhouse gas emissions, and other economic, social and environmental effects. We analyse the use of life cycle analysis (LCA) for estimating the carbon intensity of biofuel production from indirect land-use change (ILUC). Two approaches are critiqued: direct, attributional life cycle analysis and consequential life cycle analysis (CLCA). A proposed hybrid 'combined model' of the two approaches for ILUC analysis relies on first defining the system boundary of the resulting full LCA. Choices are then made as to the modelling methodology (economic equilibrium or cause-effect), data inputs, land area analysis, carbon stock accounting and uncertainty analysis to be included. We conclude that CLCA is applicable for estimating the historic emissions from ILUC, although improvements to the hybrid approach proposed, coupled with regular updating, are required, and uncertainly values must be adequately represented; however, the scope and the depth of the expansion of the system boundaries required for CLCA remain controversial. In addition, robust prediction, monitoring and accounting frameworks for the dynamic and highly uncertain nature of future crop yields and the effectiveness of policies to reduce deforestation and encourage afforestation remain elusive. Finally, establishing compatible and comparable accounting frameworks for ILUC between the USA, the European Union, South East Asia, Africa, Brazil and other major biofuel trading blocs is urgently needed if substantial distortions between these markets, which would reduce its application in policy outcomes, are to be avoided.
Liu, Yu; Wang, Can; Chen, Minpeng
2017-05-01
Research on carbon cycling has attracted attention from both scientists and policy-makers. Based on material flow analysis, this study systematically budgets the carbon inputs, outputs and balance from 1980 to 2013 for China's agro-ecosystem and its sub-systems, including agricultural land use, livestock breeding and rural life. The results show that from 1980 to 2013, both the carbon input and output were growing gradually, with the carbon input doubling from 1.6PgC/year in 1980 to 3.4PgC/year in 2013, while carbon output grew from 2.2PgC/year in 1980 to 3.8PgC/year in 2013. From 1980 to 2013, the crop production system in China has remained a carbon source, and the agricultural land uses were also almost all carbon sources instead of carbon sinks. As soil carbon stock plays a very important role in deciding the function of China's agro-ecosystem as a carbon sink or source, practices that can promote carbon storage and sequestration will be an essential component of low carbon agriculture development in China. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; Bopp, Laurent; Brovkin, Victor; Dunne, John; Graven, Heather; Hoffman, Forrest; Ilyina, Tatiana; John, Jasmin G.; Jung, Martin; Kawamiya, Michio; Koven, Charlie; Pongratz, Julia; Raddatz, Thomas; Randerson, James T.; Zaehle, Sönke
2016-08-01
Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks are potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate-carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate-carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This paper documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre
Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks aremore » potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO 2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO 2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This study documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.« less
Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; ...
2016-08-25
Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks aremore » potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO 2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO 2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This study documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.« less
NASA Astrophysics Data System (ADS)
Gu, H.; Zhou, Y.; Williams, C. A.
2016-12-01
Disturbance events are highly heterogeneous in space and time, impacting forest carbon dynamics and challenging the quantification and reporting of carbon stocks and flux. This study documents annual carbon stocks and fluxes from 1986 and 2010 mapped at 30-m resolution across southeastern US forests, characterizing how they respond to disturbances and ensuing regrowth. Forest inventory data (FIA) are used to parameterize a carbon cycle model (CASA) to represent post-disturbance carbon trajectories of carbon pools and fluxes for harvest, fire and bark beetle disturbances of varying severity and across forest types and site productivity settings. Time since disturbance at 30 meters is inferred from two remote-sensing data sources: disturbance year (NAFD, MTBS and ADS) and biomass (NBCD 2000) intersected with inventory-derived curves of biomass accumulation with stand age. All of these elements are combined to map carbon stocks and fluxes at a 30-m resolution for the year 2010, and to march backward in time for continuous, annual reporting. Results include maps of annual carbon stocks and fluxes for forests of the southeastern US, and analysis of spatio-temporal patterns of carbon sources/sinks at local and regional scales.
Interpretation and application of carbon isotope ratios in freshwater diatom silica
Webb, Megan; Wynn, Peter M.; Heiri, Oliver; van Hardenbroek, Maarten; Pick, Frances; Russell, James M.; Stott, Andy W.; Leng, Melanie J.
2016-01-01
ABSTRACT Carbon incorporated into diatom frustule walls is protected from degradation enabling analysis for carbon isotope composition (δ13Cdiatom). This presents potential for tracing carbon cycles via a single photosynthetic host with well‐constrained ecophysiology. Improved understanding of environmental processes controlling carbon delivery and assimilation is essential to interpret changes in freshwater δ13Cdiatom. Here relationships between water chemistry and δ13Cdiatom from contemporary regional data sets are investigated. Modern diatom and water samples were collected from river catchments within England and lake sediments from across Europe. The data suggest dissolved, biogenically produced carbon supplied proportionately to catchment productivity was critical in the rivers and soft water lakes. However, dissolved carbon from calcareous geology overwhelmed the carbon signature in hard water catchments. Both results demonstrate carbon source characteristics were the most important control on δ13Cdiatom, with a greater impact than productivity. Application of these principles was made to a sediment record from Lake Tanganyika. δ13Cdiatom co‐varied with δ13Cbulk through the last glacial and Holocene. This suggests carbon supply was again dominant and exceeded authigenic demand. This first systematic evaluation of contemporary δ13Cdiatom controls demonstrates that diatoms have the potential to supply a record of carbon cycling through lake catchments from sediment records over millennial timescales. PMID:27656013
[Roles of soil dissolved organic carbon in carbon cycling of terrestrial ecosystems: a review].
Li, Ling; Qiu, Shao-Jun; Liu, Jing-Tao; Liu, Qing; Lu, Zhao-Hua
2012-05-01
Soil dissolved organic carbon (DOC) is an active fraction of soil organic carbon pool, playing an important role in the carbon cycling of terrestrial ecosystems. In view of the importance of the carbon cycling, this paper summarized the roles of soil DOC in the soil carbon sequestration and greenhouse gases emission, and in considering of our present ecological and environmental problems such as soil acidification and climate warming, discussed the effects of soil properties, environmental factors, and human activities on the soil DOC as well as the response mechanisms of the DOC. This review could be helpful to the further understanding of the importance of soil DOC in the carbon cycling of terrestrial ecosystems and the reduction of greenhouse gases emission.
NASA Technical Reports Server (NTRS)
Barrett, Michael J.; Johnson, Paul K.
2004-01-01
The feasibility of using carbon-carbon recuperators in closed-Brayton-cycle (CBC) nuclear space power conversion systems (PCS) was assessed. Recuperator performance expectations were forecast based on projected thermodynamic cycle state values for a planetary mission. Resulting thermal performance, mass and volume for a plate-fin carbon-carbon recuperator were estimated and quantitatively compared with values for a conventional offset-strip-fin metallic design. Material compatibility issues regarding carbon-carbon surfaces exposed to the working fluid in the CBC PCS were also discussed.
NASA Astrophysics Data System (ADS)
Wu, Xuan; Zhao, Wei; Wang, Hong; Qi, Xiujun; Xing, Zheng; Zhuang, Quanchao; Ju, Zhicheng
2018-02-01
Potassium-ion batteries are attracting great attention as a promising alternative to lithium-ion batteries due to the abundance and low price of potassium. Herein, the phosphorus/carbon composite, obtained by a simple ball-milling of 20 wt% commercial red phosphorus and 80 wt% graphite, is studied as a novel anode for potassium-ion batteries. Considering the high theoretical specific capacity of phosphorus and formation of stable phosphorus-carbon bond, which can alleviate the volume expansion efficiently, the phosphorus/carbon composite exhibits a high charge capacity of 323.5 mA h g-1 after 50 cycles at a current density of 50 mA g-1 with moderate rate capability and cycling stability. By the X-ray diffraction analysis, the alloying-dealloying mechanism of phosphorus is proposed to form a KP phase. Meanwhile, prepotassiation treatment is conducted to improve the low initial coulomb efficiency.
Using CarbonTracker carbon flux estimates to improve a terrestrial carbon cycle model
NASA Astrophysics Data System (ADS)
Peters, W.; Krol, M.; Miller, J. B.; Tans, P. P.; Carvalhais, N.; Schaefer, K.
2009-12-01
Estimates of net ecosystem exchange (NEE) from NOAA’s CarbonTracker CO2 data assimilation system show patterns of annual net uptake not represented in most terrestrial carbon cycle models. This is mainly because such models lack information on the land-use history of individual ecosystems, which is the main driver of long-term mean carbon exchange. Instead, they assume the biosphere to be in steady-state, with annual gross photosynthesis equalling ecosystem respiration everywhere. This limits their use in interpreting observations of carbon dynamics such as with eddy-covariance techniques or through atmospheric CO2 records. We have implemented a method that takes the long-term mean NEE estimates from CarbonTracker to derive the size of the dominant carbon pool in each ecosystem of the SIBCASA biosphere model. With the new pool sizes, the SIBCASA model is no longer in steady-state and reproduces annual carbon uptake patterns from CarbonTracker. We will show that the non steady-state SIBCASA model is not only much more consistent with the atmospheric CO2 record, but also with independent data on standing wood biomass and forest age from the Forest Inventory and Analysis (FIA) Program of the U.S. Forest Service. Four years of CarbonTracker NEE are needed to reliably derive a long term mean for this process, and we use three other years from CarbonTracker to evaluate the non steady state SIBCASA NEE. We will furthermore show that the non steady-state SIBCASA NEE is a much better first-guess for the CarbonTracker data assimilation process, allowing more confidence in its final NEE estimate, and reducing a systematic bias in CarbonTracker modeled atmospheric CO2. This overcomes a long standing issue in inverse modeling, and opens the way for further assessment and improvement of carbon cycle models such as SIBCASA.
The Glyoxylate Cycle in an Arbuscular Mycorrhizal Fungus. Carbon Flux and Gene Expression
Lammers, Peter J.; Jun, Jeongwon; Abubaker, Jehad; Arreola, Raul; Gopalan, Anjali; Bago, Berta; Hernandez-Sebastia, Cinta; Allen, James W.; Douds, David D.; Pfeffer, Philip E.; Shachar-Hill, Yair
2001-01-01
The arbuscular mycorrhizal (AM) symbiosis is responsible for huge fluxes of photosynthetically fixed carbon from plants to the soil. Lipid, which is the dominant form of stored carbon in the fungal partner and which fuels spore germination, is made by the fungus within the root and is exported to the extraradical mycelium. We tested the hypothesis that the glyoxylate cycle is central to the flow of carbon in the AM symbiosis. The results of 13C labeling of germinating spores and extraradical mycelium with 13C2-acetate and 13C2-glycerol and analysis by nuclear magnetic resonance spectroscopy indicate that there are very substantial fluxes through the glyoxylate cycle in the fungal partner. Full-length sequences obtained by polymerase chain reaction from a cDNA library from germinating spores of the AM fungus Glomus intraradices showed strong homology to gene sequences for isocitrate lyase and malate synthase from plants and other fungal species. Quantitative real-time polymerase chain reaction measurements show that these genes are expressed at significant levels during the symbiosis. Glyoxysome-like bodies were observed by electron microscopy in fungal structures where the glyoxylate cycle is expected to be active, which is consistent with the presence in both enzyme sequences of motifs associated with glyoxysomal targeting. We also identified among several hundred expressed sequence tags several enzymes of primary metabolism whose expression during spore germination is consistent with previous labeling studies and with fluxes into and out of the glyoxylate cycle. PMID:11706207
Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks.
Torres, Mark A; Moosdorf, Nils; Hartmann, Jens; Adkins, Jess F; West, A Joshua
2017-08-15
Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weathering, and explore the implications for long-term geochemical cycles. Weathering yields from catchments in our compilation are higher than the global average, which results, in part, from higher runoff in glaciated catchments. Our analysis supports the theory that glacial weathering is characterized predominantly by weathering of trace sulfide and carbonate minerals. To evaluate the effects of glacial weathering on atmospheric pCO 2 , we use a solute mixing model to predict the ratio of alkalinity to dissolved inorganic carbon (DIC) generated by weathering reactions. Compared with nonglacial weathering, glacial weathering is more likely to yield alkalinity/DIC ratios less than 1, suggesting that enhanced sulfide oxidation as a result of glaciation may act as a source of CO 2 to the atmosphere. Back-of-the-envelope calculations indicate that oxidative fluxes could change ocean-atmosphere CO 2 equilibrium by 25 ppm or more over 10 ky. Over longer timescales, CO 2 release could act as a negative feedback, limiting progress of glaciation, dependent on lithology and the concentration of atmospheric O 2 Future work on glaciation-weathering-carbon cycle feedbacks should consider weathering of trace sulfide minerals in addition to silicate minerals.
Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks
Torres, Mark A.; Moosdorf, Nils; Hartmann, Jens; Adkins, Jess F.
2017-01-01
Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weathering, and explore the implications for long-term geochemical cycles. Weathering yields from catchments in our compilation are higher than the global average, which results, in part, from higher runoff in glaciated catchments. Our analysis supports the theory that glacial weathering is characterized predominantly by weathering of trace sulfide and carbonate minerals. To evaluate the effects of glacial weathering on atmospheric pCO2, we use a solute mixing model to predict the ratio of alkalinity to dissolved inorganic carbon (DIC) generated by weathering reactions. Compared with nonglacial weathering, glacial weathering is more likely to yield alkalinity/DIC ratios less than 1, suggesting that enhanced sulfide oxidation as a result of glaciation may act as a source of CO2 to the atmosphere. Back-of-the-envelope calculations indicate that oxidative fluxes could change ocean–atmosphere CO2 equilibrium by 25 ppm or more over 10 ky. Over longer timescales, CO2 release could act as a negative feedback, limiting progress of glaciation, dependent on lithology and the concentration of atmospheric O2. Future work on glaciation–weathering–carbon cycle feedbacks should consider weathering of trace sulfide minerals in addition to silicate minerals. PMID:28760954
Particulate inverse opal carbon electrodes for lithium-ion batteries.
Kang, Da-Young; Kim, Sang-Ok; Chae, Yu Jin; Lee, Joong Kee; Moon, Jun Hyuk
2013-01-29
Inverse opal carbon materials were used as anodes for lithium ion batteries. We applied particulate inverse opal structures and their dispersion in the formation of anode electrodes via solution casting. We prepared aminophenyl-grafted inverse opal carbons (a-IOC), inverse opal carbons with mesopores (mIOC), and bare inverse opal carbons (IOC) and investigated the electrochemical behavior of these samples as anode materials. Surface modification by aminophenyl groups was confirmed by XPS measurements. TEM images showed mesopores, and the specific area of mIOC was compared with that of IOC using BET analysis. A half-cell test was performed to compare a-IOC with IOC and mIOC with IOC. In the case of the a-IOC structure, the cell test revealed no improvement in the reversible specific capacity or the cycle performance. The mIOC cell showed a reversible specific capacity of 432 mAh/g, and the capacity was maintained at 88%-approximately 380 mAh/g-over 20 cycles.
Tidal dynamics and mangrove carbon sequestration during the Oligo–Miocene in the South China Sea
Collins, Daniel S.; Avdis, Alexandros; Allison, Peter A.; Johnson, Howard D.; Hill, Jon; Piggott, Matthew D.; Hassan, Meor H. Amir; Damit, Abdul Razak
2017-01-01
Modern mangroves are among the most carbon-rich biomes on Earth, but their long-term (≥106 years) impact on the global carbon cycle is unknown. The extent, productivity and preservation of mangroves are controlled by the interplay of tectonics, global sea level and sedimentation, including tide, wave and fluvial processes. The impact of these processes on mangrove-bearing successions in the Oligo–Miocene of the South China Sea (SCS) is evaluated herein. Palaeogeographic reconstructions, palaeotidal modelling and facies analysis suggest that elevated tidal range and bed shear stress optimized mangrove development along tide-influenced tropical coastlines. Preservation of mangrove organic carbon (OC) was promoted by high tectonic subsidence and fluvial sediment supply. Lithospheric storage of OC in peripheral SCS basins potentially exceeded 4,000 Gt (equivalent to 2,000 p.p.m. of atmospheric CO2). These results highlight the crucial impact of tectonic and oceanographic processes on mangrove OC sequestration within the global carbon cycle on geological timescales. PMID:28643789
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2013 CFR
2013-07-01
... regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each regeneration cycle, record the maximum...
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2014 CFR
2014-07-01
... regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each regeneration cycle, record the maximum...
This study assesses the full cycle transport and fate of a polychlorinated biphenyl (PCB) congener spiked to sediment to empirically and spectroscopically investigate the effects of sediment ageing and organic carbon on the adsorption, desorption, and reaction of the PCB. Caesar ...
Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis.
Chen, Hao; Li, Dejun; Gurmesa, Geshere A; Yu, Guirui; Li, Linghao; Zhang, Wei; Fang, Huajun; Mo, Jiangming
2015-11-01
Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling on Chinese terrestrial ecosystems. Our results showed that N addition did not change soil C pools but increased above-ground plant C pool. A large decrease in below-ground plant C pool was observed. Our result also showed that the impacts of N addition on ecosystem C dynamics depend on ecosystem type and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle. Copyright © 2015 Elsevier Ltd. All rights reserved.
Simulation Studies of Satellite Laser CO2 Mission Concepts
NASA Technical Reports Server (NTRS)
Kawa, Stephan Randy; Mao, J.; Abshire, J. B.; Collatz, G. J.; Sun X.; Weaver, C. J.
2011-01-01
Results of mission simulation studies are presented for a laser-based atmospheric CO2 sounder. The simulations are based on real-time carbon cycle process modeling and data analysis. The mission concept corresponds to ASCENDS as recommended by the US National Academy of Sciences Decadal Survey. Compared to passive sensors, active (lidar) sensing of CO2 from space has several potentially significant advantages that hold promise to advance CO2 measurement capability in the next decade. Although the precision and accuracy requirements remain at unprecedented levels of stringency, analysis of possible instrument technology indicates that such sensors are more than feasible. Radiative transfer model calculations, an instrument model with representative errors, and a simple retrieval approach complete the cycle from "nature" run to "pseudodata" CO2. Several mission and instrument configuration options are examined, and the sensitivity to key design variables is shown. Examples are also shown of how the resulting pseudo-measurements might be used to address key carbon cycle science questions.
Geologic Carbon Sequestration and Biosequestration (Carbon Cycle 2.0)
DePaolo, Don
2018-05-02
Don DePaolo, Director of LBNL's Earth Sciences Division, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget
Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, Robert G.; Duarte, C.M.; Kortelainen, Pirkko; Downing, J.A.; Middelburg, J.J.; Melack, J.
2007-01-01
Because freshwater covers such a small fraction of the Earth's surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and carbon transport for a variety of aquatic systems, we have constructed a budget for the role of inland water ecosystems in the global carbon cycle. Our analysis conservatively estimates that inland waters annually receive, from a combination of background and anthropogenically altered sources, on the order of 1.9 Pg C y-1 from the terrestrial landscape, of which about 0.2 is buried in aquatic sediments, at least 0.8 (possibly much more) is returned to the atmosphere as gas exchange while the remaining 0.9 Pg y-1 is delivered to the oceans, roughly equally as inorganic and organic carbon. Thus, roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea. Over prolonged time net carbon fluxes in aquatic systems tend to be greater per unit area than in much of the surrounding land. Although their area is small, these freshwater aquatic systems can affect regional C balances. Further, the inclusion of inland, freshwater ecosystems provides useful insight about the storage, oxidation and transport of terrestrial C, and may warrant a revision of how the modern net C sink on land is described. ?? 2007 Springer Science+Business Media, LLC.
Energy Demand in China (Carbon Cycle 2.0)
Price, Lynn
2018-02-14
Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Biofuels Science and Facilities (Carbon Cycle 2.0)
Keasling, Jay D.
2018-04-27
Jay D. Keasling speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Energy Storage: Breakthrough in Battery Technologies (Carbon Cycle 2.0)
Balsara, Nitash
2018-02-12
Nitash Balsara speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock
Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; ...
2016-10-14
A significant fraction (~ 20%) of microbial life is found in the terrestrial deep subsurface, yet the metabolic processes extant in those environments are poorly understood. Here we show that H 2, injected into the Opalinus Clay formation in a borehole located 300 meters below the surface, fuels a community of microorganisms with interconnected metabolisms. Metagenomic binning and metaproteomic analysis reveal a complete carbon cycle, driven by autotrophic hydrogen oxidizers. Dead biomass from these organisms is a substrate for a fermenting bacterium that produces acetate as a product. In turn, complete oxidizer heterotrophic sulfate- reducing bacteria utilize acetate and oxidizemore » it to CO 2, closing the cycle. This metabolic reconstruction sheds light onto a hydrogen-driven carbon cycle, and a sunlight-independent ecosystem in the deep subsurface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ying; Frankenberg, C.; Wood, Jeff D.
Quantifying gross primary production (GPP) remains a major challenge in global carbon cycle research. Spaceborne monitoring of solar-induced chlorophyll fluorescence (SIF), an integrative photosynthetic signal of molecular origin, can assist in terrestrial GPP monitoring. However, the extent to which SIF tracks spatiotemporal variations in GPP remains unresolved. Orbiting Carbon Observatory-2 (OCO-2)’s SIF data acquisition and fine spatial resolution permit direct validation against ground and airborne observations. Empirical orthogonal function analysis shows consistent spatiotemporal correspondence between OCO-2 SIF and GPP globally. A linear SIF-GPP relationship is also obtained at eddy-flux sites covering diverse biomes, setting the stage for future investigations ofmore » the robustness of such a relationship across more biomes. In conclusion, our findings support the central importance of high-quality satellite SIF for studying terrestrial carbon cycle dynamics.« less
Effect of increasing CO2 on the terrestrial carbon cycle
Schimel, David; Fisher, Joshua B.
2015-01-01
Feedbacks from the terrestrial carbon cycle significantly affect future climate change. The CO2 concentration dependence of global terrestrial carbon storage is one of the largest and most uncertain feedbacks. Theory predicts the CO2 effect should have a tropical maximum, but a large terrestrial sink has been contradicted by analyses of atmospheric CO2 that do not show large tropical uptake. Our results, however, show significant tropical uptake and, combining tropical and extratropical fluxes, suggest that up to 60% of the present-day terrestrial sink is caused by increasing atmospheric CO2. This conclusion is consistent with a validated subset of atmospheric analyses, but uncertainty remains. Improved model diagnostics and new space-based observations can reduce the uncertainty of tropical and temperate zone carbon flux estimates. This analysis supports a significant feedback to future atmospheric CO2 concentrations from carbon uptake in terrestrial ecosystems caused by rising atmospheric CO2 concentrations. This feedback will have substantial tropical contributions, but the magnitude of future carbon uptake by tropical forests also depends on how they respond to climate change and requires their protection from deforestation. PMID:25548156
Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application
NASA Astrophysics Data System (ADS)
Bae, Seong Jun; Ahn, Yoonhan; Lee, Jekyoung; Lee, Jeong Ik
2014-12-01
Various supercritical carbon dioxide (S-CO2) cycles for a power conversion system of a Molten Carbonate Fuel Cell (MCFC) hybrid system are studied in this paper. Re-Compressing Brayton (RCB) cycle, Simple Recuperated Brayton (SRB) cycle and Simple Recuperated Transcritical (SRT) cycle layouts were selected as candidates for this study. In addition, a novel concept of S-CO2 cycle which combines Brayton cycle and Rankine cycle is proposed and intensively studied with other S-CO2 layouts. A parametric study is performed to optimize the total system to be compact and to achieve wider operating range. Performances of each S-CO2 cycle are compared in terms of the thermal efficiency, net electricity of the MCFC hybrid system and approximate total volumes of each S-CO2 cycle. As a result, performance and total physical size of S-CO2 cycle can be better understood for MCFC S-CO2 hybrid system and especially, newly suggested S-CO2 cycle shows some success.
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2012 CFR
2012-07-01
... specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. Temperature of the carbon bed...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2010 CFR
2010-07-01
... specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. Temperature of the carbon bed...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2011 CFR
2011-07-01
... specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. Temperature of the carbon bed...
NASA Astrophysics Data System (ADS)
Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.
2012-12-01
Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis shows that terrestrial carbon and water cycle simulations in monsoon Asia were greatly improved, and the use of multiple satellite observations with this framework is an effective way for improving terrestrial biosphere models.
Progress and Future Directions in North American Carbon Cycle Science
NASA Astrophysics Data System (ADS)
Michalak, Anna; Huntzinger, Deborah; Shrestha, Gyami
2013-05-01
The North American Carbon Program (NACP) convened its fourth biennial "All Investigators" meeting (AIM4, http://www.nacarbon.org/meeting_2013) to review progress in understanding the dynamics of the carbon cycle of North America and adjacent oceans and to chart a course for a more integrative and holistic approach to future research. The meeting was structured around the six decadal goals outlined in the new "A U.S. Carbon Cycle Science Plan" (Michalak et al., University Corporation for Atmospheric Research, 2011, available at http://www.carboncyclescience.gov) and focused on (1) diagnosis of the atmospheric carbon cycle, (2) drivers of anthropogenic emissions, (3) vulnerability of carbon stocks to change, (4) ecosystem impacts of change, (5) carbon management, and (6) decision support.
Climate extremes and the carbon cycle.
Reichstein, Markus; Bahn, Michael; Ciais, Philippe; Frank, Dorothea; Mahecha, Miguel D; Seneviratne, Sonia I; Zscheischler, Jakob; Beer, Christian; Buchmann, Nina; Frank, David C; Papale, Dario; Rammig, Anja; Smith, Pete; Thonicke, Kirsten; van der Velde, Marijn; Vicca, Sara; Walz, Ariane; Wattenbach, Martin
2013-08-15
The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget.
Elevated temperature alters carbon cycling in a model microbial community
NASA Astrophysics Data System (ADS)
Mosier, A.; Li, Z.; Thomas, B. C.; Hettich, R. L.; Pan, C.; Banfield, J. F.
2013-12-01
Earth's climate is regulated by biogeochemical carbon exchanges between the land, oceans and atmosphere that are chiefly driven by microorganisms. Microbial communities are therefore indispensible to the study of carbon cycling and its impacts on the global climate system. In spite of the critical role of microbial communities in carbon cycling processes, microbial activity is currently minimally represented or altogether absent from most Earth System Models. Method development and hypothesis-driven experimentation on tractable model ecosystems of reduced complexity, as presented here, are essential for building molecularly resolved, benchmarked carbon-climate models. Here, we use chemoautotropic acid mine drainage biofilms as a model community to determine how elevated temperature, a key parameter of global climate change, regulates the flow of carbon through microbial-based ecosystems. This study represents the first community proteomics analysis using tandem mass tags (TMT), which enable accurate, precise, and reproducible quantification of proteins. We compare protein expression levels of biofilms growing over a narrow temperature range expected to occur with predicted climate changes. We show that elevated temperature leads to up-regulation of proteins involved in amino acid metabolism and protein modification, and down-regulation of proteins involved in growth and reproduction. Closely related bacterial genotypes differ in their response to temperature: Elevated temperature represses carbon fixation by two Leptospirillum genotypes, whereas carbon fixation is significantly up-regulated at higher temperature by a third closely related genotypic group. Leptospirillum group III bacteria are more susceptible to viral stress at elevated temperature, which may lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, this proteogenomics approach revealed the effects of climate change on carbon cycling pathways and other microbial activities. When scaled to more complex ecosystems and integrated into Earth System Models, this approach could significantly improve predictions of global carbon-climate feedbacks. Experiments such as these are a critical first step designed at understanding climate change impacts in order to better predict ecosystem adaptations, assess the viability of mitigation strategies, and inform relevant policy decisions.
Carbon cycle uncertainty in the Alaskan Arctic
NASA Astrophysics Data System (ADS)
Fisher, J. B.; Sikka, M.; Oechel, W. C.; Huntzinger, D. N.; Melton, J. R.; Koven, C. D.; Ahlström, A.; Arain, A. M.; Baker, I.; Chen, J. M.; Ciais, P.; Davidson, C.; Dietze, M.; El-Masri, B.; Hayes, D.; Huntingford, C.; Jain, A.; Levy, P. E.; Lomas, M. R.; Poulter, B.; Price, D.; Sahoo, A. K.; Schaefer, K.; Tian, H.; Tomelleri, E.; Verbeeck, H.; Viovy, N.; Wania, R.; Zeng, N.; Miller, C. E.
2014-02-01
Climate change is leading to a disproportionately large warming in the high northern latitudes, but the magnitude and sign of the future carbon balance of the Arctic are highly uncertain. Using 40 terrestrial biosphere models for Alaska, we provide a baseline of terrestrial carbon cycle structural and parametric uncertainty, defined as the multi-model standard deviation (σ) against the mean (x\\bar) for each quantity. Mean annual uncertainty (σ/x\\bar) was largest for net ecosystem exchange (NEE) (-0.01± 0.19 kg C m-2 yr-1), then net primary production (NPP) (0.14 ± 0.33 kg C m-2 yr-1), autotrophic respiration (Ra) (0.09 ± 0.20 kg C m-2 yr-1), gross primary production (GPP) (0.22 ± 0.50 kg C m-2 yr-1), ecosystem respiration (Re) (0.23 ± 0.38 kg C m-2 yr-1), CH4 flux (2.52 ± 4.02 g CH4 m-2 yr-1), heterotrophic respiration (Rh) (0.14 ± 0.20 kg C m-2 yr-1), and soil carbon (14.0± 9.2 kg C m-2). The spatial patterns in regional carbon stocks and fluxes varied widely with some models showing NEE for Alaska as a strong carbon sink, others as a strong carbon source, while still others as carbon neutral. Additionally, a feedback (i.e., sensitivity) analysis was conducted of 20th century NEE to CO2 fertilization (β) and climate (γ), which showed that uncertainty in γ was 2x larger than that of β, with neither indicating that the Alaskan Arctic is shifting towards a certain net carbon sink or source. Finally, AmeriFlux data are used at two sites in the Alaskan Arctic to evaluate the regional patterns; observed seasonal NEE was captured within multi-model uncertainty. This assessment of carbon cycle uncertainties may be used as a baseline for the improvement of experimental and modeling activities, as well as a reference for future trajectories in carbon cycling with climate change in the Alaskan Arctic.
NASA Astrophysics Data System (ADS)
Law, Rachel M.; Ziehn, Tilo; Matear, Richard J.; Lenton, Andrew; Chamberlain, Matthew A.; Stevens, Lauren E.; Wang, Ying-Ping; Srbinovsky, Jhan; Bi, Daohua; Yan, Hailin; Vohralik, Peter F.
2017-07-01
Earth system models (ESMs) that incorporate carbon-climate feedbacks represent the present state of the art in climate modelling. Here, we describe the Australian Community Climate and Earth System Simulator (ACCESS)-ESM1, which comprises atmosphere (UM7.3), land (CABLE), ocean (MOM4p1), and sea-ice (CICE4.1) components with OASIS-MCT coupling, to which ocean and land carbon modules have been added. The land carbon model (as part of CABLE) can optionally include both nitrogen and phosphorous limitation on the land carbon uptake. The ocean carbon model (WOMBAT, added to MOM) simulates the evolution of phosphate, oxygen, dissolved inorganic carbon, alkalinity and iron with one class of phytoplankton and zooplankton. We perform multi-centennial pre-industrial simulations with a fixed atmospheric CO2 concentration and different land carbon model configurations (prescribed or prognostic leaf area index). We evaluate the equilibration of the carbon cycle and present the spatial and temporal variability in key carbon exchanges. Simulating leaf area index results in a slight warming of the atmosphere relative to the prescribed leaf area index case. Seasonal and interannual variations in land carbon exchange are sensitive to whether leaf area index is simulated, with interannual variations driven by variability in precipitation and temperature. We find that the response of the ocean carbon cycle shows reasonable agreement with observations. While our model overestimates surface phosphate values, the global primary productivity agrees well with observations. Our analysis highlights some deficiencies inherent in the carbon models and where the carbon simulation is negatively impacted by known biases in the underlying physical model and consequent limits on the applicability of this model version. We conclude the study with a brief discussion of key developments required to further improve the realism of our model simulation.
Laser laparoscopy in the treatment of polycystic ovarian disease
NASA Astrophysics Data System (ADS)
Mutrynowski, Andrzej; Zabielska, Renata
1996-03-01
A polycystic ovaries disease occurs in the case of women with anovulatory cycles as the result of neurohormonal disorders. Patients with this disease suffer from infertility and many symptoms, such as: irregular menstrual bleeding, hirsutism, obesity. The paper presents a method of the carbon dioxide laser laparoscopy in the polycystic ovary disease treatment. The study included 96 women operated on (carbon dioxide laser laparoscopy) in the II Clinic Of Obstetric and Gynecology in Warsaw. Each woman measured her body temperature in order to evaluate her menstrual cycle and had vaginal USG examination or a cytohormonal one before laparoscopy and within 6 months after the surgery. Performing the laparoscopy the operator punctured each ovary in at least 15 points using the carbon dioxide laser. The patients were followed-up for 6 months. The Chi test was used to make the statistic analysis. Comparing the percent of ovulatory cycles and regular ones before and after surgery we noticed that the differences were statistically relevant. Eighty-five patients (88%) had regular cycles and in 88 cases (92%) there was a diphasic curve of the body temperature after the laparoscopy. Fourteen percent of infertile women with polycystic ovary disease conceived.
Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments
NASA Astrophysics Data System (ADS)
Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun
2017-01-01
Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO2 (GWPbio). In this study we calculated the GWPbio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWPbio factors ranged from 0.13-0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWPbio. Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWPbio and energy conversion efficiency. By considering the GWPbio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWPbio.
Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments
Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun
2017-01-01
Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO2 (GWPbio). In this study we calculated the GWPbio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWPbio factors ranged from 0.13–0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWPbio. Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWPbio and energy conversion efficiency. By considering the GWPbio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWPbio. PMID:28045111
Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments.
Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun
2017-01-03
Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO 2 (GWP bio ). In this study we calculated the GWP bio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWP bio factors ranged from 0.13-0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWP bio . Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO 2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWP bio and energy conversion efficiency. By considering the GWP bio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWP bio .
Carbon Cycle 2.0: Ashok Gadgil: global impact
Ashok Gadgi
2017-12-09
Ashok Gadgil speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
Low Cost Solar Energy Conversion (Carbon Cycle 2.0)
Ramesh, Ramamoorthy
2018-04-27
Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
A Model for the Decrease in Amplitude of Carbon Isotope Excursions Throughout the Phanerozoic
NASA Astrophysics Data System (ADS)
Bachan, A.; Lau, K. V.; Saltzman, M.; Thomas, E.; Kump, L. R.; Payne, J.
2016-12-01
The geological cycling of carbon ties the ocean-atmosphere carbon pool to Earth's biosphere and sedimentary reservoirs. Perturbations to this coupled system are recorded in the carbon-isotopic (δ13C) composition of marine carbonates. Large amplitude δ13C variations with durations of 0.5 - 10 m.y. are typically treated as individual events and interpreted accordingly. However, a recent compilation of Phanerozoic data reveals a decline in the variance of the δ13C record over time, suggesting a common underlying control. Here we propose that the redox structure of the continental shelves was a key determinant of the sensitivity of the geologic carbon cycle: when oxygen minimum zones (OMZs) were large, shallow, and prone to expansion, recurrent physical forcings (such as sea level and tectonics) would have had the capacity to drive large changes in the areal extent of OMZs, resulting in a strong leverage on δ13C values. Using a simple model of the geologic carbon cycle, we demonstrate that interactions between the carbon and phosphate cycles can result in amplification of recurrent forcings with periods in the 0.5 - 10 m.y. range. Thus, rather than requiring that physical forcings have their largest amplitude of variation on those time scales, enhanced sensitivity of the carbon cycle can account for the characteristic duration of δ13C excursions. Biologically mediated aspects of geologic carbon cycling, including the depth of bioturbation and evolution of pelagic calcifiers, likely drove a decline in the depth and extent of ocean anoxia over the Phanerozoic resulting in the stabilization of the geologic carbon cycle.
A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors.
Liang, Qinghua; Ye, Ling; Huang, Zheng-Hong; Xu, Qiang; Bai, Yu; Kang, Feiyu; Yang, Quan-Hong
2014-11-21
A cost-effective approach to obtain electrode materials with excellent electrochemical performance is critical to the development of supercapacitors (SCs). Here we report the preparation of a three-dimensional (3D) honeycomb-like porous carbon (HLPC) by the simple carbonization of pomelo peel followed by KOH activation. Structural characterization indicates that the as-prepared HLPC with a high specific surface area (SSA) up to 2725 m(2) g(-1) is made up of interconnected microporous carbon walls. Chemical analysis shows that the HLPC is doped with nitrogen and also has oxygen-containing groups. Electrochemical measurements show that the HLPC not only exhibits a high specific capacitance of 342 F g(-1) and 171 F cm(-3) at 0.2 A g(-1) but also shows considerable rate capability with a retention of 62% at 20 A g(-1) as well as good cycling performance with 98% retention over 1000 cycles at 10 A g(-1) in 6 M KOH. Furthermore, an as-fabricated HLPC-based symmetric SC device delivers a maximum energy density of ∼9.4 Wh kg(-1) in the KOH electrolyte. Moreover, the outstanding cycling stability (only 2% capacitance decay over 1000 cycles at 5 A g(-1)) of the SC device makes it promising for use in a high-performance electrochemical energy system.
The carbon cycle on early Earth--and on Mars?
Grady, Monica M; Wright, Ian
2006-10-29
One of the goals of the present Martian exploration is to search for evidence of extinct (or even extant) life. This could be redefined as a search for carbon. The carbon cycle (or, more properly, cycles) on Earth is a complex interaction among three reservoirs: the atmosphere; the hydrosphere; and the lithosphere. Superimposed on this is the biosphere, and its presence influences the fixing and release of carbon in these reservoirs over different time-scales. The overall carbon balance is kept at equilibrium on the surface by a combination of tectonic processes (which bury carbon), volcanism (which releases it) and biology (which mediates it). In contrast to Earth, Mars presently has no active tectonic system; neither does it possess a significant biosphere. However, these observations might not necessarily have held in the past. By looking at how Earth's carbon cycles have changed with time, as both the Earth's tectonic structure and a more sophisticated biology have evolved, and also by constructing a carbon cycle for Mars based on the carbon chemistry of Martian meteorites, we investigate whether or not there is evidence for a Martian biosphere.
The carbon cycle on early Earth—and on Mars?
Grady, Monica M; Wright, Ian
2006-01-01
One of the goals of the present Martian exploration is to search for evidence of extinct (or even extant) life. This could be redefined as a search for carbon. The carbon cycle (or, more properly, cycles) on Earth is a complex interaction among three reservoirs: the atmosphere; the hydrosphere; and the lithosphere. Superimposed on this is the biosphere, and its presence influences the fixing and release of carbon in these reservoirs over different time-scales. The overall carbon balance is kept at equilibrium on the surface by a combination of tectonic processes (which bury carbon), volcanism (which releases it) and biology (which mediates it). In contrast to Earth, Mars presently has no active tectonic system; neither does it possess a significant biosphere. However, these observations might not necessarily have held in the past. By looking at how Earth's carbon cycles have changed with time, as both the Earth's tectonic structure and a more sophisticated biology have evolved, and also by constructing a carbon cycle for Mars based on the carbon chemistry of Martian meteorites, we investigate whether or not there is evidence for a Martian biosphere. PMID:17008211
The Carbonate-Silicate Cycle on Earth-like Planets Near The End Of Their Habitable Lifetimes
NASA Astrophysics Data System (ADS)
Rushby, A. J.; Mills, B.; Johnson, M.; Claire, M.
