Science.gov

Sample records for carbon deflagration model

  1. CARBON DEFLAGRATION IN TYPE Ia SUPERNOVA. I. CENTRALLY IGNITED MODELS

    SciTech Connect

    Ma, H.; Woosley, S. E.; Malone, C. M.; Almgren, A.; Bell, J.

    2013-07-01

    A leading model for Type Ia supernovae (SNe Ia) begins with a white dwarf near the Chandrasekhar mass that ignites a degenerate thermonuclear runaway close to its center and explodes. In a series of papers, we shall explore the consequences of ignition at several locations within such dwarfs. Here we assume central ignition, which has been explored before, but is worth revisiting, if only to validate those previous studies and to further elucidate the relevant physics for future work. A perturbed sphere of hot iron ash with a radius of {approx}100 km is initialized at the middle of the star. The subsequent explosion is followed in several simulations using a thickened flame model in which the flame speed is either fixed-within the range expected from turbulent combustion-or based on the local turbulent intensity. Global results, including the explosion energy and bulk nucleosynthesis (e.g., {sup 56}Ni of 0.48-0.56 M{sub Sun }) turn out to be insensitive to this speed. In all completed runs, the energy released by the nuclear burning is adequate to unbind the star, but not enough to give the energy and brightness of typical SNe Ia. As found previously, the chemical stratification observed in typical events is not reproduced. These models produce a large amount of unburned carbon and oxygen in central low velocity regions, which is inconsistent with spectroscopic observations, and the intermediate mass elements and iron group elements are strongly mixed during the explosion.

  2. PRODUCTION OF THE p-PROCESS NUCLEI IN THE CARBON-DEFLAGRATION MODEL FOR TYPE Ia SUPERNOVAE

    SciTech Connect

    Kusakabe, Motohiko; Iwamoto, Nobuyuki; Nomoto, Ken'ichi E-mail: iwamoto.nobuyuki@jaea.go.jp

    2011-01-01

    We calculate the nucleosynthesis of proton-rich isotopes in the carbon-deflagration model for Type Ia supernovae (SNe Ia). The seed abundances are obtained by calculating the s-process nucleosynthesis that is expected to occur in the repeating helium shell flashes on the carbon-oxygen (CO) white dwarf (WD) during mass accretion from a binary companion. When the deflagration wave passes through the outer layer of the CO WD, p-nuclei are produced by photodisintegration reactions on s-nuclei in a region where the peak temperature ranges from 1.9 to 3.6 x 10{sup 9} K. We confirm the sensitivity of the p-process on the initial distribution of s-nuclei. We show that the initial C/O ratio in the WD does not affect much the yield of p-nuclei. On the other hand, the abundance of {sup 22}Ne left after s-processing has a large influence on the p-process via the {sup 22}Ne({alpha},n) reaction. We find that about 50% of p-nuclides are co-produced when normalized to their solar abundances in all adopted cases of seed distribution. Mo and Ru, which are largely underproduced in Type II supernovae (SNe II), are produced more than in SNe II although they are underproduced with respect to the yield levels of other p-nuclides. The ratios between p-nuclei and iron in the ejecta are larger than the solar ratios by a factor of 1.2. We also compare the yields of oxygen, iron, and p-nuclides in SNe Ia and SNe II and suggest that SNe Ia could make a larger contribution than SNe II to the solar system content of p-nuclei.

  3. The p-Process in the Carbon Deflagration Model for Type Ia Supernovae and Chronology of the Solar System Formation

    SciTech Connect

    Kusakabe, Motohiko; Iwamoto, Nobuyuki; Nomoto, Ken'ichi

    2006-07-12

    We study nucleosynthesis of p-nuclei in the carbon deflagration model for Type Ia supernovae (SNe Ia) by assuming that seed nuclei are produced by the s-process in accreting layers on a carbon-oxygen white dwarf during mass accretion from a binary companion. We find that about 50 % of the p-nuclides are synthesized in proportion to the solar abundance and that p-isotopes of Mo and Ru which are significantly underproduced in Type II supernovae (SNe II) are produced up to a level close to other p-nuclei. Comparing the yields of iron and p-nuclei in SNe Ia we find that SNe Ia can contribute to the galactic evolution of the p-nuclei. Next, we consider nucleochronology of the solar system formation by using four radioactive nuclides and apply the result of the p-process nucleosynthesis to simple galactic chemical evolution models. We find that when assumed three phases of interstellar medium are mixed by the interdiffusion with the timescale of about 40 Myr 53Mn/55Mn value in the early solar system is consistent with a meteoritic value. In addition, we put constraints to a scenario that SNe Ia induce the core collapse of the molecular cloud, which leads to the formation of the solar system.

  4. Detonating Failed Deflagration Model of Thermonuclear Supernovae. I. Explosion Dynamics

    NASA Astrophysics Data System (ADS)

    Plewa, Tomasz

    2007-03-01

    We present a detonating failed deflagration model of Type Ia supernovae. In this model, the thermonuclear explosion of a massive white dwarf follows an off-center deflagration. We conduct a survey of asymmetric ignition configurations initiated at various distances from the stellar center. In all cases studied, we find that only a small amount of stellar fuel is consumed during deflagration phase, no explosion is obtained, and the released energy is mostly wasted on expanding the progenitor. Products of the failed deflagration quickly reach the stellar surface, polluting and strongly disturbing it. These disturbances eventually evolve into small and isolated shock-dominated regions that are rich in fuel. We consider these regions as seeds capable of forming self-sustained detonations that, ultimately, result in the thermonuclear supernova explosion. Preliminary nucleosynthesis results indicate that the model supernova ejecta are typically composed of about 0.1-0.25 Msolar of silicon group elements and 0.9-1.2 Msolar of iron group elements and are essentially carbon-free. The ejecta have a composite morphology, are chemically stratified, and display a modest amount of intrinsic asymmetry. The innermost layers are slightly egg shaped with the axis ratio ~1.2-1.3 and dominated by the products of silicon burning. This central region is surrounded by a shell of silicon group elements. The outermost layers of ejecta are highly inhomogeneous and contain products of incomplete oxygen burning with only small admixture of unburned stellar material. The explosion energies are ~(1.3-1.5)×1051 ergs.

  5. Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Fink, Michael; Kromer, Markus; Seitenzahl, Ivo R.; Ciaraldi-Schoolmann, Franco; Röpke, Friedrich K.; Sim, Stuart A.; Pakmor, Rüdiger; Ruiter, Ashley J.; Hillebrandt, Wolfgang

    2014-02-01

    We investigate whether pure deflagration models of Chandrasekhar-mass carbon-oxygen white dwarf stars can account for one or more subclass of the observed population of Type Ia supernova (SN Ia) explosions. We compute a set of 3D full-star hydrodynamic explosion models, in which the deflagration strength is parametrized using the multispot ignition approach. For each model, we calculate detailed nucleosynthesis yields in a post-processing step with a 384 nuclide nuclear network. We also compute synthetic observables with our 3D Monte Carlo radiative transfer code for comparison with observations. For weak and intermediate deflagration strengths (energy release Enuc ≲ 1.1 × 1051 erg), we find that the explosion leaves behind a bound remnant enriched with 3 to 10 per cent (by mass) of deflagration ashes. However, we do not obtain the large kick velocities recently reported in the literature. We find that weak deflagrations with Enuc ˜ 0.5 × 1051 erg fit well both the light curves and spectra of 2002cx-like SNe Ia, and models with even lower explosion energies could explain some of the fainter members of this subclass. By comparing our synthetic observables with the properties of SNe Ia, we can exclude the brightest, most vigorously ignited models as candidates for any observed class of SN Ia: their B - V colours deviate significantly from both normal and 2002cx-like SNe Ia and they are too bright to be candidates for other subclasses.

  6. X-ray emission from the remnant of a carbon deflagration supernova - SN 1572 (Tycho)

    SciTech Connect

    Itoh, H.; Masai, K.; Nomoto, K.

    1988-11-01

    A spherically symmetric hydrodynamic code is used to study the evolution of a young supernova remnant on the basis of a carbon deflagration model for type Ia supernovae. The nonequilibrium X-ray emission has been determined for the elemental composition of the model. The discrepancy between the derived intensity of the Fe D-alpha line blend and the observed value is eliminated by assuming that the stratification of the elemental composition in the supernova ejecta is partially removed by mixing. 59 references.

  7. Properties of Deflagration Fronts and Models for Type IA Supernovae

    NASA Astrophysics Data System (ADS)

    Domínguez, I.; Höflich, P.

    2000-01-01

    Detailed models of the explosion of a white dwarf that include self-consistent calculations of the light curve and spectra provide a link between observational quantities and the underlying explosion model. These calculations assume spherical geometry and are based on parameterized descriptions of the burning front. Recently, the first multidimensional calculations for nuclear burning fronts have been performed. Although a fully consistent treatment of the burning fronts is beyond the current state of the art, these calculations provide a new and better understanding of the physics. Several new descriptions for flame propagation have been proposed by Khokhlov et al. and Niemeyer et al. Using various descriptions for the propagation of a nuclear deflagration front, we have studied the influence on the results of previous analyses of Type Ia supernovae, namely, the nucleosynthesis and structure of the expanding envelope. Our calculations are based on a set of delayed detonation models with parameters that give a good account of the optical and infrared light curves and of the spectral evolution. In this scenario, the burning front first propagates in a deflagration mode and subsequently turns into a detonation. The explosions and light curves are calculated using a one-dimensional Lagrangian radiation-hydro code including a detailed nuclear network. We find that the results of the explosion are rather insensitive to details of the description of the deflagration front, even if its speed and the time from the transition to detonation differ almost by a factor of 2. For a given white dwarf (WD) and a fixed transition density, the total production of elements changes by less than 10%, and the distribution in the velocity space changes by less than 7%. Qualitatively, this insensitivity of the final outcome of the explosion to the details of the flame propagation during the (slow) deflagration phase can be understood as follows: for plausible variations in the speed of

  8. Engineering models of deflagration-to-detonation transition

    SciTech Connect

    Bdzil, J.B.; Son, S.F.

    1995-07-01

    For the past two years, Los Alamos has supported research into the deflagration-to-detonation transition (DDT) in damaged energetic materials as part of the explosives safety program. This program supported both a theory/modeling group and an experimentation group. The goal of the theory/modeling group was to examine the various modeling structures (one-phase models, two-phase models, etc.) and select from these a structure suitable to model accidental initiation of detonation in damaged explosives. The experimental data on low-velocity piston supported DDT in granular explosive was to serve as a test bed to help in the selection process. Three theoretical models have been examined in the course of this study: (1) the Baer-Nunziato (BN) model, (2) the Stewart-Prasad-Asay (SPA) model and (3) the Bdzil-Kapila-Stewart model. Here we describe these models, discuss their properties, and compare their features.

  9. Observations and Modeling of the Component Mechanisms in Deflagration

    NASA Astrophysics Data System (ADS)

    Smilowitz, Laura; Henson, Bryan; Oschwald, David; Novak, Alan; Holmes, Matthew

    2013-06-01

    We have used dynamic x-ray and proton radiography to observe the behavior of a series of HMX based energetic materials formulations undergoing thermal explosions. The result of these observations is a mechanism for deflagration based on both gas phase convective burning and solid phase conductive burning. The velocities for both the convective and conductive burns are tied together by the single combustion pressure driving both in a single experiment. The convective rate is directly measured as the burn front in the radiographs. The pressure associated with that rate is inferred from independently measured burn rate verses pressure data. This same pressure is then assumed to drive the conductive burning which begins as the convective burn front lights the material surface. Using a single, independently validated particle size distribution for damaged HMX, the combination of pressure driven convective lighting and conductive consumption is then calculated and compared to the measured transmission data sets. This same model with different initial pressurizations is used to successfully model deflagration in PBX9501, PBXN-9, and LX-07. In addition, a correlation between initial pressurization, convective/conductive velocity, and final ``reaction violence'' is observed. This leads us to the use of convective velocity as a metric for final energy release rate and therefore overall reaction violence.

  10. Modelling propagation of deflagration waves out of hot spots

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2015-06-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives come about by a two-step process known as ignition and growth. In the first step a shock sweeping an explosive cell (control volume) creates hot spots that become ignition sites. In the second step deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in a cell depends on the speed of those deflagration waves and on the average distance between neighbouring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration wave depends on both pressure and temperature, where pressure dependence is dominant at low shock level, and temperature dependence is dominant at a higher shock level. From the simulation we obtain deflagration (or burn) fronts emanating out of the hot spots. For intermediate shock levels the deflagration waves consume the explosive between hot spots. For higher shock levels the deflagration waves strengthen to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds and show how they depend on reaction rate and on other material parameters.

  11. Numerical modeling of deflagration mode in coaxial plasma guns

    NASA Astrophysics Data System (ADS)

    Sitaraman, Hariswaran; Raja, Laxminarayan

    2012-10-01

    Pulsed coaxial plasma guns have been used in several applications in the field of space propulsion, nuclear fusion and materials processing. These devices operate in two modes based on the delay between gas injection and breakdown initiation. Larger delay led to the plasma detonation mode where a compression wave in the form of a luminous front propagates from the breech to the muzzle. Shorter delay led to the more efficient deflagration mode characterized by a relatively diffuse plasma with higher resistivity. The overall physics of the discharge in the two modes of operation and in particular the latter remain relatively unexplored. Here we perform a computational modeling study by solving the non-ideal Magneto-hydrodynamics equations for the quasi-neutral plasma in the coaxial plasma gun. A finite volume formulation on an unstructured mesh framework with an implicit scheme is used to do stable computations. The final work will present details of important species in the plasma, particle energies and Mach number at the muzzle. A comparison of the plasma parameters will be made with the experiments reported in ref. [1]. [4pt] [1] F. R. Poehlmann et al., Phys. Plasmas 17, 123508 (2010)

  12. Modeling and computation of deflagration-to-detonation transition in reactive granular materials

    SciTech Connect

    Baer, M.R.; Benner, R.E.; Gross, R.J.; Nunziato, J.W.

    1985-01-01

    In this paper, we present a multiphase flow model of the combustion of a gas-permeable reactive granular material. In particular, we focus on a model of the physical-chemical processes associated with the transition from deflagration to detonation in granular explosives and propellants. Two numerical strategies are discussed that are aimed toward multidimensional computations. Comparison of our results with experimental data for the explosives CP and HMX suggests that a thermodynamically consistent model can describe the flame spread processes associated with convective burning, compressive deflagration, and detonation.

  13. Mesoscale Modeling of Deflagration-Induced Deconsolidation in Polymer-Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Springer, H. Keo; Reaugh, J. E.; Glascoe, E. A.; Kercher, J. R.; Friedman, G.

    2011-06-01

    Initially intact polymer-bonded explosives can transition from conductive burning to more violent convective burning via rapid deconsolidation at higher pressures. The pressure-dependent infiltration of cracks and pores, i.e., damage, by product gases at the burn-front is a key step in the transition to convective burning. However, the relative influence of pre-existing damage and deflagration-induced damage on the transition to convective burning is not well understood. The objective of this study is to investigate the role of explosive constituent properties, microstructure, and deflagration velocity on deconsolidation. We performed simulations using the multi-physics hydrocode, ALE3D. HMX was used as the model energetic grain. We used a JWL form for the unreacted and reacted equation-of-state of the HMX. Simplified strength and failure models were used for the HMX and the binder. The propensity for deconsolidation increased with increasing grain volume fraction, increasing porosity, decreasing binder strength, and increasing deflagration velocity. These studies are important because they enable the development of deflagration-induced damage models, as well as the design of inherently safer explosives. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. This work was funded by the Joint DoD/DOE Munitions Technology Development Program.

  14. Deflagrations and detonations in thermonuclear supernovae.

    PubMed

    Gamezo, Vadim N; Khokhlov, Alexei M; Oran, Elaine S

    2004-05-28

    We study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast with the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate-mass elements in central parts of a white dwarf. This removes the key disagreement between simulations and observations, and makes a delayed detonation the mostly likely mechanism for type Ia supernovae. PMID:15245271

  15. Deflagrations and detonations in thermonuclear supernovae.

    PubMed

    Gamezo, Vadim N; Khokhlov, Alexei M; Oran, Elaine S

    2004-05-28

    We study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast with the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate-mass elements in central parts of a white dwarf. This removes the key disagreement between simulations and observations, and makes a delayed detonation the mostly likely mechanism for type Ia supernovae.

  16. Nitramine flame chemistry and deflagration interpreted in terms of a flame model

    SciTech Connect

    Ben-Reuven, M.; Caveny, L.H.

    1981-10-01

    The diversity of chemical kinetic time scales associated with nitramine decomposition has led to incorporation of two simultaneous overall reactions in the vapor phase mode of deflagration. This allowed derivation of an asymptotic burning rate formula, showing variable pressure dependence. The comprehensive model considers a reacting melt layer, coupled to the gas field through conservation conditions satisfied by all chemical species and enthalpy, and is solved numerically. The structure of the deflagration wave near the propellant surface is obtained, along with the overall pressure dependence of the surface temperature and the flame speed eigenvalue, comparing RDX and HMX. A mechanism of coupling between secondary reactions and heat feedback to the surface is proposed, and a quantitative measure of the effect of condensed phase exothermicity on burning rate is demonstrated.

  17. TURBULENCE IN A THREE-DIMENSIONAL DEFLAGRATION MODEL FOR TYPE Ia SUPERNOVAE. II. INTERMITTENCY AND THE DEFLAGRATION-TO-DETONATION TRANSITION PROBABILITY

    SciTech Connect

    Schmidt, W.; Niemeyer, J. C.; Ciaraldi-Schoolmann, F.; Roepke, F. K.; Hillebrandt, W.

    2010-02-20

    The delayed detonation model describes the observational properties of the majority of Type Ia supernovae very well. Using numerical data from a three-dimensional deflagration model for Type Ia supernovae, the intermittency of the turbulent velocity field and its implications on the probability of a deflagration-to-detonation (DDT) transition are investigated. From structure functions of the turbulent velocity fluctuations, we determine intermittency parameters based on the log-normal and the log-Poisson models. The bulk of turbulence in the ash regions appears to be less intermittent than predicted by the standard log-normal model and the She-Leveque model. On the other hand, the analysis of the turbulent velocity fluctuations in the vicinity of the flame front by Roepke suggests a much higher probability of large velocity fluctuations on the grid scale in comparison to the log-normal intermittency model. Following Pan et al., we computed probability density functions for a DDT for the different distributions. The determination of the total number of regions at the flame surface, in which DDTs can be triggered, enables us to estimate the total number of events. Assuming that a DDT can occur in the stirred flame regime, as proposed by Woosley et al., the log-normal model would imply a delayed detonation between 0.7 and 0.8 s after the beginning of the deflagration phase for the multi-spot ignition scenario used in the simulation. However, the probability drops to virtually zero if a DDT is further constrained by the requirement that the turbulent velocity fluctuations reach about 500 km s{sup -1}. Under this condition, delayed detonations are only possible if the distribution of the velocity fluctuations is not log-normal. From our calculations follows that the distribution obtained by Roepke allow for multiple DDTs around 0.8 s after ignition at a transition density close to 1 x 10{sup 7} g cm{sup -3}.

  18. Deflagration Wave Profiles

    SciTech Connect

    Menikoff, Ralph

    2012-04-03

    Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.

  19. The piston-flow interaction as a model for the deflagration-to-detonation transition

    SciTech Connect

    Brailovsky, Irina; Kagan, Leonid; Sivashinsky, Gregory

    2011-01-15

    The piston-flow interaction induced by a piston pushing hydraulically resisted gas through a long tube is discussed. It is shown that the hydraulic resistance causes a significant precompression and preheating of the gas adjacent to the piston's edge. In the case of an explosive premixture this development may lead to a localized autoignition triggering detonation. It is suggested that the problem may serve as a guide for understanding the deflagration-to-detonation transition in tubes, with the piston modeling the impact of the advancing flame. (author)

  20. TURBULENCE IN A THREE-DIMENSIONAL DEFLAGRATION MODEL FOR TYPE Ia SUPERNOVAE. I. SCALING PROPERTIES

    SciTech Connect

    Ciaraldi-Schoolmann, F.; Schmidt, W.; Niemeyer, J. C.; Roepke, F. K.; Hillebrandt, W.

    2009-05-10

    We analyze the statistical properties of the turbulent velocity field in the deflagration model for Type Ia supernovae. In particular, we consider the question of whether turbulence is isotropic and consistent with the Kolmogorov theory at small length scales. Using numerical data from a high-resolution simulation of a thermonuclear supernova explosion, spectra of the turbulence energy and velocity structure functions are computed. We show that the turbulent velocity field is isotropic at small length scales and follows a scaling law that is consistent with the Kolmogorov theory until most of the nuclear fuel is burned. At length scales greater than a certain characteristic scale that agrees with the prediction of Niemeyer and Woosley, turbulence becomes anisotropic. Here, the radial velocity fluctuations follow the scaling law of the Rayleigh-Taylor instability, whereas the angular component still obeys the Kolmogorov scaling. In the late phase of the explosion, this characteristic scale drops below the numerical resolution of the simulation. The analysis confirms that a subgrid-scale model for the unresolved turbulence energy is required for the consistent calculation of the flame speed in deflagration models of Type Ia supernovae, and that the assumption of isotropy on these scales is appropriate.

  1. Benchmarking Of Improved DPAC Transient Deflagration Analysis Code

    SciTech Connect

    Laurinat, James E.; Hensel, Steve J.

    2013-03-21

    The transient deflagration code DPAC (Deflagration Pressure Analysis Code) has been upgraded for use in modeling hydrogen deflagration transients. The upgraded code is benchmarked using data from vented hydrogen deflagration tests conducted at the HYDRO-SC Test Facility at the University of Pisa. DPAC originally was written to calculate peak deflagration pressures for deflagrations in radioactive waste storage tanks and process facilities at the Savannah River Site. Upgrades include the addition of a laminar flame speed correlation for hydrogen deflagrations and a mechanistic model for turbulent flame propagation, incorporation of inertial effects during venting, and inclusion of the effect of water vapor condensation on vessel walls. In addition, DPAC has been coupled with CEA, a NASA combustion chemistry code. The deflagration tests are modeled as end-to-end deflagrations. The improved DPAC code successfully predicts both the peak pressures during the deflagration tests and the times at which the pressure peaks.

  2. Modeling 1-D deflagration to detonation transition (DDT) in porous explosive

    SciTech Connect

    Weston, A.M.; Lee, E.L.

    1985-04-04

    A one-dimensional Lagrange hydrodynamic computer model is presented that describes gas flow, compaction, ignition, and deflagration processes in deformable porous beds. The model makes use of a consumable finite element cell that allows gas to flow through a compacting matrix. The model can be regarded as structural in the sense that the initial cell dimension is directly related to mean particle size. Experimental investigation of the DDT phenomenon are typically carried out using long thick-walled tubes filled with a granular porous bed of reactive material. In this configuration, much of the process can be described by flow in one dimension. We present calculations that simulate both squib initiated and piston initiated experiments on porous HMX to point out various observed features. Our purpose is to establish a basis for setting bounds on the physical parameters that describe such transient reaction processes. 16 refs., 17 figs., 1 tab.

  3. Experiments on hydrogen deflagration

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Iwabuchi, H.; Groethe, M.; Merilo, E.; Chiba, S.

    Deflagrations of hydrogen mixed with air have been studied in an open space and inside a shock tube to provide fundamental data needed for safety evaluations and validation of computer models. The open space tests were performed in 5.2- and 37-m 3 rectangular tents and in a 300-m 3 hemispherical tent that were filled with quiescent, homogenous mixtures ranging from 15 to 57% hydrogen by volume. The mixture was contained by a very thin plastic membrane that was cut just prior to igniting the mixture with a spark at the bottom center to prevent confinement of the mass flow. The information collected included flame front propagation monitored with ionization probes, the pressure-time histories of the resulting blast, and radiated heat obtained from thermal flux sensors. In these experiments the following results were obtained. (i) Deflagration of 30% hydrogen generated a much higher overpressure than deflagration of 9.5% natural gas. (ii) The flame propagation velocity and generated pressure were remarkably influenced by the hydrogen concentration. (iii) Turbulence caused by obstacles within the gas mixture and increasing the gas mixture volume increased the speed of the flame propagation and the overpressure. (iv) The combustion inside a tube also showed a high-speed deflagration. These results are useful to re-examine the existing codes and standards.

  4. Steady deflagration of HMX with simple kinetics: A gas phase chain reaction model

    SciTech Connect

    Ward, M.J.; Brewster, M.Q.; Son, S.F.

    1998-08-01

    A new approach is presented for modeling steady combustion of energetic solids, in particular HMX. A simplified, global, gas phase chain reaction kinetic mechanism is employed. Specifically, a zero-order, high activation energy thermal decomposition initiation reaction in the condensed phase followed by a second-order, low activation energy chain reaction in the gas phase is assumed. A closed-form solution is obtained, which is based on the activation energy asymptotics analysis of Lengelle in the condensed phase and the assumption of zero activation energy in the gas phase. Comparisons between the model and a variety of experimental observations over a wide range of pressures and initial temperatures are presented and demonstrate the validity of the approach. The model provides excellent agreement with burning rate data (including sensitivity to pressure and initial temperature) and temperature profile data (in particular the gas phase). This suggests that in the realm of simplified, approximate kinetics modeling of energetic solids, the low gas phase activation energy limit is a more appropriate model than the classical high activation energy limit or heuristic flame sheet models. The model also indicates that the condensed phase reaction zone plays an important role in determining the deflagration rate of HMX, underscoring the need for better understanding of the chemistry in this zone.

  5. Mesoscale modeling of deflagration-induced deconsolidation in polymer-bonded explosives

    NASA Astrophysics Data System (ADS)

    Springer, Harry Keo; Glascoe, Elizabeth A.; Reaugh, John E.; Kercher, James; Maienschein, Jon L.

    2012-03-01

    Initially undamaged polymer-bonded explosives can transition from conductive burning to more violent convective burning via rapid deconsolidation at higher pressures. The pressure-dependent infiltration of cracks and pores, i.e., damage, by product gases at the burn-front is a key step in the transition to convective burning. However, the relative influence of pre-existing damage and the evolution of deflagration-induced damage during the transition to convective burning is not well understood. The objective of this study is to investigate the role of microstructure and initial pressurization on deconsolidation. We performed simulations using the multi-physics hydrocode, ALE3D. HMX-Viton A served as our model explosive. A Prout-Tompkins chemical kinetic model, Vielle's Law pressure-dependent burning, Gruneisen equation-of-state, and simplified strength model were used for the HMX. The propensity for deconsolidation increased with increasing defect size and decreasing initial pressurization, as measured by the increase in burning surface area. These studies are important because they enable the development of continuum-scale damage models and the design of inherently safer explosives.

  6. MESOSCALE MODELING OF DEFLAGRATION-INDUCED DECONSOLIDATION IN POLYMER-BONDED EXPLOSIVES

    SciTech Connect

    Springer, H K; Glascoe, E A; Reaugh, J E; Kercher, J R; Maienschein, J L

    2011-08-01

    Initially undamaged polymer-bonded explosives can transition from conductive burning to more violent convective burning via rapid deconsolidation at higher pressures. The pressure-dependent infiltration of cracks and pores, i.e., damage, by product gases at the burn-front is a key step in the transition to convective burning. However, the relative influence of pre-existing damage and the evolution of deflagration-induced damage during the transition to convective burning is not well understood. The objective of this study is to investigate the role of microstructure and initial pressurization on deconsolidation. We performed simulations using the multi-physics hydrocode, ALE3D. HMX-Viton A served as our model explosive. A Prout-Tompkins chemical kinetic model, Vielle's Law pressure-dependent burning, Gruneisen equation-of-state, and simplified strength model were used for the HMX. The propensity for deconsolidation increased with increasing defect size and decreasing initial pressurization, as measured by the increase in burning surface area. These studies are important because they enable the development of continuum-scale damage models and the design of inherently safer explosives.

  7. The Deflagration Stage of Chandrasekhar Mass Models for Type Ia Supernovae. I. Early Evolution

    NASA Astrophysics Data System (ADS)

    Malone, C. M.; Nonaka, A.; Woosley, S. E.; Almgren, A. S.; Bell, J. B.; Dong, S.; Zingale, M.

    2014-02-01

    We present high-resolution, full-star simulations of the post-ignition phase of Type Ia supernovae using the compressible hydrodynamics code Castro. Initial conditions, including the turbulent velocity field and ignition site, are imported directly from a simulation of the last few hours of presupernova convection using a low Mach number code, Maestro. Adaptive mesh refinement allows the initial burning front to be modeled with an effective resolution of 36,8643 zones (136 m zone-1). The initial rise and expansion of the deflagration front are tracked until burning reaches the star's edge and the role of the background turbulence on the flame is investigated. The effect of artificially moving the ignition location closer to the star's center is explored. The degree to which turbulence affects the burning front decreases with increasing ignition radius since the buoyancy force is stronger at larger radii. Even central ignition—in the presence of a background convective flow field—is rapidly carried off-center as the flame is carried by the flow field. We compare our results to analytic models for burning thermals, and find that they reproduce the general trends of the bubble's size and mass, but underpredict the amount of buoyant acceleration due to simplifying assumptions of the bubble's properties. Overall, we find that the amount of mass that burns prior to flame break out is small, consistent with a "gravitationally confined detonation" occurring at a later epoch, but additional burning will occur following breakout that may modify this conclusion.

  8. Observation and modeling of deflagration-to-detonation (DDT) transition in low-density HMX

    NASA Astrophysics Data System (ADS)

    Tringe, Joseph; Vandersall, Kevin; Reaugh, Jack; Levie, Harold; Henson, Bryan; Smilowitz, Laura; Parker, Gary

    2015-06-01

    We employ simultaneous flash x-ray radiography and streak imaging, together with a multi-phase finite element model, to understand deflagration-to-detonation transition (DDT) phenomena in low-density (~ 1.2 gm/cm3) powder of the explosive cyclotetramethylene-tetranitramine (HMX). HMX powder was lightly hand-tamped in a 12.7 mm diameter column, relatively lightly-confined in an optically-transparent polycarbonate cylinder with wall thickness 25.4 mm. We observe apparent compaction of the powder in advance of the detonation transition, both by x-ray contrast and by the motion of small steel spheres pre-emplaced throughout the length of explosive. High-speed imaging along the explosive cylinder length provides a temporally continuous record of the transition that is correlated with the high-resolution x-ray image record. Preliminary simulation of these experiments with the HERMES model implemented in the ALE3D code enables improved understanding of the explosive particle burning, compaction and detonation phenomena which are implied by the observed reaction rate and transition location within the cylinder. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. The delayed-detonation model of a type Ia supernovae. 1: The deflagration phase

    NASA Technical Reports Server (NTRS)

    Arnett, David; Livne, Eli

    1994-01-01

    The nature of the 'delayed detonation' mechanism of Khokhlov for the explosion of Type Ia supernovae is investigated by using two-dimensional numerical hydrodynamics simulations. A new algorithm is used to treat the deflagration front. Assuming that it propagates locally at the laminar flame speed, the deflagration is insufficient to unbind the star. Expansion shuts of the flame; much of this small production of iron group nuclei occurs at lower densities, which reduces the electron-capture problem. The burning front does become wrinkled, but the wavelength of the instability is much larger than the computational grid size and is resolved; this is consistent with previous analysis. Because the degenerate star has an adiabatic exponent only slightly above 4/3, the energy released by deflagration drives a pulsation of large amplitude. During the first expansion phase, adiabatic cooling shuts off the burning, and a Rayleigh-Taylor instability then gives mixing of high-entropy ashes with low-entropy fuel. During the first contraction phase, compressional heating reignites the material. This paper deals with the deflagration phase, from the onset of burning, through expansion and quenching of the flame, to the first contraction.

  10. Three-dimensional Simulations of Pure Deflagration Models for Thermonuclear Supernovae

    NASA Astrophysics Data System (ADS)

    Long, Min; Jordan, George C., IV; van Rossum, Daniel R.; Diemer, Benedikt; Graziani, Carlo; Kessler, Richard; Meyer, Bradley; Rich, Paul; Lamb, Don Q.

    2014-07-01

    We present a systematic study of the pure deflagration model of Type Ia supernovae (SNe Ia) using three-dimensional, high-resolution, full-star hydrodynamical simulations, nucleosynthetic yields calculated using Lagrangian tracer particles, and light curves calculated using radiation transport. We evaluate the simulations by comparing their predicted light curves with many observed SNe Ia using the SALT2 data-driven model and find that the simulations may correspond to under-luminous SNe Iax. We explore the effects of the initial conditions on our results by varying the number of randomly selected ignition points from 63 to 3500, and the radius of the centered sphere they are confined in from 128 to 384 km. We find that the rate of nuclear burning depends on the number of ignition points at early times, the density of ignition points at intermediate times, and the radius of the confining sphere at late times. The results depend primarily on the number of ignition points, but we do not expect this to be the case in general. The simulations with few ignition points release more nuclear energy E nuc, have larger kinetic energies E K, and produce more 56Ni than those with many ignition points, and differ in the distribution of 56Ni, Si, and C/O in the ejecta. For these reasons, the simulations with few ignition points exhibit higher peak B-band absolute magnitudes M B and light curves that rise and decline more quickly; their M B and light curves resemble those of under-luminous SNe Iax, while those for simulations with many ignition points are not.

  11. Three-dimensional simulations of pure deflagration models for thermonuclear supernovae

    SciTech Connect

    Long, Min; Jordan, George C. IV; Van Rossum, Daniel R.; Diemer, Benedikt; Graziani, Carlo; Kessler, Richard; Rich, Paul; Lamb, Don Q.; Meyer, Bradley

    2014-07-10

    We present a systematic study of the pure deflagration model of Type Ia supernovae (SNe Ia) using three-dimensional, high-resolution, full-star hydrodynamical simulations, nucleosynthetic yields calculated using Lagrangian tracer particles, and light curves calculated using radiation transport. We evaluate the simulations by comparing their predicted light curves with many observed SNe Ia using the SALT2 data-driven model and find that the simulations may correspond to under-luminous SNe Iax. We explore the effects of the initial conditions on our results by varying the number of randomly selected ignition points from 63 to 3500, and the radius of the centered sphere they are confined in from 128 to 384 km. We find that the rate of nuclear burning depends on the number of ignition points at early times, the density of ignition points at intermediate times, and the radius of the confining sphere at late times. The results depend primarily on the number of ignition points, but we do not expect this to be the case in general. The simulations with few ignition points release more nuclear energy E{sub nuc}, have larger kinetic energies E{sub K}, and produce more {sup 56}Ni than those with many ignition points, and differ in the distribution of {sup 56}Ni, Si, and C/O in the ejecta. For these reasons, the simulations with few ignition points exhibit higher peak B-band absolute magnitudes M{sub B} and light curves that rise and decline more quickly; their M{sub B} and light curves resemble those of under-luminous SNe Iax, while those for simulations with many ignition points are not.

  12. The deflagration stage of Chandrasekhar mass models for type Ia supernovae. I. Early evolution

    SciTech Connect

    Malone, C. M.; Woosley, S. E.; Dong, S.; Nonaka, A.; Almgren, A. S.; Bell, J. B.; Zingale, M.

    2014-02-10

    We present high-resolution, full-star simulations of the post-ignition phase of Type Ia supernovae using the compressible hydrodynamics code Castro. Initial conditions, including the turbulent velocity field and ignition site, are imported directly from a simulation of the last few hours of presupernova convection using a low Mach number code, Maestro. Adaptive mesh refinement allows the initial burning front to be modeled with an effective resolution of 36,864{sup 3} zones (136 m zone{sup –1}). The initial rise and expansion of the deflagration front are tracked until burning reaches the star's edge and the role of the background turbulence on the flame is investigated. The effect of artificially moving the ignition location closer to the star's center is explored. The degree to which turbulence affects the burning front decreases with increasing ignition radius since the buoyancy force is stronger at larger radii. Even central ignition—in the presence of a background convective flow field—is rapidly carried off-center as the flame is carried by the flow field. We compare our results to analytic models for burning thermals, and find that they reproduce the general trends of the bubble's size and mass, but underpredict the amount of buoyant acceleration due to simplifying assumptions of the bubble's properties. Overall, we find that the amount of mass that burns prior to flame break out is small, consistent with a gravitationally confined detonation' occurring at a later epoch, but additional burning will occur following breakout that may modify this conclusion.

  13. Deflagration plasma thruster

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.; Chang, C. N.

    1984-01-01

    This paper introduces the application of the magnetized plasma deflagration process to space propulsion. The deflagration process has the unique capability of efficiently converting input energy into kinetic energy in the accelerating direction. To illustrate the totally divergent characters of 'snowplow' detonation and deflagration discharges, examples of the differences between deflagration and detonation 'snowplow' discharges are expressed in terms of current densities, temperature, and particle velocities. Magnetic field profiles of the deflagration mode of discharges are measured. Typical attainable plasma characteristics are described in terms of velocity, electron temperature, and density, as well as measurement techniques. Specific impulses measured by piezo-electric probe and pendulum methods are presented. The influence of the transmission line in the discharge circuits on plasma velocity is measured by means of a microwave time-of-flight method. The results for the deflagration thruster are compared with other space thrusters. Further research areas are identified.

  14. A High-Resolution Numerical Method for a Two-Phase Model of Deflagration-to-Detonation Transition

    NASA Astrophysics Data System (ADS)

    Gonthier, Keith A.; Powers, Joseph M.

    2000-09-01

    A conservative, upwind numerical method is formulated for the solution of a two-phase (reactive solid and inert gas) model of deflagration-to-detonation transition (DDT) in granular energetic solids. The model, which is representative of most two-phase DDT models, accounts for complete nonequilibrium between phases and constitutes a nonstrictly hyperbolic system of equations having parabolic degeneracies. The numerical method is based on Godunov's methodology and utilizes a new approximate solution for the two-phase Riemann problem for arbitrary equations of state. The approximate solution is similar to the Roe-type Riemann solution for single-phase systems. The method is able to accurately capture strong shocks associated with each phase without excessive smearing or spurious oscillations and can accurately resolve fine-scale detonation structure resulting from interaction between phases. The utility of the method is demonstrated by comparing numerical predictions with known solutions for three test cases: (1) a two-phase shock tube problem; (2) the evolution of a steady compaction wave in a granular material resulting from weak piston impact (∼100 m/s); and (3) the evolution of a steady two-phase detonation wave in an energetic granular material resulting from weak piston impact. The nominally second-order accurate numerical method is shown to have global convergence rates of 1.001 and 1.670 for inert test cases with (case 1) and without (case 2) discontinuities, respectively. For the reactive test case having a discontinuity (case 3), a convergence rate of 1.834 was predicted for coarse grids that seemed to be approaching the expected value of unity with increasing resolution.

  15. Experiments on Magnetic Deflagration

    NASA Astrophysics Data System (ADS)

    Tejada, Javier

    2011-03-01

    Magnetic deflagration was first observed in molecular magnets [1,2] and then in glassy magnetic materials like manganites [3,4] and intermetallic systems like Gd 5 Ge 4. The role of the chemical energy is played by the magnetic energy of the material. In the case of a molecular magnet, this is Zeeman energy, while in manganites and Gd 5 Ge 4 the free energy is a combination of the Zeeman energy and the energy of the metastable magnetic phase. In molecular magnets both the ignition process and the speed of the flame are assisted by quantum spin reversal. There also exists some evidence of the transition from deflagration to detonation. Various experimental techniques have been used to detect the speed of the magnetic flame. They include SQUID magnetometry, Hall bars and coils. Magnetic deflagration has been ignited by local heating, application of external fields, by surface acoustic waves and microwaves. High frequency EPR measurements of the population of spin levels permitted observation of magnetic deflagration in real time. The talk will review these experiments and their interpretation.

  16. Thermonuclear supernovae: simulations of the deflagration stage and their implications.

    PubMed

    Gamezo, Vadim N; Khokhlov, Alexei M; Oran, Elaine S; Chtchelkanova, Almadena Y; Rosenberg, Robert O

    2003-01-01

    Large-scale, three-dimensional numerical simulations of the deflagration stage of a thermonuclear supernova explosion show the formation and evolution of a highly convoluted turbulent flame in the gravitational field of an expanding carbon-oxygen white dwarf. The flame dynamics are dominated by the gravity-induced Rayleigh-Taylor instability that controls the burning rate. The thermonuclear deflagration releases enough energy to produce a healthy explosion. The turbulent flame, however, leaves large amounts of unburned and partially burned material near the star center, whereas observations that imply these materials are present only in outer layers. This disagreement could be resolved if the deflagration triggers a detonation. PMID:12446871

  17. Thermonuclear supernovae: simulations of the deflagration stage and their implications.

    PubMed

    Gamezo, Vadim N; Khokhlov, Alexei M; Oran, Elaine S; Chtchelkanova, Almadena Y; Rosenberg, Robert O

    2003-01-01

    Large-scale, three-dimensional numerical simulations of the deflagration stage of a thermonuclear supernova explosion show the formation and evolution of a highly convoluted turbulent flame in the gravitational field of an expanding carbon-oxygen white dwarf. The flame dynamics are dominated by the gravity-induced Rayleigh-Taylor instability that controls the burning rate. The thermonuclear deflagration releases enough energy to produce a healthy explosion. The turbulent flame, however, leaves large amounts of unburned and partially burned material near the star center, whereas observations that imply these materials are present only in outer layers. This disagreement could be resolved if the deflagration triggers a detonation.

  18. Model calculations and experimental measurements of the response of HMX porous beds to deflagration and shock

    SciTech Connect

    Aldis, D.F.; Lee, E.L.; Simpson, R.L.; Weston, A.M.

    1989-08-04

    The experimental research on the response of porous beds of HMX has yielded a body of evidence which includes accurate measurements of gas flow, compaction ratio, detonation transit distance and time. As the experimental research has progressed, we have developed a 1D numerical model (1DUCT) to describe this response in a special hydrodynamic code in which the gas phase is allowed to flow through a solid phase. Gas phase relative velocity is limited to be subsonic. In addition we have developed special constitutive and fluid EOS models (2DUCT) for use with the 2D Lagrange hydrocode, DYNA2D, in which there is no cell to cell gas phase mass transfer. Our study strategy was to analyze several, very different experiments to derive values of phenomenological parameters in the model. These experiments include squib ignited events where relative gas flow is important and compression ignition tests where it is not. 26 refs., 18 figs.

  19. Experiments and modelling of dynamic powder compaction in the scope of deflagration to detonation transition studies

    NASA Astrophysics Data System (ADS)

    Bodard, Sebastien; Lapebie, Emmanuel; Saurel, Richard; Daniel, Eric; Tosello, Robert; Lafontaine, Eric

    2015-06-01

    Understanding DDT in granular media is of prime interest for ammunition safety. However, the mechanisms involved are multiphasic, granular and multi-scale. To progress in DDT understanding it is thus necessary to focus on some mechanisms. As compaction plays a prominent role in DDT it is important to accurately model this phenomenon. In this communication, dynamic compaction of inert powder is studied to focus on the mechanical effects taking place in early stages of DDT. Both experimental and modelling aspects are considered. A novel experimental setup is designed to generate a dynamic 1D compaction. It consists in a container filled with powder and closed by a piston. A projectile launched with a gas gun impacts the piston rod to compress the powder. High-speed cameras with grain-scale resolution record the test. The velocity field is determined with image correlation. A multiphase compaction model (Saurel et al., 2010) has been implemented. Granular effects are taken into account with a granular equation of state, determined by quasi-static compaction. With additional features such as wall friction, good agreement between experiments and computations is found. The experimental apparatus is then used to study reactive powders. This work is supported by DGA.

  20. Quantum magnetic deflagration in acetate.

    PubMed

    Hernández-Mínguez, A; Hernandez, J M; Macià, F; García-Santiago, A; Tejada, J; Santos, P V

    2005-11-18

    We report controlled ignition of magnetization reversal avalanches by surface acoustic waves in a single crystal of acetate. Our data show that the speed of the avalanche exhibits maxima on the magnetic field at the tunneling resonances of Mn(12). Combined with the evidence of magnetic deflagration in Mn(12) acetate, this suggests a novel physical phenomenon: deflagration assisted by quantum tunneling. PMID:16384178

  1. Quantum magnetic deflagration in acetate.

    PubMed

    Hernández-Mínguez, A; Hernandez, J M; Macià, F; García-Santiago, A; Tejada, J; Santos, P V

    2005-11-18

    We report controlled ignition of magnetization reversal avalanches by surface acoustic waves in a single crystal of acetate. Our data show that the speed of the avalanche exhibits maxima on the magnetic field at the tunneling resonances of Mn(12). Combined with the evidence of magnetic deflagration in Mn(12) acetate, this suggests a novel physical phenomenon: deflagration assisted by quantum tunneling.

  2. Deflagration transient study of the CIF incinerator

    SciTech Connect

    Hang, T.

    2000-01-03

    The Consolidated Incineration Facility (CIF) treats solid and liquid RCRA hazardous and mixed wastes generated at the Savannah River Site (SRS). The transient responses of the CIF system to a deflagration, caused by an accidental charge of a modest quantity of solvent (e.g. toluene) into the rotary kiln, were a major safety concern. Using a dynamic computer model, a study was conducted to analyze the transient system responses to the rapid temperature and pressure surge in the kiln. The objective of the study was to determined the maximum pressure, temperature, and gas flow rate in each CIF component (rotary kiln, secondary combustion chamber, quencher, scrubber/cyclone, mist eliminator, reheaters, HEPAs, and ID fans). The resulting data provided a basis for the subsequent structural analysis. This paper will describe the CIF deflagration study in some detail, and present the results of the simulation scenarios.

  3. PBXN-9 Ignition Kinetics and Deflagration Rates

    SciTech Connect

    Glascoe, E; Maienschein, J; Burnham, A; Koerner, J; Hsu, P; Wemhoff, A

    2008-04-24

    The ignition kinetics and deflagration rates of PBXN-9 were measured using specially designed instruments at LLNL and compared with previous work on similar HMX based materials. Ignition kinetics were measured based on the One Dimensional Time-to-Explosion combined with ALE3D modeling. Results of these experiments indicate that PBXN-9 behaves much like other HMX based materials (i.e. LX-04, LX-07, LX-10 and PBX-9501) and the dominant factor in these experiments is the type of explosive, not the type of binder/plasticizer. In contrast, the deflagration behavior of PBXN-9 is quite different from similar high weight percent HMX based materials (i.e LX-10, LX-07 and PBX-9501). PBXN-9 burns in a laminar manner over the full pressure range studied (0-310 MPa) unlike LX-10, LX-07, and PBX-9501. The difference in deflagration behavior is attributed to the nature of the binder/plasticizer alone or in conjunction with the volume of binder present in PBXN-9.

  4. a New Approach of the Deflagration to Detonation Transition in SNIa Thermonuclear Supernovae

    NASA Astrophysics Data System (ADS)

    Chièze, Jean Pierre; Charignon, Camille

    2015-03-01

    A wide class of type Ia thermonuclear supernovae models relies on the transition from the subsonic deflagration combustion regime to the supersonic detonation regime of the carbon and oxygen mixture of an accreting white dwarf, near the Chandrasekhar mass. We show that this can actually be achieved in a cold C+O white dwarf near the Chandrasekhar mass, with seed sound waves of relatively low Mach number M ˜ 0.02. Moreover, even weaker perturbations, with velocity perturbations as low as M ˜ 0.003 can trigger a detonation wave in SNIa progenitors models wich include the presence of a thin helium surface layer.

  5. Time-resolved Measurements of Spontaneous Magnetic Deflagration of Mn12 tBuAc

    NASA Astrophysics Data System (ADS)

    Chen, Yizhang; Kent, A. D.; Zhang, Qing; Sarachik, M. P.; Baker, M. L.; Garanin, D. A.; Mhesn, Najah; Lampropoulos, Christos

    Magnetic deflagration in molecular magnets has been triggered by heat pulses and acoustic waves. In this work we report spontaneous magnetic deflagration (i.e. deflagration that occurs without an external trigger) in the axially symmetric single molecule magnet Mn12 tBuAc . Magnetic hysteresis measurements show steps due to resonant quantum tunneling (RQT) below 1K, confirming the spin-Hamiltonian parameters for this material and previous results. Deflagration speeds measured with a newly constructed higher bandwidth (2MHz) setup will be presented as a function of transverse and longitudinal fields Hx ⊗Hz both on and off resonance. A large increase in front velocity near RQT steps is observed in experiments with swept transverse fields and will be discussed in light of models of deflagration. Work supported by NSF-DMR-1309202 (NYU); ARO W911NF-13-1-0125 (CCNY); DMR-1161571(Lehman); Cottrell College Science Award (UNF).

  6. EDC-37 Deflagration Rates at Elevated Pressures

    SciTech Connect

    Maienschein, J L; Koerner, J G

    2008-01-31

    We report deflagration rates on EDC-37 at high pressures. Experiments are conducted using the Lawrence Livermore National Laboratory High Pressure Strand Burner (HPSB) apparatus. The HPSB contains a deflagrating sample in a small volume, high pressure chamber. The sample consists of nine, 6.35 mm diameter, 6.35 mm length cylinders stacked on end, with burn wires placed between cylinders. Sample deflagration is limited to the cross-sectional surface of the cylinder by coating the cylindrical surface of the tower with Halthane 88-2 epoxy. Sample deflagration is initiated on one end of the tower by a B/KNO{sub 3} and HNS igniter train. Simultaneous temporal pressure history and burn front time of arrival measurements yield the laminar deflagration rate for a range of pressures and provide insight into deflagration uniformity. These measurements are one indicator of overall thermal explosion violence. Specific details of the experiment and the apparatus can be found in the literature.

  7. Small-scale deflagration cylinder test with velocimetry wall-motion diagnostics

    SciTech Connect

    Hooks, Daniel E; Hill, Larry G; Pierce, Timothy H

    2010-01-01

    Predicting the likelihood and effects of outcomes resultant from thermal initiation of explosives remains a significant challenge. For certain explosive formulations, the general outcome can be broadly predicted given knowledge of certain conditions. However, there remain unexplained violent events, and increased statistical understanding of outcomes as a function of many variables, or 'violence categorization,' is needed. Additionally, the development of an equation of state equivalent for deflagration would be very useful in predicting possible detailed event consequences using traditional hydrodynamic detonation moders. For violence categorization, it is desirable that testing be efficient, such that it is possible to statistically define outcomes reliant on the processes of initiation of deflagration, steady state deflagration, and deflagration to detonation transitions. If the test simultaneously acquires information to inform models of violent deflagration events, overall predictive capabilities for event likelihood and consequence might improve remarkably. In this paper we describe an economical scaled deflagration cylinder test. The cyclotetramethylene tetranitramine (HMX) based explosive formu1lation PBX 9501 was tested using different temperature profiles in a thick-walled copper cylindrical confiner. This test is a scaled version of a recently demonstrated deflagration cylinder test, and is similar to several other thermal explosion tests. The primary difference is the passive velocimetry diagnostic, which enables measurement of confinement vessel wall velocities at failure, regardless of the timing and location of ignition.

  8. The type Iax supernova, SN 2015H. A white dwarf deflagration candidate

    NASA Astrophysics Data System (ADS)

    Magee, M. R.; Kotak, R.; Sim, S. A.; Kromer, M.; Rabinowitz, D.; Smartt, S. J.; Baltay, C.; Campbell, H. C.; Chen, T.-W.; Fink, M.; Gal-Yam, A.; Galbany, L.; Hillebrandt, W.; Inserra, C.; Kankare, E.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Pakmor, R.; Röpke, F. K.; Ruiter, A. J.; Seitenzahl, I. R.; Sullivan, M.; Valenti, S.; Young, D. R.

    2016-05-01

    We present results based on observations of SN 2015H which belongs to the small group of objects similar to SN 2002cx, otherwise known as type Iax supernovae. The availability of deep pre-explosion imaging allowed us to place tight constraints on the explosion epoch. Our observational campaign began approximately one day post-explosion, and extended over a period of about 150 days post maximum light, making it one of the best observed objects of this class to date. We find a peak magnitude of Mr = -17.27± 0.07, and a (Δm15)r = 0.69 ± 0.04. Comparing our observations to synthetic spectra generated from simulations of deflagrations of Chandrasekhar mass carbon-oxygen white dwarfs, we find reasonable agreement with models of weak deflagrations that result in the ejection of ~0.2 M⊙ of material containing ~0.07 M⊙ of 56Ni. The model light curve however, evolves more rapidly than observations, suggesting that a higher ejecta mass is to be favoured. Nevertheless, empirical modelling of the pseudo-bolometric light curve suggests that ≲0.6 M⊙ of material was ejected, implying that the white dwarf is not completely disrupted, and that a bound remnant is a likely outcome.

  9. Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type Iax supernova 2008ha

    NASA Astrophysics Data System (ADS)

    Kromer, M.; Ohlmann, S. T.; Pakmor, R.; Ruiter, A. J.; Hillebrandt, W.; Marquardt, K. S.; Röpke, F. K.; Seitenzahl, I. R.; Sim, S. A.; Taubenberger, S.

    2015-07-01

    Stellar evolution models predict the existence of hybrid white dwarfs (WDs) with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with masses ˜1.1 M⊙, hybrid WDs in a binary system may easily approach the Chandrasekhar mass (MCh) by accretion and give rise to a thermonuclear explosion. Here, we investigate an off-centre deflagration in a near-MCh hybrid WD under the assumption that nuclear burning only occurs in carbon-rich material. Performing hydrodynamics simulations of the explosion and detailed nucleosynthesis post-processing calculations, we find that only 0.014 M⊙ of material is ejected while the remainder of the mass stays bound. The ejecta consist predominantly of iron-group elements, O, C, Si and S. We also calculate synthetic observables for our model and find reasonable agreement with the faint Type Iax SN 2008ha. This shows for the first time that deflagrations in near-MCh WDs can in principle explain the observed diversity of Type Iax supernovae. Leaving behind a near-MCh bound remnant opens the possibility for recurrent explosions or a subsequent accretion-induced collapse in faint Type Iax SNe, if further accretion episodes occur. From binary population synthesis calculations, we find the rate of hybrid WDs approaching MCh to be of the order of 1 per cent of the Galactic SN Ia rate.

  10. LX-17 Deflagration at High Pressures and Temperatures

    SciTech Connect

    Koerner, J; Maienschein, J; Black, K; DeHaven, M; Wardell, J

    2006-10-23

    We measure the laminar deflagration rate of LX-17 (92.5 wt% TATB, 7.5 wt% Kel-F 800) at high pressure and temperature in a strand burner, thereby obtaining reaction rate data for prediction of thermal explosion violence. Simultaneous measurements of flame front time-of-arrival and temporal pressure history allow for the direct calculation of deflagration rate as a function of pressure. Additionally, deflagrating surface areas are calculated in order to provide quantitative insight into the dynamic surface structure during deflagration and its relationship to explosion violence. Deflagration rate data show that LX-17 burns in a smooth fashion at ambient temperature and is represented by the burn rate equation B = 0.2P{sup 0.9}. At 225 C, deflagration is more rapid and erratic. Dynamic deflagrating surface area calculations show that ambient temperature LX-17 deflagrating surface areas remain near unity over the pressure range studied.

  11. Deflagration to detonation experiments in granular HMX

    SciTech Connect

    Burnside, N.J.; Son, S.F.; Asay, B.W.; Dickson, P.M.

    1998-03-01

    In this paper the authors report on continuing work involving a series of deflagration-to-detonation transition (DDT) experiments in which they study the piston-initiated DDT of heavily confined granular cyclotetramethylenetetranitramine (HMX). These experiments were designed to he useful in model development and evaluation. A main focus of these experiments is the effect of density on the DDT event. Particle size distribution and morphology are carefully characterized. In this paper they present recent surface area analysis. Earlier studies demonstrated extensive fracturing and agglomeration in samples at densities as low as 75% TMD as evidenced by dramatic decreases in particle size distribution due to mild stimulus. This is qualitatively confirmed with SEM images and quantitatively studied with gas absorption surface area analysis. Also, in this paper they present initial results using a microwave interferometer technique. Dynamic calibration of the technique was performed, a 35 GHz signal is used to increase resolution, and the system has been designed to be inexpensive for repeated experiments. The distance to where deformation of the inner wall begins for various densities is reported. This result is compared with the microwave interferometer measurements.

  12. Deflagration to detonation transition in combustible gas mixtures

    SciTech Connect

    Smirnov, N.N.; Panfilov, I.I.

    1995-04-01

    This paper presents the results of a computational investigation of the process of deflagration to detonation transition in a combustible gas mixture. The type of combustion (i.e., deflagration or detonation) supported by a two-step reaction scheme is studied as a function of the activation energies. It is shown that both a deflagration to detonation transition and a deflagration wave that lags behind a leading shock are possible. Two types of deflagration to detonation transitions are found theoretically: initiation of detonation from the flame zone and initiation of detonation along a contact discontinuity in the compressed gas near the primary shock wave.

  13. Modeling Carbon Exchange

    NASA Technical Reports Server (NTRS)

    Sellers, Piers

    2012-01-01

    Model results will be reviewed to assess different methods for bounding the terrestrial role in the global carbon cycle. It is proposed that a series of climate model runs could be scoped that would tighten the limits on the "missing sink" of terrestrial carbon and could also direct future satellite image analyses to search for its geographical location and understand its seasonal dynamics.

  14. Strategies for understanding the deflagration-to-detonation transition

    SciTech Connect

    Asay, B.W.

    1992-01-01

    The deflagration-to-detonation (DDT) phenomenon has been studied for many years. However, no comprehensive model of the DDT process is available. It is important to understand the mechanism by which an explosive will detonate when the source of ignition is a weak shock or flame, and to able to predict this response. We have identified several key areas of the DDT problem which need to be understood before any such prediction can be made, and have established a modest program to obtain a more fundamental understanding of the behavior of explosive under the conditions that can lead to DDT.

  15. Strategies for understanding the deflagration-to-detonation transition

    SciTech Connect

    Asay, B.W.