2016-12-01
The terrestrial cycle of silicate weathering and metamorphic outgassing buffers atmospheric CO2 and global climate over geological time on Earth. To first order, the operation of this cycle is assumed to occur on Earth-like planets in the orbit of other main-sequence stars in the galaxy that exhibit similar continent/ocean configurations. This has important implications for studies of planetary habitability, atmospheric and climatic evolution, and our understanding of the potential distribution of life in the Universe. We present results from a simple biogeochemical carbon cycle model developed to investigate the operation of the carbonate-silicate cycle under conditions of differing planet mass and position within the radiative habitable zone. An active carbonate-silicate cycle does extend the length of a planet's habitable period through the regulation of the CO2 greenhouse. However, the breakdown of the negative feedback between temperature, pCO2, and weathering rates towards the end of a planet's habitable lifespan results in a transitory regime of `carbon starvation' that would inhibit the ability of oxygenic photoautotrophs to metabolize, and result in the collapse of any putative biosphere supported by these organisms, suggesting an earlier limit for the initiation of inhabitable conditions than when considering temperature alone. This conclusion stresses the importance of considering the full suite of planetary properties when determining potential habitability. A small sample of exoplanets was tested using this model, and the length of their habitable periods were found to be significantly longer than that of the Earth, primarily as a function of the differential rates of stellar evolution expected from their host stars. Furthermore, we carried out statistical analysis of a series of model input parameters, determining that both the mass of the planet and the sensitivity of seafloor weathering processes to dissolved CO2 exhibit significant controls on the length of a planet's habitable period.
The future of the North American carbon cycle - projections and associated climate change
NASA Astrophysics Data System (ADS)
Huntzinger, D. N.; Chatterjee, A.; Cooley, S. R.; Dunne, J. P.; Hoffman, F. M.; Luo, Y.; Moore, D. J.; Ohrel, S. B.; Poulter, B.; Ricciuto, D. M.; Tzortziou, M.; Walker, A. P.; Mayes, M. A.
2016-12-01
Approximately half of anthropogenic emissions from the burning of fossil fuels is taken up annually by carbon sinks on the land and in the oceans. However, there are key uncertainties in how carbon uptake by terrestrial, ocean, and freshwater systems will respond to, and interact with, climate into the future. Here, we outline the current state of understanding on the future carbon budget of these major reservoirs within North America and the globe. We examine the drivers of future carbon cycle changes, including carbon-climate feedbacks, atmospheric composition, nutrient availability, and human activity and management decisions. Progress has been made at identifying vulnerabilities in carbon pools, including high-latitude permafrost, peatlands, freshwater and coastal wetlands, and ecosystems subject to disturbance events, such as insects, fire and drought. However, many of these processes/pools are not well represented in current models, and model intercomparison studies have shown a range in carbon cycle response to factors such as climate and CO2 fertilization. Furthermore, as model complexity increases, understanding the drivers of model spread becomes increasingly more difficult. As a result, uncertainties in future carbon cycle projections are large. It is also uncertain how management decisions and policies will impact future carbon stocks and flows. In order to guide policy, a better understanding of the risk and magnitude of North American carbon cycle changes is needed. This requires that future carbon cycle projections be conditioned on current observations and be reported with sufficient confidence and fully specified uncertainties.
The changing global carbon cycle: linking local plant-soil carbon dynamics to global consequences
F. Stuart Chapin; Jack McFarland; A. David McGuire; Eugenie S. Euskirchen; Roger W. Ruess; Knut Kielland
2009-01-01
Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR,...
Liu, Mingkai; Meng, Qinghua; Yang, Zhiyuan; Zhao, Xinsheng; Liu, Tianxi
2018-05-15
An integrated carbon-sulfur (CSG/PC) membrane with dual shuttle-inhibiting layers was prepared by inserting graphene "nets" and a porous carbon (PC) skin, and the membrane achieved an extraordinary cycling stability up to 1000 cycles with an average Coulombic efficiency of ∼100%.
NASA Astrophysics Data System (ADS)
Brunsell, N. A.; Nippert, J. B.
2011-12-01
As the climate warms, it is generally acknowledged that the number and magnitude of extreme weather events will increase. We examined an ecophysiological model's responses to precipitation and temperature anomalies in relation to the mean and variance of annual precipitation along a pronounced precipitation gradient from eastern to western Kansas. This natural gradient creates a template of potential responses for both the mean and variance of annual precipitation to compare the timescales of carbon and water fluxes. Using data from several Ameriflux sites (KZU and KFS) and a third eddy covariance tower (K4B) along the gradient, BIOME-BGC was used to characterize water and carbon cycle responses to extreme weather events. Changes in the extreme value distributions were based on SRES A1B and A2 scenarios using an ensemble mean of 21 GCMs for the region, downscaled using a stochastic weather generator. We focused on changing the timing and magnitude of precipitation and altering the diurnal and seasonal temperature ranges. Biome-BGC was then forced with daily output from the stochastic weather generator, and we examined how potential changes in these extreme value distributions impact carbon and water cycling at the sites across the Kansas precipitation gradient at time scales ranging from daily to interannual. To decompose the time scales of response, we applied a wavelet based information theory analysis approach. Results indicate impacts in soil moisture memory and carbon allocation processes, which vary in response to both the mean and variance of precipitation along the precipitation gradient. These results suggest a more pronounced focus ecosystem responses to extreme events across a range of temporal scales in order to fully characterize the water and carbon cycle responses to global climate change.
Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses
2014-01-01
Carbon nanotubes are commercially-important products of nanotechnology; however, their low density and small size makes carbon nanotube respiratory exposures likely during their production or processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 μg/cm2 MWCNT. Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 0.1 μm optical sections showed carbon nanotubes integrated with microtubules, DNA and within the centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both size and number of colonies compared to diluent control cultures, indicating a potential to pass the genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle by MWCNT at occupationally relevant exposure levels. PMID:24479647
Effect of landscape-level fuel treatments on carbon emissions and storage over a 50 yr time cycle
K. Osborne; C. Dicus; C. Isbell; Alan Ager; D. Weise; M. Landram
2011-01-01
We investigated how multiple fuel treatment types, organized in varying spatial arrangements, and at increasing proportions of a mixed-conifer forest in the Klamath Mountains of northern California (~20,000 ha) variably affect carbon sequestration and emissions over a 50 year time period. Preliminary analysis of three fuel treatment scenarios (fire only, mechanical...
NASA Astrophysics Data System (ADS)
Dube, Timothy; Muchena, Richard; Masocha, Mhosisi; Shoko, Cletah
2018-06-01
Accurate and reliable soil organic carbon stock estimation is critical in understanding forest role to regional carbon cycles. So far, the total carbon pool in dry Miombo ecosystems is often under-estimated. In that regard this study sought to model the relationship between the aboveground woody carbon pool and the soil carbon pool, using both ground-based and remote sensing methods. To achieve this objective, the Ratio Vegetation Index (RVI), Normalized Difference Vegetation Index (NDVI), and the Soil Adjusted Vegetation Index (SAVI) computed from the newly launched Landsat 8 OLI satellite data were used. Correlation and regression analysis were used to relate Soil Organic Carbon (S.O.C), aboveground woody carbon and remotely sensed vegetation indices. Results showed a soil organic carbon in the upper soil layer (0-15 cm) was positively correlated with aboveground woody carbon and this relationship was significant (r = 0.678; P < 0.05) aboveground carbon. However, there were no significant correlations (r = -0.11, P > 0.05) between SOC in the deeper soil layer (15-30 cm) and aboveground woody carbon. These findings imply that (relationship between aboveground woody carbon and S.O.C) aboveground woody carbon stocks can be used as a proxy to estimate S.O.C in the top soil layer (0-15 cm) in dry Miombo ecosystems. Overall, these findings underscore the potential and significance of remote sensing data in understanding savanna ecosystems contribution to the global carbon cycle.
Cyclic process for producing methane from carbon monoxide with heat removal
Frost, Albert C.; Yang, Chang-lee
1982-01-01
Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.
Carbon Cycle 2.0: Paul Alivisatos: Introduction
Paul Alivisatos
2017-12-09
Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
Carbon Cycle 2.0: Mary Ann Piette: Impact of efficient buildings
Mary Ann Piette
2017-12-09
Mary Ann Piette speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
Carbon Cycle 2.0: Bill Collins: A future without CC2.0
Bill Collins
2017-12-09
Bill Collins speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
Carbon Cycle 2.0: Mary Ann Piette: Impact of efficient buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mary Ann Piette
Mary Ann Piette speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
Carbon Cycle 2.0: Bill Collins: A future without CC2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill Collins
2010-02-09
Bill Collins speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
Carbon Cycle 2.0: Paul Alivisatos: Introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul Alivisatos
2010-02-09
Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes
NASA Astrophysics Data System (ADS)
de Saint-Aubin, C. A.; Rosset, S.; Schlatter, S.; Shea, H.
2018-07-01
We present high-cycle aging tests of dielectric elastomer actuators (DEAs) based on silicone elastomers, reporting on the time-evolution of actuation strain and of electrode resistance over millions of cycles. We compare several types of carbon-based electrodes, and for the first time show how the choice of electrode has a dramatic influence on DEA aging. An expanding circle DEA configuration is used, consisting of a commercial silicone membrane with the following electrodes: commercial carbon grease applied manually, solvent-diluted carbon grease applied by stamping (pad printing), loose carbon black powder applied manually, carbon black powder suspension applied by inkjet-printing, and conductive silicone-carbon composite applied by stamping. The silicone-based DEAs with manually applied carbon grease electrodes show the shortest lifetime of less than 105 cycles at 5% strain, while the inkjet-printed carbon powder and the stamped silicone-carbon composite make for the most reliable devices, with lifetimes greater than 107 cycles at 5% strain. These results are valid for the specific dielectric and electrode configurations that were tested: using other dielectrics or electrode formulations would lead to different lifetimes and failure modes. We find that aging (as seen in the change in resistance and in actuation strain versus cycle number) is independent of the actuation frequency from 10 Hz to 200 Hz, and depends on the total accumulated time the DEA spends in an actuated state.
NASA Astrophysics Data System (ADS)
Rosengard, S. Z.; Grogan, D. S.; Whiteside, J. H.; van Keuren, M.; Musher, D.
2010-12-01
The early Eocene represents the most recent hothouse climate state of Earth history, a period during which Earth’s surface temperatures warmed and reached a steady peak at the Early Eocene Climatic Optimum (EECO), 53.5-50 Ma. Interspersed through the primary warming interval were several hyperthermals, or rapid peaks in surface temperature and pulses of carbon dioxide into the atmosphere, followed by rapid declines, lasting 10^4 to 10^5 years. Various hypotheses have been offered to explain the climatic triggers during the hothouse interval, including changes in ocean circulation, methane release from hydrates, volcanism, and turnover of terrestrial organic matter, implicating various couplings and feedbacks in the global carbon cycle. The present study investigates the prevailing changes in carbon cycle dynamics that occurred during a specific subinterval of the Early Eocene Climatic Optimum. We sampled a carbon-rich 300-ft ( 1100 kyr) section of lacustrine Green River Formation sediments from the TOSCO core in the Uinta Basin at a one-foot resolution for organic carbon content and δ^{13}C. The compiled data comprise a high-resolution profile of total organic carbon and isotopic organic carbon composition through the section, showing cyclic patterns that we hypothesize reflect orbital signals. Bulk isotopic carbon and shale oil measurements from an earlier Fischer Assay across TOSCO’s entire 1030-ft core were then filtered using the expected frequency of a 23-kyr precession cycle. The overlaid cycles reveal δ^{13}C and oil content to be anti-phase through the 300-ft section, except for an interval of 50 feet (180 kyr) from the Mahogany Zone to the B-groove of the core, where the two measurements are in-phase. Given that shale oil, a proxy for lake primary productivity and carbon burial, and δ^{13}C typically correlate inversely, this short, 180-kyr interval of in-phase variation suggests a significant alteration in the local carbon cycle. These preliminary findings reveal a dynamic, inconstant coupling between precessional variations in solar insolation and the carbon cycle during the EECO. As the organic carbon profile fundamentally records ecosystem processes, this precession-carbon cycle coupling is likely modulated by ecological dynamics within the paleolake, such as changing trophic and community structure. Because precession-driven changes in solar insolation dominantly control hydrology and lake water balance, the lacustrine ecosystem response to such perturbations may have precipitated key shifts in the dynamics of carbon cycling through the most stable interval of Earth’s latest hothouse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graber, J.; Amthor, J.; Dahlman, R.
2008-12-01
One of the most daunting challenges facing science in the 21st Century is to predict how Earth's ecosystems will respond to global climate change. The global carbon cycle plays a central role in regulating atmospheric carbon dioxide (CO{sub 2}) levels and thus Earth's climate, but our basic understanding of the myriad of tightly interlinked biological processes that drive the global carbon cycle remains limited at best. Whether terrestrial and ocean ecosystems will capture, store, or release carbon is highly dependent on how changing climate conditions affect processes performed by the organisms that form Earth's biosphere. Advancing our knowledge of biologicalmore » components of the global carbon cycle is thus crucial to predicting potential climate change impacts, assessing the viability of climate change adaptation and mitigation strategies, and informing relevant policy decisions. Global carbon cycling is dominated by the paired biological processes of photosynthesis and respiration. Photosynthetic plants and microbes of Earth's land-masses and oceans use solar energy to transform atmospheric CO{sub 2} into organic carbon. The majority of this organic carbon is rapidly consumed by plants or microbial decomposers for respiration and returned to the atmosphere as CO{sub 2}. Coupling between the two processes results in a near equilibrium between photosynthesis and respiration at the global scale, but some fraction of organic carbon also remains in stabilized forms such as biomass, soil, and deep ocean sediments. This process, known as carbon biosequestration, temporarily removes carbon from active cycling and has thus far absorbed a substantial fraction of anthropogenic carbon emissions.« less
Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model
Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance
2014-01-01
Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...
NASA Astrophysics Data System (ADS)
Loyd, S. J.
2014-12-01
Carbonate concretions often occur within fine-grained, organic-rich sedimentary rocks. This association reflects the common production of diagenetic minerals through biologic cycling of organic matter. Chemical analysis of carbonate concretions provides the rare opportunity to explore ancient shallow diagenetic environments, which are inherently transient due to progressive burial but are an integral component of the marine carbon cycle. The late Cretaceous Holz Shale (~80 Ma) contains abundant calcite concretions that exhibit textural and geochemical characteristics indicative of relatively shallow formation (i.e., near the sediment-water interface). Sampled concretions contain between 5.4 and 9.8 wt.% total inorganic carbon (TIC), or ~45 and 82 wt.% CaCO3, compared to host shale values which average ~1.5 wt.% TIC. Organic carbon isotope compositions (δ13Corg) are relatively constant in host and concretion samples ranging from -26.3 to -24.0‰ (VPDB). Carbonate carbon isotope compositions (δ13Ccarb) range from -22.5 to -3.4‰, indicating a significant but not entirely organic source of carbon. Concretions of the lower Holz Shale exhibit considerably elevated δ13Ccarb values averaging -4.8‰, whereas upper Holz Shale concretions express an average δ13Ccarb value of -17.0‰. If the remaining carbonate for lower Holz Shale concretions is sourced from marine fluids and/or dissolved marine carbonate minerals (e.g., shells), a simple mass balance indicates that ~28% of concretion carbon was sourced from organic matter and ~72% from late Cretaceous marine inorganic carbon (with δ13C ~ +2.5‰). Upper Holz Shale calculations indicate a ~73% contribution from organic matter and a ~27% contribution from inorganic carbon. When normalized for carbonate, organic contents within the concretions are ~2-13 wt.% enriched compared to host contents. This potentially reflects the protective nature of cementation that acts to limit permeability and chemical destruction of organic material. These data imply that concretion growth in shallow sediments can act as a significant and long-term sink for both marine inorganic and organic carbon.
ERIC Educational Resources Information Center
Zangori, Laura; Peel, Amanda; Kinslow, Andrew; Friedrichsen, Patricia; Sadler, Troy D.
2017-01-01
Carbon cycling is a key natural system that requires robust science literacy to understand how and why climate change is occurring. Studies show that students tend to compartmentalize carbon movement within plants and animals and are challenged to make sense of how carbon cycles on a global scale. Studies also show that students hold faulty models…
Wang, Zhiping; Guo, Feng; Liu, Lili; Zhang, Tong
2014-01-01
Autotrophic CO2 fixation is the most important biotransformation process in the biosphere. Research focusing on the diversity and distribution of relevant autotrophs is significant to our comprehension of the biosphere. In this study, a draft genome of a bacterium from candidate phylum SBR1093 was reconstructed with the metagenome of an industrial activated sludge. Based on comparative genomics, this autotrophy may occur via a newly discovered carbon fixation path, the hydroxypropionate-hydroxybutyrate (HPHB) cycle, which was demonstrated in a previous work to be uniquely possessed by some genera from Archaea. This bacterium possesses all of the thirteen enzymes required for the HPHB cycle; these enzymes share 30∼50% identity with those in the autotrophic species of Archaea that undergo the HPHB cycle and 30∼80% identity with the corresponding enzymes of the mixotrophic species within Bradyrhizobiaceae. Thus, this bacterium might have an autotrophic growth mode in certain conditions. A phylogenetic analysis based on the 16S rRNA gene reveals that the phylotypes within candidate phylum SBR1093 are primarily clustered into 5 clades with a shallow branching pattern. This bacterium is clustered with phylotypes from organically contaminated environments, implying a demand for organics in heterotrophic metabolism. Considering the types of regulators, such as FnR, Fur, and ArsR, this bacterium might be a facultative aerobic mixotroph with potential multi-antibiotic and heavy metal resistances. This is the first report on Bacteria that may perform potential carbon fixation via the HPHB cycle, thus may expand our knowledge of the distribution and importance of the HPHB cycle in the biosphere.
Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes.
Ding, Jia; Wang, Huanlei; Li, Zhi; Kohandehghan, Alireza; Cui, Kai; Xu, Zhanwei; Zahiri, Beniamin; Tan, Xuehai; Lotfabad, Elmira Memarzadeh; Olsen, Brian C; Mitlin, David
2013-12-23
We demonstrate that peat moss, a wild plant that covers 3% of the earth's surface, serves as an ideal precursor to create sodium ion battery (NIB) anodes with some of the most attractive electrochemical properties ever reported for carbonaceous materials. By inheriting the unique cellular structure of peat moss leaves, the resultant materials are composed of three-dimensional macroporous interconnected networks of carbon nanosheets (as thin as 60 nm). The peat moss tissue is highly cross-linked, being rich in lignin and hemicellulose, suppressing the nucleation of equilibrium graphite even at 1100 °C. Rather, the carbons form highly ordered pseudographitic arrays with substantially larger intergraphene spacing (0.388 nm) than graphite (c/2 = 0.3354 nm). XRD analysis demonstrates that this allows for significant Na intercalation to occur even below 0.2 V vs Na/Na(+). By also incorporating a mild (300 °C) air activation step, we introduce hierarchical micro- and mesoporosity that tremendously improves the high rate performance through facile electrolyte access and further reduced Na ion diffusion distances. The optimized structures (carbonization at 1100 °C + activation) result in a stable cycling capacity of 298 mAh g(-1) (after 10 cycles, 50 mA g(-1)), with ∼150 mAh g(-1) of charge accumulating between 0.1 and 0.001 V with negligible voltage hysteresis in that region, nearly 100% cycling Coulombic efficiency, and superb cycling retention and high rate capacity (255 mAh g(-1) at the 210th cycle, stable capacity of 203 mAh g(-1) at 500 mA g(-1)).
Feng, Xueyang; Tang, Kuo-Hsiang; Blankenship, Robert E; Tang, Yinjie J
2010-12-10
The photosynthetic green sulfur bacterium Chlorobaculum tepidum assimilates CO(2) and organic carbon sources (acetate or pyruvate) during mixotrophic growth conditions through a unique carbon and energy metabolism. Using a (13)C-labeling approach, this study examined biosynthetic pathways and flux distributions in the central metabolism of C. tepidum. The isotopomer patterns of proteinogenic amino acids revealed an alternate pathway for isoleucine synthesis (via citramalate synthase, CimA, CT0612). A (13)C-assisted flux analysis indicated that carbons in biomass were mostly derived from CO(2) fixation via three key routes: the reductive tricarboxylic acid (RTCA) cycle, the pyruvate synthesis pathway via pyruvate:ferredoxin oxidoreductase, and the CO(2)-anaplerotic pathway via phosphoenolpyruvate carboxylase. During mixotrophic growth with acetate or pyruvate as carbon sources, acetyl-CoA was mainly produced from acetate (via acetyl-CoA synthetase) or citrate (via ATP citrate lyase). Pyruvate:ferredoxin oxidoreductase converted acetyl-CoA and CO(2) to pyruvate, and this growth-rate control reaction is driven by reduced ferredoxin generated during phototrophic growth. Most reactions in the RTCA cycle were reversible. The relative fluxes through the RTCA cycle were 80∼100 units for mixotrophic cultures grown on acetate and 200∼230 units for cultures grown on pyruvate. Under the same light conditions, the flux results suggested a trade-off between energy-demanding CO(2) fixation and biomass growth rate; C. tepidum fixed more CO(2) and had a higher biomass yield (Y(X/S), mole carbon in biomass/mole substrate) in pyruvate culture (Y(X/S) = 9.2) than in acetate culture (Y(X/S) = 6.4), but the biomass growth rate was slower in pyruvate culture than in acetate culture.
Tsuji, Yoshinori; Suzuki, Iwane; Shiraiwa, Yoshihiro
2009-02-01
The coccolithophorid Emiliania huxleyi (Haptophyta) is a representative and unique marine phytoplankton species that fixes inorganic carbon by photosynthesis and calci-fication. We examined the initial process of photosynthetic carbon assimilation by analyses of metabolites, enzymes and genes. When the cells were incubated with a radioactive substrate (2.3 mM NaH(14)CO(3)) for 10 s under illumination, 70% of the (14)C was incorporated into the 80% methanol-soluble fraction. Eighty-five and 15% of (14)C in the soluble fraction was incorporated into phosphate esters (P-esters), including the C(3) cycle intermediates and a C(4) compound, aspartate, respectively. A pulse-chase experiment showed that (14)C in P-esters was mainly transferred into lipids, while [(14)C]aspartate, [(14)C]alanine and [(14)C]glutamate levels remained almost constant. These results indicate that the C(3) cycle functions as the initial pathway of carbon assimilation and that beta-carboxylation contributes to the production of amino acids in subsequent metabolism. Transcriptional analysis of beta-carboxylases such as pyruvate carboxylase (PYC), phosphoenolpyruvate carboxylase (PEPC) and phosphoenolpyruvate carboxykinase (PEPCK) revealed that PYC and PEPC transcripts were greatly increased under illumination, whereas the PEPCK transcript decreased remarkably. PEPC activity was higher in light-grown cells than in dark-adapted cells. PYC activity was detected in isolated chloroplasts of light-grown cells. According to analysis of their deduced N-terminal sequence, PYC and PEPC are predicted to be located in the chloroplasts and mitochondria, respectively. These results suggest that E. huxleyi possesses unique carbon assimila-tion mechanisms in which beta-carboxylation by both PYC and PEPC plays important roles in different organelles.
How Sensitive Is the Carbon Budget Approach to Potential Carbon Cycle Changes?
NASA Astrophysics Data System (ADS)
Matthews, D.
2014-12-01
The recent development of global Earth-system models, which include dynamic representations of both physical climate and carbon cycle processes, has led to new insights about how the climate responds to human carbon dioxide emissions. Notably, several model analyses have now shown that global temperature responds linearly to cumulative CO2 emissions across a wide range of emissions scenarios. This implies that the timing of CO2 emissions does not affect the overall climate response, and allows a finite global carbon carbon budget to be defined for a given global temperature target. This linear climate response, however, emerges from the interaction of several non-linear processes and feedbacks involving how carbon sinks respond to changes in atmospheric CO2 and climate. In this presentation, I will give an overview of how carbon sinks and carbon cycle feedbacks contribute to the overall linearity of the climate response to cumulative emissions, and will assess how robust this relationship is to a range of possible changes in the carbon cycle, including (a) potential positive carbon cycle feedbacks that are not well represented in the current generation of Earth-system models and (b) negative emission scenarios resulting from possible technological strategies to remove CO2 from the atmosphere.
Raman, Babu; Nandakumar, M P; Muthuvijayan, Vignesh; Marten, Mark R
2005-11-05
Proteome analysis was used to compare global protein expression changes in Escherichia coli fermentation between exponential and glucose-limited fed-batch phase. Two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry were used to separate and identify 49 proteins showing >2-fold difference in expression. Proteins upregulated during exponential phase include ribonucleotide biosynthesis enzymes and ribosomal recycling factor. Proteins upregulated during fed-batch phase include those involved in high-affinity glucose uptake, transport and degradation of alternate carbon sources and TCA cycle, suggesting an enhanced role of the cycle under glucose- and energy-limited conditions. We report the upregulation of several putative proteins (ytfQ, ygiS, ynaF, yggX, yfeX), not identified in any previous study under carbon-limited conditions. Copyright (c) 2005 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Maki, T.; Sekiyama, T. T.; Shibata, K.; Miyazaki, K.; Miyoshi, T.; Yamada, K.; Yokoo, Y.; Iwasaki, T.
2011-12-01
In the current carbon cycle analysis, inverse modeling plays an important role. However, it requires enormous computational resources when we deal with more flux regions and more observations. The local ensemble transform Kalman filter (LETKF) is an alternative approach to reduce such problems. We constructed a carbon cycle analysis system with the LETKF and MRI (Meteorological Research Institute) online transport model (MJ98-CDTM). In MJ98-CDTM, an off-line transport model (CDTM) is directly coupled with the MRI/JMA GCM (MJ98). We further improved vertical transport processes in MJ98-CDTM from previous study. The LETKF includes enhanced features such as smoother to assimilate future observations, adaptive inflation and bias correction scheme. In this study, we use CO2 observations of surface data (continuous and flask), aircraft data (CONTRAIL) and satellite data (GOSAT), although we plan to assimilate AIRS tropospheric CO2 data. We developed a quality control system. We estimated 3-day-mean CO2 flux at a resolution of T42. Here, only CO2 concentrations and fluxes are analyzed whereas meteorological fields are nudged by the Japanese reanalysis (JCDAS). The horizontal localization length scale and assimilation window are chosen to be 1000 km and 3 days, respectively. The results indicate that the assimilation system works properly, better than free transport model run when we validate with independent CO2 concentration observational data and CO2 analysis data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Selow, E.R.; Cobden, P.D.; Verbraeken, P.A.
2009-05-15
A novel route for precombustion decarbonization is the sorption-enhanced water-gas shift (SEWGS) process. In this process carbon dioxide is removed from a synthesis gas at elevated temperature by adsorption. Simultaneously, carbon monoxide is converted to carbon dioxide by the water-gas shift reaction. The periodic adsorption and desorption of carbon dioxide is induced by a pressure swing cycle, and the cyclic capacity can be amplified by purging with steam. From previous studies is it known that for SEWGS applications, hydrotalcite-based materials are particularly attractive as sorbent, and commercial high-temperature shift catalysts can be used for the conversion of carbon monoxide. Tabletsmore » of a potassium promoted hydrotalcite-based material are characterized in both breakthrough and cyclic experiments in a 2 m tall fixed-bed reactor. When exposed to a mixture of carbon dioxide, steam, and nitrogen at 400{sup o}C, the material shows a breakthrough capacity of 1.4 mmol/g. In subsequent experiments the material was mixed with tablets of promoted iron-chromium shift catalyst and exposed to a mixture of carbon dioxide, carbon monoxide, steam, hydrogen, and nitrogen. It is demonstrated that carbon monoxide conversion can be enhanced to 100% in the presence of a carbon dioxide sorbent. At breakthrough, carbon monoxide and carbon dioxide simultaneously appear at the end of the bed. During more than 300 cycles of adsorption/reaction and desorption, the capture rate, and carbon monoxide conversion are confirmed to be stable. Two different cycle types are investigated: one cycle with a CO{sub 2} rinse step and one cycle with a steam rinse step. The performance of both SEWGS cycles are discussed.« less
NASA Astrophysics Data System (ADS)
Edburg, S. L.; Hicke, J. A.; Lawrence, D. M.; Thornton, P. E.
2009-12-01
Forest disturbances, such as fire, insects, and land-use change, significantly alter carbon budgets by changing carbon pools and fluxes. The mountain pine beetle (MPB) kills millions of hectares of trees in the western US, similar to the area killed by fire. Mountain pine beetles kill host trees by consuming the inner bark tissue, and require host tree death for reproduction. Despite being a significant disturbance to forested ecosystems, insects such as MPB are typically not represented in biogeochemical models, thus little is known about their impact on the carbon cycle. We investigate the role of past MPB outbreaks on carbon cycling in the western US using the NCAR Community Land Model with Carbon and Nitrogen cycles (CLM-CN). CLM-CN serves as the land model to the Community Climate System Model (CCSM), providing exchanges of energy, momentum, water, carbon, and nitrogen between the land and atmosphere. We run CLM-CN over the western US extending to eastern Colorado with a spatial resolution of 0.5° and a half hour time step. The model is first spun-up with repeated NCEP forcing (1948-1972) until carbon stocks and fluxes reach equilibrium (~ 3000 years), and then run from 1850 to 2004 with NCEP forcing and a dynamic plant functional type (PFT) database. Carbon stocks from this simulation are compared with stocks from the Forest Inventory Analysis (FIA) program. We prescribe MPB mortality area, once per year, in CLM-CN using USFS Aerial Detection Surveys (ADS) from the last few decades. We simulate carbon impacts of tree mortality by MPB within a model grid cell by moving carbon from live vegetative pools (leaf, stem, and roots) to dead pools (woody debris, litter, and dead roots). We compare carbon pools and fluxes for two simulations, one without MPB outbreaks and one with MPB outbreaks.
40 CFR Table 6 to Subpart Uuuu of... - Continuous Compliance With Operating Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 7. carbon absorber maintain the regeneration frequency, total regeneration stream mass or volumetric flow during carbon bed regeneration and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) for each regeneration cycle within the values established...
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2011 CFR
2011-07-01
... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2013 CFR
2013-07-01
... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...
40 CFR Table 6 to Subpart Uuuu of... - Continuous Compliance With Operating Limits
Code of Federal Regulations, 2013 CFR
2013-07-01
.... 7. carbon absorber maintain the regeneration frequency, total regeneration stream mass or volumetric flow during carbon bed regeneration and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) for each regeneration cycle within the values established...
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2014 CFR
2014-07-01
... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...
40 CFR Table 6 to Subpart Uuuu of... - Continuous Compliance With Operating Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
.... 7. carbon absorber maintain the regeneration frequency, total regeneration stream mass or volumetric flow during carbon bed regeneration and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) for each regeneration cycle within the values established...
40 CFR Table 6 to Subpart Uuuu of... - Continuous Compliance With Operating Limits
Code of Federal Regulations, 2014 CFR
2014-07-01
.... 7. carbon absorber maintain the regeneration frequency, total regeneration stream mass or volumetric flow during carbon bed regeneration and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) for each regeneration cycle within the values established...
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or pressure; and maximum...
40 CFR Table 6 to Subpart Uuuu of... - Continuous Compliance With Operating Limits
Code of Federal Regulations, 2012 CFR
2012-07-01
.... 7. carbon absorber maintain the regeneration frequency, total regeneration stream mass or volumetric flow during carbon bed regeneration and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) for each regeneration cycle within the values established...
NASA Technical Reports Server (NTRS)
Bolin, Bert; Fung, Inez
1992-01-01
Discussions during the Global Change Institute indicated a need to present, in some detail and as accurately as possible, our present knowledge about the carbon cycle, the uncertainties in this knowledge, and the reasons for these uncertainties. We discuss basic issues of internal consistency within the carbon cycle, and end by summarizing the key unknowns.
The effects of climate sensitivity and carbon cycle interactions on mitigation policy stringency
Climate sensitivity and climate-carbon cycle feedbacks interact to determine how global carbon and energy cycles will change in the future. While the science of these connections is well documented, their economic implications are not well understood. Here we examine the effect o...
Three-Dimensional Water and Carbon Cycle Modeling at High Spatial-Temporal Resolutions
NASA Astrophysics Data System (ADS)
Liao, C.; Zhuang, Q.
2017-12-01
Terrestrial ecosystems in cryosphere are very sensitive to the global climate change due to the presence of snow covers, mountain glaciers and permafrost, especially when the increase in near surface air temperature is almost twice as large as the global average. However, few studies have investigated the water and carbon cycle dynamics using process-based hydrological and biogeochemistry modeling approach. In this study, we used three-dimensional modeling approach at high spatial-temporal resolutions to investigate the water and carbon cycle dynamics for the Tanana Flats Basin in interior Alaska with emphases on dissolved organic carbon (DOC) dynamics. The results have shown that: (1) lateral flow plays an important role in water and carbon cycle, especially in dissolved organic carbon (DOC) dynamics. (2) approximately 2.0 × 104 kg C yr-1 DOC is exported to the hydrological networks and it compromises 1% and 0.01% of total annual gross primary production (GPP) and total organic carbon stored in soil, respectively. This study has established an operational and flexible framework to investigate and predict the water and carbon cycle dynamics under the changing climate.
Global Impacts (Carbon Cycle 2.0)
Gadgil, Ashok
2018-05-04
Ashok Gadgil, Faculty Senior Scientist and Acting Director, EETD, also Professor of Environmental Engineering, UC Berkeley, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Importance of vegetation dynamics for future terrestrial carbon cycling
NASA Astrophysics Data System (ADS)
Ahlström, Anders; Xia, Jianyang; Arneth, Almut; Luo, Yiqi; Smith, Benjamin
2015-05-01
Terrestrial ecosystems currently sequester about one third of anthropogenic CO2 emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO2 by land based ecosystems is highly uncertain. Most ecosystem models used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net primary production (NPP) is distributed to plant compartments, transferred to litter and soil through vegetation turnover and then re-emitted to the atmosphere in conjunction with soil decomposition. However, while all models represent the processes of NPP and soil decomposition, they vary greatly in their representations of vegetation turnover and the associated processes governing mortality, disturbance and biome shifts. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality, and the associated turnover. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the Coupled Model Intercomparison Project Phase 5 ensemble under RCP8.5 radiative forcing. By exchanging carbon cycle processes between these 13 simulations we quantified the relative roles of three main driving processes of the carbon cycle; (I) NPP, (II) vegetation dynamics and turnover and (III) soil decomposition, in terms of their contribution to future carbon (C) uptake uncertainties among the ensemble of climate change scenarios. We found that NPP, vegetation turnover (including structural shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33%, respectively, of uncertainties in modelled global C-uptake. Uncertainty due to vegetation turnover was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand dynamics (7%), reproduction (10%) and biome shifts (67%) globally. We conclude that while NPP and soil decomposition rates jointly account for 83% of future climate induced C-uptake uncertainties, vegetation turnover and structure, dominated by biome shifts, represent a significant fraction globally and regionally (tropical forests: 40%), strongly motivating their representation and analysis in future C-cycle studies.
NASA Astrophysics Data System (ADS)
Brune, S.; Williams, S.; Müller, D.
2017-12-01
The deep carbon cycle links the carbon content of crust and mantle to Earth's surface: extensional plate boundaries and arc volcanoes release CO2 to the ocean and atmosphere while subducted lithosphere carries carbon back into the mantle. The length of extensional and convergent plate boundaries therefore exerts first-order control on solid Earth CO2 degassing rates. Here we provide a global census of plate boundary length for the last 200 million years. Focusing on rift systems, we find that the most extensive rift phase during the fragmentation of Pangea occurred in the Jurassic/Early Cretaceous with more than 50.000 km of simultaneously active continental rifts. During the Late Cretaceous, in the aftermath of this pervasive rift episode, the global rift length dropped by 60% to 20,000 km. We further find that a second pronounced rift episode with global rift lengths of up to 30,000 km started in Eocene times. A close geological link between CO2 degassing and faulting has been documented in currently active rift systems worldwide. Regional-scale CO2 flux densities at rift segments in Africa, Europe, and New Zealand feature an annual average value of 200 t of CO2 per km2. Assuming that the release of CO2 scales with rift length, we show that rift-related CO2 degassing rates during the two major Mesozoic and Cenozoic rift episodes reached more than 300% of present-day values. Most importantly, the timing of enhanced CO2 degassing from continental rifts correlates with two well-known periods of elevated atmospheric CO2 in the Mesozoic and Cenozoic as evidenced by multiple independent proxy indicators. Compiling the length of other plate boundaries (mid-ocean ridges, subduction zones, continental arcs) through time, we do not reproduce such a correlation. Finally, we conduct numerical carbon cycle models that account for key feedback-mechanisms of the long-term carbon cycle. We find that only those models that feature a strong rift degassing component reproduce the timing and amplitude of the paleo-CO2 record. We therefore suggest that rift-related degassing constitutes a key component of the deep carbon cycle.
NASA Astrophysics Data System (ADS)
Samankassou, Elias; Enos, Paul
2017-04-01
The driving mechanisms of cyclic patterns in shallow-water platform carbonates remain controversial. The focus of the present paper is to quantify lateral facies variations for a long stratigraphic record in an extensive, continuous, well-exposed cliff of the Dachstein platform that is composed, as many other Phanerozoic carbonate platforms, of peritidal deposits. We noted the lateral continuity of the beds to the degree permitted by the outcrop, generally a few tens or hundreds of meters; exceptionally up to 1.7 km. The study demonstrates the importance of quantification to evaluate origins of sedimentary cycles. The upper 885 m of the Triassic Dachstein platform limestone at Steinernes Meer, Saalfelden, Austria, includes 241 peritidal cycles overlain by 275 m of subtidal, non-cyclic and weakly cyclic limestone. Of 558 subtidal and intertidal beds measured, 121 (21.7%) disappear laterally. An additional 74 beds (13.3%) show significant (>10%) lateral variations in thickness. Mean thickness variation is 50%. Both lateral variations and discontinuities appear to lack a spatial vector. Disappearances toward the inferred platform interior (west), total 10.4% of the beds. East toward the inferred platform margin 11.3% of the beds disappear. Thickness changes occur in 6.6% of beds in each direction. The lack of lateral continuity of beds is consistent with a non-eustatic component to stratification. Erosion of intertidal intervals is the process that can be most readily documented. Erosion, transport, and non-uniform distribution of sediments, superposed on stratigraphic sequences driven by eustacy, are the likely processes which produced the complex, randomly recorded cycle patterns. Cycle duration may not be exclusively determined by Milankovitch processes, as suggested by the discrepancies in the cycle duration and interpretation among stratigraphers of the Dachstein, as well as other Phanerozoic carbonate platforms. Signals deduced from linearly measured sections likely represent composite inherent and extrabasinal factors; they should not be automatically interpreted as exclusive records of eustatic orbital forcing. Lateral discontinuities and thickness variations could also present problems in spectral analysis of thickness patterns, typically conducted in search of "Milankovich frequencies", as well as in construction of "Fischer plots," to analyze long-period oscillations in relative sea level. Any section subjected to cycle analysis should be examined for lateral changes, to the extent permitted by the exposures, in order to produce the most complete (composite) section possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrifi, I.R.; Turpin, D.H.
Nitrate addition to nitrate-limited cultures of Selenastrum minutum Naeg. Collins (Chlorophyta) resulted in a 70% suppression of photosynthetic carbon fixation. In /sup 14/CO/sub 2/ pulse/chase experiments nitrate resupply increased radiolabel incorporation into amino and organic acids and decreased radiolabel incorporation into insoluble material. Nitrate resupply increased the concentration of phosphoenolpyruvate and increased the radiolabeling of phosphoenolpyruvate, pyruvate and tricarboxylic acid cycle intermediates, notably citrate, fumarate, and malate. Furthermore, nitrate also increased the pool sizes and radiolabeling of most amino acids, with alanine, aspartate, glutamate, and glutamine showing the largest changes. Nitrate resupply increased the proportion of radiolabel in the C-4more » position of malate and increased the ratios of radiolabel in aspartate to phosphoenolpyruvate and in pyruvate to phosphoenolpyruvate, indicative of increased phosphoenolpyruvate carboxylase and pyruvate kinase activities. Analysis of these data showed that the rate of carbon flow through glutamate (10.6 ..mu..moles glutamate per milligram chlorophyll per hour) and the rate of net glutamate production (7.9 ..mu..moles glutamate per milligram chlorophyll per hour) were both greater than the maximum rate of carbon export from the Calvin cycle which could be maintained during steady state photosynthesis. These results are consistent with the hypothesis that nitrogen resupply to nitrogen-limited microalgae results in a transient suppression of photosynthetic carbon fixation due, in part, to the severity of competition for carbon skeletons between the Calvin cycle and nitrogen assimilation.« less
Elrifi, Ivor R.; Turpin, David H.
1987-01-01
Nitrate addition to nitrate-limited cultures of Selenastrum minutum Naeg. Collins (Chlorophyta) resulted in a 70% suppression of photosynthetic carbon fixation. In 14CO2 pulse/chase experiments nitrate resupply increased radiolabel incorporation into amino and organic acids and decreased radiolabel incorporation into insoluble material. Nitrate resupply increased the concentration of phosphoenolpyruvate and increased the radiolabeling of phosphoenolpyruvate, pyruvate and tricarboxylic acid cycle intermediates, notably citrate, fumarate, and malate. Furthermore, nitrate also increased the pool sizes and radiolabeling of most amino acids, with alanine, aspartate, glutamate, and glutamine showing the largest changes. Nitrate resupply increased the proportion of radiolabel in the C-4 position of malate and increased the ratios of radiolabel in aspartate to phosphoenolpyruvate and in pyruvate to phosphoenolpyruvate, indicative of increased phosphoenolpyruvate carboxylase and pyruvate kinase activities. Analysis of these data showed that the rate of carbon flow through glutamate (10.6 μmoles glutamate per milligram chlorophyll per hour) and the rate of net glutamate production (7.9 μmoles glutamate per milligram chlorophyll per hour) were both greater than the maximum rate of carbon export from the Calvin cycle which could be maintained during steady state photosynthesis. These results are consistent with the hypothesis that nitrogen resupply to nitrogen-limited microalgae results in a transient suppression of photosynthetic carbon fixation due, in part, to the severity of competition for carbon skeletons between the Calvin cycle and nitrogen assimilation (IR Elrifi, DH Turpin 1986 Plant Physiol 81: 273-279). PMID:16665223
Elrifi, I R; Turpin, D H
1987-01-01
Nitrate addition to nitrate-limited cultures of Selenastrum minutum Naeg. Collins (Chlorophyta) resulted in a 70% suppression of photosynthetic carbon fixation. In (14)CO(2) pulse/chase experiments nitrate resupply increased radiolabel incorporation into amino and organic acids and decreased radiolabel incorporation into insoluble material. Nitrate resupply increased the concentration of phosphoenolpyruvate and increased the radiolabeling of phosphoenolpyruvate, pyruvate and tricarboxylic acid cycle intermediates, notably citrate, fumarate, and malate. Furthermore, nitrate also increased the pool sizes and radiolabeling of most amino acids, with alanine, aspartate, glutamate, and glutamine showing the largest changes. Nitrate resupply increased the proportion of radiolabel in the C-4 position of malate and increased the ratios of radiolabel in aspartate to phosphoenolpyruvate and in pyruvate to phosphoenolpyruvate, indicative of increased phosphoenolpyruvate carboxylase and pyruvate kinase activities. Analysis of these data showed that the rate of carbon flow through glutamate (10.6 mumoles glutamate per milligram chlorophyll per hour) and the rate of net glutamate production (7.9 mumoles glutamate per milligram chlorophyll per hour) were both greater than the maximum rate of carbon export from the Calvin cycle which could be maintained during steady state photosynthesis. These results are consistent with the hypothesis that nitrogen resupply to nitrogen-limited microalgae results in a transient suppression of photosynthetic carbon fixation due, in part, to the severity of competition for carbon skeletons between the Calvin cycle and nitrogen assimilation (IR Elrifi, DH Turpin 1986 Plant Physiol 81: 273-279).
Geochemical cycles of atmospheric gases
NASA Technical Reports Server (NTRS)
Walker, J. C. G.; Drever, J. I.
1988-01-01
The processes that control the atmosphere and atmospheric changes are reviewed. The geochemical cycles of water vapor, nitrogen, carbon dioxide, oxygen, and minor atmospheric constituents are examined. Changes in atmospheric chemistry with time are discussed using evidence from the rock record and analysis of the present atmosphere. The role of biological evolution in the history of the atmosphere and projected changes in the future atmosphere are considered.
Sulfur cycling in plays an important role in the development of Ocean Anoxic Events
NASA Astrophysics Data System (ADS)
Gomes, M. L.; Raven, M. R.; Fike, D. A.; Gill, B. C.; Johnston, D. T.
2017-12-01
Ocean Anoxic Events (OAEs) are major carbon cycle perturbations marked by enhanced organic carbon deposition in the marine realm and carbon isotope excursions in organic and inorganic carbon. Although not as severe as the "big five" mass extinctions, OAEs had dire consequences for marine ecosystems and thus influenced Mesozoic evolutionary patterns. Sulfur cycle reconstructions provide insight into the biogeochemical processes that played a role in the development of OAEs because the sulfur cycle is linked with the carbon and oxygen cycles. We present sulfur and oxygen isotope records from carbonate-associated sulfate from the Toarcian OAE that documents a positive sulfate-oxygen isotope excursion of +6‰, which is similar to the magnitude of the positive sulfur isotope excursion documented at the same site and other globally distributed sites. This high-resolution record allows us to explore temporal variability in the onset of the isotopic excursions: the onset of the positive sulfate-oxygen isotope excursion occurs at the same stratigraphic interval as the onset of the positive carbon isotope excursion and both precede the onset of the positive sulfate-sulfur isotope excursion. Because oxygen is rapidly recycled during oxidative sulfur cycling, changes in oxidative sulfur cycling affect oxygen isotope values of sulfate without impacting sulfur isotope values. Thus, the early onset of the sulfate-oxygen isotope excursion implies a change in oxidative sulfur cycling, which is likely due to a shoaling of the zone of sulfate reduction. We explore the consequences of sulfate reduction zone shoaling for organic carbon preservation. Specifically, the sulfurization of organic matter, which makes organic matter less susceptible to degradation, occurs more rapidly when the top of the zone of sulfate reduction is near or above the sediment water interface. Therefore, we suggest that the shoaling of the sulfate reduction zone locally changed pathways of oxidative sulfur cycling and enhanced organic carbon preservation. Given synchronous changes in similar, globally-distributed depositional environments, this impacted the global biogeochemical cycles of oxygen, carbon, and nutrients in ways that sustained decreased oxygen availability and influenced extinction patterns of marine organisms.
Michael C. Dietze; Rodrigo Vargas; Andrew D. Richardson; Paul C. Stoy; Alan G. Barr; Ryan S. Anderson; M. Altaf Arain; Ian T. Baker; T. Andrew Black; Jing M. Chen; Philippe Ciais; Lawrence B. Flanagan; Christopher M. Gough; Robert F. Grant; David Hollinger; R. Cesar Izaurralde; Christopher J. Kucharik; Peter Lafleur; Shugang Liu; Erandathie Lokupitiya; Yiqi Luo; J. William Munger; Changhui Peng; Benjamin Poulter; David T. Price; Daniel M. Ricciuto; William J. Riley; Alok Kumar Sahoo; Kevin Schaefer; Andrew E. Suyker; Hanqin Tian; Christina Tonitto; Hans Verbeeck; Shashi B. Verma; Weifeng Wang; Ensheng Weng
2011-01-01
Ecosystem models are important tools for diagnosing the carbon cycle and projecting its behavior across space and time. Despite the fact that ecosystems respond to drivers at multiple time scales, most assessments of model performance do not discriminate different time scales. Spectral methods, such as wavelet analyses, present an alternative approach that enables the...
Global Analysis, Interpretation, and Modelling: First Science Conference
NASA Technical Reports Server (NTRS)
Sahagian, Dork
1995-01-01
Topics considered include: Biomass of termites and their emissions of methane and carbon dioxide - A global database; Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal forest ecosystems; Estimation of methane emission from rice paddies in mainland China; Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling; Potential role of vegetation feedback in the climate sensitivity of high-latitude regions - A case study at 6000 years B.P.; Interannual variation of carbon exchange fluxes in terrestrial ecosystems; and Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions.
A RuBisCO-mediated carbon metabolic pathway in methanogenic archaea
Kono, Takunari; Mehrotra, Sandhya; Endo, Chikako; Kizu, Natsuko; Matusda, Mami; Kimura, Hiroyuki; Mizohata, Eiichi; Inoue, Tsuyoshi; Hasunuma, Tomohisa; Yokota, Akiho; Matsumura, Hiroyoshi; Ashida, Hiroki
2017-01-01
Two enzymes are considered to be unique to the photosynthetic Calvin–Benson cycle: ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), responsible for CO2 fixation, and phosphoribulokinase (PRK). Some archaea possess bona fide RuBisCOs, despite not being photosynthetic organisms, but are thought to lack PRK. Here we demonstrate the existence in methanogenic archaea of a carbon metabolic pathway involving RuBisCO and PRK, which we term ‘reductive hexulose-phosphate' (RHP) pathway. These archaea possess both RuBisCO and a catalytically active PRK whose crystal structure resembles that of photosynthetic bacterial PRK. Capillary electrophoresis-mass spectrometric analysis of metabolites reveals that the RHP pathway, which differs from the Calvin–Benson cycle only in a few steps, is active in vivo. Our work highlights evolutionary and functional links between RuBisCO-mediated carbon metabolic pathways in methanogenic archaea and photosynthetic organisms. Whether the RHP pathway allows for autotrophy (that is, growth exclusively with CO2 as carbon source) remains unknown. PMID:28082747
Eastern U.S. Continental Shelf Carbon Budget: Integrating Models,Data Assimilation, and Analysis
NASA Technical Reports Server (NTRS)
Hofmann, Eileen; Mannino, Antonio; McClain, Charles R.
2007-01-01
The U.S. East Coast Continental Shelf (USECoS) project was initiated in 2004 with the overall goal of developing carbon budgets for Mid-Atlantic and South Atlantic regions of the eastern U.S. coast. We addressed this goal through a series of specific research questions that were designed to understand carbon inputs and fates in the two regions, dominant food web pathways for carbon cycling, and similarities/differences in carbon cycling in the two continental shelf systems. The USECoS project represents a major effort to simultaneously synthesize and integrate diverse data sets, field measurements, models, and modeling approaches. We expect that the type of approach taken here will result in more insight than would be possible if each component of the program moved forward independently. The primary significance of this project is in providing a strong quantitative basis for the development of future observational and modeling studies of carbon budgets of continental shelf systems. A strong aspect of the USECoS project is the integration of modeling and extensive physical, chemical, and biological data sets, which provides an opportunity for modeling and data analyses to inform one another from the outset. This research is particularly germane to NASA's carbon cycle research focus and coastal research initiative and the U.S. Climate Change Research Program, all of which support the goals of the North American Carbon Program. We highlight primary approaches that have been used, and some of the challenges and results that have come from interactions among our team of investigators. The global scale and interdisciplinary nature of the science questions that we now face in Earth Science are such that integrated teams of investigators are needed to address them.
NASA Astrophysics Data System (ADS)
Meyer, K. M.; Yu, M.; Lehrmann, D.; van de Schootbrugge, B.; Payne, J. L.
2013-01-01
Large δ13C excursions, anomalous carbonate precipitates, low diversity assemblages of small fossils, and evidence for marine euxinia in uppermost Permian and Lower Triassic strata bear more similarity to Neoproterozoic carbonates than to the remainders of the Permian and Triassic systems. Middle Triassic diversification of marine ecosystems coincided with the waning of anoxia and stabilization of the global carbon cycle, suggesting that environment-ecosystem linkages were important to biological recovery. However, the Earth system behavior responsible for these large δ13C excursions remains poorly constrained. Here we present a continuous Early Triassic δ13Corg record from south China and use it to test the extent to which Early Triassic excursions in δ13Ccarb record changes in the δ13C of marine dissolved inorganic carbon (DIC). Regression analysis demonstrates a significant positive correlation between δ13Corg and δ13Ccarb across multiple sections that span a paleoenvironmental gradient. Such a correlation is incompatible with diagenetic alteration because no likely mechanism will alter both δ13Corg and δ13Ccarb records in parallel and therefore strongly indicates a primary depositional origin. A simple explanation for this correlation is that a substantial portion of the preserved Corg was derived from the contemporaneous DIC pool, implying that the observed excursions reflect variation in the δ13C of the exogenic carbon reservoir (ocean, atmosphere, biomass). These findings support existing evidence that large δ13C excursions are primary and therefore strengthen the case that large-scale changes to the carbon cycle were mechanistically linked to the low diversity and small size of Early Triassic fossils. Associated sedimentary and biogeochemical phenomena further suggest that similar associations in Neoproterozoic and Cambrian strata may reflect the same underlying controls.
Cyclic process for producing methane in a tubular reactor with effective heat removal
Frost, Albert C.; Yang, Chang-Lee
1986-01-01
Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.
Integrated Assessment of Carbon Dioxide Removal
NASA Astrophysics Data System (ADS)
Rickels, W.; Reith, F.; Keller, D.; Oschlies, A.; Quaas, M. F.
2018-03-01
To maintain the chance of keeping the average global temperature increase below 2°C and to limit long-term climate change, removing carbon dioxide from the atmosphere (carbon dioxide removal, CDR) is becoming increasingly necessary. We analyze optimal and cost-effective climate policies in the dynamic integrated assessment model (IAM) of climate and the economy (DICE2016R) and investigate (1) the utilization of (ocean) CDR under different climate objectives, (2) the sensitivity of policies with respect to carbon cycle feedbacks, and (3) how well carbon cycle feedbacks are captured in the carbon cycle models used in state-of-the-art IAMs. Overall, the carbon cycle model in DICE2016R shows clear improvements compared to its predecessor, DICE2013R, capturing much better long-term dynamics and also oceanic carbon outgassing due to excess oceanic storage of carbon from CDR. However, this comes at the cost of a (too) tight short-term remaining emission budget, limiting the model suitability to analyze low-emission scenarios accurately. With DICE2016R, the compliance with the 2°C goal is no longer feasible without negative emissions via CDR. Overall, the optimal amount of CDR has to take into account (1) the emission substitution effect and (2) compensation for carbon cycle feedbacks.
NASA Astrophysics Data System (ADS)
Khalili, S. Mohammad Reza; Najafi, Moslem; Eslami-Farsani, Reza
2017-01-01
The aim of the present work was to investigate the effect of thermal cycling on the tensile behavior of three types of polymer-matrix composites — a phenolic resin reinforced with woven basalt fibers, woven carbon fibers, and hybrid basalt and carbon fibers — in an ambient environment. For this purpose, tensile tests were performed on specimens previously subjected to a certain number of thermal cycles. The ultimate tensile strength of the specimen reinforced with woven basalt fibers had by 5% after thermal cycling, but the strength of the specimen with woven carbon fibers had reduced to a value by 11% higher than that before thermal cycling.
Carbon budgets of biological soil crusts at micro-, meso-, and global scales
Sancho, Leopoldo G; Belnap, Jayne; Colesie, Claudia; Raggio, Jose; Weber, Bettina
2016-01-01
The importance of biocrusts in the ecology of arid lands across all continents is widely recognized. In spite of this broad distribution, contributions of biocrusts to the global biogeochemical cycles have only recently been considered. While these studies opened a new view on the global role of biocrusts, they also clearly revealed the lack of data for many habitats and of overall standards for measurements and analysis. In order to understand carbon cycling in biocrusts and the progress which has been made during the last 15 years, we offer a multi-scale approach covering different climatic regions. We also include a discussion on available measurement techniques at each scale: A micro-scale section focuses on the individual organism level, including modeling based on the combination of field and lab data. The meso-scale section addresses the CO2 exchange of a complete ecosystem or at the community level. Finally, we consider the contribution of biocrusts at a global scale, giving a general perspective of the most relevant findings regarding the role of biological soil crusts in the global terrestrial carbon cycle.
ERIC Educational Resources Information Center
Drouin, Pamela; Welty, David J.; Repeta, Daniel; Engle-Belknap, Cheryl A.; Cramer, Catherine; Frashure, Kim; Chen, Robert
2006-01-01
In this article, the authors present a classroom experiment that was developed to introduce middle school learners to the carbon cycle. The experiment deals with transfer of CO[subscript 2] between liquid reservoirs and the effect CO[subscript 2] has on algae growth. It allows students to observe the influence of the carbon cycle on algae growth,…
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each...
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2012 CFR
2012-07-01
... monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each...
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2013 CFR
2013-07-01
...) temperature Continuous records as specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2014 CFR
2014-07-01
...) temperature Continuous records as specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle...
Marine Biogeochemistry Under The Influence of Fish And Fisheries: An Ecosystem Modeling Study
NASA Astrophysics Data System (ADS)
Disa, Deniz; Akoglu, Ekin; Salihoglu, Baris
2017-04-01
The ocean and the marine ecosystems are important controllers of the global carbon cycle. They play a pivotal role in capturing atmospheric carbon into the ocean body, transforming it into organic carbon through photosynthesis and transporting it to the depths of the ocean. Fish, which has a significant role in the marine food webs, is thought to have a considerable impact on carbon export. More specifically, fish has a control on plankton dynamics as a predator, it provides nutrient to the ecosystem by its metabolic activities and it has the ability of moving actively and transporting materials. Fishing is also expected to impact carbon cycle because it directly changes the fish biomasses. However, how fish impacts the biogeochemistry of marine ecosystems is not studied extensively. The aim of this study is to analyze the impact of fish and fisheries on marine biogeochemical processes by setting up an end-to-end model, which simulates lower and higher tropic levels of marine ecosystems simultaneously. For this purpose, a one dimensional biogeochemical model simulating lower tropic level dynamics (e.g. carbon export, nutrient cycles) and an food web model simulating fisheries exploitation and higher tropic level dynamics were online and two-way coupled. Representing the marine ecosystem from one end to the other, the coupled model served as a tool for the analysis of fishing impacts on marine biogeochemical dynamics. Results obtained after incorporation of higher trophic level model changed the plankton compositions and enhanced detritus pools and increased carbon export. Additionally, our model showed that active movement of fish contributed to transport of carbon from surface to the deeper parts of the ocean. Moreover, results after applying different fishing intensities indicated that changes in fisheries exploitation levels directly influence the marine nutrient cycles and hence, the carbon export. Depending on the target and the intensity of fisheries, considerable changes in the biogeochemical responses observed. In conclusion, unlike the models that do not represent the fish explicitly, we demonstrate how marine biogeochemical processes are impacted by the activity of fish assemblages and fisheries exploitation.
Smith, Christopher G.; Osterman, Lisa E.
2014-01-01
The estuarine environment can serve as either a source or sink of carbon relative to the coastal ocean carbon budget. A variety of time-dependent processes such as sedimentation, carbon supply, and productivity dictate how estuarine systems operate, and Mobile Bay is a system that has experienced both natural and anthropogenic perturbations that influenced depositional processes and carbon cycling. Sediments from eight box cores provide a record of change in bulk sediment accumulation and carbon burial over the past 110 years. Accumulation rates in the central part of the basin (0.09 g cm−2) were 60–80 % less than those observed at the head (0.361 g cm−2) and mouth (0.564 g cm−2) of the bay. Sediment accumulation in the central bay decreased during the past 90 years in response to both anthropogenic (causeway construction) and natural (tropical cyclones) perturbations. Sediment accumulation inevitably increased the residence time of organic carbon in the oxic zone, as observed in modeled remineralization rates, and reduced the overall carbon burial. Such observations highlight the critical balance among sediment accumulation, carbon remineralization, and carbon burial in dynamic coastal environments. Time-series analysis based solely on short-term observation would not capture the long-term effects of changes in sedimentation on carbon cycling. Identifying these relationships over longer timescales (multi-annual to decadal) will provide a far better evaluation of coastal ocean carbon budgets.
The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, Mark; Cutler, Dylan; Flores-Espino, Francisco
Tightly coupled nuclear-renewable hybrid energy systems (N-R HESs) are an option that can generate zero-carbon, dispatchable electricity and provide zero-carbon energy for industrial processes at a lower cost than alternatives. N-R HESs are defined as systems that are managed by a single entity and link a nuclear reactor that generates heat, a thermal power cycle for heat to electricity conversion, at least one renewable energy source, and an industrial process that uses thermal and/or electrical energy. This report provides results of an analysis of two N-R HES scenarios. The first is a Texas-synthetic gasoline scenario that includes four subsystems: amore » nuclear reactor, thermal power cycle, wind power plant, and synthetic gasoline production technology. The second is an Arizona-desalination scenario with its four subsystems a nuclear reactor, thermal power cycle, solar photovoltaics, and a desalination plant. The analysis focuses on the economics of the N-R HESs and how they compare to other options, including configurations without all the subsystems in each N-R HES and alternatives where the energy is provided by natural gas.« less
Comparing the Life Cycle Energy Consumption, Global ...
Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG) emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energyand carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage) centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability
NASA Astrophysics Data System (ADS)
Shepherd, D.; Burgess, D.; Jickells, T.; Andrews, J.; Cave, R.; Turner, R. K.; Aldridge, J.; Parker, E. R.; Young, E.
2007-07-01
A hydrodynamic model is developed for the Blackwater estuary (UK) and used to estimate nitrate removal by denitrification. Using the model, sediment analysis and estimates of sedimentation rates, we estimate changes in estuarine denitrification and intertidal carbon and nutrient storage and associated value of habitat created under a scenario of extensive managed realignment. We then use this information, together with engineering and land costs, to conduct a cost benefit analysis of the managed realignment. This demonstrates that over a 50-100 year timescale the value of the habitat created and carbon buried is sufficient to make the large scale managed realignment cost effective. The analysis reveals that carbon and nutrient storage plus habitat creation represent major and quantifiable benefits of realignment. The methodology described here can be readily transferred to other coastal systems.
NASA Astrophysics Data System (ADS)
Pellegrini, A.; Hoffmann, W. A.; Franco, A. C.
2014-12-01
The expansion of tropical forest into savanna may potentially be a large carbon sink, but little is known about the patterns of carbon sequestration during transitional forest formation. Moreover, it is unclear how nutrient limitation, due to extended exposure to firedriven nutrient losses, may constrain carbon accumulation. Here, we sampled plots that spanned a woody biomass gradient from savanna to transitional forest in response to differential fire protection in central Brazil. These plots were used to investigate how the process of transitional forest formation affects the size and distribution of carbon (C) and nitrogen (N) pools. This was paired with a detailed analysis of the nitrogen cycle to explore possible connections between carbon accumulation and nitrogen limitation. An analysis of carbon pools in the vegetation, upper soil, and litter shows that the transition from savanna to transitional forest can result in a fourfold increase in total carbon (from 43 to 179 Mg C/ha) with a doubling of carbon stocks in the litter and soil layers. Total nitrogen in the litter and soil layers increased with forest development in both the bulk (+68%) and plant-available (+150%) pools, with the most pronounced changes occurring in the upper layers. However, the analyses of nitrate concentrations, nitrate : ammonium ratios, plant stoichiometry of carbon and nitrogen, and soil and foliar nitrogen isotope ratios suggest that a conservative nitrogen cycle persists throughout forest development, indicating that nitrogen remains in low supply relative to demand. Furthermore, the lack of variation in underlying soil type (>20 cm depth) suggests that the biogeochemical trends across the gradient are driven by vegetation. Our results provide evidence for high carbon sequestration potential with forest encroachment on savanna, but nitrogen limitation may play a large and persistent role in governing carbon sequestration in savannas or other equally fire-disturbed tropical landscapes. In turn, the link between forest development and nitrogen pool recovery creates a framework for evaluating potential positive feedbacks on savanna-forest boundaries.
Wu, Weiwei; Yang, Huanjia; Chew, David; Hou, Yanhong; Li, Qiming
2014-01-01
Buildings' sustainability is one of the crucial parts for achieving urban sustainability. Applied to buildings, life-cycle assessment encompasses the analysis and assessment of the environmental effects of building materials, components and assemblies throughout the entire life of the building construction, use and demolition. Estimate of carbon emissions is essential and crucial for an accurate and reasonable life-cycle assessment. Addressing the need for more research into integrating analysis of real-time and automatic recording of key indicators for a more accurate calculation and comparison, this paper aims to design a real-time recording model of these crucial indicators concerning the calculation and estimation of energy use and carbon emissions of buildings based on a Radio Frequency Identification (RFID)-based system. The architecture of the RFID-based carbon emission recording/tracking system, which contains four functional layers including data record layer, data collection/update layer, data aggregation layer and data sharing/backup layer, is presented. Each of these layers is formed by RFID or network devices and sub-systems that operate at a specific level. In the end, a proof-of-concept system is developed to illustrate the implementation of the proposed architecture and demonstrate the feasibility of the design. This study would provide the technical solution for real-time recording system of building carbon emissions and thus is of great significance and importance to improve urban sustainability. PMID:24831109
Wu, Weiwei; Yang, Huanjia; Chew, David; Hou, Yanhong; Li, Qiming
2014-05-14
Buildings' sustainability is one of the crucial parts for achieving urban sustainability. Applied to buildings, life-cycle assessment encompasses the analysis and assessment of the environmental effects of building materials, components and assemblies throughout the entire life of the building construction, use and demolition. Estimate of carbon emissions is essential and crucial for an accurate and reasonable life-cycle assessment. Addressing the need for more research into integrating analysis of real-time and automatic recording of key indicators for a more accurate calculation and comparison, this paper aims to design a real-time recording model of these crucial indicators concerning the calculation and estimation of energy use and carbon emissions of buildings based on a Radio Frequency Identification (RFID)-based system. The architecture of the RFID-based carbon emission recording/tracking system, which contains four functional layers including data record layer, data collection/update layer, data aggregation layer and data sharing/backup layer, is presented. Each of these layers is formed by RFID or network devices and sub-systems that operate at a specific level. In the end, a proof-of-concept system is developed to illustrate the implementation of the proposed architecture and demonstrate the feasibility of the design. This study would provide the technical solution for real-time recording system of building carbon emissions and thus is of great significance and importance to improve urban sustainability.
DOE R&D Accomplishments Database
Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.
1990-02-01
The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.
The influence of carbon content on cyclic fatigue of NiTi SMA wires.
Matheus, T C U; Menezes, W M M; Rigo, O D; Kabayama, L K; Viana, C S C; Otubo, J
2011-06-01
To evaluate two NiTi wires with different carbon and oxygen contents in terms of mechanical resistance to rotary bending fatigue (RBF) under varied parameters of strain amplitude and rotational speed. The wires produced from two vacuum induction melting (VIM) processed NiTi ingots were tested, Ti-49.81 at%Ni and Ti-50.33 at%Ni, named VIM 1 and VIM 2. A brief analysis related to wire fabrication is also presented, as well as chemical and microstructural analysis by energy dispersive spectroscopy (EDS) and optical microscope, respectively. A computer controlled RBF machine was specially constructed for the tests. Three radii of curvature were used: 50.0, 62.5 and 75.0 mm, respectively, R(1), R(2) and R(3), resulting in three strain amplitudes ε(a) : 1.00%, 0.80% and 0.67%. The selected rotational speeds were 250 and 455 rpm. The VIM 1 wire had a high carbon content of 0.188 wt% and a low oxygen content of 0.036 wt%. The oxygen and carbon contents of wire VIM 2 did not exceed their maximum, of 0.070 and 0.050 wt%, according to ASTM standard (ASTM F-2063-00 2001). The wire with lower carbon content performed better when compared to the one with higher carbon content, withstanding 29,441 and 12,895 cycles, respectively, to fracture. The surface quality of the wire was associated with resistance to cyclic fatigue. Surface defects acted as stress concentrators points. Overall, the number of cycles to failure was higher for VIM 2 wires with lower carbon content. © 2011 International Endodontic Journal.
The Second State of the Carbon Cycle Report: A Scientific Basis for Policy and Management Decisions
NASA Astrophysics Data System (ADS)
Birdsey, R.; Mayes, M. A.; Reed, S.; Najjar, R.; Romero-Lankao, P.
2017-12-01
The second "State of the Carbon Cycle of North America Report" (SOCCR-2) includes an overview of the North American carbon budget and future projections, the consequences of changes to the carbon budget, details of the carbon budget in major terrestrial and aquatic ecosystems (including coastal ocean waters), information about anthropogenic drivers, and implications for policy and carbon management. SOCCR-2 includes new focus areas such as soil carbon, arctic and boreal ecosystems, tribal lands, and greater emphasis on aquatic systems and the role of societal drivers and decision making on the carbon cycle. In addition, methane is considered to a greater extent than before. SOCCR-2 will contribute to the next U.S. National Climate Assessment, as well as providing information to support science-based management decisions and policies that include climate change mitigation and adaptation in Canada, the United States, and Mexico. Although the Report is still in the review process, preliminary findings indicate that North America is a net emitter of carbon dioxide and methane to the atmosphere, and that natural sinks offset about 25% of emitted carbon dioxide. Combustion of fossil fuels represents the largest source of emissions, but show a decreasing trend over the last decade and a lower share (20%) of the global total compared with the previous decade. Forests, soils, grasslands, and coastal oceans comprise the largest carbon sinks, while emissions from inland waters are a significant source of carbon dioxide. The Report also documents the lateral transfers of carbon among terrestrial ecosystems and from terrestrial to near-coastal ecosystems, to complete the carbon cycle accounting. Further, the Report explores the consequences of rising atmospheric carbon dioxide on terrestrial and oceanic systems, and the capacity of these systems to continue to act as carbon sinks based on the drivers of future carbon cycle changes, including carbon-climate feedbacks, atmospheric composition, nutrient availability, and human activity and management decisions. SOCCR-2 highlights key data gaps in carbon accounting frameworks, uncertainties in modeling and estimation approaches, and integrated frameworks for improving our understanding of the North American carbon cycle.
Analysis of Shublik Formation rocks from Mt. Michelson quadrangle, Alaska
Detterman, Robert L.
1970-01-01
Analysis of 88 samples from the Shublik formation on Fire Creek, Mt. Michelson Quadrangle, Alaska, are presented in tabular form. The results include the determination of elements by semiquantitative spectrographic analysis, phosphate by X-ray fluorescence, carbon dioxide by acid decomposable carbonate, total carbon by induction furnace, carbonate carbon by conversion using the conversion factor of 0.2727 for amount of carbon in carbon dioxide, and organic carbon by difference. A seven- cycle semilogarithmic chart presents the data graphically and illustrates the range, mode, and mean for some of the elements. The chart shows, also, the approximate concentration of the same elements in rocks similar to the black shale and limestone of the Shublik Formation. Each sample represents 5 feet of section and is composed of rock chips taken at 1 - foot intervals. The samples are keyed into a stratigraphic column of the formation. Rocks of the Shublik Formation contain anomalously high concentrations of some of the elements. These same elements might be expected to be high in some of the petroleum from northern Alaska if the Shublik Formation is a source for this petroleum. Several of the stratigraphic intervals may represent, also, a low-grade phosphate deposit.
NASA Astrophysics Data System (ADS)
Fike, D. A.; Jones, D. S.
2012-12-01
The proliferation of carbonate-associated sulfate (CAS) isotope analyses in recent years has revolutionized our understanding of marine sulfur cycling over much of Earth history. In marine carbonate rocks, δ34SCAS is thought to be a faithful recorder of the isotopic composition of marine sulfate (δ34SSO4). However, as the chemostratigraphic record becomes better resolved in time and space, reports of coeval but discordant δ34SCAS values are becoming increasingly common. These differences could arise in part from a) water column stratification or physiographic separations between separate ocean basins (i.e., paleoceanographic variability in δ34SSO4); b) syndepositional processes that decouple the relationship between δ34SSO4 and δ34SCAS during deposition or prior to lithification; or c) diagenetic alteration of the δ34SCAS signal following deposition. To help disentangle these processes, we have developed a microanalytical approach to determine the abundance and isotopic composition of CAS using secondary ionization mass spectrometry (SIMS). While our current precision (~1‰) cannot compete with that obtained from traditional bulk analysis on gas source isotope ratio mass spectrometers, we believe that the unparalleled spatial resolution can provide substantial insights into many of the fundamental questions that remain regarding the mechanisms by which CAS concentration and isotopic composition can be altered during carbonate precipitation and/or recrystallization. With a spatial resolution as low as ~ 5 μm, it is possible to analyze suites of primary and diagenetic phases, including individual carbonate allochems, muds, and cements. Preliminary results indicate that δ34SCAS can vary by as much as 10‰ between phases in a single sample. This scale of analysis allows for a rigorous evaluation of the susceptibility of δ34SCAS to syndepositional and diagenetic alteration, especially when coupled with parallel analysis of δ13Ccarb/δ18Ocarb and diagnostic trace element abundances. Such detailed measurements illuminate the complex relationships between the isotopic composition of individual constituents of carbonate rocks and the bulk δ34SCAS values on which much of our understanding of sulfur cycling in deep time is based. The resulting insights can be used to re-examine existing δ34SCAS records and our understanding of the evolution of sulfur cycling over Earth history.
Ding, Ranran; Zhang, Jie; Qi, Jie; Li, Zhenhua; Wang, Chengyang; Chen, Mingming
2018-04-25
To address the issues of low electrical conductivity, sluggish lithiation kinetics and dramatic volume variation in Fe 3 O 4 anodes of lithium ion battery, herein, a double carbon-confined three-dimensional (3D) nanocomposite architecture was synthesized by an electrostatically assisted self-assembly strategy. In the constructed architecture, the ultrafine Fe 3 O 4 subunits (∼10 nm) self-organize to form nanospheres (NSs) that are fully coated by amorphous carbon (AC), formatting core-shell structural Fe 3 O 4 /AC NSs. By further encapsulation by reduced graphene oxide (rGO) layers, a constructed 3D architecture was built as dual carbon-confined rGO/Fe 3 O 4 /AC. Such structure restrains the adverse reaction of the electrolyte, improves the electronic conductivity and buffers the mechanical stress of the entire electrode, thus performing excellent long-term cycling stability (99.4% capacity retention after 465 cycles relevant to the second cycle at 5 A g -1 ). Kinetic analysis reveals that a dual lithium storage mechanism including a diffusion reaction mechanism and a surface capacitive behavior mechanism coexists in the composites. Consequently, the resulting rGO/Fe 3 O 4 /AC nanocomposite delivers a high reversible capacity (835.8 mA h g -1 for 300 cycles at 1 A g -1 ), as well as remarkable rate capability (436.7 mA h g -1 at 10 A g -1 ).
NASA Astrophysics Data System (ADS)
Shellikeri, A.; Yturriaga, S.; Zheng, J. S.; Cao, W.; Hagen, M.; Read, J. A.; Jow, T. R.; Zheng, J. P.
2018-07-01
Energy storage devices, which can combine the advantages of lithium-ion battery with that of electric double layer capacitor, are of prime interest. Recently, composite cathodes, which combine a battery material with capacitor material, have shown promise in enhancing life cycle and energy/power performances. Lithium-ion capacitor (LIC), with unique charge storage mechanism of combining a pre-lithiated battery anode with a capacitor cathode, is one such device which has the potential to synergistically incorporate the composite cathode to enhance capacity and cycle life. We report here a hybrid LIC consisting of a lithium iron phosphate (LiFePO4-LFP)/Activated Carbon composite cathode in combination with a hard carbon anode, by integrating the cycle life and capacity enhancing strategies of a dry method of electrode fabrication, anode pre-lithiation and a 3:1 anode to cathode capacity ratio, demonstrating a long cycle life, while elaborating on the charge sharing between the faradaic and non-faradaic mechanism in the battery and capacitor materials, respectively in the composite cathode. An excellent cell capacity retention of 94% (1000 cycles at 1C) and 92% (100,000 cycles at 60C) were demonstrated, while retaining 78% (over 6000 cycles at 2.7C) and 67% (over 70,000 cycles at 43C) of the LFP capacity in the composite cathode.
Piette, Mary Ann
2018-05-03
Mary Ann Piette, Deputy of LBNL's Building Technologies Department and Director of the Demand Response Research Center, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piette, Mary Ann
Mary Ann Piette, Deputy of LBNL's Building Technologies Department and Director of the Demand Response Research Center, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3.
Rhodes, Nathan R; Barde, Amey; Randhir, Kelvin; Li, Like; Hahn, David W; Mei, Renwei; Klausner, James F; AuYeung, Nick
2015-11-01
Solar thermochemical energy storage has enormous potential for enabling cost-effective concentrated solar power (CSP). A thermochemical storage system based on a SrO/SrCO3 carbonation cycle offers the ability to store and release high temperature (≈1200 °C) heat. The energy density of SrCO3/SrO systems supported by zirconia-based sintering inhibitors was investigated for 15 cycles of exothermic carbonation at 1150 °C followed by decomposition at 1235 °C. A sample with 40 wt % of SrO supported by yttria-stabilized zirconia (YSZ) shows good energy storage stability at 1450 MJ m(-3) over fifteen cycles at the same cycling temperatures. After further testing over 45 cycles, a decrease in energy storage capacity to 1260 MJ m(-3) is observed during the final cycle. The decrease is due to slowing carbonation kinetics, and the original value of energy density may be obtained by lengthening the carbonation steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bloom, A. Anthony; Exbrayat, Jean-François; van der Velde, Ivar R.; Feng, Liang; Williams, Mathew
2016-01-01
The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle and its processes is, therefore, necessary to better understand its current state and predict its future state. We combine a diagnostic ecosystem carbon model with satellite observations of leaf area and biomass (where and when available) and soil carbon data to retrieve the first global estimates, to our knowledge, of carbon cycle state and process variables at a 1° × 1° resolution; retrieved variables are independent from the plant functional type and steady-state paradigms. Our results reveal global emergent relationships in the spatial distribution of key carbon cycle states and processes. Live biomass and dead organic carbon residence times exhibit contrasting spatial features (r = 0.3). Allocation to structural carbon is highest in the wet tropics (85–88%) in contrast to higher latitudes (73–82%), where allocation shifts toward photosynthetic carbon. Carbon use efficiency is lowest (0.42–0.44) in the wet tropics. We find an emergent global correlation between retrievals of leaf mass per leaf area and leaf lifespan (r = 0.64–0.80) that matches independent trait studies. We show that conventional land cover types cannot adequately describe the spatial variability of key carbon states and processes (multiple correlation median = 0.41). This mismatch has strong implications for the prediction of terrestrial carbon dynamics, which are currently based on globally applied parameters linked to land cover or plant functional types. PMID:26787856
Carbon Speciation and Anthropogenic Influences in Haitian Rivers and Inland Waters
NASA Astrophysics Data System (ADS)
Markowitz, M.; Paine, J.; McGillis, W. R.; Hsueh, D. Y.