    1992-05-01

    The deflagration-to-detonation (DDT) phenomenon has been studied for many years. However, no comprehensive model of the DDT process is available. It is important to understand the mechanism by which an explosive will detonate when the source of ignition is a weak shock or flame, and to able to predict this response. We have identified several key areas of the DDT problem which need to be understood before any such prediction can be made, and have established a modest program to obtain a more fundamental understanding of the behavior of explosive under the conditions that can lead to DDT.

  16. Shock-flame Interactions and Deflagration-to-Detonation Transition in Type Ia Supernovae.

    NASA Astrophysics Data System (ADS)

    Gamezo, Vadim N.; Oran, E. S.

    2007-05-01

    We study shock-flame interactions on small scales as a possible mechanism for deflagration-to-detonation transition (DDT) in an exploding carbon-oxygen white dwarf. Thermonuclear flames are modeled using reactive Navier-Stokes equations coupled with a 13-species alpha-network. Two-dimensional numerical simulations that resolve carbon and oxygen burning scales show that shock-flame interactions produce turbulent flames through Richtmyer-Meshkov instabilities and accelerate shocks. This may result in DDT when shocks become strong enough to produce hot spots in unburned carbon-oxygen mixture. In contrast to terrestrial chemical systems, for which similar phenomena are well known, we observe an additional mechanism for shock acceleration related to different length scales of carbon and oxygen burning in a white dwarf. The slow oxygen burning can release almost as much energy as the fast carbon burning, and occurs in a hot material where carbon is already depleted. Shocks that propagate through the hot and relatively thick oxygen burning zone can pick up energy and even produce detonations driven only by the oxygen burning. When this oxygen detonation enters the cold unburned material, it can ignite it and produce a regular carbon-oxygen detonation. Our simulations show this can occur for densities below 8x10^7 g/cm^3. For higher densities, shocks produced by oxygen detonations are too weak to ignite carbon. This work was supported in part by the NASA ATP program (NRA NNH05ZDA001N-AT) and by the Naval Research Laboratory (NRL) through the Office of Naval Research.

  17. The deflagration-to-detonation transition in granular HMX

    SciTech Connect

    McAfee, J.M.; Asay, B.; Campbell, A.W.; Ramsay, J.B.

    1991-01-01

    The transition from deflagration to detonation in porous beds of explosive and propellant has received considerable attention both experimentally and theoretically. In many cases, the use of a hot-gas-producing igniter complicates the interpretation and subsequent modeling of experiments because considerable effort is required to account for the effect of the igniter gases on the granular bed. Hot-wire ignition is less intrusive; however, the ignition front is not planar. Thus the early events in these experiments cannot be approximated as one-dimensional. We have studied the deflagration-to-detonation behavior of granular HMX confined in steel tubes with x-radiography, light emission, stress gauges, and various pin techniques. Simplification and consistency of results were obtained by igniting the HMX with a piston (initially at rest and in contact with the HMX) driven into the bed. A gasless igniter is used to stare the burning of the piston propellant (low-density HMX) providing the piston with a smooth initial motion. Analysis of the data gives a detailed picture of the DDT process under these conditions. The qualitative and quantitative experimental results show the transition from the burning to detonation is discontinuous. The results are discussed in terms of a descriptive model.

  18. Structure and Stability of Deflagrations in Porous Energetic Materials

    SciTech Connect

    stephen B. Margolis; Forman A. Williams

    1999-03-01

    Theoretical two-phase-flow analyses have recently been developed to describe the structure and stability of multi-phase deflagrations in porous energetic materials, in both confined and unconfined geometries. The results of these studies are reviewed, with an emphasis on the fundamental differences that emerge with respect to the two types of geometries. In particular, pressure gradients are usually negligible in unconfined systems, whereas the confined problem is generally characterized by a significant gas-phase pressure difference, or overpressure, between the burned and unburned regions. The latter leads to a strong convective influence on the burning rate arising from the pressure-driven permeation of hot gases into the solid/gas region and the consequent preheating of the unburned material. It is also shown how asymptotic models that are suitable for analyzing stability may be derived based on the largeness of an overall activation-energy parameter. From an analysis of such models, it is shown that the effects of porosity and two-phase flow are generally destabilizing, suggesting that degraded propellants, which exhibit greater porosity than their pristine counterparts, may be more readily subject to combustion instability and nonsteady deflagration.

  19. CFD simulation of hydrogen deflagration in a vented room

    NASA Astrophysics Data System (ADS)

    Tolias, I. C.; Venetsanos, A. G.; Markatos, N. C.; Kiranoudis, C. T.

    2015-09-01

    In the present work, CFD simulations of hydrogen deflagration in a real scale vented room are performed. Two ignition points were simulated: at the wall opposite to the vent (back ignition) and at the center of the chamber (center ignition). The overpressure time series and flame front velocities are compared with the experimental results. The combustion model is based on the turbulent flame speed concept. The turbulent flame speed is calculated based on a modification of Yakhot's equation, in order to account for all the main physical mechanisms which appear in hydrogen deflagrations. Special attention is given to the simulation of Rayleigh-Taylor instability. This instability occurs at the vent area and results in sudden explosion of the mixture that has been pushed outside the chamber at the initial stage of the explosion. The importance of this external explosion to the generated overpressures inside the chamber is highlighted. The agreement between experimental and computational results is satisfactory in both back ignition and center ignition cases.

  20. Performance Impact of Deflagration to Detonation Transition Enhancing Obstacles

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Schauer, Frederick; Hopper, David

    2012-01-01

    A sub-model is developed to account for the drag and heat transfer enhancement resulting from deflagration-to-detonation (DDT) inducing obstacles commonly used in pulse detonation engines (PDE). The sub-model is incorporated as a source term in a time-accurate, quasi-onedimensional, CFD-based PDE simulation. The simulation and sub-model are then validated through comparison with a particular experiment in which limited DDT obstacle parameters were varied. The simulation is then used to examine the relative contributions from drag and heat transfer to the reduced thrust which is observed. It is found that heat transfer is far more significant than aerodynamic drag in this particular experiment.

  1. Deflagration studies on waste Tank 101-SY: Test plan

    SciTech Connect

    Cashdollar, K.L.; Zlochower, I.A.; Hertzberg, M.

    1991-07-01

    Waste slurries produced during the recovery of plutonium and uranium from irradiated fuel are stored in underground storage tanks. While a variety of waste types have been generated, of particular concern are the wastes stored in Tank 101-SY. A slurry growth-gas evolution cycle has been observed since 1981. The waste consists of a thick slurry, consisting of a solution high in NaOH, NaNO{sub 3}, NaAlO{sub 2}, dissolved organic complexants (EDTA, HEDTA, NTA, and degradation products), other salts (sulfates and phosphates), and radionuclides (primarily cesium and strontium). During a gas release the major gaseous species identified include: hydrogen and nitrous oxide (N{sub 2}O). Significant amounts of nitrogen may also be present. Traces of ammonia, carbon oxides, and other nitrogen oxides are also detected. Air and water vapor are also present in the tank vapor space. The purpose of the deflagration study is to determine risks of the hydrogen, nitrous oxide, nitrogen, and oxygen system. To be determined are pressure and temperature as a function of composition of reacting gases and the concentration of gases before and after the combustion event. Analyses of gases after the combustion event will be restricted to those tests that had an initial concentration of {le}8% hydrogen. This information will be used to evaluate safety issues related to periodic slurry growth and flammable gas releases from Tank 101-SY. the conditions to be evaluated will simulate gases in the vapor space above the salt cake as well as gases that potentially are trapped in pockets within/under the waste. The deflagration study will relate experimental laboratory results to conditions in the existing tanks.

  2. Deflagration Behavior of PBX 9501 at Elevated Temperature and Pressure

    SciTech Connect

    Maienschein, J L; Koerner, J G

    2008-04-15

    We report the deflagration behavior of PBX 9501 at pressures up to 300 MPa and temperatures of 150-180 C where the sample has been held at the test temperature for several hours before ignition. The purpose is to determine the effect on the deflagration behavior of material damage caused by prolonged exposure to high temperature. This conditioning is similar to that experienced by an explosive while it being heated to eventual explosion. The results are made more complicated by the presence of a significant thermal gradient along the sample during the temperature ramp and soak. Three major conclusions are: the presence of nitroplasticizer makes PBX 9501 more thermally sensitive than LX-04 with an inert Viton binder; the deflagration behavior of PBX 9501 is more extreme and more inconsistent than that of LX-04; and something in PBX 9501 causes thermal damage to 'heal' as the deflagration proceeds, resulting in a decelerating deflagration front as it travels along the sample.

  3. Do electron-capture supernovae make neutron stars?. First multidimensional hydrodynamic simulations of the oxygen deflagration

    NASA Astrophysics Data System (ADS)

    Jones, S.; Röpke, F. K.; Pakmor, R.; Seitenzahl, I. R.; Ohlmann, S. T.; Edelmann, P. V. F.

    2016-09-01

    Context. In the classical picture, electron-capture supernovae and the accretion-induced collapse of oxygen-neon white dwarfs undergo an oxygen deflagration phase before gravitational collapse produces a neutron star. These types of core collapse events are postulated to explain several astronomical phenomena. In this work, the oxygen deflagration phase is simulated for the first time using multidimensional hydrodynamics. Aims: By simulating the oxygen deflagration with multidimensional hydrodynamics and a level-set-based flame approach, new insights can be gained into the explosive deaths of 8-10 M⊙ stars and oxygen-neon white dwarfs that accrete material from a binary companion star. The main aim is to determine whether these events are thermonuclear or core-collapse supernova explosions, and hence whether neutron stars are formed by such phenomena. Methods: The oxygen deflagration is simulated in oxygen-neon cores with three different central ignition densities. The intermediate density case is perhaps the most realistic, being based on recent nuclear physics calculations and 1D stellar models. The 3D hydrodynamic simulations presented in this work begin from a centrally confined flame structure using a level-set-based flame approach and are performed in 2563 and 5123 numerical resolutions. Results: In the simulations with intermediate and low ignition density, the cores do not appear to collapse into neutron stars. Instead, almost a solar mass of material becomes unbound from the cores, leaving bound remnants. These simulations represent the case in which semiconvective mixing during the electron-capture phase preceding the deflagration is inefficient. The masses of the bound remnants double when Coulomb corrections are included in the equation of state, however they still do not exceed the effective Chandrasekhar mass and, hence, would not collapse into neutron stars. The simulations with the highest ignition density (log 10ρc = 10.3), representing the case

  4. Local strains in waste tank deflagration analysis

    SciTech Connect

    Bryan, B.J.; Flanders, H.E. Jr.

    1993-10-01

    In recent years extensive effort has been expended to qualify buried nuclear waste storage tanks under accident conditions. One of these conditions is deflagration of the combustible gases which may build up over time. While much work has been done to calculate the general strain state, less effort has been made to address the local strains at structural discontinuities. An analytical method is presented for calculating these local strains and combining them with the general strain state. A closed form solution of the local strains is compared to a finite element solution.

  5. Investigations on deflagration to detonation transition in porous energetic materials. Final report

    SciTech Connect

    Stewart, D.S.

    1999-07-01

    The research carried out by this contract was part of a larger effort funded by LANL in the areas of deflagration to detonation in porous energetic materials (DDT) and detonation shock dynamics in high explosives (DSD). In the first three years of the contract the major focus was on DDT. However, some researchers were carried out on DSD theory and numerical implementation. In the last two years the principal focus of the contract was on DSD theory and numerical implementation. However, during the second period some work was also carried out on DDT. The paper discusses DDT modeling and DSD modeling. Abstracts are included on the following topics: modeling deflagration to detonation; DSD theory; DSD wave front tracking; and DSD program burn implementation.

  6. Self-similar blast waves incorporating deflagrations of variable speed

    NASA Technical Reports Server (NTRS)

    Guirguis, R. H.; Kamel, M. M.; Oppenheim, A. K.

    1983-01-01

    The present investigation is concerned with the development of a systematic approach to the problem of self-similar blast waves incorporating nonsteady flames. The regime covered by the presented solutions is bounded on one side by an adiabatic strong explosion and, on the other, by deflagration propagating at an infinite acceleration. Results for a representative set of accelerations are displayed, taking into account the full range of propagation speeds from zero to velocities corresponding to the Chapman-Jouguet deflagration. It is found that the distribution of stored energy in the undisturbed medium determines the acceleration of the deflagration-shock wave system. The obtained results reveal the existence of a simple relation between the location of the deflagration and its Mach number.

  7. Radial magnetic compression in the expelled jet of a plasma deflagration accelerator

    NASA Astrophysics Data System (ADS)

    Loebner, Keith T. K.; Underwood, Thomas C.; Mouratidis, Theodore; Cappelli, Mark. A.

    2016-02-01

    A spectroscopic study of a pulsed plasma deflagration accelerator is carried out that confirms the existence of a strong compression in the emerging jet at the exit plane of the device. An imaging spectrometer is used to collect broadened Hα emission from a transaxial slice of the emerging jet at high spatial resolution, and the radial plasma density profile is computed from Voigt fits of the Abel inverted emissivity profiles. The plasma temperature, determined via Doppler broadening of impurity line emission, is compared against the temperature predictions of a radial magnetohydrodynamic equilibrium model applied to the measured density profiles. Empirical scaling laws developed for the plasma density, combined with the measured and predicted temperatures, indicate that a radially equilibrated Z-pinch is formed within the expelled plasma jet at the exit plane during the deflagration process.

  8. Effects of two-phase flow on the deflagration of porous energetic materials

    SciTech Connect

    Margolis, S.B.; Williams, F.A.

    1994-07-01

    Theoretical analyses are developed for the multi-phase deflagration of porous energetic solids, such as degraded nitramine propellants, that experience significant gas flow in the solid preheat region and are characterized by the presence of exothermic reactions in a bubbling melt layer at their surfaces. Relative motion between the gas and condensed phases is taken into account in both regions, and expressions for the mass burning rate and other quantities of interest, such as temperature and volume-fraction profiles, are derived by activation-energy asymptotics. The model extends recent work by allowing for gas flow in the unburned solid, and by incorporating pressure effects through the gas-phase equation of state. As a consequence, it is demonstrated how most aspects of the deflagration wave, including its structure, propagation speed and final temperature, depend on the local pressure in the two-phase regions.

  9. Flame acceleration in channels with obstacles in the deflagration-to-detonation transition

    SciTech Connect

    Valiev, Damir; Bychkov, Vitaly; Akkerman, V'yacheslav; Law, Chung K.; Eriksson, Lars-Erik

    2010-05-15

    It was demonstrated recently in Bychkov et al. [Bychkov et al., Phys. Rev. Lett. 101 (2008) 164501], that the physical mechanism of flame acceleration in channels with obstacles is qualitatively different from the classical Shelkin mechanism. The new mechanism is much stronger, and is independent of the Reynolds number. The present study provides details of the theory and numerical modeling of the flame acceleration. It is shown theoretically and computationally that flame acceleration progresses noticeably faster in the axisymmetric cylindrical geometry as compared to the planar one, and that the acceleration rate reduces with increasing Mach number and thereby the gas compressibility. Furthermore, the velocity of the accelerating flame saturates to a constant value that is supersonic with respect to the wall. The saturation state can be correlated to the Chapman-Jouguet deflagration as well as the fast flames observed in experiments. The possibility of transition from deflagration-to-detonation in the obstructed channels is demonstrated. (author)

  10. Magneto-hydrodynamics simulation study of deflagration mode in co-axial plasma accelerators

    SciTech Connect

    Sitaraman, Hariswaran; Raja, Laxminarayan L.

    2014-01-15

    Experimental studies by Poehlmann et al. [Phys. Plasmas 17(12), 123508 (2010)] on a coaxial electrode magnetohydrodynamic (MHD) plasma accelerator have revealed two modes of operation. A deflagration or stationary mode is observed for lower power settings, while higher input power leads to a detonation or snowplow mode. A numerical modeling study of a coaxial plasma accelerator using the non-ideal MHD equations is presented. The effect of plasma conductivity on the axial distribution of radial current is studied and found to agree well with experiments. Lower conductivities lead to the formation of a high current density, stationary region close to the inlet/breech, which is a characteristic of the deflagration mode, while a propagating current sheet like feature is observed at higher conductivities, similar to the detonation mode. Results confirm that plasma resistivity, which determines magnetic field diffusion effects, is fundamentally responsible for the two modes.

  11. A study of deflagration and detonation in multiphase hydrocarbon-air mixtures

    SciTech Connect

    Smirnov, N.N.; Tyurnikov, M.V. . Dept. of Mechanics and Mathematics)

    1994-01-01

    This article represents a theoretical and experimental study of the problems of deflagration and detonation structure in heterogeneous media, which contains an oxidant in the gaseous phase and fuel in the form of either dispersed droplets in the oxidant flow or a thin film on the chamber walls. Detonation in such systems is shown to have a complex unsteady-state structure: the detonation front can exhibit mobile discontinuities and can pulsate periodically. A physical model of pulsating and spin detonation in heterogeneous media is developed. A system of governing equations with boundary conditions is composed that makes it possible to simulate mathematically the transition of deflagration to detonation. The transition process and the initiation of detonation are calculated numerically and studied experimentally. The comparison shows good agreement of theoretical and experimental results.

  12. Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale

    DOE PAGES

    Wood, Mitchell A.; Cherukara, Mathew J.; Kober, Edward M.; Strachan, Alejandro

    2015-06-13

    We use molecular dynamics simulations to describe the chemical reactions following shock-induced collapse of cylindrical pores in the high-energy density material RDX. For shocks with particle velocities of 2 km/s we find that the collapse of a 40 nm diameter pore leads to a deflagration wave. Molecular collisions during the collapse lead to ultrafast, multistep chemical reactions that occur under nonequilibrium conditions. WE found that exothermic products formed during these first few picoseconds prevent the nanoscale hotspot from quenching. Within 30 ps, a local deflagration wave develops. It propagates at 0.25 km/s and consists of an ultrathin reaction zone ofmore » only ~5 nm, thus involving large temperature and composition gradients. Contrary to the assumptions in current models, a static thermal hotspot matching the dynamical one in size and thermodynamic conditions fails to produce a deflagration wave indicating the importance of nonequilibrium loading in the criticality of nanoscale hot spots. These results provide insight into the initiation of reactive decomposition.« less

  13. Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale

    SciTech Connect

    Wood, Mitchell A.; Cherukara, Mathew J.; Kober, Edward M.; Strachan, Alejandro

    2015-06-13

    We use molecular dynamics simulations to describe the chemical reactions following shock-induced collapse of cylindrical pores in the high-energy density material RDX. For shocks with particle velocities of 2 km/s we find that the collapse of a 40 nm diameter pore leads to a deflagration wave. Molecular collisions during the collapse lead to ultrafast, multistep chemical reactions that occur under nonequilibrium conditions. WE found that exothermic products formed during these first few picoseconds prevent the nanoscale hotspot from quenching. Within 30 ps, a local deflagration wave develops. It propagates at 0.25 km/s and consists of an ultrathin reaction zone of only ~5 nm, thus involving large temperature and composition gradients. Contrary to the assumptions in current models, a static thermal hotspot matching the dynamical one in size and thermodynamic conditions fails to produce a deflagration wave indicating the importance of nonequilibrium loading in the criticality of nanoscale hot spots. These results provide insight into the initiation of reactive decomposition.

  14. Simple ocean carbon cycle models

    SciTech Connect

    Caldeira, K.; Hoffert, M.I.; Siegenthaler, U.

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  15. [Forest carbon cycle model: a review].

    PubMed

    Wang, Ping

    2009-06-01

    Forest carbon cycle is one of the important items in the research of terrestrial carbon cycle, while carbon cycle model is an important means in studying the carbon cycle mechanisms of forest ecosystem and in estimating carbon fluxes. Based on the sum-up of main carbon cycle models, this paper classified the forest carbon cycle models into two categories, i.e., patch scale forest carbon cycle models and regional scale terrestrial carbon cycle models, with their features commented. The future development trend in the research of forest carbon cycle models in China was discussed.

  16. Pre-ignition confinement and deflagration violence in LX-10 and PBX 9501

    SciTech Connect

    Tringe, J. W. Glascoe, E. A.; McClelland, M. A.; Greenwood, D.; Chambers, R. D.; Springer, H. K.; Levie, H. W.

    2014-08-07

    In thermal explosions of the nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)-based explosives LX-10 and PBX-9501, the pre-ignition spatial and temporal heating profile defines the ignition location. The ignition location then determines the extent of inertial confinement and the violence of the resulting deflagration. In this work, we present results of experiments in which ∼23 g cylinders of LX-10 and PBX 9501 in thin-walled aluminum confinement vessels were subjected to identical heating profiles but which presented starkly different energy release signatures. Post-explosion LX-10 containment vessels were completely fragmented, while the PBX 9501 vessels were merely ruptured. Flash x-ray radiography images show that the initiation location for the LX-10 is a few mm farther from the end caps of the vessel relative to the initiation location of PBX 9501. This difference increases deflagration confinement for LX-10 at the time of ignition and extends the pressurization time during which the deflagration front propagates in the explosive. The variation in the initiation location, in turn, is determined by the thermal boundary conditions, which differ for these two explosives because of the larger coefficient of thermal expansion and greater thermal stability of the Viton binder in LX-10 relative to the estane and bis(2,2-dinitropropyl) acetal/formal binder of the PBX 9501. The thermal profile and initiation location were modeled for LX-10 using the hydrodynamics and structures code ALE3D; results indicate temperatures in the vicinity of the ignition location in excess of 274 °C near the time of ignition. The conductive burn rates for these two explosives, as determined by flash x-ray radiography, are comparable in the range 0.1–0.2 mm/μs, somewhat faster than rates observed by strand burner experiments for explosives in the temperature range 150–180 °C and pressures up to 100 MPa. The thinnest-wall aluminum containment vessels

  17. Pre-ignition confinement and deflagration violence in LX-10 and PBX 9501

    NASA Astrophysics Data System (ADS)

    Tringe, J. W.; Glascoe, E. A.; McClelland, M. A.; Greenwood, D.; Chambers, R. D.; Springer, H. K.; Levie, H. W.

    2014-08-01

    In thermal explosions of the nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)-based explosives LX-10 and PBX-9501, the pre-ignition spatial and temporal heating profile defines the ignition location. The ignition location then determines the extent of inertial confinement and the violence of the resulting deflagration. In this work, we present results of experiments in which ˜23 g cylinders of LX-10 and PBX 9501 in thin-walled aluminum confinement vessels were subjected to identical heating profiles but which presented starkly different energy release signatures. Post-explosion LX-10 containment vessels were completely fragmented, while the PBX 9501 vessels were merely ruptured. Flash x-ray radiography images show that the initiation location for the LX-10 is a few mm farther from the end caps of the vessel relative to the initiation location of PBX 9501. This difference increases deflagration confinement for LX-10 at the time of ignition and extends the pressurization time during which the deflagration front propagates in the explosive. The variation in the initiation location, in turn, is determined by the thermal boundary conditions, which differ for these two explosives because of the larger coefficient of thermal expansion and greater thermal stability of the Viton binder in LX-10 relative to the estane and bis(2,2-dinitropropyl) acetal/formal binder of the PBX 9501. The thermal profile and initiation location were modeled for LX-10 using the hydrodynamics and structures code ALE3D; results indicate temperatures in the vicinity of the ignition location in excess of 274 °C near the time of ignition. The conductive burn rates for these two explosives, as determined by flash x-ray radiography, are comparable in the range 0.1-0.2 mm/μs, somewhat faster than rates observed by strand burner experiments for explosives in the temperature range 150-180 °C and pressures up to 100 MPa. The thinnest-wall aluminum containment vessels presented here

  18. Neutrinos from type Ia supernovae: The deflagration-to-detonation transition scenario

    DOE PAGES

    Wright, Warren P.; Nagaraj, Gautam; Kneller, James P.; Scholberg, Kate; Seitenzahl, Ivo R.

    2016-07-19

    It has long been recognized that the neutrinos detected from the next core-collapse supernova in the Galaxy have the potential to reveal important information about the dynamics of the explosion and the nucleosynthesis conditions as well as allowing us to probe the properties of the neutrino itself. The neutrinos emitted from thermonuclear—type Ia—supernovae also possess the same potential, although these supernovae are dimmer neutrino sources. For the first time, we calculate the time, energy, line of sight, and neutrino-flavor-dependent features of the neutrino signal expected from a three-dimensional delayed-detonation explosion simulation, where a deflagration-to-detonation transition triggers the complete disruption ofmore » a near-Chandrasekhar mass carbon-oxygen white dwarf. We also calculate the neutrino flavor evolution along eight lines of sight through the simulation as a function of time and energy using an exact three-flavor transformation code. We identify a characteristic spectral peak at ˜10 MeV as a signature of electron captures on copper. This peak is a potentially distinguishing feature of explosion models since it reflects the nucleosynthesis conditions early in the explosion. We simulate the event rates in the Super-K, Hyper-K, JUNO, and DUNE neutrino detectors with the SNOwGLoBES event rate calculation software and also compute the IceCube signal. Hyper-K will be able to detect neutrinos from our model out to a distance of ˜10 kpc. Here, at 1 kpc, JUNO, Super-K, and DUNE would register a few events while IceCube and Hyper-K would register several tens of events.« less

  19. Neutrinos from type Ia supernovae: The deflagration-to-detonation transition scenario

    NASA Astrophysics Data System (ADS)

    Wright, Warren P.; Nagaraj, Gautam; Kneller, James P.; Scholberg, Kate; Seitenzahl, Ivo R.

    2016-07-01

    It has long been recognized that the neutrinos detected from the next core-collapse supernova in the Galaxy have the potential to reveal important information about the dynamics of the explosion and the nucleosynthesis conditions as well as allowing us to probe the properties of the neutrino itself. The neutrinos emitted from thermonuclear—type Ia—supernovae also possess the same potential, although these supernovae are dimmer neutrino sources. For the first time, we calculate the time, energy, line of sight, and neutrino-flavor-dependent features of the neutrino signal expected from a three-dimensional delayed-detonation explosion simulation, where a deflagration-to-detonation transition triggers the complete disruption of a near-Chandrasekhar mass carbon-oxygen white dwarf. We also calculate the neutrino flavor evolution along eight lines of sight through the simulation as a function of time and energy using an exact three-flavor transformation code. We identify a characteristic spectral peak at ˜10 MeV as a signature of electron captures on copper. This peak is a potentially distinguishing feature of explosion models since it reflects the nucleosynthesis conditions early in the explosion. We simulate the event rates in the Super-K, Hyper-K, JUNO, and DUNE neutrino detectors with the SNOwGLoBES event rate calculation software and also compute the IceCube signal. Hyper-K will be able to detect neutrinos from our model out to a distance of ˜10 kpc . At 1 kpc, JUNO, Super-K, and DUNE would register a few events while IceCube and Hyper-K would register several tens of events.

  20. Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems

    SciTech Connect

    Kessler, D.A.; Gamezo, V.N.; Oran, E.S.

    2010-11-15

    Flame acceleration and deflagration-to-detonation transitions (DDT) in large obstructed channels filled with a stoichiometric methane-air mixture are simulated using a single-step reaction mechanism. The reaction parameters are calibrated using known velocities and length scales of laminar flames and detonations. Calculations of the flame dynamics and DDT in channels with obstacles are compared to previously reported experimental data. The results obtained using the simple reaction model qualitatively, and in many cases, quantitatively match the experiments and are found to be largely insensitive to small variations in model parameters. (author)

  1. Modelling Sublimation of Carbon Dioxide

    ERIC Educational Resources Information Center

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  2. Steady Deflagration of PBX-9501 Within a Copper Cylinder

    SciTech Connect

    Pemberton, Steven J.; Herrera, Dennis H.; Herrera, Tommy J.; Arellano, Jesus C.; Sandoval, Thomas D.

    2012-06-26

    A copper cylinder cook-off experiment has been designed to cause steady deflagration in PBX-9501 explosive material. The design is documented and preliminary copper expansion results are presented for steady deflagration with a reaction speed of 1092 +/- 24 m/s. The expansion of reaction products from the detonation of an explosive is something that is well understood, and reasonably simulated using documented equations of state (EOS) for many explosives of interest. These EOS were historically measured using a 'standard' copper cylinder test design; this design comprised an annealed, oxygen-free high conductivity (OFHC) copper tube filled with explosive material and detonated from one end. Expansion of the copper wall was measured as a function of time using either a streak camera (for classic testing), or more recently using laser velocimetry techniques. Expansion data were then used to derive the EOS in various preferred forms - which are not discussed here for the sake of brevity. [Catanach, et. al., 1999] When an explosive deflagrates rather than detonating, simulation becomes more difficult. Reaction products are released on a slower time scale, and the reactions are much more affected by the geometry and local temperature within the reaction environment. It is assumed that the standard, documented EOS will no longer apply. In an effort to establish a first order approximation of deflagration product behavior, a cook-off test has been designed to cause steady deflagration in PBX-9501 explosive material, and to record the copper expansion profile as a function of time during this test. The purpose of the current paper is to document the initial test design and report some preliminary results. A proposal for modification of the design is also presented.

  3. Deflagration of HMX-Based Explosives at High Temperatures and Pressures

    SciTech Connect

    Maienschein, J L; Wardell, J F; DeHaven, M R; Black, C K

    2004-05-12

    We measure the deflagration behavior of energetic materials at extreme conditions (up to 520K and 1 GPa) in the LLNL High Pressure Strand Burner, thereby obtaining reaction rate data for prediction of violence of thermal explosions. The apparatus provides both temporal pressure history and flame time-of-arrival information during deflagration, allowing direct calculation of deflagration rate as a function of pressure. Samples may be heated before testing. Here we report the deflagration behavior of several HMX-based explosives at pressures of 10-600 MPa and temperatures of 300-460 K. We find that formulation details are very important to overall deflagration behavior. Formulations with high binder content (>15 wt%) deflagrate smoothly over the entire pressure range regardless of particle size, with a larger particle size distribution leading to a slower reaction. The deflagration follows a power law function with the pressure exponent being unity. Formulations with lower binder content ({le} 10% or less by weight) show physical deconsolidation at pressures over 100-200 MPA, with transition to a rapid erratic deflagration 10-100 times faster. High temperatures have a relatively minor effect on the deflagration rate until the HMX {beta} {yields} {delta} phase transition occurs, after which the deflagration rate increases by more than a factor of 10.

  4. Integrated Climate and Carbon-cycle Model

    2006-03-06

    The INCCA model is a numerical climate and carbon cycle modeling tool for use in studying climate change and carbon cycle science. The model includes atmosphere, ocean, land surface, and sea ice components.

  5. NUCLEOSYNTHESIS IN TWO-DIMENSIONAL DELAYED DETONATION MODELS OF TYPE Ia SUPERNOVA EXPLOSIONS

    SciTech Connect

    Maeda, K.; Roepke, F.K.; Fink, M.; Hillebrandt, W.; Travaglio, C.; Thielemann, F.-K.

    2010-03-20

    For the explosion mechanism of Type Ia supernovae (SNe Ia), different scenarios have been suggested. In these, the propagation of the burning front through the exploding white dwarf (WD) star proceeds in different modes, and consequently imprints of the explosion model on the nucleosynthetic yields can be expected. The nucleosynthetic characteristics of various explosion mechanisms are explored based on three two-dimensional explosion simulations representing extreme cases: a pure turbulent deflagration, a delayed detonation following an approximately spherical ignition of the initial deflagration, and a delayed detonation arising from a highly asymmetric deflagration ignition. Apart from this initial condition, the deflagration stage is treated in a parameter-free approach. The detonation is initiated when the turbulent burning enters the distributed burning regime. This occurs at densities around 10{sup 7} g cm{sup -3}-relatively low as compared to existing nucleosynthesis studies for one-dimensional spherically symmetric models. The burning in these multidimensional models is different from that in one-dimensional simulations as the detonation wave propagates both into unburned material in the high-density region near the center of a WD and into the low-density region near the surface. Thus, the resulting yield is a mixture of different explosive burning products, from carbon-burning products at low densities to complete silicon-burning products at the highest densities, as well as electron-capture products synthesized at the deflagration stage. Detailed calculations of the nucleosynthesis in all three models are presented. In contrast to the deflagration model, the delayed detonations produce a characteristic layered structure and the yields largely satisfy constraints from Galactic chemical evolution. In the asymmetric delayed detonation model, the region filled with electron capture species (e.g., {sup 58}Ni, {sup 54}Fe) is within a shell, showing a large off

  6. Turbulent Deflagrated Flame Interaction with a Fluidic Jet Flow for Deflagration-to-Detonation Flame Acceleration

    NASA Astrophysics Data System (ADS)

    Chambers, Jessica; McGarry, Joseph; Ahmed, Kareem

    2015-11-01

    Detonation is a high energetic mode of pressure gain combustion. Detonation combustion exploits the pressure rise to augment high flow momentum and thermodynamic cycle efficiencies. The driving mechanism of deflagrated flame acceleration to detonation is turbulence generation and induction. A fluidic jet is an innovative method for the production of turbulence intensities and flame acceleration. Compared to traditional obstacles, the jet reduces the pressure losses and heat soak effects while providing turbulence generation control. The investigation characterizes the turbulent flame-flow interactions. The focus of the study is on classifying the turbulent flame dynamics and the temporal evolution of turbulent flame regime. The turbulent flame-flow interactions are experimentally studied using a LEGO Detonation facility. Advanced high-speed laser diagnostics, particle image velocimetry (PIV), planar laser induced florescence (PLIF), and Schlieren imaging are used in analyzing the physics of the interaction and flame acceleration. Higher turbulence induction is observed within the turbulent flame after contact with the jet, leading to increased flame burning rates. The interaction with the fluidic jet results in turbulent flame transition from the thin reaction zones to the broken reaction regime.

  7. Presupernova models and supernovae

    NASA Technical Reports Server (NTRS)

    Sugimoto, D.; Nomoto, K.

    1980-01-01

    The present status of theories of presupernova stellar evolution and the triggering mechanisms of supernova explosions are reviewed. The validity of the single-star approximation for stellar core evolution is considered, and the central density and temperature of the stellar core are discussed. Attention is then given to the results of numerical models of supernova explosions by carbon deflagration of an intermediate mass star, resulting in the total disruption of the star; the photodissociation of iron nuclei in a massive star, resulting in neutron star or black hole formation; and stellar core collapse triggered by electron capture in stars of mass ranging between those of the intermediate mass and massive stars, resulting in neutron star formation despite oxygen deflagration. Helium and carbon combustion and detonation in accreting white dwarfs and the gravitational collapse triggered by electron-pair creation in supermassive stars are also discussed, and problems requiring future investigation are indicated.

  8. Four simple ocean carbon models

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III

    1992-01-01

    This paper briefly reviews the key processes that determine oceanic CO2 uptake and sets this description within the context of four simple ocean carbon models. These models capture, in varying degrees, these key processes and establish a clear foundation for more realistic models that incorporate more directly the underlying physics and biology of the ocean rather than relying on simple parametric schemes. The purpose of this paper is more pedagogical than purely scientific. The problems encountered by current attempts to understand the global carbon cycle not only require our efforts but set a demand for a new generation of scientist, and it is hoped that this paper and the text in which it appears will help in this development.

  9. Deflagration Rate Measurements of Three Insensitive High Explosives: LLM-105, TATB, and DAAF

    SciTech Connect

    Glascoe, E A; Maienschein, J L; Lorenz, K T; Tan, N; Koerner, J G

    2010-03-08

    The pressure dependent deflagration rates of LLM-105, DAAF and TATB based formulations were measured in the LLNL high pressure strand burner. The role of binder amount, explosive type, and thermal damage and their effects on the deflagration rate will be discussed. One DAAF formulation, two different formulations of LLM-105, and four formulations of TATB were studied; results indicate that binder amount and type play a minor role in the deflagration behavior. This is in sharp contrast to the HMX based formulations which strongly depend on binder amount and type. The effect of preheating these samples was considerably more dramatic. In the case of LLM-105, preheating the sample appears to have little effect on the deflagration rate. In contrast, preheating DAAF and TATB formulations causes the deflagration rate to accelerate. The thermal and mechanical properties of these formulations will be discussed in the context of their pressure and temperature dependent deflagration rates.

  10. PRESSURE AND TEMPERATURE DEPENDENT DEFLAGRATION RATE MEASUREMENTS OF LLM-105 AND TATB BASED EXPLOSIVES

    SciTech Connect

    Glascoe, E A; Tan, N; Koerner, J; Lorenz, K T; Maienschein, J L

    2009-11-10

    The pressure dependent deflagration rates of LLM-105 and TATB based formulations were measured in the LLNL high pressure strand burner. The role of binder amount, explosive type, and thermal damage and their effects on the deflagration rate will be discussed. Two different formulations of LLM-105 and three formulations of TATB were studied and results indicate that binder amount and type play a minor role in the deflagration behavior. This is in sharp contrast to the HMX based formulations which strongly depend on binder amount and type. The effect of preheating these samples was considerably more dramatic. In the case of LLM-105, preheating the sample appears to have little effect on the deflagration rate. In contrast, preheating TATB formulations causes the deflagration rate to accelerate and become erratic. The thermal and mechanical properties of these formulations will be discussed in the context of their pressure and temperature dependent deflagration rates.

  11. Propagation of avalanches in Mn12-acetate: magnetic deflagration.

    PubMed

    Suzuki, Yoko; Sarachik, M P; Chudnovsky, E M; McHugh, S; Gonzalez-Rubio, R; Avraham, Nurit; Myasoedov, Y; Zeldov, E; Shtrikman, H; Chakov, N E; Christou, G

    2005-09-30

    Local time-resolved measurements of fast reversal of the magnetization of single crystals of Mn12-acetate indicate that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity that is roughly 2 orders of magnitude smaller than the speed of sound. We argue that this phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance. PMID:16241690

  12. Deflagration-to-detonation transition in PETN and HMX

    SciTech Connect

    Dinegar, R.H.

    1983-02-01

    The deflagration-to-detonation transition (DDT) can be made to occur in both PETN and HMX. The reaction is sensitive to the degree of subdivision and the compactness of the explosive in which the transition takes place. It apparently happens better with explosives of small specific surface loaded at low density. Experiments using thin metal shims between the donor and transition-explosive charges suggest that transition-explosive compression makes an important contribution to the DDT process.

  13. Propagation of avalanches in Mn12-acetate: magnetic deflagration.

    PubMed

    Suzuki, Yoko; Sarachik, M P; Chudnovsky, E M; McHugh, S; Gonzalez-Rubio, R; Avraham, Nurit; Myasoedov, Y; Zeldov, E; Shtrikman, H; Chakov, N E; Christou, G

    2005-09-30

    Local time-resolved measurements of fast reversal of the magnetization of single crystals of Mn12-acetate indicate that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity that is roughly 2 orders of magnitude smaller than the speed of sound. We argue that this phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance.

  14. Response of a Type III waste tank to hydrogen deflagration

    SciTech Connect

    Gong, Chung; Jerrell, J.W.; Pelfrey, J.R.; Yau, W.W.F.

    1992-05-01

    The type III waste tank is built with ASTM A516 Grade 70 steel shells in the shape of a torus with a central concrete core. The tank is buried underground and covered with a four foot thick reinforced concrete slab. The tank is enriched by 2.5 foot thick reinforced concrete wall. Between the tank surface and the wall there is a 2.5 foot annular space. The tank itself is called the ``primary liner.`` The interior surface of the concrete wall is line with steel plates, called the ``secondary liner.`` The base of the tank rests on a concrete mat. Underneath the mat the secondary liner extends from the wall to the central column surfaces. The bottom liner is attached to the reinforced concrete foundation. Based on the conditions that the tank is filled with liquid wastes to 50% of the design capacity, and that the accumulation of hydrogen becomes 20% inside its free board, the resulting deflagration would cause an overpressure of 100 psig in the tank [Wallace and Yau, 1986]. The task of this analysis is to simulate the ``hydrogen deflagration`` scenario in the Type III Waste Tank complex. During the deflagration, the stresses in the steel tank would be expected to exceed the elastic limit of the steel and the tank would then undergo large deformation. The concrete roof slab could be fractured by the expansion of the tank. The central concrete column would start to exhibit large deformation first. All the structural members in the system are expected to interact drastically during the deflagration.

  15. Response of a Type III waste tank to hydrogen deflagration

    SciTech Connect

    Gong, Chung; Jerrell, J.W.; Pelfrey, J.R.; Yau, W.W.F.

    1992-01-01

    The type III waste tank is built with ASTM A516 Grade 70 steel shells in the shape of a torus with a central concrete core. The tank is buried underground and covered with a four foot thick reinforced concrete slab. The tank is enriched by 2.5 foot thick reinforced concrete wall. Between the tank surface and the wall there is a 2.5 foot annular space. The tank itself is called the primary liner.'' The interior surface of the concrete wall is line with steel plates, called the secondary liner.'' The base of the tank rests on a concrete mat. Underneath the mat the secondary liner extends from the wall to the central column surfaces. The bottom liner is attached to the reinforced concrete foundation. Based on the conditions that the tank is filled with liquid wastes to 50% of the design capacity, and that the accumulation of hydrogen becomes 20% inside its free board, the resulting deflagration would cause an overpressure of 100 psig in the tank (Wallace and Yau, 1986). The task of this analysis is to simulate the hydrogen deflagration'' scenario in the Type III Waste Tank complex. During the deflagration, the stresses in the steel tank would be expected to exceed the elastic limit of the steel and the tank would then undergo large deformation. The concrete roof slab could be fractured by the expansion of the tank. The central concrete column would start to exhibit large deformation first. All the structural members in the system are expected to interact drastically during the deflagration.

  16. The Role of Binder in Deflagrating HMX-based Explosives

    NASA Astrophysics Data System (ADS)

    Tringe, J. W.; Levie, H. W.; Glascoe, E. A.; Greenwood, D. W.; de Haven, M. R.; Molitoris, J. D.; Springer, H. K.

    2011-06-01

    Deflagration rates are known to be a strong function of temperature and pressure, but chemical reactions facilitated by the explosive's binder can also play an important role. Here we report a study of two HMX-based formulations, PBX-9501 (HMX 95%, estane 2.5%, bdnpa 1.25%, and bdnpf 1.25%) and LX-10 (HMX 95%, Viton-A 5%), which we use to investigate the origins of violence in thermal explosions. We employ flash x-ray radiography to directly image the rates at which reaction fronts proceed in a confined vessel. Photonic Doppler velocimetry (PDV) characterizes the vessel wall motion as a function of time. Our results show that thermal explosions of PBX-9501, with its more reactive binder, are more violent than explosions of LX-10. In LX-10, we observe quenched deflagration and limited violence. In PBX-9501, however, a higher deflagration rate is developed and sustained even after vessel rupture. Thermal explosions of initially-confined PBX-9501 therefore are more complete and significantly more violent. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Eigenvalue analysis and calculations for the deflagration of porous energetic materials in the merged-flame regime

    SciTech Connect

    Ilincic, N.; Margolis, S.B.

    1996-07-01

    Analytical and numerical calculations of the structure and burning rate of a deflagrating porous energetic material are presented for the limiting case of merged condensed and gas-phase reaction zones. The reaction scheme is modeled by a global two-step mechanism, applicable to certain types of degraded nitramine propellants and consisting of sequential condensed and gaseous steps. Taking into account important effects due to multiphase flow and exploiting the limit of large activation energies, a theoretical analysis may be developed based on activation-energy asymptotics. For steady, planar deflagration, this leads to an eigenvalue problem for the inner reaction-zone, the solution of which determines the burning rate. Numerical solutions give a reasonably complete description of the dependence of the structure and burning rate on the various parameters in the problem, and show excellent agreement with analytical results that are obtained in a more limited parameter regime in which most of the heat release is produced by the condensed-phase reaction and the porosity of the solid is small. These calculations indicate the significant influences of two-phase flow and the multiphase, multi-step chemistry on the deflagration structure and the burning rate, and thus serve to define an important parameter regime that supports the intrusion of the primary gas flame into the two-phase condensed decomposition region at the propellant surface.

  18. A toy terrestrial carbon flow model

    NASA Technical Reports Server (NTRS)

    Parton, William J.; Running, Steven W.; Walker, Brian

    1992-01-01

    A generalized carbon flow model for the major terrestrial ecosystems of the world is reported. The model is a simplification of the Century model and the Forest-Biogeochemical model. Topics covered include plant production, decomposition and nutrient cycling, biomes, the utility of the carbon flow model for predicting carbon dynamics under global change, and possible applications to state-and-transition models and environmentally driven global vegetation models.

  19. Multiscale Modeling with Carbon Nanotubes

    SciTech Connect

    Maiti, A

    2006-02-21

    Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.

  20. Deflagration-to-detonation transition in gases in tubes with cavities

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.; Nikitin, V. F.; Phylippov, Yu. G.

    2010-12-01

    DDT control in gaseous fuel-air mixtures became very acute. This paper contains results of theoretical and experimental investigations of DDT processes in combustible gaseous mixtures. In particular, the paper investigates the effect of cavities incorporated in detonation tubes at the onset of detonation in gases. Extensive numerical modeling and simulations allowed studying the features of deflagration-to-detonation transition in gases in tubes incorporating cavities of a wider cross section. The presence of cavities substantially affects the combustion modes being established in the device and their dependence on the governing parameters of the problem. The influence of geometrical characteristics of the confinement and flow turbulization on the onset of detonation and the influence of temperature and fuel concentration in the unburned mixture are discussed. It was demonstrated both experimentally and theoretically that the presence of cavities of wider cross section in the ignition part of the tube promotes DDT and shortens the predetonation length. At the same time, cavities incorporated along the whole length or in the far-end section inhibit detonation and bring about the onset of low-velocity galloping detonation or galloping combustion modes. The presence of cavities in the ignition section turns an increase in the initial mixture temperature into a DDT-promoting factor instead of a DDT-inhibiting factor.

  1. Study on the Mechanism of the Deflagration to Detonation Transition Process of Explosive

    NASA Astrophysics Data System (ADS)

    Wei, Lan; Dong, Hefei; Pan, Hao; Hu, Xiaomian; Zhu, Jianshi

    2014-10-01

    We present a numerical study of the mechanisms of the deflagration to detonation transition (DDT) process of explosives to assess its thermal stability. We treated the modeling system as a mixture of solid explosives and gaseous reaction products. We utilized a one-dimensional two-phase flow modeling approach with a space-time conservation element and solution element (CE/SE) method. Simulation results show that in the chemical reaction process a plug area of high density with relatively slow chemical reactions preceeds the new violent reactions and the consequent detonation. We found that steady detonation occurs at the regions where physical characteristics, such as pressure, density, temperature, and velocity, peak simultaneously. These simulation results agree well with high-temperature DDT tube experiments.

  2. Deflagration-to-Detonation Transition in Unconfined Media

    NASA Astrophysics Data System (ADS)

    Poludnenko, Alexei; Gardiner, Thomas; Oran, Elaine

    2011-11-01

    Deflagration-to-detonation transition (DDT) can occur in environments ranging from experimental and industrial systems on Earth to astrophysical thermonuclear supernovae explosions. In recent years, substantial progress has been made in elucidating the nature of this process in confined systems with walls, obstacles, etc. It remains unclear, however, whether a subsonic turbulent flame in an unconfined environment can undergo a DDT. We present simulations of premixed flames in stoichiometric H2-air and CH4-air mixtures interacting with high-intensity turbulence. These calculations demonstrate the DDT in unconfined systems unassisted by shocks or obstacles. We discuss the mechanism of this process and its implications.

  3. Quantum ignition of deflagration in the Fe8 molecular magnet

    NASA Astrophysics Data System (ADS)

    Leviant, Tom; Keren, Amit; Zeldov, Eli; Myasoedov, Yuri

    2014-10-01

    We report spatially resolved, time-dependent, magnetization reversal measurements of an Fe8 single molecular magnet using a microscopic Hall bar array. We found that a deflagration process, where molecules reverse their spin direction along a moving front, can be ignited quantum mechanically (T →0) at a resonance field, with no phonon pulse. The avalanche front velocity is of the order of 1m/s and is sensitive to field gradients and sweep rates. We also measured the thermal diffusivity κ in Fe8. This allows us to estimate the "flame" temperature.

  4. Deflagration-to-detonation transition project. Quarterly report, December 1979-February 1980

    SciTech Connect

    Lieberman, M.L.

    1980-09-01

    Progress in a project on deflagration-to-detonation transition (DDT) is reported. The activities of this project pertain primarily to the development of small, safe, low-voltage, hot-wire detonators. Its major goals are: the formulation of a modeling capability for DDT of the explosive 2-(5-cyanotetrazolato)pentaamminecobalt (III) perchlorate (CP); the development of improved DDT materials; the establishment of a data base for corrosion, compatibility, and reliability of CP-loaded detonators; and the design and development of advanced DDT components. Information is included on materials development, component development, and compatibility studies encompassing the thermal and chemical stability of CP in contact with the component materials. (LCL)

  5. Potential VOC Deflagrations in a Vented TRU Drum

    SciTech Connect

    Mukesh, GUPTA

    2005-04-07

    The objective of the analysis is to examine the potential for lid ejection from a vented transuranic (TRU) waste drum due to pressure buildup caused by the deflagration of hydrogen and volatile organic compounds (VOCs) inside the drum. In this analysis, the AICC pressure for a stoichiometric mixture of VOCs is calculated and then compared against the experimental peak pressure of stoichiometric combustion of propane and hexane in a combustion chamber. The experimental peak pressures of propane and hexane are about 12 percent lower than the calculated AICC pressure. Additional losses in the drum are calculated due to venting of the gases, drum bulging, waste compaction, and heat losses from the presence of waste in the drum. After accounting for these losses, the final pressures are compared to the minimum observed pressure that ejects the lid from a TRU drum. The ejection pressure of 105 psig is derived from data that was recorded for a series of tests where hydrogen-air mixtures were ignited inside sealed TRU drums. Since the calculated pressures are below the minimum lid ejection pressure, none of the VOCs and the hydrogen (up to 4 percent) mixtures present in the TRU waste drum is expected to cause lid ejection if ignited. The analysis of potential VOC deflagrations in a vented TRU drum can be applied across the DOE-Complex since TRU waste is stored in drums throughout the complex.

  6. Evaluating systematic dependencies of type Ia supernovae : the influence of deflagration to detonation density.

    SciTech Connect

    Jackson, A. P.; Calder, A. C.; Townsley, D. M.; Chamulak, D. A.; Brown, E. F.; Timmes, F. X.

    2010-09-01

    We explore the effects of the deflagration to detonation transition (DDT) density on the production of {sup 56}Ni in thermonuclear supernova (SN) explosions (Type Ia supernovae). Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear SNe with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of {sup 56}Ni masses to those inferred from observations. Within this framework, we utilize a more realistic 'simmered' white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of {sup 56}Ni and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range (1-3) x 10{sup 7} g cm{sup -3}. We find a quadratic dependence of the NSE yield on the log of the transition density, which is determined by the competition between plume rise and stellar expansion. By considering the effect of metallicity on the transition density, we find the NSE yield decreases by 0.055 {+-} 0.004 M {circle_dot} for a 1 Z {circle_dot} increase in metallicity evaluated about solar metallicity. For the same change in metallicity, this result translates to a 0.067 {+-} 0.004 M {circle_dot} decrease in the {sup 56}Ni yield, slightly stronger than that due to the variation in electron fraction from the initial composition. Observations testing the dependence of the yield on metallicity remain somewhat ambiguous, but the dependence we find is comparable to that inferred from some studies.

  7. EVALUATING SYSTEMATIC DEPENDENCIES OF TYPE Ia SUPERNOVAE: THE INFLUENCE OF DEFLAGRATION TO DETONATION DENSITY

    SciTech Connect

    Jackson, Aaron P.; Calder, Alan C.; Townsley, Dean M.; Chamulak, David A.; Brown, Edward F.; Timmes, F. X.

    2010-09-01

    We explore the effects of the deflagration to detonation transition (DDT) density on the production of {sup 56}Ni in thermonuclear supernova (SN) explosions (Type Ia supernovae). Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear SNe with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of {sup 56}Ni masses to those inferred from observations. Within this framework, we utilize a more realistic 'simmered' white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of {sup 56}Ni and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range (1-3) x10{sup 7} g cm{sup -3}. We find a quadratic dependence of the NSE yield on the log of the transition density, which is determined by the competition between plume rise and stellar expansion. By considering the effect of metallicity on the transition density, we find the NSE yield decreases by 0.055 {+-} 0.004 M {sub sun} for a 1 Z{sub sun} increase in metallicity evaluated about solar metallicity. For the same change in metallicity, this result translates to a 0.067 {+-} 0.004 M{sub sun} decrease in the {sup 56}Ni yield, slightly stronger than that due to the variation in electron fraction from the initial composition. Observations testing the dependence of the yield on metallicity remain somewhat ambiguous, but the dependence we find is comparable to that inferred from some studies.

  8. Carbon dioxide dangers demonstration model

    USGS Publications Warehouse

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  9. 'Tertiary' nuclear burning - Neutron star deflagration?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    A motivation is presented for the idea that dense nuclear matter can burn to a new class of stable particles. One of several possibilities is an 'octet' particle which is the 16 baryon extension of alpha particle, but now composed of a pair of each of the two nucleons, (3Sigma, Delta, and 2Xi). Such 'tertiary' nuclear burning (here 'primary' is H-He and 'secondary' is He-Fe) may lead to neutron star explosions rather than collapse to a black hole, analogous to some Type I supernovae models wherein accreting white dwarfs are pushed over the Chandrasekhar mass limit but explode rather than collapse to form neutron stars. Such explosions could possibly give gamma-ray bursts and power quasars, with efficient particle acceleration in the resultant relativistic shocks. The new stable particles themselves could possibly be the sought-after weakly interacting, massive particles (WIMPs) or 'dark' matter.

  10. Bubble velocity in the nonlinear Rayleigh-Taylor instability at a deflagration front

    SciTech Connect

    Modestov, Mikhail; Bychkov, Vitaly; Betti, Riccardo; Eriksson, Lars-Erik

    2008-04-15

    The Rayleigh-Taylor instability at a deflagration front is studied systematically using extensive direct numerical simulations. It is shown that, for a sufficiently large gravitational field, the effects of bubble rising dominate the deflagration dynamics. It is demonstrated both analytically and numerically that the deflagration speed is described asymptotically by the Layzer theory in the limit of large acceleration. In the opposite limit of small and zero gravitational field, intrinsic properties of the deflagration front become important. In that case, the deflagration speed is determined by the velocity of a planar front and by the Darrieus-Landau instability. Because of these effects, the deflagration speed is larger than predicted by the Layzer theory. An analytical formula for the deflagration speed is suggested, which matches two asymptotic limits of large and small acceleration. The formula is in good agreement with the numerical data in a wide range of Froude numbers. The present results are also in agreement with previous numerical simulations on this problem.

  11. Stability of quasi-steady deflagrations in confined porous energetic materials

    SciTech Connect

    Alexander M. Telengator; Stephen B. Margolis; Forman A. Williams

    2000-03-01

    Previous analyses have shown that unconfined deflagrations propagating through both porous and nonporous energetic materials can exhibit a thermal/diffusive instability that corresponds to the onset of various oscillatory modes of combustion. For porous materials, two-phase-flow effects, associated with the motion of the gas products relative to the condensed material, play a significant role that can shift stability boundaries with respect to those associated with the nonporous problem. In the present work, additional significant effects are shown to be associated with confinement, which produces an overpressure in the burned-gas region that leads to reversal of the gas flow and hence partial permeation of the hot gases into the unburned porous material. This results in a superadiabatic effect that increases the combustion temperature and, consequently, the burning rate. Under the assumption of gas-phase quasi-steadiness, an asymptotic model is presented that facilitates a perturbation analysis of both the basic solution, corresponding to a steadily propagating planar combustion wave, and its stability. The neutral stability boundaries collapse to the previous results in the absence of confinement, but different trends arising from the presence of the gas-permeation layer are predicted for the confined problem. Whereas two-phase-flow effects are generally destabilizing in the unconfined geometry, the effects of increasing overpressure and hence combustion temperature associated with confinement are shown to be generally stabilizing with respect to thermal/diffusive instability, analogous to the effects of decreasing heat losses on combustion temperature and stability in single-phase deflagrations.

  12. Measurement and ALE3D Simulation of Violence in a Deflagration Experiment With LX-10 and Aermet-100 Alloy

    SciTech Connect

    Knap, J; McClelland, M A; Maienschein, J L; Howard, W M; Nichols, A L; deHaven, M R; Strand, O T

    2006-06-22

    We describe the results of a Scaled-Thermal-Explosion-eXperiment (STEX) for LX-10 (94.7 % HMX, 5.3 % Viton A) confined in an AerMet 100 (iron-cobalt-nickel alloy) tube with reinforced end caps. The experimental measurements are compared with predictions of an Arbitrary-Lagrangian-Eulerian (ALE3D) computer model. ALE3D is a three-dimensional multi-physics computer code capable of solving coupled equations describing thermal, mechanical and chemical behavior of materials. In particular, we focus on the processes linked to fracture and fragmentation of the AerMet tube driven by the LX-10 deflagration.

  13. Carbon export algorithm advancements in models

    NASA Astrophysics Data System (ADS)

    Çağlar Yumruktepe, Veli; Salihoğlu, Barış

    2015-04-01

    The rate at which anthropogenic CO2 is absorbed by the oceans remains a critical question under investigation by climate researchers. Construction of a complete carbon budget, requires better understanding of air-sea exchanges and the processes controlling the vertical and horizontal transport of carbon in the ocean, particularly the biological carbon pump. Improved parameterization of carbon sequestration within ecosystem models is vital to better understand and predict changes in the global carbon cycle. Due to the complexity of processes controlling particle aggregation, sinking and decomposition, existing ecosystem models necessarily parameterize carbon sequestration using simple algorithms. Development of improved algorithms describing carbon export and sequestration, suitable for inclusion in numerical models is an ongoing work. Existing unique algorithms used in the state-of-the art ecosystem models and new experimental results obtained from mesocosm experiments and open ocean observations have been inserted into a common 1D pelagic ecosystem model for testing purposes. The model was implemented to the timeseries stations in the North Atlantic (BATS, PAP and ESTOC) and were evaluated with datasets of carbon export. Targetted topics of algorithms were PFT functional types, grazing and vertical movement of zooplankton, and remineralization, aggregation and ballasting dynamics of organic matter. Ultimately it is intended to feed improved algorithms to the 3D modelling community, for inclusion in coupled numerical models.