2014-12-01
Climate, geography, and land use patterns all contribute to the social, economic, and environmental challenges in Haiti. Water quality remains a predominant issue, and the health of freshwater systems has been linked to the cycling and transformation of carbon. A speciation dominated by carbonates and bicarbonates is conducive to higher alkalinity waters, which is part of an environmental signature in which cholera and other bacteria thrive. Numerous human activities such as deforestation, biomass burning, and agricultural practices have radically changed the abundances of carbon on land and rivers in Haiti. In Haitian small mountainous rivers, carbon speciation is also influenced by the weathering of limestone and other carbonate rocks. Additionally, rain events and natural disturbances such as earthquakes have shown to drastically increase the amount of carbon in rivers and coastal waters. Since 2010, a network of both satellite and autonomous hydrometeorological stations has been deployed to monitor the climate in southwestern Haiti. Additionally, various hydrological parameters from river, reservoir, and coastal sites have been measured during field visits. Research will be continued into the wet season, providing temporal analysis needed for quantifying the abundances and transformations of carbon. Together, data from weather stations and field sites can be contextualized with local land use patterns and other human activities to offer unique insights on the carbon system. Findings may offer new perspectives on the relationships between hydrologic cycles, human health, and environmental sustainability in Haiti.
Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon.
Lin, Junjie; Zhu, Biao; Cheng, Weixin
2015-12-01
The response of soil organic carbon (SOC) pools to globally rising surface temperature crucially determines the feedback between climate change and the global carbon cycle. However, there is a lack of studies investigating the temperature sensitivity of decomposition for decadally cycling SOC which is the main component of total soil carbon stock and the most relevant to global change. We tackled this issue using two decadally (13) C-labeled soils and a much improved measuring system in a long-term incubation experiment. Results indicated that the temperature sensitivity of decomposition for decadally cycling SOC (>23 years in one soil and >55 years in the other soil) was significantly greater than that for faster-cycling SOC (<23 or 55 years) or for the entire SOC stock. Moreover, decadally cycling SOC contributed substantially (35-59%) to the total CO2 loss during the 360-day incubation. Overall, these results indicate that the decomposition of decadally cycling SOC is highly sensitive to temperature change, which will likely make this large SOC stock vulnerable to loss by global warming in the 21st century and beyond. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar
2017-12-01
Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.
Well-to-refinery emissions and net-energy analysis of China's crude-oil supply
NASA Astrophysics Data System (ADS)
Masnadi, Mohammad S.; El-Houjeiri, Hassan M.; Schunack, Dominik; Li, Yunpo; Roberts, Samori O.; Przesmitzki, Steven; Brandt, Adam R.; Wang, Michael
2018-03-01
Oil is China's second-largest energy source, so it is essential to understand the country's greenhouse gas emissions from crude-oil production. Chinese crude supply is sourced from numerous major global petroleum producers. Here, we use a per-barrel well-to-refinery life-cycle analysis model with data derived from hundreds of public and commercial sources to model the Chinese crude mix and the upstream carbon intensities and energetic productivity of China's crude supply. We generate a carbon-denominated supply curve representing Chinese crude-oil supply from 146 oilfields in 20 countries. The selected fields are estimated to emit between 1.5 and 46.9 g CO2eq MJ-1 of oil, with volume-weighted average emissions of 8.4 g CO2eq MJ-1. These estimates are higher than some existing databases, illustrating the importance of bottom-up models to support life-cycle analysis databases. This study provides quantitative insight into China's energy policy and the economic and environmental implications of China's oil consumption.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2011 CFR
2011-07-01
... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors
Atul Jain; Xiaojuan Yang; Haroon Kheshgi; A. David McGuire; Wilfred Post; David Kicklighter
2009-01-01
Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen...
Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models
W. R. L. Anderegg; C. Schwalm; F. Biondi; J. J. Camarero; G. Koch; M. Litvak; K. Ogle; J. D. Shaw; E. Shevliakova; A. P. Williams; A. Wolf; E. Ziaco; S. Pacala
2015-01-01
The impacts of climate extremes on terrestrial ecosystems are poorly understood but important for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with the understanding of basic plant physiology. We examined the recovery of...
Wang, Kefeng; Peng, Changhui; Zhu, Qiuan; ...
2017-09-28
Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process-based model TRIPLEX-GHG was developed by coupling it with the new MEND (Microbial-ENzyme-mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX-MICROBE) shows considerable improvement over the previous version (TRIPLEX-GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195more » Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well-regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated. We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and mineral-associated organic carbon (MOC). Furthermore, our work represents the first step towards a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles.« less
NASA Astrophysics Data System (ADS)
Wang, Kefeng; Peng, Changhui; Zhu, Qiuan; Zhou, Xiaolu; Wang, Meng; Zhang, Kerou; Wang, Gangsheng
2017-10-01
Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process-based model TRIPLEX-GHG was developed by coupling it with the new MEND (Microbial-ENzyme-mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX-MICROBE) shows considerable improvement over the previous version (TRIPLEX-GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195 Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well-regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated by Xu et al. (2014). We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC), and mineral-associated organic carbon (MOC). However, our work represents the first step toward a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kefeng; Peng, Changhui; Zhu, Qiuan
Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process-based model TRIPLEX-GHG was developed by coupling it with the new MEND (Microbial-ENzyme-mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX-MICROBE) shows considerable improvement over the previous version (TRIPLEX-GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195more » Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well-regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated. We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and mineral-associated organic carbon (MOC). Furthermore, our work represents the first step towards a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles.« less
NASA Astrophysics Data System (ADS)
Meyer-Dombard, D. R.; Loiacono, S. T.; Shock, E.
2012-12-01
Coordinated analysis of the "Bison Pool" (BP) Environmental Genome and a complementary contextual geochemical dataset of ~75 parameters revealed biogeochemical cycling and metabolic and microbial community shifts in a Yellowstone National Park hot spring ecosystem (1). The >22m outflow of BP is a gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of nutrients. Microbial life at BP transitions from a 92°C chemosynthetic community in the BP source pool to a 56°C photosynthetic mat community. Metagenomic data at BP showed the potential for both heterotrophic and autotrophic carbon metabolism (rTCA and acetyl-CoA cycles) in the highest temperature, chemosynthetic regions (1). This region of the outflow is dominated by Aquificales and Pyrococcus relatives, with smaller contributions of heterotrophic Bacteria. Following a 2h heavy precipitation event we observed an influx of exogenous organic material into the source pool supplied from the meadow surrounding the BP area. We sampled biomass and fluid at several locations within the outflow immediately following the event, and on several occasions for the next eight days. Elemental analysis and carbon and nitrogen isotopic analyses were conducted on biomass and sediment, and dissolved organic and inorganic carbon content and δ13C of fluids were analyzed. DNA and RNA were extracted, and following RT-PCR, nitrogen cycle functional gene expression was evaluated. Previous work at BP has shown that chemosynthetic biomass may carry isotopic signatures of fractionation during carbon fixation, via the acetyl-CoA and rTCA cycles (2). However, the addition of exogenous organic carbon during the rain event had an immediate and dramatic effect on the sediments and biofilms in the chemosynthetic zone of the outflow. Dissolved organic carbon was the highest measured in six years. Chemosynthetic biomass responded by incorporating the organic carbon. Carbon isotopic signatures in chemosynthetic biomass at "Bison Pool" have been previously measured at ~ -4‰ (2). However, immediately following the event, carbon in biomass was measured at ~ -25‰ (values similar to local soil and bison excrement). Biomass closest to the source of "Bison Pool" returned to ~ -4‰ within a few days, but biomass ~ 3m downstream was still ~ -14‰ eight days after the event. Carbon isotopic signatures of the dissolved inorganic carbon (DIC) were depleted relative to values measured in 2005-2009, possibly a result of a combination of added DIC in rain and heterotrophic waste produced using the exogenous depleted carbon; this depleted DIC persisted for the full study period. These results suggest that a shift from autotrophic to heterotrophic metabolism may occur following every significant precipitation event at BP, and support previous observations concerning potential periodic eutrophic conditions in this ecosystem (3). 1 Swingley, W.D. et al., PLoS ONE, 7(6): e38108. 2 Havig et al., 2011. JGR Biogeosciences, 116, G01005. 3 Loiacono, S.T. et al., 2012. EM, 14(5): 1272-1283.
LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model
NASA Astrophysics Data System (ADS)
Zeebe, R. E.
2011-06-01
The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.
Asia-MIP: Multi Model-data Synthesis of Terrestrial Carbon Cycles in Asia
NASA Astrophysics Data System (ADS)
Ichii, K.; Kondo, M.; Ito, A.; Kang, M.; Sasai, T.; SATO, H.; Ueyama, M.; Kobayashi, H.; Saigusa, N.; Kim, J.
2013-12-01
Asia, which is characterized by monsoon climate and intense human activities, is one of the prominent understudied regions in terms of terrestrial carbon budgets and mechanisms of carbon exchange. To better understand terrestrial carbon cycle in Asia, we initiated multi-model and data intercomparison project in Asia (Asia-MIP). We analyzed outputs from multiple approaches: satellite-based observations (AVHRR and MODIS) and related products, empirically upscaled estimations (Support Vector Regression) using eddy-covariance observation network in Asia (AsiaFlux, CarboEastAsia, FLUXNET), ~10 terrestrial biosphere models (e.g. BEAMS, Biome-BGC, LPJ, SEIB-DGVM, TRIFFID, VISIT models), and atmospheric inversion analysis (e.g. TransCom models). We focused on the two difference temporal coverage: long-term (30 years; 1982-2011) and decadal (10 years; 2001-2010; data intensive period) scales. The regions of covering Siberia, Far East Asia, East Asia, Southeast Asia and South Asia (60-80E, 10S-80N), was analyzed in this study for assessing the magnitudes, interannual variability, and key driving factors of carbon cycles. We will report the progress of synthesis effort to quantify terrestrial carbon budget in Asia. First, we analyzed the recent trends in Gross Primary Productivities (GPP) using satellite-based observation (AVHRR) and multiple terrestrial biosphere models. We found both model outputs and satellite-based observation consistently show an increasing trend in GPP in most of the regions in Asia. Mechanisms of the GPP increase were analyzed using models, and changes in temperature and precipitation play dominant roles in GPP increase in boreal and temperate regions, whereas changes in atmospheric CO2 and precipitation are important in tropical regions. However, their relative contributions were different. Second, in the decadal analysis (2001-2010), we found that the negative GPP and carbon uptake anomalies in 2003 summer in Far East Asia is one of the largest anomalies with high consistency among methods from 2001 to 2010 period. The model analysis showed that these anomalies were produced by different climate factors among the models. Therefore, we conclude that inconsistency of model sensitivity to meteorological anomalies is an important issue to be improved in future. Acknowledgement The study is financially supported by the Environment Research and Technology Development Fund (RFa-1201) of the Ministry of the Environment of Japan and JSPS KAKENHI Grant Number 25281003.
NASA Astrophysics Data System (ADS)
Schwan, M. R.; Herrick, C.; Hobbie, E. A.; Chen, J.; Varner, R. K.; Palace, M. W.; Marek, E.; Kashi, N. N.; Smith, S. L.
2015-12-01
Rapid warming in arctic and sub-arctic environments shifts plant community structure which in turn can alter carbon cycling by releasing large stocks of carbon sequestered in arctic soils. Much work has been done in sub-arctic peatlands to understand how shifts in dominant vegetation cover can ultimately affect global carbon balances, but less focus has been given to upland environments where similar changes are occurring. Recent circumpolar expansion of deciduous shrubs and trees in sub-arctic upland environments may alter carbon cycling due to shrubs and trees sequestering less C in soils than the heath plants they typically replace. In this study we explored the relationship between nutrient and carbon cycling and above-ground vegetation on six transects which traverse an ecotone gradient from heath tundra (dominated by ericoid mycorrhizal plants) through deciduous shrubs to deciduous trees (dominated by ectomycorrhizal plants) in upland environments of sub-arctic Sweden near Vassijaure (~850 mm precipitation) and Abisko (~300 mm precipitation). We collected soil and foliage for analysis of natural abundances of stable carbon and nitrogen isotopes (δ13C and δ15N), which can be a sensitive indicator of C and N dynamics. We also took high-resolution remote aerial imagery over the transects to calculate percent cover of vegetation types using GIS software. We concurrently estimated percent cover in smaller plots on the ground of three dominant species, Empetrum nigrum, Betula nana, and Betula pubescens, to serve as ground-truthing for the aerial imagery. Analysis of vegetation cover data shows significant differences in vegetation types along the transects. Preliminary multiple regression analysis of isotopes shows that δ13C in organic soil at the Vassijaure site is mostly controlled by distance along the transect, an interaction term between transect distance and soil depth, and δ15N (adjusted r2 = 0.85, p < 0.0001). Values of δ13C were lower in soils in the shrubs and forest than in the heath. In regression analyses, δ15N was primarily controlled by depth, and secondarily by heath cover (adjusted r2 = 0.68, p < 0.0001). These results suggest that trees and shrubs are sequestering carbon, and interactions between plants and belowground soil communities may be driving nitrogen dynamics.
Carbon footprint estimator, phase II : volume II - technical appendices.
DOT National Transportation Integrated Search
2014-03-01
The GASCAP model was developed to provide a software tool for analysis of the life-cycle GHG : emissions associated with the construction and maintenance of transportation projects. This phase : of development included techniques for estimating emiss...
Carbon footprint estimator, phase II : volume I - GASCAP model.
DOT National Transportation Integrated Search
2014-03-01
The GASCAP model was developed to provide a software tool for analysis of the life-cycle GHG : emissions associated with the construction and maintenance of transportation projects. This phase : of development included techniques for estimating emiss...
Towards a more complete SOCCR: Establishing a Coastal Carbon Data Network
NASA Astrophysics Data System (ADS)
Pidgeon, E.; Howard, J.; Tang, J.; Kroeger, K. D.; Windham-Myers, L.
2015-12-01
The 2007 State of the Carbon Cycle Report (SOCCR) was highly influential in ensuring components of the carbon cycle were accounted for in national policy and related management. However, while SOCCR detailed the significance of North American coastal wetlands, it was not until recently that leading governments began to fully recognized these ecosystems for their carbon sequestration and storage capacity and hence the significant role coastal ecosystems can play in GHG emission reductions strategies, offset mechanisms, coastal management strategies and climate mitigation policy. The new attention on coastal carbon systems has exposed limitations in terms of data availability and data quality, as well as insufficient knowledge of coastal carbon distributions, characteristics and coastal carbon cycle processes. In addition to restricting scientific progress, lack of comprehensive, comparable, and quality-controlled coastal carbon data is hindering progress towards carbon based conservation and coastal management. To directly address those limitations, we are developing a Global Science and Data Network for Coastal "Blue" Carbon, with support from the Carbon Cycle Interagency Working Group. Goals include: • Improving basic and applied science on carbon and GHG cycling in vegetated coastal ecosystems; • Supporting a coastal carbon and associated GHG data archive for use by the science community, coastal and climate practitioners and other data users; • Building the capacity of coastal carbon stakeholders globally to collect and interpret high quality coastal carbon science and data; • Providing a forum and mechanism to promote exchange and collaboration between scientists and coastal carbon data users globally; and • Outreach activities to ensure the best available data are globally accessible and that science is responsive to the needs of coastal managers and policy-makers.
An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haselbach, Liv M.; Thomle, Jonathan N.
The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than whenmore » exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.« less
OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence
Sun, Ying; Frankenberg, C.; Wood, Jeff D.; ...
2017-10-12
Quantifying gross primary production (GPP) remains a major challenge in global carbon cycle research. Spaceborne monitoring of solar-induced chlorophyll fluorescence (SIF), an integrative photosynthetic signal of molecular origin, can assist in terrestrial GPP monitoring. However, the extent to which SIF tracks spatiotemporal variations in GPP remains unresolved. Orbiting Carbon Observatory-2 (OCO-2)’s SIF data acquisition and fine spatial resolution permit direct validation against ground and airborne observations. Empirical orthogonal function analysis shows consistent spatiotemporal correspondence between OCO-2 SIF and GPP globally. A linear SIF-GPP relationship is also obtained at eddy-flux sites covering diverse biomes, setting the stage for future investigations ofmore » the robustness of such a relationship across more biomes. In conclusion, our findings support the central importance of high-quality satellite SIF for studying terrestrial carbon cycle dynamics.« less
Validation of OCO-2 and ACOS-GOSAT using HIPPO and TCCON
NASA Technical Reports Server (NTRS)
Kulawik, Susan S.; Wunch, Debra; O'Dell, Christopher; Miller, Charles; Osterman, Greg; Wennberg, Paul; Griffith, David; Sherlock, Vanessa; Deutscher, Nicholas M.; Notholt, Justus;
2017-01-01
Consistent validation of satellite CO2 estimates is a prerequisite for using multiple satellite CO2measurements for joint flux inversion and establishing a long-term atmospheric CO2 data record. Wevalidate recent satellite observation of OCO-2 v7 and ACOS-GOSAT v7.3 using similar analysis as previouswork (Kulawik et al. (2016) and Frankenberg et al. (2106)) through comparisons to the HIAPER Pole-to-Pole Observations (HIPPO) and the Total Carbon Column Observing Network (TCCON) to estimate biasesand errors affecting the understanding of carbon cycle science. CarbonTracker RT is also compared tothe validation data, and additionally used to evaluate the mismatch between the HIPPO observationtimeframe and the OCO-2 record, which are offset by 3-7 years. Some key metrics that are validatedinclude the seasonal cycle phase and amplitude, latitudinal gradient by season, regional biases, anderrors with respect to averaging.
NASA Astrophysics Data System (ADS)
Nielsen, Ingeborg E.; Eriksson, Axel C.; Lindgren, Robert; Martinsson, Johan; Nyström, Robin; Nordin, Erik Z.; Sadiktsis, Ioannis; Boman, Christoffer; Nøjgaard, Jacob K.; Pagels, Joakim
2017-09-01
Time-resolved particle emissions from a conventional wood stove were investigated with aerosol mass spectrometry to provide links between combustion conditions, emission factors, mixing state of refractory black carbon and implications for organic tracer methods. The addition of a new batch of fuel results in low temperature pyrolysis as the fuel heats up, resulting in strong, short-lived, variable emission peaks of organic aerosol-containing markers of anhydrous sugars, such as levoglucosan (fragment at m/z 60). Flaming combustion results in emissions dominated by refractory black carbon co-emitted with minor fractions of organic aerosol and markers of anhydrous sugars. Full cycle emissions are an external mixture of larger organic aerosol-dominated and smaller thinly coated refractory black carbon particles. A very high burn rate results in increased full cycle mass emission factors of 66, 2.7, 2.8 and 1.3 for particulate polycyclic aromatic hydrocarbons, refractory black carbon, total organic aerosol and m/z 60, respectively, compared to nominal burn rate. Polycyclic aromatic hydrocarbons are primarily associated with refractory black carbon-containing particles. We hypothesize that at very high burn rates, the central parts of the combustion zone become air starved, leading to a locally reduced combustion temperature that reduces the conversion rates from polycyclic aromatic hydrocarbons to refractory black carbon. This facilitates a strong increase of polycyclic aromatic hydrocarbons emissions. At nominal burn rates, full cycle emissions based on m/z 60 correlate well with organic aerosol, refractory black carbon and particulate matter. However, at higher burn rates, m/z 60 does not correlate with increased emissions of polycyclic aromatic hydrocarbons, refractory black carbon and organic aerosol in the flaming phase. The new knowledge can be used to advance source apportionment studies, reduce emissions of genotoxic compounds and model the climate impacts of refractory black carbon, such as absorption enhancement by lensing.
Carbon corrosion in PEM fuel cells during drive cycle operation
Borup, Rodney L.; Papadias, D. D.; Mukundan, Rangachary; ...
2015-09-14
One of the major contributors to degradation involves the electrocatalyst, including the corrosion of the carbons used as catalyst supports, which leads to changes in the catalyst layer structure. We have measured and quantified carbon corrosion during drive cycle operation and as a variation of the upper and lower potential limits used during drive cycle operation. The amount of carbon corrosion is exacerbated by the voltage cycling inherent in the drive cycle compared with constant potential operation. The potential gap between upper and lower potentials appears to be more important than the absolute operating potentials in the normal operating potentialmore » regime (0.40V to 0.95V) as changes in the measured carbon corrosion are similar when the upper potential was lower compared to raising the lower potential. Catalyst layer thinning was observed during the simulated drive cycle operation which had an associated decrease in catalyst layer porosity. This catalyst layer thinning is not due solely to carbon corrosion, although carbon corrosion likely plays a role; much of this thinning must be from compaction of the material in the catalyst layer. As a result, the decrease in catalyst layer porosity leads to additional performance losses due to mass transport losses.« less
Data Standardization for Carbon Cycle Modeling: Lessons Learned
NASA Astrophysics Data System (ADS)
Wei, Y.; Liu, S.; Cook, R. B.; Post, W. M.; Huntzinger, D. N.; Schwalm, C.; Schaefer, K. M.; Jacobson, A. R.; Michalak, A. M.
2012-12-01
Terrestrial biogeochemistry modeling is a crucial component of carbon cycle research and provides unique capabilities to understand terrestrial ecosystems. The Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) aims to identify key differences in model formulation that drive observed differences in model predictions of biospheric carbon exchange. To do so, the MsTMIP framework provides standardized prescribed environmental driver data and a standard model protocol to facilitate comparisons of modeling results from nearly 30 teams. Model performance is then evaluated against a variety of carbon-cycle related observations (remote sensing, atmospheric, and flux tower-based observations) using quantitative performance measures and metrics in an integrated evaluation framework. As part of this effort, we have harmonized highly diverse and heterogeneous environmental driver data, model outputs, and observational benchmark data sets to facilitate use and analysis by the MsTMIP team. In this presentation, we will describe the lessons learned from this data-intensive carbon cycle research. The data harmonization activity itself can be made more efficient with the consideration of proper tools, version control, workflow management, and collaboration within the whole team. The adoption of on-demand and interoperable protocols (e.g. OPeNDAP and Open Geospatial Consortium) makes data visualization and distribution more flexible. Users can customize and download data in specific spatial extent, temporal period, and different resolutions. The effort to properly organize data in an open and standard format (e.g. Climate & Forecast compatible netCDF) allows the data to be analysed by a dispersed set of researchers more efficiently, and maximizes the longevity and utilization of the data. The lessons learned from this specific experience can benefit efforts by the broader community to leverage diverse data resources more efficiently in scientific research.
NASA Astrophysics Data System (ADS)
Manley, Jim
2017-04-01
Climate and the Carbon Cycle EOS3a Science in tomorrow's classroom Students, like too much of the American public, are largely unaware or apathetic to the changes in world climate and the impact that these changes have for life on Earth. A study conducted by Michigan State University and published in 2011 by Science Daily titled 'What carbon cycle? College students lack scientific literacy, study finds'. This study relates how 'most college students in the United States do not grasp the scientific basis of the carbon cycle - an essential skill in understanding the causes and consequences of climate change.' The study authors call for a new approach to teaching about climate. What if teachers better understood vital components of Earth's climate system and were able to impart his understanding to their students? What if students based their responses to the information taught not on emotion, but on a deeper understanding of the forces driving climate change, their analysis of the scientific evidence and in the context of earth system science? As a Middle School science teacher, I have been given the opportunity to use a new curriculum within TERC's EarthLabs collection, Climate and the Carbon Cycle, to awaken those brains and assist my students in making personal lifestyle choices based on what they had learned. In addition, with support from TERC and The University of Texas Institute for Geophysics I joined others to begin training other teachers on how to implement this curriculum in their classrooms to expose their students to our changing climate. Through my poster, I will give you (1) a glimpse into the challenges faced by today's science teachers in communicating the complicated, but ever-deepening understanding of the linkages between natural and human-driven factors on climate; (2) introduce you to a new module in the EarthLabs curriculum designed to expose teachers and students to global scientific climate data and instrumentation; and (3) illustrate how student worldviews are changed though exposure to the latest in scientific discovery and understanding.
NASA Astrophysics Data System (ADS)
Hülse, Dominik; Arndt, Sandra; Ridgwell, Andy; Wilson, Jamie
2016-04-01
The ocean-sediment system, as the biggest carbon reservoir in the Earth's carbon cycle, plays a crucial role in regulating atmospheric carbon dioxide concentrations and climate. Therefore, it is essential to constrain the importance of marine carbon cycle feedbacks on global warming and ocean acidification. Arguably, the most important single component of the ocean's carbon cycle is the so-called "biological carbon pump". It transports carbon that is fixed in the light-flooded surface layer of the ocean to the deep ocean and the surface sediment, where it is degraded/dissolved or finally buried in the deep sediments. Over the past decade, progress has been made in understanding different factors that control the efficiency of the biological carbon pump and their feedbacks on the global carbon cycle and climate (i.e. ballasting = ocean acidification feedback; temperature dependant organic matter degradation = global warming feedback; organic matter sulphurisation = anoxia/euxinia feedback). Nevertheless, many uncertainties concerning the interplay of these processes and/or their relative significance remain. In addition, current Earth System Models tend to employ empirical and static parameterisations of the biological pump. As these parametric representations are derived from a limited set of present-day observations, their ability to represent carbon cycle feedbacks under changing climate conditions is limited. The aim of my research is to combine past carbon cycling information with a spatially resolved global biogeochemical model to constrain the functioning of the biological pump and to base its mathematical representation on a more mechanistic approach. Here, I will discuss important aspects that control the efficiency of the ocean's biological carbon pump, review how these processes of first order importance are mathematically represented in existing Earth system Models of Intermediate Complexity (EMIC) and distinguish different approaches to approximate biogeochemical processes in the sediments. The performance of the respective mathematical representations in constraining the importance of carbon pump feedbacks on marine biogeochemical dynamics is then compared and evaluated under different extreme climate scenarios (e.g. OAE2, Eocene) using the Earth system model 'GENIE' and proxy records. The compiled mathematical descriptions and the model results underline the lack of a complete and mechanistic framework to represent the short-term carbon cycle in most EMICs which seriously limits the ability of these models to constrain the response of the ocean's carbon cycle to past and in particular future climate change. In conclusion, this presentation will critically evaluate the approaches currently used in marine biogeochemical modelling and outline key research directions concerning model development in the future.
Thermal Cycling of Thermal Control Paints on Carbon-Carbon and Carbon-Polyimide Composites
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
2006-01-01
Carbon-carbon composites and carbon-polyimide composites are being considered for space radiator applications owing to their light weight and high thermal conductivity. For those radiator applications where sunlight will impinge on the surface, it will be necessary to apply a white thermal control paint to minimize solar absorptance and enhance infrared emittance. Several currently available white thermal control paints were applied to candidate carbon-carbon and carbon-polyimide composites and were subjected to vacuum thermal cycling in the range of -100 C to +277 C. The optical properties of solar absorptance and infrared emittance were evaluated before and after thermal cycling. In addition, adhesion of the paints was evaluated utilizing a tape test. The test matrix included three composites: resin-derived carbon-carbon and vapor infiltrated carbon-carbon, both reinforced with pitch-based P-120 graphite fibers, and a polyimide composite reinforced with T-650 carbon fibers, and three commercially available white thermal control paints: AZ-93, Z-93-C55, and YB-71P.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Zhangcai; Canter, Christina E.; Dunn, Jennifer B.
Land management practices such as cover crop adoption or manure application that can increase soil organic carbon (SOC) may provide a way to counter SOC loss upon removal of stover from corn fields for use as a biofuel feedstock. This report documents the data, methodology, and assumptions behind the incorporation of land management practices into corn-soybean systems that dominate U.S. grain production using varying levels of stover removal in the GREETTM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model and its CCLUB (Carbon Calculator for Land Use change from Biofuels production) module. Tillage (i.e., conventional, reduced and nomore » tillage), corn stover removal (i.e., at 0, 30% and 60% removal rate), and organic matter input techniques (i.e., cover crop and manure application) are included in the analysis as major land management practices. Soil carbon changes associated with land management changes were modeled with a surrogate CENTURY model. The resulting SOC changes were incorporated into CCLUB while GREET was expanded to include energy and material consumption associated with cover crop adoption and manure application. Life-cycle greenhouse gas (GHG) emissions of stover ethanol were estimated using a marginal approach (all burdens and benefits assigned to corn stover ethanol) and an energy allocation approach (burdens and benefits divided between grain and stover ethanol). In the latter case, we considered corn grain and corn stover ethanol to be produced at an integrated facility. Life-cycle GHG emissions of corn stover ethanol are dependent upon the analysis approach selected (marginal versus allocation) and the land management techniques applied. The expansion of CCLUB and GREET to accommodate land management techniques can produce a wide range of results because users can select from multiple scenario options such as choosing tillage levels, stover removal rates, and whether crop yields increase annually or remain constant. In a scenario with conventional tillage and a 30% stover removal rate, life-cycle GHG emissions for a combined gallon of corn grain and stover ethanol without cover crop adoption or manure application are 49 g CO2eq MJ-1, in comparison with 91 g CO2eq MJ-1 for petroleum gasoline. Adopting a cover crop or applying manure reduces the former ethanol life-cycle GHG emissions by 8% and 10%, respectively. We considered two different life cycle analysis approaches to develop estimates of life-cycle GHG emissions for corn stover ethanol, marginal analysis and energy allocation. In the same scenario, this fuel has GHG emissions of 12 – 20 g CO2eq MJ-1 (for manure and cover crop application, respectively) and 45 – 48 g CO2eq MJ-1 with the marginal approach and the energy allocation approach, respectively.« less
NASA Astrophysics Data System (ADS)
Kürşat Coşkun, Ömer; Roud, Sophie; He, Kuang; Petersen, Nikolai; Gilder, Stuart; Orsi, William D.
2017-04-01
Magnetotactic bacteria (MTB) are diverse, widespread, motile prokaryotes which biomineralize nanosize magnetic minerals, either magnetite or gregite, under highly conserved genetic control and have magnetotaxis to align their position in aquatic environment according to Earth's magnetic field. They play important roles on some geobiological cycle of important minerals such as iron, sulphur, nitrogen and carbon. Yet, to date, their importance in carbon cycle and carbon source in their natural environment have not been previously studied. In this study, we focused on freshwater benthic carbon cycling of MTB and total bacteria using DNA stable isotope probing (DNA-SIP) technique coupled with quantitative PCR (qPCR). Pond sediments from Unterlippach (Germany) were amended with 13C-labelled sodium bicarbonate and 13C-labelled organic matter, and incubated in the dark over a two week time period. Applying separate qPCR assays specific for total bacteria and MTB, respectively, allowed us to estimate the contribution of MTB to total heterotrophic and autotrophic carbon cycling via DNA-SIP. After one week, there was a slight degree of autotrophic activity which increased markedly after two weeks. Comparing total DNA to the qPCR data revealed that changes in the buoyant density of DNA was due mainly to autotrophic bacterial production. DNA-SIP also identified heterotrophic utilization of 13C-labelled organic matter by MTB after 1 week. The qPCR data also allowed us to estimate uptake rates based on the incubation times for heterotrophic and autotrophic MTB. High-throughput DNA sequencing of 16S rRNA genes showed that most of the MTB involved in carbon cycling were related to the Magnetococcus genus. This study sheds light on the carbon sources for MTB in a natural environment and helps unravel their ecological role in the carbon cycle.
NASA Astrophysics Data System (ADS)
Bayet-Goll, Aram; Esfahani, Fariba Shirezadeh; Daraei, Mehdi; Monaco, Paolo; Sharafi, Mahmoud; Mohammadi, Amir Akbari
2018-03-01
The Tournaisian-Visean carbonate successions of the Esfahan-Sirjan Basin (ESB) from Sanandaj-Sirjan Zone, Iran, have been used to generate a sequence stratigraphic model that enhances facies characterization and improves paleoenvironmental interpretation of shallow marine successions deposited along the southern margin of the Paleotethys. Detailed facies analysis allowed to differentiate seven facies, which, in order of decreasing abundance, are: (1) shaly and marly, F1; (2) peloidal mudstones/wackestones, F2; (3) peloidal/bioclastic packstones, F3; (4) intraclastic/bioclastic packstones/grainstones, F4; (5) oolitic/bioclastic packstone/grainstone, F5; (6) sandy intraclastic/bioclastic grainstones, F6; (7) sandy oolitic/bioclastic grainstones, F7. The different facies can be grouped into three facies associations that correspond to different environments of a carbonate platform with ramp geometry (homoclinal), from outer ramp (F1 and F2), mid-ramp (F3, F4 and F6) to inner ramp areas (F5 and F7). Meter-scale cycles are the basic building blocks of shallow marine carbonate successions of the Tournaisian-Viséan ramp of the ESB. Small-scale cycles are stacked into medium-scale cycles that in turn are building blocks of large-scale cycles. According to the recognized facies and the stacking pattern of high-frequency cycles across the ramp, five large-scale cycles in the southeastern outcrops (Tournaisian-Viséan) and three large-scale cycles in the northwest outcrops (Viséan) related to eustatic sea-level changes can be recognized. The overall retrogradational nature of the carbonate ramp, illustrated by both vertical facies relationships and the stacking patterns of high-frequency cycles within the third-order cycles, implies that the deposition of the Tournaisian-Viséan successions mainly took place under a long-term transgressive sea-level trend. The stratigraphic architectural style of the sequences, characterized by the lack of lowstand deposits and exposure surfaces, associated with the evidence of progressive increase in the proportion of backstepping of facies belts across bounding surfaces and predominant subtidal characteristics, is in accordance with the long-term transgressive sea-level trend and greenhouse conditions during the Tournaisian-Viséan. The continued transgression on this broad shelfal platform could lead to the shutdown of the shallow water carbonate factory, reduction in sediment supply or sediment transport towards the offshore setting and the development of give-up sequences. The association of transgressive events with the deposition of thick open-marine marls/shales is a common feature in Tournaisian to Viséan times of the southern margin of the Paleotethys.
Microbially mediated carbon cycling at the Cenomanian-Turonian transition in lacustrine environments
NASA Astrophysics Data System (ADS)
Wu, H.; Zhang, S.; Jiang, G.; Underwood, M.; Wan, X.
2009-12-01
The Late Cretaceous Cenomanian-Turonian (C-T) transition records a major ocean anoxic event (OAE2) and a positive carbon isotope excursion. These events have been documented mostly from marine successions and their expression in terrestrial environments is highly desirable. Here we report a high-resolution organic carbon isotope record across the C-T boundary from the Qingshankou Formation (K2qn) of the terrestrial Songliao Basin (SLB) in northeastern China. Samples were collected from the drilled core (SK-1) and cover the bottom 60 m of the K2qn that has been correlated to the C-T transition using the astronomical time scale. The results show a long-term negative δ13Corg excursion superimposed on short-term δ13Corg cycles. Most δ13Corg cycles have a reverse relationship with total organic carbon (TOC) concentration, except at the beginning and the end of the long-term δ13Corg excursion. Spectral analysis of the δ13Corg, TOC and Gamma Ray Logging curves (GR) reveals three distinct cycle bands with the thickness of 14.5-9.0m, 5.8-3.4m and 2.2-1.5m, which were interpreted as the short eccentricity, obliquity, and precession cycles, respectively. The investigated section recorded about 7 short eccentricity and 39 precession cycles. The reverse relationship between TOC and δ13Corg is inconsistent with the general TOC-δ13Corg pattern seen in most lacustrine environments, in which increasing primary productivity (and thus TOC) in the epilimnion results in higher δ13Corg values. In combination with existing biomarker data from K2qn, the TOC-δ13Corg pattern in SLB is better explained by microbially mediated carbon cycling that is astronomically controlled by the precession cycles. During precession minima (summer insolation maxima) periods, intensified precipitation and increased chemical weathering may have led to sustained eutrophication in SLB and the bloom of chemoautotrophic and methanotrophic organisms in the basin. Significant biomass contribution from chemoautotrophic and methanotrophic organisms resulted in lower δ13Corg values. During precession maximum, seasonal changes and reduced nutrient supply kept better water circulation and a lower chemocline. Most organic carbon contribution was from photosynthetic organisms and has relatively higher δ13Corg values. The positive TOC-δ13Corg correlation at the beginning and end of the long-term negative δ13Corg excursion can be interpreted as resulting from the algal/diatom blooms at the onset and ending of the eccentricity cycle, during which high surface water production and a lower chemocline were maintained. The data indicate sustained anoxia/euxinia in the SLB during the time of OAE2, suggesting a paleoclimate event influencing both the marine and terrestrial systems.
NASA Astrophysics Data System (ADS)
Lewis, K.; Schade, J. D.; Sobczak, W. V.; Holmes, R. M.; Zimov, N.; Bulygina, E. B.; Chandra, S.; Bunn, A. G.; Russell-Roy, L.; Seybold, E. C.
2010-12-01
Permafrost is generally considered a long-term sink for carbon that remains locked away from the global carbon cycle. Anthropogenic climate change is likely to lead to thawing of permafrost and deepening of the soil active layer. Consequently, this carbon sink may become unlocked and available for bacterial decomposition, returning stored carbon to the active carbon cycle, with potentially severe consequences for atmospheric CO2 concentrations. The Kolyma watershed, in the Eastern Siberian Arctic, is underlain by continuous permafrost, often referred to as Yedoma, which provides a unique environment to study potential consequences of permafrost thaw for carbon dynamics in aquatic and terrestrial ecosystems. In order to predict the potential consequences of a major carbon input from thawing permafrost, we assessed the relative bioavailabilty of soil carbon by measuring rates of microbial consumption and changes in DOM composition in soil leachates. At two spatially distinct sample sites, soil was collected throughout the profile from the active layer and from permafrost, including soils from both Holocene and Pleistocene-era permafrost. To evaluate the rates of carbon processing and potential linkages to N and P cycles, we conducted a series of bottle experiments in which we measured biological oxygen demand as a proxy for carbon processing and assessed changes in the composition of dissolved organic carbon using spectral analyses. Experiments were conducted on leachate collected from each soil type. Each experiment included treatments in which leachates were enriched with nitrogen and phosphorus to determine whether carbon processing in soils was nutrient limited. We found substantial variation in oxygen consumption, with Yedoma soils generally exhibiting higher rates than Holocene soils, suggesting higher concentrations of labile carbon. We found no evidence of nutrient limitation of carbon processing in any soil leachates. Spectral slope analysis suggests that carbon processing increased the proportion of heavy aromatic carbon compounds in all but one soil type, suggesting that small molecular weight compounds are consumed first. The exception was the most active Yedoma soil, which showed the opposite effect, indicating an increase in the proportion of small molecules due to the presence of a different, and perhaps more digestible, form of carbon. These results suggest strong spatial variation in the amount and form of available carbon, as well as qualitative differences in the dynamics of carbon processing.
Atmospheric carbon dioxide and the global carbon cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trabalka, J R
1985-12-01
This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)
NASA Astrophysics Data System (ADS)
Bloom, A. Anthony; Bowman, Kevin W.; Lee, Meemong; Turner, Alexander J.; Schroeder, Ronny; Worden, John R.; Weidner, Richard; McDonald, Kyle C.; Jacob, Daniel J.
2017-06-01
Wetland emissions remain one of the principal sources of uncertainty in the global atmospheric methane (CH4) budget, largely due to poorly constrained process controls on CH4 production in waterlogged soils. Process-based estimates of global wetland CH4 emissions and their associated uncertainties can provide crucial prior information for model-based top-down CH4 emission estimates. Here we construct a global wetland CH4 emission model ensemble for use in atmospheric chemical transport models (WetCHARTs version 1.0). Our 0.5° × 0.5° resolution model ensemble is based on satellite-derived surface water extent and precipitation reanalyses, nine heterotrophic respiration simulations (eight carbon cycle models and a data-constrained terrestrial carbon cycle analysis) and three temperature dependence parameterizations for the period 2009-2010; an extended ensemble subset based solely on precipitation and the data-constrained terrestrial carbon cycle analysis is derived for the period 2001-2015. We incorporate the mean of the full and extended model ensembles into GEOS-Chem and compare the model against surface measurements of atmospheric CH4; the model performance (site-level and zonal mean anomaly residuals) compares favourably against published wetland CH4 emissions scenarios. We find that uncertainties in carbon decomposition rates and the wetland extent together account for more than 80 % of the dominant uncertainty in the timing, magnitude and seasonal variability in wetland CH4 emissions, although uncertainty in the temperature CH4 : C dependence is a significant contributor to seasonal variations in mid-latitude wetland CH4 emissions. The combination of satellite, carbon cycle models and temperature dependence parameterizations provides a physically informed structural a priori uncertainty that is critical for top-down estimates of wetland CH4 fluxes. Specifically, our ensemble can provide enhanced information on the prior CH4 emission uncertainty and the error covariance structure, as well as a means for using posterior flux estimates and their uncertainties to quantitatively constrain the biogeochemical process controls of global wetland CH4 emissions.
Reconciling carbon-cycle concepts, terminology, and methodology
F.S. III Chapin; G.M Woodwell; J.T. Randerson; G.M. Lovett; E.B. Rastetter; D.D. Baldocchi; D.A. Clark; M.E. Harmon; D.S. Schimel; Valentini R.; Wirth C.; Aber J.D.; Cole J.J.; Goulden M.L.; Harden J.W.; Heimann M.; Howarth R.W.; Matson P.A.; McGuire A.D.; Melillo J.M.; H.A. Mooney; J.C. Neff; R.A. Houghton; M.L. Pace; M.G. Ryan; S.W. Running; O.E. Sala; W.H. Schlesinger; E. D. Schulze
2005-01-01
Recent projections of climatic change have focused a great deal of scientific and public attention on patterns of carbon (C) cycling as well as its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric carbon dioxide (CO2). Net ecosystem production (NEP), a central concept in C-cycling research, has been used by...
Code of Federal Regulations, 2013 CFR
2013-07-01
... collected—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2014 CFR
2014-07-01
... operating—PR. d e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2010 CFR
2010-07-01
... temperature established in the NCS or operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2013 CFR
2013-07-01
... collected f—PR. Carbon adsorber h Total regeneration stream mass or volumetric or volumetric flow during carbon bed regeneration cycle(s) [63.127(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2014 CFR
2014-07-01
... NCS or operating permit—PR. Carbon adsorber d Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) [63.114(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2012 CFR
2012-07-01
... collected f—PR. Carbon adsorber h Total regeneration stream mass or volumetric or volumetric flow during carbon bed regeneration cycle(s) [63.127(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2011 CFR
2011-07-01
... temperature established in the NCS or operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2013 CFR
2013-07-01
... NCS or operating permit—PR. Carbon adsorber d Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) [63.114(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2010 CFR
2010-07-01
... NCS or operating permit—PR. Carbon adsorber d Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) [63.114(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2011 CFR
2011-07-01
... collected f—PR. Carbon adsorber h Total regeneration stream mass or volumetric or volumetric flow during carbon bed regeneration cycle(s) [63.127(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2014 CFR
2014-07-01
... collected—PR. d e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2014 CFR
2014-07-01
... collected f—PR. Carbon adsorber h Total regeneration stream mass or volumetric or volumetric flow during carbon bed regeneration cycle(s) [63.127(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2011 CFR
2011-07-01
... NCS or operating permit—PR. Carbon adsorber d Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) [63.114(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2012 CFR
2012-07-01
... NCS or operating permit—PR. Carbon adsorber d Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) [63.114(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature established in the NCS or operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2013 CFR
2013-07-01
... operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2010 CFR
2010-07-01
... collected f—PR. Carbon adsorber h Total regeneration stream mass or volumetric or volumetric flow during carbon bed regeneration cycle(s) [63.127(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Zhou, Dehua; Peer, Maryam; Yang, Zhenzhen; ...
2016-04-11
Spherical micron-sized carbon powders were synthesized from feedstock furfuryl alcohol and tested as anodes in sodium ion batteries (SIBs). A long cycle life of 1000 cycles is achievable with this carbon at C rate (3–4 mg cm –2 loading and i = 200 mA g –1) yielding a steady capacity of ca. 115 mA h g –1. Furthermore, the results from solid-state 23Na MAS NMR analyses of cycled electrodes indicate no correlation in voltage profiles with sodium site nature (graphene or nanopores), which is a new observation in SIB carbon anodes.
Effects of Nutrient Enrichment on Microbial Communities and Carbon Cycling in Wetland Soils
NASA Astrophysics Data System (ADS)
Hartman, W.; Neubauer, S. C.; Richardson, C. J.
2013-12-01
Soil microbial communities are responsible for catalyzing biogeochemical transformations underlying critical wetland functions, including cycling of carbon (C) and nutrients, and emissions of greenhouse gasses (GHG). Alteration of nutrient availability in wetland soils may commonly occur as the result of anthropogenic impacts including runoff from human land uses in uplands, alteration of hydrology, and atmospheric deposition. However, the impacts of altered nutrient availability on microbial communities and carbon cycling in wetland soils are poorly understood. To assess these impacts, soil microbial communities and carbon cycling were determined in replicate experimental nutrient addition plots (control, +N, +P, +NP) across several wetland types, including pocosin peat bogs (NC), freshwater tidal marshes (GA), and tidal salt marshes (SC). Microbial communities were determined by pyrosequencing (Roche 454) extracted soil DNA, targeting both bacteria (16S rDNA) and fungi (LSU) at a depth of ca. 1000 sequences per plot. Wetland carbon cycling was evaluated using static chambers to determine soil GHG fluxes, and plant inclusion chambers were used to determine ecosystem C cycling. Soil bacterial communities responded to nutrient addition treatments in freshwater and tidal marshes, while fungal communities did not respond to treatments in any of our sites. We also compared microbial communities to continuous biogeochemical variables in soil, and found that bacterial community composition was correlated only with the content and availability of soil phosphorus, while fungi responded to phosphorus stoichiometry and soil pH. Surprisingly, we did not find a significant effect of our nutrient addition treatments on most metrics of carbon cycling. However, we did find that several metrics of soil carbon cycling appeared much more related to soil phosphorus than to nitrogen or soil carbon pools. Finally, while overall microbial community composition was weakly correlated with soil carbon cycling, our work did identify a small number of individual taxonomic groups that were more strongly correlated with soil CO2 flux. These results suggest that a small number of microbial groups may potentially serve as keystone taxa (and functional indicators), which simple community fingerprinting approaches may overlook. Our results also demonstrate strong effects of soil phosphorus availability on both microbial communities and soil carbon cycling, even in wetland types traditionally considered to be nitrogen limited.
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2014 CFR
2014-07-01
... (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream... regeneration 2. For each regeneration cycle, record the maximum carbon bed-temperature. 3. Temperature of...
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2013 CFR
2013-07-01
... (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream... regeneration 2. For each regeneration cycle, record the maximum carbon bed-temperature. 3. Temperature of...
40 CFR 86.111-94 - Exhaust gas analytical system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... systems for analysis of total hydrocarbon (THC) (hydrocarbon plus methanol in the case of methanol-fueled...), carbon dioxide (CO2), and oxides of nitrogen (NOX). The schematic diagram of the continuous THC analysis train (and for THC plus methanol for methanol-fueled diesel-cycle vehicles) is shown as part of Figure...
40 CFR 86.111-94 - Exhaust gas analytical system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... systems for analysis of total hydrocarbon (THC) (hydrocarbon plus methanol in the case of methanol-fueled...), carbon dioxide (CO2), and oxides of nitrogen (NOX). The schematic diagram of the continuous THC analysis train (and for THC plus methanol for methanol-fueled diesel-cycle vehicles) is shown as part of Figure...
40 CFR 86.111-94 - Exhaust gas analytical system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... systems for analysis of total hydrocarbon (THC) (hydrocarbon plus methanol in the case of methanol-fueled...), carbon dioxide (CO2), and oxides of nitrogen (NOX). The schematic diagram of the continuous THC analysis train (and for THC plus methanol for methanol-fueled diesel-cycle vehicles) is shown as part of Figure...
Schada von Borzyskowski, Lennart; Carrillo, Martina; Leupold, Simeon; Glatter, Timo; Kiefer, Patrick; Weishaupt, Ramon; Heinemann, Matthias; Erb, Tobias J
2018-04-04
Organisms are either heterotrophic or autotrophic, meaning that they cover their carbon requirements by assimilating organic compounds or by fixing inorganic carbon dioxide (CO 2 ). The conversion of a heterotrophic organism into an autotrophic one by metabolic engineering is a long-standing goal in synthetic biology and biotechnology, because it ultimately allows for the production of value-added compounds from CO 2 . The heterotrophic Alphaproteobacterium Methylobacterium extorquens AM1 is a platform organism for a future C1-based bioeconomy. Here we show that M. extorquens AM1 provides unique advantages for establishing synthetic autotrophy, because energy metabolism and biomass formation can be effectively separated from each other in the organism. We designed and realized an engineered strain of M. extorquens AM1 that can use the C1 compound methanol for energy acquisition and forms biomass from CO 2 by implementation of a heterologous Calvin-Benson-Bassham (CBB) cycle. We demonstrate that the heterologous CBB cycle is active, confers a distinct phenotype, and strongly increases viability of the engineered strain. Metabolic 13 C-tracer analysis demonstrates the functional operation of the heterologous CBB cycle in M. extorquens AM1 and comparative proteomics of the engineered strain show that the host cell reacts to the implementation of the CBB cycle in a plastic way. While the heterologous CBB cycle is not able to support full autotrophic growth of M. extorquens AM1, our study represents a further advancement in the design and realization of synthetic autotrophic organisms. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Adloff, Markus; Reick, Christian H.; Claussen, Martin
2018-04-01
In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO2 concentration increase (roughly 900 ppm) in Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP)-type simulations starting from climates representing the Last Glacial Maximum (LGM) and pre-industrial times (PI). In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO2 concentrations increase, and the carbon-climate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO2 concentration and CO2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon-climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon-climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment as in the PI experiment. For PI, ocean and land contributions to the total feedback are of similar size, while in the LGM case the terrestrial feedback is dominant.
Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen
NASA Technical Reports Server (NTRS)
Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.
1983-01-01
In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.
Impacts of the Central Atlantic Magmatic Province on the Terrestrial Carbon Cycle in Western Pangea
NASA Astrophysics Data System (ADS)
Knobbe, T.; Suarez, C. A.
2014-12-01
Carbon isotope analysis of bulk organic and inorganic carbon preserved in the lacustrine deposits of the late Triassic to Jurassic Moenave Formation were analyzed to construct a carbon isotope chemostratigraphic profile of western Pangea. Negative carbon isotope excursions (NCIE) are characteristic of the Late Triassic and are attributed to the effects of the Central Atlantic Magmatic Province (CAMP) on climate and the global C-cycle. The aerial extent of the CAMP basalts is the largest in Earth's history spanning four continents with an area of ~ 7 x 106 km2 and a volume of 3 to 11 x 106 km3. Carbon isotope and paleontological evidence has shown that the end Triassic extinction is near synchronous to the CAMP and likely spurred on the extinction event as well as an increase in global temperatures of 2 - 2.5°C. Global correlations of NCIEs between marine and terrestrial strata provide a connection between the CAMP basalts and the end-Triassic extinction. Preliminary data collected at Potter Canyon, Arizona reveal a 5.5 ‰ decrease in δ13Corganic and a 2.75‰ decrease in δ13Ccarbonate in the lower portion of the Whitmore Point Member. These NCIEs indicate the global carbon cycle perturbation caused by the CAMP is recorded in lacustrine sediments of the Whitmore Point Member in southern Utah and northern Arizona. Additional samples collected at high sampling frequencies at other locations in the Whitmore Point Member will corroborate the terrestrial impacts of the CAMP perturbation at these locations across the region. Correlation of NCIES associated with the CAMP and any identified microfossils of the Whitmore Point Member will also illustrate the global effects of increased atmospheric CO2 on the terrestrial environment and biota.
Carbon sequestration and its role in the global carbon cycle
McPherson, Brian J.; Sundquist, Eric T.
2009-01-01
For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle presents current perspectives and research that combine five major areas: • The global carbon cycle and verification and assessment of global carbon sources and sinks • Potential capacity and temporal/spatial scales of terrestrial, oceanic, and geologic carbon storage • Assessing risks and benefits associated with terrestrial, oceanic, and geologic carbon storage • Predicting, monitoring, and verifying effectiveness of different forms of carbon storage • Suggested new CO2 sequestration research and management paradigms for the future. The volume is based on a Chapman Conference and will appeal to the rapidly growing group of scientists and engineers examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological repositories.
Nitrogen-doped hierarchical porous carbon microsphere through KOH activation for supercapacitors.
Jiang, Jingui; Chen, Hao; Wang, Zhao; Bao, Luke; Qiang, Yiwei; Guan, Shiyou; Chen, Jianding
2015-08-15
A porous carbon microsphere with moderate specific surface area and superior specific capacitance for supercapacitors is fabricated from polyphosphazene microsphere as the single heteroatoms source by the carbonization and subsequent KOH activation under N2 atmosphere. With KOH activation, X-ray photoelectron spectroscopy analysis confirms that the phosphorus of polyphosphazene microsphere totally vanishes, and the doping content of nitrogen and its population of various functionalities on porous carbon microsphere surface are tuned. Compared with non-porous carbon microsphere, the texture property of the resultant porous carbon microsphere subjected to KOH activation has been remarkably developed with the specific surface area growing from 315 to 1341 m(2) g(-1)and the pore volume turning from 0.17 to 0.69 cm(3) g(-1). Prepared with the KOH/non-porous carbon microsphere weight ratio at 1.0, the porous carbon microsphere with moderate specific surface area of 568 m(2) g(-1), exhibits intriguing electrochemical behavior in 1 M H2SO4 aqueous electrolyte, with superior specific capacitance (278 F g(-1) at 0.1 A g(-1)), good rate capability (147 F g(-1) remained at 10 A g(-1)) and robust cycling durability (No capacitance loss after 5000 cycles). The promising electrochemical performance could be ascribed to the synergy of nitrogen heteroatom functionalities and the porous morphology. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, X.; Song, C.; Wang, Y.; Ricciuto, D. M.; Lipson, D.; Shi, X.; Zona, D.; Song, X.; Yuan, F.; Oechel, W. C.; Thornton, P. E.
2017-12-01
A microbial model is introduced for simulating microbial mechanisms controlling soil carbon and nitrogen biogeochemical cycling and methane fluxes. The model is built within the CN (carbon-nitrogen) framework of Community Land Model 4.5, named as CLM-Microbe to emphasize its explicit representation of microbial mechanisms to biogeochemistry. Based on the CLM4.5, three new pools were added: bacteria, fungi, and dissolved organic matter. It has 11 pools and 34 transitional processes, compared with 8 pools and 9 transitional flow in the CLM4.5. The dissolve organic carbon was linked with a new microbial functional group based methane module to explicitly simulate methane production, oxidation, transport and their microbial controls. Comparing with CLM4.5-CN, the CLM-Microbe model has a number of new features, (1) microbial control on carbon and nitrogen flows between soil carbon/nitrogen pools; (2) an implicit representation of microbial community structure as bacteria and fungi; (3) a microbial functional-group based methane module. The model sensitivity analysis suggests the importance of microbial carbon allocation parameters on soil biogeochemistry and microbial controls on methane dynamics. Preliminary simulations validate the model's capability for simulating carbon and nitrogen dynamics and methane at a number of sites across the globe. The regional application to Asia has verified the model in simulating microbial mechanisms in controlling methane dynamics at multiple scales.
Long term effects of fire on the carbon balance in boreal forests
NASA Astrophysics Data System (ADS)
Berninger, Frank; Köster, Kaja; Pumpanen, Jukka
2013-04-01
Fire is the primary process which organizes the physical and biological attributes of the boreal biome and influences energy flows and biogeochemical cycles, particularly the carbon and nitrogen cycle. We established a forest fire chronosequence in the northern boreal forest in Lapland (Värriö Strict Nature Reserve), Finland (67°46' N, 29°35' E) that spans 160 years. Soil organic matter and its turnover were measured in and ex situ, as well as biomass of trees. The fungal biomass was assessed using soil ergosterol contents. The results indicate that fires slow down the turnover of soil organic matter for a period of at least 50 years. The turnover rate in recently burnt sites was only half of the turnover of the old forest site. Decreases in the turnover where still substantial 50 years after fire. The slow recovery of fungal biomass after fires seems to be the cause of the decrease since sites with a higher concentration of fungal biomass in the soils had shorter soil organic matter turnover rates. Increases in stand foliar biomass were less important for the turnover of soil organic matter. We tried to explore the potential importance of our finding using a simple data driven simulation model that estimates soil carbon dynamic from litter input and the measured soil carbon turnover times. The results indicate the initial post-fire slowdown of soil carbon turnover is an important component of the boreal carbon cycle. Using our fire intervals the simulated soil carbon stocks with a lower post-fire soil organic matter turnover were up to 15 % larger than simulations assuming a constant carbon turnover rate. Our sensitivity analysis indicates that the effects will be larger in areas with frequent fires. We do not know which environmental factors cause the delay in the turnover time and the effects of fires on post fire soil organic matter turnover could be considerably smaller or larger. Altogether our results fit well to published results from laboratory studies and show that post-fire depression of microbial activities are important on the ecosystem and landscape level. Since fire frequencies in boreal forests will increase in many areas as the result of climate change, it will be important to better understand the effects of fire on the soil carbon turnover and to incorporate it into carbon cycle models.
Tunneled Mesoporous Carbon Nanofibers with Embedded ZnO Nanoparticles for Ultrafast Lithium Storage.
An, Geon-Hyoung; Lee, Do-Young; Ahn, Hyo-Jin
2017-04-12
Carbon and metal oxide composites have received considerable attention as anode materials for Li-ion batteries (LIBs) owing to their excellent cycling stability and high specific capacity based on the chemical and physical stability of carbon and the high theoretical specific capacity of metal oxides. However, efforts to obtain ultrafast cycling stability in carbon and metal oxide composites at high current density for practical applications still face important challenges because of the longer Li-ion diffusion pathway, which leads to poor ultrafast performance during cycling. Here, tunneled mesoporous carbon nanofibers with embedded ZnO nanoparticles (TMCNF/ZnO) are synthesized by electrospinning, carbonization, and postcalcination. The optimized TMCNF/ZnO shows improved electrochemical performance, delivering outstanding ultrafast cycling stability, indicating a higher specific capacity than previously reported ZnO-based anode materials in LIBs. Therefore, the unique architecture of TMCNF/ZnO has potential for use as an anode material in ultrafast LIBs.
The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.
Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M
2016-05-19
Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.
Hao, Pin; Tian, Jian; Sang, Yuanhua; Tuan, Chia-Chi; Cui, Guanwei; Shi, Xifeng; Wong, C P; Tang, Bo; Liu, Hong
2016-09-15
The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability. Therefore, NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid supercapacitor electrode materials were synthesized by assembling Ni-Co precursor needle arrays on the surface of the channel walls of hierarchical porous carbon aerogels derived from chitosan in this study. The 1D nanostructures grow on the channel surface of the carbon aerogel vertically and tightly, contributing to the enhanced electrochemical performance with ultrahigh energy density. The energy density of NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid asymmetric supercapacitors can reach up to 55.3 Wh kg -1 and 47.5 Wh kg -1 at a power density of 400 W kg -1 , respectively. These asymmetric devices also displayed excellent cycling stability with a capacitance retention of about 96.6% and 92% over 5000 cycles.
Moving Carbon, Changing Earth: Bringing the Carbon Cycle to Life
NASA Astrophysics Data System (ADS)
Zabel, I.; Duggan-Haas, D.; Ross, R. M.; Stricker, B.; Mahowald, N. M.
2014-12-01
The carbon cycle presents challenges to researchers - in how to understand the complex interactions of fluxes, reservoirs, and systems - and to outreach professionals - in how to get across the complexity of the carbon cycle and still make it accessible to the public. At Cornell University and the Museum of the Earth in Ithaca, NY, researchers and outreach staff tackled these challenges together through a 2013 temporary museum exhibition: Moving Carbon, Changing Earth. Moving Carbon, Changing Earth introduced visitors to the world of carbon and its effect on every part of our lives. The exhibit was the result of the broader impacts portion of an NSF grant awarded to Natalie Mahowald, Professor in the Department of Earth and Atmospheric Sciences at Cornell University, who has been working with a team to improve simulations of regional and decadal variability in the carbon cycle. Within the exhibition, visitors used systems thinking to understand the distribution of carbon in and among Earth's systems, learning how (and how quickly or slowly) carbon moves between and within these systems, the relative scale of different reservoirs, and how carbon's movement changes climate and other environmental dynamics. Five interactive stations represented the oceans, lithosphere, atmosphere, biosphere, and a mystery reservoir. Puzzles, videos, real specimens, and an interview with Mahowald clarified and communicated the complexities of the carbon cycle. In this talk we'll present background information on Mahowald's research as well as photos of the exhibition and discussion of the components and motivations behind them, showing examples of innovative ways to bring a complex topic to life for museum visitors.
NASA Astrophysics Data System (ADS)
Domke, G. M.; Williams, C. A.; Birdsey, R.; Pendall, E.
2017-12-01
In North America forest and grassland ecosystems play a major role in the carbon cycle. Here we present the latest trends and projections of United States and North American carbon cycle processes, stocks, and flows in the context of interactions with global scale budgets and climate change impacts in managed and unmanaged grassland and forest ecosystems. We describe recent trends in natural and anthropogenic disturbances in these ecosystems as well as the carbon dynamics associated with land use and land cover change. We also highlight carbon management science and tools for informing decisions and opportunities for improving carbon measurements, observations, and projections in forests and grasslands.
NASA Astrophysics Data System (ADS)
Jia, B.; Zhou, G.; Wang, H.; Yue, T.; Huang, W.
2018-04-01
Studies of the imbalance of source sinks in the carbon cycle show that CO2 absorbed during rock weathering is part of the "miss carbon" of the global carbon cycle. The carbon sink contribution of carbonate rocks obviously plays a very important role in the absorption of atmospheric CO2. Estimation of carbon sinks in karst dynamic system of Guangxi province has great significance for further understanding of global karst carbon cycle and global climate research. This paper quotes the rock data from Tao Xiaodong's paper, which is obtained using RS and GIS techniques. At the same time, the dissolution rate model studied by Zhou Guoqing and others was used to estimate the dissolution rate of carbonate rocks in Guangxi Province. Finally, the CO2 content consumed by carbonate karstification in Guangxi Province was 1342910.447 t a-1. The results obtained are in the same order of magnitude as the CO2 content consumed by carbonate rock karstification in Guangxi Province calculated by Tao Xiaodong.
Pessarrodona, Albert; Moore, Pippa J; Sayer, Martin D J; Smale, Dan A
2018-06-03
Global climate change is affecting carbon cycling by driving changes in primary productivity and rates of carbon fixation, release and storage within Earth's vegetated systems. There is, however, limited understanding of how carbon flow between donor and recipient habitats will respond to climatic changes. Macroalgal-dominated habitats, such as kelp forests, are gaining recognition as important carbon donors within coastal carbon cycles, yet rates of carbon assimilation and transfer through these habitats are poorly resolved. Here, we investigated the likely impacts of ocean warming on coastal carbon cycling by quantifying rates of carbon assimilation and transfer in Laminaria hyperborea kelp forests-one of the most extensive coastal vegetated habitat types in the NE Atlantic-along a latitudinal temperature gradient. Kelp forests within warm climatic regimes assimilated, on average, more than three times less carbon and donated less than half the amount of particulate carbon compared to those from cold regimes. These patterns were not related to variability in other environmental parameters. Across their wider geographical distribution, plants exhibited reduced sizes toward their warm-water equatorward range edge, further suggesting that carbon flow is reduced under warmer climates. Overall, we estimated that Laminaria hyperborea forests stored ~11.49 Tg C in living biomass and released particulate carbon at a rate of ~5.71 Tg C year -1 . This estimated flow of carbon was markedly higher than reported values for most other marine and terrestrial vegetated habitat types in Europe. Together, our observations suggest that continued warming will diminish the amount of carbon that is assimilated and transported through temperate kelp forests in NE Atlantic, with potential consequences for the coastal carbon cycle. Our findings underline the need to consider climate-driven changes in the capacity of ecosystems to fix and donate carbon when assessing the impacts of climate change on carbon cycling. © 2018 The Authors Global Change Biology Published by John Wiley & Sons Ltd.
Code of Federal Regulations, 2012 CFR
2012-07-01
... collected—PR. d,e Carbon Adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle.2. Record and report the total...
Code of Federal Regulations, 2012 CFR
2012-07-01
... collected—PR. d,e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...
Code of Federal Regulations, 2011 CFR
2011-07-01
... collected—PR. d,e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...
Code of Federal Regulations, 2010 CFR
2010-07-01
... collected—PR. d,e Carbon Adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle.2. Record and report the total...
Code of Federal Regulations, 2013 CFR
2013-07-01
... collected—PR. d,e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...
Code of Federal Regulations, 2010 CFR
2010-07-01
... collected—PR. d,e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...
Code of Federal Regulations, 2013 CFR
2013-07-01
... collected—PR. d,e Carbon Adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle.2. Record and report the total...
Code of Federal Regulations, 2011 CFR
2011-07-01
... collected—PR. d,e Carbon Adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle.2. Record and report the total...
Code of Federal Regulations, 2014 CFR
2014-07-01
... collected—PR. d e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...
Code of Federal Regulations, 2014 CFR
2014-07-01
... collected—PR. d e Carbon Adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle.2. Record and report the total...
Carbon sequestration, optimum forest rotation and their environmental impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kula, Erhun, E-mail: erhun.kula@bahcesehir.edu.tr; Gunalay, Yavuz, E-mail: yavuz.gunalay@bahcesehir.edu.tr
2012-11-15
Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost-benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. Themore » results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO{sub 2}. Consequently this finding must be considered in any carbon accounting calculations. - Highlights: Black-Right-Pointing-Pointer Carbon sequestration in forestry is an environmental benefit. Black-Right-Pointing-Pointer It moderates the problem of global warming. Black-Right-Pointing-Pointer It prolongs the gestation period in harvesting. Black-Right-Pointing-Pointer This paper uses British data in less favoured districts for growing Sitka spruce species.« less
The History and Impact of the CNO Cycles in Nuclear Astrophysics
NASA Astrophysics Data System (ADS)
Wiescher, Michael
2018-03-01
The carbon cycle, or Bethe-Weizsäcker cycle, plays an important role in astrophysics as one of the most important energy sources for quiescent and explosive hydrogen burning in stars. This paper presents the intellectual and historical background of the idea of the correlation between stellar energy production and the synthesis of the chemical elements in stars on the example of this cycle. In particular, it addresses the contributions of Carl Friedrich von Weizsäcker and Hans Bethe, who provided the first predictions of the carbon cycle. Further, the experimental verification of the predicted process as it developed over the following decades is discussed, as well as the extension of the initial carbon cycle to the carbon-nitrogen-oxygen (CNO) multi-cycles and the hot CNO cycles. This development emerged from the detailed experimental studies of the associated nuclear reactions over more than seven decades. Finally, the impact of the experimental and theoretical results on our present understanding of hydrogen burning in different stellar environments is presented, as well as the impact on our understanding of the chemical evolution of our universe.
Connecting the cycles: impact of farming practices, Carbon and nutrient erosion on GHG emissions
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.
2013-04-01
This study focuses on identifying links between GHG emissions, soil management and soil erosion that are not considered in the commonly applied emission calculations associated with farming and soil erosion. The role of agriculture in generating GHG emissions through the use of fertilizers and fossil fuels is well documented. The negative impacts of soil erosion on agricultural land and its productivity have also been studied extensively. The lateral movement of soil through terrestrial ecosystems has also been recognized as a significant flux of C within the global C cycle. Soil erosion removes approximately 0.5 Gt of C per year from agricultural land. Much of this C is deposited in the landscape, effectively burying the organic matter from the atmosphere and taking it, at least for an unspecified time, out of the C exchange between soil and atmosphere. Such calculations raise the notion that soil erosion generates an unintentional benefit for climate, owing to the long-term burial of soil organic Carbon. But limiting the assessment of the impact of soil erosion on climate change to organic carbon burial ignores, apart from economic and social damages, the coupling between biogeochemical cycles. For example, the eroded nitrogen has to be replaced, at least in part by artificial fertilizers, to maintain soil fertility. At this point the sediment, Carbon and nitrogen cycles meet, because the production of fertilizer generates greenhouse gases. The production of one ton of fertilizer generates on the order of 850 kg of carbon dioxide. Applying this number to the 0.5 GT C erosion estimate, the amount of nitrogen lost owing to erosion each year yields carbon dioxide emissions of 0.02-0.04 Pg per year. These emissions correspond to 15-30% of the organic carbon buried owing to soil erosion. In this presentation, the full complexity of biogeochemical cycling on agricultural land is explored and connections between cycles which require consideration for a full GHG emission balance of soil erosion on agricultural land are identified. A first analysis of the data available on a full account of erosion-related emissions is presented. Apart from identifying a potentially significant source of GHG emissions associated with soil erosion that has not been considered for impact assessment so far, the study also shows that separating emission accounting between the industry producing the fertilizer and the agricultural sector, i.e. the grey emissions associated with farming, does not reflect the actual mechanism between erosion, farming practices and emissions.
Methylhopane Biomarker and Carbon Isotopic Evidence for Late Archean Aerobic Ecosystems
NASA Technical Reports Server (NTRS)
Eigenbrode, Jennifer L.; Freeman, Katherine H.; Summons, Roger E.
2007-01-01
Molecular fossils are particularly valuable in early Earth studies because they provide information about microbial sources and ecology. Here we report on the distribution of 2- methyl and 3-methylhopanes preserved in a 2.72-2.56 billion-year-old section of shallow and deepwater sediments of the Hamersley Province [Eigenbrode et aI., submitted]. These biomarkers are mostly from cyanobacteria and oxygen-respiring methanotrophs, respectively. The relative abundance of 2-methylhopanes increases with carbonate abundance in shallow-water facies indicating cyanobacteria were key microbes in shallow ecosystems and suggesting they supplied both molecular oxygen and fixed carbon. The relative abundance of 3-methylhopane strongly correlates with kerogen-carbon isotopic values, and is more abundant in the samples with 13C-enriched signatures. Thus, molecular data provides evidence for cycling of methane in shallow settings, even though the anoxic deeper environments bear stronger 13C-depletion, which together suggests a more complex methane cycle than previously envisioned. Detailed facies analysis of the Hamersley carbon-isotope record reveals temporal changes suggesting continued oxidation of shallow settings favoring the expansion of aerobic ecosystems and respiring organisms [Eigenbrode et aI., 2006, PNAS, 103: 15759]. Similar analysis of published carbon-isotopic records suggests similar, but diachronous, expansion of oxygenated habitats in shallow then deep waters as anaerobic microbial communities gave way to respiring communities fueled by oxygenic photosynthesis before the post 2.45-Ga atmospheric oxygenation event [Eigenbrode et aI., 2006]. The robust relationships observed provide geochemical support for methanogenesis, aerobic methanotrophy, and oxygenic photosynthesis in the late Archean, as well as major ecological shifts linked to biogeochemical reorganization.
An, Geon-Hyoung; Kim, Hyeonjin; Ahn, Hyo-Jin
2018-02-21
Because of their combined effects of outstanding mechanical stability, high electrical conductivity, and high theoretical capacity, silicon (Si) nanoparticles embedded in carbon are a promising candidate as electrode material for practical utilization in Li-ion batteries (LIBs) to replace the conventional graphite. However, because of the poor ionic diffusion of electrode materials, the low-grade ultrafast cycling performance at high current densities remains a considerable challenge. In the present study, seeking to improve the ionic diffusion, we propose a novel design of mesoporous carbon skin on the Si nanoparticles embedded in carbon by hydrothermal reaction, poly(methyl methacrylate) coating process, and carbonization. The resultant electrode offers a high specific discharge capacity with excellent cycling stability (1140 mA h g -1 at 100 mA g -1 after 100 cycles), superb high-rate performance (969 mA h g -1 at 2000 mA g -1 ), and outstanding ultrafast cycling stability (532 mA h g -1 at 2000 mA g -1 after 500 cycles). The battery performances are surpassing the previously reported results for carbon and Si composite-based electrodes on LIBs. Therefore, this novel approach provides multiple benefits in terms of the effective accommodation of large volume expansions of the Si nanoparticles, a shorter Li-ion diffusion pathway, and stable electrochemical conditions from a faster ionic diffusion during cycling.
NASA Astrophysics Data System (ADS)
Samaras, Constantine
In order to mitigate the most severe effects of climate change, large global reductions in the current levels of anthropogenic greenhouse gas (GHG) emissions are required in this century to stabilize atmospheric carbon dioxide (CO2) concentrations at less than double pre-industrial levels. The Intergovernmental Panel on Climate Change (IPCC) fourth assessment report states that GHG emissions should be reduced to 50-80% of 2000 levels by 2050 to increase the likelihood of stabilizing atmospheric CO2 concentrations. In order to achieve the large GHG reductions by 2050 recommended by the IPCC, a fundamental shift and evolution will be required in the energy system. Because the electric power and transportation sectors represent the largest GHG emissions sources in the United States, a unique opportunity for coupling these systems via electrified transportation could achieve synergistic environmental (GHG emissions reductions) and energy security (petroleum displacement) benefits. Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a major role in reducing greenhouse gas emissions from the transport sector. However, this thesis finds that life cycle GHG emissions from PHEVs depend on the electricity source that is used to charge the battery, so meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. Power plants and their associated GHGs are long-lived, and this work argues that decisions made regarding new electricity supplies within the next ten years will affect the potential of PHEVs to play a role in a low-carbon future in the coming decades. This thesis investigates the life cycle engineering, economic, and policy decisions involved in transitioning to PHEVs and low-carbon electricity. The government has a vast array of policy options to promote low-carbon technologies, some of which have proven to be more successful than others. This thesis uses life cycle assessment to evaluate options and opportunities for large GHG reductions from plug-in hybrids. After the options and uncertainties are framed, engineering economic analysis is used to evaluate the policy actions required for adoption of PHEVs at scale and the implications for low-carbon electricity investments. A logistic PHEV adoption model is constructed to parameterize implications for low-carbon electricity infrastructure investments and climate policy. This thesis concludes with an examination of what lessons can be learned for climate, innovation, and low-carbon energy policies from the evolution of wind power from an emerging alternative energy technology to a utility-scale power source. Policies to promote PHEVs and other emerging energy technologies can take lessons learned from the successes and challenges of wind power's development to optimize low-carbon energy policy and R&D programs going forward. The need for integrated climate policy, energy policy, sustainability, and urban mobility solutions will accelerate in the next two decades as concerns regarding GHG emissions and petroleum resources continue to be environmental and economic priorities. To assist in informing the discussions on climate policy and low-carbon energy R&D, this research and its methods will provide stakeholders in government and industry with plug-in hybrid and energy policy choices based on life cycle assessment, engineering economics, and systems analysis.
Hard-Soft Composite Carbon as a Long-Cycling and High-Rate Anode for Potassium-Ion Batteries
Jian, Zelang; Hwang, Sooyeon; Li, Zhifei; ...
2017-05-05
There exist tremendous needs for sustainable storage solutions for intermittent renewable energy sources, such as solar and wind energy. Thus, systems based on Earth-abundant elements deserve much attention. Potassium-ion batteries represent a promising candidate because of the abundance of potassium resources. As for the choices of anodes, graphite exhibits encouraging potassium-ion storage properties; however, it suffers limited rate capability and poor cycling stability. Here in this paper, nongraphitic carbons as K-ion anodes with sodium carboxymethyl cellulose as the binder are systematically investigated. Compared to hard carbon and soft carbon, a hard–soft composite carbon with 20 wt% soft carbon distributed inmore » the matrix phase of hard carbon microspheres exhibits highly amenable performance: high capacity, high rate capability, and very stable long-term cycling. In contrast, pure hard carbon suffers limited rate capability, while the capacity of pure soft carbon fades more rapidly.« less
Hard-Soft Composite Carbon as a Long-Cycling and High-Rate Anode for Potassium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian, Zelang; Hwang, Sooyeon; Li, Zhifei
There exist tremendous needs for sustainable storage solutions for intermittent renewable energy sources, such as solar and wind energy. Thus, systems based on Earth-abundant elements deserve much attention. Potassium-ion batteries represent a promising candidate because of the abundance of potassium resources. As for the choices of anodes, graphite exhibits encouraging potassium-ion storage properties; however, it suffers limited rate capability and poor cycling stability. Here in this paper, nongraphitic carbons as K-ion anodes with sodium carboxymethyl cellulose as the binder are systematically investigated. Compared to hard carbon and soft carbon, a hard–soft composite carbon with 20 wt% soft carbon distributed inmore » the matrix phase of hard carbon microspheres exhibits highly amenable performance: high capacity, high rate capability, and very stable long-term cycling. In contrast, pure hard carbon suffers limited rate capability, while the capacity of pure soft carbon fades more rapidly.« less
Lehmann, Marco M.; Rinne, Katja T.; Blessing, Carola; Siegwolf, Rolf T. W.; Buchmann, Nina; Werner, Roland A.
2015-01-01
Dissimilation of carbon sources during plant respiration in support of metabolic processes results in the continuous release of CO2. The carbon isotopic composition of leaf dark-respired CO2 (i.e. δ 13 C R) shows daily enrichments up to 14.8‰ under different environmental conditions. However, the reasons for this 13C enrichment in leaf dark-respired CO2 are not fully understood, since daily changes in δ13C of putative leaf respiratory carbon sources (δ 13 C RS) are not yet clear. Thus, we exposed potato plants (Solanum tuberosum) to different temperature and soil moisture treatments. We determined δ 13 C R with an in-tube incubation technique and δ 13 C RS with compound-specific isotope analysis during a daily cycle. The highest δ 13 C RS values were found in the organic acid malate under different environmental conditions, showing less negative values compared to δ 13 C R (up to 5.2‰) and compared to δ 13 C RS of soluble carbohydrates, citrate and starch (up to 8.8‰). Moreover, linear relationships between δ 13 C R and δ 13 C RS among different putative carbon sources were strongest for malate during daytime (r2=0.69, P≤0.001) and nighttime (r2=0.36, P≤0.001) under all environmental conditions. A multiple linear regression analysis revealed δ 13 C RS of malate as the most important carbon source influencing δ 13 C R. Thus, our results strongly indicate malate as a key carbon source of 13C enriched dark-respired CO2 in potato plants, probably driven by an anapleurotic flux replenishing intermediates of the Krebs cycle. PMID:26139821
Terrestrial carbon turnover time constraints on future carbon cycle-climate feedback
NASA Astrophysics Data System (ADS)
Fan, N.; Carvalhais, N.; Reichstein, M.