  14. Deflagration rates of secondary explosives under static MPa - GPa pressure

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Young, Christopher; Glascoe, Elizabeth; Maienschein, Jon; Hart, Elaine; Long, Gregory; Black, Collin; Sykora, Gregory; Wardell, Jeffrey

    2009-06-01

    We discuss our measurements of the chemical reaction propagation rate (RPR) as a function of pressure using diamond anvil cell (DAC) and strand burner technologies. Materials investigated include HMX and RDX crystalline powders, LX-04 (85% HMX and 15% Viton A), and Comp B (63% RDX, 36% TNT, 1% wax). The anomalous correspondence between crystal structure, including in some instances isostructural phase transitions, on pressure dependant RPRs of TATB, HMX, Nitromethane, and Viton are elucidated using micro -IR and -Raman spectroscopies. The contrast between DAC GPa and strand burner MPa regime measurements yields insight into explosive material burn phenomena. Here we highlight pressure dependent physicochemical mechanisms that appear to affect the deflagration rate of precompressed energetic materials.

  15. Deflagration-to-detonation transition in granular HMX

    SciTech Connect

    Campbell, A.W.

    1980-01-01

    Experimental studies of the deflagration-to-detonation transition (DDT) in chemical explosives, specifically, granular HMX, are reviewed. The picture of the DDT process as presented here results from an attempt to incorporate common experimental observations which have heretofore been puzzling. It differs from that presented by G.B. Kistiakowsky in that the role of convective combustion is terminated and mechanical processes are postulated as the means of continuing the reaction buildup until shock waves are formed. In order to validate this picture it will be necessary both to review the experimental literature for observations which may not be reconcilable with it, and to subject each step in the proposed DDT process to detailed scrutiny. (LCL)

  16. DEFLAGRATION RATES OF SECONDARY EXPLOSIVES UNDER STATIC MPA - GPA PRESSURE

    SciTech Connect

    Zaug, J; Young, C; Long, G; Maienschein, J; Glascoe, E; Hansen, D; Wardell, J; Black, C; Sykora, G

    2009-07-30

    We provide measurements of the chemical reaction propagation rate (RPR) as a function of pressure using diamond anvil cell (DAC) and strand burner technologies. Materials investigated include HMX and RDX crystalline powders, LX-04 (85% HMX and 15% Viton A), and Composition B (63% RDX, 36% TNT, 1% wax). The anomalous correspondence between crystal structure, including in some instances isostructural phase transitions, on pressure dependent RPRs of HMX and RDX are correlated to confocal micro-Raman spectroscopic results. The contrast between DAC GPa and strand burner MPa regime measurements yield insight into explosive material burn phenomena. Here we highlight pressure dependent physicochemical mechanisms that appear to affect the deflagration rate of precompressed energetic materials.

  17. Species and temperature profiles in ignition and deflagration of HMX

    SciTech Connect

    Parr, T.; Hanson-Parr, D.

    1987-01-01

    This paper reports on progress made in a program investigating the chemistry and kinetics of the ignition and combustion of solid propellants and their ingredients. Experiments were performed using imaging Planar Laser Induced Fluorescence (PLIF) to measure species and temperture profiles during CO/sub 2/ laser ignition and steady state deflagration of HMX. All experiments were done at one atmosphere. Time resolved PLIF images were obtained for NO/sub 2/, NO, CN, NH, H/sub 2/CO, OH, and OH rotational temperatures during ignition and deflagration of HMX. CN and NH form at reasonably large heights off the sample surface in gas phase ignition kernels at finite delays, and reform into relatively thin flame sheets which snap back towards the sample surface. NO/sub 2/ and NO are initial products during laser ignition, beginning to form at minimum delay times and producing tall plumes until ignition occurs in the gas phase. The NO/sub 2/ and NO PLIF signals are then confined to an expanding spherical shell plus a steady state solid core between the sample surface and the CN or NH flame sheet. Thus it appears that NO/sub 2/ and NO are early decomposition products which are consumed in a flame separated significantly from the surface. The CN and NH are produced in this flame as transient radicals. OH is produced at the same delay as CN and NH but extends very far beyond the thin CNNH flame front. OH rotational temperature profiles rise sharply at the CNNH flame sheet and level off at about 2772 degrees K beyond it. Evidence is given that the flames are two phase even for neat HMX. Little or no evidence for H/sub 2/CO was seen during ignition of HMX. Although large concentrations are seen during ignition of a nitramine composite propellant, this signal appears to be due to formaldehyde from decomposition of the PEG binder.

  18. Flammable gas deflagration consequence calculations for the tankwaste remediation system basis for interim operation

    SciTech Connect

    Van Vleet, R.J., Westinghouse Hanford

    1996-09-23

    This paper calculates the radiological dose consequences and the toxic exposures for deflagration accidents at various Tank Waste Remediation System facilities. These will be used in support of the Tank Waste Remediation System Basis for Interim Operation.

  19. The Physics of Deflagration-to-Detonation Transition in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Poludnenko, Alexei

    BACKGROUND: The scenario currently best capable of explaining the observational properties of normal bright type Ia supernovae (SNIa), which are of primary importance for cosmology, is the delayed detonation model of the explosion of a white dwarf star with the mass near the Chandrasekhar limit in a single-degenerate binary system. In this model, the explosion starts as a subsonic deflagration that later transitions to a supersonic detonation (deflagration-to-detonation transition, or DDT). Significant progress has been made over the years both experimentally and numerically in elucidating the physics of DDT in terrestrial confined systems. It remains unclear, however, whether and how a detonation can be formed in an unpressurized, unconfined system such as the interior of a WD. Modern large-scale multidimensional models of SNIa cannot capture the DDT process and, thus, are forced to make two crucial assumptions, namely (a) that DDT does occur at some point, and (b) when and where it occurs. As a result, delayed detonation is a parameterized model that must be "tuned" in order to obtain the proper match with the observations. This substantially hinders the possibility of investigating potential sources of systematic errors in the calibration of normal bright SNIa as standard candles. Recently we have carried out a systematic study of the high-speed turbulence-flame interaction through first-principles direct numerical simulations (DNS) using reaction models similar to those describing terrestrial chemical flames. Our analysis has shown that at sufficiently high turbulent intensities, subsonic turbulent flames in unconfined environments, such as the WD interior, are indeed inherently susceptible to DDT. The associated mechanism is based on the unsteady evolution of turbulent flames faster than the Chapman-Jouguet deflagrations. This process is qualitatively different from the traditional spontaneous reaction wave model and does not require the formation of

  20. Deflagration Behavior of HMX-Based Explosives at High Temperatures and Pressures

    SciTech Connect

    Maienschein, J L; Wardell, J F

    2003-11-20

    We report the deflagration behavior of several HMX-based explosives at pressure from 10-600 MPa and temperatures from 20-180 C. We have made laminar burn rate measurements with the LLNL High Pressure Strand Burner, in which burn wires are used to record the time-of-arrival of the burn front in the cylindrical sample as a function of pressure. The explosive samples are 6.4 mm in diameter and 63 mm long, with ten burn wires embedded at different positions in the sample. Burning on the cylindrical surface is inhibited with an epoxy layer. With this direct measurement we do not have to account for product gas equation of state or heat losses in the system, and the burn wires allow detection of irregular burning. We find that formulation details are very important to overall deflagration behavior - the presence of 10% or less by weight of binder leads to physical deconsolidation and rapid deflagration at high pressures, and a larger particle size distribution leads to slower deflagration. High temperatures have a relatively minor effect on the deflagration rate until the beta-to-delta phase transition temperature is reached, beyond which the deflagration rate increases approximately 40-fold.

  1. A statistical model of carbon/carbon composite failure

    NASA Technical Reports Server (NTRS)

    Slattery, Kerry T.

    1991-01-01

    A failure model which considers the stochastic nature of the damage accumulation process is essential to assess reliability and to accurately scale the results from standard test specimens to composite structures. A superior filamentary composite for high temperature applications is composed of carbon fibers in a carbon matrix. Carbon-carbon composites are the strongest known material at very high temperatures. Since there appears to be a significant randomness in C-C material strength which cannot be controlled or detected with current technology, a better model of the material failure based upon statistical principles should be used. Simple applications of the model based upon the limited data provide encouraging results that indicate that better design of test specimens would provide a substantially higher prediction for the design strength of C-C composites. An A-basis strength for the C-C tensile rings from a first stage D-5 billets was estimated. A statistical failure model was developed for these rings which indicates that this strength may be very conservative for larger C-C parts. The analysis may be improved by use of a heterogeneous/noncontinuum finite element approach on the minimechanical level.

  2. A universal model for nanoporous carbon supercapacitors

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent

    2009-01-01

    Supercapacitors based on nanoporous carbon materials, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. Nanoporous carbon supercapacitors are generally viewed as a parallel-plate capacitor since supercapacitors store energy by charge separation in an electric double layer formed at the electrode/electrolyte interface. The EDLC model has been used to characterize the energy storage of supercapacitors for decades. We comment in this chapter on the shortcomings of the EDLC model when applied to nanoporous carbon supercapacitors. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we have proposed a heuristic model that takes pore curvature into account as a replacement for the EDLC model. When the pore size is in the mesopore regime (2 50 nm), electrolyte counterions enter mesoporous carbons and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (< 2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (> 50 nm), where pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced to the EDLC model. With the backing of experimental data and quantum density functional theory calculations, we have shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials and electrolytes. The strengths and limitations of this new model are discussed. The new model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration, dielectric constant, and solute ion size, and may lend support to the systematic optimization of the properties of carbon supercapacitors through experiments.

  3. High-speed OH-PLIF imaging of deflagration-to-detonation transition in H2-air mixtures

    NASA Astrophysics Data System (ADS)

    Boeck, Lorenz R.; Mével, Rémy; Fiala, Thomas; Hasslberger, Josef; Sattelmayer, Thomas

    2016-06-01

    Planar laser-induced fluorescence (PLIF) is considered a standard experimental technique in combustion diagnostics. However, it has only been occasionally applied to explosion experiments with fast combustion regimes. It has been shown that single-shot OH-PLIF with high pulse energies yields clear fluorescence images of fast deflagrations and also detonations. This paper presents the first application of high-speed OH-PLIF at 20 kHz repetition rate to a deflagration-to-detonation transition experiment. Hydrogen-air mixtures at initial atmospheric pressure and ambient temperature are investigated. Satisfactory results are obtained for flame speeds up to about 500 m/s. Flame instabilities and turbulence-flame interactions are observed. Two factors limit the applicability of HS OH-PLIF toward higher flame speeds: excessive flame luminescence masking the HS OH-PLIF signal and strong absorption of laser light by the flame. The variation in OH-PLIF signal-to-background ratio across a DDT process is studied using a 1D laminar premixed flame simulation extended by spectroscopic models.

  4. Modelling carbon isotopes of carbonates in cave drip water

    NASA Astrophysics Data System (ADS)

    Fohlmeister, J.; Scholz, D.; Kromer, B.; Mangini, A.

    2011-09-01

    C isotopes in cave drip water are affected by both the C isotope composition of soil air and host rock carbonate. Furthermore, the C isotope composition of cave drip water strongly depends on the calcite dissolution system, i.e., open, closed and intermediate conditions. Here, we present a calcite dissolution model, which calculates the 14C activity and δ 13C value of the dissolved inorganic carbon of the drip water. The model is based on the chemical equations describing calcite dissolution ( H2O+CaCO+CO⇔Ca+2HCO3-). The most important improvement, relative to previous models, is the combination of the open and closed system conditions in order to simulate the C isotope composition during intermediate states of calcite dissolution and the application to carbon isotope measurements on cave drip waters from Grotta di Ernesto, Italy. The major changes in the C isotope composition of the drip water occur in response to variations in the open-closed system ratio. Additionally, the 14C activity and the δ 13C value of the drip water depend on changes in the partial pressure of soil CO 2. Radiocarbon and δ 13C values of the Grotta di Ernesto drip water are well reproduced by the model.

  5. Modeling vertical carbon flux from zooplankton respiration

    NASA Astrophysics Data System (ADS)

    Packard, Theodore T.; Gómez, May

    2013-03-01

    The transport of carbon from ocean surface waters to the deep sea is a critical factor in calculations of planetary carbon cycling and climate change. This vertical carbon flux is currently thought to support the respiration of all the organisms in the water column below the surface, the respiration of the organisms in the benthos, as well as the carbon lost to deep burial. Accordingly, for conditions where the benthic respiration and the carbon burial are small relative to the respiration in the water column, and where horizontal fluxes are known or negligible, the carbon flux can be calculated by integrating the vertical profile of the water-column plankton respiration rate. Here, this has been done for the zooplankton component of the vertical carbon flux from measurements of zooplankton ETS activity south of the Canary Island Archipelago. From zooplankton ETS activity depth profiles, zooplankton respiration depth profiles were calculated and using the equations for the profiles as models, the epipelagic (3.05 μmol CO2 m-3 h-1), mesopelagic (112.82 nmol CO2 m-3 h-1), and bathypelagic (27.89 nmol CO2 m-3 h-1) zooplankton respiration for these waters were calculated. Then, by integration of the depth-normalized respiration profiles, zooplankton-associated carbon flux profiles below 150 m were calculated. These had an uncertainty of ±40%. At the station level (local regional variation) the variability was ±114% (n = 16). At 150 m and 500 m the average passive carbon flux associated with the zooplankton was 36 (±114%) and 20 (±113%) μmol C m-2 h-1. The carbon transfer efficiency (Teff) from the 150 to the 500 m levels averaged 51 ± 21% and a new metric, the nutrient retention efficiency (NRE), averaged 49 ± 21%. This metric is an index of the efficiency with which nutrients are maintained in the epipelagic zone and is directly related to the respiration in the water column. The carbon flux equation describing the pooled data (n = 16) was 131.14Z-0.292. Using

  6. Deflagration-to-detonation transition in granular HMX

    NASA Technical Reports Server (NTRS)

    Campbell, A. W.

    1980-01-01

    Granular HMX of three degrees of fineness was packed into heavy-walled steel tubes closed at both ends. Ignition was obtained at one end using an intimate mixture of finely divided titanium and boron as an igniter that produced heat with little gas. The distance to detonation was determined by examination of the resulting tube fragments. By inserting tightly-fitted neoprene diaphragms periodically into the HMX column, it was shown that the role of convective combustion was limited to the initial stage of the deflagration to detonation (DDT) process. Experiments in which various combinations of two of the three types of HMX were loaded into the same tube showed that heating by adiabatic shear of explosive grains was an essential factor in the final buildup to detonation. A description of the DDT process is developed in which conductive burning is followed in turn by convective burning, bed collapse with plug formation, onset of accelerated burning at the front of the plug through heating by intercrystalline friction and adiabatic shear, and intense shock formation resulting in high-order detonation.

  7. Manufacture and deflagration of an atomic hydrogen propellant

    NASA Technical Reports Server (NTRS)

    Rosen, G.

    1974-01-01

    It is observed that the use of very low temperatures (in the range from 0.1 to 1.5 K) produced by advanced cryogenic apparatus and the use of very strong magnetic fields (in the range from 50 to 100 kG) produced by superconducting magnets can yield a significant improvement in the atomic hydrogen trapping effectiveness of an H2 matrix. The use of a radioactive beta-ray emiter isotope may yield H-H2 propellants (with a specific impulse of about 740 sec) by secondary electron impact dissociations of H2 in an impregnated matrix maintained below 1 K in a strong magnetic field. Another method for manufacturing an H-H2 propellant involves bombardment of supercooled solid H2 with a cyclotron-produced beam of 10-MeV hydrogen atoms. The matrix-isolated atomic hydrogen must be used directly without prior melting as a solid propellant, and an analysis of the steady deflagration is presented.

  8. Electrochemical carbon dioxide concentrator: Math model

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Schubert, F. H.; Carlson, J. N.

    1973-01-01

    A steady state computer simulation model of an Electrochemical Depolarized Carbon Dioxide Concentrator (EDC) has been developed. The mathematical model combines EDC heat and mass balance equations with empirical correlations derived from experimental data to describe EDC performance as a function of the operating parameters involved. The model is capable of accurately predicting performance over EDC operating ranges. Model simulation results agree with the experimental data obtained over the prediction range.

  9. Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling

    NASA Technical Reports Server (NTRS)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on

  10. Study on the Mechanism of the Deflagration to Detonation Transition Process of Explosive

    NASA Astrophysics Data System (ADS)

    Ying, Yangjun; Hu, Xiaomian; Wei, Lan

    2014-03-01

    In this paper we presented a numerical study of the mechanisms of the deflagration to detonation transition (DDT) process of explosives to assess its thermal stability. We treated the modeling system as a mixture of solid explosives and gaseous reaction products. We utilized a one-dimensional two-phase flow modeling approach with space-time conservation element and solution element (CE/SE) method. Simulation results show a plug area of high density with relatively slow chemical reactions, whose forward boundary is the fast running shock wave, and rearward boundary is the burning wave.We identified a criterion of steady detonation through a detailed analysis of the characteristics of the reaction process: steady detonation occurs at locations where different physical quantities, such as pressure, density, temperature and velocity, reach peak values simultaneously.We also simulated the high temperature DDT tube experiments of HMX-based high explosive. We found good agreement between the simulation results of detonation velocity and run length determined by the above criterion and the experimental results.

  11. Deep Soil: Quantifying and Modeling Subsurface Carbon

    NASA Astrophysics Data System (ADS)

    James, J. N.; Devine, W.; Harrison, R. B.

    2014-12-01

    Some soil carbon datasets that are spatially rich, such as the USDA Forest Service Inventory and Analysis National Program dataset, sample soil to only 20 cm (8 inches), despite evidence that substantial stores of soil C can be found deeper in the soil profile. The maximum extent of tree rooting is typically many meters deep and provides: direct exchange with the soil solution; redistribution of water from deep horizons toward the surface during times of drought; resources for active microbial communities in deep soil around root channels; and direct carbon inputs through exudates and root turnover. This study examined soil carbon to a depth of 2.5 meters across 22 soils in Pacific Northwest Douglas-fir forests. Excavations at 20 additional sites took place in summer 2014, greatly expanding the spatial coverage and extent of the data set. Forest floor and mineral soil bulk density samples were collected at depths of 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 meters. Pool estimates from systematic sampling depths shallower than 1.5 m yielded significantly smaller estimates than the total soil stock to 2.5 meters (P<0.01). On average, only 5% of soil C was found in the litter layer, 35% was found below 0.5 meter, and 21% was found below 1.0 meter. Due to the difficulty of excavating and measuring deep soil carbon, a series of nonlinear mixed effect models were fit to the data to predict deep soil carbon stocks given sampling to 1.0 meter. A model using an inverse polynomial function predicted soil carbon to 2.5 meters with -5.6% mean error. The largest errors occurred in Andisols with non-crystalline minerals, which can adsorb large quantities of carbon on mineral surfaces and preserve it from decomposition. An accurate spatial dataset of soil depth to bedrock would be extremely useful to constrain models of the vertical distribution of soil carbon. Efforts to represent carbon in spatial models would benefit from considering the vertical distribution of carbon in soil. Sampling

  12. Computer Simulations to Study the High-Pressure Deflagration of HMX

    NASA Astrophysics Data System (ADS)

    Reaugh, John E.

    2004-07-01

    The accepted micro-mechanical picture of the build-up of detonation in solid explosives from a shock is that imperfections are a source of hot spots. The hot spots ignite and link up in the reaction zone by high-pressure deflagration. Although the deflagration is subsonic, there are so many ignition sites that the pressure build-up is rapid enough to strengthen the initial shock. Quantitative advances in this research require a detailed understanding of deflagration at the high pressure, 1 to 50 GPa, which is present in the reaction zone. We performed direct numerical simulations of high-pressure deflagrations using a simplified global (3-reaction) chemical kinetics scheme. We used ALE-3D to calculate coupled chemical reactions, heat transfer, and hydrodynamic flow for finite-difference zones comprising a mixture of reactants and products at pressure and temperature equilibrium. The speed of isobaric deflagrations depends on the pressure and initial temperature. We show how this dependence changes with kinetic parameters, including the order of the last reaction step and the heat of formation of the species formed, relative to the reactant.

  13. Computer Simulations to Study the High-Pressure Deflagration of HMX

    SciTech Connect

    Reaugh, J E

    2003-07-11

    The accepted micro-mechanical picture of the build-up of detonation in solid explosives from a shock is that imperfections are a source of hot spots. The hot spots ignite and link up in the reaction zone by high-pressure deflagration. Although the deflagration is subsonic, there are so many ignition sites that the pressure build-up is rapid enough to strengthen the initial shock. Quantitative advances in this research require a detailed understanding of deflagration at the high pressure, 1 to 50 GPa, which is present in the reaction zone. We performed direct numerical simulations of high-pressure deflagrations using a simplified global (3-reaction) chemical kinetics scheme. We used ALE-3D to calculate coupled chemical reactions, heat transfer, and hydrodynamic flow for finite-difference zones comprising a mixture of reactants and products at pressure and temperature equilibrium. The speed of isobaric deflagrations depends on the pressure and initial temperature. We show how this dependence changes with kinetic parameters, including the order of the last reaction step and the heat of formation of the species formed, relative to the reactant.

  14. A Tracer Method for Computing Type Ia Supernova Yields: Burning Model Calibration, Reconstruction of Thickened Flames, and Verification for Planar Detonations

    NASA Astrophysics Data System (ADS)

    Townsley, Dean M.; Miles, Broxton J.; Timmes, F. X.; Calder, Alan C.; Brown, Edward F.

    2016-07-01

    We refine our previously introduced parameterized model for explosive carbon-oxygen fusion during thermonuclear Type Ia supernovae (SNe Ia) by adding corrections to post-processing of recorded Lagrangian fluid-element histories to obtain more accurate isotopic yields. Deflagration and detonation products are verified for propagation in a medium of uniform density. A new method is introduced for reconstructing the temperature-density history within the artificially thick model deflagration front. We obtain better than 5% consistency between the electron capture computed by the burning model and yields from post-processing. For detonations, we compare to a benchmark calculation of the structure of driven steady-state planar detonations performed with a large nuclear reaction network and error-controlled integration. We verify that, for steady-state planar detonations down to a density of 5 × 106 g cm-3, our post-processing matches the major abundances in the benchmark solution typically to better than 10% for times greater than 0.01 s after the passage of the shock front. As a test case to demonstrate the method, presented here with post-processing for the first time, we perform a two-dimensional simulation of a SN Ia in the scenario of a Chandrasekhar-mass deflagration-detonation transition (DDT). We find that reconstruction of deflagration tracks leads to slightly more complete silicon burning than without reconstruction. The resulting abundance structure of the ejecta is consistent with inferences from spectroscopic studies of observed SNe Ia. We confirm the absence of a central region of stable Fe-group material for the multi-dimensional DDT scenario. Detailed isotopic yields are tabulated and change only modestly when using deflagration reconstruction.

  15. The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode As Deflagrations?

    SciTech Connect

    Phillips, M.M.; Li, W.; Frieman, J.A.; Blinnikov, S.I.; DePoy, D.; Prieto, J.L.; Milne, P.; Contreras, C.; Folatelli, Gaston; Morrell, N.; Hamuy, M.; Suntzeff, N.B.; Roth, M.; Gonzalez, S.; Krzeminski, W.; Filippenko, A.V.; Freedman, W.L.; Chornock, R.; Jha, S.; Madore, B.F.; Persson, S.E.; /Las Campanas Observ. /UC, Berkeley, Astron. Dept. /Chicago U., Astron. Astrophys. Ctr. /KICP, Chicago /Fermilab /Moscow, ITEP /Garching, Max Planck Inst. /Ohio State U., Dept. Astron. /Arizona U., Astron. Dept. - Steward Observ. /Chile U., Santiago /Texas A-M /Carnegie Inst. Observ. /KIPAC, Menlo Park /Caltech, IPAC /Notre Dame U. /South African Astron. Observ. /Cape Town U. /Washington U., Seattle, Astron. Dept. /New Mexico State U. /Chicago U., FLASH /Baltimore, Space Telescope Sci.

    2006-11-14

    We present extensive u{prime}g{prime}r{prime}i{prime} BV RIY JHK{sub s} photometry and optical spectroscopy of SN 2005hk. These data reveal that SN 2005hk was nearly identical in its observed properties to SN 2002cx, which has been called 'the most peculiar known type Ia supernova'. Both supernovae exhibited high ionization SN 1991T-like pre-maximum spectra, yet low peak luminosities like SN 1991bg. The spectra reveal that SN 2005hk, like SN 2002cx, exhibited expansion velocities that were roughly half those of typical type Ia supernovae. The R and I light curves of both supernovae were also peculiar in not displaying the secondary maximum observed for normal type Ia supernovae. Our Y JH photometry of SN 2005hk reveals the same peculiarity in the near-infrared. By combining our optical and near-infrared photometry of SN 2005hk with published ultraviolet light curves obtained with the Swift satellite, we are able to construct a bolometric light curve from {approx} 10 days before to {approx}60 days after B maximum. The shape and unusually low peak luminosity of this light curve, plus the low expansion velocities and absence of a secondary maximum at red and near-infrared wavelengths, are all in reasonable agreement with model calculations of a 3D deflagration which produces {approx} 0.25 M{sub {circle_dot}} of {sup 56}Ni.

  16. On the mechanism of the deflagration-to-detonation transition in a hydrogen-oxygen mixture

    SciTech Connect

    Liberman, M. A.; Ivanov, M. F.; Kiverin, A. D.; Kuznetsov, M. S.; Rakhimova, T. V.; Chukalovskii, A. A.

    2010-10-15

    The flame acceleration and the physical mechanism underlying the deflagration-to-detonation transition (DDT) have been studied experimentally, theoretically, and using a two-dimensional gasdynamic model for a hydrogen-oxygen gas mixture by taking into account the chain chemical reaction kinetics for eight components. A flame accelerating in a tube is shown to generate shock waves that are formed directly at the flame front just before DDT occurred, producing a layer of compressed gas adjacent to the flame front. A mixture with a density higher than that of the initial gas enters the flame front, is heated, and enters into reaction. As a result, a high-amplitude pressure peak is formed at the flame front. An increase in pressure and density at the leading edge of the flame front accelerates the chemical reaction, causing amplification of the compression wave and an exponentially rapid growth of the pressure peak, which 'drags' the flame behind. A high-amplitude compression wave produces a strong shock immediately ahead of the reaction zone, generating a detonation wave. The theory and numerical simulations of the flame acceleration and the new physical mechanism of DDT are in complete agreement with the experimentally observed flame acceleration, shock formation, and DDT in a hydrogen-oxygen gas mixture.

  17. A comparison of deflagration rates at elevated pressures and temperatures with thermal explosion results

    NASA Astrophysics Data System (ADS)

    Glascoe, Elizabeth A.; Springer, Harry Keo; Tringe, Joseph; Maienschein, Jon L.

    2012-03-01

    The deflagration rate of HMX-based explosives has previously been correlated with the violence of thermal explosion experiments. In particular, HMX-based materials that experience deconsolidative burning at elevated pressures (i.e. P = 200 - 600 MPa) also produce significantly more violent thermal explosions. We now report deflagration rates at elevated temperatures (i.e. T = 150 - 180C) and moderate pressures (i.e. P = 10 - 100 MPa). These conditions more closely mimic the pressures and temperatures of an explosive shortly after ignition of a thermal explosion. Here, we discuss the deflagration rates of HMX-based explosives at elevated temperatures and their usefulness to predict the thermal explosion violence of the same materials.

  18. Gravitational waves from deflagration bubbles in first-order phase transitions

    SciTech Connect

    Megevand, Ariel

    2008-10-15

    The walls of bubbles in a first-order phase transition can propagate either as detonations, with a velocity larger than the speed of sound, or deflagrations, which are subsonic. We calculate the gravitational radiation that is produced by turbulence during a phase transition which develops via deflagration bubbles. We take into account the fact that a deflagration wall is preceded by a shock front which distributes the latent heat throughout space and influences other bubbles. We show that turbulence can induce peak values of {omega}{sub GW} as high as {approx}10{sup -9}. We discuss the possibility of detecting at LISA (Laser Interferometer Space Antennae) gravitational waves produced in the electroweak phase transition with wall velocities v{sub w} < or approx. 10{sup -1}, which favor electroweak baryogenesis.

  19. Modeling the dynamics of continental shelf carbon.

    PubMed

    Hofmann, Eileen E; Cahill, Bronwyn; Fennel, Katja; Friedrichs, Marjorie A M; Hyde, Kimberly; Lee, Cindy; Mannino, Antonio; Najjar, Raymond G; O'Reilly, John E; Wilkin, John; Xue, Jianhong

    2011-01-01

    Continental margin systems are important contributors to global nutrient and carbon budgets. Effort is needed to quantify this contribution and how it will be modified under changing patterns of climate and land use. Coupled models will be used to provide projections of future states of continental margin systems. Thus, it is appropriate to consider the limitations that impede the development of realistic models. Here, we provide an overview of the current state of modeling carbon cycling on continental margins as well as the processes and issues that provide the next challenges to such models. Our overview is done within the context of a coupled circulation-biogeochemical model developed for the northeastern North American continental shelf region. Particular choices of forcing and initial fields and process parameterizations are used to illustrate the consequences for simulated distributions, as revealed by comparisons to observations using quantitative statistical metrics.

  20. Plasma-assisted ignition and deflagration-to-detonation transition.

    PubMed

    Starikovskiy, Andrey; Aleksandrov, Nickolay; Rakitin, Aleksandr

    2012-02-13

    Non-equilibrium plasma demonstrates great potential to control ultra-lean, ultra-fast, low-temperature flames and to become an extremely promising technology for a wide range of applications, including aviation gas turbine engines, piston engines, RAMjets, SCRAMjets and detonation initiation for pulsed detonation engines. The analysis of discharge processes shows that the discharge energy can be deposited into the desired internal degrees of freedom of molecules when varying the reduced electric field, E/n, at which the discharge is maintained. The amount of deposited energy is controlled by other discharge and gas parameters, including electric pulse duration, discharge current, gas number density, gas temperature, etc. As a rule, the dominant mechanism of the effect of non-equilibrium plasma on ignition and combustion is associated with the generation of active particles in the discharge plasma. For plasma-assisted ignition and combustion in mixtures containing air, the most promising active species are O atoms and, to a smaller extent, some other neutral atoms and radicals. These active particles are efficiently produced in high-voltage, nanosecond, pulse discharges owing to electron-impact dissociation of molecules and electron-impact excitation of N(2) electronic states, followed by collisional quenching of these states to dissociate the molecules. Mechanisms of deflagration-to-detonation transition (DDT) initiation by non-equilibrium plasma were analysed. For longitudinal discharges with a high power density in a plasma channel, two fast DDT mechanisms have been observed. When initiated by a spark or a transient discharge, the mixture ignited simultaneously over the volume of the discharge channel, producing a shock wave with a Mach number greater than 2 and a flame. A gradient mechanism of DDT similar to that proposed by Zeldovich has been observed experimentally under streamer initiation.

  1. Plasma-assisted ignition and deflagration-to-detonation transition.

    PubMed

    Starikovskiy, Andrey; Aleksandrov, Nickolay; Rakitin, Aleksandr

    2012-02-13

    Non-equilibrium plasma demonstrates great potential to control ultra-lean, ultra-fast, low-temperature flames and to become an extremely promising technology for a wide range of applications, including aviation gas turbine engines, piston engines, RAMjets, SCRAMjets and detonation initiation for pulsed detonation engines. The analysis of discharge processes shows that the discharge energy can be deposited into the desired internal degrees of freedom of molecules when varying the reduced electric field, E/n, at which the discharge is maintained. The amount of deposited energy is controlled by other discharge and gas parameters, including electric pulse duration, discharge current, gas number density, gas temperature, etc. As a rule, the dominant mechanism of the effect of non-equilibrium plasma on ignition and combustion is associated with the generation of active particles in the discharge plasma. For plasma-assisted ignition and combustion in mixtures containing air, the most promising active species are O atoms and, to a smaller extent, some other neutral atoms and radicals. These active particles are efficiently produced in high-voltage, nanosecond, pulse discharges owing to electron-impact dissociation of molecules and electron-impact excitation of N(2) electronic states, followed by collisional quenching of these states to dissociate the molecules. Mechanisms of deflagration-to-detonation transition (DDT) initiation by non-equilibrium plasma were analysed. For longitudinal discharges with a high power density in a plasma channel, two fast DDT mechanisms have been observed. When initiated by a spark or a transient discharge, the mixture ignited simultaneously over the volume of the discharge channel, producing a shock wave with a Mach number greater than 2 and a flame. A gradient mechanism of DDT similar to that proposed by Zeldovich has been observed experimentally under streamer initiation. PMID:22213667

  2. Stochastic multiscale model for carbonate rocks.

    PubMed

    Biswal, B; Oren, P-E; Held, R J; Bakke, S; Hilfer, R

    2007-06-01

    A multiscale model for the diagenesis of carbonate rocks is proposed. It captures important pore scale characteristics of carbonate rocks: wide range of length scales in the pore diameters; large variability in the permeability; and strong dependence of the geometrical and transport parameters on the resolution. A pore scale microstructure of an oolithic dolostone with generic diagenetic features is successfully generated. The continuum representation of a reconstructed cubic sample of side length 2mm contains roughly 42 x 10{6} crystallites and pore diameters varying over many decades. Petrophysical parameters are computed on discretized samples of sizes up to 1000{3}. The model can be easily adapted to represent the multiscale microstructure of a wide variety of carbonate rocks. PMID:17677251

  3. Stochastic multiscale model for carbonate rocks.

    PubMed

    Biswal, B; Oren, P-E; Held, R J; Bakke, S; Hilfer, R

    2007-06-01

    A multiscale model for the diagenesis of carbonate rocks is proposed. It captures important pore scale characteristics of carbonate rocks: wide range of length scales in the pore diameters; large variability in the permeability; and strong dependence of the geometrical and transport parameters on the resolution. A pore scale microstructure of an oolithic dolostone with generic diagenetic features is successfully generated. The continuum representation of a reconstructed cubic sample of side length 2mm contains roughly 42 x 10{6} crystallites and pore diameters varying over many decades. Petrophysical parameters are computed on discretized samples of sizes up to 1000{3}. The model can be easily adapted to represent the multiscale microstructure of a wide variety of carbonate rocks.

  4. Pyrotechnic hazards classification and evaluation program test report. Heat flux study of deflagrating pyrotechnic munitions

    NASA Technical Reports Server (NTRS)

    Fassnacht, P. O.

    1971-01-01

    A heat flux study of deflagrating pyrotechnic munitions is presented. Three tests were authorized to investigate whether heat flux measurements may be used as effective hazards evaluation criteria to determine safe quantity distances for pyrotechnics. A passive sensor study was conducted simultaneously to investigate their usefulness in recording events and conditions. It was concluded that heat flux measurements can effectively be used to evaluate hazards criteria and that passive sensors are an inexpensive tool to record certain events in the vicinity of deflagrating pyrotechnic stacks.

  5. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    EPA Science Inventory

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  6. Modelling ocean carbon cycle with a nonlinear convolution model

    NASA Astrophysics Data System (ADS)

    Kheshgi, Haroon S.; White, Benjamin S.

    1996-02-01

    A nonlinear convolution integral is developed to model the response of the ocean carbon sink to changes in the atmospheric concentration of CO2. This model can accurately represent the atmospheric response of complex ocean carbon cycle models in which the nonlinear behavior stems from the nonlinear dependence of CO2 solubility in seawater on CO2 partial pressure, which is often represented by the buffer factor. The kernel of the nonlinear convolution model can be constructed from a response of such a complex model to an arbitrary change in CO2 emissions, along with the functional dependence of the buffer factor. Once the convolution kernel has been constructed, either analytically or from a model experiment, the convolution representation can be used to estimate responses of the ocean carbon sink to other changes in the atmospheric concentration of CO2. Thus the method can be used, e.g., to explore alternative emissions scenarios for assessments of climate change. A derivation for the nonlinear convolution integral model is given, and the model is used to reproduce the response of two carbon cycle models: a one-dimensional diffusive ocean model, and a three-dimensional ocean-general-circulation tracer model.

  7. Liquid surface model for carbon nanotube energetics.

    PubMed

    Solov'yov, Ilia A; Mathew, Maneesh; Solov'yov, Andrey V; Greiner, Walter

    2008-11-01

    In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms are known. The parameters of the liquid surface model and its potential applications are discussed. The model has been suggested for open end and capped nanotubes. The influence of the catalytic nanoparticle, atop which nanotubes grow, on the nanotube stability is also discussed. The suggested model gives an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions.

  8. A generic biokinetic model for Carbon-14.

    PubMed

    Manger, R P

    2011-01-01

    The generic biokinetic model currently recommended by the International Commission on Radiological Protection (ICRP) for the treatment of systemic radiocarbon assumes uniform distribution of activity in tissues and a biological half-time of 40 d. This model is intended to generate cautiously high estimates of dose per unit intake of C-14 and, in fact, generally predicts a much higher effective dose than systemic models that have been developed on the basis of biokinetic studies of specific carbon compounds. The simplistic model formulation precludes its application as a bioassay model or adjustment to fit case-specific bioassay data. This paper proposes a new generic biokinetic model for systemic radiocarbon that is less conservative than the current ICRP model but maintains sufficient conservatism to overestimate the effective dose coefficients generated by most radiocarbon-compound-specific models. The proposed model includes two systemic pools with different biological half-times representing an initial systemic form of absorbed radiocarbon, a submodel describing the behaviour of labelled carbon dioxide produced in vivo, and three excretion pathways: breath, urine and faeces. Generic excretion rates along each path are based on multi-phase excretion curves observed in experimental studies of radiocarbons. The generic model structure is designed so that the user may adjust the level of dosimetric conservatism to fit the information at hand and may adjust parameter values for consistency with subject-specific or site-specific bioassay data. PMID:21075764

  9. Improving carbon model phenology using data assimilation

    NASA Astrophysics Data System (ADS)

    Exrayat, Jean-François; Smallman, T. Luke; Bloom, A. Anthony; Williams, Mathew

    2015-04-01

    Carbon cycle dynamics is significantly impacted by ecosystem phenology, leading to substantial seasonal and inter-annual variation in the global carbon balance. Representing inter-annual variability is key for predicting the response of the terrestrial ecosystem to climate change and disturbance. Existing terrestrial ecosystem models (TEMs) often struggle to accurately simulate observed inter-annual variability. TEMs often use different phenological models based on plant functional type (PFT) assumptions. Moreover, due to a high level of computational overhead in TEMs they are unable to take advantage of globally available datasets to calibrate their models. Here we describe the novel CARbon DAta MOdel fraMework (CARDAMOM) for data assimilation. CARDAMOM is used to calibrate the Data Assimilation Linked Ecosystem Carbon version 2 (DALEC2) model using Bayes' Theorem within a Metropolis Hastings - Markov Chain Monte Carlo (MH-MCMC). CARDAMOM provides a framework which combines knowledge from observations, such as remotely sensed LAI, and heuristic information in the form of Ecological and Dynamical Constraints (EDCs). The EDCs are representative of real world processes and constrain parameter interdependencies and constrain carbon dynamics. We used CARDAMOM to bring together globally spanning datasets of LAI and the DALEC2 and DALEC2-GSI models. These analyses allow us to investigate the sensitivity ecosystem processes to the representation of phenology. DALEC2 uses an analytically solved model of phenology which is invariant between years. In contrast DALEC2-GSI uses a growing season index (GSI) calculated as a function of temperature, vapour pressure deficit (VPD) and photoperiod to calculate bud-burst and leaf senescence, allowing the model to simulate inter-annual variability in response to climate. Neither model makes any PFT assumptions about the phenological controls of a given ecosystem, allowing the data alone to determine the impact of the meteorological

  10. Modeling the Carbon Dust Around Evolved Carbon Stars

    NASA Astrophysics Data System (ADS)

    Derby, John; Chiar, Jean E.; Povich, Matthew S.; Egan, Michael P.; Jones, Anthony P.; Tielens, Xander

    2015-01-01

    We used a 3D Monte Carlo radiative transfer code to model the dust emission around the evolved carbon star, IRAS 07134+1005. We assume the axially symmetric superwind dust shell model as defined by Meixner et al. 1997 (ApJ, 482, 897). IRAS 07134+1005 is a '21 mm' object and is, thus, a carbon-rich, low metallicity star with a large infrared excess. In order to determine the characteristics of the circumstellar carbonaceous dust, we use a set of optical constants for carbonaceous materials computed over a range of H/C and band-gaps. This is the first study to use a set of known hydrocarbon types that covered a range of hydrogen atom fractions and thus a span of aromatic rich (low hydrogen atom fraction) to aliphatic rich (high hydrogen atom fraction) hydrocarbon materials. Our observational data (photometry and spectroscopy from the literature) cover the wavelength range from 0.352-100 mm. We compare our model spectrum and simulated mid-IR images to the observed spectral energy distribution and images to draw conclusions about the nature of the hydrocarbon dust around IRAS 07134+1005.Support for this work came from National Science Foundation under Award No. AST-1322432, a PAARE Grant for the California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE) and AST-1359346, an REU Site Grant at the SETI Institute, and by the John Templeton Foundation through its New Frontiers in Astronomy and Cosmology, administered by Don York of the University of Chicago.

  11. Rock Physic Modeling of Carbonate Sediments

    NASA Astrophysics Data System (ADS)

    Ruiz, F. J.; Dvorkin, J.; Nur, A.

    2006-12-01

    We offer an effective-medium model for estimating the elastic properties of high-porosity marine carbonate sediment. This model treats carbonate as a pack of porous elastic grains. The effective elastic moduli of the grains are calculated using the Differential Effective Medium model (DEM) where the ellipsoidal inclusions have a fixed aspect ratio and are filled with sea water. Then the elastic moduli of a pack of these grains are calculated using a modified (scaled to the critical porosity) upper Hashin-Shtrikman bound. We find that the best match between the model-predicted compressional and shear-wave velocity and ODP data from three wells is achieved for the aspect ratio 0.25. We also examine a laboratory data set for low-porosity consolidated carbonate rock. In this case we treat the grains as solid without inclusions and then use DEM to calculate the effective bulk and shear moduli of the whole rock. The best fit to the experimental data is achieved for the pore aspect ratio in the range between 0.1 and 0.2. These effective medium predictions also match the empirical Raymer's (1980) equation applied to pure calcite rock. The basic conclusion is that in spite of the apparent wide variation in the shape and size distribution of pores in carbonate, its elastic properties can be predicted by assuming a single aspect ratio (shape) of the pores. The combination of the above two models provides a predictive estimate for the elastic-wave velocity of calcite sediment (at least for the data under examination) in a wide porosity range between zero and almost 100% porosity. It is important to emphasize that our effective-medium approach assigns finite non-zero values to the shear modulus of high-porosity marine sediment unlike the suspension model commonly used in such depositional setting.

  12. Modeling of carbon nanotubes and carbon nanotube-polymer composites

    NASA Astrophysics Data System (ADS)

    Pal, G.; Kumar, S.

    2016-01-01

    In order to meet stringent environmental, safety and performance requirements from respective regulatory bodies, various technology-based industries are promoting the use of advanced carbon nanotube (CNT) reinforced lightweight and high strength polymer nanocomposites (PNCs) as a substitute to conventional materials both in structural and non-structural applications. The superior mechanical properties of PNCs made up of CNTs or bundles of CNTs can be attributed to the interfacial interaction between the CNTs and matrix, CNT's morphologies and to their uniform dispersion in the matrix. In PNCs, CNTs physically bond with polymeric matrix at a level where the assumption of continuum level interactions is not applicable. Modeling and prediction of mechanical response and failure behavior of CNTs and their composites becomes a complex task and is dealt with the help of up-scale modeling strategies involving multiple spatial and temporal scales in hierarchical or concurrent manner. Firstly, the article offers an insight into various modeling techniques in studying the mechanical response of CNTs; namely, equivalent continuum approach, quasi-continuum approach and molecular dynamics (MD) simulation. In the subsequent steps, these approaches are combined with analytical and numerical micromechanics models in a multiscale framework to predict the average macroscopic response of PNCs. The review also discusses the implementation aspects of these computational approaches, their current status and associated challenges with a future outlook.

  13. Multiphase Sequestration Geochemistry: Model for Mineral Carbonation

    SciTech Connect

    White, Mark D.; McGrail, B. Peter; Schaef, Herbert T.; Hu, Jian Z.; Hoyt, David W.; Felmy, Andrew R.; Rosso, Kevin M.; Wurstner, Signe K.

    2011-04-01

    Carbonation of formation minerals converts low viscosity supercritical CO2 injected into deep saline reservoirs for geologic sequestration into an immobile form. Until recently the scientific focus of mineralization reactions with reservoir rocks has been those that follow an aqueous-mediated dissolution/precipitation mechanism, driven by the sharp reduction in pH that occurs with CO2 partitioning into the aqueous phase. For sedimentary basin formations the kinetics of aqueous-mediated dissolution/precipitation reactions are sufficiently slow to make the role of mineralization trapping insignificant over a century period. For basaltic saline formations aqueous-phase mineralization progresses at a substantially higher rate, making the role of mineralization trapping significant, if not dominant, over a century period. The overlooked mineralization reactions for both sedimentary and basaltic saline formations, however, are those that occur in liquid or supercritical CO2 phase; where, dissolved water appears to play a catalyst role in the formation of carbonate minerals. A model is proposed in this paper that describes mineral carbonation over sequestration reservoir conditions ranging from dissolved CO2 in aqueous brine to dissolved water in supercritical CO2. The model theory is based on a review of recent experiments directed at understanding the role of water in mineral carbonation reactions of interest in geologic sequestration systems occurring under low water contents.

  14. Theoretical Model for Nanoporous Carbon Supercapacitors

    SciTech Connect

    Sumpter, Bobby G; Meunier, Vincent; Huang, Jingsong

    2008-01-01

    The unprecedented anomalous increase in capacitance of nanoporous carbon supercapacitors at pore sizes smaller than 1 nm [Science 2006, 313, 1760.] challenges the long-held presumption that pores smaller than the size of solvated electrolyte ions do not contribute to energy storage. We propose a heuristic model to replace the commonly used model for an electric double-layer capacitor (EDLC) on the basis of an electric double-cylinder capacitor (EDCC) for mesopores (2 {50 nm pore size), which becomes an electric wire-in-cylinder capacitor (EWCC) for micropores (< 2 nm pore size). Our analysis of the available experimental data in the micropore regime is confirmed by 1st principles density functional theory calculations and reveals significant curvature effects for carbon capacitance. The EDCC (and/or EWCC) model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size. The new model not only explains the experimental data, but also offers a practical direction for the optimization of the properties of carbon supercapacitors through experiments.

  15. Autoignition due to hydraulic resistance and deflagration-to-detonation transition

    SciTech Connect

    Kagan, L.; Sivashinsky, G.

    2008-07-15

    A further development of the friction-based concept of the deflagration-to-detonation transition is presented. Employing Zeldovich's quasi-one-dimensional formulation for combustion in hydraulically resisted flows, the autoignition of the unburned gas subjected to the friction-induced precompression and preheating is assessed. It is shown that autoignition, triggering the transition, is readily attainable for quite realistic parameters. (author)

  16. Temperature effects on failure thickness and deflagration-to-detonation transition in PBX 9502 and TATB

    SciTech Connect

    Asay, B.W.; McAfee, J.B.

    1993-01-01

    The deflagration-to-detonation (DDT) behavior of TATB has been investigated at high temperatures and severe confinement. comparison is made to other common explosives under similar confinement. TATB did not DDT under these conditions. The failure thickness of PBX 9502 at 250[degrees]C has also been determined. Two mm appears to be the limiting value at this temperature.

  17. Temperature effects on failure thickness and deflagration-to-detonation transition in PBX 9502 and TATB

    SciTech Connect

    Asay, B.W.; McAfee, J.B.

    1993-04-01

    The deflagration-to-detonation (DDT) behavior of TATB has been investigated at high temperatures and severe confinement. comparison is made to other common explosives under similar confinement. TATB did not DDT under these conditions. The failure thickness of PBX 9502 at 250{degrees}C has also been determined. Two mm appears to be the limiting value at this temperature.

  18. BOREAS TE-19 Ecosystem Carbon Balance Model

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Frolking, Steve

    2000-01-01

    The BOREAS TE-19 team developed a model called the Spruce and Moss Model (SPAM) designed to simulate the daily carbon balance of a black spruce/moss boreal forest ecosystem. It is driven by daily weather conditions, and consists of four components: (1) soil climate, (2) tree photosynthesis and respiration, (3) moss photosynthesis and respiration, and (4) litter decomposition and associated heterotrophic respiration. The model simulates tree gross and net photosynthesis, wood respiration, live root respiration, moss gross and net photosynthesis, and heterotrophic respiration (decomposition of root litter, young needle and moss litter, and humus). These values can be combined to generate predictions of total site net ecosystem exchange of carbon (NEE), total soil dark respiration (live roots + heterotrophs + live moss), spruce and moss net productivity, and net carbon accumulation in the soil. To date, simulations have been of the BOREAS NSA-OBS and SSA-OBS tower sites, from 1968-95 (except 1990-93). The files include source code and sample input and output files in ASCII format. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  19. Two dimensional numerical prediction of deflagration-to-detonation transition in porous energetic materials.

    PubMed

    Narin, B; Ozyörük, Y; Ulas, A

    2014-05-30

    This paper describes a two-dimensional code developed for analyzing two-phase deflagration-to-detonation transition (DDT) phenomenon in granular, energetic, solid, explosive ingredients. The two-dimensional model is constructed in full two-phase, and based on a highly coupled system of partial differential equations involving basic flow conservation equations and some constitutive relations borrowed from some one-dimensional studies that appeared in open literature. The whole system is solved using an optimized high-order accurate, explicit, central-difference scheme with selective-filtering/shock capturing (SF-SC) technique, to augment central-diffencing and prevent excessive dispersion. The sources of the equations describing particle-gas interactions in terms of momentum and energy transfers make the equation system quite stiff, and hence its explicit integration difficult. To ease the difficulties, a time-split approach is used allowing higher time steps. In the paper, the physical model for the sources of the equation system is given for a typical explosive, and several numerical calculations are carried out to assess the developed code. Microscale intergranular and/or intragranular effects including pore collapse, sublimation, pyrolysis, etc. are not taken into account for ignition and growth, and a basic temperature switch is applied in calculations to control ignition in the explosive domain. Results for one-dimensional DDT phenomenon are in good agreement with experimental and computational results available in literature. A typical shaped-charge wave-shaper case study is also performed to test the two-dimensional features of the code and it is observed that results are in good agreement with those of commercial software. PMID:24721693

  20. Two dimensional numerical prediction of deflagration-to-detonation transition in porous energetic materials.

    PubMed

    Narin, B; Ozyörük, Y; Ulas, A

    2014-05-30

    This paper describes a two-dimensional code developed for analyzing two-phase deflagration-to-detonation transition (DDT) phenomenon in granular, energetic, solid, explosive ingredients. The two-dimensional model is constructed in full two-phase, and based on a highly coupled system of partial differential equations involving basic flow conservation equations and some constitutive relations borrowed from some one-dimensional studies that appeared in open literature. The whole system is solved using an optimized high-order accurate, explicit, central-difference scheme with selective-filtering/shock capturing (SF-SC) technique, to augment central-diffencing and prevent excessive dispersion. The sources of the equations describing particle-gas interactions in terms of momentum and energy transfers make the equation system quite stiff, and hence its explicit integration difficult. To ease the difficulties, a time-split approach is used allowing higher time steps. In the paper, the physical model for the sources of the equation system is given for a typical explosive, and several numerical calculations are carried out to assess the developed code. Microscale intergranular and/or intragranular effects including pore collapse, sublimation, pyrolysis, etc. are not taken into account for ignition and growth, and a basic temperature switch is applied in calculations to control ignition in the explosive domain. Results for one-dimensional DDT phenomenon are in good agreement with experimental and computational results available in literature. A typical shaped-charge wave-shaper case study is also performed to test the two-dimensional features of the code and it is observed that results are in good agreement with those of commercial software.

  1. Critical deflagration waves leading to detonation onset under different boundary conditions

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Zhou, Jin; Fan, Xiao-Hua; Lin, Zhi-Yong

    2015-01-01

    High-speed turbulent critical deflagration waves before detonation onset in H2-air mixture propagated into a square cross section channel, which was assembled of optional rigid rough, rigid smooth, or flexible walls. The corresponding propagation characteristic and the influence of the wall boundaries on the propagation were investigated via high-speed shadowgraph and a high-frequency pressure sampling system. As a comprehensive supplement to the different walls effect investigation, the effect of porous absorbing walls on the detonation propagation was also investigated via smoke foils and the high-frequency pressure sampling system. Results are as follows. In the critical deflagration stage, the leading shock and the closely following turbulent flame front travel at a speed of nearly half the CJ detonation velocity. In the preheated zone, a zonary flame arises from the overlapping part of the boundary layer and the pressure waves, and then merges into the mainstream flame. Among these wall boundary conditions, the rigid rough wall plays a most positive role in the formation of the zonary flame and thus accelerates the transition of the deflagration to detonation (DDT), which is due to the boost of the boundary layer growth and the pressure wave reflection. Even though the flexible wall is not conducive to the pressure wave reflection, it brings out a faster boundary layer growth, which plays a more significant role in the zonary flame formation. Additionally, the porous absorbing wall absorbs the transverse wave and yields detonation decay and velocity deficit. After the absorbing wall, below some low initial pressure conditions, no re-initiation occurs and the deflagration propagates in critical deflagration for a relatively long distance. Project supported by the National Natural Science Foundation of China (Grant No. 51206182).

  2. Modeling the carbon cycle in Lake Matano.

    PubMed

    Kuntz, L B; Laakso, T A; Schrag, D P; Crowe, S A

    2015-09-01

    Lake Matano, Indonesia, is a stratified anoxic lake with iron-rich waters that has been used as an analogue for the Archean and early Proterozoic oceans. Past studies of Lake Matano report large amounts of methane production, with as much as 80% of primary production degraded via methanogenesis. Low δ(13)C values of DIC in the lake are difficult to reconcile with this notion, as fractionation during methanogenesis produces isotopically heavy CO2. To help reconcile these observations, we develop a box model of the carbon cycle in ferruginous Lake Matano, Indonesia, that satisfies the constraints of CH4 and DIC isotopic profiles, sediment composition, and alkalinity. We estimate methane fluxes smaller than originally proposed, with about 9% of organic carbon export to the deep waters degraded via methanogenesis. In addition, despite the abundance of Fe within the waters, anoxic ferric iron respiration of organic matter degrades <3% of organic carbon export, leaving methanogenesis as the largest contributor to anaerobic organic matter remineralization, while indicating a relatively minor role for iron as an electron acceptor. As the majority of carbon exported is buried in the sediments, we suggest that the role of methane in the Archean and early Proterozoic oceans is less significant than presumed in other studies.

  3. Existing Soil Carbon Models Do Not Apply to Forested Wetlands.

    SciTech Connect

    Trettin, C C; Song, B; Jurgensen, M F; Li, C

    2001-09-14

    Evaluation of 12 widely used soil carbon models to determine applicability to wetland ecosystems. For any land area that includes wetlands, none of the individual models would produce reasonable simulations based on soil processes. Study presents a wetland soil carbon model framework based on desired attributes, the DNDC model and components of the CENTURY and WMEM models. Proposed synthesis would be appropriate when considering soil carbon dynamics at multiple spatial scales and where the land area considered includes both wetland and upland ecosystems.

  4. Silicon Carbide Derived Carbons: Experiments and Modeling

    SciTech Connect

    Kertesz, Miklos

    2011-02-28

    The main results of the computational modeling was: 1. Development of a new genealogical algorithm to generate vacancy clusters in diamond starting from monovacancies combined with energy criteria based on TBDFT energetics. The method revealed that for smaller vacancy clusters the energetically optimal shapes are compact but for larger sizes they tend to show graphitized regions. In fact smaller clusters of the size as small as 12 already show signatures of this graphitization. The modeling gives firm basis for the slit-pore modeling of porous carbon materials and explains some of their properties. 2. We discovered small vacancy clusters and their physical characteristics that can be used to spectroscopically identify them. 3. We found low barrier pathways for vacancy migration in diamond-like materials by obtaining for the first time optimized reaction pathways.

  5. Dynamic energy models and carbon mitigation policies

    NASA Astrophysics Data System (ADS)

    Tilley, Luke A.

    In this dissertation I examine a specific class of energy models and their implications for carbon mitigation policies. The class of models includes a production function capable of reproducing the empirically observed phenomenon of short run rigidity of energy use in response to energy price changes and long run exibility of energy use in response to energy price changes. I use a theoretical model, parameterized using empirical data, to simulate economic performance under several tax regimes where taxes are levied on capital income, investment, and energy. I also investigate transitions from one tax regime to another. I find that energy taxes intended to reduce energy use can successfully achieve those goals with minimal or even positive impacts on macroeconomic performance. But the transition paths to new steady states are lengthy, making political commitment to such policies very challenging.

  6. Carbonate-silicate cycle models of the long-term carbon cycle, carbonate accumulation in the oceans, and climate

    SciTech Connect

    Caldeira, K.G.

    1991-01-01

    Several models of the long-term carbon cycle, incorporating models of the carbonate-silicate cycle, were developed and utilized to investigate issues relating to global climate and the causes and consequences of changes in calcium carbonate accumulation in the oceans. Model results indicate that the marked mid-Cretaceous (120 Ma) global warming could be explained by increased rates of release of carbon dioxide from subduction-zone metamorphism and mid-ocean-ridges, in conjunction with paleogeographic factors. Since the mid-Cretaceous, the primary setting for calcium carbonate accumulation in the oceans has shifted from shallow-water to deep-water environments. Model results suggest that this shift could have major consequences for the carbonate-silicate cycle and climate, and lead to significant increases in the flux of metamorphic carbon dioxide to the atmosphere. Increases in pelagic carbonate productivity, and decreases in tropical shallow-water area available for neritic carbonate accumulation, have both been proposed as the primary cause of this shift. Two lines of evidence developed here (one involving a statistical analysis of Tertiary carbonate-accumulation and oxygen-isotope data, and another based on modeling the carbonate-silicate cycle and ocean chemistry) suggest that a decrease in tropical shallow-water area was more important than increased pelagic productivity in explaining this shift. Model investigations of changes in ocean chemistry at the Cretaceous/Tertiary (K/T) boundary (66 Ma) indicate that variations in deep-water carbonate productivity may affect shallow-water carbonate accumulation rates through a mechanism involving surface-water carbonate-ion concentration. In the aftermath of the K/T boundary event, deep-water carbonate production and accumulation were significantly reduced as a result of the extinction of calcareous plankton.

  7. Assessing variability in belowground carbon for CMIP-5 models

    NASA Astrophysics Data System (ADS)

    Todd-Brown, K. E.; Hoffman, F. M.; Randerson, J. T.; Post, W. M.; Allison, S. D.

    2011-12-01

    Soil carbon stocks and heterotrophic respiration are critical components of the global carbon cycle. This study compared soil carbon survey data with modeled stocks and assessed the magnitude of change in modeled soil carbon between 1850 and 2005. Model means (1995-2005) from the CMIP-5 historical experiment were compared to soil carbon estimates from the Harmonized World Soil Database (HWSD) across biomes derived from the MODIS/Terra+Aqua land cover type. Changes in soil carbon stocks were calculated as the difference between the 1850-1860 and 1995-2005 model means. In general, the models overestimated modern soil carbon stocks in areas of relatively low soil carbon (<100 kg m^-2) by 310 Pg (28%) and underestimated modern soil carbon stocks in areas of relatively high soil carbon (>100 kg m^-2) by 1012 Pg (85%) (n=7). Total modern soil carbon ranged from 1120-2523 Pg among the models versus 2280 Pg from the HWSD. These results imply that the models do not represent the high soil carbon of peatlands well. Models underestimated soil carbon in the boreal forest by 417 Pg (61%) (sd=47, cv=0.11, n=7). Soil carbon predictions for temperate forests were closest to HWSD with an overestimate of 13 Pg (21%) (sd=13, cv=0.96, n=7). Over the course of the simulations, average model soil carbon stocks increased 6% gobally (sd=4, cv=0.65, n=7) from 1563 Pg to 1664 Pg. This change was accompanied by a 22% (sd=5, cv=0.26, n=4) increase in modeled NPP from 73 Pg-C/yr to 89 Pg-C/yr for models that report NPP. In summary, the CMIP5 models tend to underestimate total soil carbon stocks, particularly in areas with high soil carbon concentration. Despite rising temperatures over the past 150 years, these models also predicted a substantial increase in soil carbon stocks that is likely due to increased NPP. Whether this rate of increase can be verified with empirical data or sustained over the 21st century is unclear. Given the discrepancies between modeled and observed distributions of

  8. [Fire disaster due to deflagration of a propane gas-air mixture].

    PubMed

    Nadjem, Hadi; Vogt, Susanne; Simon, Karl-Heinz; Pollak, Stefan; Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Perdekampl, Markus Große; Thierauf-Emberger, Annette

    2015-01-01

    On 26 Nov 2012, a serious fire occurred at Neustadt/Black Forest in which 14 persons in a sheltered workshop died and 10 other individuals were injured. The fire was caused by the unbridled escape of propane gas due to accidental disconnection of the screw fixing between a gas bottle and a catalytic heater. Deflagration of the propane gas-air mixture set the workshop facilities on fire. In spite of partly extensive burns the fatally injured victims could be rapidly identified. The results of the fire investigations at the scene and the autopsy findings are presented. Carboxyhemoglobin concentrations ranged between 8 and 56 % and signs of fire fume inhalation were present in all cases. Three victims had eardrum ruptures due to the sudden increase in air pressure during the deflagration. PMID:26548032

  9. [Fire disaster due to deflagration of a propane gas-air mixture].

    PubMed

    Nadjem, Hadi; Vogt, Susanne; Simon, Karl-Heinz; Pollak, Stefan; Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Perdekampl, Markus Große; Thierauf-Emberger, Annette

    2015-01-01

    On 26 Nov 2012, a serious fire occurred at Neustadt/Black Forest in which 14 persons in a sheltered workshop died and 10 other individuals were injured. The fire was caused by the unbridled escape of propane gas due to accidental disconnection of the screw fixing between a gas bottle and a catalytic heater. Deflagration of the propane gas-air mixture set the workshop facilities on fire. In spite of partly extensive burns the fatally injured victims could be rapidly identified. The results of the fire investigations at the scene and the autopsy findings are presented. Carboxyhemoglobin concentrations ranged between 8 and 56 % and signs of fire fume inhalation were present in all cases. Three victims had eardrum ruptures due to the sudden increase in air pressure during the deflagration.

  10. The Darrieus-Landau instability in fast deflagration and laser ablation

    SciTech Connect

    Bychkov, Vitaly; Modestov, Mikhail; Marklund, Mattias

    2008-03-15

    The problem of the Darrieus-Landau instability at a discontinuous deflagration front in a compressible flow is solved. Numerous previous attempts to solve this problem suffered from the deficit of boundary conditions. Here, the required additional boundary condition is derived rigorously taking into account the internal structure of the front. The derived condition implies a constant mass flux at the front; it reduces to the classical Darrieus-Landau condition in the limit of an incompressible flow. It is demonstrated that in general the solution to the problem depends on the type of energy source in the flow. In the common case of a strongly localized source, compression effects make the Darrieus-Landau instability considerably weaker. Particularly, the instability growth rate is reduced for laser ablation in comparison to the classical incompressible case. The instability disappears completely in the Chapman-Jouguet regime of ultimately fast deflagration.

  11. Peak pressures from hydrogen deflagrations in the PFP thermal stabilization glovebox

    SciTech Connect

    Van Keuren, J.C.

    1998-08-11

    This document describes the calculations of the peak pressures due to hydrogen deflagrations in the glovebox used for thermal stabilization (glovebox HC-21A) in PFP. Two calculations were performed. The first considered the burning of hydrogen released from a 7 inch Pu can in the Inert Atmosphere Confinement (IAC) section of the glovebox. The peak pressure increase was 12400 Pa (1.8 psi). The second calculation considered burning of the hydrogen from 25 g of plutonium hydride in the airlock leading to the main portion of the glovebox. Since the glovebox door exposes most of the airlock when open, the deflagration was assumed to pressurize the entire glovebox. The peak pressure increase was 3860 Pa (0.56 psi).

  12. Counterpart of the Darrieus-Landau instability at a magnetic deflagration front

    NASA Astrophysics Data System (ADS)

    Jukimenko, O.; Modestov, M.; Dion, C. M.; Marklund, M.; Bychkov, V.

    2016-04-01

    The magnetic instability at the front of the spin avalanche in a crystal of molecular magnets is considered. This phenomenon reveals similar features with the Darrieus-Landau instability, inherent to classical combustion flame fronts. The instability growth rate and the cutoff wavelength are investigated with respect to the strength of the external magnetic field, both analytically in the limit of an infinitely thin front and numerically for finite-width fronts. The presence of quantum tunneling resonances is shown to increase the growth rate significantly, which may lead to a possible transition from deflagration to detonation regimes. Different orientations of the crystal easy axis are shown to exhibit opposite stability properties. In addition, we suggest experimental conditions that could evidence the instability and its influence on the magnetic deflagration velocity.

  13. The role and importance of porosity in the deflagration rates of HMX-based materials

    SciTech Connect

    Glascoe, E A; Hsu, P C; Springer, H K

    2011-03-15

    The deflagration behavior of thermally damaged HMX-based materials will be discussed. Strands of material were burned at pressures ranging from 10-300 MPa using the LLNL high pressure strand burner. Strands were heated in-situ and burned while still hot; temperatures range from 90-200 C and were chosen in order to allow for thermal damage of the material without significant decomposition of the HMX. The results indicate that multiple variables affect the burn rate but the most important are the polymorph of HMX and the nature and thermal stability of the non-HE portion of the material. Characterization of the strands indicate that the thermal soak produces significant porosity and permeability in the sample allowing for significantly faster burning due to the increased surface area and new pathways for flame spread into the material. Specifically, the deflagration rates of heated PBXN-9, LX-10, and PBX-9501 will be discussed and compared.

  14. A report on the deflagration-to-detonation transition (DDT) in the high explosive LX-04

    SciTech Connect

    Hare, D E; Forbes, J W; Garcia, F; Granholm, R H; Tarver, C M; Vandersall, K S; Sandusky, H W

    2004-06-30

    The deflagration-to-detonation transition (DDT) was investigated for 1.874 g/cc (98.8 % of theoretical maximum density) LX-04 in moderate confinement (4340 steel tube at R{sub C} 32 with 1.020 inch inside diameter and 0.235 inch thick wall) at both ambient initial temperature (roughly 20 C) and at an initial temperature of 186 C. No transition to detonation was observed in a 295 mm column length for either case.

  15. Deflagration Behavior of PBXN-109 and Composition B at High Pressures and Temperatures

    SciTech Connect

    Maienschein, J L; Wardell, J F

    2002-03-11

    We report deflagration rate measurements on PBXN-109 (RDWAVHTPB) and Composition B (RXDTTNThrvax) at pressures from 1,500-100,000 psi (10-700 MPa). This was done with the LLNL High Pressure Strand Burner, in which embedded wires are used to record the time-of-arrival of the burn front in the cylindrical sample as a function of pressure. The propellant samples are 6.4 mm in diameter and 6.4 mm long, with burn wires inserted between samples. Burning on the cylindrical surface is inhibited with an epoxy or polyurethane layer. With this direct measurement we do not have to account for product gas equation of state or heat losses in the system, and the burn wires allow detection of irregular burning. We report deflagration results for PBXN-109 as received, and also after it has been damaged by heating. The burn behavior of pristine PBXN-109 is very regular, and exhibits a reduction in pressure exponent from 1.32 to 0.85 at pressures above 20,000 psi (135 MPa). When PBXN-109 is thermally damaged by heating to 170-180 C, the deflagration rate is increased by more than a factor of 10. This appears to be a physical effect, as the faster burning may be explained by an increase in surface area. Our results with Composition B show an apparent 2nd order pressure dependence for initial deflagration, followed by deconsolidation and onset of very rapid and erratic burning. The deconsolidation may be the result of the TNT melting as heat flows into the sample.

  16. First principles model of carbonate compaction creep

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Daniel; Dysthe, Dag Kristian; Jamtveit, Bjørn

    2016-05-01

    Rocks under compressional stress conditions are subject to long-term creep deformation. From first principles we develop a simple micromechanical model of creep in rocks under compressional stress that combines microscopic fracturing and pressure solution. This model was then upscaled by a statistical mechanical approach to predict strain rate at core and reservoir scale. The model uses no fitting parameter and has few input parameters: effective stress, temperature, water saturation porosity, and material parameters. Material parameters are porosity, pore size distribution, Young's modulus, interfacial energy of wet calcite, the dissolution, and precipitation rates of calcite, and the diffusion rate of calcium carbonate, all of which are independently measurable without performing any type of deformation or creep test. Existing long-term creep experiments were used to test the model which successfully predicts the magnitude of the resulting strain rate under very different effective stress, temperature, and water saturation conditions. The model was used to predict the observed compaction of a producing chalk reservoir.

  17. Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration.

    PubMed

    Valiev, Damir M; Bychkov, Vitaly; Akkerman, V'yacheslav; Eriksson, Lars-Erik

    2009-09-01

    Numerical simulations of spontaneous flame acceleration are performed within the problem of flame transition to detonation in two-dimensional channels. The acceleration is studied in the extremely wide range of flame front velocity changing by 3 orders of magnitude during the process. Flame accelerates from realistically small initial velocity (with Mach number about 10(-3)) to supersonic speed in the reference frame of the tube walls. It is shown that flame acceleration undergoes three distinctive stages: (1) initial exponential acceleration in the quasi-isobaric regime, (2) almost linear increase in the flame speed to supersonic values, and (3) saturation to a stationary high-speed deflagration velocity. The saturation velocity of deflagration may be correlated with the Chapman-Jouguet deflagration speed. The acceleration develops according to the Shelkin mechanism. Results on the exponential flame acceleration agree well with previous theoretical and numerical studies. The saturation velocity is in line with previous experimental results. Transition of flame acceleration regime from the exponential to the linear one, and then to the constant velocity, happens because of gas compression both ahead and behind the flame front. PMID:19905222

  18. A comparison of deflagration rates, at elevated pressures and temperatures, with thermal explosion results

    NASA Astrophysics Data System (ADS)

    Glascoe, Elizabeth; Springer, H. Keo; Tringe, Joseph W.; Maienschein, Jon L.

    2011-06-01

    Previously, the deflagration rate and behavior of HMX-based explosives have been correlated with the violence of thermal explosion experiments. In particular, HMX materials that experience deconsolidative burning at elevated pressures (i.e. P = 200 - 600 MPa) also produce significantly more violent thermal explosions. Recently, we have measured the deflagration rates of HMX-based explosives at elevated temperatures (i.e. T = 150 - 180C) and moderate pressures (i.e. P = 10 - 100 MPa). These conditions more closely mimic the pressure and temperatures of an explosive shortly after ignition of a thermal explosion. We will discuss the deflagration rates of HMX based explosives at elevated temperatures and make comparisons with thermal explosion studies on the same materials. The Joint DoD-DOE Munitions Technology Development Program is acknowledged for funding. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration.

    PubMed

    Valiev, Damir M; Bychkov, Vitaly; Akkerman, V'yacheslav; Eriksson, Lars-Erik

    2009-09-01

    Numerical simulations of spontaneous flame acceleration are performed within the problem of flame transition to detonation in two-dimensional channels. The acceleration is studied in the extremely wide range of flame front velocity changing by 3 orders of magnitude during the process. Flame accelerates from realistically small initial velocity (with Mach number about 10(-3)) to supersonic speed in the reference frame of the tube walls. It is shown that flame acceleration undergoes three distinctive stages: (1) initial exponential acceleration in the quasi-isobaric regime, (2) almost linear increase in the flame speed to supersonic values, and (3) saturation to a stationary high-speed deflagration velocity. The saturation velocity of deflagration may be correlated with the Chapman-Jouguet deflagration speed. The acceleration develops according to the Shelkin mechanism. Results on the exponential flame acceleration agree well with previous theoretical and numerical studies. The saturation velocity is in line with previous experimental results. Transition of flame acceleration regime from the exponential to the linear one, and then to the constant velocity, happens because of gas compression both ahead and behind the flame front.

  20. Distribution of calcium carbonate in desert soils: A model

    SciTech Connect

    Mayer, L.; McFadden, L.D.; Harden, J.W.

    1988-04-01

    A model that describes the distribution of calcium carbonate in desert soils as a function of dust flux, time, climate, and other soil-forming factors shows which factors most strongly influence the accumulation of carbonate and can be used to evaluate carbonate-based soil age estimates or paleoclimatic reconstructions. Models for late Holocene soils have produced carbonate distributions that are very similar to those of well-dated soils in New Mexico and southern California. These results suggest that (1) present climate is a fair representation of late Holocene climate, (2) carbonate dust flux can be approximated by its Holocene rate, and (3) changes in climate and/or dust flux at the end of the Pleistocene effected profound and complex changes in soil carbonate distributions. Both higher carbonate dust flux and greater effective precipitation are required during the latest Pleistocene-early Holocene to explain carbonate distributions in latest Pleistocene soils. 21 refs., 4 figs., 1 tab.

  1. Modelling interactions of carbon dioxide, forests, and climate

    SciTech Connect

    Luxmoore, R.J.; Baldocchi, D.D.

    1994-09-01

    Atmospheric carbon dioxide is rising and forests and climate is changing! This combination of fact and premise may be evaluated at a range of temporal and spatial scales with the aid of computer simulators describing the interrelationships between forest vegetation, litter and soil characteristics, and appropriate meteorological variables. Some insights on the effects of climate on the transfers of carbon and the converse effect of carbon transfer on climate are discussed as a basis for assessing the significance of feedbacks between vegetation and climate under conditions of rising atmospheric carbon dioxide. Three main classes of forest models are reviewed. These are physiologically-based models, forest succession simulators based on the JABOWA model, and ecosystem-carbon budget models that use compartment transfer rates with empirically estimated coefficients. Some regression modeling approaches are also outlined. Energy budget models applied to forests and grasslands are also reviewed. This review presents examples of forest models; a comprehensive discussion of all available models is not undertaken.

  2. Models for naturally fractured, carbonate reservoir simulations

    SciTech Connect

    Tuncay, K.; Park, A.; Ozkan, G.; Zhan, X.; Ortoleva, P.; Hoak, T.; Sundberg, K.

    1998-12-31

    This report outlines the need for new tools for the simulation of fractured carbonate reservoirs. Several problems are identified that call for the development of new reservoir simulation physical models and numerical techniques. These include: karst and vuggy media wherein Darcy`s and traditional multi-phase flow laws do not apply; the need for predicting the preproduction state of fracturing and stress so that the later response of effective stress-dependent reservoirs can be predicted; and methods for predicting the fracturing and collapse of vuggy and karst reservoirs in response to draw-down pressure created during production. Specific research directions for addressing each problem are outlined and preliminary results are noted.

  3. Modeling of HiPco Process for Carbon Nanotube Production

    NASA Technical Reports Server (NTRS)

    Gokcen, T.; Dateo, C. E.; Meyyappan, M.; Colbert, D. T.; Smith, D. T.; Smith, K.; Smalley, R. E.; Arnold, James O. (Technical Monitor)

    2000-01-01

    High-pressure carbon monoxide (HiPco) reactor, developed at Rice University, is used to produce single-walled carbon nanotubes (SWNT) from gas-phase reactions of iron carbonyl and nickel carbonyl in carbon monoxide at high pressures (10 - 100 atm). Computational modeling is used to better understand the HiPco process. In the present model, decomposition of the precursor, metal cluster formation and growth, and carbon nanotube growth are addressed. Decomposition of precursor molecules is necessary to initiate metal cluster formation. The metal clusters serve as catalysts for carbon nanotube growth. Diameter of metal clusters and number of atoms in these clusters are some of the essential information for predicting carbon nanotube formation and growth, which is then modeled by Boudouard reaction (2CO ---> C(s) + CO2) with metal catalysts. The growth kinetic model is integrated with a two-dimensional axisymmetric reactor flow model to predict reactor performance.

  4. Modeling carbon monoxide uptake during work

    SciTech Connect

    Bernard, T.E.; Duker, J.

    1981-05-01

    Acute carbon monoxide poisoning is the result of a diminished capacity of the blood to transport oxygen and sustain a level of metabolic activity. The diminished capacity is expressed in terms of the carboxyhemoglobin (COHb) level in the blood which is dependent upon the concentration of CO in the inhaled air. The rate of CO uptake or elimination is dependent upon the concentration of CO in the air as well as pulmonary diffusion capacity and alveolar ventilation which change with different metabolic rates. Coburn, Forster, and Kane (CFK) developed a mathematical model to describe the uptake and elimination kinetics of CO in sedentary individuals. The CFK model was used in a mathematical simulation of CO uptake and elimination where the independent variables were inhaled CO concentration and metabolic rate. The metabolic rate was used to specify pulmonary diffusing capacity and alveolar ventilation. As the level of COHb increased the metabolic rate was decreased to a level compatible with the impaired oxygen transport. A physical fatigue limit was also included. The theoretical model was used to simulate conditions beyond the range of exposures permissible under experimental laboratory conditions.

  5. Understanding carbon regulation in aquatic systems - Bacteriophages as a model

    PubMed Central

    Sanmukh, Swapnil; Khairnar, Krishna; Paunikar, Waman; Lokhande, Satish

    2015-01-01

    The bacteria and their phages are the most abundant constituents of the aquatic environment, and so represent an ideal model for studying carbon regulation in an aquatic system. The microbe-mediated interconversion of bioavailable organic carbon (OC) into dissolved organic carbon (DOC) by the microbial carbon pump (MCP) has been suggested to have the potential to revolutionize our view of carbon sequestration. It is estimated that DOC is the largest pool of organic matter in the ocean and, though a major component of the global carbon cycle, its source is not yet well understood. A key element of the carbon cycle is the microbial conversion of DOC into inedible forms. The primary aim of this study is to understand the phage conversion from organic to inorganic carbon during phage-host interactions. Time studies of phage-host interactions under controlled conditions reveal their impact on the total carbon content of the samples and their interconversion of organic and inorganic carbon compared to control samples. A total organic carbon (TOC) analysis showed an increase in inorganic carbon content by 15-25 percent in samples with bacteria and phage compared to samples with bacteria alone. Compared to control samples, the increase in inorganic carbon content was 60-70-fold in samples with bacteria and phage, and 50-55-fold for samples with bacteria alone. This study indicates the potential impact of phages in regulating the carbon cycle of aquatic systems. PMID:26213615

  6. Projecting future climate change: Implications of carbon cycle model intercomparisons

    NASA Astrophysics Data System (ADS)

    Kheshgi, Haroon S.; Jain, Atul K.

    2003-06-01

    The range of responses of alternate detailed models for the ocean and biosphere components of the global carbon cycle, cataloged in model intercomparison studies, are simulated by a reduced form Earth system model employing a range of model parameters. The reduced form model, parameterized in this way, allows the integration of these components of the carbon cycle with an energy balance climate model with a prescribed range of climate sensitivity. We use this model to construct ranges of: (1) past carbon budgets given past CO2 concentrations, fossil carbon emissions, and temperature records, (2) future CO2 concentrations and temperature for given emission scenarios, and (3) CO2 emissions and temperature for given trajectories of future CO2 concentrations leading to constant levels within the next several centuries. Carbon cycle is an additional contributor to uncertainty in climate projections that is calculated to expand the range of projected global temperature beyond that reported in the 2001 Intergovernmental Panel on Climate Change assessment.

  7. Simulated Carbon Cycling in a Model Microbial Mat.

    NASA Astrophysics Data System (ADS)

    Decker, K. L.; Potter, C. S.

    2006-12-01

    We present here the novel addition of detailed organic carbon cycling to our model of a hypersaline microbial mat ecosystem. This ecosystem model, MBGC (Microbial BioGeoChemistry), simulates carbon fixation through oxygenic and anoxygenic photosynthesis, and the release of C and electrons for microbial heterotrophs via cyanobacterial exudates and also via a pool of dead cells. Previously in MBGC, the organic portion of the carbon cycle was simplified into a black-box rate of accumulation of simple and complex organic compounds based on photosynthesis and mortality rates. We will discuss the novel inclusion of fermentation as a source of carbon and electrons for use in methanogenesis and sulfate reduction, and the influence of photorespiration on labile carbon exudation rates in cyanobacteria. We will also discuss the modeling of decomposition of dead cells and the ultimate release of inorganic carbon. The detailed modeling of organic carbon cycling is important to the accurate representation of inorganic carbon flux through the mat, as well as to accurate representation of growth models of the heterotrophs under different environmental conditions. Because the model ecosystem is an analog of ancient microbial mats that had huge impacts on the atmosphere of early earth, this MBGC can be useful as a biological component to either early earth models or models of other planets that potentially harbor life.

  8. Carbon Dynamics and Export from Flooded Wetlands: A Modeling Approach

    EPA Science Inventory

    Described in this article is development and validation of a process based model for carbon cycling in flooded wetlands, called WetQual-C. The model considers various biogeochemical interactions affecting C cycling, greenhouse gas emissions, organic carbon export and retention. ...

  9. A thermodynamic model for growth mechanisms of multiwall carbon nanotubes.

    SciTech Connect

    Kaatz, Forrest H.; Overmyer, Donald L.; Siegal, Michael P.

    2006-02-01

    Multiwall carbon nanotubes are grown via thermal chemical vapor deposition between temperatures of 630 and 830 C using acetylene in nitrogen as the carbon source. This process is modeled using classical thermodynamics to explain the total carbon deposition as a function of time and temperature. An activation energy of 1.60 eV is inferred for nanotube growth after considering the carbon solubility term. Scanning electron microscopy shows growth with diameters increasing linearly with time. Transmission electron microscopy and Raman spectroscopy show multiwall nanotubes surrounded by a glassy-carbon sheath, which grows with increasing wall thickness as growth temperatures and times rise.

  10. The uncertainty of modeled soil carbon stock change for Finland

    NASA Astrophysics Data System (ADS)

    Lehtonen, Aleksi; Heikkinen, Juha

    2013-04-01

    Countries should report soil carbon stock changes of forests for Kyoto Protocol. Under Kyoto Protocol one can omit reporting of a carbon pool by verifying that the pool is not a source of carbon, which is especially tempting for the soil pool. However, verifying that soils of a nation are not a source of carbon in given year seems to be nearly impossible. The Yasso07 model was parametrized against various decomposition data using MCMC method. Soil carbon change in Finland between 1972 and 2011 were simulated with Yasso07 model using litter input data derived from the National Forest Inventory (NFI) and fellings time series. The uncertainties of biomass models, litter turnoverrates, NFI sampling and Yasso07 model were propagated with Monte Carlo simulations. Due to biomass estimation methods, uncertainties of various litter input sources (e.g. living trees, natural mortality and fellings) correlate strongly between each other. We show how original covariance matrices can be analytically combined and the amount of simulated components reduce greatly. While doing simulations we found that proper handling correlations may be even more essential than accurate estimates of standard errors. As a preliminary results, from the analysis we found that both Southern- and Northern Finland were soil carbon sinks, coefficient of variations (CV) varying 10%-25% when model was driven with long term constant weather data. When we applied annual weather data, soils were both sinks and sources of carbon and CVs varied from 10%-90%. This implies that the success of soil carbon sink verification depends on the weather data applied with models. Due to this fact IPCC should provide clear guidance for the weather data applied with soil carbon models and also for soil carbon sink verification. In the UNFCCC reporting carbon sinks of forest biomass have been typically averaged for five years - similar period for soil model weather data would be logical.

  11. Recent advances in modeling depth distribution of soil carbon storage

    NASA Astrophysics Data System (ADS)

    Mishra, U.; Shu, S.

    2015-12-01

    Depth distribution of soil carbon storage determines the sensitivity of soil carbon to environmental change. We present different approaches that have been used to represent the vertical heterogeneity of soil carbon both in mapping and modeling studies. In digital soil mapping, many studies applied exponential decay functions in soils where carbon concentration has been observed to decline with depth. Recent studies used various forms of spline functions to better represent the vertical distribution of soil carbon along with soil horizons. These studies fitted mathematical functions that described the observations and then interpolated the model coefficients using soil-forming factors and used maps of model coefficients with depth to predict the SOC storage at desired depth intervals. In general, the prediction accuracy decreased with depth and the challenge remains to find appropriate soil-forming factors that determine/explain subsurface soil variation. Models such as Century, RothC, and Terrestrial Ecosystem Model use the exponential depth distribution functions of soil carbon in their model structures. In CLM 4.5 the soil profile is partitioned into 10 layers down to 3.8 m depth and the carbon input from plant roots is assumed to decrease following an exponential function. Not accounting for soil horizons in representing biogeochemistry and the assumption of globally uniform soil depth remain major sources of uncertainty in these models. In this presentation, we will discuss the merits and demerits of using various profile depth distribution functions to represent the vertical heterogeneity of soil carbon storage.

  12. Carbon Management In the Post-Cap-and-Trade Carbon Economy: An Economic Model for Limiting Climate Change by Managing Anthropogenic Carbon Flux

    NASA Astrophysics Data System (ADS)

    DeGroff, F. A.

    2013-05-01

    In this paper, we discuss an economic model for comprehensive carbon management that focuses on changes in carbon flux in the biosphere due to anthropogenic activity. The two unique features of the model include: 1. A shift in emphasis from primarily carbon emissions, toward changes in carbon flux, mainly carbon extraction, and 2. A carbon price vector (CPV) to express the value of changes in carbon flux, measured in changes in carbon sequestration, or carbon residence time. The key focus with the economic model is the degree to which carbon flux changes due to anthropogenic activity. The economic model has three steps: 1. The CPV metric is used to value all forms of carbon associated with any anthropogenic activity. In this paper, the CPV used is a logarithmic chronological scale to gauge expected carbon residence (or sequestration) time. In future economic models, the CPV may be expanded to include other factors to value carbon. 2. Whenever carbon changes form (and CPV) due to anthropogenic activity, a carbon toll is assessed as determined by the change in the CPV. The standard monetary unit for carbon tolls are carbon toll units, or CTUs. The CTUs multiplied by the quantity of carbon converted (QCC) provides the total carbon toll, or CT. For example, CT = (CTU /mole carbon) x (QCC moles carbon). 3. Whenever embodied carbon (EC) attributable to a good or service moves via trade to a jurisdiction with a different CPV metric, a carbon toll (CT) is assessed representing the CPV difference between the two jurisdictions. This economic model has three clear advantages. First, the carbon pricing and cost scheme use existing and generally accepted accounting methodologies to ensure the veracity and verifiability of carbon management efforts with minimal effort and expense using standard, existing auditing protocols. Implementing this economic model will not require any new, special, unique, or additional training, tools, or systems for any entity to achieve their minimum

  13. Model-based estimation of the global carbon budget and its uncertainty from carbon dioxide and carbon isotope records

    SciTech Connect

    Kheshgi, Haroon S.; Jain, Atul K.; Wuebbles, Donald J.

    1999-12-27

    A global carbon cycle model is used to reconstruct the carbon budget, balancing emissions from fossil fuel and land use with carbon uptake by the oceans, and the terrestrial biosphere. We apply Bayesian statistics to estimate uncertainty of carbon uptake by the oceans and the terrestrial biosphere based on carbon dioxide and carbon isotope records, and prior information on model parameter probability distributions. This results in a quantitative reconstruction of past carbon budget and its uncertainty derived from an explicit choice of model, data-based constraints, and prior distribution of parameters. Our estimated ocean sink for the 1980s is 17{+-}7 Gt C (90% confidence interval) and is comparable to the estimate of 20{+-}8 Gt C given in the recent Intergovernmental Panel on Climate Change assessment [Schimel et al., 1996]. Constraint choice is tested to determine which records have the most influence over estimates of the past carbon budget; records individually (e.g., bomb-radiocarbon inventory) have little effect since there are other records which form similar constraints. (c) 1999 American Geophysical Union.

  14. Model-based estimation of the global carbon budget and its uncertainty from carbon dioxide and carbon isotope records

    NASA Astrophysics Data System (ADS)

    Kheshgi, Haroon S.; Jain, Atul K.; Wuebbles, Donald J.

    1999-01-01

    A global carbon cycle model is used to reconstruct the carbon budget, balancing emissions from fossil fuel and land use with carbon uptake by the oceans, and the terrestrial biosphere. We apply Bayesian statistics to estimate uncertainty of carbon uptake by the oceans and the terrestrial biosphere based on carbon dioxide and carbon isotope records, and prior information on model parameter probability distributions. This results in a quantitative reconstruction of past carbon budget and its uncertainty derived from an explicit choice of model, data-based constraints, and prior distribution of parameters. Our estimated ocean sink for the 1980s is 17±7 Gt C (90% confidence interval) and is comparable to the estimate of 20±8 Gt C given in the recent Intergovernmental Panel on Climate Change assessment [Schimel et al., 1996]. Constraint choice is tested to determine which records have the most influence over estimates of the past carbon budget; records individually (e.g., bomb-radiocarbon inventory) have little effect since there are other records which form similar constraints.

  15. Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets.

    PubMed

    Gauthier, P; Chaland, F; Masse, L

    2004-11-01

    By means of highly resolved one-dimensional hydrodynamics simulations, we provide an understanding of the burn process in inertial-confinement-fusion baseline targets. The cornerstone of the phenomenology of propagating burn in such laser-driven capsules is shown to be the transition from a slow unsteady reaction-diffusion regime of thermonuclear combustion (some sort of deflagration) to a fast detonative one. Remarkably, detonation initiation follows the slowing down of a shockless supersonic reaction wave driven by energy redeposition from the fusion products themselves. Such a route to detonation is specific to fusion plasmas. PMID:15600681

  16. Deflagration Rates of Secondary Explosives Under Static MPA—GPA Pressure

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph M.; Young, Christopher E.; Long, Gregory T.; Maienschein, Jon L.; Glascoe, Elizabeth A.; Hansen, Donald W.; Wardell, Jeffery F.; Black, C. Kevin; Sykora, Gregory B.

    2009-12-01

    We provide measurements of the chemical reaction propagation rate (RPR) as a function of pressure using diamond anvil cell (DAC) and strand burner technologies. Materials investigated include HMX and RDX crystalline powders, LX-04 (85% HMX and 15% Viton A), and Composition B (63% RDX, 36% TNT, 1% wax). The anomalous correspondence between crystal structure, including in some instances isostructural phase transitions, on pressure dependent RPRs of HMX and RDX are correlated to confocal micro-Raman spectroscopic results. The contrast between DAC GPa and strand burner MPa regime measurements yield insight into explosive material burn phenomena. Here we highlight physicochemical mechanisms that appear to affect the deflagration rate of precompressed energetic materials.

  17. Deflagration-to-detonation in granular HMX: Ignition, kinetics, and shock formation

    SciTech Connect

    McAfee, J.M.; Asay, B.W.; Bdzil, J.B.

    1993-06-01

    Experimental studies and analysis of the deflagration-to detonation transition (DDT) in granular HMX are continued. Experiments performed using a direct-gasless igniter exhibit the same phenomenology as those ignited with a piston. Simple kinetics and mechanics describe the formation of the {approximately}100% TMD plug in terms of competing pressurization processes. A mass-conservation analysis of the experimentally observed structures shows how the low velocities characteristic of convective burning are amplified to shock-wave velocities through non-convective processes.

  18. Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets.

    PubMed

    Gauthier, P; Chaland, F; Masse, L

    2004-11-01

    By means of highly resolved one-dimensional hydrodynamics simulations, we provide an understanding of the burn process in inertial-confinement-fusion baseline targets. The cornerstone of the phenomenology of propagating burn in such laser-driven capsules is shown to be the transition from a slow unsteady reaction-diffusion regime of thermonuclear combustion (some sort of deflagration) to a fast detonative one. Remarkably, detonation initiation follows the slowing down of a shockless supersonic reaction wave driven by energy redeposition from the fusion products themselves. Such a route to detonation is specific to fusion plasmas.

  19. Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets

    SciTech Connect

    Gauthier, P.; Chaland, F.; Masse, L.

    2004-11-01

    By means of highly resolved one-dimensional hydrodynamics simulations, we provide an understanding of the burn process in inertial-confinement-fusion baseline targets. The cornerstone of the phenomenology of propagating burn in such laser-driven capsules is shown to be the transition from a slow unsteady reaction-diffusion regime of thermonuclear combustion (some sort of deflagration) to a fast detonative one. Remarkably, detonation initiation follows the slowing down of a shockless supersonic reaction wave driven by energy redeposition from the fusion products themselves. Such a route to detonation is specific to fusion plasmas.

  20. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOEpatents

    Funsten, Herbert O.; McComas, David J.

    1997-01-01

    Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the optical emission produced thereby is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

  1. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOEpatents

    Funsten, H.O.; McComas, D.J.

    1999-06-15

    Apparatus and method are disclosed for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives. 4 figs.

  2. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOEpatents

    Funsten, Herbert O.; McComas, David J.

    1999-01-01

    Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

  3. Deflagration Rates and Molecular Bonding Trends of Statically Compressed Secondary Explosives

    SciTech Connect

    Zaug, J M; Foltz, M F; Hart, E

    2010-03-09

    We discuss our measurements of the chemical reaction propagation rate as a function of pressure. Materials investigated have included CL-20, HMX, TATB, and RDX crystalline powders, LX-04, Comp B, and nitromethane. The anomalous correspondence between crystal structure, including in some instances isostructural phase transitions, on pressure-dependant RPRs of TATB, HMX, Nitromethane, CL-20, and PETN have been elucidated using micro-IR and -Raman spectroscopies. Here we specifically highlight pressure-dependent physicochemical mechanisms affecting the deflagration rate of nitromethane and epsilon-CL-20. We find that pressure induced splitting of symmetric stretch NO{sub 2} vibrations can signal the onset of increasingly more rapid combustion reactions.

  4. A model of carbon production in a cometary coma

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    1978-01-01

    A model of the cometary ionosphere is developed in order to account for the large population of metastable C(D-1) atoms detected via the ultraviolet spectrum of Comet West (1976 VI). Dissociative recombination of CO(plus) ions and electrons is shown to be the dominant source of carbon atoms rather than photodissociation of CO so that the derived carbon production rate is only a lower limit to the evaporation rate of the carbon bearing mother molecule.

  5. The sphere-in-contact model of carbon materials.

    PubMed

    Zeinalipour-Yazdi, Constantinos D; Pullman, David P; Catlow, C Richard A

    2016-01-01

    A sphere-in-contact model is presented that is used to build physical models of carbon materials such as graphite, graphene, carbon nanotubes and fullerene. Unlike other molecular models, these models have correct scale and proportions because the carbon atoms are represented by their atomic radius, in contrast to the more commonly used space-fill models, where carbon atoms are represented by their van der Waals radii. Based on a survey taken among 65 undergraduate chemistry students and 28 PhD/postdoctoral students with a background in molecular modeling, we found misconceptions arising from incorrect visualization of the size and location of the electron density located in carbon materials. Based on analysis of the survey and on a conceptual basis we show that the sphere-in-contact model provides an improved molecular representation of the electron density of carbon materials compared to other molecular models commonly used in science textbooks (i.e., wire-frame, ball-and-stick, space-fill). We therefore suggest that its use in chemistry textbooks along with the ball-and-stick model would significantly enhance the visualization of molecular structures according to their electron density. Graphical Abstract A sphere-in-contact model of C60-fullerene. PMID:26791534

  6. Self-deflagration rates of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). [burning tate, thermal stability

    NASA Technical Reports Server (NTRS)

    Boggs, T. L.; Price, C. F.; Zurn, D. E.; Atwood, A. I.; Eisel, J. L.

    1980-01-01

    The thermal stability and resistance to impact was investigated for the ingredient TABA. Particular attention was given to determining the use of TABA as a possible alternative ingredient or substitute for HMX in explosives and high energy propellants. The burn rate of TABA was investigated as a function of pressure. It was concluded that the self deflagration rate of TABA is an order of magnitude lower than HMX over the range 2000-15000 psi; TABA will not sustain self deflagration at low pressures (less than or equal to 1500 psi) in the sample configuration and apparatus used.

  7. Response Of Ocean Carbon Export To Different Model Algorithms

    NASA Astrophysics Data System (ADS)

    Caglar Yumruktepe, Veli; Salihoglu, Baris; Kideys, Ahmet E.

    2013-04-01

    Effects of climate change on the biological carbon pump (BCP) and vice-versa, and the influence of change in ecosystem structure on the dynamics of BCP are vital topics to understand the role of oceans in the global carbon cycle and sequestration of greenhouse gases. Construction of a complete carbon budget, requires better understanding of air-sea exchanges and the processes controlling the vertical and horizontal transport of carbon in the ocean, particularly the biological carbon pump. Improved parameterization of carbon sequestration within ecosystem models is vital to better understand and predict changes in the global carbon cycle. However, due to the complexity of processes controlling particle aggregation, sinking and decomposition, existing ecosystem models necessarily parameterize carbon sequestration using simple algorithms. For this reason, the primary aim of this study is to provide new parameterizations of the downward flux of organic carbon, suitable for inclusion in numerical models. The study area was chosen to be the North Atlantic Basin (NA) and the surrounding shelf seas. In the scope of this study, first, the skill of existing models in representing particle fluxes were compared theoretically. The unique algorithms used in three state-of-the art ecosystem models ERSEM, PISCES and MEDUSA have been compared and tested against observational data collected at the PAP mooring site. For testing purposes, algorithms were inserted into a common 1D pelagic ecosystem model. Following comparison of existing algorithms, new experimental results obtained from targeted mesocosm experiments and open ocean observations, will be utilized to develop improved formulations. New algorithms will be compared to existing model formulations using a standard validation data set complied within the framework of BASIN. In order to assess algorithm response under differing hydrographic environments, each set of algorithms will be tested within a 1D framework at three sites

  8. Integrating microbial diversity in soil carbon dynamic models parameters

    NASA Astrophysics Data System (ADS)

    Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie

    2015-04-01

    Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten

  9. CarbonTracker-Lagrange: A model-data assimilation system for North American carbon flux estimates

    NASA Astrophysics Data System (ADS)

    He, Wei; Chen, Huilin; van der Velde, Ivar; Andrews, Arlyn; Sweeney, Colm; Baker, Ian; Ju, Weimin; van der Laan-Luijkx, Ingrid; Tans, Pieter; Peters, Wouter

    2016-04-01

    Understanding the regional carbon fluxes is of great importance for climate-related studies. To derive these carbon fluxes, atmospheric inverse modeling methods are often used. Different from global inverse modeling, regional studies need to deal with lateral boundary conditions (BCs) at the outer atmospheric domain studied. Also, regional inverse modeling systems typically use a higher spatial resolution and can be more computation-intensive. In this study, we implement a regional inverse modeling system for atmospheric CO₂ based on the CarbonTracker framework. We combine it with a high-resolution Lagrangian transport model, the Stochastic Time-Inverted Lagrangian Transport model driven by the Weather Forecast and Research meteorological fields (WRF-STILT). The new system uses independent information from aircraft CO₂ profiles to optimize lateral BCs, while simultaneously optimizing biosphere fluxes with near-surface CO₂ observations from tall towers. This Lagrangian transport model with precalculated footprints is computational more efficient than using an Eulerian model. We take SiBCASA biosphere model results as prior NEE from the terrestrial biosphere. Three different lateral BCs, derived from CarbonTracker North America mole fraction fields, CarbonTracker Europe mole fraction fields and an empirical BC from NOAA aircraft profiles, are employed to investigate the influence of BCs. To estimate the uncertainties of the optimized fluxes from the system and to determine the impacts of system setup on biosphere flux covariances, BC uncertainties and model-data mismatches, we tested various prior biosphere fluxes and BCs. To estimate the transport uncertainties, we also tested an alternative Lagrangian transport model Hybrid Single Particle Lagrangian Integrated Trajectory Model driven by the North American Mesoscale Forecast System meteorological fields (HYSPLIT-NAM12). Based on the above tests, we achieved an ensemble of inverse estimates from our system

  10. A global predictive model of carbon in mangrove soils

    NASA Astrophysics Data System (ADS)

    Jardine, Sunny L.; Siikamäki, Juha V.

    2014-10-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha-1) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha-1). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological predictors, e.g. to

  11. Observatory enabled modeling of the Global Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Schimel, D.; Fox, A. M.; Moore, D. J.; Sacks, W. J.; Berukoff, S. J.

    2011-12-01

    A central challenge to global modeling of the terrestrial carbon cycle is the scaling of organism-scale characteristics to large regions. Emerging ground- and space-based global observatories will allow coupling observations directly to state and parameter values in a state-of-the-art coupled carbon climate model. Model-data fusion will qualitatively improve understanding and forecasting of interannual to centennial scale responses of terrestrial ecosystems and carbon cycle to global environmental change. This modeling study will use the baseline measures of global terrestrial ecosystem biochemical composition to reduce uncertainty in forecasting E&CC responses to climate and land-use change. The NCAR Community Land Model (Community Land Model - Carbon/Nitrogen or CLM-CN) simulates carbon, water and energy exchange at the land surface and includes detailed parameters governing plant-mediated fluxes and storage NEON and NCAR are developing a data assimilation version of the CLM, designed to work with new observatory data. Data requirements of CLM are quite different from earlier generation land surface models because the nitrogen cycle is explicitly simulated. Nitrogen concentrations regulate plant photosynthesis and decomposition of dead organic matter but their within biome and global distributions are poorly constrained by observations. Developing a Observatory-enabled version of the CLM, and the cyberinfrastructure to support it creates a very different set of requirements for modeling and observatory information systems than traditional approaches. In the talk, we will discuss briefly the science of carbon data assimilation and the observing requirements it generates.

  12. Nucleation and electrolytic deposition of lead on model carbon electrodes

    NASA Astrophysics Data System (ADS)

    Cericola, D.; Spahr, M.

    2016-08-01

    There is a general consensus in the lead acid battery industry for the use of carbon additives as a functional component in the negative paste to boost the battery performance with regards to charge acceptance and cycle life especially for upcoming automotive and energy storage applications. Several mechanisms are discussed in the scientific literature and the affinity of the carbon surfaces to lead species seems to play a key role. With a set of experiments on model carbon electrodes we gave evidence to the fact that some carbon materials promote spontaneous nucleation of lead crystals. We propose a mechanism such that the carbon, as soon as in a lead containing environment, immobilizes some lead on its surface. Such immobilized lead acts as nucleation seed for the deposition of lead when a current is passed through the material. It is therefore possible to differentiate and select the carbon materials based on their ability to form nucleation seeds.

  13. Leaching modelling of slurry-phase carbonated steel slag.

    PubMed

    Costa, G; Polettini, A; Pomi, R; Stramazzo, A

    2016-01-25

    In the present work the influence of accelerated mineral carbonation on the leaching behaviour of basic oxygen furnace steel slag was investigated. The environmental behaviour of the material as evaluated through the release of major elements and toxic metals under varying pH conditions was the main focus of the study. Geochemical modelling of the eluates was used to derive a theoretical description of the underlying leaching phenomena for the carbonated material as compared to the original slag. Among the investigated elements, Ca and Si were most appreciably affected by carbonation. A very clear effect of carbonation on leaching was observed for silicate phases, and lower-Ca/Si-ratio minerals were found to control leaching in carbonated slag eluates as compared to the corresponding untreated slag sample as a result of Ca depletion from the residual slag particles. Clear evidence was also gained of solubility control for Ca, Mg and Mn by a number of carbonate minerals, indicating a significant involvement of the original slag constituents in the carbonation process. The release of toxic metals (Zn, V, Cr, Mo) was found to be variously affected by carbonation, owing to different mechanisms including pH changes, dissolution/precipitation of carbonates as well as sorption onto reactive mineral surfaces. The leaching test results were used to derive further considerations on the expected metal release levels on the basis of specific assumptions on the relevant pH domains for the untreated and carbonated slag.

  14. Chemical Energy Release in Several Recently Discovered Detonation and Deflagration Flows

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.

    2010-10-01

    Several recent experiments on complex detonation and deflagration flows are analyzed in terms of the chemical energy release required to sustain these flows. The observed double cellular structures in detonating gaseous nitromethane-oxygen and NO2-fuel (H2, CH4, and C2H6) mixtures are explained by the amplification of two distinct pressure wave frequencies by two exothermic reactions, the faster reaction forming vibrationally excited NO* and the slower reaction forming highly vibrationally excited N2**. The establishment of a Chapman-Jouguet (C-J) deflagration behind a weak shock wave, the C-J detonation established after a head-on collision with a shock front, and the C-J detonation conditions established in reactive supersonic flows are quantitatively calculated using the chemical energy release of a H2 + Cl2 mixture. For these three reactive flows, these calculations illustrate that different fractions of the exothermic chemical energy are used to sustain steady-state propagation. C-J detonation calculations on the various initial states using the CHEETAH chemical equilibrium code are shown to be in good agreement with experimental detonation velocity measurements for the head-on collision and supersonic flow detonations.

  15. Global Carbon Cycle Modeling in GISS ModelE2 GCM

    NASA Astrophysics Data System (ADS)

    Aleinov, I. D.; Kiang, N. Y.; Romanou, A.; Romanski, J.

    2014-12-01

    Consistent and accurate modeling of the Global Carbon Cycle remains one of the main challenges for the Earth System Models. NASA Goddard Institute for Space Studies (GISS) ModelE2 General Circulation Model (GCM) was recently equipped with a complete Global Carbon Cycle algorithm, consisting of three integrated components: Ent Terrestrial Biosphere Model (Ent TBM), Ocean Biogeochemistry Module and atmospheric CO2 tracer. Ent TBM provides CO2 fluxes from the land surface to the atmosphere. Its biophysics utilizes the well-known photosynthesis functions of Farqhuar, von Caemmerer, and Berry and Farqhuar and von Caemmerer, and stomatal conductance of Ball and Berry. Its phenology is based on temperature, drought, and radiation fluxes, and growth is controlled via allocation of carbon from labile carbohydrate reserve storage to different plant components. Soil biogeochemistry is based on the Carnegie-Ames-Stanford (CASA) model of Potter et al. Ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. Atmospheric CO2 is advected with a quadratic upstream algorithm implemented in atmospheric part of ModelE2. Here we present the results for pre-industrial equilibrium and modern transient simulations and provide comparison to available observations. We also discuss the process of validation and tuning of particular algorithms used in the model.

  16. Model of carbon cycling in planktonic food webs

    SciTech Connect

    Connolly, J.P.; Coffin, R.B.

    1995-10-01

    A mathematical model of carbon fluxes through the heterotrophic microbial food web is developed from a synthesis of laboratory and field research. The basis of the model is the segregation of organic carbon into lability classes that are defined by bioassay experiments. Bacteria, phytoplankton, three trophic levels of zooplankton, and dissolved organic carbon (DOC) and particulate organic carbon (POC) are modeled. The descriptions of bacterial growth and utilization of the various classes of substrate were treated as universal constants in the application of the model to three distinct ecosystems, ranging from oligotrophic to highly eutrophic. The successful application of the model to these diverse ecosystems supports the basic validity of the description of the microbial food web and the dynamics of carbon flux. The model indicates that the dynamics of bacteria and protozoan zooplankton production govern the rates of oxidation of carbon entering the water column. Explicit consideration of these groups would improve the capability of eutrophication models to predict dissolved oxygen dynamics, particularly when projecting responses to loading changes.

  17. Multiwalled Carbon Nanotube Deposition on Model Environmental Surfaces

    EPA Science Inventory

    Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Der...

  18. Serpentinization and Carbonation on Mars: A Geochemical Modelling Approach

    NASA Astrophysics Data System (ADS)

    Bultel, B.; Klein, F.; Andréani, M.; Quantin, C.

    2014-07-01

    We use geochemical models to reproduce the alteration of typical martian rocks to assess the thermodynamical conditions that may have lead to the formation of Fe-Mg-phyllosilicates and carbonates, a common assemblage found in previous studies.

  19. Atomistic modeling of carbon Cottrell atmospheres in bcc iron.

    PubMed

    Veiga, R G A; Perez, M; Becquart, C S; Domain, C

    2013-01-16

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  20. Atomistic modeling of carbon Cottrell atmospheres in bcc iron

    NASA Astrophysics Data System (ADS)

    Veiga, R. G. A.; Perez, M.; Becquart, C. S.; Domain, C.

    2013-01-01

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  1. Review and developments of dissemination models for airborne carbon fibers

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1980-01-01

    Dissemination prediction models were reviewed to determine their applicability to a risk assessment for airborne carbon fibers. The review showed that the Gaussian prediction models using partial reflection at the ground agreed very closely with a more elaborate diffusion analysis developed for the study. For distances beyond 10,000 m the Gaussian models predicted a slower fall-off in exposure levels than the diffusion models. This resulting level of conservatism was preferred for the carbon fiber risk assessment. The results also showed that the perfect vertical-mixing models developed herein agreed very closely with the diffusion analysis for all except the most stable atmospheric conditions.

  2. Modeling of exposure to carbon monoxide in fires

    SciTech Connect

    Cagliostro, D.E.

    1980-11-01

    A mathematical model is developed to predict carboxyhemoglobin concentrations in regions of the body for short exposures to carbon monoxide levels expected during escape from aircraft fires. The model includes the respiratory and circulatory dynamics of absorption and distribution of carbon monoxide and carboxyhemoglobin. Predictions of carboxyhemoglobin concentrations are compared to experimental values obtained for human exposures to constant high carbon monoxide levels. Predictions are within 20% of experimental values. For short exposure times, transient concentration effects are predicted. The effect of stress is studied and found to increase carboxyhemoglobin levels substantially compared to a rest state.

  3. Modelling carbon in permafrost soils from preindustrial to the future

    NASA Astrophysics Data System (ADS)

    Kleinen, T.; Brovkin, V.

    2015-12-01

    The carbon release from thawing permafrost soils constitutes one of the large uncertainties in the carbon cycle under future climate change. Analysing the problem further, this uncertainty results from an uncertainty about the total amount of C that is stored in frozen soils, combined with an uncertainty about the areas where soils might thaw under a particular climate change scenario, as well as an uncertainty about the decomposition product since some of the decomposed C might result the release of CH4 as well as CO2. We use the land surface model JSBACH, part of the Max Planck Institute Earth System Model MPI-ESM, to quantify the release of soil carbon from thawing permafrost soils. We have extended the soil carbon model YASSO by introducing carbon storages in frozen soils, with increasing fractions of C being available to decomposition as permafrost thaws. In order to quantify the amount of carbon released as CH4, as opposed to CO2, we have also implemented a TOPMODEL-based wetland scheme, as well as anaerobic C decomposition and methane transport. We initialise the soil C pools for the preindustrial climate state from the Northern Circumpolar Soil Carbon Database to insure initial C pool sizes close to measurements. We then determine changes in soil C storage in transient model experiments following historical and future climate changes under RCP 8.5. Based on these experiments, we quantify the greenhouse gas release from permafrost C decomposition, determining both CH4 and CO2 emissions.

  4. Empirically Modeling Carbon Fluxes over the Northern Great Plains Grasslands

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wylie, B. K.; Ji, L.; Gilmanov, T.; Tieszen, L. L.

    2007-12-01

    Grasslands cover nearly one-fifth of the global terrestrial surface and store most of their carbon below ground. The grassland ecosystem in the Great Plains occupies over 1.5 million km2 of land area and is the primary resource for livestock production in North America. However, the contributions of grasslands to local and regional carbon budgets remain uncertain due to the lack of carbon flux data for the expansive grassland ecosystems under various managements, land uses, and climate variability. A quantitative understanding of carbon fluxes across these systems is essential for developing regional, national, and global carbon budgets and providing guidance to policy makers and managers when substantial conversion to biofuels are implemented. Additionally, these estimates will provide insights into how the grassland ecosystem will respond to future climate and what systems are sustainable and offer net carbon sinks. This knowledge base and decisions support tools are needed for developing land management strategies for the region under a variety of environmental conditions and land use options. In the past, we used a remote sensing-based piecewise regression (PWR) model to estimate the grassland carbon fluxes in the northern Great Plains using the 1-km SPOT VEGETATION normalized difference vegetation index (NDVI) data. We estimated the carbon fluxes through integrated spatial databases and remotely sensed extrapolations of flux tower data to regional scales. The PWR model was applied to derive an empirical relationship between environmental variables and tower-based measurements. The PWR equations were then applied through time and space to estimate carbon fluxes across the study area at 1-km resolution. We now improve this modeling approach by 1) using Moderate Resolution Imaging Spectroradiometer (MODIS) data with higher temporal, spatial, and spectral resolutions (8-day, 500-m, and 7-band) as input; 2) incorporating the actual vegetation evapotranspiration

  5. Isotropic simple global carbon model: The use of carbon isotopes for model development. Ph.D. Thesis

    SciTech Connect

    Kwon, O.Y.

    1994-01-01

    Carbon dioxide is a major greenhouse gas in the atmosphere. Anthropogenic CO2 emissions from fossil fuel use and deforestation have perturbed the natural global carbon cycle. As a result, the atmospheric CO2 concentration has rapidly increased, causing the potential for global warming. A twenty four compartment isotopic simple global carbon model (IS-GCM) has been developed for scenario analysis, research needs prioritization, and for recommending strategies to stabilize the atmospheric CO2 level. CO2 fertilization and temperature effects are included in the terrestrial biosphere, and the ocean includes inorganic chemistry which, with ocean water circulation, enables the calculation of time-variable oceanic carbon uptake. The eight compartment simple global carbon model (SGCM) served as the basis of the ISGCM model development. Carbon isotopes, C-13 (stable carbon) and C-14(radiocarbon), were used for model constraints as well as results from SGCM that led to multiple compartments in ISGCM. The ISGCM was calibrated with the observed CO2 concentrations, delta C-13, and Delta C-14 in the atmosphere, Delta C-14 in the soil and Delta C-14 in the ocean. Also, ISGCM was constrained by literature values of oceanic carbon uptake (gas exchange) and CO2 emissions from deforestation. Inputs (forcing functions in the model) were the CO2 emissions from fossil fuel use and deforestation. Scenario analysis, together with emission strategies tests, indicate that urgent action to reduce anthropogenic emissions would need to be taken to stabilize atmospheric CO2. Results showed that quantitatively, forest management is just as effective as the reduction of fossil fuel emissions in controlling atmospheric CO2. Sensitivity analysis of temperature feedback suggests that future global warming would cause an additional perturbation in the global-carbon cycle, resulting in depletion of soil organic carbon, accumulation of plant biomass, and the increase of atmospheric CO2.

  6. The role of gas phase reactions in the deflagration-to-detonation transition of high energy propellants

    NASA Technical Reports Server (NTRS)

    Boggs, T. L.; Price, C. F.; Atwood, A. I.; Zurn, D. E.; Eisel, J. L.; Derr, R. L.

    1980-01-01

    The inadequacies of the two commonly used assumptions are shown, along with the need for considering gas phase reactions. Kinetic parameters that describe the gas phase reactions for several ingredients are provided, and the first steps in convective combustion leading to deflagration to detonation transition are described.

  7. Accreting white dwarf models for type 1 supernovae. 1: Presupernova evolution and triggering mechanisms

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1981-01-01

    As a plausible explosion model for a Type I supernova, the evolution of carbon-oxygen white dwarfs accreting helium in binary systems was investigated from the onset of accretion up to the point at which a thermonuclear explosion occurs. The relationship between the conditions in the binary system and the triggering mechanism for the supernova explosion is discussed, especially for the cases with relatively slow accretion rate. It is found that the growth of a helium zone on the carbon-oxygen core leads to a supernova explosion which is triggered either by the off-center helium detonation for slow and intermediate accretion rates or by the carbon deflagration for slow and rapid accretion rates. Both helium detonation and carbon deflagration are possible for the case of slow accretion, since in this case the initial mass of the white dwarf is an important parameter for determining the mode of ignition. Finally, various modes of building up the helium zone on the white dwarf, namely, direct transfer of helium from the companion star and the various types and strength of the hydrogen shell flashes are discussed in some detail.