2017-12-01
Understanding the terrestrial carbon cycle-climate feedback is essential to reduce the uncertainties resulting from the between model spread in prognostic simulations (Friedlingstein et al., 2006). One perspective is to investigate which factors control the variability of the mean residence times of carbon in the land surface, and how these may change in the future, consequently affecting the response of the terrestrial ecosystems to changes in climate as well as other environmental conditions. Carbon turnover time of the whole ecosystem is a dynamic parameter that represents how fast the carbon cycle circulates. Turnover time τ is an essential property for understanding the carbon exchange between the land and the atmosphere. Although current Earth System Models (ESMs), supported by GVMs for the description of the land surface, show a strong convergence in GPP estimates, but tend to show a wide range of simulated turnover times (Carvalhais, 2014). Thus, there is an emergent need of constraints on the projected response of the balance between terrestrial carbon fluxes and carbon stock which will give us more certainty in response of carbon cycle to climate change. However, the difficulty of obtaining such a constraint is partly due to lack of observational data on temporal change of terrestrial carbon stock. Since more new datasets of carbon stocks such as SoilGrid (Hengl, et al., 2017) and fluxes such as GPP (Jung, et al., 2017) are available, improvement in estimating turnover time can be achieved. In addition, previous study ignored certain aspects such as the relationship between τ and nutrients, fires, etc. We would like to investigate τ and its role in carbon cycle by combining observatinoal derived datasets and state-of-the-art model simulations.
Hoover, David L.; Rogers, Brendan M.
2016-01-01
Climate extremes, such as drought, may have immediate and potentially prolonged effects on carbon cycling. Grasslands store approximately one-third of all terrestrial carbon and may become carbon sources during droughts. However, the magnitude and duration of drought-induced disruptions to the carbon cycle, as well as the mechanisms responsible, remain poorly understood. Over the next century, global climate models predict an increase in two types of drought: chronic but subtle ‘press-droughts’, and shorter term but extreme ‘pulse-droughts’. Much of our current understanding of the ecological impacts of drought comes from experimental rainfall manipulations. These studies have been highly valuable, but are often short term and rarely quantify carbon feedbacks. To address this knowledge gap, we used the Community Land Model 4.0 to examine the individual and interactive effects of pulse- and press-droughts on carbon cycling in a mesic grassland of the US Great Plains. A series of modeling experiments were imposed by varying drought magnitude (precipitation amount) and interannual pattern (press- vs. pulse-droughts) to examine the effects on carbon storage and cycling at annual to century timescales. We present three main findings. First, a single-year pulse-drought had immediate and prolonged effects on carbon storage due to differential sensitivities of ecosystem respiration and gross primary production. Second, short-term pulse-droughts caused greater carbon loss than chronic press-droughts when total precipitation reductions over a 20-year period were equivalent. Third, combining pulse- and press-droughts had intermediate effects on carbon loss compared to the independent drought types, except at high drought levels. Overall, these results suggest that interannual drought pattern may be as important for carbon dynamics as drought magnitude and that extreme droughts may have long-lasting carbon feedbacks in grassland ecosystems.
NASA Astrophysics Data System (ADS)
Ma, Wentao; Wang, Pinxian; Tian, Jun
2017-05-01
The carbon isotope (δ13C) record from the Plio-Pleistocene shows prominent 400-kyr cycles with maximum values at eccentricity minima during the Pliocene. The period extends to 500 kyr in the Pleistocene after 1.6 Ma. Five δ13C maxima occurred at 0.2, 0.5, 1.0, 1.5 and 1.9 Ma over the last 2 Ma. Although several hypotheses have been suggested to explain why the 400-500-kyr cycles are so strong in δ13C records and how they may have originated, the mechanism is still not clear. The aim of this study was to test the dissolved organic carbon (DOC) hypothesis, which was proposed recently to explain this 400-500-kyr cycle in deeper time. We used an intermediate complexity box model that is computationally efficient for studies involving longer timescales. The model incorporates sophisticated microbial processes, dividing the oceanic carbon cycle into a rapid and a slow cycle. The model result suggests that when more nutrients enter the surface ocean, the rapid carbon cycle is more active, and less refractory DOC (RDOC) is produced. The opposite sequence occurs when fewer nutrients enter the ocean. The modeled RDOC concentration and the δ13C of dissolved inorganic carbon (DIC) are anti-correlated with riverine nutrient input. According to mass conservation, the release of isotopically lighter carbon from the RDOC pool leads to lighter DIC δ13C while an increase in the RDOC pool enriches it. The transient simulations produced a one-to-one correspondence between modeled and measured δ13C. This study supports the hypothesis that chemical weathering-induced variations in the DOC pool act as a pacemaker for δ13C changes over 400-500-kyr cycles.
Sources and sinks of carbon in boreal ecosystems of interior Alaska: a review
Douglas, Thomas A.; Jones, Miriam C.; Hiemstra, Christopher A.
2014-01-01
Boreal regions store large quantities of carbon but are increasingly vulnerable to carbon loss due to disturbance and climate warming. The boreal region, underlain by discontinuous permafrost, presents a challenging landscape for itemizing current and potential carbon sources and sinks in the boreal soil and vegetation. The roles of fire, forest succession, and the presence (or absence) of permafrost on carbon cycle, vegetation, and hydrologic processes have been the focus of multidisciplinary research in this area for the past 20 years. However, projections of a warming future climate, an increase in fire severity and extent, and the potential degradation of permafrost could lead to major landscape process changes over the next 20 to 50 years. This provides a major challenge for predicting how the interplay between land management activities and impacts of climate warming will affect carbon sources and sinks in Interior Alaska. To assist land managers in adapting and managing for potential changes in the Interior Alaska carbon cycle we developed this review paper incorporating an overview of the climate, ecosystem processes, vegetation types, and soil regimes in Interior Alaska with a focus on ramifications for the carbon cycle. Our objective is to provide a synthesis of the most current carbon storage estimates and measurements to support policy and land management decisions on how to best manage carbon sources and sinks in Interior Alaska. To support this we have surveyed relevant peer reviewed estimates of carbon stocks in aboveground and belowground biomass for Interior Alaska boreal ecosystems. We have also summarized methane and carbon dioxide fluxes from the same ecosystems. These data have been converted into the same units to facilitate comparison across ecosystem compartments. We identify potential changes in the carbon cycle with climate change and human disturbance including how compounding disturbances can affect the boreal system. Finally, we provide recommendations to address the challenges facing land managers in efforts to manage carbon cycle processes. The results of this study can be used for carbon cycle management in other locations within the boreal biome which encompass a broad distribution from 45° to 83° north.
Chapman, Ralph; Keall, Michael; Howden-Chapman, Philippa; Grams, Mark; Witten, Karen; Randal, Edward; Woodward, Alistair
2018-05-11
Active travel (walking and cycling) is beneficial for people’s health and has many co-benefits, such as reducing motor vehicle congestion and pollution in urban areas. There have been few robust evaluations of active travel, and very few studies have valued health and emissions outcomes. The ACTIVE before-and-after quasi-experimental study estimated the net benefits of health and other outcomes from New Zealand’s Model Communities Programme using an empirical analysis comparing two intervention cities with two control cities. The Programme funded investment in cycle paths, other walking and cycling facilities, cycle parking, ‘shared spaces’, media campaigns and events, such as ‘Share the Road’, and cycle-skills training. Using the modified Integrated Transport and Health Impacts Model, the Programme’s net economic benefits were estimated from the changes in use of active travel modes. Annual benefits for health in the intervention cities were estimated at 34.4 disability-adjusted life years (DALYs) and two lives saved due to reductions in cardiac disease, diabetes, cancer, and respiratory disease. Reductions in transport-related carbon emissions were also estimated and valued. Using a discount rate of 3.5%, the estimated benefit/cost ratio was 11:1 and was robust to sensitivity testing. It is concluded that when concerted investment is made in active travel in a city, there is likely to be a measurable, positive return on investment.
Grams, Mark; Witten, Karen; Woodward, Alistair
2018-01-01
Active travel (walking and cycling) is beneficial for people’s health and has many co-benefits, such as reducing motor vehicle congestion and pollution in urban areas. There have been few robust evaluations of active travel, and very few studies have valued health and emissions outcomes. The ACTIVE before-and-after quasi-experimental study estimated the net benefits of health and other outcomes from New Zealand’s Model Communities Programme using an empirical analysis comparing two intervention cities with two control cities. The Programme funded investment in cycle paths, other walking and cycling facilities, cycle parking, ‘shared spaces’, media campaigns and events, such as ‘Share the Road’, and cycle-skills training. Using the modified Integrated Transport and Health Impacts Model, the Programme’s net economic benefits were estimated from the changes in use of active travel modes. Annual benefits for health in the intervention cities were estimated at 34.4 disability-adjusted life years (DALYs) and two lives saved due to reductions in cardiac disease, diabetes, cancer, and respiratory disease. Reductions in transport-related carbon emissions were also estimated and valued. Using a discount rate of 3.5%, the estimated benefit/cost ratio was 11:1 and was robust to sensitivity testing. It is concluded that when concerted investment is made in active travel in a city, there is likely to be a measurable, positive return on investment. PMID:29751618
PHOTOCHEMICAL AND FUNGAL TRANSFORMATIONS OF CARBON NANOTUBES IN THE ENVIRONMENT
This project will provide crucial information on the persistence, fate and transformations of CNTs in aquatic and terrestrial environments, including identification of transformation pathways that alter the bioavailability and toxicity of CNTs. Such life cycle analysis is u...
NASA Astrophysics Data System (ADS)
Stoll, Heather
2013-04-01
A computer modeling exercise was created to allows students to investigate the consequences of fossil fuel burning and land use change on the amount of carbon dioxide in the atmosphere. Students work with a simple numerical model of the carbon cycle which is rendered in Excel, and conduct a set of different sensitivity tests with different amounts and rate of C additions, and then graph and discuss their results. In the recommended approach, the model is provided to students without the biosphere and in class the formulas to integrate this module are typed into Excel simultaneously by instructor and students, helping students understand how the larger model is set up. In terms of content, students learn to recognize the redistribution of fossil fuel carbon between the ocean and atmosphere, and distinguish the consequences of rapid vs slow rates of addition of fossil fuel CO2 and the reasons for this difference. Students become familiar with the use of formulas in Excel and working with a large (300 rows, 20 columns) worksheet and gain competence in graphical representation of multiple scenarios. Students learn to appreciate the power and limitations of numerical models of complex cycles, the concept of inverse and forward models, and sensitivity tests. Finally, students learn that a reasonable hypothesis, may be "reasonable" but still not quantitatively sufficient - in this case, that the "Industrial Revolution" was not the source of increasing atmospheric CO2 from 1750-1900. The described activity is available to educators on the Teach the Earth portal of the Science Education Research Center (SERC) http://serc.carleton.edu/quantskills/activities/68751.html.
Sun, Feifei; Zhang, Xiaoli; Zhang, Qianqian; Liu, Fanghua
2015-01-01
Seagrass colonization changes the chemistry and biogeochemical cycles mediated by microbes in coastal sediments. In this study, we molecularly characterized the diazotrophic assemblages and entire bacterial community in surface sediments of a Zostera marina-colonized coastal lagoon in northern China. Higher nitrogenase gene (nifH) copy numbers were detected in the sediments from the vegetated region than in the sediments from the unvegetated region nearby. The nifH phylotypes detected were mostly affiliated with the Geobacteraceae, Desulfobulbus, Desulfocapsa, and Pseudomonas. Redundancy analysis based on terminal restriction fragment length polymorphism analysis showed that the distribution of nifH genotypes was mostly shaped by the ratio of total organic carbon to total organic nitrogen, the concentration of cadmium in the sediments, and the pH of the overlying water. High-throughput sequencing and phylogenetic analyses of bacterial 16S rRNA genes also indicated the presence of Geobacteraceae and Desulfobulbaceae phylotypes in these samples. A comparison of these results with those of previous studies suggests the prevalence and predominance of iron(III)-reducing Geobacteraceae and sulfate-reducing Desulfobulbaceae diazotrophs in coastal sedimentary environments. Although the entire bacterial community structure was not significantly different between these two niches, Desulfococcus (Deltaproteobacteria) and Anaerolineae (Chloroflexi) presented with much higher proportions in the vegetated sediments, and Flavobacteriaceae (Bacteroidetes) occurred more frequently in the bare sediments. These data suggest that the high bioavailability of organic matter (indicated by relatively lower carbon-to-nitrogen ratios) and the less-reducing anaerobic condition in vegetated sediments may favor Desulfococcus and Anaerolineae lineages, which are potentially important populations in benthic carbon and sulfur cycling in the highly productive seagrass ecosystem. PMID:26209674
Cheng, Zhi-Xue; Yang, Man-Jun; Peng, Bo; Peng, Xuan-Xian; Lin, Xiang-Min; Li, Hui
2018-06-15
The overuse and misuse of antibiotics lead to bacterial antibiotic resistance, challenging human health and intensive cultivation. It is especially required to understand for the mechanism of antibiotic resistance to control antibiotic-resistant pathogens. The present study characterized the differential proteome of levofloxacin-resistant Vibrio alginolyticus with the most advanced iTRAQ quantitative proteomics technology. A total of 160 proteins of differential abundance were identified, where 70 were decreased and 90 were increased. Further analysis demonstrated that crucial metabolic pathways like TCA cycle were significantly down-regulated. qRT-PCR analysis demonstrated the decreased gene expression of glycolysis/gluconeogenesis, the TCA cycle, and fatty acid biosynthesis. Moreover, Na(+)-NQR complex gene expression, membrane potential and the adenylate energy charge ratio were decreased, indicating that the decreased central carbon metabolism is associated to the acquisition of levofloxacin resistance. Therefore, the reduced central carbon and energy metabolisms form a characteristic feature as fitness costs of V. alginolyticus in resistance to levofloxacin. The overuse and misuse of antibiotics lead to bacterial antibiotic resistance, challenging human health and intensive cultivation. Understanding for the antibiotic resistance mechanisms is especially required to control these antibiotic-resistant pathogens. The present study characterized the differential proteome of levofloxacin-resistant Vibrio alginolyticus using the most advanced iTRAQ quantitative proteomics technology. A total of 160 differential abundance of proteins were identified with 70 decreases and 90 increases by liquid chromatography matrix assisted laser desorption ionization mass spectrometry. Most interestingly, crucial metabolic pathways such as the TCA cycle sharply fluctuated. This is the first report that the reduced central carbon and energy metabolisms form a characteristic feature as a mechanism of V. alginolyticus in resistance to levofloxacin. Copyright © 2018 Elsevier B.V. All rights reserved.
Sun, Feifei; Zhang, Xiaoli; Zhang, Qianqian; Liu, Fanghua; Zhang, Jianping; Gong, Jun
2015-10-01
Seagrass colonization changes the chemistry and biogeochemical cycles mediated by microbes in coastal sediments. In this study, we molecularly characterized the diazotrophic assemblages and entire bacterial community in surface sediments of a Zostera marina-colonized coastal lagoon in northern China. Higher nitrogenase gene (nifH) copy numbers were detected in the sediments from the vegetated region than in the sediments from the unvegetated region nearby. The nifH phylotypes detected were mostly affiliated with the Geobacteraceae, Desulfobulbus, Desulfocapsa, and Pseudomonas. Redundancy analysis based on terminal restriction fragment length polymorphism analysis showed that the distribution of nifH genotypes was mostly shaped by the ratio of total organic carbon to total organic nitrogen, the concentration of cadmium in the sediments, and the pH of the overlying water. High-throughput sequencing and phylogenetic analyses of bacterial 16S rRNA genes also indicated the presence of Geobacteraceae and Desulfobulbaceae phylotypes in these samples. A comparison of these results with those of previous studies suggests the prevalence and predominance of iron(III)-reducing Geobacteraceae and sulfate-reducing Desulfobulbaceae diazotrophs in coastal sedimentary environments. Although the entire bacterial community structure was not significantly different between these two niches, Desulfococcus (Deltaproteobacteria) and Anaerolineae (Chloroflexi) presented with much higher proportions in the vegetated sediments, and Flavobacteriaceae (Bacteroidetes) occurred more frequently in the bare sediments. These data suggest that the high bioavailability of organic matter (indicated by relatively lower carbon-to-nitrogen ratios) and the less-reducing anaerobic condition in vegetated sediments may favor Desulfococcus and Anaerolineae lineages, which are potentially important populations in benthic carbon and sulfur cycling in the highly productive seagrass ecosystem. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong Shouyeh; Humphrey, J.D.
1991-03-01
Pennsylvania cyclothems are well documented on stable continental shelves and the cyclicity has generally been attributed to glacio-eustasy. As a contrast, Atokan-Desmoinesian cyclic carbonates of the southern Sangre de Cristo Mountains developed in a tectonically active foreland basin, formed by thrusting along the Picuris-Pecos fault during early Pennsylvanian time. Strata exposed in two sections (Dalton Bluff, 260 m; Johnson Mesa, 340 m) are characterized by (1) shallowing-upward cycles, (2) cycles of variable thickness (5-20 m), (3) incomplete cycles, (4) cycles interrupted by terrigenous clastic input, and (5) noncyclic intervals. Allocyclic mechanisms alone cannot fully explain these observations; the authors hereinmore » propose that a complex interplay among eustasy, tectonism, and clastic sediment supply were responsible for the observed cycles. Lithofacies analysis indicates that location within the foreland basin played a significant role in cycle attributes. In the deeper portions of the basin (e.g., Dalton Bluff), an idealized cycle, from base to top consists of (1) shale/marl facies, (2) brachiopod wackestone facies, (3) phylloid algal facies, and (4) marine clastic facies. No evidence for subaerial exposure of cycle caps is noted. In contrast, in shallow portions of the basin near the forebulge (e.g., Johnson Mesa) the marine clastic facies is substituted by crinoidal grainstone/packstone facies that is capped by subaerial exposure surface. Each of the two cycles displays an overall grand (lower order) shallowing-upward cycle. This grand cycle developed as sediments infilled the initially starved foreland basin.« less
2012-01-01
Background Forests of the Midwest U.S. provide numerous ecosystem services. Two of these, carbon sequestration and wood production, are often portrayed as conflicting. Currently, carbon management and biofuel policies are being developed to reduce atmospheric CO2 and national dependence on foreign oil, and increase carbon storage in ecosystems. However, the biological and industrial forest carbon cycles are rarely studied in a whole-system structure. The forest system carbon balance is the difference between the biological (net ecosystem production) and industrial (net emissions from forest industry) forest carbon cycles, but to date this critical whole system analysis is lacking. This study presents a model of the forest system, uses it to compute the carbon balance, and outlines a methodology to maximize future carbon uptake in a managed forest region. Results We used a coupled forest ecosystem process and forest products life cycle inventory model for a regional temperate forest in the Midwestern U.S., and found the net system carbon balance for this 615,000 ha forest was positive (2.29 t C ha-1 yr-1). The industrial carbon budget was typically less than 10% of the biological system annually, and averaged averaged 0.082 t C ha-1 yr-1. Net C uptake over the next 100-years increased by 22% or 0.33 t C ha-1 yr-1 relative to the current harvest rate in the study region under the optized harvest regime. Conclusions The forest’s biological ecosystem current and future carbon uptake capacity is largely determined by forest harvest practices that occurred over a century ago, but we show an optimized harvesting strategy would increase future carbon sequestration, or wood production, by 20-30%, reduce long transportation chain emissions, and maintain many desirable stand structural attributes that are correlated to biodiversity. Our results for this forest region suggest that increasing harvest over the next 100 years increases the strength of the carbon sink, and that carbon sequestration and wood production are not conflicting for this particular forest ecosystem. The optimal harvest strategy found here may not be the same for all forests, but the methodology is applicable anywhere sufficient forest inventory data exist. PMID:22713794
The Effects of Climate Sensitivity and Carbon Cycle Interactions on Mitigation Policy Stringency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvin, Katherine V.; Bond-Lamberty, Benjamin; Edmonds, James A.
2015-07-01
Climate sensitivity and climate-carbon cycle feedbacks interact to determine how global carbon and energy cycles will change in the future. While the science of these connections is well documented, their economic implications are not well understood. Here we examine the effect of climate change on the carbon cycle, the uncertainty in climate outcomes inherent in any given policy target, and the economic implications. We examine three policy scenarios—a no policy “Reference” (REF) scenario, and two policies that limit total radiative forcing—with four climate sensitivities using a coupled integrated assessment model. Like previous work, we find that, within a given scenario,more » there is a wide range of temperature change and sea level rise depending on the realized climate sensitivity. We expand on this previous work to show that temperature-related feedbacks on the carbon cycle result in more mitigation required as climate sensitivity increases. Thus, achieving a particular radiative forcing target becomes increasingly expensive as climate sensitivity increases.« less
The Path of Carbon in Photosynthesis XX. The Steady State
DOE R&D Accomplishments Database
Calvin, M.; Massini, Peter
1952-09-01
The separation of the phenomenon of photosynthesis in green plants into a photochemical reaction and into the light-dependent reduction of carbon dioxide is discussed, The reduction of carbon dioxide and the fate of the assimilated carbon were investigated with the help of the tracer technique (exposure of the planks to the radioactive C{sup 14}O{sub 2}) and of paper chromatography. A reaction cycle is proposed in which phosphoglyceric acid is the first isolable assimilations product. Analyses of the algal extracts which had assimilated radioactive carbon dioxide in a stationary condition ('steady-state' photosynthesis) for a long time provided further information concerning the proposed cycle and permitted the approximate estimation, for a number of compounds of what fraction of each compound was taking part in the cycle. The earlier supposition that light influences the respiration cycle was confirmed. The possibility of the assistance of {alpha}-lipoic acid, or of a related substance, in this influence and in the photosynthesis cycle, is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazemi, Sayed Habib, E-mail: habibkazemi@iasbs.ac.ir; Center for Research in Climate Change and Global Warming; Maghami, Mostafa Ghaem
Highlights: • We report a facile method for fabrication of MnO{sub 2} nanostructures on electro-etched carbon fiber. • MnO{sub 2}-ECF electrode shows outstanding supercapacitive behavior even at high discharge rates. • Exceptional cycle stability was achieved for MnO{sub 2}-ECF electrode. • The coulombic efficiency of MnO{sub 2}-ECF electrode is nearly 100%. - Abstract: In this article we introduce a facile, low cost and additive/template free method to fabricate high-rate electrochemical capacitors. Manganese oxide nanostructures were electrodeposited on electro-etched carbon fiber substrate by applying a constant anodic current. Nanostructured MnO{sub 2} on electro-etched carbon fiber was characterized by scanning electron microscopy,more » X-ray diffraction and energy dispersive X-ray analysis. The electrochemical behavior of MnO{sub 2} electro-etched carbon fiber electrode was investigated by electrochemical techniques including cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. A maximum specific capacitance of 728.5 F g{sup −1} was achieved at a scan rate of 5 mV s{sup −1} for MnO{sub 2} electro-etched carbon fiber electrode. Also, this electrode showed exceptional cycle stability, suggesting that it can be considered as a good candidate for supercapacitor electrodes.« less
NASA Technical Reports Server (NTRS)
Druon, J.N.; Mannino, A.; Signorini, Sergio R.; McClain, Charles R.; Friedrichs, M.; Wilkin, J.; Fennel, K.
2009-01-01
Continental shelves are believed to play a major role in carbon cycling due to their high productivity. Particulate organic carbon (POC) burial has been included in models as a carbon sink, but we show here that seasonally produced dissolved organic carbon (DOC) on the shelf can be exported to the open ocean by horizontal transport at similar rates (1-2 mol C/sq m/yr) in the southern U.S. Mid-Atlantic Bight (MAB). The dissolved organic matter (DOM) model imbedded in a coupled circulation-biogeochemical model reveals a double dynamics: the progressive release of dissolved organic nitrogen (DON) in the upper layer during summer increases the regenerated primary production by 30 to 300%, which, in turns ; enhances the DOC production mainly from phytoplankton exudation in the upper layer and solubilization of particulate organic matter (POM) deeper in the water column. This analysis suggests that DOM is a key element for better representing the ecosystem functioning and organic fluxes in models because DOM (1) is a major organic pool directly related to primary production, (2) decouples partially the carbon and nitrogen cycles (through carbon excess uptake, POM solubilization and DOM mineralization) and (3) is intimately linked to the residence time of water masses for its distribution and export.
El Nino-southern oscillation related fluctuations of the marine carbon cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winguth, A.M.E.; Heimann, M.; Kurz, K.D.
The yearly increase in global atmospheric carbon dioxide concentration is not constant, fluctuating around a mean growth rate. Some previous work has been done looking at the relationship of CO2 fluctuations with the El Nino-Southern Oscillation (ENSO) events in the Pacific. This paper describes the response of the three-dimensional ocean circulation model (Hamburg LSG) coupled on-line with a oceanic carbon cycle model (HAMOCC-3) to realistic wind and air temperature field anomalies. The focus is the marine carbon cycle and the interannual variations of carbon fluxes between ocean and atmosphere during the strong El Nino of 1982/83. 53 refs., 14 figs.
Carbon Cycling in Northern Peatlands
NASA Astrophysics Data System (ADS)
Schultz, Colin
2010-11-01
Northern peatlands span only 3 million square kilometers, about 3% of the terrestrial area of the globe, yet they represent a significant terrestrial sink for carbon dioxide. They are also important emitters of methane, an even more potent greenhouse gas. Despite their substantial role in the global carbon cycle, peatlands are not typically incorporated into global climate models. The AGU Monograph Carbon Cycling in Northern Peatlands, edited by Andrew J. Baird, Lisa R. Belyea, Xavier Comas, A. S. Reeve, and Lee D. Slater, looks at the disproportionate role peatlands play in the global carbon budget. In this interview, Eos talks with Andy Baird, University of Leeds, Leeds, United Kingdom.
State of the Carbon Cycle of North America: Overarching Findings
NASA Astrophysics Data System (ADS)
Mayes, M. A.; Reed, S.; Najjar, R.; Romero-Lankao, P.; Birdsey, R.
2016-12-01
This presentation will provide an overarching summary of the second "State of the Carbon Cycle of North America Report" (SOCCR2) from the perspective of the five editorial lead authors. The chapters of SOCCR2 represent a major update and much new material since the original report published a decade ago. The new report includes an overview of the North American carbon budget and future projections, the consequences of changes to the carbon budget, details of the carbon budget in major terrestrial and aquatic ecosystems and anthropogenic drivers, and implications for carbon management. The chapters focus on advances since the 2007 report, but also include new focus areas such as soil carbon, tribal lands, as well as greater emphasis on aquatic systems and the role of societal drivers and decision making on the carbon cycle. In addition, methane and the role of nitrogen will be considered to a greater extent than before. Each chapter also contains a section focusing on national and regional accounting to complement the overarching North American framework. In conclusion, SOCCR2 is expected to provide an updated assessment and a unique perspective on the carbon cycle, which will contribute to the next U.S. National Climate Assessment.
Can we bet on negative emissions to achieve the 2°C target even under strong carbon cycle feedbacks?
NASA Astrophysics Data System (ADS)
Tanaka, K.; Yamagata, Y.; Yokohata, T.; Emori, S.; Hanaoka, T.
2015-12-01
Negative emission technologies such as Bioenergy with Carbon dioxide Capture and Storage (BioCCS) play an ever more crucial role in meeting the 2°C stabilization target. However, such technologies are currently at their infancy and their future penetrations may fall short of the scale required to stabilize the warming. Furthermore, the overshoot in the mid-century prior to a full realization of negative emissions would give rise to a risk because such a temporal but excessive warming above 2°C might amplify itself by strengthening climate-carbon cycle feedbacks. It has not been extensively assessed yet how carbon cycle feedbacks might play out during the overshoot in the context of negative emissions. This study explores how 2°C stabilization pathways, in particular those which undergo overshoot, can be influenced by carbon cycle feedbacks and asks their climatic and economic consequences. We compute 2°C stabilization emissions scenarios under a cost-effectiveness principle, in which the total abatement costs are minimized such that the global warming is capped at 2°C. We employ a reduced-complexity model, the Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate model (ACC2), which comprises a box model of the global carbon cycle, simple parameterizations of the atmospheric chemistry, and a land-ocean energy balance model. The total abatement costs are estimated from the marginal abatement cost functions for CO2, CH4, N2O, and BC.Our preliminary results show that, if carbon cycle feedbacks turn out to be stronger than what is known today, it would incur substantial abatement costs to keep up with the 2°C stabilization goal. Our results also suggest that it would be less expensive in the long run to plan for a 2°C stabilization pathway by considering strong carbon cycle feedbacks because it would cost more if we correct the emission pathway in the mid-century to adjust for unexpectedly large carbon cycle feedbacks during overshoot. Furthermore, our tentative results point to a key policy message: do not rely on negative emissions to achieve the 2°C target. It would make more sense to gear climate mitigation actions toward the stabilization target without betting on negative emissions because negative emissions might create large overshoot in case of strong feedbacks.
Analysis and Simulation of a Blue Energy Cycle
Sharma, Ms. Ketki; Kim, Yong-Ha; Yiacoumi, Sotira; ...
2016-01-30
The mixing process of fresh water and seawater releases a significant amount of energy and is a potential source of renewable energy. The so called ‘blue energy’ or salinity-gradient energy can be harvested by a device consisting of carbon electrodes immersed in an electrolyte solution, based on the principle of capacitive double layer expansion (CDLE). In this study, we have investigated the feasibility of energy production based on the CDLE principle. Experiments and computer simulations were used to study the process. Mesoporous carbon materials, synthesized at the Oak Ridge National Laboratory, were used as electrode materials in the experiments. Neutronmore » imaging of the blue energy cycle was conducted with cylindrical mesoporous carbon electrodes and 0.5 M lithium chloride as the electrolyte solution. For experiments conducted at 0.6 V and 0.9 V applied potential, a voltage increase of 0.061 V and 0.054 V was observed, respectively. From sequences of neutron images obtained for each step of the blue energy cycle, information on the direction and magnitude of lithium ion transport was obtained. A computer code was developed to simulate the process. Experimental data and computer simulations allowed us to predict energy production.« less
Xia, Xinhui; Chao, Dongliang; Zhang, Yongqi; Zhan, Jiye; Zhong, Yu; Wang, Xiuli; Wang, Yadong; Shen, Ze Xiang; Tu, Jiangping; Fan, Hong Jin
2016-06-01
A new and generic strategy to construct interwoven carbon nanotube (CNT) branches on various metal oxide nanostructure arrays (exemplified by V2 O3 nanoflakes, Co3 O4 nanowires, Co3 O4 -CoTiO3 composite nanotubes, and ZnO microrods), in order to enhance their electrochemical performance, is demonstrated for the first time. In the second part, the V2 O3 /CNTs core/branch composite arrays as the host for Na(+) storage are investigated in detail. This V2 O3 /CNTs hybrid electrode achieves a reversible charge storage capacity of 612 mAh g(-1) at 0.1 A g(-1) and outstanding high-rate cycling stability (a capacity retention of 100% after 6000 cycles at 2 A g(-1) , and 70% after 10 000 cycles at 10 A g(-1) ). Kinetics analysis reveals that the Na(+) storage is a pseudocapacitive dominating process and the CNTs improve the levels of pseudocapacitive energy by providing a conductive network. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Understanding the Carbon Cycle : A Jigsaw Approach
NASA Astrophysics Data System (ADS)
Hastings, D. W.
2006-12-01
A thorough understanding of the carbon cycle is fundamental to understanding the eventual fate of CO2. To achieve this, students must understand individual processes, such as photosynthesis and respiration, as well as an integrated knowledge of how these processes relate to each other. In this "jigsaw" exercise, each student is assigned one five fundamental geochemical processes in the short- term carbon cycle to research and fully understand. In class, students first meet with others who have studied the same process to strengthen and deepen their understanding of this process. They then form teams of five students and explain to other students their particular process. In exchange, other students explain the other aspects of the carbon cycle. At the end of class all students will know about each of the five processes, and thus develop an integrated understanding of the entire carbon cycle. This approach is an efficient method for students to learn the material. As in a jigsaw puzzle, each student's part is essential for the full understanding of the carbon cycle. Since each student's part is essential, then each student is essential, which is what makes this strategy effective The jigsaw approach encourages listening, engagement, and collaboration by giving each member of the group an essential part to play in the academic activity.
Oschmann, Bernd; Bresser, Dominic; Tahir, Muhammad Nawaz; Fischer, Karl; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf
2013-11-01
Herein, a new method for the realization of a thin and homogenous carbonaceous particle coating, made by carbonizing RAFT polymerization derived block copolymers anchored on anatase TiO2 nanorods, is presented. These block copolymers consist of a short anchor block (based on dopamine) and a long, easily graphitizable block of polyacrylonitrile. The grafting of such block copolymers to TiO2 nanorods creates a polymer shell, which can be visualized by atomic force microscopy (AFM). Thermal treatment at 700 °C converts the polyacrylonitrile block to partially graphitic structures (as determined by Raman spectroscopy), establishing a thin carbon coating (as determined by transmission electron microscopy, TEM, analysis). The carbon-coated TiO2 nanorods show improved electrochemical performance in terms of achievable specific capacity and, particularly, long-term cycling stability by reducing the average capacity fading per cycle from 0.252 mAh g(-1) to only 0.075 mAh g(-1) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molecular column densities in selected model atmospheres. [chemical analysis of carbon stars
NASA Technical Reports Server (NTRS)
Johnson, H. R.; Beebe, R. F.; Sneden, C.
1974-01-01
From an examination of predicted column densities, the following conclusions were drawn: (1) The SiO ought to be visible in carbon stars which were generated from triple alpha burning, but absent from carbon stars generated from the CNO bi-cycle. (2) Variation in the observed relative strengths of TiO and ZrO is indicative of real differences in the ratio Ti/Zr. (3) The TiO/ZrO ratio shows a small variation as C/O and effective temperature is changed. (4) Column density of silicon dicarbide (SiC2) is sensitive to abundance, temperature, and gravity; hence all relationships between the strength of SiC2 and other stellar parameters will show appreciable scatter. There is however, a substantial luminosity effect present in the SiC2 column densities. (5) Unexpectedly, SiC2 is anti-correlated with C2. (6) The presence of SiC2 in a carbon star eliminates the possibility of these stars having temperatures greater than or equal to 3000 K, or being produced through the CNO bi-cycle.
NASA Astrophysics Data System (ADS)
Jia, B.; Xie, Z.
2017-12-01
Climate change and anthropogenic activities have been exerting profound influences on ecosystem function and processes, including tightly coupled terrestrial carbon and water cycles. However, their relative contributions of the key controlling factors, e.g., climate, CO2 fertilization, land use and land cover change (LULCC), on spatial-temporal patterns of terrestrial carbon and water fluxes in China are still not well understood due to the lack of ecosystem-level flux observations and uncertainties in single terrestrial biosphere model (TBM). In the present study, we quantified the effect of climate, CO2, and LULCC on terrestrial carbon and water fluxes in China using multi-model simulations for their inter-annual variability (IAV), seasonal cycle amplitude (SCA) and long-term trend during the past five decades (1961-2010). In addition, their relative contributions to the temporal variations of gross primary productivity (GPP), net ecosystem productivity (NEP) and evapotranspiration (ET) were investigated through factorial experiments. Finally, the discussions about the inter-model differences and model uncertainties were presented.
Global convergence in the temperature sensitivity of respiration at ecosystem level.
Mahecha, Miguel D; Reichstein, Markus; Carvalhais, Nuno; Lasslop, Gitta; Lange, Holger; Seneviratne, Sonia I; Vargas, Rodrigo; Ammann, Christof; Arain, M Altaf; Cescatti, Alessandro; Janssens, Ivan A; Migliavacca, Mirco; Montagnani, Leonardo; Richardson, Andrew D
2010-08-13
The respiratory release of carbon dioxide (CO(2)) from the land surface is a major flux in the global carbon cycle, antipodal to photosynthetic CO(2) uptake. Understanding the sensitivity of respiratory processes to temperature is central for quantifying the climate-carbon cycle feedback. We approximated the sensitivity of terrestrial ecosystem respiration to air temperature (Q(10)) across 60 FLUXNET sites with the use of a methodology that circumvents confounding effects. Contrary to previous findings, our results suggest that Q(10) is independent of mean annual temperature, does not differ among biomes, and is confined to values around 1.4 +/- 0.1. The strong relation between photosynthesis and respiration, by contrast, is highly variable among sites. The results may partly explain a less pronounced climate-carbon cycle feedback than suggested by current carbon cycle climate models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neises, T. W.; Wagner, M. J.; Gray, A. K.
Research of advanced power cycles has shown supercritical carbon dioxide power cycles may have thermal efficiency benefits relative to steam cycles at temperatures around 500 - 700 degrees C. To realize these benefits for CSP, it is necessary to increase the maximum outlet temperature of current tower designs. Research at NREL is investigating a concept that uses high-pressure supercritical carbon dioxide as the heat transfer fluid to achieve a 650 degrees C receiver outlet temperature. At these operating conditions, creep becomes an important factor in the design of a tubular receiver and contemporary design assumptions for both solar and traditionalmore » boiler applications must be revisited and revised. This paper discusses lessons learned for high-pressure, high-temperature tubular receiver design. An analysis of a simplified receiver tube is discussed, and the results show the limiting stress mechanisms in the tube and the impact on the maximum allowable flux as design parameters vary. Results of this preliminary analysis indicate an underlying trade-off between tube thickness and the maximum allowable flux on the tube. Future work will expand the scope of design variables considered and attempt to optimize the design based on cost and performance metrics.« less
Tuler, Mariana Valente; Kaewunruen, Sakdirat
2017-04-15
Negative outcomes such as noise and vibration generated by railways have become a challenge for both industry and academia in order to guarantee that the railway system can accomplish its purposes and at the same time provide comfort for users and people living in the neighbourhood along the railway corridor. The research interest on this field has been increasing and the advancement in noise and vibration mitigation methodologies can be observed using various engineering techniques that are constantly put into test to solve such effects. In contrast, the life cycle analysis of the mitigation measures has not been thoroughly carried out. There is also a lack of detailed evaluation in the efficiency of various mechanisms for controlling rolling noise and ground-borne vibration. This research is thus focussed on the evaluation of materials used, the total cost associated with the maintenance of such the measures and the carbon footprint left for each type of mechanism. The insight into carbon footprint together with life cycle cost will benefit decision making process for the industry in the selection of optimal and suitable mechanism since the environmental impact is a growing concern around the world. Copyright © 2016 Elsevier Ltd. All rights reserved.