  8. Holocene Fires and Atmospheric Carbon Emissions Modeling in Eastern Canada

    NASA Astrophysics Data System (ADS)

    Carcaillet, C.; Boulant, N.; Richard, P. J.

    2004-12-01

    We modeled the atmospheric carbon released by paleofires from Quebec and Ontario, eastern Canada. The terms of the model include the biome areas, the net rate of carbon released per biome from biomass burning and the fire anomaly per ka versus present-day (0ka) deduced from charcoal series of 37 lakes. Over the Postglacial, the Taiga zone does not matches the pattern of fire history and carbon released of Boreal, Boreal Atlantic Maritime and Mixed Wood Plains zones because of different air masses influences. Our focus on 6ka and 3ka shows that the role of the Mixed Wood Plains and the Boreal Atlantic Maritime zones on the total carbon emissions by fires is negligible both at 6 and 3ka. At 6ka, the Taiga zone plays a key role, while at 3ka the Taiga and the Boreal zones display equivalent contributions to the total carbon released to the atmosphere. The role of fires at 6ka and at 0ka is similar on the total atmospheric carbon mass emission despite changes in biomass burning activity. The role of Taiga at 6ka is compensated by Boreal zone at 0ka. However, the carbon emission at 3ka is significantly higher (ca 30%) than at 6 and 0ka because of sustained high fire activity both in Taiga and Boreal zones. Long-term climatic changes affect the biomass burning activity that acts together with vegetation cover on the global carbon cycle.

  9. Traceable components of terrestrial carbon storage capacity in biogeochemical models.

    PubMed

    Xia, Jianyang; Luo, Yiqi; Wang, Ying-Ping; Hararuk, Oleksandra

    2013-07-01

    Biogeochemical models have been developed to account for more and more processes, making their complex structures difficult to be understood and evaluated. Here, we introduce a framework to decompose a complex land model into traceable components based on mutually independent properties of modeled biogeochemical processes. The framework traces modeled ecosystem carbon storage capacity (Xss ) to (i) a product of net primary productivity (NPP) and ecosystem residence time (τE ). The latter τE can be further traced to (ii) baseline carbon residence times (τ'E ), which are usually preset in a model according to vegetation characteristics and soil types, (iii) environmental scalars (ξ), including temperature and water scalars, and (iv) environmental forcings. We applied the framework to the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model to help understand differences in modeled carbon processes among biomes and as influenced by nitrogen processes. With the climate forcings of 1990, modeled evergreen broadleaf forest had the highest NPP among the nine biomes and moderate residence times, leading to a relatively high carbon storage capacity (31.5 kg cm(-2) ). Deciduous needle leaf forest had the longest residence time (163.3 years) and low NPP, leading to moderate carbon storage (18.3 kg cm(-2) ). The longest τE in deciduous needle leaf forest was ascribed to its longest τ'E (43.6 years) and small ξ (0.14 on litter/soil carbon decay rates). Incorporation of nitrogen processes into the CABLE model decreased Xss in all biomes via reduced NPP (e.g., -12.1% in shrub land) or decreased τE or both. The decreases in τE resulted from nitrogen-induced changes in τ'E (e.g., -26.7% in C3 grassland) through carbon allocation among plant pools and transfers from plant to litter and soil pools. Our framework can be used to facilitate data model comparisons and model intercomparisons via tracking a few traceable components for all terrestrial carbon

  10. Numerical cell model investigating cellular carbon fluxes in Emiliania huxleyi.

    PubMed

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-01-01

    Coccolithophores play a crucial role in the marine carbon cycle and thus it is interesting to know how they will respond to climate change. After several decades of research the interplay between intracellular processes and the marine carbonate system is still not well understood. On the basis of experimental findings given in literature, a numerical cell model is developed that describes inorganic carbon fluxes between seawater and the intracellular sites of calcite precipitation and photosynthetic carbon fixation. The implemented cell model consists of four compartments, for each of which the carbonate system is resolved individually. The four compartments are connected to each other via H(+), CO2, and HCO3(-) fluxes across the compartment-confining membranes. For CO2 accumulation around RubisCO, an energy-efficient carbon concentrating mechanism is proposed that relies on diffusive CO2 uptake. At low external CO2 concentrations and high light intensities, CO2 diffusion does not suffice to cover the carbon demand of photosynthesis and an additional uptake of external HCO3(-) becomes essential. The model is constrained by data of Emiliania huxleyi, the numerically most abundant coccolithophore species in the present-day ocean.

  11. [Measurement model of carbon emission from forest fire: a review].

    PubMed

    Hu, Hai-Qing; Wei, Shu-Jing; Jin, Sen; Sun, Long

    2012-05-01

    Forest fire is the main disturbance factor for forest ecosystem, and an important pathway of the decrease of vegetation- and soil carbon storage. Large amount of carbonaceous gases in forest fire can release into atmosphere, giving remarkable impacts on the atmospheric carbon balance and global climate change. To scientifically and effectively measure the carbonaceous gases emission from forest fire is of importance in understanding the significance of forest fire in the carbon balance and climate change. This paper reviewed the research progress in the measurement model of carbon emission from forest fire, which covered three critical issues, i. e., measurement methods of forest fire-induced total carbon emission and carbonaceous gases emission, affecting factors and measurement parameters of measurement model, and cause analysis of the uncertainty in the measurement of the carbon emissions. Three path selections to improve the quantitative measurement of the carbon emissions were proposed, i. e., using high resolution remote sensing data and improving algorithm and estimation accuracy of burned area in combining with effective fuel measurement model to improve the accuracy of the estimated fuel load, using high resolution remote sensing images combined with indoor controlled environment experiments, field measurements, and field ground surveys to determine the combustion efficiency, and combining indoor controlled environment experiments with field air sampling to determine the emission factors and emission ratio.

  12. Towards a paradigm shift in the modeling of soil organic carbon decomposition for earth system models

    NASA Astrophysics Data System (ADS)

    He, Yujie

    Soils are the largest terrestrial carbon pools and contain approximately 2200 Pg of carbon. Thus, the dynamics of soil carbon plays an important role in the global carbon cycle and climate system. Earth System Models are used to project future interactions between terrestrial ecosystem carbon dynamics and climate. However, these models often predict a wide range of soil carbon responses and their formulations have lagged behind recent soil science advances, omitting key biogeochemical mechanisms. In contrast, recent mechanistically-based biogeochemical models that explicitly account for microbial biomass pools and enzyme kinetics that catalyze soil carbon decomposition produce notably different results and provide a closer match to recent observations. However, a systematic evaluation of the advantages and disadvantages of the microbial models and how they differ from empirical, first-order formulations in soil decomposition models for soil organic carbon is still needed. This dissertation consists of a series of model sensitivity and uncertainty analyses and identifies dominant decomposition processes in determining soil organic carbon dynamics. Poorly constrained processes or parameters that require more experimental data integration are also identified. This dissertation also demonstrates the critical role of microbial life-history traits (e.g. microbial dormancy) in the modeling of microbial activity in soil organic matter decomposition models. Finally, this study surveys and synthesizes a number of recently published microbial models and provides suggestions for future microbial model developments.

  13. Assessing China's Forest Ecosystem Carbon Accumulation Using China's Forest Carbon Model (CFCM)

    NASA Astrophysics Data System (ADS)

    Huang, M.

    2015-12-01

    China's forests have a great potential in mitigating the rate of global climate change. Carbon sequestration capacity in China's forest ecosystems has been estimated using inventory and modeling methods in the past two decades. However, different methods result in varied magnitudes and large uncertainties exist especially in the soil carbon estimation. In this study, a model named China's forest carbon model (CFCM) has been developed based on over 7000 forest field plots data obtained during 2011-2014 to estimate China's forest ecosystem carbon sequestration capacity. The simulated forest biomass and soil carbon densities correspond well with field observations across China. Our calculation shown China's total forest biomass carbon sink decreased from 210 Tg C a-1 in 2002 to 175 Tg C a-1 in 2010, and total forest soil C sink fluctuated between -10-32Tg C a-1 during 2002-2010. Total forest soil C sink is closely correlated with interannual soil temperature change. Combine biomass and soil C sink, China's forest ecosystem C sink is in the range of 180-231 Tg C a-1, with the maximum value in 2005 and minimum in 2007 during 2001-2010.

  14. Practical modeling approaches for geological storage of carbon dioxide.

    PubMed

    Celia, Michael A; Nordbotten, Jan M

    2009-01-01

    The relentless increase of anthropogenic carbon dioxide emissions and the associated concerns about climate change have motivated new ideas about carbon-constrained energy production. One technological approach to control carbon dioxide emissions is carbon capture and storage, or CCS. The underlying idea of CCS is to capture the carbon before it emitted to the atmosphere and store it somewhere other than the atmosphere. Currently, the most attractive option for large-scale storage is in deep geological formations, including deep saline aquifers. Many physical and chemical processes can affect the fate of the injected CO2, with the overall mathematical description of the complete system becoming very complex. Our approach to the problem has been to reduce complexity as much as possible, so that we can focus on the few truly important questions about the injected CO2, most of which involve leakage out of the injection formation. Toward this end, we have established a set of simplifying assumptions that allow us to derive simplified models, which can be solved numerically or, for the most simplified cases, analytically. These simplified models allow calculation of solutions to large-scale injection and leakage problems in ways that traditional multicomponent multiphase simulators cannot. Such simplified models provide important tools for system analysis, screening calculations, and overall risk-assessment calculations. We believe this is a practical and important approach to model geological storage of carbon dioxide. It also serves as an example of how complex systems can be simplified while retaining the essential physics of the problem.

  15. Using Radiocarbon to Test Models of Ecosystem Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Trumbore, S.; Lin, H.; Randerson, J.

    2007-05-01

    The radiocarbon content of carbon stored in and respired by ecosystems provides a direct measure of ecosystem carbon dynamics that can be directly compared to model predictions. Because carbon cycles through ecosystems on a variety of timescales, the mean age of C in standing biomass and soil organic matter pools is older than the mean age of microbially respired carbon. In turn, each pathway for C transit through ecosystems my respond differently to edaphic conditions; for example, soil organic matter mean age is controlled by factors affecting stabilization of C on very long timescales, such as mineralogy, while a factor like litter quality that effects decomposition rates reflects vegetation and climate characteristics. We compare the radiocarbon signature of heterotrophically respired CO2 across a number of ecosystems with models predicted using the CASA ecosystem model. The major controls of microbially respired CO2 from ecosystems include the residence time of C in living plant pools (i.e. the age of C in litter inputs to soil) and factors that control decomposition rates (litter quality and climate). Major differences between model and measured values at low latitudes are related to how woody debris pools are treated differently in models and measurements. The time lag between photosynthesis and respiration is a key ecosystem property that defines its potential to store or release carbon given variations in annual net primary production. Radiocarbon provides a rare case where models can be directly compared with measurements to provide a test of this parameter.

  16. Nano-QSPR Modelling of Carbon-Based Nanomaterials Properties.

    PubMed

    Salahinejad, Maryam

    2015-01-01

    Evaluation of chemical and physical properties of nanomaterials is of critical importance in a broad variety of nanotechnology researches. There is an increasing interest in computational methods capable of predicting properties of new and modified nanomaterials in the absence of time-consuming and costly experimental studies. Quantitative Structure- Property Relationship (QSPR) approaches are progressive tools in modelling and prediction of many physicochemical properties of nanomaterials, which are also known as nano-QSPR. This review provides insight into the concepts, challenges and applications of QSPR modelling of carbon-based nanomaterials. First, we try to provide a general overview of QSPR implications, by focusing on the difficulties and limitations on each step of the QSPR modelling of nanomaterials. Then follows with the most significant achievements of QSPR methods in modelling of carbon-based nanomaterials properties and their recent applications to generate predictive models. This review specifically addresses the QSPR modelling of physicochemical properties of carbon-based nanomaterials including fullerenes, single-walled carbon nanotube (SWNT), multi-walled carbon nanotube (MWNT) and graphene.

  17. Tracking Inter-Regional Carbon Flows: A Hybrid Network Model.

    PubMed

    Chen, Shaoqing; Chen, Bin

    2016-05-01

    The mitigation of anthropogenic carbon emissions has moved beyond the local scale because they diffuse across boundaries, and the consumption that triggers emissions has become regional and global. A precondition of effective mitigation is to explicitly assess inter-regional transfer of emissions. This study presents a hybrid network model to track inter-regional carbon flows by combining network analysis and input-output analysis. The direct, embodied, and controlled emissions associated with regions are quantified for assessing various types of carbon flow. The network-oriented metrics called "controlled emissions" is proposed to cover the amount of carbon emissions that can be mitigated within a region by adjusting its consumption. The case study of the Jing-Jin-Ji Area suggests that CO2 emissions embodied in products are only partially controlled by a region from a network perspective. Controlled carbon accounted for about 70% of the total embodied carbon flows, while household consumption only controlled about 25% of Beijing's emissions, much lower than its proportion of total embodied carbon. In addition to quantifying emissions, the model can pinpoint the dominant processes and sectors of emissions transfer across regions. This technique is promising for searching efficient pathways of coordinated emissions control across various regions connected by trade. PMID:27063784

  18. Bond passivation model: Diagram of carbon nanoparticle stability

    NASA Astrophysics Data System (ADS)

    Rotkin, Slava V.; Suris, Robert A.

    1999-10-01

    A new heuristic model for the calculation of the formation energy of the carbon nanoclusters was proposed. The model uses only three parameters: two energies, Ec and E5, are determined from the comparison with the experimental data, the results of computer simulations for various carbon nanoclusters, and the last one is the dangling carbon bond energy, Eb. The knowledge of the energies of the formation of the carbon cluster series, obtained in the frame of the unified phenomenological approach, allows one to judge the relative energetic stability of these clusters. The dangling bond passivation is shown to change drastically the phase diagram of the co-existence of the clusters of the different type.

  19. A mathematical model of carbon dioxide flooding with hydrate formation

    NASA Astrophysics Data System (ADS)

    Tsypkin, G. G.

    2014-10-01

    The injection of carbon dioxide into a reservoir that contains methane and water in a free state is investigated. A mathematical model of this process is proposed that suggests the formation of the CO2 hydrate on the surface of the phase transition separating regions of methane and carbon dioxide. The conditions on the interface are derived, and an asymptotic solution of the problem is found. Critical diagrams are obtained that define parameter ranges in which there is full or partial transition of gaseous carbon dioxide to a hydrate state.

  20. Theoretical Modeling of Mechanical-Electrical Coupling of Carbon Nanotubes

    SciTech Connect

    Lu, Jun-Qiang; Jiang, Hanqiang

    2008-01-01

    Carbon nanotubes have been studied extensively due to their unique properties, ranging from electrical, mechanical, optical, to thermal properties. The coupling between the electrical and mechanical properties of carbon nanotubes has emerged as a new field, which raises both interesting fundamental problems and huge application potentials. In this article, we will review our recently work on the theoretical modeling on mechanical-electrical coupling of carbon nanotubes subject to various loading conditions, including tension/compression, torsion, and squashing. Some related work by other groups will be also mentioned.

  1. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.

    PubMed

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent

    2008-01-01

    Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model, which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbon materials and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (<2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (>50 nm) at which pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, which show the significant effects of pore curvature on the supercapacitor properties of nanoporous carbon materials. It is shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials, including activated carbon materials, template carbon materials, and novel carbide-derived carbon materials, and with diverse electrolytes, including organic electrolytes, such as tetraethylammonium tetrafluoroborate (TEABF(4)) and tetraethylammonium methylsulfonate (TEAMS) in acetonitrile, aqueous H(2)SO(4) and KOH electrolytes, and even an ionic liquid electrolyte, such as 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size It

  2. A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbons, and Electrolyte

    SciTech Connect

    Sumpter, Bobby G; Huang, Jingsong; Meunier, Vincent

    2008-01-01

    Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy storage device with the potential to substitute batteries in applications requiring high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbons and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (< 2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (> 50 nm) where pores are large enough so that the pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, showing the significant effects of pore curvature on the supercapacitor properties of nanoporous carbons. It is shown that the EDCC/EWCC model is universal to carbon supercapacitors with diverse carbon materials including activated carbons, template carbons, and novel carbide-derived carbons, and with diverse electrolytes including organic electrolytes such as tetraethylammonium tetrafluoroborate (TEABF4), tetraethylammonium methyl-sulfonate (TEAMS) in acetonitrile, aqueous H2SO4 and KOH electrolytes, and even ionic liquid electrolyte such as 1-ethyl-3-methylimmidazolium bis(trifluromethane-sulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size, and may lend a support for the systematic optimization of the

  3. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.

    PubMed

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent

    2008-01-01

    Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model, which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbon materials and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (<2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (>50 nm) at which pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, which show the significant effects of pore curvature on the supercapacitor properties of nanoporous carbon materials. It is shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials, including activated carbon materials, template carbon materials, and novel carbide-derived carbon materials, and with diverse electrolytes, including organic electrolytes, such as tetraethylammonium tetrafluoroborate (TEABF(4)) and tetraethylammonium methylsulfonate (TEAMS) in acetonitrile, aqueous H(2)SO(4) and KOH electrolytes, and even an ionic liquid electrolyte, such as 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size It

  4. The Deflagration of Energetic Crystals at Pressures above the Weak Shock Limit

    NASA Astrophysics Data System (ADS)

    Goveas, Stephen; Bourne, Neil; Millett, Jeremy

    2013-06-01

    The response of inert solid to shock loading may be divided into two regimes of contrasting behaviour. In the lower of these, the material deforms in a regime below the theoretical strength of the material where deformation is triggered at discrete flaws within the microstructure at grain boundaries, second-phase particles, or vacancies within the lattice at the higher pressures. There comes a point however, where the theoretical strength of the material is overcome and response becomes truly homogeneous behind the shock front and this point corresponds to the limit of weak shock behaviour within the crystal. Recent work of Zaug discussing burning rate of HMX as a function of pressure is reviewed and the onset of rapid deflagration is shown to commence as the WSL is exceeded. Implications for the shock response of energetic materials are discussed.

  5. Deflagration to detonation in HMX under high confinement. [HMX confined in steel tubes

    SciTech Connect

    McAfee, J.M.; Campbell, A.W.; Asay, B.W.

    1987-01-01

    The deflagration-to-detonation behavior of HMX confined in steel tubes was studied by means of x radiography, light emission, and various pin techniques. Unlike most reported experiments, the HMX bed was ignited by driving a piston (initially at rest and in contact with the HMX) into the bed with the pressure generated from burning, low-density HMX on the opposite side of the piston. Because a gasless igniter is used to start the burning of the low-density HMX, the piston has a relatively smooth initial motion. Analysis of the data from these experiments gives a rather detailed picture of the DDT process under these conditions. 2 refs., 19 figs.

  6. Deflagration-to-detonation characteristics of a laser exploding bridge detonator

    NASA Astrophysics Data System (ADS)

    Welle, E. J.; Fleming, K. J.; Marley, S. K.

    2006-08-01

    Evaluation of laser initiated explosive trains has been an area of extreme interest due to the safety benefits of these systems relative to traditional electro-explosive devices. A particularly important difference is these devices are inherently less electro-static discharge (ESD) sensitive relative to traditional explosive devices due to the isolation of electrical power and associated materials from the explosive interface. This paper will report work conducted at Sandia National Laboratories' Explosive Components Facility, which evaluated the initiation and deflagration-to-detonation characteristics of a Laser Driven Exploding Bridgewire detonator. This paper will report and discuss characteristics of Laser Exploding Bridgewire devices loaded with hexanitrohexaazaisowurtzitane (CL-20) and tetraammine-cis-bis-(5-nitro-2H-tetrazolato-N2) cobalt (III) perchlorate (BNCP).

  7. An Urban Diffusion Simulation Model for Carbon Monoxide

    ERIC Educational Resources Information Center

    Johnson, W. B.; And Others

    1973-01-01

    A relatively simple Gaussian-type diffusion simulation model for calculating urban carbon (CO) concentrations as a function of local meteorology and the distribution of traffic is described. The model can be used in two ways: in the synoptic mode and in the climatological mode. (Author/BL)

  8. Analytical modeling of glucose biosensors based on carbon nanotubes

    PubMed Central

    2014-01-01

    In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization of enzymes. The determination of glucose levels using biosensors, particularly in the medical diagnostics and food industries, is gaining mass appeal. Glucose biosensors detect the glucose molecule by catalyzing glucose to gluconic acid and hydrogen peroxide in the presence of oxygen. This action provides high accuracy and a quick detection rate. In this paper, a single-wall carbon nanotube field-effect transistor biosensor for glucose detection is analytically modeled. In the proposed model, the glucose concentration is presented as a function of gate voltage. Subsequently, the proposed model is compared with existing experimental data. A good consensus between the model and the experimental data is reported. The simulated data demonstrate that the analytical model can be employed with an electrochemical glucose sensor to predict the behavior of the sensing mechanism in biosensors. PMID:24428818

  9. One-step reduced kinetics for lean hydrogen-air deflagration

    SciTech Connect

    Fernandez-Galisteo, D.; Sanchez, A.L.; Linan, A.; Williams, F.A.

    2009-05-15

    A short mechanism consisting of seven elementary reactions, of which only three are reversible, is shown to provide good predictions of hydrogen-air lean-flame burning velocities. This mechanism is further simplified by noting that over a range of conditions of practical interest, near the lean flammability limit all reaction intermediaries have small concentrations in the important thin reaction zone that controls the hydrogen-air laminar burning velocity and therefore follow a steady state approximation, while the main species react according to the global irreversible reaction 2H{sub 2} + O{sub 2} {yields} 2H{sub 2}O. An explicit expression for the non-Arrhenius rate of this one-step overall reaction for hydrogen oxidation is derived from the seven-step detailed mechanism, for application near the flammability limit. The one-step results are used to calculate flammability limits and burning velocities of planar deflagrations. Furthermore, implications concerning radical profiles in the deflagration and reasons for the success of the approximations are clarified. It is also demonstrated that adding only two irreversible direct recombination steps to the seven-step mechanism accurately reproduces burning velocities of the full detailed mechanism for all equivalence ratios at normal atmospheric conditions and that an eight-step detailed mechanism, constructed from the seven-step mechanism by adding to it the fourth reversible shuffle reaction, improves predictions of O and OH profiles. The new reduced-chemistry descriptions can be useful for both analytical and computational studies of lean hydrogen-air flames, decreasing required computation times. (author)

  10. Mesoscale challenge of extending atomistic scale chemistry of initiation reactions to deflagration-to-detonation transition

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Santanu

    2015-06-01

    Predictive simulations connecting chemistry that follow the shock or thermal initiation of energetic materials to subsequent deflagration or detonation events is currently outside the realm of possibilities. Molecular dynamics and first-principles based dynamics have made progress in understanding reactions in picosecond to nanosecond time scale. However, connecting the events that leads to deflagration will require simulations using much larger length and time scale to connect the full reaction network. This constitutes a mesoscale challenge in energetic materials research. Recent advances in addressing this mesoscale chemistry challenge in other domains will be discussed. Development in coarse-grain simulations and accelerating reactive MD simulations faces the challenge of simplifying the chemistry by making assumptions on the mechanism with consequences on the outcome. For example, results from thermal ignition of different phases of RDX shows a complex reaction and deterministic behavior for critical temperature before ignition. First-principles calculations for validation of key pathways observed will be discussed. The kinetics observed is dependent on the hot spot temperature, system size and thermal conductivity. Smaller hot spots in simulations needed higher temperature for ignition of the solid. For cases where ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. The gradual temperature and pressure increase in the incubation period is accompanied by accumulation of heavier polyradicals. The polyradicals with triazine rings from the RDX molecules intact undergo ring-opening reactions which fuel a series of rapid exothermic chemical reactions. Our ongoing work on connecting mesoscale and continuum scale will be discussed. Funding from DTRA Grant # HDTRA1-13-1-0018 acknowledged.

  11. A new mechanism for deflagration-to-detonation in porous granular explosives

    NASA Astrophysics Data System (ADS)

    Gifford, M. J.; Luebcke, P. E.; Field, J. E.

    1999-08-01

    An investigation has been carried out into the differences between the deflagration-to-detonation (DDT) process as it occurs in low density [˜30% theoretical maximum density (TMD)] columns of conventional grain size (˜180 μm) pentaerythritol tetranitrate (PETN) and in ultrafine PETN with a grain size ˜1 μm. The principle technique for observing the process utilized charges confined within a steel housing fitted with a polycarbonate slit window. This allowed direct recording of the transition using high speed streak photography. The explosive was thermally ignited using a pyrotechnic mixture with low gaseous emission to minimize any prepressurization of the charge. In addition to the photographic records of the events, the outputs of photodiodes along the length of the column were monitored in order to determine the rate at which the reaction proceeds. The results obtained show that the DDT process in the larger grain PETN at low density was similar in structure to the DDT process at higher densities. In contrast a different mechanism leads to detonation in columns composed of the smaller grain size PETN when packed to densities less than 50% TMD. After ignition hot gases propagate along the column both compacting and igniting material as they pass. After the gases have reached the downstream end of the column, the column continues to burn and the pressure and temperature increase. Some time later initiation takes place at a point along the burning column, and detonation waves propagate in both directions from this point. The detonation waves propagate from the initiation point at speeds that would normally be associated with material compacted to around 60% TMD. The process appears to be in effect a deflagration-to-localized thermal explosion detonation transition.

  12. Design and optimization of a deflagration to detonation transition (ddt) section

    NASA Astrophysics Data System (ADS)

    Romo, Francisco X.

    Throughout the previous century, hydrocarbon-fueled engines have used and optimized the `traditional' combustion process called deflagration (subsonic combustion). An alternative form of combustion, detonation (supersonic combustion), can increase the thermal efficiency of the process by anywhere from 20 - 50%. Even though several authors have studied detonation waves since the 1890's and a plethora of papers and books have been published, it was not until 2008 that the first detonation-powered flight took place. It lasted for 10 seconds at 100 ft. altitude. Achieving detonation presents its own challenges: some fuels are not prone to detonate, severe vibrations caused by the cyclic nature of the engine and its intense noise are some of the key areas that need further research. Also, to directly achieve detonation either a high-energy, bulky, ignition system is required, or the combustion chamber must be fairly long (5 ft. or more in some cases). In the latter method, a subsonic flame front accelerates within the combustion chamber until it reaches supersonic speeds, thus detonation is attained. This is called deflagration-todetonation transition (DDT). Previous papers and experiments have shown that obstacles, such as discs with an orifice, located inside the combustion chamber can shorten the distance required to achieve detonation. This paper describes a hands-on implementation of a DDT device. Different disc geometries inside the chamber alter the wave characteristics at the exit of the tube. Although detonation was reached only when using pure oxygen, testing identified an obstacle configuration for LPG and air mixtures that increased pressure and wave speed significantly when compared to baseline or other obstacle configurations. Mixtures of LPG and air were accelerated to Mach 0.96 in the downstream frame of reference, which would indicate a transition to detonation was close. Reasons for not achieving detonation may include poor fuel and oxidizer mixing

  13. A carbon footprint simulation model for the cork oak sector.

    PubMed

    Demertzi, Martha; Paulo, Joana Amaral; Arroja, Luís; Dias, Ana Cláudia

    2016-10-01

    In the present study, a simulation model for the calculation of the carbon footprint of the cork oak sector (CCFM) is developed for the first time. A life cycle approach is adopted including the forest management, manufacturing, use and end-of-life stages. CCFM allows the user to insert the cork type used as raw material and its respective quantity and the distances in-between the various stages. The user can choose among different end-of-life destination options for the used cork products. The option of inserting different inputs, allows the use of the present simulation model for different cork oak systems, in different countries and with different conditions. CCFM allows the identification of the stages and products with the greatest carbon footprint and thus, a better management of the sector from an environmental perspective. The Portuguese cork oak sector is used as an application example of the model. The results obtained showed that the agglomeration industry is the hotspot for the carbon footprint of the cork sector mainly due to the production of the resins that are mixed with the cork granules for the production of agglomerated cork products. The consideration of the biogenic carbon emissions and sequestration of carbon at the forest in the carbon footprint, resulted to a great decrease of the sector's carbon footprint. Future actions for improvement are suggested in order to decrease the carbon footprint of the entire cork sector. It was found that by decreasing by 10% the emission factor of the agglomeration and transformation industries, substituting the transport trucks by more recent ones and by decreasing by 10% the cork products reaching the landfilling end-of-life destinations (while increasing the quantities reaching incineration and recycling), a decrease of the total CF (excluding the biogenic emissions and sequestration) of the entire cork industry by 10% can be achieved. PMID:27235900

  14. A carbon footprint simulation model for the cork oak sector.

    PubMed

    Demertzi, Martha; Paulo, Joana Amaral; Arroja, Luís; Dias, Ana Cláudia

    2016-10-01

    In the present study, a simulation model for the calculation of the carbon footprint of the cork oak sector (CCFM) is developed for the first time. A life cycle approach is adopted including the forest management, manufacturing, use and end-of-life stages. CCFM allows the user to insert the cork type used as raw material and its respective quantity and the distances in-between the various stages. The user can choose among different end-of-life destination options for the used cork products. The option of inserting different inputs, allows the use of the present simulation model for different cork oak systems, in different countries and with different conditions. CCFM allows the identification of the stages and products with the greatest carbon footprint and thus, a better management of the sector from an environmental perspective. The Portuguese cork oak sector is used as an application example of the model. The results obtained showed that the agglomeration industry is the hotspot for the carbon footprint of the cork sector mainly due to the production of the resins that are mixed with the cork granules for the production of agglomerated cork products. The consideration of the biogenic carbon emissions and sequestration of carbon at the forest in the carbon footprint, resulted to a great decrease of the sector's carbon footprint. Future actions for improvement are suggested in order to decrease the carbon footprint of the entire cork sector. It was found that by decreasing by 10% the emission factor of the agglomeration and transformation industries, substituting the transport trucks by more recent ones and by decreasing by 10% the cork products reaching the landfilling end-of-life destinations (while increasing the quantities reaching incineration and recycling), a decrease of the total CF (excluding the biogenic emissions and sequestration) of the entire cork industry by 10% can be achieved.

  15. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  16. Mechanical testing and modelling of carbon-carbon composites for aircraft disc brakes

    NASA Astrophysics Data System (ADS)

    Bradley, Luke R.

    The objective of this study is to improve the understanding of the stress distributions and failure mechanisms experienced by carbon-carbon composite aircraft brake discs using finite element (FE) analyses. The project has been carried out in association with Dunlop Aerospace as an EPSRC CASE studentship. It therefore focuses on the carbon-carbon composite brake disc material produced by Dunlop Aerospace, although it is envisaged that the approach will have broader applications for modelling and mechanical testing of carbon-carbon composites in general. The disc brake material is a laminated carbon-carbon composite comprised of poly(acrylonitrile) (PAN) derived carbon fibres in a chemical vapour infiltration (CVI) deposited matrix, in which the reinforcement is present in both continuous fibre and chopped fibre forms. To pave the way for the finite element analysis, a comprehensive study of the mechanical properties of the carbon-carbon composite material was carried out. This focused largely, but not entirely, on model composite materials formulated using structural elements of the disc brake material. The strengths and moduli of these materials were measured in tension, compression and shear in several orientations. It was found that the stress-strain behaviour of the materials were linear in directions where there was some continuous fibre reinforcement, but non-linear when this was not the case. In all orientations, some degree of non-linearity was observed in the shear stress-strain response of the materials. However, this non-linearity was generally not large enough to pose a problem for the estimation of elastic moduli. Evidence was found for negative Poisson's ratio behaviour in some orientations of the material in tension. Additionally, the through-thickness properties of the composite, including interlaminar shear strength, were shown to be positively related to bulk density. The in-plane properties were mostly unrelated to bulk density over the range of

  17. Belize model, a carbonate-clastic shelf buildup

    SciTech Connect

    Shepard, W.

    1987-05-01

    Belize, a small Central American country located on the Caribbean Sea south of the Yucatan Peninsula, offers an excellent modern analog of a mixed carbonate/clastic shelf buildup. Its 175-mi long reef tract, second longest in the world, restricts a shallow shelf depobasin into which terrigenous clastics source from the Maya Mountains to the west and carbonates dominate from the east. Mixed lithologies occur along strandlines, in submarine channels, and in lagoons and river-delta fronts, which are scattered throughout the depobasin. Energy sources from both land and sea influence sedimentation. Heavy summer rains flood the basin with arkosic and quartzose clastics, and periodic sea storms and hurricanes drive carbonate particles from the reef tract landward into the basin. Modern environments include the reef tract, carbonate tidal flats, shallow shelf patch reefs, lagoons, cayes, mainland coast deltas, estuaries, lagoons, and beach/bar barriers. Modern sediments include reef metazoans, algae, coralline algae, lime mud, quartz, and feldspathic sand and clay. The setting for the model has been influenced by Tertiary tectonics and Pleistocene sea level changes. Karstification occurred during the past 10,000 years, partly controlling topography and resulting Holocene sediment patterns. Facies patterns of the Belize Holocene are compared to the Jurassic of Montana. The Middle Jurassic Piper Formation exhibits a nearly 100-mi long carbonate barrier/buildup restricting a clastic-dominated shelf. Other ancient mixed carbonate/clastic terranes may fit this model as well.

  18. PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. II. EXPLOSION

    SciTech Connect

    Bravo, Eduardo; Garcia-Senz, Domingo; Cabezon, Ruben M.; DomInguez, Inmaculada E-mail: domingo.garcia@upc.edu E-mail: inma@ugr.es

    2009-04-20

    Observational evidences point to a common explosion mechanism of Type Ia supernovae based on a delayed detonation of a white dwarf (WD). However, all attempts to find a convincing ignition mechanism based on a delayed detonation in a destabilized, expanding, white dwarf have been elusive so far. One of the possibilities that has been invoked is that an inefficient deflagration leads to pulsation of a Chandrasekhar-mass WD, followed by formation of an accretion shock that confines a carbon-oxygen rich core, while transforming the kinetic energy of the collapsing halo into thermal energy of the core, until an inward moving detonation is formed. This chain of events has been termed Pulsating Reverse Detonation (PRD). In this work, we present three-dimensional numerical simulations of PRD models from the time of detonation initiation up to homologous expansion. Different models characterized by the amount of mass burned during the deflagration phase, M {sub defl}, give explosions spanning a range of kinetic energies, K {approx} (1.0-1.2) x 10{sup 51} erg, and {sup 56}Ni masses, M({sup 56}Ni) {approx} 0.6-0.8 M {sub sun}, which are compatible with what is expected for typical Type Ia supernovae. Spectra and light curves of angle-averaged spherically symmetric versions of the PRD models are discussed. Type Ia supernova spectra pose the most stringent requirements on PRD models.

  19. A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy.

    PubMed

    Pang, Lei; Wang, Chenxu; Han, Mengxing; Xu, Zilong

    2015-12-15

    Mesh aluminum alloys (MAAs) have been widely used in military and civilian applications to suppress the explosion of flammable gases (fluids) inside containers. However, MAAs have not been tested in or applied to the hydrogen suppression-explosions. Hence, a typical MAA product, i.e., one that has been in wide use, is selected as the experimental material in the present study. The characteristics of the deflagration of hydrogen-air mixture inside an MAA-filled tube are investigated, and the effects of the filling density of the MAA and the concentration of hydrogen in air on the deflagration are examined. The suppressing effect of the MAA on the deflagration of hydrogen-air mixture is compared with its effect on the deflagration of a typical hydrocarbon fuel in air. The results show that not only is the existing MAA product unable to effectively suppress the deflagration of hydrogen-air mixture, but it also increases the maximum explosion pressure, which is opposite to the satisfactory suppressing effect of the MAA product on the deflagration of hydrocarbon fuels such as methane. The results of this study provide a scientific basis for the effective prevention of explosion accidents with hydrogen and for the development of explosion-suppression products. PMID:26124063

  20. A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy.

    PubMed

    Pang, Lei; Wang, Chenxu; Han, Mengxing; Xu, Zilong

    2015-12-15

    Mesh aluminum alloys (MAAs) have been widely used in military and civilian applications to suppress the explosion of flammable gases (fluids) inside containers. However, MAAs have not been tested in or applied to the hydrogen suppression-explosions. Hence, a typical MAA product, i.e., one that has been in wide use, is selected as the experimental material in the present study. The characteristics of the deflagration of hydrogen-air mixture inside an MAA-filled tube are investigated, and the effects of the filling density of the MAA and the concentration of hydrogen in air on the deflagration are examined. The suppressing effect of the MAA on the deflagration of hydrogen-air mixture is compared with its effect on the deflagration of a typical hydrocarbon fuel in air. The results show that not only is the existing MAA product unable to effectively suppress the deflagration of hydrogen-air mixture, but it also increases the maximum explosion pressure, which is opposite to the satisfactory suppressing effect of the MAA product on the deflagration of hydrocarbon fuels such as methane. The results of this study provide a scientific basis for the effective prevention of explosion accidents with hydrogen and for the development of explosion-suppression products.

  1. Modeling the carbon isotope composition of bivalve shells (Invited)

    NASA Astrophysics Data System (ADS)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., <10%) in shells from aquatic organism and high (>90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions

  2. Modeling the Electrical Contact Resistance at Steel-Carbon Interfaces

    NASA Astrophysics Data System (ADS)

    Brimmo, Ayoola T.; Hassan, Mohamed I.

    2016-01-01

    In the aluminum smelting industry, electrical contact resistance at the stub-carbon (steel-carbon) interface has been recurrently reported to be of magnitudes that legitimately necessitate concern. Mitigating this via finite element modeling has been the focus of a number of investigations, with the pressure- and temperature-dependent contact resistance relation frequently cited as a factor that limits the accuracy of such models. In this study, pressure- and temperature-dependent relations are derived from the most extensively cited works that have experimentally characterized the electrical contact resistance at these contacts. These relations are applied in a validated thermo-electro-mechanical finite element model used to estimate the voltage drop across a steel-carbon laboratory setup. By comparing the models' estimate of the contact electrical resistance with experimental measurements, we deduce the applicability of the different relations over a range of temperatures. The ultimate goal of this study is to apply mathematical modeling in providing pressure- and temperature-dependent relations that best describe the steel-carbon electrical contact resistance and identify the best fit relation at specific thermodynamic conditions.

  3. Measuring and Modeling Component and Whole-System Carbon Exchange

    SciTech Connect

    Paul Bolstad

    2006-11-01

    We measured ecosystem/atmospheric carbon exchange through a range of methods covering a range of scales. We measured carbon (C) pool and flux for a number of previously poorly quantified ecosystems, developed measurement and modeling methods, and applied these to substantially increase the accuracy and reduce uncertainty in ecosystem/atmospheric C exchange at a range of scales. It appears most upland forests are weak to strong carbon sinks, and status depends largely on disturbance history and age. Net flux from wetland ecosystems appears to be from weak sinks to moderate sources of C to the atmosphere. We found limited evidence for a positive feedback of warming/drying to increased ecosystem C emissions. We further developed multi-source integration and modeling methods, including multiple towers, to scale estimates to landscapes and larger regions.

  4. Carbon accumulation of tropical peatlands over millennia: a modeling approach.

    PubMed

    Kurnianto, Sofyan; Warren, Matthew; Talbot, Julie; Kauffman, Boone; Murdiyarso, Daniel; Frolking, Steve

    2015-01-01

    Tropical peatlands cover an estimated 440,000 km2 (~10% of global peatland area) and are significant in the global carbon cycle by storing about 40-90 Gt C in peat. Over the past several decades, tropical peatlands have experienced high rates of deforestation and conversion, which is often associated with lowering the water table and peat burning, releasing large amounts of carbon stored in peat to the atmosphere. We present the first model of long-term carbon accumulation in tropical peatlands by modifying the Holocene Peat Model (HPM), which has been successfully applied to northern temperate peatlands. Tropical HPM (HPMTrop) is a one-dimensional, nonlinear, dynamic model with a monthly time step that simulates peat mass remaining in annual peat cohorts over millennia as a balance between monthly vegetation inputs (litter) and monthly decomposition. Key model parameters were based on published data on vegetation characteristics, including net primary production partitioned into leaves, wood, and roots; and initial litter decomposition rates. HPMTrop outputs are generally consistent with field observations from Indonesia. Simulated long-term carbon accumulation rates for 11,000-year-old inland, and 5000-year-old coastal peatlands were about 0.3 and 0.59 Mg C ha(-1) yr(-1), and the resulting peat carbon stocks at the end of the 11,000-year and 5000-year simulations were 3300 and 2900 Mg C ha(-1), respectively. The simulated carbon loss caused by coastal peat swamp forest conversion into oil palm plantation with periodic burning was 1400 Mg C ha(-1) over 100 years, which is equivalent to ~2900 years of C accumulation in a hectare of coastal peatlands.

  5. Modelling uncertainty of carbon stocks changes in peats.

    NASA Astrophysics Data System (ADS)

    Poggio, Laura; Gimona, Alessandro; Aalders, Inge; Morrice, Jane; Hough, Rupert

    2015-04-01

    Global warming might change the hydrology of upland blanket peats in Scotland with increased risk of release of the stored carbon. It is therefore important to model the loss of carbon in peat areas with estimation of the damage potential. The presented approach has the potential to provide important information for the assessment of carbon stocks over large areas, but also in case of changes of land use, such as construction of wind farms. The provided spatial uncertainty is important for including the results in further environmental and climate-change models and for decision making in order to provide alternatives and prioritisation. In this study, main peat properties (i.e. depth, water content, bulk density and carbon content) were modelled using a hybrid GAM-geostatistical 3D approach that allows full uncertainty propagation. The approach used involves 1) modelling the trend with full 3D spatial correlation, i.e., exploiting the values of the neighbouring pixels in 3D-space, and 2) 3D kriging as spatial component. The uncertainty of the approach is assessed with iterations in both steps of the process. We studied the difference between local estimates obtained with the present method and local estimates obtained assuming the global average value across the test area for Carbon content and bulk density. To this end, virtual pits with a surface area of 30x30 m were excavated for the whole peat depth at randomly selected locations. Calculated uncertainty was used to estimate credible intervals of C loss. In this case the estimates obtained with the proposed approach are higher that what would be obtained by assuming spatial homogeneity and using just average values across the area. This has implications for environmental decision making and planning as, in this case, it is likely that more carbon would be lost than estimated using traditional approaches.

  6. Carbon accumulation of tropical peatlands over millennia: a modeling approach.

    PubMed

    Kurnianto, Sofyan; Warren, Matthew; Talbot, Julie; Kauffman, Boone; Murdiyarso, Daniel; Frolking, Steve

    2015-01-01

    Tropical peatlands cover an estimated 440,000 km2 (~10% of global peatland area) and are significant in the global carbon cycle by storing about 40-90 Gt C in peat. Over the past several decades, tropical peatlands have experienced high rates of deforestation and conversion, which is often associated with lowering the water table and peat burning, releasing large amounts of carbon stored in peat to the atmosphere. We present the first model of long-term carbon accumulation in tropical peatlands by modifying the Holocene Peat Model (HPM), which has been successfully applied to northern temperate peatlands. Tropical HPM (HPMTrop) is a one-dimensional, nonlinear, dynamic model with a monthly time step that simulates peat mass remaining in annual peat cohorts over millennia as a balance between monthly vegetation inputs (litter) and monthly decomposition. Key model parameters were based on published data on vegetation characteristics, including net primary production partitioned into leaves, wood, and roots; and initial litter decomposition rates. HPMTrop outputs are generally consistent with field observations from Indonesia. Simulated long-term carbon accumulation rates for 11,000-year-old inland, and 5000-year-old coastal peatlands were about 0.3 and 0.59 Mg C ha(-1) yr(-1), and the resulting peat carbon stocks at the end of the 11,000-year and 5000-year simulations were 3300 and 2900 Mg C ha(-1), respectively. The simulated carbon loss caused by coastal peat swamp forest conversion into oil palm plantation with periodic burning was 1400 Mg C ha(-1) over 100 years, which is equivalent to ~2900 years of C accumulation in a hectare of coastal peatlands. PMID:25044171

  7. Modeling stable isotope and organic carbon in hillslope stormflow

    NASA Astrophysics Data System (ADS)

    Dusek, Jaromir; Vogel, Tomas; Dohnal, Michal; Marx, Anne; Jankovec, Jakub; Sanda, Martin; Votrubova, Jana; Barth, Johannes A. C.; Cislerova, Milena

    2016-04-01

    Reliable prediction of water movement and fluxes of dissolved substances (such as stable isotopes and organic carbon) at both the hillslope and the catchment scales remains a challenge due to complex boundary conditions and soil spatial heterogeneity. In addition, microbially mediated transformations of dissolved organic carbon (DOC) are known to affect balance of DOC in soils, hence the transformations need to be included in a conceptual model of a DOC transport. So far, only few studies utilized stable isotope information in modeling and even fewer linked dissolved carbon fluxes to mixing and/or transport models. In this study, stormflow dynamics of oxygen-18 isotope and dissolved organic carbon was analyzed using a physically based modeling approach. One-dimensional dual-continuum vertical flow and transport model, based on Richards and advection-dispersion equations, was used to simulate the subsurface transport processes in a forest soil during several observed rainfall-runoff episodes. The transport of heat in the soil profile was described by conduction-advection equation. Water flow and transport of solutes and heat were assumed to take place in two mutually communicating porous domains, the soil matrix and the network of preferential pathways. The rate of microbial transformations of DOC was assumed to depend on soil water content and soil temperature. Oxygen-18 and dissolved organic carbon concentrations were observed in soil pore water, hillslope stormflow (collected in the experimental hillslope trench), and stream discharge (at the catchment outlet). The modeling was used to analyze the transformation of input solute signals into output hillslope signals observed in the trench stormflow. Signatures of oxygen-18 isotope in hillslope stormflow as well as isotope concentration in soil pore water were predicted reasonably well. Due to complex nature of microbial transformations, prediction of DOC rate and transport was associated with a high uncertainty.

  8. Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet)

    SciTech Connect

    Not Available

    2011-09-01

    In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production.

  9. Modeling of Carbon Nanotubes (Nanofibers) as Macromolecular Coils

    NASA Astrophysics Data System (ADS)

    Mikitaev, A. K.; Kozlov, G. V.

    2015-12-01

    Modeling of carbon nanotubes (nanofibers) in polymer nanocomposites as macromolecular coils is performed. This approach offers an estimation of the real degree of anisotropy of these nanofillers and allows predicting the properties of the resulting nanocomposites. An important role of the nanofiller - polymer matrix interface is demonstrated.

  10. A big-microsite framework for soil carbon modeling.

    PubMed

    Davidson, Eric A; Savage, Kathleen E; Finzi, Adrien C

    2014-12-01

    Soil carbon cycling processes potentially play a large role in biotic feedbacks to climate change, but little agreement exists at present on what the core of numerical soil C cycling models should look like. In contrast, most canopy models of photosynthesis and leaf gas exchange share a common 'Farquhaur-model' core structure. Here, we explore why a similar core model structure for heterotrophic soil respiration remains elusive and how a pathway to that goal might be envisioned. The spatial and temporal variation in soil microsite conditions greatly complicates modeling efforts, but we believe it is possible to develop a tractable number of parameterizable equations that are organized into a coherent, modular, numerical model structure. First, we show parallels in insights gleaned from linking Arrhenius and Michaelis-Menten kinetics for both photosynthesis and soil respiration. Additional equations and layers of complexity are then added to simulate substrate supply. For soils, model modules that simulate carbon stabilization processes will be key to estimating the fraction of soil C that is accessible to enzymes. Potential modules for dynamic photosynthate input, wetting-event inputs, freeze-thaw impacts on substrate diffusion, aggregate turnover, soluble-C sorption, gas transport, methane respiration, and microbial dynamics are described for conceptually and numerically linking our understanding of fast-response processes of soil gas exchange with longer-term dynamics of soil carbon and nitrogen stocks.

  11. Austrian Carbon Calculator (ACC) - modelling soil carbon dynamics in Austrian soils

    NASA Astrophysics Data System (ADS)

    Sedy, Katrin; Freudenschuss, Alexandra; Zethner, Gehard; Spiegel, Heide; Franko, Uwe; Gründling, Ralf; Xaver Hölzl, Franz; Preinstorfer, Claudia; Haslmayr, Hans Peter; Formayer, Herbert

    2014-05-01

    Austrian Carbon Calculator (ACC) - modelling soil carbon dynamics in Austrian soils. The project funded by the Klima- und Energiefonds, Austrian Climate Research Programme, 4th call Authors: Katrin Sedy, Alexandra Freudenschuss, Gerhard Zethner (Environment Agency Austria), Heide Spiegel (Austrian Agency for Health and Food Safety), Uwe Franko, Ralf Gründling (Helmholtz Centre for Environmental Research) Climate change will affect plant productivity due to weather extremes. However, adverse effects could be diminished and satisfying production levels may be maintained with proper soil conditions. To sustain and optimize the potential of agricultural land for plant productivity it will be necessary to focus on preserving and increasing soil organic carbon (SOC). Carbon sequestration in agricultural soils is strongly influenced by management practice. The present management is affected by management practices that tend to speed up carbon loss. Crop rotation, soil cultivation and the management of crop residues are very important measures to influence carbon dynamics and soil fertility. For the future it will be crucial to focus on practical measures to optimize SOC and to improve soil structure. To predict SOC turnover the existing humus balance model the application of the "Carbon Candy Balance" was verified by results from Austrian long term field experiments and field data of selected farms. Thus the main aim of the project is to generate a carbon balancing tool box that can be applied in different agricultural production regions to assess humus dynamics due to agricultural management practices. The toolbox will allow the selection of specific regional input parameters for calculating the C-balance at field level. However farmers or other interested user can also apply their own field data to receive the result of C-dynamics under certain management practises within the next 100 years. At regional level the impact of predefined changes in agricultural management

  12. Information for seasonal models of carbon fluxes in terrestrial biomes

    SciTech Connect

    King, A.W.; DeAngelis, D.L.

    1985-06-01

    This report is a compilation of information that can be used in developing seasonal carbon flux models for several principal terrestrial biome types. The information includes flux data as well as models made either to simulate such data or to deduce fluxes not directly measurable. The report is divided into three sections that examine (1) photosynthetic production, (2) litterfall, and (3) decomposition during a year. The sections on photosynthetic production and decomposition discuss a large number of models that relate the processes to basic abiotic variables in each of several biome types. The information on litterfall, however, is largely empirical phenology data. A fourth section demonstrates the application of this compiled information to a compartment model of seasonal carbon flux in terrestrial biomes. 14 figs., 12 tabs.

  13. Carbosoil, a land evaluation model for soil carbon accounting

    NASA Astrophysics Data System (ADS)

    Anaya-Romero, M.; Muñoz-Rojas, M.; Pino, R.; Jordan, A.; Zavala, L. M.; De la Rosa, D.

    2012-04-01

    The belowground carbon content is particularly difficult to quantify and most of the time is assumed to be a fixed fraction or ignored for lack of better information. In this respect, this research presents a land evaluation tool, Carbosoil, for predicting soil carbon accounting where this data are scarce or not available, as a new component of MicroLEIS DSS. The pilot study area was a Mediterranean region (Andalusia, Southern Spain) during 1956-2007. Input data were obtained from different data sources and include 1689 soil profiles from Andalusia (S Spain). Previously, detailed studies of changes in LU and vegetation carbon stocks, and soil organic carbon (SOC) dynamic were carried out. Previous results showed the influence of LU, climate (mean temperature and rainfall) and soil variables related with SOC dynamics. For instance, SCS decreased in Cambisols and Regosols by 80% when LU changed from forest to heterogeneous agricultural areas. Taking this into account, the input variables considered were LU, site (elevation, slope, erosion, type-of-drainage, and soil-depth), climate (mean winter/summer temperature and annual precipitation), and soil (pH, nitrates, CEC, sand/clay content, bulk density and field capacity). The available data set was randomly split into two parts: training-set (75%), and validation-set (25%). The model was built by using multiple linear regression. The regression coefficient (R2) obtained in the calibration and validation of Carbosoil was >0.9 for the considered soil sections (0-25, 25-50, and 50-75 cm). The validation showed the high accuracy of the model and its capacity to discriminate carbon distribution regarding different climate, LU and soil management scenarios. Carbosoil model together with the methodologies and information generated in this work will be a useful basis to accurately quantify and understanding the distribution of soil carbon account helpful for decision makers.

  14. Process modeling for carbon-phenolic nozzle materials

    NASA Technical Reports Server (NTRS)

    Letson, Mischell A.; Bunker, Robert C.; Remus, Walter M., III; Clinton, R. G.

    1989-01-01

    A thermochemical model based on the SINDA heat transfer program is developed for carbon-phenolic nozzle material processes. The model can be used to optimize cure cycles and to predict material properties based on the types of materials and the process by which these materials are used to make nozzle components. Chemical kinetic constants for Fiberite MX4926 were determined so that optimization of cure cycles for the current Space Shuttle Solid Rocket Motor nozzle rings can be determined.

  15. Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution

    NASA Astrophysics Data System (ADS)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2016-02-01

    This research models the corrosion reactions of a high-strength steel in an aerated, dilute, carbonate solution during a single-cycle voltammetry. Based on a previous study (Eliyan et al. in J Mater Eng Perform 24(6):1-8, 2015) and a literature survey, the corrosion reactions of the cathodic reduction, anodic dissolution, and passivation, as well as the interfacial interactions and the chemistry of the corrosion products are illustrated in schematics. The paper provides a visual guide on the corrosion reactions for steel in carbonate solutions based on the available mechanistic details that were reported and are still being investigated in literature.

  16. A Computer Model for Direct Carbonate Fuel Cells

    SciTech Connect

    Ding, J.; Patel, P.S.; Farooque, M.; Maru, H.C.

    1997-04-01

    A 3-D computer model, describing fluid flow, heat and mass transfer, and chemical and electrochemical reaction processes, has been developed for guiding the direct carbonate fuel cell (DFC) stack design. This model is able to analyze the direct internal reforming (DIR) as well as the integrated IIR (indirect internal reforming)-DIR designs. Reasonable agreements between computed and fuel cell tested results, such as flow variations, temperature distributions, cell potentials, and exhaust gas compositions as well as methane conversions, were obtained. Details of the model and comparisons of the modeling results with experimental DFC stack data are presented in the paper.

  17. Explicit Pore Pressure Material Model in Carbon-Cloth Phenolic

    NASA Technical Reports Server (NTRS)

    Gutierrez-Lemini, Danton; Ehle, Curt

    2003-01-01

    An explicit material model that uses predicted pressure in the pores of a carbon-cloth phenolic (CCP) composite has been developed. This model is intended to be used within a finite-element model to predict phenomena specific to CCP components of solid-fuel-rocket nozzles subjected to high operating temperatures and to mechanical stresses that can be great enough to cause structural failures. Phenomena that can be predicted with the help of this model include failures of specimens in restrained-thermal-growth (RTG) tests, pocketing erosion, and ply lifting

  18. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity

    SciTech Connect

    Li, Jianwei; Wang, Gangsheng; Allison, Steven D.; Mayes, Melanie; Luo, Yiqi

    2014-01-01

    Global ecosystem models may require microbial components to accurately predict feedbacks between climate warming and soil decomposition, but it is unclear what parameters and levels of complexity are ideal for scaling up to the globe. Here we conducted a model comparison using a conventional model with first-order decay and three microbial models of increasing complexity that simulate short- to long-term soil carbon dynamics. We focused on soil carbon responses to microbial carbon use efficiency (CUE) and temperature. Three scenarios were implemented in all models: constant CUE (held at 0.31), varied CUE ( 0.016 C 1), and 50 % acclimated CUE ( 0.008 C 1). Whereas the conventional model always showed soil carbon losses with increasing temperature, the microbial models each predicted a temperature threshold above which warming led to soil carbon gain. The location of this threshold depended on CUE scenario, with higher temperature thresholds under the acclimated and constant scenarios. This result suggests that the temperature sensitivity of CUE and the structure of the soil carbon model together regulate the long-term soil carbon response to warming. Equilibrium soil carbon stocks predicted by the microbial models were much less sensitive to changing inputs compared to the conventional model. Although many soil carbon dynamics were similar across microbial models, the most complex model showed less pronounced oscillations. Thus, adding model complexity (i.e. including enzyme pools) could improve the mechanistic representation of soil carbon dynamics during the transient phase in certain ecosystems. This study suggests that model structure and CUE parameterization should be carefully evaluated when scaling up microbial models to ecosystems and the globe.

  19. Atomistic modelling of CVD synthesis of carbon nanotubes and graphene

    NASA Astrophysics Data System (ADS)

    Elliott, James A.; Shibuta, Yasushi; Amara, Hakim; Bichara, Christophe; Neyts, Erik C.

    2013-07-01

    We discuss the synthesis of carbon nanotubes (CNTs) and graphene by catalytic chemical vapour deposition (CCVD) and plasma-enhanced CVD (PECVD), summarising the state-of-the-art understanding of mechanisms controlling their growth rate, chiral angle, number of layers (walls), diameter, length and quality (defects), before presenting a new model for 2D nucleation of a graphene sheet from amorphous carbon on a nickel surface. Although many groups have modelled this process using a variety of techniques, we ask whether there are any complementary ideas emerging from the different proposed growth mechanisms, and whether different modelling techniques can give the same answers for a given mechanism. Subsequently, by comparing the results of tight-binding, semi-empirical molecular orbital theory and reactive bond order force field calculations, we demonstrate that graphene on crystalline Ni(111) is thermodynamically stable with respect to the corresponding amorphous metal and carbon structures. Finally, we show in principle how a complementary heterogeneous nucleation step may play a key role in the transformation from amorphous carbon to graphene on the metal surface. We conclude that achieving the conditions under which this complementary crystallisation process can occur may be a promising method to gain better control over the growth processes of both graphene from flat metal surfaces and CNTs from catalyst nanoparticles.

  20. Atomistic modelling of CVD synthesis of carbon nanotubes and graphene.

    PubMed

    Elliott, James A; Shibuta, Yasushi; Amara, Hakim; Bichara, Christophe; Neyts, Erik C

    2013-08-01

    We discuss the synthesis of carbon nanotubes (CNTs) and graphene by catalytic chemical vapour deposition (CCVD) and plasma-enhanced CVD (PECVD), summarising the state-of-the-art understanding of mechanisms controlling their growth rate, chiral angle, number of layers (walls), diameter, length and quality (defects), before presenting a new model for 2D nucleation of a graphene sheet from amorphous carbon on a nickel surface. Although many groups have modelled this process using a variety of techniques, we ask whether there are any complementary ideas emerging from the different proposed growth mechanisms, and whether different modelling techniques can give the same answers for a given mechanism. Subsequently, by comparing the results of tight-binding, semi-empirical molecular orbital theory and reactive bond order force field calculations, we demonstrate that graphene on crystalline Ni(111) is thermodynamically stable with respect to the corresponding amorphous metal and carbon structures. Finally, we show in principle how a complementary heterogeneous nucleation step may play a key role in the transformation from amorphous carbon to graphene on the metal surface. We conclude that achieving the conditions under which this complementary crystallisation process can occur may be a promising method to gain better control over the growth processes of both graphene from flat metal surfaces and CNTs from catalyst nanoparticles. PMID:23774798

  1. Modeling Carbon and Hydrocarbon Molecular Structures in EZTB

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul

    2007-01-01

    A software module that models the electronic and mechanical aspects of hydrocarbon molecules and carbon molecular structures on the basis of first principles has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure, which is summarized briefly in the immediately preceding article. Of particular interest, this module can model carbon crystals and nanotubes characterized by various coordinates and containing defects, without need to adjust parameters of the physical model. The module has been used to study the changes in electronic properties of carbon nanotubes, caused by bending of the nanotubes, for potential utility as the basis of a nonvolatile, electriccharge- free memory devices. For example, in one application of the module, it was found that an initially 50-nmlong carbon, (10,10)-chirality nanotube, which is a metallic conductor when straight, becomes a semiconductor with an energy gap of .3 meV when bent to a lateral displacement of 4 nm at the middle.

  2. On calculating the transfer of carbon-13 in reservoir models of the carbon cycle

    SciTech Connect

    TANS, PIETER P.

    1980-10-01

    An approach to calculating the transfer of isotopic tracers in reservoir models is outlined that takes into account the effects of isotopic fractionation at phase boundaries without any significant approximations. Simultaneous variations in both the rare isotopic tracer and the total elemental (the sum of its isotopes) concentration are considered. The proposed procedure is applicable to most models of the carbon cycle and a four-box model example is discussed. Although the exact differential equations are non-linear, a simple linear approximation exists that gives insight into the nature of the solution. The treatment will be in terms of isotopic ratios which are the directly measured quantities.

  3. CARBON-CHAIN SPECIES IN WARM-UP MODELS

    SciTech Connect

    Hassel, George E.; Harada, Nanase; Herbst, Eric

    2011-12-20

    In previous warm-up chemical models of the low-mass star-forming region L1527, we investigated the evolution of carbon-chain unsaturated hydrocarbon species when the envelope temperature is slightly elevated to T Almost-Equal-To 30 K. These models demonstrated that enhanced abundances of such species can be explained by gas-phase ion-molecule chemistry following the partial sublimation of methane from grain surfaces. We also concluded that the abundances of hydrocarbon radicals such as the C{sub n}H family should be further enhanced as the temperatures increase to higher values, but this conclusion stood in contrast with the lack of unambiguous detection of these species toward hot core and corino sources. Meanwhile, observational surveys have identified C{sub 2}H, C{sub 4}H, CH{sub 3}CCH, and CH{sub 3}OH toward hot corinos (especially IRAS 16293-2422) as well as toward L1527, with lower abundances for the carbon-chain radicals and higher abundances for the other two species toward the hot corinos. In addition, the Herschel Space Telescope has detected the bare linear chain C{sub 3} in 50 K material surrounding young high-mass stellar objects. To understand these new results, we revisit previous warm-up models with an augmented gas-grain network that incorporated reactions from a gas-phase network that was constructed for use with increased temperature up to 800 K. Some of the newly adopted reactions between carbon-chain species and abundant H{sub 2} possess chemical activation energy barriers. The revised model results now better reproduce the observed abundances of unsaturated carbon chains under hot corino (100 K) conditions and make predictions for the abundances of bare carbon chains in the 50 K regions observed by the Herschel HIFI detector.

  4. High resolution modeling of direct ocean carbon sequestration

    SciTech Connect

    Michael Follows; John Marshall

    2004-04-22

    This work has followed two themes: (1) Developing and using the adjoint of the MIT ocean biogeochemistry model to examine the efficiency of carbon sequestration in a global configuration. We have demonstrated the power of the adjoint method for systematic ocean model sensitivity studies. We have shown that the relative efficiency of carbon sequestration in the Atlantic and Pacific basins changes with the period of interest. For decadal to centennial scales, the Pacific is more efficient. On longer timescales the Atlantic is more efficient . (2) We have developed and applied a high-resolution, North Atlantic circulation and tracer model to investigate the role of the mesoscale in controlling sequestration efficiency. We show that the mesoscale eddy field, and its explicit representation, significantly affects the estimated sequestration efficiency for local sources on the Eastern US seaboard.

  5. Ocean Carbon Cycle Models from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    The following Ocean Carbon Cycle models and modeling results are available from CDIAC: • CSIRO/Matear Data [Model simulation of climate change from 1880 till 2100 (Matear and Hirst 2003, GBC) • Lequere Data, Model Results • McKinley MITgcm offline biogeochemical model - posted May 2004 • McKinley MITgcm offline biogeochemical model - posted December 2004 • NCOM-Pacific-Biogeochemical Modeling Results from Fei Chai • ROMS-Pacific-Biogeochemical Modeling Results from Fei CHai • WHOI/NCAR/Irvine Eco-BGC (Doney, Moore, Lindsay, and Lima) - Posted May 2005 • Max-Planck-Institut f?r Biogeochemie (Lequere, Buitenhuis) Modeling Results • Max-Planck-Institut f?r Biogeochemie (Lequere, Buitenhuis) Modeling Results - Posted March 2005 • Jim Christian model output for (a) Climatologies of T, S, PO4 at 50 m depth intervals; (b) SST, SSS, MLD, pCO2, CO2 flux from 1990-2003, and (c) climatological surface horizontal velocity • Max-Planck-Institut f?r Biogeochemie (Lequere, Buitenhuis) Modeling Results • Deutsch (UW) model output results for Oxygen variability in the North Pacific • Pacific data-model intercomparison from Patrick Wetzel (Max Planck Institute for Meteorology, Germany)

  6. Modeling of carbonic acid pretreatment process using ASPEN-Plus.

    PubMed

    Jayawardhana, Kemantha; Van Walsum, G Peter

    2004-01-01

    ASPEN-Plus process modeling software is used to model carbonic acid pretreatment of biomass. ASPEN-Plus was used because of the thorough treatment of thermodynamic interactions and its status as a widely accepted process simulator. Because most of the physical property data for many of the key components used in the simulation of pretreatment processes are not available in the standard ASPEN-Plus property databases, values from an in-house database (INHSPCD) developed by the National Renewable Energy Laboratory were used. The standard non-random-two-liquid (NRTL) or renon route was used as the main property method because of the need to distill ethanol and to handle dissolved gases. The pretreatment reactor was modeled as a "black box" stoichiometric reactor owing to the unavailability of reaction kinetics. The ASPEN-Plus model was used to calculate the process equipment costs, power requirements, and heating and cooling loads. Equipment costs were derived from published modeling studies. Wall thickness calculations were used to predict construction costs for the high-pressure pretreatment reactor. Published laboratory data were used to determine a suitable severity range for the operation of the carbonic acid reactor. The results indicate that combined capital and operating costs of the carbonic acid system are slightly higher than an H2SO4-based system and highly sensitive to reactor pressure and solids concentration.

  7. The missing biology in land carbon models (Invited)

    NASA Astrophysics Data System (ADS)

    Prentice, I. C.; Cornwell, W.; Dong, N.; Maire, V.; Wang, H.; Wright, I.

    2013-12-01

    Models of terrestrial carbon cycling give divergent results, and recent developments - notably the inclusion of nitrogen-carbon cycle coupling - have apparently made matters worse. More extensive benchmarking of models would be highly desirable, but is not a panacea. Problems with current models include overparameterization (assigning separate sets of parameter values for each plant functional type can easily obscure more fundamental model limitations), and the widespread persistence of incorrect paradigms to describe plant responses to environment. Next-generation models require a more sound basis in observations and theory. A possible way forward will be outlined. It will be shown how the principle of optimization by natural selection can yield testable, general hypotheses about plant function. A specific optimality hypothesis about the control of CO2 drawdown versus water loss by leaves will be shown to yield global and quantitatively verifable predictions of plant behaviour as demonstrated in field gas-exchange measurements across species from different environments, and in the global pattern of stable carbon isotope discrimination by plants. Combined with the co-limitation hypothesis for the control of photosynthetic capacity and an economic approach to the costs of nutrient acquisition, this hypothesis provides a potential foundation for a comprehensive predictive understanding of the controls of primary production on land.

  8. Applications of dendrochronology for informing terrestrial carbon cycle modeling

    NASA Astrophysics Data System (ADS)

    Poulter, B.; Babst, F.; Ciais, P.; Frank, D. C.; Hessl, A. E.; Liu, H.; Pederson, N.

    2014-12-01

    Dendrochronology provides unique ecological information on forest dynamics that can be used to develop and benchmark terrestrial carbon cycle models. In recent years, integration between dendrochronology and process-based ecosystem models has been yielded insight into climate sensitivity of tree growth, annual carbon uptake, water-use efficiency, and phenology. Here we review some of these advances as well as some of the scaling challenges associated with representing forest stand-level dynamics from individual tree growth measurements. In particular, increment cores from trees provide annual temporal resolution of biomass gain that is recorded from decade to centennial time scales. Efforts to use such measurements to reconstruct stand level biomass gain, or net primary production, have to address issues related to sampling design as well as account for mortality-driven changes in stem density that take place during stand development, what is referred to as the 'fading record' problem. One solution to the fading record problem is to reconstruct stem density over time by applying self-thinning theory within a calibrated forest dynamics model. With this approach, recorded tree growth and modeled stand density dynamics can be used to estimate stand-level net primary production that more accurately relates to productivity estimates from carbon cycle models. An improved understanding of trends in forest productivity over the past century is critical for a range of forest management and forest science issues, where traditional growth and yield tables exclude effects of climate and atmospheric changes in CO2 on forest growth.

  9. Multi-property modeling of ocean basin carbon fluxes

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1988-01-01

    The objectives of this project were to elucidate the causal mechanisms in some of the most important features of the global ocean/atomsphere carbon system. These included the interaction of physical and biological processes in the seasonal cycle of surface water pCo2, and links between productivity, surface chlorophyll, and the carbon cycle that would aid global modeling efforts. In addition, several other areas of critical scientific interest involving links between the marine biosphere and the global carbon cycle were successfully pursued; specifically, a possible relation between phytoplankton emitted DMS and climate, and a relation between the location of calcium carbonate burial in the ocean and metamorphic source fluxes of CO2 to the atmosphere. Six published papers covering the following topics are summarized: (1) Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary; (2) Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial; (3) Controls on CO2 sources and sinks in the earthscale surface ocean; (4) pre-anthropogenic, earthscale patterns of delta pCO2 between ocean and atmosphere; (5) Effect on atmospheric CO2 from seasonal variations in the high latitude ocean; and (6) Limitations or relating ocean surface chlorophyll to productivity.

  10. Modeling the resilience of Amazonian carbon pools under changing climate

    NASA Astrophysics Data System (ADS)

    Hajdu, L. H.; Friend, A. D.; Dolman, A. J.

    2013-12-01

    The rainfall in the Amazon basin is derived from a mixture of moisture convergence from the Atlantic Ocean and local recycling. Changes in the moisture convergence especially during El Nino episodes, strongly influence the interannual climate variability of the basin, potentially having a strong impact on the carbon pools in vegetation and soil, leading to a changes in the ecosystem of the Amazon basin. We used a 0-dimensional model of atmospheric convection (after D'Andrea et al. 2006) to generate realistic timeseries of temperature and precipitation by changing the moisture convergence from the Atlantic Ocean with implications for the stability of Amazonian rainfall. We chose this model because it relies on very few parameters, allowing us to perform numerous sensitivity tests in relatively short time. In this model total rainfall depends on the parameter expressing the external moisture flux and the intensity of convection. Here, two values of moisture convergence were used, one representative of a wet climate (1.4 mm day-1) and one representative of a dry climate (0.54 mm day-1). We also increased the variability of the rainfall in order to investigate its impact on the carbon pools. We used these scenarios for changing precipitation, along with SRES emission scenarios for increasing atmospheric CO2 to force the Land Surface Model Hybrid8. The effects of a changing climate on the simulated soil and vegetation carbon pools have been investigated. Preliminary results show that in our model configuration and under a wet climate, the change in seasonal variability of precipitation does not seem to have a major impact on the carbon pools, which might suggest that the Amazon rainforest is relatively resilient to changes in seasonal precipitation. However, under a dry climate it may decline into a lower carbon system. The coupling of the two models is in progress with promising results for atmosphere-vegetation feedbacks. We will report on any changes in the threshold

  11. Determining organic carbon distributions in soil particle size fractions as a precondition of lateral carbon transport modeling at large scales

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Seher, Wiebke; Pfeffer, Eduard; Schultze, Nico; Amorim, Ricardo S. S.; Schmidt, Jürgen

    2016-04-01

    The erosional transport of organic carbon has an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon historically accumulated in the soil humus fraction. The colluvial organic carbon could be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. The selective nature of soil erosion results in a preferential transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. As a precondition of process based lateral carbon flux modeling, carbon distribution on soil particle size fractions has to be known. In this regard the present study refers to the determination of organic carbon contents on soil particle size separates by a combined sieve-sedimentation method for different tropical and temperate soils Our results suggest high influences of parent material and climatic conditions on carbon distribution on soil particle separates. By applying these results in erosion modeling a test slope was simulated with the EROSION 2D simulation software covering certain land use and soil management scenarios referring to different rainfall events. These simulations allow first insights on carbon loss and depletion on sediment delivery areas as well as carbon gains and enrichments on deposition areas on the landscape scale and could be used as a step forward in landscape scaled carbon redistribution modeling.

  12. Pore Scale Modeling of Mixing-Induced Carbonate Precipitation

    NASA Astrophysics Data System (ADS)

    Steefel, C.; Molins, S.; Shen, C.; Trebotich, D.

    2011-12-01

    Mixing of groundwaters of differing chemical composition can lead to precipitation of minerals, potentially modifying the transport and chemical properties of the subsurface materials. Carbonate minerals are particularly common secondary phases that form as a result of mixing, although in many instances their formation is also affected by a suite of complex dissolution and precipitation reactions that change the pH and alkalinity of groundwater. In the case of mixing, several distinct regimes are recognized, depending on the supersaturation generated by the mixing process. In the case where high degrees of supersaturation with respect to carbonate occur as a result of mixing (e.g., log Q/Keq > 1.5, where Q is the ion activity product and Keq is the equilibrium constant), homogeneous nucleation can generate reactive surface area for continued carbonate growth. In this case, no interaction between the mixing fluid and immobile solid phases is needed. In contrast, where supersaturation is more limited (log Q/Keq = 0.5 to 1.5), precipitation generally takes place via heterogeneous nucleation, in which case a templated mineral surface (normally carbonate) is required. Heterogeneous nucleation of carbonates is typically second order with respect to the supersaturation. At lower degrees of supersaturation (log Q/Keq < 0.5), precipitation takes place via crystal growth on discrete surface features of the carbonate mineral (e.g., via spiral growth) surface and shows a first order or quasi-first order dependence on supersaturation. Thus, the supersaturation induced by mixing largely controls the order of the reaction and the extent of interaction with pre-existing mineral surfaces in the subsurface. These in turn impact how the physical and chemical properties of the medium are modified by carbonate precipitation. We are investigating these carbonate precipitation regimes using pore scale reactive transport modeling based on Direct Numerical Simulation methods. Our

  13. Modelling the carbon cycle though Neoproterozoic Earth system changes

    NASA Astrophysics Data System (ADS)

    Bjerrum, C. J.; Canfield, D. E.

    2011-12-01

    The Neoproterozoic-Cambrian records major changes in geochemical proxies as a result of a profound reorganization of the Earth system. Extensive glaciations and the first oxygenation of the deep ocean with a shift from sulfidic/ferruginous conditions to more oxic conditions was accompanied by the radiation of the first animals. The reorganization was also recorded in enigmatic large-amplitude fluctuations in the isotopic composition of marine carbonate carbon (δ13CIC ), were only some are associated with major known glaciations. The carbon isotope events seem to grow in amplitude through the Neoproterozoic culminating in the Shuram anomaly - the largest in Earth history. The δ13CIC events are also accompanied by changes in the isotope composition of marine organic carbon (δ13COC), where the co-variation of δ13CIC and δ13COC seems to evolve from markedly positive relationship over a subdued δ13COC variation and an almost inverse pattern. There is limited understanding as to why or how the structure of these isotope events evolved over time and how these events may tie to the reorganization of the Earth system. We use our published quantitative model of the Shuram anomaly to explore carbon cycle dynamics during the Neoproterozoic. By changing in pre-event atmosphere-ocean chemistry we explore which factors contribute to the observed patterns of the large Neoproterozoic carbon isotope events. In particular, decreasing atmospheric CO2 and a slight increase of oxygen together with an increasing CO source from rising DOC concentrations results in progressively larger event amplitudes with changing co-variation between δ13CIC and δ13COC , culminating with the structure observed for the Shurum-Wonaka anomaly in the Ediacaran. In our model, the carbon isotope excursions were driven by methane from sediment-hosted clathrate hydrate deposits. Being a powerful greenhouse gas, methane increased temperature and melted icecaps. These combined to produce a negative 18O

  14. [Instantaneous emission spectra of epoxypropane in the process of deflagration to detonation transition].

    PubMed

    Li, Ping; Yuan, Chang-ying; Hu, Dong; Liu, Jun-chao; Zhu-mei, Sun; Dong, Shi; Xiao, Hai-bo

    2004-07-01

    Using an intensified CCD spectroscopic detector (Princeton Instruments, ICCD PI-Max 1024 RB) which can be gated in as little as 5 ns, the synchronization of the measuring system was controlled by a digital delay generator (Stanford Research Systems, DG535), the DG535 was triggered externally by a lab-made electrical pulse generator which transformed the optical trigger signal to an electrical signal, and the light signal from the end window of an explosion shock tube was delivered by an 1 mm in diameter plastic optical fiber to the entrance slit of the spectrometer (grating of 150 g x mm(-1) , central wavelength of 550 nm). The spectrum measurement of the epoxypropane in the process of deflagration to detonation transition (DDT) was then made. The instantaneous emission spectra of epoxypropane at different time of the DDT process with an exposure time of several microseconds were acquired. Results show that at the beginning of the DDT process, the emitted light was very weak and the line spectra of atoms were observed mainly; in the middle process of the DDT, the emitted light became strong and the spectra observed consisted of line spectra of atoms, band spectra of molecules plus continuous spectrum of the thermal radiation; when the detonation was formed, the emitted light got very strong, and the spectra acquired consisted of both line spectra of atoms and band spectra of molecules superimposed on the strong continuum of the thermal radiation. PMID:15766070

  15. Tantalum dust deflagration in a bag filter dust-collecting device.

    PubMed

    Matsuda, T; Yamaguma, M

    2000-10-01

    An accidental tantalum powder deflagration with casualties occurred during the operation of a bag filter dust-collecting device. To understand the mechanism of the incident and its material hazards, experiments for determining the combustibility and ignition characteristics of the tantalum powder were performed. The magnitude of the tantalum dust explosion is classified as severe (K(st)=273), contrary to the classification found in the preceding literature. The minimum ignition energies for both a dust cloud and a dust layer of the tantalum powder were also found to be far lower than previous values. Judging from the observation of the surface with an SEM, the coral-like structure of each particle of the tantalum powder can enhance its fire and explosion hazards and affect its sensitivity to electrostatic sparks by increasing in particle surface area. A thin, non-conductive oxide layer of the tantalum powder surface has a high resistivity and generates electrostatic charge when rubbed with conductive materials like the wall of the collecting device. The authors conclude that the possible cause of the ignition was electrostatic discharge resulting from charging electrostatically. PMID:10946117

  16. The development of laser ignited deflagration-to-detonation transition (DDT) detonators and pyrotechnic actuators

    SciTech Connect

    Merson, J.A.; Salas, F.J.

    1994-05-01

    The use of laser ignited explosive components has been recognized as a safety enhancement over existing electrical explosive devices (EEDs). Sandia has been pursuing the development of optical ordnance for many years with recent emphasis on developing optical deflagration-to-detonation (DDT) detonators and pyrotechnic actuators. These low energy optical ordnance devices can be ignited with either a semiconductor diode laser, laser diode arrays or a solid state rod laser. By using a semiconductor laser diode, the safety improvement can be made without sacrificing performance since the input energy required for the laser diode and the explosive output are similar to existing electrical systems. The use of higher powered laser diode arrays or rod lasers may have advantages in fast DDT applications or lossy optical environments such as long fiber applications and applications with numerous optical connectors. Recent results from our continued study of optical ignition of explosive and pyrotechnic materials are presented. These areas of investigation can be separated into three different margin categories: (1) the margin relative to intended inputs ( i.e. powder performance as a function of laser input variation), (2) the margin relative to anticipated environments (i.e. powder performance as a function of thermal environment variation), and (3) the margin relative to unintended environments (i.e. responses to abnormal environments or safety).

  17. Tantalum dust deflagration in a bag filter dust-collecting device.

    PubMed

    Matsuda, T; Yamaguma, M

    2000-10-01

    An accidental tantalum powder deflagration with casualties occurred during the operation of a bag filter dust-collecting device. To understand the mechanism of the incident and its material hazards, experiments for determining the combustibility and ignition characteristics of the tantalum powder were performed. The magnitude of the tantalum dust explosion is classified as severe (K(st)=273), contrary to the classification found in the preceding literature. The minimum ignition energies for both a dust cloud and a dust layer of the tantalum powder were also found to be far lower than previous values. Judging from the observation of the surface with an SEM, the coral-like structure of each particle of the tantalum powder can enhance its fire and explosion hazards and affect its sensitivity to electrostatic sparks by increasing in particle surface area. A thin, non-conductive oxide layer of the tantalum powder surface has a high resistivity and generates electrostatic charge when rubbed with conductive materials like the wall of the collecting device. The authors conclude that the possible cause of the ignition was electrostatic discharge resulting from charging electrostatically.

  18. Mechanisms of deflagration-to-detonation transition under initiation by high-voltage nanosecond discharges

    SciTech Connect

    Rakitin, Aleksandr E.; Starikovskii, Andrei Yu.

    2008-10-15

    An experimental study of detonation initiation in a stoichiometric propane-oxygen mixture by a high-voltage nanosecond gas discharge was performed in a detonation tube with a single-cell discharge chamber. The discharge study performed in this geometry showed that three modes of discharge development were realized under the experimental conditions: a spark mode with high-temperature channel formation, a streamer mode with nonuniform gas excitation, and a transient mode. Under spark and transient initiation, simultaneous ignition inside the discharge channel occurred, forming a shock wave and leading to a conventional deflagration-to-detonation transition (DDT) via an adiabatic explosion. The DDT length and time at 1 bar of initial pressure in the square smooth tube with a 20-mm transverse size amounted to 50 mm and 50{mu}s, respectively. The streamer mode of discharge development at an initial pressure of 1 bar resulted in nonuniform mixture excitation and a successful DDT via a gradient mechanism, which was confirmed by high-speed time resolved ICCD imaging. The gradient mechanism implied a longer DDT time of 150{mu}s, a DDT run-up distance of 50 mm, and an initiation energy of 1 J, which is two orders of magnitude less than the direct initiation energy for a planar detonation under these conditions. (author)

  19. [Instantaneous emission spectra of epoxypropane in the process of deflagration to detonation transition].

    PubMed

    Li, Ping; Yuan, Chang-ying; Hu, Dong; Liu, Jun-chao; Zhu-mei, Sun; Dong, Shi; Xiao, Hai-bo

    2004-07-01

    Using an intensified CCD spectroscopic detector (Princeton Instruments, ICCD PI-Max 1024 RB) which can be gated in as little as 5 ns, the synchronization of the measuring system was controlled by a digital delay generator (Stanford Research Systems, DG535), the DG535 was triggered externally by a lab-made electrical pulse generator which transformed the optical trigger signal to an electrical signal, and the light signal from the end window of an explosion shock tube was delivered by an 1 mm in diameter plastic optical fiber to the entrance slit of the spectrometer (grating of 150 g x mm(-1) , central wavelength of 550 nm). The spectrum measurement of the epoxypropane in the process of deflagration to detonation transition (DDT) was then made. The instantaneous emission spectra of epoxypropane at different time of the DDT process with an exposure time of several microseconds were acquired. Results show that at the beginning of the DDT process, the emitted light was very weak and the line spectra of atoms were observed mainly; in the middle process of the DDT, the emitted light became strong and the spectra observed consisted of line spectra of atoms, band spectra of molecules plus continuous spectrum of the thermal radiation; when the detonation was formed, the emitted light got very strong, and the spectra acquired consisted of both line spectra of atoms and band spectra of molecules superimposed on the strong continuum of the thermal radiation.

  20. Fast and slow magnetic deflagration fronts in type I X-ray bursts

    NASA Astrophysics Data System (ADS)

    Cavecchi, Yuri; Levin, Yuri; Watts, Anna L.; Braithwaite, Jonathan

    2016-06-01

    Type I X-ray bursts are produced by thermonuclear runaways that develop on accreting neutron stars. Once one location ignites, the flame propagates across the surface of the star. Flame propagation is fundamental in order to understand burst properties like rise time and burst oscillations. Previous work quantified the effects of rotation on the front, showing that the flame propagates as a deflagration and that the front strongly resembles a hurricane. However, the effect of magnetic fields was not investigated, despite the fact that magnetic fields strong enough to have an effect on the propagating flame are expected to be present on many bursters. In this paper, we show how the coupling between fluid layers introduced by an initially vertical magnetic field plays a decisive role in determining the character of the fronts that are responsible for the type I bursts. In particular, on a star spinning at 450 Hz (typical among the bursters), we test seed magnetic fields of 107-1010 G and find that for the medium fields the magnetic stresses that develop during the burst can speed up the velocity of the burning front, bringing the simulated burst rise time close to the observed values. By contrast, in a magnetic slow rotator like IGR J17480-2446, spinning at 11 Hz, a seed field ≳109 G is required to allow localized ignition and the magnetic field plays an integral role in generating the burst oscillations observed during the bursts.

  1. The development of laser ignited deflagration-to-detonation transition (DDT) detonators and pyrotechnic actuators

    SciTech Connect

    Merson, J.A.; Salas, F.J.; Harlan, J.G.

    1993-11-01

    The use of laser ignited explosive components has been recognized as a safety enhancement over existing electrical explosive devices (EEDs). Sandia has been pursuing the development of optical ordnance for many years with recent emphasis on developing optical deflagration-to-detonation (DDT) detonators and pyrotechnic actuators. These low energy optical ordnance devices can be ignited with either a semiconductor diode laser, laser diode arrays or a solid state rod laser. By using a semiconductor laser diode, the safety improvement can be made without sacrificing performance since the input energy required for the laser diode and the explosive output are similar to existing electrical systems. The use of higher powered laser diode arrays or rod lasers may have advantages in fast DDT applications or lossy optical environments such as long fiber applications and applications with numerous optical connectors. Recent results from our continued study of optical ignition of explosive and pyrotechnic materials are presented. These areas of investigation can be separated into three different margin categories: (1) the margin relative to intended inputs (i.e. powder performance as a function of laser input variation), (2) the margin relative to anticipated environments (i.e. powder performance as a function of thermal environment variation), and (3) the margin relative to unintended environments (i.e. responses to abnormal environments or safety).

  2. Deflagration-induced flash of solid pyrotechnics as pumps for high-energy solid state lasers

    NASA Astrophysics Data System (ADS)

    Kang, Xiaoli; Liu, Liming; Tang, Yongjian

    2013-09-01

    Using the flash produced by deflagration of solid pyrotechnics to pump the laser gain medium is a potentially effective way to develop portable high power lasers. The purpose of this work is to examine the effect of some optimization or modifications in terms of compositions and distribution of the pyrotechnic pumping sources on the laser output. The optimization means the transmittance of the output couple. Modifications include: (1) pyrotechnic compositions are improved by adding small amounts of nano Al powders; (2) distribution of pumping light around the laser rod is changed through changing the discrete pyrotechnic tablets into continuous pyrotechnic bars. Results showed that laser output energy reached the maximum of 656 mJ when the transmittance of output mirror raised to10%; after adding nano Al powders into pyrotechnic compositions, laser energy increased by 80% at addition of 2% in the case of discrete distribution, while in the case of continuous distribution, even the mass of pyrotechnics was halved, laser energy still increased to the maximum of 442 mJ with 1% nano Al added. Besides, typical temporal waveform and spot of the laser as well as the light radiation performance of the pyrotechnic tablet are measured to help analyze the laser output performance. It is suggested that the mechanisms of the three modifications we employed are different though they all lead to increase in laser output.

  3. Measurement of the flow properties within a copper tube containing a deflagrating explosive

    SciTech Connect

    Hill, Larry G; Morris, John S; Jackson, Scott I

    2009-01-01

    We report on the propagation of deflagration waves in the high explosive (HE) PBX 9501 (95 wt % HMX, 5 wt% binder). Our test configuration, which we call the def1agration cylinder test (DFCT), is fashioned after the detonation cylinder test (DTCT) that is used to calibrate the JWL detonation product equation of state (EOS). In the DFCT, the HE is heated to a uniform slightly subcritical temperature, and is ignited at one end by a hot wire. For some configurations and initial conditions, we observe a quasi-steady wave that flares the tube into a funnel shape, stretching it to the point of rupture. This behavior is qualitatively like the DTCT, such that, by invoking certain additional approximations that we discuss, its behavior can be analyzed by the same methods. We employ an analysis proposed by G.I. Taylor to infer the pressure-volume curve for the burning, expanding flow. By comparing this result to the EOS of HMX product gas alone. we infer that only {approx}20 wt% of the HMX has burned at tube rupture. This result confirms pre-existing observations about the role of convective burning in HMX cookoff explosions.

  4. Increase of Carbon Cycle Feedback with Climate Sensitivity: Results from a coupled Climate and Carbon Cycle Model

    SciTech Connect

    Govindasamy, B; Thompson, S; Mirin, A; Wickett, M; Caldeira, K; Delire, C

    2004-04-01

    Coupled climate and carbon cycle modeling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in larger warming. In this paper, we investigate the sensitivity of this feedback for year-2100 global warming in the range of 0 K to 8 K. Differing climate sensitivities to increased CO{sub 2} content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully-coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA) the NCAR/DOE Parallel Coupled Model coupled to the IBIS terrestrial biosphere model and a modified-OCMIP ocean biogeochemistry model. In our model, for scenarios with year-2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO{sub 2} emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO{sub 2} concentration increases were 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO{sub 2} content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K.

  5. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling.

    PubMed

    Sinsabaugh, Robert L; Manzoni, Stefano; Moorhead, Daryl L; Richter, Andreas

    2013-07-01

    Carbon use efficiency (CUE) is a fundamental parameter for ecological models based on the physiology of microorganisms. CUE determines energy and material flows to higher trophic levels, conversion of plant-produced carbon into microbial products and rates of ecosystem carbon storage. Thermodynamic calculations support a maximum CUE value of ~ 0.60 (CUE max). Kinetic and stoichiometric constraints on microbial growth suggest that CUE in multi-resource limited natural systems should approach ~ 0.3 (CUE max /2). However, the mean CUE values reported for aquatic and terrestrial ecosystems differ by twofold (~ 0.26 vs. ~ 0.55) because the methods used to estimate CUE in aquatic and terrestrial systems generally differ and soil estimates are less likely to capture the full maintenance costs of community metabolism given the difficulty of measurements in water-limited environments. Moreover, many simulation models lack adequate representation of energy spilling pathways and stoichiometric constraints on metabolism, which can also lead to overestimates of CUE. We recommend that broad-scale models use a CUE value of 0.30, unless there is evidence for lower values as a result of pervasive nutrient limitations. Ecosystem models operating at finer scales should consider resource composition, stoichiometric constraints and biomass composition, as well as environmental drivers, to predict the CUE of microbial communities.

  6. Wetting and Non-Wetting Models of Black Carbon Activation

    NASA Astrophysics Data System (ADS)

    Henson, B. F.; Laura, S.

    2006-12-01

    We present the results of recent modeling studies on the activation of black carbon (BC) aerosol to form cloud condensation nuclei (CCN). We use a model of BC activation based on a general modification of the Koehler equation for insoluble activation in which we introduce a term based on the activity of water adsorbed on the particle surface. We parameterize the model using the free energy of adsorption, a parameter directly comparable to laboratory measurements of water adsorption on carbon. Although the model of the water- surface interaction is general, the form of the activation equation that results depends upon a further model of the distribution of water on the particle. One possible model involves the symmetric growth of a water shell around the isoluble particle core (wetting). This model predicts upper and lower bounding curves for the activation supersaturation given by the range of water interaction energies from hydrophobic to hydrophilic which are in agreement with a large body of recent activation data. The resulting activation diameters are from 3 to 10 times smaller than activation of soluble particles of identical dry diameter. Another possible model involves an exluded liquid droplet growing in contact with the particle (non-wetting). The geometry of this model much more resembles classic assumptions of heterogeneous nucleation theory. This model can yield extremely high activation supersaturation as a function of diameter, as has been observed in some experiments, and enables calculations in agreement with some of these results. We discuss these two geometrical models of water growth, the different behaviors predicted by the resulting activation equation, and the means to determine which model of growth is appropriate for a given BC particle characterized by either water interaction energy or morphology. These simple models enable an efficient and physically reasonable means to calculate the activation of BC aerosol to form CCN based upon a

  7. Multi-scale Rule-of-Mixtures Model of Carbon Nanotube/Carbon Fiber/Epoxy Lamina

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Roddick, Jaret C.; Gates, Thomas S.

    2005-01-01

    A unidirectional carbon fiber/epoxy lamina in which the carbon fibers are coated with single-walled carbon nanotubes is modeled with a multi-scale method, the atomistically informed rule-of-mixtures. This multi-scale model is designed to include the effect of the carbon nanotubes on the constitutive properties of the lamina. It included concepts from the molecular dynamics/equivalent continuum methods, micromechanics, and the strength of materials. Within the model both the nanotube volume fraction and nanotube distribution were varied. It was found that for a lamina with 60% carbon fiber volume fraction, the Young's modulus in the fiber direction varied with changes in the nanotube distribution, from 138.8 to 140 GPa with nanotube volume fractions ranging from 0.0001 to 0.0125. The presence of nanotube near the surface of the carbon fiber is therefore expected to have a small, but positive, effect on the constitutive properties of the lamina.

  8. Implementation of Global Carbon Cycle in GISS ModelE GCM: from Leaf to Planetary Scale

    NASA Astrophysics Data System (ADS)

    Aleinov, I. D.; Kiang, N. Y.; Romanou, A.; Puma, M. J.; Moorcroft, P. R.; Kim, Y.

    2010-12-01

    We present a model of Global Carbon Cycle as it is implemented inside the NASA Goddard Institute for Space Studies (GISS) ModelE General Circulation Model (GCM). The model consists of three integral components: 1) the atmospheric model which performs the transport of CO2 by means of Quadratic Upstream Scheme (QUS), 2) the Ocean model which has its own algorithm for tracer transport and which employs Watson Gregg's ocean biogeochemistry model for computation of carbon fluxes and 3) Land Surface model (LSM) which incorporates Ent Dynamic Global Terrestrial Ecosystem model (DGTEM). In this presentation we will mostly concentrate on a Land Surface component. Ent was developed as a process-based vegetation model capable of predicting the seasonal and inter-annual vegetation growth and providing the fast time scale fluxes of water, carbon, and energy between the land-surface and the atmosphere. It employs well-known photosynthesis relationships of Farquhar, von Caemmerer, and Berry and stomatal conductance of Ball and Berry. Soil CO2 fluxes are also computed by the Ent according to the CASA soil biogeochemistry model. We will start with presenting simulations for single Fluxnet sites and then will show the results for fully coupled GCM runs. For GCM simulations, we present results of both equilibrium and transient runs and discuss implications of biases in GCM-predicted climate for accurate modeling of the global carbon cycle.

  9. Thermal modeling of carbon-epoxy laminates in fire environments.

    SciTech Connect

    McGurn, Matthew T. , Buffalo, NY); DesJardin, Paul Edward , Buffalo, NY); Dodd, Amanda B.

    2010-10-01

    A thermal model is developed for the response of carbon-epoxy composite laminates in fire environments. The model is based on a porous media description that includes the effects of gas transport within the laminate along with swelling. Model comparisons are conducted against the data from Quintere et al. Simulations are conducted for both coupon level and intermediate scale one-sided heating tests. Comparisons of the heat release rate (HRR) as well as the final products (mass fractions, volume percentages, porosity, etc.) are conducted. Overall, the agreement between available the data and model is excellent considering the simplified approximations to account for flame heat flux. A sensitivity study using a newly developed swelling model shows the importance of accounting for laminate expansion for the prediction of burnout. Excellent agreement is observed between the model and data of the final product composition that includes porosity, mass fractions and volume expansion ratio.

  10. New flow model for the triple media carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Nie, Renshi; Meng, Yingfeng; Yang, Zhaozhong; Guo, Jianchun; Jia, Yonglu

    2011-02-01

    A new flow model in triple media carbonate reservoir is established. There exists a triple total system including the matrix, fracture and vug subsystem, and the three subsystems are relatively independent in physical properties; in the process of oil flow, the inter-porosity flow of the vug subsystem to fracture subsystem would occur and the inter-porosity flow of the matrix subsystem to fracture subsystem would also occur and ignore the inter-porosity flow between the matrix subsystem and vug subsystem. Compared with the traditional model (the inter-porosity flow of vug to fracture is pseudo-steady), the new model considers the unsteady inter-porosity flow, based on the hypothesis that the shape of vug is spherical. The new model is illustrated and solved, and the standard type curves are drawn up, so the process and characteristics of flow are analysed thoroughly, and it is found that the new-style type curves in shape and characteristics are evidently different from the type curves of traditional model. The research would not only deepen the understanding of flow law but also enrich the theoretical models for carbonate reservoir. The research results on this new model could be applied to a real case study.

  11. Computer-Aided Process Model For Carbon/Phenolic Materials

    NASA Technical Reports Server (NTRS)

    Letson, Mischell A.; Bunker, Robert C.

    1996-01-01

    Computer program implements thermochemical model of processing of carbon-fiber/phenolic-matrix composite materials into molded parts of various sizes and shapes. Directed toward improving fabrication of rocket-engine-nozzle parts, also used to optimize fabrication of other structural components, and material-property parameters changed to apply to other materials. Reduces costs by reducing amount of laboratory trial and error needed to optimize curing processes and to predict properties of cured parts.

  12. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates

    SciTech Connect

    Chaka, Anne M.; Felmy, Andrew R.

    2014-03-28

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  13. Understanding carbon catabolite repression in Escherichia coli using quantitative models.

    PubMed

    Kremling, A; Geiselmann, J; Ropers, D; de Jong, H

    2015-02-01

    Carbon catabolite repression (CCR) controls the order in which different carbon sources are metabolized. Although this system is one of the paradigms of the regulation of gene expression in bacteria, the underlying mechanisms remain controversial. CCR involves the coordination of different subsystems of the cell that are responsible for the uptake of carbon sources, their breakdown for the production of energy and precursors, and the conversion of the latter to biomass. The complexity of this integrated system, with regulatory mechanisms cutting across metabolism, gene expression, and signaling, and that are subject to global physical and physiological constraints, has motivated important modeling efforts over the past four decades, especially in the enterobacterium Escherichia coli. Different hypotheses concerning the dynamic functioning of the system have been explored by a variety of modeling approaches. We review these studies and summarize their contributions to the quantitative understanding of CCR, focusing on diauxic growth in E. coli. Moreover, we propose a highly simplified representation of diauxic growth that makes it possible to bring out the salient features of the models proposed in the literature and confront and compare the explanations they provide.

  14. Consolidating soil carbon turnover models by improved estimates of belowground carbon input

    NASA Astrophysics Data System (ADS)

    Taghizadeh-Toosi, Arezoo; Christensen, Bent T.; Glendining, Margaret; Olesen, Jørgen E.

    2016-09-01

    World soil carbon (C) stocks are third only to those in the ocean and earth crust, and represent twice the amount currently present in the atmosphere. Therefore, any small change in the amount of soil organic C (SOC) may affect carbon dioxide (CO2) concentrations in the atmosphere. Dynamic models of SOC help reveal the interaction among soil carbon systems, climate and land management, and they are also frequently used to help assess SOC dynamics. Those models often use allometric functions to calculate soil C inputs in which the amount of C in both above and below ground crop residues are assumed to be proportional to crop harvest yield. Here we argue that simulating changes in SOC stocks based on C input that are proportional to crop yield is not supported by data from long-term experiments with measured SOC changes. Rather, there is evidence that root C inputs are largely independent of crop yield, but crop specific. We discuss implications of applying fixed belowground C input regardless of crop yield on agricultural greenhouse gas mitigation and accounting.

  15. Consolidating soil carbon turnover models by improved estimates of belowground carbon input.

    PubMed

    Taghizadeh-Toosi, Arezoo; Christensen, Bent T; Glendining, Margaret; Olesen, Jørgen E

    2016-09-01

    World soil carbon (C) stocks are third only to those in the ocean and earth crust, and represent twice the amount currently present in the atmosphere. Therefore, any small change in the amount of soil organic C (SOC) may affect carbon dioxide (CO2) concentrations in the atmosphere. Dynamic models of SOC help reveal the interaction among soil carbon systems, climate and land management, and they are also frequently used to help assess SOC dynamics. Those models often use allometric functions to calculate soil C inputs in which the amount of C in both above and below ground crop residues are assumed to be proportional to crop harvest yield. Here we argue that simulating changes in SOC stocks based on C input that are proportional to crop yield is not supported by data from long-term experiments with measured SOC changes. Rather, there is evidence that root C inputs are largely independent of crop yield, but crop specific. We discuss implications of applying fixed belowground C input regardless of crop yield on agricultural greenhouse gas mitigation and accounting.

  16. Consolidating soil carbon turnover models by improved estimates of belowground carbon input.

    PubMed

    Taghizadeh-Toosi, Arezoo; Christensen, Bent T; Glendining, Margaret; Olesen, Jørgen E

    2016-01-01

    World soil carbon (C) stocks are third only to those in the ocean and earth crust, and represent twice the amount currently present in the atmosphere. Therefore, any small change in the amount of soil organic C (SOC) may affect carbon dioxide (CO2) concentrations in the atmosphere. Dynamic models of SOC help reveal the interaction among soil carbon systems, climate and land management, and they are also frequently used to help assess SOC dynamics. Those models often use allometric functions to calculate soil C inputs in which the amount of C in both above and below ground crop residues are assumed to be proportional to crop harvest yield. Here we argue that simulating changes in SOC stocks based on C input that are proportional to crop yield is not supported by data from long-term experiments with measured SOC changes. Rather, there is evidence that root C inputs are largely independent of crop yield, but crop specific. We discuss implications of applying fixed belowground C input regardless of crop yield on agricultural greenhouse gas mitigation and accounting. PMID:27580672

  17. Consolidating soil carbon turnover models by improved estimates of belowground carbon input

    PubMed Central

    Taghizadeh-Toosi, Arezoo; Christensen, Bent T.; Glendining, Margaret; Olesen, Jørgen E.

    2016-01-01

    World soil carbon (C) stocks are third only to those in the ocean and earth crust, and represent twice the amount currently present in the atmosphere. Therefore, any small change in the amount of soil organic C (SOC) may affect carbon dioxide (CO2) concentrations in the atmosphere. Dynamic models of SOC help reveal the interaction among soil carbon systems, climate and land management, and they are also frequently used to help assess SOC dynamics. Those models often use allometric functions to calculate soil C inputs in which the amount of C in both above and below ground crop residues are assumed to be proportional to crop harvest yield. Here we argue that simulating changes in SOC stocks based on C input that are proportional to crop yield is not supported by data from long-term experiments with measured SOC changes. Rather, there is evidence that root C inputs are largely independent of crop yield, but crop specific. We discuss implications of applying fixed belowground C input regardless of crop yield on agricultural greenhouse gas mitigation and accounting. PMID:27580672

  18. Modeling trapping mechanism for PCB adsorption on activated carbon

    NASA Astrophysics Data System (ADS)

    Jensen, Bjørnar; Kvamme, Bjørn; Kuznetsova, Tatyana; Oterhals, A.˚ge

    2012-12-01

    The levels of polychlorinated dibenzo-p-dioxin, polychlorinated dibenzofuran (PCDD/F) and dioxin-like polychlorinated biphenyl (DL-PCB) in fishmeal and fish oil produced for use in feed for salmon is above present European legislation levels in some regions of the world and different decontamination approaches have been proposed [1]. One of these is adsorption on activated carbon. This approach appears to be efficient for adsorption of PCDD/F but less efficient for DL-PCB [2]. Activated carbon consists of slit pores with average sizes of 20 - 50 Ångstroms. One hypothesis [2] for the mechanism of trapping DL-PCB is reduced ability for intramolecular movements of the PCB molecules inside the slit pores. In order to investigate this hypothesis we have used quantum mechanics [3] to characterize two DL-PCB congeners, respectively congener 77 (3,3',4,4'-Tetrachlorobiphenyl) and congener 118 (2,3',4,4',5-Pentachlorobiphenyl) and Triolein (18:1) [4] as a major constituent of the solvent fish oil. A model for activated carbon was constructed using a crystal structure of graphite from the American Mineralogist Crystal Structure Database [5]. The crystal structure used was originally from Wyckoff [6]. A small program had to be written to generate the desired graphite structure as it contains no less than 31232 Carbon atoms. Partial atomic charges were estimated using QM with DFT/B3LYP/6-311+g** and SM6 [7].

  19. [Mathematical model of the global carbon cycle in the biosphere].

    PubMed

    Tarko, A M

    2010-01-01

    Changes in the atmospheric carbon dioxide concentration, temperatures of the atmosphere, and parameters of land biota as a result of anthropogenic carbon dioxide emissions, forest clearance, and soil erosion are calculated in a spatial mathematical model of the global carbon cycle in the biosphere. Restrictions on the CO2 emissions to the atmosphere are deduced from the requirements of Kyoto Protocol to The UN Framework Convention on Climate Change and other scenarios. An ability is revealed for the atmospheric CO2 concentration to grow fast, which arises from a number of emerging and developing countries with large population and high CO2 emission rates and which surpasses greatly the effect of growth retardation due to Kyoto Protocol. Those countries' role will become mostly apparent to the year of 2060 and later. Russia has shown to be in an exclusive position relative to other countries: ecosystems of its territory absorb more of the atmospheric carbon dioxide than does any other country, and the inductrial emissions from its territory are practically equal to the absorption by ecosystems.

  20. PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. I. DETONATION IGNITION

    SciTech Connect

    Bravo, Eduardo; GarcIa-Senz, Domingo E-mail: domingo.garcia@upc.edu

    2009-04-20

    Observational evidences point to a common explosion mechanism of Type Ia supernovae based on a delayed detonation of a white dwarf (WD). Although several scenarios have been proposed and explored by means of one, two, and three-dimensional simulations, the key point still is the understanding of the conditions under which a stable detonation can form in a destabilized WD. One of the possibilities that have been invoked is that an inefficient deflagration leads to the pulsation of a Chandrasekhar-mass WD, followed by formation of an accretion shock around a carbon-oxygen rich core. The accretion shock confines the core and transforms kinetic energy from the collapsing halo into thermal energy of the core, until an inward moving detonation is formed. This chain of events has been termed Pulsating Reverse Detonation (PRD). In this work we explore the robustness of the detonation ignition for different PRD models characterized by the amount of mass burned during the deflagration phase, M {sub defl}. The evolution of the WD up to the formation of the accretion shock has been followed with a three-dimensional hydrodynamical code with nuclear reactions turned off. We found that detonation conditions are achieved for a wide range of M {sub defl}. However, if the nuclear energy released during the deflagration phase is close to the WD binding energy ({approx}0.46 x 10{sup 51} erg {yields} M {sub defl} {approx} 0.30 M {sub sun}) the accretion shock cannot heat and confine the core efficiently and detonation conditions are not robustly achieved.

  1. Including Microbial Acclimation in Carbon Cycle Models: Letting Data Guide Model Development (Invited)

    NASA Astrophysics Data System (ADS)

    Mayes, M. A.; Wang, G.; Tang, G.; Xu, X.; Jagadamma, S.

    2013-12-01

    Carbon cycle models are traditionally parameterized with ad hoc soil pools, empirical decay constants and first-order decomposition as a function of substrate supply. Decomposition of vegetative and faunal inputs, however, involves enzymatically-facilitated depolymerization by the microbial community. Traditional soil models are calibrated to match existing distribution of soil carbon, but they are not parameterized to predict the response of soil carbon to climate change due to microbial community shifts or physiological changes, i.e., acclimation. As an example, we will show how the temperature sensitivity of carbon use efficiency can influence the decomposition of different substrates and affect the release of CO2 from soil organic matter. Acclimation to warmer conditions could also involve shifts in microbial community composition or function, e.g., fungi: bacteria ratio shift. Experimental data is needed to decide how to parameterize models to accommodate functional or compositional changes. We will explore documented cases of microbial acclimation to warming, discuss methods to include microbial acclimation in carbon cycle models, and explore the need for additional experimental data to validate the next generation of microbially-facilitated carbon cycle models.

  2. A fungal growth model fitted to carbon-limited dynamics of Rhizoctonia solani.

    PubMed

    Jeger, M J; Lamour, A; Gilligan, C A; Otten, W

    2008-01-01

    Here, a quasi-steady-state approximation was used to simplify a mathematical model for fungal growth in carbon-limiting systems, and this was fitted to growth dynamics of the soil-borne plant pathogen and saprotroph Rhizoctonia solani. The model identified a criterion for invasion into carbon-limited environments with two characteristics driving fungal growth, namely the carbon decomposition rate and a measure of carbon use efficiency. The dynamics of fungal spread through a population of sites with either low (0.0074 mg) or high (0.016 mg) carbon content were well described by the simplified model with faster colonization for the carbon-rich environment. Rhizoctonia solani responded to a lower carbon availability by increasing the carbon use efficiency and the carbon decomposition rate following colonization. The results are discussed in relation to fungal invasion thresholds in terms of carbon nutrition. PMID:18312538

  3. A fungal growth model fitted to carbon-limited dynamics of Rhizoctonia solani.

    PubMed

    Jeger, M J; Lamour, A; Gilligan, C A; Otten, W

    2008-01-01

    Here, a quasi-steady-state approximation was used to simplify a mathematical model for fungal growth in carbon-limiting systems, and this was fitted to growth dynamics of the soil-borne plant pathogen and saprotroph Rhizoctonia solani. The model identified a criterion for invasion into carbon-limited environments with two characteristics driving fungal growth, namely the carbon decomposition rate and a measure of carbon use efficiency. The dynamics of fungal spread through a population of sites with either low (0.0074 mg) or high (0.016 mg) carbon content were well described by the simplified model with faster colonization for the carbon-rich environment. Rhizoctonia solani responded to a lower carbon availability by increasing the carbon use efficiency and the carbon decomposition rate following colonization. The results are discussed in relation to fungal invasion thresholds in terms of carbon nutrition.

  4. 3D modeling of carbonates petro-acoustic heterogeneities

    NASA Astrophysics Data System (ADS)

    Baden, Dawin; Guglielmi, Yves; Saracco, Ginette; Marié, Lionel; Viseur, Sophie

    2015-04-01

    Characterizing carbonate reservoirs heterogeneity is a challenging issue for Oil & Gas Industry, CO2 sequestration and all kinds of fluid manipulations in natural reservoirs, due to the significant impact of heterogeneities on fluid flow and storage within the reservoir. Although large scale (> meter) heterogeneities such as layers petrophysical contrasts are well addressed by computing facies-based models, low scale (< meter) heterogeneities are often poorly constrained because of the complexity in predicting their spatial arrangement. In this study, we conducted petro-acoustic measurements on cores of different size and diameter (Ø = 1", 1.5" and 5") in order to evaluate anisotropy or heterogeneity in carbonates at different laboratory scales. Different types of heterogeneities which generally occur in carbonate reservoir units (e.g. petrographic, diagenetic, and tectonic related) were sampled. Dry / wet samples were investigated with different ultrasonic apparatus and using different sensors allowing acoustic characterization through a bandwidth varying from 50 to 500 kHz. Comprehensive measurements realized on each samples allowed statistical analyses of petro-acoustic properties such as attenuation, shear and longitudinal wave velocity. The cores properties (geological and acoustic facies) were modeled in 3D using photogrammetry and GOCAD geo-modeler. This method successfully allowed detecting and imaging in three dimensions differential diagenesis effects characterized by the occurrence of decimeter-scale diagenetic horizons in samples assumed to be homogeneous and/or different diagenetic sequences between shells filling and the packing matrix. We then discuss how small interfaces such as cracks, stylolithes and laminations which are also imaged may have guided these differential effects, considering that understanding the processes may be taken as an analogue to actual fluid drainage complexity in deep carbonate reservoir.

  5. Impact of parameter uncertainty on carbon sequestration modeling

    NASA Astrophysics Data System (ADS)

    Bandilla, K.; Celia, M. A.

    2013-12-01

    Geologic carbon sequestration through injection of supercritical carbon dioxide (CO2) into the subsurface is one option to reduce anthropogenic CO¬2 emissions. Widespread industrial-scale deployment, on the order of giga-tonnes of CO2 injected per year, will be necessary for carbon sequestration to make a significant contribution to solving the CO2 problem. Deep saline formations are suitable targets for CO2 sequestration due to their large storage capacity, high injectivity, and favorable pressure and temperature regimes. Due to the large areal extent of saline formations, and the need to inject very large amounts of CO2, multiple sequestration operations are likely to be developed in the same formation. The injection-induced migration of both CO2 and resident formation fluids (brine) needs to be predicted to determine the feasibility of industrial-scale deployment of carbon sequestration. Due to the larger spatial scale of the domain, many of the modeling parameters (e.g., permeability) will be highly uncertain. In this presentation we discuss a sensitivity analysis of both pressure response and CO2 plume migration to variations of model parameters such as permeability, compressibility and temperature. The impact of uncertainty in the stratigraphic succession is also explored. The sensitivity analysis is conducted using a numerical vertically-integrated modeling approach. The Illinois Basin, USA is selected as the test site for this study, due to its large storage capacity and large number of stationary CO2 sources. As there is currently only one active CO2 injection operation in the Illinois Basin, a hypothetical injection scenario is used, where CO2 is injected at the locations of large CO2 emitters related to electricity generation, ethanol production and hydrocarbon refinement. The Area of Review (AoR) is chosen as the comparison metric, as it includes both the CO2 plume size and pressure response.

  6. Tractable Chemical Models for CVD of Silicon and Carbon

    NASA Technical Reports Server (NTRS)

    Blanquet, E.; Gokoglu, S. A.

    1993-01-01

    Tractable chemical models are validated for the CVD of silicon and carbon. Dilute silane (SiH4) and methane (CH4) in hydrogen are chosen as gaseous precursors. The chemical mechanism for each systems Si and C is deliberately reduced to three reactions in the models: one in the gas phase and two at the surface. The axial-flow CVD reactor utilized in this study has well-characterized flow and thermal fields and provides variable deposition rates in the axial direction. Comparisons between the experimental and calculated deposition rates are made at different pressures and temperatures.

  7. Carbon Dioxide Sequestration by Using a Model Carbonic Anhydrase Complex in Tertiary Amine Medium.

    PubMed

    Sivanesan, Dharmalingam; Choi, Youngju; Lee, Jiyeon; Youn, Min Hye; Park, Ki Tae; Grace, Andrew Nirmala; Kim, Hak-Joo; Jeong, Soon Kwan

    2015-12-01

    Globally, the elevation of carbon dioxide (CO2 ) levels due to the anthropogenic effect poses a serious threat to the ecosystem. Hence, it is important to control and/or mitigate the level of CO2 in the atmosphere, which necessitates novel tools. Herein, it is proposed to improve CO2 sequestration by using model complexes based on the enzyme carbonic anhydrase (CA) in aqueous tertiary amine medium. The effect of substituents on the model CA model complexes on CO2 absorption and desorption was determined by using a stopped-flow spectrophotometer to follow pH changes through coupling to pH indicator and a continuous stirred-tank reactor (CSTR). The CO2 hydration rate constants were determined under basic conditions and compound 6, which contained a hydrophilic group, showed the highest absorption or hydration levels of CO2 (2.860×10(3)  L mol(-1)  s(-1) ). In addition, CSTR results for the absorption and desorption of CO2 suggest that simple model CA complexes could be used in post-combustion processing.

  8. Electron percolation in realistic models of carbon nanotube networks

    SciTech Connect

    Simoneau, Louis-Philippe Villeneuve, Jérémie Rochefort, Alain

    2015-09-28

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.

  9. Electron percolation in realistic models of carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain

    2015-09-01

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.