Carbon Cycle 2.0: Jay Keasling: Biofuels
Jay Keasling
2017-12-09
Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Mexican forest inventory expands continental carbon monitoring
Alberto Sandoval Uribe; Sean. P. Healey; Gretchen G. Moisen; Rigoberto Palafox Rivas; Enrique Gonzalez Aguilar; Carmen Lourdes Meneses Tovar; Ernesto S. Diaz Ponce Davalos; Vanessa Silva Mascorro
2008-01-01
The terrestrial ecosystems of the North American continent represent a large reservoir of carbon and a potential sink within the global carbon cycle. The recent State of the Carbon Cycle Report [U.S. Climate Change Science Program (CCSP), 2007] identified the critical role these systems may play in mitigating effects of greenhouse gases emitted from fossil fuel...
Carbon Cycle 2.0: Nitash Balsara: Energy Storage
Nitash Balsara
2017-12-09
Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Carbon Cycle 2.0: Ramamoorthy Ramesh: Low-cost Solar
Ramamoorthy Ramesh:
2017-12-09
Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Carbon Cycle 2.0: Robert Cheng and Juan Meza
Robert Cheng and Juan Meza
2017-12-09
Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Carbon Cycle 2.0: Robert Cheng and Juan Meza
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Cheng and Juan Meza
2010-02-16
Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Code of Federal Regulations, 2013 CFR
2013-07-01
... regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or...
McNulty, David; Geaney, Hugh; O’Dwyer, Colm
2017-01-01
We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li2O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications. PMID:28186183
Kumar, Arun; Thomas, R.; Karan, N. K.; ...
2009-01-01
Pure limore » thium iron phosphate ( LiFePO 4 ) and carbon-coated LiFePO 4 (C- LiFePO 4 ) cathode materials were synthesized for Li-ion batteries. Structural and electrochemical properties of these materials were compared. X-ray diffraction revealed orthorhombic olivine structure. Micro-Raman scattering analysis indicates amorphous carbon, and TEM micrographs show carbon coating on LiFePO 4 particles. Ex situ Raman spectrum of C- LiFePO 4 at various stages of charging and discharging showed reversibility upon electrochemical cycling. The cyclic voltammograms of LiFePO 4 and C- LiFePO 4 showed only a pair of peaks corresponding to the anodic and cathodic reactions. The first discharge capacities were 63, 43, and 13 mAh/g for C/5, C/3, and C/2, respectively for LiFePO 4 where as in case of C- LiFePO 4 that were 163, 144, 118, and 70 mAh/g for C/5, C/3, C/2, and 1C, respectively. The capacity retention of pure LiFePO 4 was 69% after 25 cycles where as that of C- LiFePO 4 was around 97% after 50 cycles. These results indicate that the capacity and the rate capability improved significantly upon carbon coating.« less
Analysis of Active Methylotrophic Communities: When DNA-SIP Meets High-Throughput Technologies.
Taubert, Martin; Grob, Carolina; Howat, Alexandra M; Burns, Oliver J; Chen, Yin; Neufeld, Josh D; Murrell, J Colin
2016-01-01
Methylotrophs are microorganisms ubiquitous in the environment that can metabolize one-carbon (C1) compounds as carbon and/or energy sources. The activity of these prokaryotes impacts biogeochemical cycles within their respective habitats and can determine whether these habitats act as sources or sinks of C1 compounds. Due to the high importance of C1 compounds, not only in biogeochemical cycles, but also for climatic processes, it is vital to understand the contributions of these microorganisms to carbon cycling in different environments. One of the most challenging questions when investigating methylotrophs, but also in environmental microbiology in general, is which species contribute to the environmental processes of interest, or "who does what, where and when?" Metabolic labeling with C1 compounds substituted with (13)C, a technique called stable isotope probing, is a key method to trace carbon fluxes within methylotrophic communities. The incorporation of (13)C into the biomass of active methylotrophs leads to an increase in the molecular mass of their biomolecules. For DNA-based stable isotope probing (DNA-SIP), labeled and unlabeled DNA is separated by isopycnic ultracentrifugation. The ability to specifically analyze DNA of active methylotrophs from a complex background community by high-throughput sequencing techniques, i.e. targeted metagenomics, is the hallmark strength of DNA-SIP for elucidating ecosystem functioning, and a protocol is detailed in this chapter.
McNulty, David; Geaney, Hugh; O'Dwyer, Colm
2017-02-10
We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li 2 O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications.
Carbon Dynamics and Export from Flooded Wetlands: A Modeling Approach
Described in this article is development and validation of a process based model for carbon cycling in flooded wetlands, called WetQual-C. The model considers various biogeochemical interactions affecting C cycling, greenhouse gas emissions, organic carbon export and retention. ...
Interactions between land use change and carbon cycle feedbacks: Land Use and Carbon Cycle Feedbacks
Mahowald, Natalie M.; Randerson, James T.; Lindsay, Keith; ...
2017-01-23
We explore the role of human land use and land cover change (LULCC) in modifying the terrestrial carbon budget in simulations forced by Representative Concentration Pathway 8.5, extended to year 2300 by using the Community Earth System Model, . Overall, conversion of land (e.g., from forest to croplands via deforestation) results in a model-estimated, cumulative carbon loss of 490 Pg C between 1850 and 2300, larger than the 230 Pg C loss of carbon caused by climate change over this same interval. The LULCC carbon loss is a combination of a direct loss at the time of conversion and anmore » indirect loss from the reduction of potential terrestrial carbon sinks. Approximately 40% of the carbon loss associated with LULCC in the simulations arises from direct human modification of the land surface; the remaining 60% is an indirect consequence of the loss of potential natural carbon sinks. Because of the multicentury carbon cycle legacy of current land use decisions, a globally averaged amplification factor of 2.6 must be applied to 2015 land use carbon losses to adjust for indirect effects. This estimate is 30% higher when considering the carbon cycle evolution after 2100. Most of the terrestrial uptake of anthropogenic carbon in the model occurs from the influence of rising atmospheric CO 2 on photosynthesis in trees, and thus, model-projected carbon feedbacks are especially sensitive to deforestation.« less
Interactions between land use change and carbon cycle feedbacks: Land Use and Carbon Cycle Feedbacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahowald, Natalie M.; Randerson, James T.; Lindsay, Keith
We explore the role of human land use and land cover change (LULCC) in modifying the terrestrial carbon budget in simulations forced by Representative Concentration Pathway 8.5, extended to year 2300 by using the Community Earth System Model, . Overall, conversion of land (e.g., from forest to croplands via deforestation) results in a model-estimated, cumulative carbon loss of 490 Pg C between 1850 and 2300, larger than the 230 Pg C loss of carbon caused by climate change over this same interval. The LULCC carbon loss is a combination of a direct loss at the time of conversion and anmore » indirect loss from the reduction of potential terrestrial carbon sinks. Approximately 40% of the carbon loss associated with LULCC in the simulations arises from direct human modification of the land surface; the remaining 60% is an indirect consequence of the loss of potential natural carbon sinks. Because of the multicentury carbon cycle legacy of current land use decisions, a globally averaged amplification factor of 2.6 must be applied to 2015 land use carbon losses to adjust for indirect effects. This estimate is 30% higher when considering the carbon cycle evolution after 2100. Most of the terrestrial uptake of anthropogenic carbon in the model occurs from the influence of rising atmospheric CO 2 on photosynthesis in trees, and thus, model-projected carbon feedbacks are especially sensitive to deforestation.« less
Discussion of Refrigeration Cycle Using Carbon Dioxide as Refrigerant
NASA Astrophysics Data System (ADS)
Ji, Amin; Sun, Miming; Li, Jie; Yin, Gang; Cheng, Keyong; Zhen, Bing; Sun, Ying
Nowadays, the problem of the environment goes worse, it urges people to research and study new energy-saving and environment-friendly refrigerants, such as carbon dioxide, at present, people do research on carbon dioxide at home and abroad. This paper introduces the property of carbon dioxide as a refrigerant, sums up and analyses carbon dioxide refrigeration cycles, and points out the development and research direction in the future.
Carbon stocks and changes of dead organic matter in China's forests
Jianxiao Zhu; Huifeng Hu; Shengli Tao; Xiulian Chi; Peng Li; Lai Jiang; Chengjun Ji; Jiangling Zhu; Zhiyao Tang; Yude Pan; Richard A. Birdsey; Xinhua He; Jingyun Fang
2017-01-01
Forests play an important role in global carbon cycles. However, the lack of available information on carbon stocks in dead organic matter, including woody debris and litter, reduces the reliability of assessing the carbon cycles in entire forest ecosystems. Here we estimate that the national DOM carbon stock in the period of 2004â2008 is 925 ± 54 Tg, with an average...
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh
2000-01-01
Four carbon materials (C1, C2, C3, and C4) were tested electrochemically at the NASA Glenn Research Center at Lewis Field to determine their performance in lithium-ion batteries. They were formed as shown in the figure. This process caused very little carbon loss. Products C1 and C3 contained very little oxygen because of the final overnight heating at 540 C. Products C2 and C4, on the other hand, contained small amounts of basic oxide. The electrochemical test involved cycles of lithium intercalation and deintercalation using C/saturated LiI-50/50 (vol %) ethylene carbonate (EC) and dimethyl carbonate (DMC)/Li half cell. The cycling test, which is summarized in the table, resulted in three major conclusions. The capacity of the carbon with a basic oxide surface converges to a constant 1. value quickly (within 4 cycles), possibly because the oxide prevents solvent from entering the carbon structure and, therefore, prolongs the carbon s cycle life. Under certain conditions, the disordered carbon can store more lithium than its 2. precursor. These samples and their precursor can intercalate at 200 mA/g and deintercalate at 3. a rate of 2000 mA/g without significant capacity loss.
Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin
2013-01-01
Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles in low-carbon transport.
Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities.
Müller, R Dietmar; Dutkiewicz, Adriana
2018-02-01
Atmospheric carbon dioxide (CO 2 ) data for the last 420 million years (My) show long-term fluctuations related to supercontinent cycles as well as shorter cycles at 26 to 32 My whose origin is unknown. Periodicities of 26 to 30 My occur in diverse geological phenomena including mass extinctions, flood basalt volcanism, ocean anoxic events, deposition of massive evaporites, sequence boundaries, and orogenic events and have previously been linked to an extraterrestrial mechanism. The vast oceanic crustal carbon reservoir is an alternative potential driving force of climate fluctuations at these time scales, with hydrothermal crustal carbon uptake occurring mostly in young crust with a strong dependence on ocean bottom water temperature. We combine a global plate model and oceanic paleo-age grids with estimates of paleo-ocean bottom water temperatures to track the evolution of the oceanic crustal carbon reservoir over the past 230 My. We show that seafloor spreading rates as well as the storage, subduction, and emission of oceanic crustal and mantle CO 2 fluctuate with a period of 26 My. A connection with seafloor spreading rates and equivalent cycles in subduction zone rollback suggests that these periodicities are driven by the dynamics of subduction zone migration. The oceanic crust-mantle carbon cycle is thus a previously overlooked mechanism that connects plate tectonic pulsing with fluctuations in atmospheric carbon and surface environments.
Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities
Müller, R. Dietmar; Dutkiewicz, Adriana
2018-01-01
Atmospheric carbon dioxide (CO2) data for the last 420 million years (My) show long-term fluctuations related to supercontinent cycles as well as shorter cycles at 26 to 32 My whose origin is unknown. Periodicities of 26 to 30 My occur in diverse geological phenomena including mass extinctions, flood basalt volcanism, ocean anoxic events, deposition of massive evaporites, sequence boundaries, and orogenic events and have previously been linked to an extraterrestrial mechanism. The vast oceanic crustal carbon reservoir is an alternative potential driving force of climate fluctuations at these time scales, with hydrothermal crustal carbon uptake occurring mostly in young crust with a strong dependence on ocean bottom water temperature. We combine a global plate model and oceanic paleo-age grids with estimates of paleo-ocean bottom water temperatures to track the evolution of the oceanic crustal carbon reservoir over the past 230 My. We show that seafloor spreading rates as well as the storage, subduction, and emission of oceanic crustal and mantle CO2 fluctuate with a period of 26 My. A connection with seafloor spreading rates and equivalent cycles in subduction zone rollback suggests that these periodicities are driven by the dynamics of subduction zone migration. The oceanic crust-mantle carbon cycle is thus a previously overlooked mechanism that connects plate tectonic pulsing with fluctuations in atmospheric carbon and surface environments. PMID:29457135
NASA Astrophysics Data System (ADS)
Houghton, R. A.
2003-12-01
The global carbon cycle refers to the exchanges of carbon within and between four major reservoirs: the atmosphere, the oceans, land, and fossil fuels. Carbon may be transferred from one reservoir to another in seconds (e.g., the fixation of atmospheric CO2 into sugar through photosynthesis) or over millennia (e.g., the accumulation of fossil carbon (coal, oil, gas) through deposition and diagenesis of organic matter). This chapter emphasizes the exchanges that are important over years to decades and includes those occurring over the scale of months to a few centuries. The focus will be on the years 1980-2000 but our considerations will broadly include the years ˜1850-2100. Chapter 8.09, deals with longer-term processes that involve rates of carbon exchange that are small on an annual timescale (weathering, vulcanism, sedimentation, and diagenesis).The carbon cycle is important for at least three reasons. First, carbon forms the structure of all life on the planet, making up ˜50% of the dry weight of living things. Second, the cycling of carbon approximates the flows of energy around the Earth, the metabolism of natural, human, and industrial systems. Plants transform radiant energy into chemical energy in the form of sugars, starches, and other forms of organic matter; this energy, whether in living organisms or dead organic matter, supports food chains in natural ecosystems as well as human ecosystems, not the least of which are industrial societies habituated (addicted?) to fossil forms of energy for heating, transportation, and generation of electricity. The increased use of fossil fuels has led to a third reason for interest in the carbon cycle. Carbon, in the form of carbon dioxide (CO2) and methane (CH4), forms two of the most important greenhouse gases. These gases contribute to a natural greenhouse effect that has kept the planet warm enough to evolve and support life (without the greenhouse effect the Earth's average temperature would be -33°C). Additions of greenhouse gases to the atmosphere from industrial activity, however, are increasing the concentrations of these gases, enhancing the greenhouse effect, and starting to warm the Earth.The rate and extent of the warming depend, in part, on the global carbon cycle. If the rate at which the oceans remove CO2 from the atmosphere were faster, e.g., concentrations of CO2 would have increased less over the last century. If the processes removing carbon from the atmosphere and storing it on land were to diminish, concentrations of CO2 would increase more rapidly than projected on the basis of recent history. The processes responsible for adding carbon to, and withdrawing it from, the atmosphere are not well enough understood to predict future levels of CO2 with great accuracy. These processes are a part of the global carbon cycle.Some of the processes that add carbon to the atmosphere or remove it, such as the combustion of fossil fuels and the establishment of tree plantations, are under direct human control. Others, such as the accumulation of carbon in the oceans or on land as a result of changes in global climate (i.e., feedbacks between the global carbon cycle and climate), are not under direct human control except through controlling rates of greenhouse gas emissions and, hence, climatic change. Because CO2 has been more important than all of the other greenhouse gases under human control, combined, and is expected to continue so in the future, understanding the global carbon cycle is a vital part of managing global climate.This chapter addresses, first, the reservoirs and natural flows of carbon on the earth. It then addresses the sources of carbon to the atmosphere from human uses of land and energy and the sinks of carbon on land and in the oceans that have kept the atmospheric accumulation of CO2 lower than it would otherwise have been. The chapter describes changes in the distribution of carbon among the atmosphere, oceans, and terrestrial ecosystems over the past 150 years as a result of human-induced emissions of carbon. The processes responsible for sinks of carbon on land and in the sea are reviewed from the perspective of feedbacks, and the chapter concludes with some prospects for the future.Earlier comprehensive summaries of the global carbon cycle include studies by Bolin et al. (1979, 1986), Woodwell and Pecan (1973), Bolin (1981), NRC (1983), Sundquist and Broecker (1985), and Trabalka (1985). More recently, the Intergovernmental Panel on Climate Change (IPCC) has summarized information on the carbon cycle in the context of climate change ( Watson et al., 1990; Schimel et al., 1996; Prentice et al., 2001). The basic aspects of the global carbon cycle have been understood for decades, but other aspects, such as the partitioning of the carbon sink between land and ocean, are being re-evaluated continuously with new data and analyses. The rate at which new publications revise estimates of these carbon sinks and re-evaluate the mechanisms that control the magnitude of the sinks suggests that portions of this review will be out of date by the time of publication.
LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model v2.0.4
NASA Astrophysics Data System (ADS)
Zeebe, R. E.
2012-01-01
The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. LOSCAR's configuration of ocean geometry is flexible and allows for easy switching between modern and paleo-versions. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.
SNTP propellant management system
NASA Technical Reports Server (NTRS)
Tippetts, Tom
1993-01-01
Viewgraphs on the following are presented: (1) space nuclear thermal propulsion (SNTP) propellant management system; (2) SNTP cycle selection; (3) NTP system components unique design constraints; (4) bleed cycle unique design requirement for turbopump; (5) bleed cycle turbopump; (6) SNTP carbon-carbon turbine wheel; and (7) turbine development program.
40 CFR Table 2 to Subpart Uuuu of... - Operating Limits
Code of Federal Regulations, 2013 CFR
2013-07-01
... values established during the compliance demonstration. 7. carbon absorber maintain the regeneration frequency, total regeneration adsorber stream mass or volumetric flow during carbon bed regeneration, and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s...
40 CFR Table 2 to Subpart Uuuu of... - Operating Limits
Code of Federal Regulations, 2012 CFR
2012-07-01
... values established during the compliance demonstration. 7. carbon absorber maintain the regeneration frequency, total regeneration adsorber stream mass or volumetric flow during carbon bed regeneration, and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s...
40 CFR Table 2 to Subpart Uuuu of... - Operating Limits
Code of Federal Regulations, 2014 CFR
2014-07-01
... values established during the compliance demonstration. 7. carbon absorber maintain the regeneration frequency, total regeneration adsorber stream mass or volumetric flow during carbon bed regeneration, and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s...
Urbanization and the Carbon Cycle: Synthesis of Ongoing Research
NASA Astrophysics Data System (ADS)
Gurney, K. R.; Duren, R. M.; Hutyra, L.; Ehleringer, J. R.; Patarasuk, R.; Song, Y.; Huang, J.; Davis, K.; Kort, E. A.; Shepson, P. B.; Turnbull, J. C.; Lauvaux, T.; Rao, P.; Eldering, A.; Miller, C. E.; Wofsy, S.; McKain, K.; Mendoza, D. L.; Lin, J. C.; Sweeney, C.; Miles, N. L.; Richardson, S.; Cambaliza, M. O. L.
2015-12-01
Given the explosive growth in urbanization and its dominant role in current and future global greenhouse gas emissions, urban areas have received increasing research attention from the carbon cycle science community. The emerging focus is driven by the increasingly dense atmospheric observing capabilities - ground and space-based - in addition to the rising profile of cities within international climate change policymaking. Dominated by anthropogenic emissions, urban carbon cycle research requires a cross-disciplinary perspective with contributions from disciplines such as engineering, economics, social theory, and atmospheric science. We review the recent results from a sample of the active urban carbon research efforts including the INFLUX experiment (Indianapolis), the Megacity carbon project (Los Angeles), Salt Lake City, and Boston. Each of these efforts represent unique approaches in pursuit of different scientific and policy questions and assist in setting priorities for future research. From top-down atmospheric measurement systems to bottom-up estimation, these research efforts offer a view of the challenges and opportunities in urban carbon cycle research.
Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries.
Cui, Li-Feng; Yang, Yuan; Hsu, Ching-Mei; Cui, Yi
2009-09-01
We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires showed great performance as anode material. Since carbon has a much smaller capacity compared to silicon, the carbon core experiences less structural stress or damage during lithium cycling and can function as a mechanical support and an efficient electron conducting pathway. These nanowires have a high charge storage capacity of approximately 2000 mAh/g and good cycling life. They also have a high Coulmbic efficiency of 90% for the first cycle and 98-99.6% for the following cycles. A full cell composed of LiCoO(2) cathode and carbon-silicon core-shell nanowire anode is also demonstrated. Significantly, using these core-shell nanowires we have obtained high mass loading and an area capacity of approximately 4 mAh/cm(2), which is comparable to commercial battery values.
NASA Astrophysics Data System (ADS)
Wan, Wang; Wang, Chao; Zhang, Weidong; Chen, Jitao; Zhou, Henghui; Zhang, Xinxiang
2014-01-01
A nanoscale Fe3O4/porous carbon-multiwalled carbon nanotubes (MWCNTs) composite is synthesized through a simple hard-template method by using Fe2O3 nanoparticles as the precursor and SiO2 nanoparticles as the template. The composite shows good cycle performance (941 mAh g-1 for the first cycle at 0.1 C, with 106% capacity retention at the 80th cycle) and high rate capability (71% capacity retained at 5 C rate). Its excellent electrical properties can be attributed to the porous carbon framework structure, which is composed of carbon and MWCNTs. In this composite, the porous structure provides space for the change in Fe3O4 volume during cycling and shortens the lithium ion diffusion distance, the MWCNTs increase the electron conductivity, and the carbon coating reduces the risk of side reactions. The results provide clear evidences for the utility of porous carbon framework to improve the electrochemical performances of nanosized transition-metal oxides as anode materials for lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Zachos, James C.; McCarren, Heather; Murphy, Brandon; Röhl, Ursula; Westerhold, Thomas
2010-10-01
The upper Paleocene and lower Eocene are marked by several prominent (> 1‰) carbon isotope (δ 13C) excursions (CIE) that coincide with transient global warmings, or thermal maxima, including the Paleocene-Eocene Thermal Maximum (PETM). The CIE, which are recorded mainly in marine sedimentary sequences, have also been identified in continental sequences, occurred episodically, and yet appear to be paced or triggered by orbital forcing. To constrain the timing and scale of the CIE relative to long-term baseline variability, we have constructed a 4.52 million year (myr) long, high-resolution (~ 3 kyr) bulk sediment carbon isotope record spanning the lower Eocene to upper Paleocene (C25r-C24n) from a pelagic sediment section recovered at ODP Site 1262 in the southeast Atlantic. This section, which was orbitally-tuned utilizing high-resolution core log physical property and geochemical records, is the most stratigraphically complete upper Paleocene to lower Eocene sequence recovered to date. Time-series analysis of the carbon isotope record along with a high-resolution Fe intensity record obtained by XRF core scanner reveal cyclicity with variance concentrated primarily in the precession (21 kyr) and eccentricity bands (100 and 400-kyr) throughout the upper Paleocene-lower Eocene. In general, minima in δ 13C correspond with peaks in Fe (i.e., carbonate dissolution), both of which appear to be in phase with maxima in eccentricity. This covariance is consistent with excess oceanic uptake of isotopically depleted carbon resulting in lower carbonate saturation during periods of high eccentricity. This relationship includes all late Paleocene and early Eocene CIE confirming pacing by orbital forcing. The lone exception is the PETM, which appears to be out of phase with the 400-kyr cycle, though possibly in phase with the 100-kyr cycle, reinforcing the notion that a mechanism other than orbital forcing and/or an additional source of carbon is required to account for the occurrence and unusual scale of this event.
Importance of vegetation distribution for future carbon balance
NASA Astrophysics Data System (ADS)
Ahlström, A.; Xia, J.; Arneth, A.; Luo, Y.; Smith, B.
2015-12-01
Projections of future terrestrial carbon uptake vary greatly between simulations. Net primary production (NPP), wild fires, vegetation dynamics (including biome shifts) and soil decomposition constitute the main processes governing the response of the terrestrial carbon cycle in a changing climate. While primary production and soil respiration are relatively well studied and implemented in all global ecosystem models used to project the future land sink of CO2, vegetation dynamics are less studied and not always represented in global models. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality and the associated turnover and proven skill in predicting vegetation distribution and succession. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the CMIP5 ensemble under RCP8.5 radiative forcing at year 2085. We exchanged carbon cycle processes between these 13 simulations and investigate the changes predicted by the emulator. This method allowed us to partition the entire ensemble carbon uptake uncertainty into individual processes. We found that NPP, vegetation dynamics (including biome shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33% respectively of uncertainties in modeled global C-uptake. Uncertainty due to vegetation dynamics was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand dynamics (7%), reproduction (10%) and biome shifts (67%) globally. We conclude that while NPP and soil decomposition rates jointly account for 83% of future climate induced C-uptake uncertainties, vegetation turnover and structure, dominated by shifts in vegetation distribution, represent a significant fraction globally and regionally (tropical forests: 40%), strongly motivating their representation and analysis in future C-cycle studies.
Assessing spatiotemporal changes in forest carbon turnover times in observational data and models
NASA Astrophysics Data System (ADS)
Yu, K.; Smith, W. K.; Trugman, A. T.; van Mantgem, P.; Peng, C.; Condit, R.; Anderegg, W.
2017-12-01
Forests influence global carbon and water cycles, biophysical land-atmosphere feedbacks, and atmospheric composition. The capacity of forests to sequester atmospheric CO2 in a changing climate depends not only on the response of carbon uptake (i.e., gross primary productivity) but also on the simultaneous change in carbon residence time. However, changes in carbon residence with climate change are uncertain, impacting the accuracy of predictions of future terrestrial carbon cycle dynamics. Here, we use long-term forest inventory data representative of tropical, temperate, and boreal forests; satellite-based estimates of net primary productivity and vegetation carbon stock; and six models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to investigate spatiotemporal trends in carbon residence time and its relation to climate. Forest inventory and satellite-based estimates of carbon residence time show a pervasive decreasing trend across global forests. In contrast, the CMIP5 models diverge in predicting historical and future trends in carbon residence time. Divergence across CMIP5 models indicate carbon turnover times are not well constrained by observations, which likely contributes to large variability in future carbon cycle projections.
Zhai, Pei; Williams, Eric D
2010-10-15
This paper advances the life cycle assessment (LCA) of photovoltaic systems by expanding the boundary of the included processes using hybrid LCA and accounting for the technology-driven dynamics of embodied energy and carbon emissions. Hybrid LCA is an extended method that combines bottom-up process-sum and top-down economic input-output (EIO) methods. In 2007, the embodied energy was 4354 MJ/m(2) and the energy payback time (EPBT) was 2.2 years for a multicrystalline silicon PV system under 1700 kWh/m(2)/yr of solar radiation. These results are higher than those of process-sum LCA by approximately 60%, indicating that processes excluded in process-sum LCA, such as transportation, are significant. Even though PV is a low-carbon technology, the difference between hybrid and process-sum results for 10% penetration of PV in the U.S. electrical grid is 0.13% of total current grid emissions. Extending LCA from the process-sum to hybrid analysis makes a significant difference. Dynamics are characterized through a retrospective analysis and future outlook for PV manufacturing from 2001 to 2011. During this decade, the embodied carbon fell substantially, from 60 g CO(2)/kWh in 2001 to 21 g/kWh in 2011, indicating that technological progress is realizing reductions in embodied environmental impacts as well as lower module price.
Orbital-tuning of Marine Cyclic Sediments - Examples from the Neogene and Jurassic
NASA Astrophysics Data System (ADS)
Weedon, G. P.; Hall, I. R.; Wilson, G. S.
2001-12-01
Orbital-tuning of pre-Pleistocene sediments usually involves the use of variations in bulk compositional parameters, such as carbonate contents, rather than the oxygen-isotope time series available from Plio-Pleistocene marine strata. Consequently, ascertaining the relationship between orbital-climatic changes and sediment composition is not straightforward. Tuning is either conducted using a target curve (an orbital solution) for late Cenozoic records, or by using a sine wave with a specified period for earlier records - where a "floating" chronology is generated. Examples of each sort of tuning are discussed here. Drilling during Leg 181 of the Ocean Drilling Program yielded an essentially complete record of sediment-drift accumulation at Site 1123 off New Zealand for the past 20Ma. Dissolution of carbonate in the older part of the section precluded generation of isotopic records for tuning. Instead colour reflectance and magnetic susceptibility were used for tuning between 3 and 15Ma. Additionally, the mean size of sortable silt, a proxy for bottom-water flow speed, was used for orbital-tuning between 12 and 15Ma. Site 1123 possesses an exceptionally well-preserved record of geomagnetic reversals. Thus a preliminary time scale was established using the ages of 60 reversal events between 3 and 15.2Ma (based on Berggren et al., 1995). Since the sediment drift at this site accumulated under the influence of the Pacific deep western boundary current which incorporates circumpolar deep water, the sediment cyclicity is dominated by the 41ka orbital-tilt (obliquity) cycle. Tuning to the tilt cycle required relatively little revision to the ages of the magnetic reversals (maximum 65ka, average 23ka). Evolutionary spectra and band-pass filtering of the tuned reflectance time series reveal a pronounced increase in the amplitude of the stratigraphic record of the obliquity cycle after 7Ma. Eccentricity and precession cycles are evident for short intervals (less than one million years), but they are always subsidiary to the obliquity component - consistent with a high-latitude origin of the variability. The late Jurassic Kimmeridge Clay Formation is the principal oil-source rock in the North Sea Province. It is well-known for cyclic variations in organic-carbon contents linked to alternately oxic and anoxic bottom waters. During the Anatomy of a Source Rock Project, high-resolution (5-20cm) compositional records (e.g. carbonate, total organic carbon, magnetic susceptibility) were obtained from throughout the 550m Formation at the type section in Dorset, England. Spectral analysis indicates regular cyclicity in depth. The regular sedimentary cycles are interpreted as indirect climatic records of the Jurassic obliquity cycle and hence were tuned using a sine wave with a period of 38ka. Evolutionary spectral analysis of the tuned time series reveals small-amplitude 19ka precession cycles, but no evidence for 100 or 400ka orbital-eccentricity cycles. Hence, this record of Late Jurassic climatic variability in Britain implies a high-latitude forcing mechanism. The orbitally-tuned data indicate that ammonite zone durations ranged from 0.36 to 2.3Ma. Accumulation rates (post-compaction) ranged from 20-130m/Ma and organic carbon (post-diagenesis) had a flux of 0.2-2.25g/cm2/ka.
Time series measurements of carbon fluxes from a mangrove-dominated estuary
NASA Astrophysics Data System (ADS)
Volta, C.; Ho, D. T.; Friederich, G.; Del Castillo, C. E.; Engel, V. C.; Bhat, M.
2017-12-01
Mangrove ecosystems are among the most important and productive coastal ecosystems globally, and due to their high productivity and rapid carbon cycling, these ecosystems are important modulators of carbon fluxes from the land to the ocean and between the water and the atmosphere. Therefore, they may play a crucial role in the global carbon cycle and climate. Nonetheless, to date, estimates of carbon fluxes in mangrove-dominated estuaries are associated with large uncertainties, because studies have typically focused on limited spatial and temporal scales. For the first time, continuous time series measurements of temperature, salinity, CDOM, pH and pCO2 covering both the dry and the wet seasons were made in Shark River, a tidal estuary in the largest contiguous mangrove forest in North America. The measurements were made at two permanent stations along the estuarine domain, and allowed estimates of net dissolved carbon export from the Shark River to the Gulf of Mexico, as well as the CO2 emissions to the atmosphere to be made at seasonal and annual timescales. Results reveal that, compared to the dry season, the wet season was characterized by higher dissolved carbon export and CO2 emissions, due to meteorological, hydrological, and biogeochemical processes. Additionally, an analysis of relationships between hydrodynamic control factors (i.e. water discharge and water level) in the upstream freshwater marsh and carbon fluxes in the Shark River highlighted the importance of developing good water management strategies in the future. Finally, the study estimated the social cost of carbon fluxes in the Shark River estuary as a contribution to carbon accounting in mangrove ecosystems.
Late Mississippian (Chesterian) carbonate to carbonate-clastic cycles in the eastern Illinois Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L.B.; Read, J.F.
1994-03-01
Late Mississippian (Chesterian) rocks of the eastern Illinois Basin in Kentucky and Indiana show depositional cycles (3--20 meters thick) composed of a range of facies deposited during the transition from carbonate-dominated deposition of the Middle Mississippian to the predominantly siliciclastic regime of the Pennsylvanian. Within the basal Ste. Genevieve Formation (30--70 meters thick) there are five predominantly carbonate cycles. Cycle bases vary from thin calcareous sandstone near the northern clastic source to ooid-quartz dolomitic pelletal grainstone and mudstone further south. Massive cross-bedded and channeled ooid-skeletal grainstones represent the cycle tops and are commonly capped by caliche and subaerial breccia, particularlymore » where there was no subsequent siliciclastic deposition. The cycles are interpreted to be driven by fourth-order (400 k.y.) glacio-eustatic sea-level fluctuations based on coincidence of the calculated cycle period with the long-term eccentricity signal, the Late Mississippian onset of Gondwana glaciation and cycle correlation over more than 100 kilometers. The breccia and caliche formed during lowstands, the siliciclastics, eolianites and dolomitic pelletal grainstones are transgressive facies and the ooid-skeletal grainstones represent sea-level highstands.« less
Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Sasha C.; Yang, Xiaojuan; Thornton, Peter E.
2015-06-25
Myriad field, laboratory, and modeling studies show that nutrient availability plays a fundamental role in regulating CO 2 exchange between the Earth's biosphere and atmosphere, and in determining how carbon pools and fluxes respond to climatic change. Accordingly, global models that incorporate coupled climate-carbon cycle feedbacks made a significant advance with the introduction of a prognostic nitrogen cycle. Here we propose that incorporating phosphorus cycling represents an important next step in coupled climate-carbon cycling model development, particularly for lowland tropical forests where phosphorus availability is often presumed to limit primary production. We highlight challenges to including phosphorus in modeling effortsmore » and provide suggestions for how to move forward.« less
Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor
Reed, Sasha C.; Yang, Xiaojuan; Thornton, Peter E.
2015-01-01
Myriad field, laboratory, and modeling studies show that nutrient availability plays a fundamental role in regulating CO2 exchange between the Earth's biosphere and atmosphere, and in determining how carbon pools and fluxes respond to climatic change. Accordingly, global models that incorporate coupled climate–carbon cycle feedbacks made a significant advance with the introduction of a prognostic nitrogen cycle. Here we propose that incorporating phosphorus cycling represents an important next step in coupled climate–carbon cycling model development, particularly for lowland tropical forests where phosphorus availability is often presumed to limit primary production. We highlight challenges to including phosphorus in modeling efforts and provide suggestions for how to move forward.
Carbon Cycle 2.0: Don DePaolo: Geo and Bio Sequestration
Don DePaolo:
2017-12-09
Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Lynn
Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Trailblazing the Carbon Cycle of Tropical Forests from Puerto Rico
Sandra Brown; Ariel Lugo
2017-01-01
We review the literature that led to clarifying the role of tropical forests in the global carbon cycle from a time when they were considered sources of atmospheric carbon to the time when they were found to be atmospheric carbon sinks. This literature originates from work conducted by US Forest Service scientists in Puerto Rico and their collaborators. It involves the...
James, P.B.; Hansen, G.B.; Titus, T.N.
2005-01-01
The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Chemical Oceanography and the Marine Carbon Cycle
NASA Astrophysics Data System (ADS)
Emerson, Steven; Hedges, John
The principles of chemical oceanography provide insight into the processes regulating the marine carbon cycle. The text offers a background in chemical oceanography and a description of how chemical elements in seawater and ocean sediments are used as tracers of physical, biological, chemical and geological processes in the ocean. The first seven chapters present basic topics of thermodynamics, isotope systematics and carbonate chemistry, and explain the influence of life on ocean chemistry and how it has evolved in the recent (glacial-interglacial) past. This is followed by topics essential to understanding the carbon cycle, including organic geochemistry, air-sea gas exchange, diffusion and reaction kinetics, the marine and atmosphere carbon cycle and diagenesis in marine sediments. Figures are available to download from www.cambridge.org/9780521833134. Ideal as a textbook for upper-level undergraduates and graduates in oceanography, environmental chemistry, geochemistry and earth science and a valuable reference for researchers in oceanography.
Carbon Corrosion in PEM Fuel Cells and the Development of Accelerated Stress Tests
Macauley, Natalia; Papadias, Dennis D.; Fairweather, Joseph; ...
2018-03-15
Here, carbon corrosion is an important degradation mechanism that can impair PEMFC performance through the destruction of catalyst connectivity, collapse of the electrode pore structure, loss of hydrophobic character, and an increase of the catalyst particle size. In this study, carbon corrosion was quantified in situ by measurement of carbon dioxide in the fuel cell exhaust gases through non-dispersive infrared spectroscopy during simulated drive cycle operations consisting of potential cycling with varying upper and lower potential limits. These studies were conducted for three different types of carbon supports. A reduction in the catalyst layer thickness was observed during a simulatedmore » drive cycle operation with a concomitant decrease in catalyst layer porosity, which led to performance losses due to increased mass transport limitations. The observed thickness reduction was primarily due to compaction of the catalyst layer, with the actual mass of carbon oxidation (loss) contributing only a small fraction (< 20%). The dynamics of carbon corrosion are presented along with a model that simulates the transient and dynamic corrosion rates observed in our experiments. Accelerated carbon corrosion stress tests are presented and their effects are compared to those observed for the drive cycle test.« less
Global redox cycle of biospheric carbon: Interaction of photosynthesis and earth crust processes.
Ivlev, Alexander A
2015-11-01
A model of the natural global redox cycle of biospheric carbon is introduced. According to this model, carbon transfer between biosphere and geospheres is accompanied by a conversion of the oxidative forms, presented by CO2, bicarbonate and carbonate ions, into the reduced forms, produced in photosynthesis. The mechanism of carbon transfer is associated with two phases of movement of lithospheric plates. In the short-term orogenic phase, CO2 from the subduction (plates' collisions) zones fills the "atmosphere-hydrosphere" system, resulting in climate warming. In the long-term quiet (geosynclynal) phase, weathering and photosynthesis become dominant depleting the oxidative forms of carbon. The above asymmetric periodicity exerts an impact on climate, biodiversity, distribution of organic matter in sedimentary deposits, etc. Along with photosynthesis expansion, the redox carbon cycle undergoes its development until it reaches the ecological compensation point, at which CO2 is depleted to the level critical to support the growth and reproduction of plants. This occurred in the Permo-Carboniferous time and in the Neogene. Shorter-term perturbations of the global carbon cycle in the form of glacial-interglacial oscillations appear near the ecological compensation point. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Carbon Corrosion in PEM Fuel Cells and the Development of Accelerated Stress Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macauley, Natalia; Papadias, Dennis D.; Fairweather, Joseph
Here, carbon corrosion is an important degradation mechanism that can impair PEMFC performance through the destruction of catalyst connectivity, collapse of the electrode pore structure, loss of hydrophobic character, and an increase of the catalyst particle size. In this study, carbon corrosion was quantified in situ by measurement of carbon dioxide in the fuel cell exhaust gases through non-dispersive infrared spectroscopy during simulated drive cycle operations consisting of potential cycling with varying upper and lower potential limits. These studies were conducted for three different types of carbon supports. A reduction in the catalyst layer thickness was observed during a simulatedmore » drive cycle operation with a concomitant decrease in catalyst layer porosity, which led to performance losses due to increased mass transport limitations. The observed thickness reduction was primarily due to compaction of the catalyst layer, with the actual mass of carbon oxidation (loss) contributing only a small fraction (< 20%). The dynamics of carbon corrosion are presented along with a model that simulates the transient and dynamic corrosion rates observed in our experiments. Accelerated carbon corrosion stress tests are presented and their effects are compared to those observed for the drive cycle test.« less
Fifty years dynamics of Russian forests: Impacts on the earth system
NASA Astrophysics Data System (ADS)
Shvidenko, Anatoly; Schepaschenko, Dmitry; Kraxner, Florian
2015-04-01
The paper presents a succinct history of Russian forests during the time period of 1960-2010 and reanalysis of their impacts on global carbon and nitrogen cycles. We present dynamics of land cover change (including major categories of forest land) and biometric characteristics of forests (species composition, age structure, growing stock volume etc.) based on reconciling all relevant information (data of forest and land inventories, official forest management statistics, multi-sensor remote sensing products, data of forest pathological monitoring etc.). Completeness and reliability of background information was different during the period of the study. Forest inventory data and official statistics were partially modified based on relevant auxiliary information and used for 1960-2000. The analysis for 2001-2010 was provided with a crucial use of multi-sensor remote sensing data. For this last period a hybrid forest mask was developed at resolution of 230m by integration of 8 remote sensing products and using geographical weighted regression and data of crowdsourcing. During the considered 50 years forested areas of Russia substantially increased by middle of 1990s and slightly declined (at about 5%) after. Indicators needed for assessment of carbon and nitrogen cycles of forest ecosystems were defined for the entire period (aggregated estimates by decades for 1960-2000 and yearly for 2001-2010) based on unified methodology with some peculiarities following from availability of information. Major results were obtained by landscape-ecosystem method that uses as comprehensive as possible empirical and semi-empirical information on ecosystems and landscapes in form of an Integrated Land Information System and complimentary combines pool- and flux-based methods. We discuss and quantify major drivers of forest cover change (socio-economic, environmental and climatic) including forest management (harvest, reforestation and afforestation), impacts of seasonal weather on carbon fluxes (Net Primary Production, Heterotrophic Respiration), disturbances (fire, outbreaks of insects and diseases), and industrial pressure (land change, air pollution, water and soil contamination). During the entire period Russian forests provided the net carbon sink in range from 350-700 Tg C yr-1 with inter-annual variability in limits of 10-15% for the entire country. The overall sink is a result of superposition of trends of major carbon fluxes (caused by removal of harvested wood and use of forest products; land cover change; impact of climatic trends; change of disturbance regimes) and inter-annual variation of seasonal weather. Major indicators of the nitrogen cycle are assessed and discussed in connection with the carbon cycle. We provide comparative analysis of other results published for the considered period taken into account successive improvements of information and methodology used for studying the major biogeochemical cycles.