  10. Modeling of Carbon Migration During JET Injection Experiments

    SciTech Connect

    Strachan, J. D.; Likonen, J.; Coad, P.; Rubel, M.; Widdowson, A.; Airila, M.; Andrew, P.; Brezinsek, S.; Corrigan, G.; Esser, H. G.; Jachmich, S.; Kallenbach, A.; Kirschner, A.; Kreter, A.; Matthews, G. F.; Philipps, V.; Pitts, R. A.; Spence, J.; Stamp, M.; Wiesen, S.

    2008-10-15

    JET has performed two dedicated carbon migration experiments on the final run day of separate campaigns (2001 and 2004) using {sup 13}CH{sub 4} methane injected into repeated discharges. The EDGE2D/NIMBUS code modelled the carbon migration in both experiments. This paper describes this modelling and identifies a number of important migration pathways: (1) deposition and erosion near the injection location, (2) migration through the main chamber SOL, (3) migration through the private flux region aided by E x B drifts, and (4) neutral migration originating near the strike points. In H-Mode, type I ELMs are calculated to influence the migration by enhancing erosion during the ELM peak and increasing the long-range migration immediately following the ELM. The erosion/re-deposition cycle along the outer target leads to a multistep migration of {sup 13}C towards the separatrix which is called 'walking'. This walking created carbon neutrals at the outer strike point and led to {sup 13}C deposition in the private flux region. Although several migration pathways have been identified, quantitative analyses are hindered by experimental uncertainty in divertor leakage, and the lack of measurements at locations such as gaps and shadowed regions.

  11. The "Carbon Data Explorer": Web-Based Space-Time Visualization of Modeled Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Billmire, M.; Endsley, K. A.

    2014-12-01

    The visualization of and scientific "sense-making" from large datasets varying in both space and time is a challenge; one that is still being addressed in a number of different fields. The approaches taken thus far are often specific to a given academic field due to the unique questions that arise in different disciplines, however, basic approaches such as geographic maps and time series plots are still widely useful. The proliferation of model estimates of increasing size and resolution further complicates what ought to be a simple workflow: Model some geophysical phenomen(on), obtain results and measure uncertainty, organize and display the data, make comparisons across trials, and share findings. A new tool is in development that is intended to help scientists with the latter parts of that workflow. The tentatively-titled "Carbon Data Explorer" (http://spatial.mtri.org/flux-client/) enables users to access carbon science and related spatio-temporal science datasets over the web. All that is required to access multiple interactive visualizations of carbon science datasets is a compatible web browser and an internet connection. While the application targets atmospheric and climate science datasets, particularly spatio-temporal model estimates of carbon products, the software architecture takes an agnostic approach to the data to be visualized. Any atmospheric, biophysical, or geophysical quanity that varies in space and time, including one or more measures of uncertainty, can be visualized within the application. Within the web application, users have seamless control over a flexible and consistent symbology for map-based visualizations and plots. Where time series data are represented by one or more data "frames" (e.g. a map), users can animate the data. In the "coordinated view," users can make direct comparisons between different frames and different models or model runs, facilitating intermodal comparisons and assessments of spatio-temporal variability. Map

  12. Global Carbon Cycle Inside GISS ModelE GCM: Results of Equilibrium and Transient Simulations.

    NASA Astrophysics Data System (ADS)

    Aleinov, I.; Kiang, N. Y.; Romanou, A.; Puma, M. J.; Kharecha, P.; Moorcroft, P. R.; Kim, Y.

    2008-12-01

    We present simulation results for a fully coupled carbon cycle inside the ModelE General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies (GISS). The current implementation utilizes the GISS dynamical atmospheric core coupled to the HYCOM ocean model. The atmospheric core uses a Quadratic Upstream Scheme (QUS) for advection of gas tracers, while HYCOM has its own built-in algorithm for advection of ocean tracers. The land surface part of the model consists of the GISS ground hydrology model coupled to the Ent dynamic global terrestrial ecosystem model. The ocean biogeochemistry model based on Watson Gregg's model was implemented inside the HYCOM ocean model. Together with ocean tracer transport, it describes all aspects of the carbon cycle inside the ocean and provides CO2 fluxes for exchange with the atmosphere. CO2 fluxes from land vegetation are provided by the Ent model, which employs well-known photosynthesis relationships of Farquhar, von Caemmerer, and Berry and stomatal conductance of Ball and Berry. Soil CO2 fluxes are also computed by the Ent model according to the CASA soil biogeochemistry model. We present results of fully coupled GCM simulations as well as off-line tests for different components. For GCM simulations, we present results of both equilibrium and transient runs and discuss implications of biases in GCM-predicted climate for accurate modeling of the carbon cycle.

  13. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    SciTech Connect

    Tringe, J. W.; Letant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-12-17

    We found that energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemicalcode. Temperatures in the range of 2300–2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. These results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide andaluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. Our results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.

  14. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    SciTech Connect

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-12-21

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300–2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.

  15. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    DOE PAGES

    Tringe, J. W.; Letant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-12-17

    We found that energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemicalcode. Temperatures in the range of 2300–2800 K were calculated to persist for nearly themore » full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. These results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide andaluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. Our results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.« less

  16. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    NASA Astrophysics Data System (ADS)

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-12-01

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300-2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%-1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.

  17. Experimental study and modeling of swelling and bubble growth in carbon nanofiber filled mesophase pitch during carbonization

    NASA Astrophysics Data System (ADS)

    Calebrese, Christopher

    Graphite and all carbon bipolar plates show corrosion resistance in fuel cells and provide good electrical conductivity. These materials typically need to be individually machined, a time consuming and costly process. Mesophase pitch is used to manufacture carbon fibers and carbon-carbon composites. This material provides a good starting point for the production of a moldable, all carbon bipolar plate. However, processing of mesophase pitch to produce all carbon materials requires a time intensive oxidation step to prevent swelling during carbonization. In this work, carbon nanofibers were used to reduce swelling in mesophase pitch. It was found that the increase in viscosity with the addition of carbon nanofibers was responsible for the reduction in swelling. The influence of the filler became apparent above the percolation threshold. At loadings below the percolation threshold, the swelling of the mesophase pitch was not reduced after carbonization. The swelling of the mesophase pitch at a given carbon nanofiber loading was also dependent on the length of the carbon nanofibers. Longer carbon nanofibers led to greater increases in the viscosity of the melt and thus led to greater reduction in swelling. The final carbon product was evaluated for use as a low temperature fuel cell bipolar plate material. Constraining the mesophase pitch during carbonization led to a final product with strength and electrical conductivity comparable to current composite bipolar plate materials. The addition of micron size chopped glass fibers with a softening point near 850°C and carbon nanofibers led to a final product with air permeability less than that of graphite. A spherically symmetric, single bubble growth model was also developed. The model included temperature dependence, liquid to bubble mass transfer and reactions in the system. Results from simulations showed that that the increase in viscosity due to the addition of carbon nanofibers slows the growth of bubbles, but

  18. The unusual carbon star HD 59643 - Alternative models

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Eaton, J. A.; Querci, F. R.; Querci, M.; Baumert, J. H.

    1988-01-01

    A binary model for the carbon star HD 59643 is discussed in which the secondary spectrum is formed in an accretion disk. If this hot, ultraviolet-emitting disk radiates like a 20,000 K black-body, it must be 0.03 solar radii or less across at minimum emission. Large widths of C IV multiplet UV1 on high-resolution spectra indicate its formation in the inner parts of a disk. The semiforbidden C III and Si III lines, however, are much narrower and could be formed in the outer parts of a disk or in the carbon star's chromosphere. The electron density in the region of formation of C III is about 10 to the 10th/cu cm.

  19. Circulation of carbon dioxide in the mantle: multiscale modeling

    NASA Astrophysics Data System (ADS)

    Morra, G.; Yuen, D. A.; Lee, S.

    2012-12-01

    Much speculation has been put forward on the quantity and nature of carbon reservoirs in the deep Earth, because of its involvement in the evolution of life at the surface and inside planetary interiors. Carbon penetrates into the Earth's mantle mostly during subduction of oceanic crust, which contains carbonate deposits [1], however the form that it assumes at lower mantle depths is scarcely understood [2], hampering our ability to estimate the amount of carbon in the entire mantle by orders of magnitude. We present simulations of spontaneous degassing of supercritical CO2 using in-house developed novel implementations of the Fast-Multipole Boundary Element Method suitable for modeling two-phase flow (here mantle mineral and free CO2 fluid) through disordered materials such as porous rocks. Because the mutual interaction of droplets immersed either in a fluid or a solid matrix and their weakening effect to the host rock alters the strength of the mantle rocks, at the large scale the fluid phases in the mantle may control the creeping of mantle rocks [3]. In particular our study focuses on the percolation of supercritical CO2, estimated through the solution of the Laplace equation in a porous system, stochastically generated through a series of random Karhunen-Loeve decomposition. The model outcome is employed to extract the transmissivity of supercritical fluids in the mantle from the lowest scale up to the mantle scale and in combination with the creeping flow of the convecting mantle. The emerging scenarios on the global carbon cycle are finally discussed. [1] Boulard, E., et al., New host for carbon in the deep Earth. Proceedings of the National Academy of Sciences, 2011. 108(13): p. 5184-5187. [2] Walter, M.J., et al., Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions. Science, 2011. 334(6052): p. 54-57. [3] Morra, G., et al., Ascent of Bubbles in Magma Conduits Using Boundary Elements and Particles. Procedia Computer

  20. Carbon dioxide, climate and the deep ocean circulation: Carbon chemistry model. Final report

    SciTech Connect

    Menawat, A.S.

    1992-09-21

    The objective of this study was to investigate the role of oceanic carbon chemistry in modulating the atmospheric levels of CO{sub 2}. It is well known that the oceans are the primary sink of the excess carbon pumped into the atmosphere since the beginning of the industrial period. The suspended particulate and the dissolved organic matters in the deep ocean play important roles as carriers of carbon and other elements critical to the fate of CO{sub 2}. In addition, the suspended particulate matter provides sites for oxidation-reduction reactions and microbial activities. The problem is of an intricate system with complex chemical, physical and biological processes. This report describes a methodology to describe the interconversions of different forms of the organic and inorganic nutrients, that may be incorporated in the ocean circulation models. Our approach includes the driving force behind the transfers in addition to balancing the elements. Such thermodynamic considerations of describing the imbalance in the chemical potentials is a new and unique feature of our approach.

  1. Carbon dioxide, climate and the deep ocean circulation: Carbon chemistry model

    SciTech Connect

    Menawat, A.S.

    1992-09-21

    The objective of this study was to investigate the role of oceanic carbon chemistry in modulating the atmospheric levels of CO[sub 2]. It is well known that the oceans are the primary sink of the excess carbon pumped into the atmosphere since the beginning of the industrial period. The suspended particulate and the dissolved organic matters in the deep ocean play important roles as carriers of carbon and other elements critical to the fate of CO[sub 2]. In addition, the suspended particulate matter provides sites for oxidation-reduction reactions and microbial activities. The problem is of an intricate system with complex chemical, physical and biological processes. This report describes a methodology to describe the interconversions of different forms of the organic and inorganic nutrients, that may be incorporated in the ocean circulation models. Our approach includes the driving force behind the transfers in addition to balancing the elements. Such thermodynamic considerations of describing the imbalance in the chemical potentials is a new and unique feature of our approach.

  2. Kinetic model of carbonate dissolution in Martian meteorite ALH84001

    NASA Astrophysics Data System (ADS)

    Kopp, R. E.; Humayun, M.

    2003-09-01

    The magnetites and sulfides located in the rims of carbonate globules in the Martian meteorite ALH84001 have been claimed as evidence of past life on Mars. Here, we consider the possibility that the rims were formed by dissolution and reprecipitation of the primary carbonate by the action of water. To estimate the rate of these solution-precipitation reactions, a kinetic model of magnesite-siderite carbonate dissolution was applied and used to examine the physicochemical conditions under which these rims might have formed. The results indicate that the formation of the rims could have taken place in < 50 yr of exposure to small amounts of aqueous fluids at ambient temperatures. Plausible conditions pertaining to reactions under a hypothetical ancient Martian atmosphere (1 bar CO 2), the modern Martian atmosphere (8 mbar CO 2), and the present terrestrial atmosphere (0.35 mbar CO 2) were explored to constrain the site of the process. The results indicated that such reactions likely occurred under the latter two conditions. The possibility of Antarctic weathering must be entertained, which, if correct, would imply that the plausibly biogenic minerals (single-domain magnetite of characteristic morphology and sulfide) reported from the rims may be the products of terrestrial microbial activity. This model is discussed in terms of the available isotope data and found to be compatible with the formation of ALH84001 rims. Particularly, anticorrelated variations of radiocarbon with δ 13C indicate that carbonate in ALH84001 was affected by solution-precipitation reactions immediately after its initial fall (˜13,000 yr ago) and then again during its recent exposure prior to collection.

  3. Turbulent flame speeds in ducts and the deflagration/detonation transition

    SciTech Connect

    Bradley, D.; Lawes, M.; Liu, Kexin

    2008-07-15

    A methodology is proposed for determining whether a deflagration-to-detonation transition (DDT) might occur for flame propagation along a duct with baffles, closed at the ignition end. A flammable mixture can attain a maximum turbulent burning velocity. If this is sufficiently high, a strong shock is formed ahead of the flame. It is assumed that this maximum burning velocity is soon attained and on the basis of previous studies, this value can be obtained for the given conditions. The increase in temperature and pressure of the reactants, due to the shock, further increases the maximum turbulent burning velocity. The gas velocity ahead of the flame is linked to one-dimensional shock wave equations in a numerical analysis. The predicted duct flame speeds with the appropriate maximum turbulent burning velocities are in good agreement with those measured in the slow and fast flame regimes of a range of CH{sub 4}-air and H{sub 2}-air mixtures. DDTs are possible if autoignition of the reactants occurs in the time available, and if the projected flame speed approaches the Chapman-Jouguet velocity at the same temperature and pressure. Prediction of the first condition requires values of the autoignition delay time of the mixture at the shocked temperatures and pressures. Prediction of the second requires values of the laminar burning velocity and Markstein number. With the appropriate values of these parameters, it is shown numerically that there is no DDT with CH{sub 4}-air. With H{sub 2}-air, the onset of DDT occurs close to the values of equivalence ratio at which it has been observed experimentally. The effects of different duct sizes also are predicted, although details of the DDT cannot be predicted. Extension of the study to a wider range of fuels requires more data on their laminar burning velocities and Markstein numbers at higher temperatures and pressures and on autoignition delay times at lower temperatures and pressures. (author)

  4. Origins of the deflagration-to-detonation transition in gas-phase combustion

    SciTech Connect

    Oran, Elaine S.; Gamezo, Vadim N.

    2007-01-15

    This paper summarizes a 10-year theoretical and numerical effort to understand the deflagration-to-detonation transition (DDT). To simulate DDT from first principles, it is necessary to resolve the relevant scales ranging from the size of the system to the flame thickness, a range that can cover up to 12 orders of magnitude in real systems. This computational challenge resulted in the development of numerical algorithms for solving coupled partial and ordinary differential equations and a new method for adaptive mesh refinement to deal with multiscale phenomena. Insight into how, when, and where DDT occurs was obtained by analyzing a series of multidimensional numerical simulations of laboratory experiments designed to create a turbulent flame through a series of shock-flame interactions. The simulations showed that these interactions are important for creating the conditions in which DDT can occur. Flames enhance the strength of shocks passing through a turbulent flame brush and generate new shocks. In turn, shock interactions with flames create and drive the turbulence in flames. The turbulent flame itself does not undergo a transition, but it creates conditions in nearby unreacted material that lead to ignition centers, or 'hot spots,' which can then produce a detonation through the Zeldovich gradient mechanism involving gradients of reactivity. Obstacles and boundary layers, through their interactions with shocks and flames, help to create environments in which hot spots can develop. Other scenarios producing reactivity gradients that can lead to detonations include flame-flame interactions, turbulent mixing of hot products with reactant gases, and direct shock ignition. Major unresolved questions concern the properties of nonequilibrium, shock-driven turbulence, stochastic properties of ignition events, and the possibility of unconfined DDT. (author)

  5. The influence of initial temperature on flame acceleration and deflagration-to-detonation transition

    SciTech Connect

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.

    1996-07-01

    The influence of initial mixture temperature on deflagration-to-detonation transition (DDT) has been investigated experimentally. The experiments were carried out in a 27-cm-inner diameter, 21.3-meter-long heated detonation tube, which was equipped with periodic orifice plates to promote flame acceleration. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in transition to detonation corresponded to the mixture whose detonation cell size, {lambda}, was approximately equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}{approximately}1). The only exception was in dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 m/s and then decelerated to below 2 m/s. This observation indicates that the d/{lambda} = 1 DDT limit criterion provides a necessary condition but not a sufficient one for the onset of DDT in obstacle-laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the onset of detonation was a function of both the hydrogen mole fraction and the mixture initial temperature. For example, decreasing the hydrogen mole fraction or increasing the initial mixture temperature resulted in longer transition distances.

  6. Optimization of the deflagration to detonation transition: reduction of length and time of transition

    NASA Astrophysics Data System (ADS)

    Sorin, R.; Zitoun, R.; Desbordes, D.

    2006-06-01

    The aim of this experimental investigation is the study of Deflagration to Detonation Transition (DDT) in tubes in order to (i) reduce both run-up distance and time of transition ( L DDT and t DDT) in connection with Pulsed Detonation Engine applications and to (ii) attempt to scale L DDT with λCJ (the detonation cellular structure width). In DDT, the production of turbulence during the long flame run-up can lead to L DDT values of several meters. To shorten L DDT, an experimental set-up is designed to quickly induce highly turbulent initial flow. It consists of a double chamber terminated with a perforated plate of high Blockage Ratio (BR) positioned at the beginning of a 26 mm inner diameter tube containing a “Shchelkin spiral” of BR ≈ 0.5. The study involves stoichiometric reactive mixtures of H2, CH4, C3H8, and C2H4 with oxygen and diluted with N2 in order to obtain the same cell width λCJ≈10 mm at standard conditions. The results show that a shock-flame system propagating with nearly the isobaric speed of sound of combustion products, called the choking regime, is rapidly obtained. This experimental set-up allows a L DDT below 40 cm for the mixtures used and a ratio L DDT/λCJ ranging from 23 to 37. The transition distance seems to depend on the reduced activation energy ( E a/ RT c) and on the normalized heat of reaction ( Q/ a 0 2). The higher these quantities are, the shorter the ratio L DDT/λCJ is.

  7. Characterization and Modeling Of Microbial Carbon Metabolism In Thawing Permafrost

    NASA Astrophysics Data System (ADS)

    Graham, D. E.; Phelps, T. J.; Xu, X.; Carroll, S.; Jagadamma, S.; Shakya, M.; Thornton, P. E.; Elias, D. A.

    2012-12-01

    Increased annual temperatures in the Arctic are warming the surface and subsurface, resulting in thawing permafrost. Thawing exposes large pools of buried organic carbon to microbial degradation, increasing greenhouse gas generation and emission. Most global-scale land-surface models lack depth-dependent representations of carbon conversion and GHG transport; therefore they do not adequately describe permafrost thawing or microbial mineralization processes. The current work was performed to determine how permafrost thawing at moderately elevated temperatures and anoxic conditions would affect CO2 and CH4 generation, while parameterizing depth-dependent GHG production processes with respect to temperature and pH in biogeochemical models. These enhancements will improve the accuracy of GHG emission predictions and identify key biochemical and geochemical processes for further refinement. Three core samples were obtained from discontinuous permafrost terrain in Fairbanks, AK with a mean annual temperature of -3.3 °C. Each core was sectioned into surface/near surface (0-0.8 m), active layer (0.8-1.6 m), and permafrost (1.6-2.2 m) horizons, which were homogenized for physico-chemical characterization and microcosm construction. Surface samples had low pH values (6.0), low water content (18% by weight), low organic carbon (0.8%), and high C:N ratio (43). Active layer samples had higher pH values (6.4), higher water content (34%), more organic carbon (1.4%) and a lower C:N ratio (24). Permafrost samples had the highest pH (6.5), highest water content (46%), high organic carbon (2.5%) and the lowest C:N ratio (19). Most organic carbon was quantified as labile or intermediate pool versus stable pool in each sample, and all samples had low amounts of carbonate. Surface layer microcosms, containing 20 g sediment in septum-sealed vials, were incubated under oxic conditions, while similar active and permafrost layer samples were anoxic. These microcosms were incubated at -2

  8. Dynamic compaction of granular materials in a tube with wall friction, applied to deflagration-to-detonation transition

    SciTech Connect

    Hill, L.G.; Kapila, A.K.

    1995-09-01

    A theoretical problem is considered in which a granular material is pushed through a tube of arbitrary cross-section by a constant velocity piston against the resistance of compaction work and wall friction. The crushing of the material is dictated by a simple yet physically reasonable compaction law. By considering two special cases - the limit of vanishing friction and the quasistatic limit - we identify the two basic compaction wave structures. We then consider the general case in which the two waves interact. Estimates suggest that for typical deflagration-to-detonation tests explosive at the wall melts on time scales short compared to the experiment.

  9. Evaluation of Black Carbon Estimations in Global Aerosol Models

    SciTech Connect

    Koch, D.; Schulz, M.; Kinne, Stefan; McNaughton, C. S.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, Tami C.; Boucher, Olivier; Chin, M.; Clarke, A. D.; De Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, Richard C.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevag, A.; Klimont, Z.; Kondo, Yutaka; Krol, M.; Liu, Xiaohong; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J.; Perlwitz, Ja; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, O.; Stier, P.; Takegawa, Nobuyuki; Takemura, T.; Textor, C.; van Aardenne, John; Zhao, Y.

    2009-11-27

    We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) from AERONET and OMI retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the

  10. Integrated Assessment Modeling of Carbon Sequestration and Land Use Emissions Using Detailed Model Results and Observations

    SciTech Connect

    Dr. Atul Jain

    2005-04-17

    This report outlines the progress on the development and application of Integrated Assessment Modeling of Carbon Sequestrations and Land Use Emissions supported by the DOE Office of Biological and Environmental Research (OBER), U.S. Department of Energy, Grant No. DOE-DE-FG02-01ER63069. The overall objective of this collaborative project between the University of Illinois at Urbana-Champaign (UIUC), Oak Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL) was to unite the latest advances in carbon cycle research with scientifically based models and policy-related integrated assessment tools that incorporate computationally efficient representations of the latest knowledge concerning science and emission trajectories, and their policy implications. As part of this research we accomplished the following tasks that we originally proposed: (1) In coordination with LLNL and ORNL, we enhanced the Integrated Science Assessment Model's (ISAM) parametric representation of the ocean and terrestrial carbon cycles that better represent spatial and seasonal variations, which are important to study the mechanisms that influence carbon sequestration in the ocean and terrestrial ecosystems; (2) Using the MiniCAM modeling capability, we revised the SRES (IPCC Special Report on Emission Scenarios; IPCC, 2000) land use emission scenarios; and (3) On the application front, the enhanced version of ISAM modeling capability is applied to understand how short- and long-term natural carbon fluxes, carbon sequestration, and human emissions contribute to the net global emissions (concentrations) trajectories required to reach various concentration (emission) targets. Under this grant, 21 research publications were produced. In addition, this grant supported a number of graduate and undergraduate students whose fundamental research was to learn a disciplinary field in climate change (e.g., ecological dynamics and

  11. Synthesis, characterization, and modeling of hydrogen storage in carbon aerogels

    SciTech Connect

    Pekala, R.W.; Coronado, P.R.; Calef, D.F.

    1995-04-01

    Carbon aerogels are a special class of open-cell foams with an ultrafine cell/pore size (<50 nm), high surface area (600-800 m{sup 2}/g), and a solid matrix composed of interconnected colloidal-like particles or fibers with characteristic diameters of 10 nm. These materials are usually synthesized from the sol-gel polymerization of resorcinol-formaldehyde or phenolic-furfural, followed by supercritical extraction of the solvent and pyrolysis in an inert atmosphere. The resultant aerogel has a nanocrystalline structure with micropores (<2 nm diameter) located within the solid matrix. Carbon aerogel monoliths can be prepared at densities ranging from 0.05-1.0 g/cm{sup 3}, leading to volumetric surface areas (> 500 m{sup 2}/cm{sup 3}) that are much larger than commercially available materials. This research program is directed at optimization of the aerogel structure for maximum hydrogen adsorption over a wide range of temperatures and pressures. Computer modeling of hydrogen adsorption at carbon surfaces was also examined.

  12. Modeling of Carbon Nanotube Schottky Barrier Modulation Due to Oxidation

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2002-01-01

    A model is proposed for the experimentally observed lower Schottky barrier for holes in air than in vacuum at a metallic electrode - semiconducting carbon nanotube (CNT) junction. In oxidation occurring in air, the negatively charged oxygen molecules on a material usually enhance the surface dipole and provide stronger electron confinement within the bulk. Thus the CNT electron affinity will increase in air. Then the Schottky barrier for holes will have to increase according to the standard band-alignment theory, but this is against the experiment. In order to overcome this difficulty, we propose a new Schottky barrier model, assuming there is a transition region between the electrode and the CNT and an appreciable potential can drop there. The role of the oxidation is to increase this potential drop with negatively charged oxygen molecules, leading to a lower Schottky barrier for holes. This mechanism prevails for both p- and n-CNTs. The model consistently explains all the reported CNT device experiments.

  13. Modeling Carbon Dioxide Storage in the Basal Aquifer of Canada

    NASA Astrophysics Data System (ADS)

    Huang, X.; Bandilla, K.; Celia, M. A.; Bachu, S.; Rebscher, D.; Zhou, Q.; Birkholzer, J. T.

    2012-12-01

    Reducing anthropogenic carbon dioxide (CO2) emissions into the atmosphere is a key challenge for society. Geological CO2 storage in deep saline aquifers is one of the most promising solutions to decrease carbon emissions. One such deep saline aquifer targeted for industrial-scale CO2 injection is the Basal Aquifer of Prairie Region in Canada and Northern Plains in the US. The aquifer stretches across three provinces (Alberta, Saskatchewan and Manitoba) and three states (Montana, North and South Dakota), and covers approximately 1,320,000 km2 (Figure 1). A large number of stationary CO2 sources lie within the foot print of the aquifer, and several CO2 injection projects are in the planning stage. In order for CO2 sequestration to be successful, the injected CO2 needs to stay isolated from the atmosphere for many centuries. Mathematical models are useful tools to assess the fate of both the injected CO2 and the resident brine. These models vary in complexity from fully three-dimensional multi-phase numerical reservoir simulators to simple semi-analytical solutions. In this presentation we compare a cascade of models ranging from single-phase semi-analytic solutions to multi-phase numerical simulators to determine the ability of each of these approaches to predict the pressure response in the injection formation. The majority of the models in this study are based on vertically-integrated governing equations; such models are computationally efficient, allow for reduced data input, and are broadly consistent with the flow physics. The petro-physical parameters and geometries used in this study are based on the geology of the Canadian section of the Basal Aquifer. Approximately ten injection sites are included in the model, with locations and injection rates based on planned injection operations. The predicted areas of review of the injection operations are used as a comparison metric among the different simulation approaches. Areal extent of the Basal Aquifer (*Source

  14. Age-dependent forest carbon sink: Estimation via inverse modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Tao; Shi, Peijun; Jia, Gensuo; Dai, Yongjiu; Zhao, Xiang; Shangguan, Wei; Du, Ling; Wu, Hao; Luo, Yiqi

    2015-12-01

    Forests have been recognized to sequester a substantial amount of carbon (C) from the atmosphere. However, considerable uncertainty remains regarding the magnitude and time course of the C sink. Revealing the intrinsic relationship between forest age and C sink is crucial for reducing uncertainties in prediction of forest C sink potential. In this study, we developed a stepwise data assimilation approach to combine a process-based Terrestrial ECOsystem Regional model, observations from multiple sources, and stochastic sampling to inversely estimate carbon cycle parameters including carbon sink at different forest ages for evergreen needle-leaved forests in China. The new approach is effective to estimate age-dependent parameter of maximal light-use efficiency (R2 = 0.99) and, accordingly, can quantify a relationship between forest age and the vegetation and soil C sinks. The estimated ecosystem C sink increases rapidly with age, peaks at 0.451 kg C m-2 yr-1 at age 22 years (ranging from 0.421 to 0.465 kg C m-2 yr-1), and gradually decreases thereafter. The dynamic patterns of C sinks in vegetation and soil are significantly different. C sink in vegetation first increases rapidly with age and then decreases. C sink in soil, however, increases continuously with age; it acts as a C source when the age is less than 20 years, after which it acts as a sink. For the evergreen needle-leaved forest, the highest C sink efficiency (i.e., C sink per unit net primary productivity) is approximately 60%, with age between 11 and 43 years. Overall, the inverse estimation of carbon cycle parameters can make reasonable estimates of age-dependent C sequestration in forests.

  15. Observed and modeled carbon and energy fluxes for agricultural sites under North American Carbon Program site-level interim synthesis

    NASA Astrophysics Data System (ADS)

    Lokupitiya, E. Y.; Denning, A.

    2010-12-01

    Croplands are unique, man-made ecosystems with dynamics mostly dependent on human decisions. Crops uptake a significant amount of Carbon dioxide (CO2) during their short growing seasons. Reliability of the available models to predict the carbon exchanges by croplands is important in estimating the cropland contribution towards overall land-atmosphere carbon exchange and global carbon cycle. The energy exchanges from croplands include both sensible and latent heat fluxes. This study focuses on analyzing the performance of 19 land surface models across five agricultural sites under the site-level interim synthesis of North American Carbon Program (NACP). Model simulations were performed using a common simulation protocol and input data, including gap-filled meteorological data corresponding to each site. The net carbon fluxes (i.e. net ecosystem exchange; NEE) and energy fluxes (sensible and latent heat) predicted by 12 models with sub-hourly/hourly temporal resolution and 7 models with daily temporal resolution were compared against the site-specific gap-filled observed flux tower data. Comparisons were made by site and crop type (i.e. maize, soybean, and wheat), mainly focusing on the coefficient of determination, correlation, root mean square error, and standard deviation. Analyses also compared the diurnal, seasonal, and inter-annual variability of the modeled fluxes against the observed data and the mean modeled data.

  16. Modelling carbon isotope composition of dissolved inorganic carbon and methane in marine porewaters

    NASA Astrophysics Data System (ADS)

    Meister, Patrick; Liu, Bo; Khalili, Arzhang; Barker Jørgensen, Bo

    2014-05-01

    Carbon isotope compositions of dissolved inorganic carbon (DIC) and methane (CH4) in marine sedimentary porewaters at near surface temperatures show extremely large variation in apparent fractionation covering a range from -100 ‰ to +30 ‰. This fractionation is essentially the result of microbial activity, but the mechanisms and factors controlling this fractionation are still incompletely understood. This study provides a reaction transport model approach to evaluate the effects of the most important processes and factors on carbon isotope distribution with the goal to better understand carbon isotope distribution in modern sediment porewaters and in the geological record. Our model results show that kinetic fractionation during methanogenesis, both through the acetoclastic and autotrophic pathways, results in a nearly symmetrical distribution of δ13C values in DIC and CH4 with respect to the isotope value of buried organic matter. An increased fractionation factor during methanogenesis leads to a larger difference between δ13CDIC and δ13CCH4. Near the sulphate methane transition zone, DIC is more depleted in 13C due to diffusive mixing with DIC produced by anaerobic oxidation of methane (AOM) and organoclastic sulphate reduction. The model also shows that an upward decrease in δ13CCH4 near the SMT can only be caused by equilibrium fractionation during AOM including a backward "leakage" of carbon from DIC to CH4 through the enzymatic pathway. However, this effect of reversibility has no influence on the DIC pool as long as methane is completely consumed at the SMT. Only a release of methane at the sediment-water interface, due to a fraction of the methane escaping re-oxidation, results in a small shift towards more positive δ13CDIC values. Methane escape at the SMT is possible if either the methane flux is too high to be entirely oxidized by AOM, or if bubbles of methane gas by-pass the sulphate reduction zone and escape episodically into the water column

  17. Multi-century Changes to Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model

    SciTech Connect

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C

    2005-06-13

    In this paper, we use a coupled climate and carbon cycle model to investigate the global climate and carbon cycle changes out to year 2300 that would occur if CO2 emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By year 2300, the global climate warms by about 8 K and atmospheric CO2 reaches 1423 ppmv. In our simulation, the prescribed cumulative emission since pre-industrial period is about 5400 Gt-C by the end of 23rd century. At year 2300, nearly 45 % of cumulative emissions remain in the atmosphere. In our simulations both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, our model projections suggest severe long-term consequences for global climate if all the fossil-fuel carbon is ultimately released to the atmosphere.

  18. Equivalent-Continuum Modeling With Application to Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2002-01-01

    A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.

  19. Modeling the grazing effect on dry grassland carbon cycling with modified Biome-BGC grazing model

    NASA Astrophysics Data System (ADS)

    Luo, Geping; Han, Qifei; Li, Chaofan; Yang, Liao

    2014-05-01

    Identifying the factors that determine the carbon source/sink strength of ecosystems is important for reducing uncertainty in the global carbon cycle. Arid grassland ecosystems are a widely distributed biome type in Xinjiang, Northwest China, covering approximately one-fourth the country's land surface. These grasslands are the habitat for many endemic and rare plant and animal species and are also used as pastoral land for livestock. Using the modified Biome-BGC grazing model, we modeled carbon dynamics in Xinjiang for grasslands that varied in grazing intensity. In general, this regional simulation estimated that the grassland ecosystems in Xinjiang acted as a net carbon source, with a value of 0.38 Pg C over the period 1979-2007. There were significant effects of grazing on carbon dynamics. An over-compensatory effect in net primary productivity (NPP) and vegetation carbon (C) stock was observed when grazing intensity was lower than 0.40 head/ha. Grazing resulted in a net carbon source of 23.45 g C m-2 yr-1, which equaled 0.37 Pg in Xinjiang in the last 29 years. In general, grazing decreased vegetation C stock, while an increasing trend was observed with low grazing intensity. The soil C increased significantly (17%) with long-term grazing, while the soil C stock exhibited a steady trend without grazing. These findings have implications for grassland ecosystem management as it relates to carbon sequestration and climate change mitigation, e.g., removal of grazing should be considered in strategies that aim to increase terrestrial carbon sequestrations at local and regional scales. One of the greatest limitations in quantifying the effects of herbivores on carbon cycling is identifying the grazing systems and intensities within a given region. We hope our study emphasizes the need for large-scale assessments of how grazing impacts carbon cycling. Most terrestrial ecosystems in Xinjiang have been affected by disturbances to a greater or lesser extent in the past

  20. Carbon Residence Time Explains Changes in Predicted 21st Century Vegetation Carbon across CMIP5 Earth System Models

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Liang, J.; Luo, Y.

    2015-12-01

    Global averaged surface temperature has increased by 0.6 °C over the period 1986 to 2005; and will continue rising 1.0-3.7 °C during the last 30 years of this century. Land ecosystems can sequester approximately one third of annual anthropogenic carbon dioxide emission. Therefore, dynamics of land sink is one of the key components to determine the future atmospheric CO2 concentration and accordingly surface temperature. The accuracy of predicted surface temperature will largely depend on the uncertainty of predicted land carbon uptake. Unfortunately, the uncertainties of future land sink predicted by Earth System Models (ESMs) involved in CMIP5 turned out to be very large. The spread of the land carbon uptake within a specific Representative Concentration Pathway (RCP) scenario was larger than those variation between the four scenarios. Moreover, predicted soil carbon stocks by the end of this century extended to a wide range. Quantifying the uncertainties in predicted vegetation carbon and identifying the causes for the uncertainties will help improve ESMs' performance and give the priorities for model development. In this study, we investigated uncertainties in projections of vegetation carbon by twelve CMIP5 ESMs during the twenty-first century and explored the sources of uncertainties across the models. We found that the predicted changes of vegetation carbon by the end of this century varied quite much across the ESMs under the RCP8.5 scenario, from declining of 190 Pg C to increasing of 320 Pg C. These changes of vegetation carbon can be attributed mostly to the changes in carbon residence time, rather than net primary productivity. We further investigated model's differences in their responses of vegetation carbon to temperature, precipitation and CO2 among the ESMs. Our results have the potential to help improve CMIP5 ESMs for more reliable predictions.

  1. Spin-Up and Tuning of the Global Carbon Cycle Model Inside the GISS ModelE2 GCM

    NASA Technical Reports Server (NTRS)

    Aleinov, Igor; Kiang, Nancy Y.; Romanou, Anastasia

    2015-01-01

    Planetary carbon cycle involves multiple phenomena, acting at variety of temporal and spacial scales. The typical times range from minutes for leaf stomata physiology to centuries for passive soil carbon pools and deep ocean layers. So, finding a satisfactory equilibrium state becomes a challenging and computationally expensive task. Here we present the spin-up processes for different configurations of the GISS Carbon Cycle model from the model forced with MODIS observed Leaf Area Index (LAI) and prescribed ocean to the prognostic LAI and to the model fully coupled to the dynamic ocean and ocean biology. We investigate the time it takes the model to reach the equilibrium and discuss the ways to speed up this process. NASA Goddard Institute for Space Studies General Circulation Model (GISS ModelE2) is currently equipped with all major algorithms necessary for the simulation of the Global Carbon Cycle. The terrestrial part is presented by Ent Terrestrial Biosphere Model (Ent TBM), which includes leaf biophysics, prognostic phenology and soil biogeochemistry module (based on Carnegie-Ames-Stanford model). The ocean part is based on the NASA Ocean Biogeochemistry Model (NOBM). The transport of atmospheric CO2 is performed by the atmospheric part of ModelE2, which employs quadratic upstream algorithm for this purpose.

  2. The Temporal Evolution of Changes in Carbon Storage in the Northern Permafrost Region Simulated by Carbon Cycle Models between 2010 and 2300: Implications for Atmospheric Carbon Dynamics

    NASA Astrophysics Data System (ADS)

    McGuire, A. D.; Lawrence, D. M.; Burke, E.; Chen, G.; Jafarov, E. E.; Koven, C.; MacDougall, A. H.; Nicolsky, D.; Peng, S.; Rinke, A.

    2015-12-01

    We conducted an assessment of changes in permafrost area and carbon storage simulated by 8 process-based models between 2010 and 2300. The models participating in this comparison were those that had joined the model integration team of the Vulnerability of Permafrost Carbon Network (see http://www.permafrostcarbon.org/). Each of the models in this comparison conducted simulations over the permafrost land region in the Northern Hemisphere driven by CCSM4-simulated climate for RCP 4.5 and 8.5 scenarios. Among the models, the area of permafrost (defined as the area for which active layer thickness was less than 3 m) in 2010 ranged between 8 and 19 million km2. Between 2100 and 2300, models indicated the loss of permafrost area between 3 and 5 million km2 for RCP 4.5 and between 6 and 16 million km2 for RCP 8.5. Among the models, the density of soil carbon storage in 2010 ranged between 10 and 45 thousand g C m-2; models that explicitly represented carbon with depth had estimates greater than 32 thousand g C m-2. For the RCP 4.5 scenario, mean cumulative change in soil carbon between 2010 and 2300 was a gain of 10 Pg C (range: loss of 67 to gain of 70 Pg C). For the RCP 8.5 scenario, the mean cumulative change in soil carbon was between 1960 and 2300 was a loss of 256 Pg C (range: losses of 7 to 652 Pg C). Gains in vegetation carbon negated losses in the RCP 4.5 simulations for all but one of the models (mean change in total ecosystem carbon: 60 Pg C, range: loss of 14 Pg C gain of 244 Pg C), but only for two of the RCP 8.5 simulations (mean: 148 Pg C, range: loss of 641 to gain of 167 Pg C). For the RCP simulations that lost carbon between 2010 and 2300, substantial losses of carbon did not occur until after 2100. These results suggest that the permafrost carbon feedback would not have substantial consequences until after 2100, and that effective mitigation efforts during this century have the potential to prevent the negative consequences of the permafrost carbon

  3. Atomistic picture of the shock to deflagration transition in a solid explosive: ultra-fast chemistry under non-equilibrium

    NASA Astrophysics Data System (ADS)

    Wood, Mitchell; Cherukara, Mathew; Kober, Edward; Strachan, Alejandro

    2015-03-01

    We use large-scale molecular dynamics (MD) simulations to describe the chemical reactions following the shock-induced collapse of cylindrical pores in the high-energy density material RDX. For shocks with particle velocities of 2km/s, we find that the collapse of a 40 nm diameter pore leads to a deflagration wave, resulting in the first atomic-level description of this process. Pore collapse leads to ultra-fast, multi-step chemical reactions that occur under non-equilibrium conditions. The formation of exothermic product molecules within a few picoseconds of the pore collapse prevents the nanoscale hot spot from quenching. Within 30 ps, a local deflagration wave develops which propagates at speeds of ~ 0.25 km/s and consists of an ultra-thin reaction zone of only ~ 5 nm, thus involving large temperature and composition gradients. These results provide insight into the initiation of detonation, which is critical to understanding the performance and safety of this class of materials.

  4. Vertically-integrated Approaches for Carbon Sequestration Modeling

    NASA Astrophysics Data System (ADS)

    Bandilla, K.; Celia, M. A.; Guo, B.

    2015-12-01

    Carbon capture and sequestration (CCS) is being considered as an approach to mitigate anthropogenic CO2 emissions from large stationary sources such as coal fired power plants and natural gas processing plants. Computer modeling is an essential tool for site design and operational planning as it allows prediction of the pressure response as well as the migration of both CO2 and brine in the subsurface. Many processes, such as buoyancy, hysteresis, geomechanics and geochemistry, can have important impacts on the system. While all of the processes can be taken into account simultaneously, the resulting models are computationally very expensive and require large numbers of parameters which are often uncertain or unknown. In many cases of practical interest, the computational and data requirements can be reduced by choosing a smaller domain and/or by neglecting or simplifying certain processes. This leads to a series of models with different complexity, ranging from coupled multi-physics, multi-phase three-dimensional models to semi-analytical single-phase models. Under certain conditions the three-dimensional equations can be integrated in the vertical direction, leading to a suite of two-dimensional multi-phase models, termed vertically-integrated models. These models are either solved numerically or simplified further (e.g., assumption of vertical equilibrium) to allow analytical or semi-analytical solutions. This presentation focuses on how different vertically-integrated models have been applied to the simulation of CO2 and brine migration during CCS projects. Several example sites, such as the Illinois Basin and the Wabamun Lake region of the Alberta Basin, are discussed to show how vertically-integrated models can be used to gain understanding of CCS operations.

  5. Deployment models for commercialized carbon capture and storage.

    PubMed

    Esposito, Richard A; Monroe, Larry S; Friedman, Julio S

    2011-01-01

    Even before technology matures and the regulatory framework for carbon capture and storage (CCS) has been developed, electrical utilities will need to consider the logistics of how widespread commercial-scale operations will be deployed. The framework of CCS will require utilities to adopt business models that ensure both safe and affordable CCS operations while maintaining reliable power generation. Physical models include an infrastructure with centralized CO(2) pipelines that focus geologic sequestration in pooled regional storage sites or supply CO(2) for beneficial use in enhanced oil recovery (EOR) and a dispersed plant model with sequestration operations which take place in close proximity to CO(2) capture. Several prototypical business models, including hybrids of these two poles, will be in play including a self-build option, a joint venture, and a pay at the gate model. In the self-build model operations are vertically integrated and utility owned and operated by an internal staff of engineers and geologists. A joint venture model stresses a partnership between the host site utility/owner's engineer and external operators and consultants. The pay to take model is turn-key external contracting to a third party owner/operator with cash positive fees paid out for sequestration and cash positive income for CO(2)-EOR. The selection of a business model for CCS will be based in part on the desire of utilities to be vertically integrated, source-sink economics, and demand for CO(2)-EOR. Another element in this decision will be how engaged a utility decides to be and the experience the utility has had with precommercial R&D activities. Through R&D, utilities would likely have already addressed or at least been exposed to the many technical, regulatory, and risk management issues related to successful CCS. This paper provides the framework for identifying the different physical and related prototypical business models that may play a role for electric utilities in

  6. Deployment models for commercialized carbon capture and storage.

    PubMed

    Esposito, Richard A; Monroe, Larry S; Friedman, Julio S

    2011-01-01

    Even before technology matures and the regulatory framework for carbon capture and storage (CCS) has been developed, electrical utilities will need to consider the logistics of how widespread commercial-scale operations will be deployed. The framework of CCS will require utilities to adopt business models that ensure both safe and affordable CCS operations while maintaining reliable power generation. Physical models include an infrastructure with centralized CO(2) pipelines that focus geologic sequestration in pooled regional storage sites or supply CO(2) for beneficial use in enhanced oil recovery (EOR) and a dispersed plant model with sequestration operations which take place in close proximity to CO(2) capture. Several prototypical business models, including hybrids of these two poles, will be in play including a self-build option, a joint venture, and a pay at the gate model. In the self-build model operations are vertically integrated and utility owned and operated by an internal staff of engineers and geologists. A joint venture model stresses a partnership between the host site utility/owner's engineer and external operators and consultants. The pay to take model is turn-key external contracting to a third party owner/operator with cash positive fees paid out for sequestration and cash positive income for CO(2)-EOR. The selection of a business model for CCS will be based in part on the desire of utilities to be vertically integrated, source-sink economics, and demand for CO(2)-EOR. Another element in this decision will be how engaged a utility decides to be and the experience the utility has had with precommercial R&D activities. Through R&D, utilities would likely have already addressed or at least been exposed to the many technical, regulatory, and risk management issues related to successful CCS. This paper provides the framework for identifying the different physical and related prototypical business models that may play a role for electric utilities in

  7. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    SciTech Connect

    OGDEN DM; KIRCH NW

    2007-10-31

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  8. Investigating global brown carbon from both measurements and models

    NASA Astrophysics Data System (ADS)

    Wang, X.; Heald, C. L.

    2015-12-01

    Brown carbon (BrC) is the component of organic aerosols (OA) which strongly absorbs solar radiation in the near-UV range of the spectrum. BrC properties and the resulting radiative effects are highly uncertain, limiting our ability to estimate near-term and regional climate forcing. Since both the source and optical properties of BrC are not well understood, it is challenging to develop a reliable model frameworks for BrC. On the other hand, field and laboratory measurements of BrC are rare and provide limited constraints. BrC absorption exhibits strong spectral dependence, which differs from black carbon (BC), the other important fine aerosol absorber. Based on this property, we develop an innovative approach to derive BrC absorption from multi-wavelength absorption measurements. By analyzing the Aerosol Absorption Optical Depth (AAOD) data from global AERONET network, we find that the optical properties of BrC are connected to the BC/OA ratio, as suggested by recent work. In view of this finding, we develop and discuss a series of different methods to simulate BrC absorption in the GEOS-Chem global model and estimate an associated range for global BrC burden and direct radiative forcing (DRF).

  9. Sedimentary model for Eocene exotic blocks of carbonates and turbiditic carbonate deposits in the South Sistan Basin, SE Iran

    NASA Astrophysics Data System (ADS)

    Mohammadi, Ali; Burg, Jean-Pierre; Bernoulli, Daniel

    2016-04-01

    The N-S-trending Sistan Suture Zone in east Iran results from collision of the Lut Block to the west with the Afghan Block to the east. Extensive Eocene turbiditic sequences with numerous exotic carbonate olistholiths and carbonate debris flows in the southern part of the Sistan Basin (so-called Neh Accretionary Wedge) were deposited in a deep-marine environment. Litho-biostratigraphy of the exotic carbonate blocks and carbonate debris flows with surrounding sandstones aims to develop a paleoenvironmental model for the South Sistan sedimentary basin. The olistholiths, of Early to Middle Eocene age, are derived from one or more carbonate platforms including inner shelf (protected platform), shelf margin (coral reefs, skeletal sand bars) and upper slope deposits. In addition, the terrigenous turbidites that form the background sediments of the basinal deposits are interlayered with carbonate mass-flow deposits, lime turbidites and scarcer pelagic limestones with planktonic foraminifera of Eocene age showing that the mass-flow events contemporaneous with platform evolution. The absence of terrigenous detritus and of volcanic material in the platform limestones and related mass-flow deposits suggests that the carbonate platform was presumably located on the Kuh-e-Birk passive margin, to the southwest of the Sistan Basin. Key words: South Sistan Basin, sedimentary model, Eocene, olistostrome, carbonate platform

  10. Carbon dioxide stripping in aquaculture -- part III: model verification

    USGS Publications Warehouse

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    Based on conventional mass transfer models developed for oxygen, the use of the non-linear ASCE method, 2-point method, and one parameter linear-regression method were evaluated for carbon dioxide stripping data. For values of KLaCO2 < approximately 1.5/h, the 2-point or ASCE method are a good fit to experimental data, but the fit breaks down at higher values of KLaCO2. How to correct KLaCO2 for gas phase enrichment remains to be determined. The one-parameter linear regression model was used to vary the C*CO2 over the test, but it did not result in a better fit to the experimental data when compared to the ASCE or fixed C*CO2 assumptions.

  11. Spin-up and Tuning of the Global Carbon Cycle Model Inside the GISS ModelE2 GCM

    NASA Astrophysics Data System (ADS)

    Aleinov, I. D.; Kiang, N. Y.; Romanou, A.

    2015-12-01

    Planetary carbon cycle involves multiple phenomena, acting at varietyof temporal and spacial scales. The typical times range from minutesfor leaf stomata physiology to centuries for passive soil carbon poolsand deep ocean layers. So, finding a satisfactory equilibrium statebecomes a challenging and computationally expensive task. Here wepresent the spin-up processes for different configurations of theGISS Carbon Cycle model from the model forced with MODIS observed LeafArea Index (LAI) and prescribed ocean to the prognostic LAI and to themodel fully coupled to the dynamic ocean and ocean biology. Weinvestigate the time it takes the model to reach the equilibrium anddiscuss the ways to speed up this process. NASA Goddard Institute for Space Studies General Circulation Model(GISS ModelE2) is currently equipped with all major algorithms necessary forthe simulation of the Global Carbon Cycle. The terrestrial part ispresented by Ent Terrestrial Biosphere Model (Ent TBM), which includesleaf biophysics, prognostic phenology and soil biogeochemistry module(based on Carnegie-Ames-Stanford model). The ocean part is based onthe NASA Ocean Biogeochemistry Model (NOBM). The transport ofatmospheric CO2 is performed by the atmospheric part of ModelE2, whichemploys quadratic upstream algorithm for this purpose.

  12. Modelling carbon and nitrogen turnover in variably saturated soils

    NASA Astrophysics Data System (ADS)

    Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. A.

    2009-04-01

    Natural ecosystems provide services such as ameliorating the impacts of deleterious human activities on both surface and groundwater. For example, several studies have shown that a healthy riparian ecosystem can reduce the nutrient loading of agricultural wastewater, thus protecting the receiving surface water body. As a result, in order to develop better protection strategies and/or restore natural conditions, there is a growing interest in understanding ecosystem functioning, including feedbacks and nonlinearities. Biogeochemical transformations in soils are heavily influenced by microbial decomposition of soil organic matter. Carbon and nutrient cycles are in turn strongly sensitive to environmental conditions, and primarily to soil moisture and temperature. These two physical variables affect the reaction rates of almost all soil biogeochemical transformations, including microbial and fungal activity, nutrient uptake and release from plants, etc. Soil water saturation and temperature are not constants, but vary both in space and time, thus further complicating the picture. In order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. In this work we developed a 3D numerical reactive-transport model as an aid in the investigation the complex physical, chemical and biological interactions occurring in soils. The new code couples the USGS models (MODFLOW 2000-VSF, MT3DMS and PHREEQC) using an operator-splitting algorithm, and is a further development an existing reactive/density-dependent flow model PHWAT. The model was tested using simplified test cases. Following verification, a process-based biogeochemical reaction network describing the turnover of carbon and nitrogen in soils was implemented. Using this tool, we investigated the coupled effect of moisture content and temperature fluctuations on nitrogen and organic matter cycling in the riparian zone, in order to help understand the relative

  13. Kinetic modelling of molecular hydrogen transport in microporous carbon materials.

    SciTech Connect

    Hankel, M.; Zhang, H.; Nguyen, T. X.; Bhatia, S. K.; Gray, S. K.; Smith, S. C.

    2011-01-01

    The proposal of kinetic molecular sieving of hydrogen isotopes is explored by employing statistical rate theory methods to describe the kinetics of molecular hydrogen transport in model microporous carbon structures. A Lennard-Jones atom-atom interaction potential is utilized for the description of the interactions between H{sub 2}/D{sub 2} and the carbon framework, while the requisite partition functions describing the thermal flux of molecules through the transition state are calculated quantum mechanically in view of the low temperatures involved in the proposed kinetic molecular sieving application. Predicted kinetic isotope effects for initial passage from the gas phase into the first pore mouth are consistent with expectations from previous modeling studies, namely, that at sufficiently low temperatures and for sufficiently narrow pore mouths D{sub 2} transport is dramatically favored over H{sub 2}. However, in contrast to expectations from previous modeling, the absence of any potential barrier along the minimum energy pathway from the gas phase into the first pore mouth yields a negative temperature dependence in the predicted absolute rate coefficients - implying a negative activation energy. In pursuit of the effective activation barrier, we find that the minimum potential in the cavity is significantly higher than in the pore mouth for nanotube-shaped models, throwing into question the common assumption that passage through the pore mouths should be the rate-determining step. Our results suggest a new mechanism that, depending on the size and shape of the cavity, the thermal activation barrier may lie in the cavity rather than at the pore mouth. As a consequence, design strategies for achieving quantum-mediated kinetic molecular sieving of H{sub 2}/D{sub 2} in a microporous membrane will need, at the very least, to take careful account of cavity shape and size in addition to pore-mouth size in order to ensure that the selective step, namely passage

  14. Responses of two nonlinear microbial models to warming and increased carbon input

    SciTech Connect

    Wang, Yingping; Jiang, J.; Chen-Charpentier, Benito; Agusto, Fola B.; Hastings, Alan; Hoffman, Forrest M; Rasmussen, Martin; Smith, Matthew; Todd-Brown, Katherine E.; Wang, Y.; Xu, X.; Luo, Yiqi

    2016-01-01

    A number of nonlinear microbial models of soil carbon decomposition have been developed. Some of them have been applied globally but have yet to be shown to realistically represent soil carbon dynamics in the field. A thorough analysis of their key differences is needed to inform future model developments. Here we compare two nonlinear microbial models of soil carbon decomposition: one based on reverse Michaelis-Menten kinetics (model A) and the other on regular Michaelis-Menten kinetics (model B). Using analytic approximations and numerical solutions, we find that the oscillatory responses of carbon pools to a small perturbation in their initial pool sizes dampen faster in model A than in model B. Soil warming always decreases carbon storage in model A, but in model B it predominantly decreases carbon storage in cool regions and increases carbon storage in warm regions. For both models, the CO2 efflux from soil carbon decomposition reaches a maximum value some time after increased carbon input (as in priming experiments). This maximum CO2 efflux (F-max) decreases with an increase in soil temperature in both models. However, the sensitivity of F-max to the increased amount of carbon input increases with soil temperature in model A but decreases monotonically with an increase in soil temperature in model B. These differences in the responses to soil warming and carbon input between the two nonlinear models can be used to discern which model is more realistic when compared to results from field or laboratory experiments. These insights will contribute to an improved understanding of the significance of soil microbial processes in soil carbon responses to future climate change.

  15. Responses of two nonlinear microbial models to warming and increased carbon input

    NASA Astrophysics Data System (ADS)

    Wang, Y. P.; Jiang, J.; Chen-Charpentier, B.; Agusto, F. B.; Hastings, A.; Hoffman, F.; Rasmussen, M.; Smith, M. J.; Todd-Brown, K.; Wang, Y.; Xu, X.; Luo, Y. Q.

    2016-02-01

    A number of nonlinear microbial models of soil carbon decomposition have been developed. Some of them have been applied globally but have yet to be shown to realistically represent soil carbon dynamics in the field. A thorough analysis of their key differences is needed to inform future model developments. Here we compare two nonlinear microbial models of soil carbon decomposition: one based on reverse Michaelis-Menten kinetics (model A) and the other on regular Michaelis-Menten kinetics (model B). Using analytic approximations and numerical solutions, we find that the oscillatory responses of carbon pools to a small perturbation in their initial pool sizes dampen faster in model A than in model B. Soil warming always decreases carbon storage in model A, but in model B it predominantly decreases carbon storage in cool regions and increases carbon storage in warm regions. For both models, the CO2 efflux from soil carbon decomposition reaches a maximum value some time after increased carbon input (as in priming experiments). This maximum CO2 efflux (Fmax) decreases with an increase in soil temperature in both models. However, the sensitivity of Fmax to the increased amount of carbon input increases with soil temperature in model A but decreases monotonically with an increase in soil temperature in model B. These differences in the responses to soil warming and carbon input between the two nonlinear models can be used to discern which model is more realistic when compared to results from field or laboratory experiments. These insights will contribute to an improved understanding of the significance of soil microbial processes in soil carbon responses to future climate change.