Facies analysis of Lofer cycles (Upper Triassic), in the Argolis Peninsula (Greece)
NASA Astrophysics Data System (ADS)
Pomoni-Papaioannou, F.
The Upper Triassic carbonate sediments of Argolis Peninsula are part of the Upper Triassic-Lower Jurassic extensive and thick neritic carbonate formations (Pantokrator facies) that formed at the passive Pelagonian margin and are considered as Dachstein-type platform carbonates. Facies analysis of the Upper Triassic "Lofer-type" lagoonal-peritidal cycles in the Dhidimi area, proved that cycles, although mostly incomplete, were regressive shallowing-upward. The ideal elementary cyclothems are meter-scale in thickness and begin with a subtidal bed (Member C), represented by a peloidal dolostone with megalodonts (wackestone or packstone), being followed by a stromatolitic intertidal dolomitic mudstone and/or fenestral intertidal dolomitic mudstone (Member B) that is overlain by dolocrete (terrestrial stromatolites or pisoidic dolomite) or a supratidal "soil conglomerate" in red micritic matrix (Member A). Lofer-cycle boundaries are defined at the erosional surfaces and accordingly the Lofer cyclothems are unconformity-bounded units. Due to common post-depositional truncation of the subtidal and intertidal facies, the supratidal members prevail, being developed, in places, directly upon subaerial exposure surfaces (erosionally reduced cyclothems). Peritidal layers are characterized by a well-expressed lamination, sheet cracks, tepee structures, fenestral pores and karst dissolution cavities. The studied lagoonal-peritidal cycles are considered to have been deposited in a tidal-flat setting (inner platform), repeatedly exposed under subaerial conditions, in the context of a broader tropical rimmed platform. Although the studied area was tectonically active due to rift-activity and the autocyclic processes should also be taken in consideration, the great lateral correlatability of cycles, the facies shifting and the widespread erosion that resulted in superposition of supratidal-pedogenic facies directly upon subtidal members (subaerial erosional unconformity), indicating a sea-level drop, reflect allocyclic control via high-frequency eustatic sea-level oscillation (orbital forcing). Sediment deposition occurred during low-stand system tract (LST), that probably continued also in the transgressive system tract (TST) and reflects an overall sea-level fall. Under these conditions dissolution and cement precipitation episodes, as well development of paleosols and karsts, were triggered, during a relatively less arid interval.
NASA Technical Reports Server (NTRS)
Koster, Randal D. (Editor); Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima (Editor); Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas
2015-01-01
During the post-launch Cal/Val Phase of SMAP there are two objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements according to the Cal/Val timeline. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product specifically for the beta release. The beta-release version of the SMAP L4_C algorithms utilizes a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily NEE and component carbon fluxes, particularly vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (<10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape FT controls on GPP and Reco (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and underlying freeze/thaw and soil moisture constraints to these processes, 2) documenting primary connections between terrestrial water, energy and carbon cycles, and 3) improving understanding of terrestrial carbon sink activity in northern ecosystems.
40 CFR Table 2 to Subpart Uuuu of... - Operating Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
... established during the compliance demonstration. 7. carbon absorber maintain the regeneration frequency, total regeneration adsorber stream mass or volumetric flow during carbon bed regeneration, and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) for each...
40 CFR Table 2 to Subpart Uuuu of... - Operating Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
... established during the compliance demonstration. 7. carbon absorber maintain the regeneration frequency, total regeneration adsorber stream mass or volumetric flow during carbon bed regeneration, and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) for each...
Portable Unit for Metabolic Analysis
NASA Technical Reports Server (NTRS)
Dietrich, Daniel L.; Pitch, Nancy D.; Lewis, Mark E.; Juergens, Jeffrey R.; Lichter, Michael J.; Stuk, Peter M.; Diedrick, Dale M.; Valentine, Russell W.; Pettegrew, Richard D.
2007-01-01
The Portable Unit for Metabolic Analysis (PUMA) is an instrument that measures several quantities indicative of human metabolic function. Specifically, this instrument makes time-resolved measurements of temperature, pressure, flow, and the partial pressures of oxygen and carbon dioxide in breath during both inhalation and exhalation. Portable instruments for measuring these quantities have been commercially available, but the response times of those instruments are too long to enable temporal resolution of phenomena on the time scales of human respiration cycles. In contrast, the response time of the PUMA is significantly shorter than characteristic times of human respiration phenomena, making it possible to analyze varying metabolic parameters, not only on sequential breath cycles but also at successive phases of inhalation and exhalation within the same breath cycle. In operation, the PUMA is positioned to sample breath near the subject s mouth. Commercial off-the-shelf sensors are used for three of the measurements: a miniature pressure transducer for pressure, a thermistor for temperature, and an ultrasonic sensor for flow. Sensors developed at Glenn Research Center are used for measuring the partial pressures of oxygen and carbon dioxide: The carbon dioxide sensor exploits the relatively strong absorption of infrared light by carbon dioxide. Light from an infrared source passes through the stream of inhaled or exhaled gas and is focused on an infrared- sensitive photodetector. The oxygen sensor exploits the effect of oxygen in quenching the fluorescence of ruthenium-doped organic molecules in a dye on the tip of an optical fiber. A blue laser diode is used to excite the fluorescence, and the optical fiber carries the fluorescent light to a photodiode, the temporal variation of the output of which bears a known relationship with the rate of quenching of fluorescence and, hence, with the partial pressure of oxygen. The outputs of the sensors are digitized, preprocessed by a small onboard computer, and then sent wirelessly to a desktop computer, where the collected data are analyzed and displayed. In addition to the raw data on temperature, pressure, flow, and mole fractions of oxygen and carbon dioxide, the display can include volumetric oxygen consumption, volumetric carbon dioxide production, respiratory equivalent ratio, and volumetric flow rate of exhaled gas.
NASA Astrophysics Data System (ADS)
Ray, R. L.; Fares, A.; He, Y.; Awal, R.; Risch, E.
2017-12-01
Most climate change impacts are linked to terrestrial vegetation productivity, carbon stocks and land use change. Changes in land use and climate drive the dynamics of terrestrial carbon cycle. These carbon cycle dynamics operate at different spatial and temporal scales. Quantification of the spatial and temporal variability of carbon flux has been challenging because land-atmosphere-carbon exchange is influenced by many factors, including but not limited to, land use change and climate change and variability. The study of terrestrial carbon cycle, mainly gross primary product (GPP), net ecosystem exchange (NEE), soil organic carbon (SOC) and ecosystem respiration (Re) and their interactions with land use and climate change, are critical to understanding the terrestrial ecosystem. The main objective of this study was to examine the interactions among land use, climate change and terrestrial carbon cycling in the state of Texas using satellite measurements. We studied GPP, NEE, Re and SOC distributions for five selected major land covers and all ten climate zones in Texas using Soil Moisture Active Passive (SMAP) carbon products. SMAP Carbon products (Res=9 km) were compared with observed CO2 flux data measured at EC flux site on Prairie View A&M University Research Farm. Results showed the same land cover in different climate zones has significantly different carbon sequestration potentials. For example, cropland of the humid climate zone has higher (-228 g C/m2) carbon sequestration potentials than the semiarid climate zone (-36 g C/m2). Also, shrub land in the humid zone and in the semiarid zone showed high (-120 g C/m2) and low (-36 g C/m2) potentials of carbon sequestration, respectively, in the state. Overall, the analyses indicate CO2 storage and exchange respond differently to various land covers, and environments due to differences in water availability, root distribution and soil properties.
NASA Astrophysics Data System (ADS)
Weissert, Helmut
2013-04-01
With the beginning of the fossil fuel age in the 19th century mankind has become an important geological agent on a global scale. For the first time in human history action of man has an impact on global biogeochemical cycles. Increasing CO2 concentrations will result in a perturbation of global carbon cycling coupled with climate change. Investigations of past changes in carbon cycling and in climate will improve our predictions of future climate. Increasing atmospheric CO2 concentrations will drive climate into a mode of operation, which may resemble climate conditions in the deep geological past. Pliocene climate will give insight into 400ppm world with higher global sea level than today. Doubling of pre-industrial atmospheric CO2 levels will shift the climate system into a state resembling greenhouse climate in the Early Cenozoic or even in the Cretaceous. Carbon isotope geochemistry serves as tool for tracing the pathway of the carbon cycle through geological time. Globally registered negative C-isotope anomalies in the C-isotope record are interpreted as signatures of rapid addition (103 to a few 104 years) of CO2 to the ocean-atmosphere system. Positive C-isotope excursions following negative spikes record the slow post-perturbation recovery of the biosphere at time scales of 105 to 106 years. Duration of C-cycle perturbations in earth history cannot be directly compared with rapid perturbation characterizing the Anthropocene. However, the investigation of greenhouse pulses in the geological past provides insight into different climate states, it allows to identify tipping points in past climate systems and it offers the opportunity to learn about response reactions of the biosphere to rapid changes in global carbon cycling. Sudden injection of massive amounts of carbon dioxide into the atmosphere is recorded in C-isotope record of the Early Cretaceous. The Aptian carbon cycle perturbation triggered changes in temperature and in global hydrological cycling. Changes in physical and chemical oceanography are reflected in widespread black shale deposition ("Oceanic Anoxic Event 1a"), in carbonate platform drowning and in biocalcification crises. "Days of future passed" (Moody Blues, 1967) reminds us that the past provides essential information needed for decisions to be made in the interest of mankind's future.
Chloride-reinforced carbon nanofiber host as effective polysulfide traps in lithium-sulfur batteries
Fan, Lei; Zhuang, Houlong; Zhang, Kaihang; ...
2016-01-01
Lithium-sulfur (Li-S) battery is one of the most promising alternatives for the current state-of-art lithium-ion batteries (LIBs) due to its high theoretical energy density and lower production cost from the use of earth abundant element - sulfur. However, the commercialization of Li-S batteries has been so far limited to the cyclability and the retention of active sulfur materials. Using co-electrospinning and physical vapor deposition procedures, we created a class of chloride-carbon nanofiber composites, and studied their effectiveness on polysulfides sequestration. By trapping sulfur reduction products in the modified-cathode through both chemical and physical confinements in a conductive host, these chloride-coatedmore » cathodes are shown to remarkably suppress the polysulfide dissolution and shuttling between lithium and sulfur electrodes. We show that not only the binding energy but also the electronic conductivity of the host plays an important role on the reversibility of sulfur-based cathode upon repeated cycles. Electrochemical analysis of the chloride-modified cathodes over hundreds of cycles indicates that too strong binding of the sulfur species may lead to the decay of Coulombic efficiency. Cells containing indium chloride-modified carbon nanofiber outperform cells with other halogenated salt modifications, delivering an average specific capacity of above 1200mAh g-1 at 0.2C over 200 cycles. Once loaded with high S content, it shows stable capacity retention with only 0.019% decay per cycle from 5th to 650th cycle. It also shows stabilized cyclability and enhanced Coulombic efficiency in the absence of traditional anode stabilizer lithium nitrite.« less
NASA Astrophysics Data System (ADS)
Jia, B.; Wang, Y.; Xie, Z.
2016-12-01
Drought can trigger both immediate and time-lagged responses of terrestrial ecosystems and even cause sizeable positive feedbacks to climate warming. In this study, the influences of interactive nitrogen (N) and dynamic vegetation (DV) on the response of the carbon cycle in terrestrial ecosystems of China to drought were investigated using the Community Land Model version 4.5 (CLM4.5). Model simulations from three configurations of CLM4.5 (C, carbon cycle only; CN, dynamic carbon and nitrogen cycle; CNDV, dynamic carbon and nitrogen cycle as well as dynamic vegetation) between 1961 and 2010 showed that the incorporation of a prognostic N cycle and DV into CLM4.5 reduce the predicted annual means and inter-annual variability of predicted gross primary production (GPP) and net ecosystem production (NEP), except for a slight increase in NEP for CNDV compared to CN. These model improvements resulted in better agreement with observations (7.0 PgC yr-1) of annual GPP over the terrestrial ecosystems in China for CLM45-CN (7.5 PgC yr-1) and CLM45-CNDV (7.3 PgC yr-1) than for CLM45-C (10.9 PgC yr-1). Compared to the CLM45-C, the carbon-nitrogen coupling strengthened the predicted response of GPP to drought, resulting in a higher correlation with the standardized precipitation index (SPI; rC = 0.62, rCN = 0.67), but led to a weaker sensitivity of NEP to SPI (rC = 0.51, rCN = 0.45). The CLM45-CNDV had the longest lagged responses of GPP to drought among the three configurations. These results enhance our understanding of the response of the terrestrial carbon cycle to drought.
NASA Astrophysics Data System (ADS)
Galbraith, D.; Levine, N. M.; Christoffersen, B. O.; Imbuzeiro, H. A.; Powell, T.; Costa, M. H.; Saleska, S. R.; Moorcroft, P. R.; Malhi, Y.
2014-12-01
The mathematical codes embedded within different vegetation models ultimately represent alternative hypotheses of biosphere functioning. While formulations for some processes (e.g. leaf-level photosynthesis) are often shared across vegetation models, other processes (e.g. carbon allocation) are much more variable in their representation across models. This creates the opportunity for equifinality - models can simulate similar values of key metrics such as NPP or biomass through very different underlying causal pathways. Intensive carbon cycle measurements allow for quantification of a comprehensive suite of carbon fluxes such as the productivity and respiration of leaves, roots and wood, allowing for in-depth assessment of carbon flows within ecosystems. Thus, they provide important information on poorly-constrained C-cycle processes such as allocation. We conducted an in-depth evaluation of the ability of four commonly used dynamic global vegetation models (CLM, ED2, IBIS, JULES) to simulate carbon cycle processes at ten lowland Amazonian rainforest sites where individual C-cycle components have been measured. The rigorous model-data comparison procedure allowed identification of biases which were specific to different models, providing clear avenues for model improvement and allowing determination of internal C-cycling pathways that were better supported by data. Furthermore, the intensive C-cycle data allowed for explicit testing of the validity of a number of assumptions made by specific models in the simulation of carbon allocation and plant respiration. For example, the ED2 model assumes that maintenance respiration of stems is negligible while JULES assumes equivalent allocation of NPP to fine roots and leaves. We argue that field studies focusing on simultaneous measurement of a large number of component fluxes are fundamentally important for reducing uncertainty in vegetation model simulations.
Simulated Carbon Cycling in a Model Microbial Mat.
NASA Astrophysics Data System (ADS)
Decker, K. L.; Potter, C. S.
2006-12-01
We present here the novel addition of detailed organic carbon cycling to our model of a hypersaline microbial mat ecosystem. This ecosystem model, MBGC (Microbial BioGeoChemistry), simulates carbon fixation through oxygenic and anoxygenic photosynthesis, and the release of C and electrons for microbial heterotrophs via cyanobacterial exudates and also via a pool of dead cells. Previously in MBGC, the organic portion of the carbon cycle was simplified into a black-box rate of accumulation of simple and complex organic compounds based on photosynthesis and mortality rates. We will discuss the novel inclusion of fermentation as a source of carbon and electrons for use in methanogenesis and sulfate reduction, and the influence of photorespiration on labile carbon exudation rates in cyanobacteria. We will also discuss the modeling of decomposition of dead cells and the ultimate release of inorganic carbon. The detailed modeling of organic carbon cycling is important to the accurate representation of inorganic carbon flux through the mat, as well as to accurate representation of growth models of the heterotrophs under different environmental conditions. Because the model ecosystem is an analog of ancient microbial mats that had huge impacts on the atmosphere of early earth, this MBGC can be useful as a biological component to either early earth models or models of other planets that potentially harbor life.
Net community production and calcification from 7 years of NOAA Station Papa Mooring measurements
NASA Astrophysics Data System (ADS)
Fassbender, Andrea J.; Sabine, Christopher L.; Cronin, Meghan F.
2016-02-01
Seven years of near-continuous observations from the Ocean Station Papa (OSP) surface mooring were used to evaluate drivers of marine carbon cycling in the eastern subarctic Pacific. Processes contributing to mixed layer carbon inventory changes throughout each deployment year were quantitatively assessed using a time-dependent mass balance approach in which total alkalinity and dissolved inorganic carbon were used as tracers. By using two mixed layer carbon tracers, it was possible to isolate the influences of net community production (NCP) and calcification. Our results indicate that the annual NCP at OSP is 2 ± 1 mol C m-2 yr-1 and the annual calcification is 0.3 ± 0.3 mol C m-2 yr-1. Piecing together evidence for potentially significant dissolved organic carbon cycling in this region, we estimate a particulate inorganic carbon to particulate organic carbon ratio between 0.15 and 0.25. This is at least double the global average, adding to the growing evidence that calcifying organisms play an important role in carbon export at this location. These results, coupled with significant seasonality in the NCP, suggest that carbon cycling near OSP may be more complex than previously thought and highlight the importance of continuous observations for robust assessments of biogeochemical cycling.
Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3.
Müller, Jonas E N; Litsanov, Boris; Bortfeld-Miller, Miriam; Trachsel, Christian; Grossmann, Jonas; Brautaset, Trygve; Vorholt, Julia A
2014-03-01
Bacillus methanolicus MGA3 is a facultative methylotroph of industrial relevance that is able to grow on methanol as its sole source of carbon and energy. The Gram-positive bacterium possesses a soluble NAD(+) -dependent methanol dehydrogenase and assimilates formaldehyde via the ribulose monophosphate (RuMP) cycle. We used label-free quantitative proteomics to generate reference proteome data for this bacterium and compared the proteome of B. methanolicus MGA3 on two different carbon sources (methanol and mannitol) as well as two different growth temperatures (50°C and 37°C). From a total of approximately 1200 different detected proteins, approximately 1000 of these were used for quantification. While the levels of 213 proteins were significantly different at the two growth temperatures tested, the levels of 109 proteins changed significantly when cells were grown on different carbon sources. The carbon source strongly affected the synthesis of enzymes related to carbon metabolism, and in particular, both dissimilatory and assimilatory RuMP cycle enzyme levels were elevated during growth on methanol compared to mannitol. Our data also indicate that B. methanolicus has a functional tricarboxylic acid cycle, the proteins of which are differentially regulated on mannitol and methanol. Other proteins presumed to be involved in growth on methanol were constitutively expressed under the different growth conditions. All MS data have been deposited in the ProteomeXchange with the identifiers PXD000637 and PXD000638 (http://proteomecentral.proteomexchange.org/dataset/PXD000637, http://proteomecentral.proteomexchange.org/dataset/PXD000638). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Robinson, Georgina; MacTavish, Thomas; Savage, Candida; Caldwell, Gary S.; Jones, Clifford L. W.; Probyn, Trevor; Eyre, Bradley D.; Stead, Selina M.
2018-03-01
The treatment of organic wastes remains one of the key sustainability challenges facing the growing global aquaculture industry. Bioremediation systems based on coupled bioturbation-microbial processing offer a promising route for waste management. We present, for the first time, a combined biogeochemical-molecular analysis of the short-term performance of one such system that is designed to receive nitrogen-rich particulate aquaculture wastes. Using sea cucumbers (Holothuria scabra) as a model bioturbator we provide evidence that adjusting the waste C : N from 5 : 1 to 20 : 1 promoted a shift in nitrogen cycling pathways towards the dissimilatory nitrate reduction to ammonium (DNRA), resulting in net NH4+ efflux from the sediment. The carbon amended treatment exhibited an overall net N2 uptake, whereas the control receiving only aquaculture waste exhibited net N2 production, suggesting that carbon supplementation enhanced nitrogen fixation. The higher NH4+ efflux and N2 uptake was further supported by meta-genome predictions that indicate that organic-carbon addition stimulated DNRA over denitrification. These findings indicate that carbon addition may potentially result in greater retention of nitrogen within the system; however, longer-term trials are necessary to determine whether this nitrogen retention is translated into improved sea cucumber biomass yields. Whether this truly constitutes a remediation process is open for debate as there remains the risk that any increased nitrogen retention may be temporary, with any subsequent release potentially raising the eutrophication risk. Longer and larger-scale trials are required before this approach may be validated with the complexities of the in-system nitrogen cycle being fully understood.
Cryptic carbon and sulfur cycling between surface ocean plankton.
Durham, Bryndan P; Sharma, Shalabh; Luo, Haiwei; Smith, Christa B; Amin, Shady A; Bender, Sara J; Dearth, Stephen P; Van Mooy, Benjamin A S; Campagna, Shawn R; Kujawinski, Elizabeth B; Armbrust, E Virginia; Moran, Mary Ann
2015-01-13
About half the carbon fixed by phytoplankton in the ocean is taken up and metabolized by marine bacteria, a transfer that is mediated through the seawater dissolved organic carbon (DOC) pool. The chemical complexity of marine DOC, along with a poor understanding of which compounds form the basis of trophic interactions between bacteria and phytoplankton, have impeded efforts to identify key currencies of this carbon cycle link. Here, we used transcriptional patterns in a bacterial-diatom model system based on vitamin B12 auxotrophy as a sensitive assay for metabolite exchange between marine plankton. The most highly up-regulated genes (up to 374-fold) by a marine Roseobacter clade bacterium when cocultured with the diatom Thalassiosira pseudonana were those encoding the transport and catabolism of 2,3-dihydroxypropane-1-sulfonate (DHPS). This compound has no currently recognized role in the marine microbial food web. As the genes for DHPS catabolism have limited distribution among bacterial taxa, T. pseudonana may use this sulfonate for targeted feeding of beneficial associates. Indeed, DHPS was both a major component of the T. pseudonana cytosol and an abundant microbial metabolite in a diatom bloom in the eastern North Pacific Ocean. Moreover, transcript analysis of the North Pacific samples provided evidence of DHPS catabolism by Roseobacter populations. Other such biogeochemically important metabolites may be common in the ocean but difficult to discriminate against the complex chemical background of seawater. Bacterial transformation of this diatom-derived sulfonate represents a previously unidentified and likely sizeable link in both the marine carbon and sulfur cycles.
NASA Astrophysics Data System (ADS)
Musher, D.; Grogan, D. S.; Whiteside, J. H.
2010-12-01
A series of extreme warming events, known as hyperthermals, interrupted the equable climate conditions predominant during the early Cenozoic hothouse. In marine sediments, these hyperthermals are marked by prominent negative carbon isotope excursions, indicative of dramatic and abrupt changes in the global exogenic carbon pool, as well as carbonate dissolution horizons and benthic foraminiferal extinctions. Hyperthermals are well documented in the marine record, but it is less clear how patterns of global carbon cycling manifested in early Cenozoic terrestrial environments, although some studies have documented amplified excursions relative to that of the marine record. The lacustrine Eocene Green River Formation of Utah is an excellent system for studying the continental environmental context of global carbon cycle dynamics during this time. These sediments span a ~15 Myr time interval, including the entire Early Eocene Climatic Optimum (EECO) and the transition to the long-term Cenozoic cooling trend. To investigate the relationship between the continental carbon record and global carbon cycling, climate, and orbital forcing, we studied a detailed section from the P-4 core drilled in the Uinta Basin bracketing the famous “Mahogany Bed”, a petroliferous layer of oil shale recording a period of enhanced productivity and carbon burial near the end of the EECO. Our carbon isotope measurements of high molecular weight n-alkanes across this boundary suggest a stable global carbon cycle and climate regime persisting ~400 kyr at the terminal EECO. Frequency spectra of published oil yield and gamma ray data from this section reveal concentrated power at Milankovitch frequencies, permitting the assembly of a robust age model. In concert with radioisotopic age control, our orbital chronology allows for comparison of our carbon cycle record to early Eocene astronomical solutions. We show that the Mahogany Bed corresponds to strong minima in short and long eccentricity and a node in obliquity. We hypothesize that sustained low amplitude variability in obliquity combined with low eccentricity favored further attenuation of mild seasonal variability in an already equable continental environmental regime. These climate conditions are consistent with a highly productive lake scenario and maxima in covarying depth rank, oil yield, and total organic carbon coincident with the Mahogany Bed. Current thought posits that certain orbital configurations, including minima in short and long eccentricity, modulate the timing, and possibly the severity, of early Eocene hyperthermals identified in oceanic sediments. Our findings show that similar Milankovitch forcing elicited dramatic changes in continental carbon cycling during the early Cenozoic, possibly independently of the marine world and without the hallmark carbon isotope signature characteristic of hyperthermals. This highlights a potential difference in ecosystem sensitivity between the terrestrial and marine realm during hothouse climate regimes, as well as the need to constrain and characterize multiple modes of carbon cycle instability in early Cenozoic continental environments.
NASA Astrophysics Data System (ADS)
Li, Sijie; Ge, Peng; Zhang, Chenyang; Sun, Wei; Hou, Hongshuai; Ji, Xiaobo
2017-10-01
Na3V2(PO4)3 (NVP) is a very promising cathode material in sodium ion battery for rapidly emerging large-scale energy storage with its classical 3D NASCION structure. However, the cycling life and rate performances are restricted its low electronic conductivity. To overcome these, the double carbon-wrapped Na3V2(PO4)3 composite is firstly designed through rheological phase approach, delivering enhanced electrochemical properties. The unique double carbon layers are composed of uniform amorphous carbons as protecting framework for stabilizing the structure, as well as the graphitized carbon sheets playing the role of conductive network for better electronic conductivity. This double carbon-wrapped Na3V2(PO4)3 composite exhibits a high reversible capacity of 99.8 mAh g-1 over 500 cycles at 1 C (110 mA g-1), yielding the coulombic efficiency of ∼99.8%. Meanwhile, it displays an initial capacity of 73 mAh g-1 at 100 C and remains 55 mAh g-1 at an ultra-rate of 200 C. Even after cycling at 200 C over 12 000 cycles, the Na+-storage capacity of 40 mAh g-1 with a retention of 72.7% is still obtained, highlighting its excellent long cycling life and remarkable rate performances.
A Multiscale Approach to Modeling Carbon and Nitrogen Cycling within a High Elevation Watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Corey
This funding represents a small sub-award related the larger project titled: A Multiscale Approach to Modeling Carbon and Nitrogen Cycling within a High Elevation Watershed. The goal of the sub-award was to facilitate the characterization of carbon and radiocarbon data collected from the East River watershed outside Gothic, Colorado USA. During the period of funding from 8/1/15 until 7/31/17, we sampled 40 soil profiles and collected ~325 soil samples. This funding supported the collection, processing, and elemental analysis of each of these samples. In addition, the funding allowed for the further density separation of a subset of soil resulting inmore » 60 measurements of 13C and 14C of bulk soil and density separates. Funding also supported installation of temperature and moisture data sensors arrays, soil gas wells, and soil water lysimeters. From this infrastructure, a steady stream data including soil gas, water, and physical information have been generated to support the larger research project.« less
Juhl, Anika C; Schneider, Artur; Ufer, Boris; Brezesinski, Torsten
2016-01-01
Summary Hollow carbon spheres (HCS) with a nanoporous shell are promising for the use in lithium–sulfur batteries because of the large internal void offering space for sulfur and polysulfide storage and confinement. However, there is an ongoing discussion whether the cavity is accessible for sulfur. Yet no valid proof of cavity filling has been presented, mostly due to application of unsuitable high-vacuum methods for the analysis of sulfur distribution. Here we describe the distribution of sulfur in hollow carbon spheres by powder X-ray diffraction and Raman spectroscopy along with results from scanning electron microscopy and nitrogen physisorption. The results of these methods lead to the conclusion that the cavity is not accessible for sulfur infiltration. Nevertheless, HCS/sulfur composite cathodes with areal sulfur loadings of 2.0 mg·cm−2 were investigated electrochemically, showing stable cycling performance with specific capacities of about 500 mAh·g−1 based on the mass of sulfur over 500 cycles. PMID:27826497
Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)
NASA Technical Reports Server (NTRS)
2003-01-01
This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.
Estimates of Fossil Fuel Carbon Dioxide Emissions From Mexico at Monthly Time Intervals
NASA Astrophysics Data System (ADS)
Losey, L. M.; Andres, R. J.
2003-12-01
Human consumption of fossil fuels has greatly contributed to the rise of carbon dioxide in the Earth's atmosphere. To better understand the global carbon cycle, it is important to identify the major sources of these fossil fuels. Mexico is among the top fifteen nations in the world for producing fossil fuel carbon dioxide emissions. Based on this information and that emissions from Mexico are a focus of the North American Carbon Program, Mexico was selected for this study. Mexican monthly inland sales volumes for January 1988-May 2003 were collected on natural gas and liquid fuels from the Energy Information Agency in the United States Department of Energy. These sales figures represent a major portion of the total fossil fuel consumption in Mexico. The fraction of a particular fossil fuel consumed in a given month was determined by dividing the monthly sales volumes by the annual sum of monthly sales volumes for a given year. This fraction was then multiplied by the annual carbon dioxide values reported by the Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) to estimate the monthly carbon dioxide emissions from the respective fuels. The advantages of this methodology are: 1) monthly fluxes are consistent with the annual flux as determined by the widely-accepted CDIAC values, and 2) its general application can be easily adapted to other nations for determining their sub-annual time scale emissions. The major disadvantage of this methodology is the proxy nature inherent to it. Only a fraction of the total emissions are used as an estimate in determining the seasonal cycle. The error inherent in this approach increases as the fraction of total emissions represented by the proxy decreases. These data are part of a long-term project between researchers at the University of North Dakota and ORNL which attempts to identify and understand the source(s) of seasonal variations of global, fossil-fuel derived, carbon dioxide emissions. Better knowledge of the temporal variation of the annual fossil fuel flux will lead to a better understanding of the global carbon cycle. This research will be archived at CDIAC for public access.
OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence
NASA Astrophysics Data System (ADS)
Sun, Y.; Frankenberg, C.; Wood, J. D.; Schimel, D.; Jung, M.; Guanter, L.; Drewry, D.; Verma, M.; Porcar-Castell, A.; Griffis, T. J.; Gu, L.; Magney, T.; Köhler, P.; Evans, B. J.; Yuen, K.
2017-12-01
Quantifying gross primary production (GPP) remains a grand challenge in global carbon cycle research. Space-borne monitoring of solar-induced chlorophyll fluorescence (SIF), an integrative photosynthetic signal of molecular origin, can assist in terrestrial GPP monitoring. However, the extent to which SIF tracks spatiotemporal variations in GPP remains unresolved. OCO-2 SIF's data acquisition and fine spatial resolution permit the first direct validation against ground/airborne observations. Empirical orthogonal function analysis shows consistent spatiotemporal correspondence between OCO-2 SIF and GPP globally. A linear SIF-GPP relationship is also obtained at eddy-flux sites covering diverse biomes, setting the stage for future investigations of the robustness of such relationship across more biomes. Our findings support the central importance of high-quality satellite SIF for studying terrestrial carbon cycle dynamics.
40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...
40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...
40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...
40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...
40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...
NASA Astrophysics Data System (ADS)
Blackaby, E.; Craven, O. D.; Hockaday, W. C.; Forman, S. L.; Stinchcomb, G. E.
2017-12-01
The middle Tennessee River Valley contains both historic and prehistoric (>AD 1600) flood deposits. Stratigraphic sequences of stacked flood deposits that often bury soils provide new insights on organic matter transported and preserved prior to and after European colonization. This study focused on understanding carbon cycling within a dynamic fluvial system and quantifying the anthropogenic effect on flood processes through the analysis of molecular components of the organic matter. The data may be helpful in discerning the organic geochemical fingerprint for historic and prehistoric flood deposits. Ten samples were collected from three sites at varying depths and dated using optically stimulated luminescence (OSL). All samples underwent solid-state cross polar 13C NMR analysis at twelve kilohertz, and a molecular mixing model (MMM) was used to determine the molecular components of the organic matter present in each sample. The MMM categorized carbon molecules present in each sample in terms of carbohydrate, protein, lipid, lignin, char, or pure carbonyl. Char was the most prominent molecular component of all ten samples ranging from 28.7 to 55.9% and comprised larger percentages in prehistoric deposits. The historic deposits, while still char dominated, showed more molecular diversity with higher percentages in non-char carbon groups. The carbonyl, lipid, and carbohydrate groups are present throughout all the samples with the carbonyl ranging from 9.3 to 31.4%, the lipid from 5.5 to 16.7%, and the carbohydrate from 4.4 to 16.9%. The high amount of carbonyl throughout the samples indicates that the deposits existed in a highly oxidizing environment. Differences in the presence and amount of carbon groups between historic and prehistoric flood deposits potentially reflect diagenic alternation of organic matter through time, changes in human land use, or some combination processes. These preliminary results possibly indicate changes in carbon pools accessed with European cultivation and continued degradation of organic moieties during a ca. 400 years burial, and mostly in oxidizing conditions.
Safta, C.; Ricciuto, Daniel M.; Sargsyan, Khachik; ...
2015-07-01
In this paper we propose a probabilistic framework for an uncertainty quantification (UQ) study of a carbon cycle model and focus on the comparison between steady-state and transient simulation setups. A global sensitivity analysis (GSA) study indicates the parameters and parameter couplings that are important at different times of the year for quantities of interest (QoIs) obtained with the data assimilation linked ecosystem carbon (DALEC) model. We then employ a Bayesian approach and a statistical model error term to calibrate the parameters of DALEC using net ecosystem exchange (NEE) observations at the Harvard Forest site. The calibration results are employedmore » in the second part of the paper to assess the predictive skill of the model via posterior predictive checks.« less
NASA Astrophysics Data System (ADS)
Li, Jing; Liu, Wenlong; Xiao, Dan; Wang, Xinhui
2017-09-01
Oxygen-rich hierarchical porous carbon has been fabricated using pomelo peel fiber as a carbon source via an improved KOH activation method. The morphology and chemical composition of the obtained carbon materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), electron microscopy (EM), Raman spectra and elemental analysis. The unique porous structure with abundant oxygen functional groups is favorable to capacitive behavior, and the as-prepared carbon material exhibits high specific capacitance of 222.6 F g-1 at 0.5 A g-1 in 6 M KOH and superior stability over 5000 cycles. This work not only describes a simple way to prepare high-performance carbon material from the discarded pomelo peel, but also provides a strategy for its disposal issue and contributes to the environmental improvement.
Deconvolving the Fate of Carbon in Coastal Sediments
NASA Astrophysics Data System (ADS)
Van der Voort, Tessa S.; Mannu, Utsav; Blattmann, Thomas M.; Bao, Rui; Zhao, Meixun; Eglinton, Timothy I.
2018-05-01
Coastal oceans play a crucial role in the global carbon cycle, and are increasingly affected by anthropogenic forcing. Understanding carbon cycling in coastal environments is hindered by convoluted sources and myriad processes that vary over a range of spatial and temporal scales. In this study, we deconvolve the complex mosaic of organic carbon manifested in Chinese Marginal Sea (CMS) sediments using a novel numerical clustering algorithm based on 14C and total OC content. Results reveal five regions that encompass geographically distinct depositional settings. Complementary statistical analyses reveal contrasting region-dependent controls on carbon dynamics and composition. Overall, clustering is shown to be highly effective in demarcating areas of distinct organic facies by disentangling intertwined organic geochemical patterns resulting from superimposed effects of OC provenance, reworking and deposition on a shelf region exhibiting pronounced spatial heterogeneity. This information will aid in constraining region-specific budgets of carbon burial and carbon cycle processes.
Variation in the carbon cycle of the Sevastopol Bay (Black Sea)
NASA Astrophysics Data System (ADS)
Orekhova, N. A.; Konovalov, S. K.
2018-01-01
Continuous increase in CO2 inventory in the ocean results in dramatic changes in marine biogeochemistry, e.g. acidification. That is why temporal and spatial variabilities in atmospheric pCO2 and dissolved inorganic carbon, including CO2, pH and alkalinity in water, as well as organic and inorganic carbon in bottom sediments have to be studied together making possible to resolve the key features of the carbon cycle transformation. A 30% increase of pCO2 in the Sevastopol Bay for 2008 - 2016 evidences changes in the DIC components ratios and a significant decrease in the ability to absorb atmospheric CO2 by surface waters. High organic carbon content in the bottom sediments and predominance of organic carbon production in the biological pump at inner parts of the bay reveal ongoing transformation of the carbon cycle. This has negative consequences for recreation, social and economic potentials of the Sevastopol region.
David P. Turner; William D. Ritts; Robert E. Kennedy; Andrew N. Gray; Zhiqiang Yang
2016-01-01
Variation in climate, disturbance regime, and forest management strongly influence terrestrial carbon sources and sinks. Spatially distributed, process-based, carbon cycle simulation models provide a means to integrate information on these various influences to estimate carbon pools and flux over large domains. Here we apply the Biome-BGC model over the four-state...
Shuguang Liu; Ben Bond-Lamberty; Jeffrey A. Hicke; Rodrigo Vargas; Shuqing Zhao; Jing Chen; Steven L. Edburg; Yueming Hu; Jinxun Liu; A. David McGuire; Jingfeng Xiao; Robert Keane; Wenping Yuan; Jianwu Tang; Yiqi Luo; Christopher Potter; Jennifer Oeding
2011-01-01
Forest disturbances greatly alter the carbon cycle at various spatial and temporal scales. It is critical to understand disturbance regimes and their impacts to better quantify regional and global carbon dynamics. This review of the status and major challenges in representing the impacts of disturbances in modeling the carbon dynamics across North America revealed some...