  16. Responses of two nonlinear microbial models to warming and increased carbon input

    DOE PAGES

    Wang, Y. P.; Jiang, J.; Chen-Charpentier, Benito; Agusto, Fola B.; Hastings, Alan; Hoffman, Forrest M.; Rasmussen, Martin; Smith, Matthew J.; Todd-Brown, Katherine E.; Wang, Y.; et al

    2016-02-18

    A number of nonlinear microbial models of soil carbon decomposition have been developed. Some of them have been applied globally but have yet to be shown to realistically represent soil carbon dynamics in the field. A thorough analysis of their key differences is needed to inform future model developments. In this paper, we compare two nonlinear microbial models of soil carbon decomposition: one based on reverse Michaelis–Menten kinetics (model A) and the other on regular Michaelis–Menten kinetics (model B). Using analytic approximations and numerical solutions, we find that the oscillatory responses of carbon pools to a small perturbation in theirmore » initial pool sizes dampen faster in model A than in model B. Soil warming always decreases carbon storage in model A, but in model B it predominantly decreases carbon storage in cool regions and increases carbon storage in warm regions. For both models, the CO2 efflux from soil carbon decomposition reaches a maximum value some time after increased carbon input (as in priming experiments). This maximum CO2 efflux (Fmax) decreases with an increase in soil temperature in both models. However, the sensitivity of Fmax to the increased amount of carbon input increases with soil temperature in model A but decreases monotonically with an increase in soil temperature in model B. These differences in the responses to soil warming and carbon input between the two nonlinear models can be used to discern which model is more realistic when compared to results from field or laboratory experiments. Lastly, these insights will contribute to an improved understanding of the significance of soil microbial processes in soil carbon responses to future climate change.« less

  17. Mathematical models of the uptake of carbon monoxide on hemoglobin at low carbon monoxide levels.

    PubMed Central

    Joumard, R; Chiron, M; Vidon, R; Maurin, M; Rouzioux, J M

    1981-01-01

    Coburn's differential equation for the uptake of carbon monoxide by hemoglobin and two particular types of solution of this equation were considered and the solutions verified for a group of healthy adults consisting of 73 nonsmoking pedestrians or car passengers exposed to low levels of carbon monoxide as experienced in the city of Lyon. The CO levels at the breathing level and the walking speed of the subjects was continually measured, and the carboxyhemoglobin levels determined at the beginning and the end of each test journey. The values of all the other relevant parameters were also determined. The half-life of carboxyhemoglobin was studied as a function of the degree of activity, the age, the sex and the height of the subjects. Finally a mathematical model was set up to represent a periodic uptake of CO which made it possible to estimate the variations in the carboxyhemoglobin level for any subject during a period of a day or a week without any need to know the initial level. PMID:7333242

  18. The effect of initial temperature on flame acceleration and deflagration-to-detonation transition phenomenon

    SciTech Connect

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Tagawa, H.; Malliakos, A.

    1998-05-01

    The High-Temperature Combustion Facility at BNL was used to conduct deflagration-to-detonation transition (DDT) experiments. Periodic orifice plates were installed inside the entire length of the detonation tube in order to promote flame acceleration. The orifice plates are 27.3-cm-outer diameter, which is equivalent to the inner diameter of the tube, and 20.6-cm-inner diameter. The detonation tube length is 21.3-meters long, and the spacing of the orifice plates is one tube diameter. A standard automobile diesel engine glow plug was used to ignite the test mixture at one end of the tube. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in DDT corresponded to the mixture whose detonation cell size, {lambda}, was equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}=1). The only exception was in the dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 mIs and then decelerated to below 2 mIs. By maintaining the first 6.1 meters of the vessel at the ignition end at 400K, and the rest of the vessel at 650K, the DDT limit was reduced to 9.5 percent hydrogen (d/{lambda}=4.2). This observation indicates that the d/{lambda}=1 DDT limit criteria provides a necessary condition but not a sufficient one for the onset of DDT in obstacle laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the point of detonation initiation, referred to as the run-up distance, was found to be a function of both the hydrogen mole fraction

  19. Large uncertainty in soil carbon modelling related to carbon input calculation method

    NASA Astrophysics Data System (ADS)

    Keel, Sonja G.; Leifeld, Jens; Taghizadeh-Toosi, Arezoo; Oleson, Jørgen E.

    2016-04-01

    A model-based inventory for carbon (C) sinks and sources in agricultural soils is being established for Switzerland. As part of this project, five frequently used allometric equations that estimate soil C inputs based on measured yields are compared. To evaluate the different methods, we calculate soil C inputs for a long-term field trial in Switzerland. This DOK experiment (bio-Dynamic, bio-Organic, and conventional (German: Konventionell)) compares five different management systems, that are applied to identical crop rotations. Average calculated soil C inputs vary largely between allometric equations and range from 1.6 t C ha-1 yr-1 to 2.6 t C ha-1 yr-1. Among the most important crops in Switzerland, the uncertainty is largest for barley (difference between highest and lowest estimate: 3.0 t C ha-1 yr-1). For the unfertilized control treatment, the estimated soil C inputs vary less between allometric equations than for the treatment that received mineral fertilizer and farmyard manure. Most likely, this is due to the higher yields in the latter treatment, i.e. the difference between methods might be amplified because yields differ more. To evaluate the influence of these allometric equations on soil C dynamics we simulate the DOK trial for the years 1977-2004 using the model C-TOOL (Taghizadeh-Toosi et al. 2014) and the five different soil C input calculation methods. Across all treatments, C-TOOL simulates a decrease in soil C in line with the experimental data. This decline, however, varies between allometric equations (-2.4 t C ha-1 to -6.3 t C ha-1 for the years 1977-2004) and has the same order of magnitude as the difference between treatments. In summary, the method to estimate soil C inputs is identified as a significant source of uncertainty in soil C modelling. Choosing an appropriate allometric equation to derive the input data is thus a critical step when setting up a model-based national soil C inventory. References Taghizadeh-Toosi A et al. (2014) C

  20. Developing an Enzyme Mediated Soil Organic Carbon Decomposition Model

    NASA Astrophysics Data System (ADS)

    Mayes, M. A.; Post, W. M.; Wang, G.; Jagadamma, S.; Steinweg, J. M.; Schadt, C. W.

    2012-12-01

    We developed the Microbial-ENzyme-mediated Decomposition (MEND) model in order to mechanistically model the decomposition of soil organic carbon (C). This presentation is an overview of the concept and development of the model and of the design of complementary lab-scale experiments. The model divides soil C into five pools of particulate, mineral-associated, dissolved, microbial, and enzyme organic C (Wang et al. 2012). There are three input types - cellulose, lignin, and dissolved C. Decomposition is mediated via microbial extracellular enzymes using the Michaelis-Menten equation, resulting in the production of a common pool of dissolved organic C. Parameters for the Michaelis-Menten equation are obtained through a literature review (Wang and Post, 2012a). The dissolved C is taken up by microbial biomass and proportioned according to microbial maintenance and growth, which were recalculated according to Wang and Post (2012b). The model allows dissolved C to undergo adsorption and desorption reactions with the mineral-associated C, which was also parameterized based upon a literature review and complementary laboratory experiments. In the lab, four 14C-labeled substrates (cellulose, fatty acid, glucose, and lignin-like) were incubated with either the particulate C pool, the mineral-associated C pool, or to bulk soils. The rate of decomposition was measured via the production of 14CO2 over time, along with incorporation into microbial biomass, production of dissolved C, and estimation of sorbed C. We performed steady-state and dynamic simulations and sensitivity analyses under temperature increases of 1-5°C for a period of 100 y. Simulations indicated an initial decrease in soil organic C consisting of both cellulose and lignin pools. Over longer time intervals (> 6 y), however, a shrinking microbial population, a concomitant decrease in enzyme production, and a decrease in microbial carbon use efficiency together decreased CO2 production and resulted in greater

  1. Addressing sources of uncertainty in a global terrestrial carbon model

    NASA Astrophysics Data System (ADS)

    Exbrayat, J.; Pitman, A. J.; Zhang, Q.; Abramowitz, G.; Wang, Y.

    2013-12-01

    Several sources of uncertainty exist in the parameterization of the land carbon cycle in current Earth System Models (ESMs). For example, recently implemented interactions between the carbon (C), nitrogen (N) and phosphorus (P) cycles lead to diverse changes in land-atmosphere C fluxes simulated by different models. Further, although soil organic matter decomposition is commonly parameterized as a first-order decay process, the formulation of the microbial response to changes in soil moisture and soil temperature varies tremendously between models. Here, we examine the sensitivity of historical land-atmosphere C fluxes simulated by an ESM to these two major sources of uncertainty. We implement three soil moisture (SMRF) and three soil temperature (STRF) respiration functions in the CABLE-CASA-CNP land biogeochemical component of the coarse resolution CSIRO Mk3L climate model. Simulations are undertaken using three degrees of biogeochemical nutrient limitation: C-only, C and N, and C and N and P. We first bring all 27 possible combinations of a SMRF with a STRF and a biogeochemical mode to a steady-state in their biogeochemical pools. Then, transient historical (1850-2005) simulations are driven by prescribed atmospheric CO2 concentrations used in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Similarly to some previously published results, representing N and P limitation on primary production reduces the global land carbon sink while some regions become net C sources over the historical period (1850-2005). However, the uncertainty due to the SMRFs and STRFs does not decrease relative to the inter-annual variability in net uptake when N and P limitations are added. Differences in the SMRFs and STRFs and their effect on the soil C balance can also change the sign of some regional sinks. We show that this response is mostly driven by the pool size achieved at the end of the spin-up procedure. Further, there exists a six-fold range in the level

  2. Integrated Assessment Modeling for Carbon Storage Risk and Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Bromhal, G. S.; Dilmore, R.; Pawar, R.; Stauffer, P. H.; Gastelum, J.; Oldenburg, C. M.; Zhang, Y.; Chu, S.

    2013-12-01

    The National Risk Assessment Partnership (NRAP) has developed tools to perform quantitative risk assessment at site-specific locations for long-term carbon storage. The approach that is being used is to divide the storage and containment system into components (e.g., reservoirs, seals, wells, groundwater aquifers), to develop detailed models for each component, to generate reduced order models (ROMs) based on the detailed models, and to reconnect the reduced order models within an integrated assessment model (IAM). CO2-PENS, developed at Los Alamos National Lab, is being used as the IAM for the simulations in this study. The benefit of this approach is that simulations of the complete system can be generated on a relatively rapid time scale so that Monte Carlo simulation can be performed. In this study, hundreds of thousands of runs of the IAMs have been generated to estimate likelihoods of the quantity of CO2 released to the atmosphere, size of aquifer impacted by pH, size of aquifer impacted by TDS, and size of aquifer with different metals concentrations. Correlations of the output variables with different reservoir, seal, wellbore, and aquifer parameters have been generated. Importance measures have been identified, and inputs have been ranked in the order of their impact on the output quantities. Presentation will describe the approach used, representative results, and implications for how the Monte Carlo analysis is implemented on uncertainty quantification.

  3. Modelling and mapping the topsoil organic carbon content for Tanzania

    NASA Astrophysics Data System (ADS)

    Kempen, Bas; Kaaya, Abel; Ngonyani Mhaiki, Consolatha; Kiluvia, Shani; Ruiperez-Gonzalez, Maria; Batjes, Niels; Dalsgaard, Soren

    2014-05-01

    Soil organic carbon (SOC), held in soil organic matter, is a key indicator of soil health and plays an important role in the global carbon cycle. The soil can act as a net source or sink of carbon depending on land use and management. Deforestation and forest degradation lead to the release of vast amounts of carbon from the soil in the form of greenhouse gasses, especially in tropical countries. Tanzania has a high deforestation rate: it is estimated that the country loses 1.1% of its total forested area annually. During 2010-2013 Tanzania has been a pilot country under the UN-REDD programme. This programme has supported Tanzania in its initial efforts towards reducing greenhouse gas emission from forest degradation and deforestation and towards preserving soil carbon stocks. Formulation and implementation of the national REDD strategy requires detailed information on the five carbon pools among these the SOC pool. The spatial distribution of SOC contents and stocks was not available for Tanzania. The initial aim of this research, was therefore to develop high-resolution maps of the SOC content for the country. The mapping exercise was carried out in a collaborative effort with four Tanzanian institutes and data from the Africa Soil Information Service initiative (AfSIS). The mapping exercise was provided with over 3200 field observations on SOC from four sources; this is the most comprehensive soil dataset collected in Tanzania so far. The main source of soil samples was the National Forest Monitoring and Assessment (NAFORMA). The carbon maps were generated by means of digital soil mapping using regression-kriging. Maps at 250 m spatial resolution were developed for four depth layers: 0-10 cm, 10-20 cm, 20-30 cm, and 0-30 cm. A total of 37 environmental GIS data layers were prepared for use as covariates in the regression model. These included vegetation indices, terrain parameters, surface temperature, spectral reflectances, a land cover map and a small

  4. Integrated Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in Mafic/Ultramafic Rocks

    SciTech Connect

    Wang, Zhengrong; Qiu, Lin; Zhang, Shuang; Bolton, Edward; Bercovici, David; Ague, Jay; Karato, Shun-Ichiro; Oristaglio, Michael; Zhu, Wen-Iu; Lisabeth, Harry; Johnson, Kevin

    2014-09-30

    A program of laboratory experiments, modeling and fieldwork was carried out at Yale University, University of Maryland, and University of Hawai‘i, under a DOE Award (DE-FE0004375) to study mineral carbonation as a practical method of geologic carbon sequestration. Mineral carbonation, also called carbon mineralization, is the conversion of (fluid) carbon dioxide into (solid) carbonate minerals in rocks, by way of naturally occurring chemical reactions. Mafic and ultramafic rocks, such as volcanic basalt, are natural candidates for carbonation, because the magnesium and iron silicate minerals in these rocks react with brines of dissolved carbon dioxide to form carbonate minerals. By trapping carbon dioxide (CO2) underground as a constituent of solid rock, carbonation of natural basalt formations would be a secure method of sequestering CO2 captured at power plants in efforts to mitigate climate change. Geochemical laboratory experiments at Yale, carried out in a batch reactor at 200°C and 150 bar (15 MPa), studied carbonation of the olivine mineral forsterite (Mg2SiO4) reacting with CO2 brines in the form of sodium bicarbonate (NaHCO3) solutions. The main carbonation product in these reactions is the carbonate mineral magnesite (MgCO3). A series of 32 runs varied the reaction time, the reactive surface area of olivine grains and powders, the concentration of the reacting fluid, and the starting ratio of fluid to olivine mass. These experiments were the first to study the rate of olivine carbonation under passive conditions approaching equilibrium. The results show that, in a simple batch reaction, olivine carbonation is fastest during the first 24 hours and then slows significantly and even reverses. A natural measure of the extent of carbonation is a quantity called the carbonation fraction, which compares the amount of carbon removed from solution, during a run, to the maximum amount

  5. A carbonate-silicate aqueous geochemical cycle model for Mars

    NASA Technical Reports Server (NTRS)

    Schaefer, M. W.; Leidecker, H.

    1992-01-01

    A model for the carbonate-silicate geochemical cycle of an early, wet Mars is under development. The results of this study will be used to constrain models of the geochemical history of Mars and the likely mineralogy of its present surface. Although Mars today is a cold, dry planet, it may once have been much warmer and wetter. Values of total outgassed CO2 from several to about 10 bars are consistent with present knowledge (Pollack et al. 1987), and this amount of CO2 implies an amount of water outgassed at least equal to an equivalent depth of 500-1000 meters (Carr 1986). Pollack et al. (1987), in addition, estimate that a thick CO2 atmosphere may have existed for an extended period of time, perhaps as long as a billion years. The greenhouse effect of such an atmosphere would permit the presence of liquid water on the surface, most likely in the form of a shallow sea in the lowest regions of the planet, such as the northern plains (Schaefer 1990). The treatment of geochemical cycles as complex kinetic chemical reactions has been undertaken for terrestrial systems in recent years with much success (Lasaga 1980, 1981; Berner et al. 1983; Lasaga et al. 1985). Although the Martian system is vastly less well understood, and hence less well-constrained, it is also a much simpler system, due to the lack of biogenic reactions that make the terrestrial system so complex. It should be possible, therefore, to use the same techniques to model the Martian system as have been used for terrestrial systems, and to produce useful results. A diagram of the carbonate-silicate cycle for Mars (simplified from the terrestrial system) is given.

  6. Simulating the effects of forest managements on carbon sequestration: TREPLEX- Management model development

    NASA Astrophysics Data System (ADS)

    Wang, W.; Peng, C.; Lei, X.; Zhang, T.; Kneeshaw, D.; Larocque, G.

    2009-05-01

    With common concern surrounding the impact of increased atmospheric CO2 on global climate change, the role of forest management (i.e. thinning) on carbon sequestration is growing as a hotspot in the post Kyoto period. However, the combination strategies between forest management and carbon management are less established. Jack pine is one of the most important commercial and reforestation species in lake states of the United States and Canada, and the specie was reported to show stronger response to forest management like thinning. Obviously, there is an urgent need for understanding how harvesting intensity (i.e., thinning) affects C sequestration in jack pine stands. The aim of this study is to quantify and predict the biomass and carbon sequestration in thinned jack pine stands in eastern Canada. TRIPLEX is a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. The TRIPLEX-Management concept model was developed. The following carbon components were considered: above ground live biomass carbon, standing dead biomass carbon, harvested wood product carbon and soil organic carbon. Thinning was linked with LAI (Leaf Area Index), stand density and soil conditions and included in NPP and biomass production and allocation models. The model was also integrated with DBH distribution models, biomass allometric models, and wood products C models as well as the established height-diameter models. It is expected to optimize thinning regimes for carbon and forest management in order to mitigate climate change impacts.

  7. AN INTEGRATED MODELING FRAMEWORK FOR CARBON MANAGEMENT TECHNOLOGIES

    SciTech Connect

    Anand B. Rao; Edward S. Rubin; Michael B. Berkenpas

    2004-03-01

    CO{sub 2} capture and storage (CCS) is gaining widespread interest as a potential method to control greenhouse gas emissions from fossil fuel sources, especially electric power plants. Commercial applications of CO{sub 2} separation and capture technologies are found in a number of industrial process operations worldwide. Many of these capture technologies also are applicable to fossil fuel power plants, although applications to large-scale power generation remain to be demonstrated. This report describes the development of a generalized modeling framework to assess alternative CO{sub 2} capture and storage options in the context of multi-pollutant control requirements for fossil fuel power plants. The focus of the report is on post-combustion CO{sub 2} capture using amine-based absorption systems at pulverized coal-fired plants, which are the most prevalent technology used for power generation today. The modeling framework builds on the previously developed Integrated Environmental Control Model (IECM). The expanded version with carbon sequestration is designated as IECM-cs. The expanded modeling capability also includes natural gas combined cycle (NGCC) power plants and integrated coal gasification combined cycle (IGCC) systems as well as pulverized coal (PC) plants. This report presents details of the performance and cost models developed for an amine-based CO{sub 2} capture system, representing the baseline of current commercial technology. The key uncertainties and variability in process design, performance and cost parameters which influence the overall cost of carbon mitigation also are characterized. The new performance and cost models for CO{sub 2} capture systems have been integrated into the IECM-cs, along with models to estimate CO{sub 2} transport and storage costs. The CO{sub 2} control system also interacts with other emission control technologies such as flue gas desulfurization (FGD) systems for SO{sub 2} control. The integrated model is applied to

  8. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

    SciTech Connect

    Thornton, Peter E; Doney, Scott C.; Lindsay, Keith; Moore, Jefferson Keith; Mahowald, Natalie; Randerson, James T; Fung, Inez; Lamarque, Jean-Francois H; Feddema, Johan J.

    2009-01-01

    Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated with CO{sub 2} fertilization, and increased carbon uptake associated with warming of the climate system. The balance of these two opposing effects is to reduce the fraction of anthropogenic CO{sub 2} predicted to be sequestered in land ecosystems. The primary mechanism responsible for increased land carbon storage under radiatively forced climate change is shown to be fertilization of plant growth by increased mineralization of nitrogen directly associated with increased decomposition of soil organic matter under a warming climate, which in this particular model results in a negative gain for the climate-carbon feedback. Estimates for the land and ocean sink fractions of recent anthropogenic emissions are individually within the range of observational estimates, but the combined land plus ocean sink fractions produce an airborne fraction which is too high compared to observations. This bias is likely due in part to an underestimation of the ocean sink fraction. Our results show a significant growth in the airborne fraction of anthropogenic CO{sub 2} emissions over the coming century, attributable in part to a steady decline in the ocean sink fraction. Comparison to experimental studies on the fate of radio-labeled nitrogen tracers in temperate forests indicates that the model representation of competition between plants and microbes for new mineral nitrogen resources is reasonable. Our results suggest a weaker dependence of net land carbon flux on soil moisture changes in tropical regions, and a stronger positive growth response to warming in those regions, than predicted by a similar AOGCM implemented without land carbon-nitrogen interactions. We expect that the between-model uncertainty in predictions of future atmospheric CO{sub 2} concentration and

  9. Evaluation and Improvement of Global Carbon Cycle Models against Soil Carbon and Microbial Data Sets Using a Bayesian MCMC method

    NASA Astrophysics Data System (ADS)

    Hararuk, Oleksandra; Luo, Yiqi

    2015-04-01

    Long-term land carbon-cycle feedback to climate change is largely determined by dynamics of soil organic carbon (SOC). However, most evaluation studies conducted so far indicate that global land models predict SOC poorly. We have developed new techniques to evaluate and improve global carbon cycle models against global datavases of soil carbon stock and microbial biomass carbon. We have evaluated and improved one conventional model and two microbial models. We evaluated predictions of SOC by the Community Land Model with Carnegie-Ames-Stanford Approach biogeochemistry module (CLM-CASA'), investigated underlying causes of mismatches between model predictions and observations, and calibrated model parameters to improve the prediction of SOC. We compared modeled SOC to observed soil C pools provided by IGBP-DIS globally gridded data product and found that CLM-CASA' on average underestimated SOC pools by 65% (r²=0.28). We applied data assimilation to CLM-CASA' to estimate SOC residence times and C partitioning coefficients among the pools, as well as temperature sensitivity of C decomposition. The model with calibrated parameters explained 41% of the global variability in the observed SOC, which was substantial improvement from the initial 27%. The projections differed between models with original and calibrated parameters: over 96 years the calibrated model released 48 Pg C from soil pools and 6.5 Pg C from litter pools less than the original model. Thus, assimilating observed soil carbon data into the model improved fitness between modeled and observed SOC, and reduced the amount of C released under changing climate. We have constrained parameters of two soil microbial models; evaluated the improvements in performance of those calibrated models in predicting contemporary carbon stocks; and compared the SOC responses to climate change and their uncertainties between microbial and conventional models. Microbial models with calibrated parameters explained 51% of

  10. Modeling the Impact of Carbon Dioxide Leakage into an Unconfined, Oxidizing Carbonate Aquifer

    SciTech Connect

    Bacon, Diana H.; Qafoku, Nikolla; Dai, Zhenxue; Keating, Elizabeth; Brown, Christopher F.

    2016-01-01

    Multiphase, reactive transport modeling was used to identify the mechanisms controlling trace metal release under elevated CO2 conditions from a well-characterized carbonate aquifer. Modeling was conducted for two experimental scenarios: batch experiments to simulate sudden, fast, and short-lived release of CO2 as would occur in the case of well failure during injection, and column experiments to simulate more gradual leaks such as those occurring along undetected faults, fractures, or well linings. Observed and predicted trace metal concentrations are compared to groundwater concentrations from this aquifer to determine the potential for leaking CO2 to adversely impact drinking water quality. Finally, a three-dimensional multiphase flow and reactive-transport simulation of CO2 leakage from an abandoned wellbore into a generalized model of the shallow, unconfined portion of the aquifer is used to determine potential impacts on groundwater quality. As a measure of adverse impacts on groundwater quality, both the EPA’s MCL limits and the maximum trace metal concentration observed in the aquifer were used as threshold values.

  11. Constitutive modeling of calcium carbonate supersaturated seawater mixtures

    NASA Astrophysics Data System (ADS)

    Reis, Martina; Sousa, Maria De Fátima; Bertran, Celso; Bassi, Adalberto

    2014-11-01

    Calcium carbonate supersaturated seawater mixtures have attracted attention of many researchers since the deposition of CaCO3(s) from such solutions can lead to scaling problems in oil fields. However, despite their evident practical importance in petroleum engineering, the hydro and thermodynamic behaviors of these mixtures have not been well-understood yet. In this work, a constitutive model based on the foundations of the constitutive theory of continuum mechanics, and the Müller-Liu entropy principle is proposed. The calcium carbonate supersaturated seawater mixture is regarded as a reactive viscous fluid with heat and electrical conductions. The obtained results indicate that the thermodynamic behavior of CaCO3 supersaturated seawater mixtures is closely related to the individual dynamics of each constituent of the mixture, particularly to the linear momentum, and mass exchanges. Furthermore, the results show that, unlike classical continuum mixtures, the extra entropy flux is not null, and higher-order gradients of deformation contribute to the residual entropy production of the class of mixtures under study. The results of this work may be relevant for the prevention of the mineral scale formation in oil fields. The first author acknowledges the São Paulo Research Foundation (Grant 2013/ 20872-2) for its funding.

  12. DFT models of molecular species in carbonate molten salts.

    PubMed

    Carper, W Robert; Wahlbeck, Phillip G; Griffiths, Trevor R

    2012-05-10

    Raman spectra of high temperature carbonate melts are correlated with carbonate species modeled at 923 K using B3LYP/(6-311+G(2d,p)) density functional calculations. Species that are theoretically stable at 923 K include O(2-), O(2)(-), O(2)(2-), CO(3)(2-), C(2)O(6)(2-), CO(4)(-), CO(4)(2-), CO(4)(4-), CO(5)(2-), KCO(4)(-), LiCO(4)(-), KO(2)(-), LiO(2)(-), NaO(2)(-), KO(2), LiO(2), NaO(2), KCO(3)(-), LiCO(3)(-), and NaCO(3)(-). Triangular, linear, and bent forms are theoretically possible for KO(2)(-) and NaO(2)(-). Triangular and linear forms may exist for LiO(2)(-). Linear and triangular versions are theoretically possible for LiO(2)(-) and KO(2). A triangular version of NaO(2) may exist. The correlation between measured and theoretical Raman spectra indicate that monovalent cations are to be included in several of the species that produce Raman spectra.

  13. Modeling Composites of Multi-Walled Carbon Nanotubes in Polycarbonate

    NASA Astrophysics Data System (ADS)

    Jindal, Prashant; Goyal, Meenakshi; Kumar, Navin

    2013-10-01

    High strain rate experiments performed on multi-walled carbon nanotubes, polycarbonate composites (MWCNT-PC) have exhibited enhanced impact resistance under a dynamic strain rate of nearly 2500/s with composition of only 0.5 to 2.0% multi-walled carbon nanotubes (MWCNTs) in pure polycarbonate (PC). Similarly, hardness and elastic modulus under static loads resulted in a significant increase, depending upon the composition of MWCNTs in PC. The present work aims to analyze these results by correlating the data to fit expressions in generalizing the behavior of MWCNTs composition for MWCNT-PC composites under both static and impact loads. As a result, we found that an optimum composition of 2.1 weight % of MWCNTs exhibits maximum stress resistance within elastic range under strain rates of nearly 2500/s for MWCNT-PC composites. The composition of MWCNTs plays a crucial role in maximizing modification of static and dynamic impact-based mechanical properties of polycarbonates. Further, a simple model based on Lennard-Jones 6-12 atom-atom based potential is formulated and used to compute preliminary estimates of static properties of pure as well as composite PC with the aim to modify this in subsequent approaches.

  14. Are soil carbon models transferable across distinct regions or scales in Florida?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some Florida soils have great capacity to accumulate carbon due to unique geographical and topographical conditions (high net primary productivity, precipitation, high water table, and flat topography). Soil carbon models have been used to quantify the carbon pools usually at a specific scale or in ...

  15. Modelling Vegetation and the Carbon Cycle as Interactive Elements of the Climate system

    NASA Astrophysics Data System (ADS)

    Cox, P. M.; Betts, R. A.; Jones, C. D.; Spall, S. A.; Totterdell, I. J.

    INTRODUCTION MODEL DESCRIPTION Ocean-Atmosphere GCM (HadCM3L) The Hadley Centre Ocean Carbon Cycle Model (HadOCC) The Dynamic Global Vegetation Model (TRIFFID) PRE-INDUSTRIAL STATE Spin-up Methodology The Mean Pre-industrial State A FIRST TRANSIENT CLIMATE-CARBON CYCLE SIMULATION 1860-2000 2000-2100 DISCUSSION Sink-to-source Transitions in the Terrestrial Carbon Cycle CONCLUSIONS REFERENCES

  16. Measuring and Modelling the Carbon Balance of Pinus palustris Savannas

    NASA Astrophysics Data System (ADS)

    Wright, J. K.; Williams, M. D.; Mitchell, R. J.; Starr, G.; McGee, J.; Whelan, A.

    2011-12-01

    Longleaf pine savannas currently occupy 1.4 million hectares in the South Eastern USA - only 2.6% of their original range. These fire-dependent ecosystems are highly biodiverse and of economic and ecological importance to the region. This region of the United States, however, is increasingly prone to severe drought, including a classified "exceptional" drought in 2011. Drought occurrence and severity are likely to increase in future climate scenarios. Moreover, increasing drought and accompanying wildfire will influence the carbon balance of the South East, a region identified as having the highest carbon sequestration potential in the USA. Thus, understanding the effects of drought on the native longleaf pine savanna land cover, therefore, is of both scientific and economic interest. Longleaf pine exists over a wide soil moisture gradient, driven by the texture and drainage capacity of the soils. These ecosystems therefore provide a natural laboratory for exploring the interaction between productivity, fire and water use. Here we present results of a 3 year study comparing the ecophysiology and carbon balance of two adjacent (5 mile separation) longleaf pine savanna flux sites, one xeric, one mesic. A process-based model (Soil-Plant-Atmosphere - SPA) and leaf-level measurements of photosynthesis and water use in drought and non-drought periods have enabled the authors to partition the carbon fluxes observed at each site into three functional groups (C4 understorey, C3 canopy and mid-storey). Results of this study show that the comparative overall productivity of wet and dry longleaf pine savannas varies through the year, with both wet and dry sites achieving similar productivity in the summer months but with the wet site exceeding the dry site during winter. We hypothesise that this difference is due to the activity of the seasonal C4 understorey. Results from SPA, flux data and field measurements suggest the understorey, dominated by the C4 grass Aristida stricta

  17. Improving carbon cycle models using inverse modelling techniques with in-situ measurements and satellite observations

    NASA Astrophysics Data System (ADS)

    Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy

    2014-05-01

    Improving our understanding of the carbon cycle is an important component of modelling climate and the Earth system, and a variety of inverse modelling techniques have been used to combine process models with different types of observational data. Model data fusion, or inverse modelling, is the process of best combining our under- standing of the dynamics of a system, observations and our prior knowledge of the state of the system. We consider a simple model for the carbon budget allocation for terrestrial ecosystems, the Data Assimilation-Linked Ecosystem model (DALEC). DALEC is a box model simulating a large range of processes occurring at different time scales from days to millennia. Eddy covariance measurements of net ecosystem exchange of CO2 have been used intensively for over a decade to confront DALEC with real data to estimate model parameters and quantify uncertainty of the model predictions. The REgional FLux Estimation eXperiment (REFLEX), compared the strengths and weaknesses of various inverse modelling strategies (MCMC, ENKF) to estimate parameters and initial stocks for DALEC; most results agreed on the fact that parameters and initial stocks directly related to fast processes were best estimated with narrow confidence intervals, whereas those related to slow processes were poorly estimated with very large uncertainties. While other studies have tried to overcome this difficulty by adding complementary data streams or by considering longer observation windows no systematic analysis has been carried out so far to explain the large differences among results of REFLEX. One of the merits of DALEC is its simplicity that facilitates close mathematical scrutiny. Using variational techniques we quantify the ill-posedness of the inverse problem and we discuss various regularisation techniques. Using the tangent linear model we study the information content of multiple data sources and show how these multiple data sources help constraining initial carbon

  18. One-dimensional Hubbard-Luttinger model for carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ishkhanyan, H. A.; Krainov, V. P.

    2015-06-01

    A Hubbard-Luttinger model is developed for qualitative description of one-dimensional motion of interacting Pi-conductivity-electrons in carbon single-wall nanotubes at low temperatures. The low-lying excitations in one-dimensional electron gas are described in terms of interacting bosons. The Bogolyubov transformation allows one to describe the system as an ensemble of non-interacting quasi-bosons. Operators of Fermi excitations and Green functions of fermions are introduced. The electric current is derived as a function of potential difference on the contact between a nanotube and a normal metal. Deviations from Ohm law produced by electron-electron short-range repulsion as well as by the transverse quantization in single-wall nanotubes are discussed. The results are compared with experimental data.

  19. Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.

    2010-01-01

    Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity

  20. Multiwalled carbon nanotube deposition on model environmental surfaces.

    PubMed

    Chang, Xiaojun; Bouchard, Dermont C

    2013-09-17

    Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, although hydrophobic interactions dominated MWNTs deposition on a hydrophobic polystyrene surface. Initial deposition rates (rf) and deposition attachment efficiencies (αD) depended on solution ionic strengths (IS) and surface electrostatic properties. Identical rf and αD values at constant IS on similar surfaces suggested that deposition was insensitive to surface morphology (i.e., bare crystal surface vs coated surface). The dissipation unit (D) was used with frequency (f) to investigate nanoparticle deposition: |ΔD/Δf| values varied for deposition on different surfaces, indicating that the nature of MWNT association with surfaces varied despite constant rf and αD values.

  1. A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration

    SciTech Connect

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-05-15

    We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcy’s law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

  2. Potential for progress in carbon cycle modeling: models as tools and representations of reality (Invited)

    NASA Astrophysics Data System (ADS)

    Caldeira, K.

    2013-12-01

    Some carbon cycle modelers conceive of themselves as developing a representation of reality that will serve as a general purpose tool that can be used to make a wide variety of predictions. However, models are tools used to solve particular problems. If we were to ask, 'what tool is best for fastening two pieces of wood together,' depending on the circumstances that tool could be hammer, a screw driver, or perhaps some sort of glue gun. And the best kind of screw driver might depend on whether we were thinking about Philips or flat headed screws. If there is no unique answer to the question of which type of tool is best for fastening two pieces of wood together, surely there is no unique answer to the question of which type of model is best for making carbon-cycle predictions. We must first understand what problem we are trying to solve. Some modeling studies try to make the most reliable projections, considering as many processes and predicting as many observables as possible, whereas other modeling studies try to show how general trends depend on relatively few (perhaps highly aggregated) processes. This talk will look at CMIP5 carbon-cycle model results and address the issue of the extent to which the overall global-scale trends projected by these detailed models might projected by models with many fewer degrees of freedom. It should be noted that an ocean carbon-cycle model that predicts many observables at local scale is much more easily falsified (and thus in some sense is more ';scientific') than an ocean model that predicts only global scale phenomena. Nevertheless, if all that is needed is a crude estimate of global ocean CO2 uptake (say, to permit as study of the carbon-cycle on land), a simple representation of the ocean carbon cycle may suffice. This talk will take as its jumping off point two quotes: 'All models are wrong, some are useful.' - George E.P. Box 'Models should be as simple as possible but no simpler.' - Albert Einstein (likely an erroneous

  3. Carbon stock and carbon turnover in boreal and temperate forests - Integration of remote sensing data and global vegetation models

    NASA Astrophysics Data System (ADS)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Tito Rademacher, Tim; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-04-01

    Long-term vegetation dynamics are one of the key uncertainties of the carbon cycle. There are large differences in simulated vegetation carbon stocks and fluxes including productivity, respiration and carbon turnover between global vegetation models. Especially the implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current models and their importance at global scale is highly uncertain. These shortcomings have been due to the lack of spatially extensive information on vegetation carbon stocks, which cannot be provided by inventory data alone. Instead, we recently have been able to estimate northern boreal and temperate forest carbon stocks based on radar remote sensing data. Our spatially explicit product (0.01° resolution) shows strong agreement to inventory-based estimates at a regional scale and allows for a spatial evaluation of carbon stocks and dynamics simulated by global vegetation models. By combining this state-of-the-art biomass product and NPP datasets originating from remote sensing, we are able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests along spatial gradients. We observe an increasing turnover rate with colder winter temperatures and longer winters in boreal forests, suggesting frost damage and the trade-off between frost adaptation and growth being important mortality processes in this ecosystem. In contrast, turnover rate increases with climatic conditions favouring drought and insect outbreaks in temperate forests. Investigated global vegetation models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce observation-based spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well in terms of NPP, simulated

  4. Aboveground biomass and carbon stocks modelling using non-linear regression model

    NASA Astrophysics Data System (ADS)

    Ain Mohd Zaki, Nurul; Abd Latif, Zulkiflee; Nazip Suratman, Mohd; Zainee Zainal, Mohd

    2016-06-01

    Aboveground biomass (AGB) is an important source of uncertainty in the carbon estimation for the tropical forest due to the variation biodiversity of species and the complex structure of tropical rain forest. Nevertheless, the tropical rainforest holds the most extensive forest in the world with the vast diversity of tree with layered canopies. With the usage of optical sensor integrate with empirical models is a common way to assess the AGB. Using the regression, the linkage between remote sensing and a biophysical parameter of the forest may be made. Therefore, this paper exemplifies the accuracy of non-linear regression equation of quadratic function to estimate the AGB and carbon stocks for the tropical lowland Dipterocarp forest of Ayer Hitam forest reserve, Selangor. The main aim of this investigation is to obtain the relationship between biophysical parameter field plots with the remotely-sensed data using nonlinear regression model. The result showed that there is a good relationship between crown projection area (CPA) and carbon stocks (CS) with Pearson Correlation (p < 0.01), the coefficient of correlation (r) is 0.671. The study concluded that the integration of Worldview-3 imagery with the canopy height model (CHM) raster based LiDAR were useful in order to quantify the AGB and carbon stocks for a larger sample area of the lowland Dipterocarp forest.

  5. Modeling net ecosystem carbon exchange of alpine grasslands with a satellite-driven model.

    PubMed

    Yan, Wei; Hu, Zhongmin; Zhao, Yuping; Zhang, Xianzhou; Fan, Yuzhi; Shi, Peili; He, Yongtao; Yu, Guirui; Li, Yingnian

    2015-01-01

    Estimate of net ecosystem carbon exchange (NEE) between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP) and ecosystem respiration (Reco) has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model. PMID:25849325

  6. Modeling Net Ecosystem Carbon Exchange of Alpine Grasslands with a Satellite-Driven Model

    PubMed Central

    Zhao, Yuping; Zhang, Xianzhou; Fan, Yuzhi; Shi, Peili; He, Yongtao; Yu, Guirui; Li, Yingnian

    2015-01-01

    Estimate of net ecosystem carbon exchange (NEE) between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP) and ecosystem respiration (Reco) has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model. PMID:25849325

  7. Modeling net ecosystem carbon exchange of alpine grasslands with a satellite-driven model.

    PubMed

    Yan, Wei; Hu, Zhongmin; Zhao, Yuping; Zhang, Xianzhou; Fan, Yuzhi; Shi, Peili; He, Yongtao; Yu, Guirui; Li, Yingnian

    2015-01-01

    Estimate of net ecosystem carbon exchange (NEE) between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP) and ecosystem respiration (Reco) has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model.

  8. Modeling Dissolved Organic Carbon (DOC) Dynamics in Flooded Wetlands

    EPA Science Inventory

    Wetlands play an important role in the global carbon cycle and are recognized for their considerable potential to sequester carbon. Wetlands contain the largest component (18-30%) of the terrestrial carbon pool and are responsible for about a quarter of the global methane emissi...

  9. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    SciTech Connect

    Young, Alan; Colbow, Vesna; Harvey, David; Rogers, Erin; Wessel, Silvia

    2013-01-01

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stress test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.

  10. Towards an improvement of carbon accounting for wildfires: incorporation of charcoal production into carbon emission models

    NASA Astrophysics Data System (ADS)

    Doerr, Stefan H.; Santin, Cristina; de Groot, Bill

    2015-04-01

    Every year fires release to the atmosphere the equivalent to 20-30% of the carbon (C) emissions from fossil fuel consumption, with future emissions from wildfires expected to increase under a warming climate. Critically, however, part of the biomass C affected by fire is not emitted during burning, but converted into charcoal, which is very resistant to environmental degradation and, thus, contributes to long-term C sequestration. The magnitude of charcoal production from wildfires as a long-term C sink remains essentially unknown and, to the date, charcoal production has not been included in wildfire emission and C budget models. Here we present complete inventories of charcoal production in two fuel-rich, but otherwise very different ecosystems: i) a boreal conifer forest (experimental stand-replacing crown fire; Canada, 2012) and a dry eucalyptus forest (high-intensity fuel reduction burn; Australia 2014). Our data show that, when considering all the fuel components and quantifying all the charcoal produced from each (i.e. bark, dead wood debris, fine fuels), the overall amount of charcoal produced is significant: up to a third of the biomass C affected by fire. These findings indicate that charcoal production from wildfires could represent a major and currently unaccounted error in the estimation of the effects of wildfires in the global C balance. We suggest an initial approach to include charcoal production in C emission models, by using our case study of a boreal forest fire and the Canadian Fire Effects Model (CanFIRE). We also provide recommendations of how a 'conversion factor' for charcoal production could be relatively easily estimated when emission factors for different types of fuels and fire conditions are experimentally obtained. Ultimately, this presentation is a call for integrative collaboration between the fire emission modelling community and the charcoal community to work together towards the improvement of C accounting for wildfires.

  11. Modeling carbon monoxide spread in underground mine fires

    PubMed Central

    Yuan, Liming; Zhou, Lihong; Smith, Alex C.

    2016-01-01

    Carbon monoxide (CO) poisoning is a leading cause of mine fire fatalities in underground mines. To reduce the hazard of CO poisoning in underground mines, it is important to accurately predict the spread of CO in underground mine entries when a fire occurs. This paper presents a study on modeling CO spread in underground mine fires using both the Fire Dynamics Simulator (FDS) and the MFIRE programs. The FDS model simulating part of the mine ventilation network was calibrated using CO concentration data from full-scale mine fire tests. The model was then used to investigate the effect of airflow leakage on CO concentration reduction in the mine entries. The inflow of fresh air at the leakage location was found to cause significant CO reduction. MFIRE simulation was conducted to predict the CO spread in the entire mine ventilation network using both a constant heat release rate and a dynamic fire source created from FDS. The results from both FDS and MFIRE simulations are compared and the implications of the improved MFIRE capability are discussed. PMID:27069400

  12. A Finite Element Model for Simulation of Carbon Dioxide Sequestration

    SciTech Connect

    Bao, Jie; Xu, Zhijie; Fang, Yilin

    2015-07-23

    We present a hydro-mechanical model, followed by stress, deformation, and shear-slip failure analysis for geological sequestration of carbon dioxide (CO2). The model considers the poroelastic effects by taking into account of the two-way coupling between the geomechanical response and the fluid flow process. Analytical solutions for pressure and deformation fields were derived for a typical geological sequestration scenario in our previous work. A finite element approach is introduced here for numerically solving the hydro-mechanical model with arbitrary boundary conditions. The numerical approach was built on an open-source finite element code Elmer, and results were compared to the analytical solutions. The shear-slip failure analysis was presented based on the numerical results, where the potential failure zone is identified. Information is relevant to the prediction of the maximum sustainable injection rate or pressure. The effects of caprock permeability on the fluid pressure, deformation, stress, and the shear-slip failure zone were also quantitatively studied. It was shown that a larger permeability in caprock and base rock leads to a larger uplift but a smaller shear-slip failure zone.

  13. Multiscale Modeling of Heat Conduction in Carbon Nanotube Aerogels

    NASA Astrophysics Data System (ADS)

    Gong, Feng; Papavassiliou, Dimitrios; Duong, Hai

    Carbon nanotube (CNT) aerogels have attracted a lot of interest due to their ultrahigh strength/weight and surface area/weight ratios. They are promising advanced materials used in energy storage systems, hydrogen storage media and weight-conscious devices such as satellites, because of their ultralight and highly porous quality. CNT aerogels can have excellent electrical conductivity and mechanical strength. However, the thermal conductivity of CNT aerogels are as low as 0.01-0.1 W/mK, which is five orders of magnitude lower than that of CNT (2000-5000 W/mK). To investigate the mechanisms for the low thermal conductivity of CNT aerogels, multiscale models are built in this study. Molecular dynamic (MD) simulations are first carried out to investigate the heat transfer between CNT and different gases (e.g. nitrogen and hydrogen), and the thermal conductance at CNT-CNT interface. The interfacial thermal resistances of CNT-gas and CNT-CNT are estimated from the MD simulations. Mesoscopic modeling of CNT aerogels are then built using an off-lattice Monte Carlo (MC) simulations to replicate the realistic CNT aerogels. The interfacial thermal resistances estimated from MD simulations are used as inputs in the MC models to predict the thermal conductivity of CNT aerogels. The volume fractions and the complex morphologies of CNTs are also quantified to study their effects on the thermal conductivity of CNT aerogels. The quantitative findings may help researchers to obtain the CNT aerogels with expected thermal conductivity.

  14. A global model of carbon-nutrient interactions

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Gildea, Patricia; Vorosmarty, Charles; Mellilo, Jerry M.; Peterson, Bruce J.

    1985-01-01

    The global biogeochemical model presented has two primary objectives. First, it characterizes natural elemental cycles and their linkages for the four elements significant to Earth's biota: C, N, S, and P. Second, it describes changes in these cycles due to human activity. Global nutrient cycles were studied within the drainage basins of several major world rivers on each continent. The initial study region was the Mississippi drainage basin, concentrating on carbon and nitrogen. The model first establishes the nutrient budgets of the undisturbed ecosystems in a study region. It then uses a data set of land use histories for that region to document the changes in these budgets due to land uses. Nutrient movement was followed over time (1800 to 1980) for 30 ecosystems and 10 land use categories. A geographically referenced ecological information system (GREIS) was developed to manage the digital global data bases of 0.5 x 0.5 grid cells needed to run the model: potential vegetation, drainage basins, precipitation, runoff, contemporary land cover, and FAO soil maps of the world. The results show the contributions of land use categories to river nutrient loads on a continental scale; shifts in nutrient cycling patterns from closed, steady state systems to mobile transient or open, steady state systems; soil organic matter depletion patterns in U.S. agricultural lands; changing nutrient ratios due to land use changes; and the effect of using heavy fertilizer on aquatic systems.

  15. Can Earth System Models Explain the observed 20th Century Global Carbon Sink?

    NASA Astrophysics Data System (ADS)

    Stouffer, R. J.; Shevliakova, E.; Malyshev, S.; Krasting, J. P.; Pacala, S.; Dunne, J. P.; John, J. G.

    2012-12-01

    Various authors have estimated the net global land carbon flux as a residual from the global budget of atmospheric, oceanic and fossil fuel carbon fluxes. Recently, Tans (2009) used this method to estimate the globally averaged net land carbon inventory changes method from 1850 to near present day. Using ocean model estimates of the oceanic carbon fluxes, he showed the land being a net source of carbon until around 1940, but after that becoming a net sink, with an uncertainty dominated by the net oceanic carbon flux trajectory (~15%; Sabine et al 2004). Recently Ballantyne et al (2012) produced updated estimates of the net carbon fluxes changes from 1960 until present day. They show that the net carbon flux uptake, land plus ocean, increases from around 2 PgC/yr in 1960 to about 5 PgC/yr in 2010. We compare these observationally based estimates with results from the GFDL Earth System Models (ESMs). We show that both GFDL ESMs store too much carbon in the atmosphere, about a 10 to 20 ppm error by 2005. The models have slightly higher mean values than the Tans (2009) oceanic carbon storage changes but fall within the Sabine et al. (2004) uncertainty estimate. While the general shape of the net land carbon changes in Tans (2009) is well simulated by the ESMs, the ESM sign change in land flux occurs about 15-25years later. By 2010, the models simulate the oceanic carbon uptake as ~2.7 PgC/yr, and the land uptake as ~1 PgC/yr for a total of ~4PgC/yr. The land uptake value varies with ensemble member giving evidence for the role of variability in understanding the past carbon changes. This analysis gives us confidence in the models estimates of the climate-carbon feedbacks. The model results will then be analyzed to determine the various causes of those changes.

  16. Estimating the change of carbon in the terrestrial biosphere from 18 000 BP to present using a carbon cycle model.

    PubMed

    Esser, G; Lautenschlager, M

    1994-01-01

    The authors used a global High Resolution Biosphere Model (HRBM), consisting of a biome model and a carbon cycle model, to estimate the changes of carbon storage in the major pools of the terrestrial biosphere from 18 000 BP to present. The climate change data to drive the biosphere for 18 000 BP were derived from an Atmospheric General Circulation Model. Using the AGCM anomalies interpolated to a 0.5 degrees grid, the HRBM data base of the present climate was recalculated for 18 000 BP. The most important processes which influenced the carbon storage include (1) climate-induced changes in biospheric processes and vegetation distribution, (2) the CO(2) fertilization effect, (3) the inundation of lowland areas resulting from the sea level rise of 100 m. Two scenarios were investigated. The first scenario, which ignored the CO(2) fertilization effect, led to total carbon losses from the terrestrial biosphere of -460 x 10(9) t. Scenario 2, which assumed that the model formulation of the CO(2) fertilization effect as used for preindustrial to present could be extrapolated to the glacial 200 microl litre(-1) (ppmv, parts per million per volume), gave a carbon fixation in the terrestrial biosphere of +213 x 10(9) t. The two scenarios were compared with CO(2) concentration data and isotopic ratios from air in ice cores. The results of Scenario 1 are not in agreement with the data. Scenario 2 gives realistic delta(13)C shifts in the atmosphere but the biospheric carbon storage at the end of the glacial period seems too large. The authors suggest that the low atmospheric CO(2) concentration may have favoured the C-4 plants in ice age vegetation types. As a consequence the influence of the low CO(2) concentration was eventually reduced and the glacial carbon storage in vegetation, litter, and soil was increased.

  17. Modeling dissolved organic carbon in temperate forest soils: TRIPLEX-DOC model development and validation

    NASA Astrophysics Data System (ADS)

    Wu, H.; Peng, C.; Moore, T. R.; Hua, D.; Li, C.; Zhu, Q.; Peichl, M.; Arain, M. A.; Guo, Z.

    2014-05-01

    Even though dissolved organic carbon (DOC) is the most active carbon (C) cycling in soil organic carbon (SOC) pools, it receives little attention from the global C budget. DOC fluxes are critical to aquatic ecosystem inputs and contribute to the C balance of terrestrial ecosystems, but few ecosystem models have attempted to integrate DOC dynamics into terrestrial C cycling. This study introduces a new process-based model, TRIPLEX-DOC, that is capable of estimating DOC dynamics in forest soils by incorporating both ecological drivers and biogeochemical processes. TRIPLEX-DOC was developed from Forest-DNDC, a biogeochemical model simulating C and nitrogen (N) dynamics, coupled with a new DOC process module that predicts metabolic transformations, sorption/desorption, and DOC leaching in forest soils. The model was validated against field observations of DOC concentrations and fluxes at white pine forest stands located in southern Ontario, Canada. The model was able to simulate seasonal dynamics of DOC concentrations and the magnitudes observed within different soil layers, as well as DOC leaching in the age sequence of these forests. Additionally, TRIPLEX-DOC estimated the effect of forest harvesting on DOC leaching, with a significant increase following harvesting, illustrating that land use change is of critical importance in regulating DOC leaching in temperate forests as an important source of C input to aquatic ecosystems.

  18. Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model

    NASA Astrophysics Data System (ADS)

    Ter Maat, H. W.; Hutjes, R. W. A.; Miglietta, F.; Gioli, B.; Bosveld, F. C.; Vermeulen, A. T.; Fritsch, H.

    2010-08-01

    This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS), coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C), and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables. The simulations performed with the coupled regional model (RAMS-SWAPS-C) are in good qualitative agreement with the observations. The station validation of the model demonstrates that the incoming shortwave radiation and surface fluxes of water and CO2 are well simulated. The comparison against aircraft data shows that the regional meteorology (i.e. wind, temperature) is captured well by the model. Comparing spatially explicitly simulated fluxes with aircraft observed fluxes we conclude that in general latent heat fluxes are underestimated by the model compared to the observations but that the latter exhibit large variability within all flights. Sensitivity experiments demonstrate the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same tests also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations.

  19. Factorial Based Response Surface Modeling with Confidence Intervals for Optimizing Thermal Optical Transmission Analysis of Atmospheric Black Carbon

    EPA Science Inventory

    We demonstrate how thermal-optical transmission analysis (TOT) for refractory light-absorbing carbon in atmospheric particulate matter was optimized with empirical response surface modeling. TOT employs pyrolysis to distinguish the mass of black carbon (BC) from organic carbon (...

  20. Grain formation around carbon stars. 1: Stationary outflow models

    NASA Technical Reports Server (NTRS)

    Egan, Michael P.; Leung, Chun Ming

    1995-01-01

    Asymptotic giant branch (AGB) stars are known to be sites of dust formation and undergo significant mass loss. The outflow is believed to be driven by radiation pressure on grains and momentum coupling between the grains and gas. While the physics of shell dynamics and grain formation are closely coupled, most previous models of circumstellar shells have treated the problem separately. Studies of shell dynamics typically assume the existence of grains needed to drive the outflow, while most grain formation models assume a constant veolcity wind in which grains form. Furthermore, models of grain formation have relied primarily on classical nucleation theory instead of using a more realistic approach based on chemical kinetics. To model grain formation in carbon-rich AGB stars, we have coupled the kinetic equations governing small cluster growth to moment equations which determine the growth of large particles. Phenomenological models assuming stationary outflow are presented to demonstrate the differences between the classical nucleation approach and the kinetic equation method. It is found that classical nucleation theory predicts nucleation at a lower supersaturation ratio than is predicted by the kinetic equations, resulting in significant differences in grain properties. Coagulation of clusters larger than monomers is unimportant for grain formation in high mass-loss models but becomes more important to grain growth in low mass-loss situations. The properties of the dust grains are altered considerably if differential drift velocities are ignored in modeling grain formation. The effect of stellar temperature, stellar luminosity, and different outflow velocities are investigated. The models indicate that changing the stellar temperature while keeping the stellar luminosity constant has little effect on the physical parameters of the dust shell formed. Increasing the stellar luminosity while keeping the stellar temperature constant results in large differences in

  1. Modeling carbon dynamics and social drivers of bioenergy agroecosystems

    NASA Astrophysics Data System (ADS)

    Hunt, Natalie D.

    Meeting society's energy needs through bioenergy feedstock production presents a significant and urgent challenge, as it can aid in achieving energy independence goals and mitigating climate change. With federal biofuel production standards to be met within the next decade, and with no commercial scale production or markets currently in place, many questions regarding the sustainability and social feasibility of bioenergy still persist. Clarifying these uncertainties requires the incorporation of biogeochemical, biophysical, and socioeconomic modeling tools. Chapter 2 validated the biogeochemical cycling model AGRO-BGC by comparing model estimates with empirical observations from corn and perennial C4 grass systems across Wisconsin and Illinois. AGRO-BGC, in its first application to an annual cropping system, was found to be a robust model for simulating carbon dynamics of an annual cropping system. Chapter 3 investigated the long-term implications of bioenergy feedstock harvest on soil productivity and erosion in annual corn and perennial switchgrass agroecosystems using AGRO-BGC and the soil erosion model RUSLE2. Modeling environments included biophysical landscape characteristics and management practices of bioenergy feedstock production systems. This study found that intensifying aboveground residue harvest reduces soil productivity over time, and the magnitude of these losses is greater in corn than in switchgrass systems. Results of this study will aid in the design of sustainable bioenergy feedstock management practices. Chapter 4 provided evidence that combining biophysical crop canopy characteristics with satellite-derived vegetation indices offers suitable estimates of crop canopy phenology for corn and soybeans in Southwest Wisconsin farms. LANDSAT based vegetation indices, when combined with a light use efficiency model, provide yield estimates in agreement with farmer reports, providing an efficient and accurate means of estimating crop yields from

  2. A coupled carbon and plant hydraulic model to predict ecosystem carbon and water flux responses to disturbance and environmental change

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Ewers, B. E.; Roberts, D. E.; McDowell, N. G.; Pendall, E.; Frank, J. M.; Reed, D. E.; Massman, W. J.; Mitra, B.

    2011-12-01

    Changing climate drivers including temperature, humidity, precipitation, and carbon dioxide (CO2) concentrations directly control land surface exchanges of CO2 and water. In a profound way these responses are modulated by disturbances that are driven by or exacerbated by climate change. Predicting these changes is challenging given that the feedbacks between environmental controls, disturbances, and fluxes are complex. Flux data in areas of bark beetle outbreaks in the western U.S.A. show differential declines in carbon and water flux in response to the occlusion of xylem by associated fungi. For example, bark beetle infestation at the GLEES AmeriFlux site manifested in a decline in summer water use efficiency to 60% in the year after peak infestation compared to previous years, and no recovery of carbon uptake following a period of high vapor pressure deficit. This points to complex feedbacks between disturbance and differential ecosystem reaction and relaxation responses. Theory based on plant hydraulics and extending to include links to carbon storage and exhaustion has potential for explaining these dynamics with simple, yet rigorous models. In this spirit we developed a coupled model that combines an existing model of canopy water and carbon flow, TREES [e.g., Loranty et al., 2010], with the Sperry et al., [1998] plant hydraulic model. The new model simultaneously solves carbon uptake and losses along with plant hydraulics, and allows for testing specific hypotheses on feedbacks between xylem dysfunction, stomatal and non-stomatal controls on photosynthesis and carbon allocation, and autotrophic and heterotrophic respiration. These are constrained through gas exchange, root vulnerability to cavitation, sap flux, and eddy covariance data in a novel model complexity-testing framework. Our analysis focuses on an ecosystem gradient spanning sagebrush to subalpine forests. Our modeling results support hypotheses on feedbacks between hydraulic dysfunction and 1) non

  3. Estimating forest carbon dynamics in South Korea from 1954 to 2050 - coupling global forestry model and forest soil carbon model

    NASA Astrophysics Data System (ADS)

    Lee, Jongyeol; Kim, Moonil; Lakyda, Ivan; Pietsch, Stephan; Shvidenko, Anatoly; Kraxner, Florian; Forsell, Nicklas; Son, Yowhan

    2016-04-01

    There have been demands on reporting national forest carbon (C) inventories to mitigate global climate change. Global forestry models estimate growth of stem volume and C at various spatial and temporal scales but they do not consider dead organic matter (DOM) C. In this study, we simulated national forest C dynamics in South Korea with a calibrated global forestry model (G4M model) and a module of DOM C dynamics in Korean forest C model (FBDC model). 3890 simulation units (1-16 km2) were established in entire South Korea. Growth functions of stem for major tree species (Pinus densiflora, P. rigida, Larix kaempferi, Quercus variabilis, Q. mongolica, and Q. acutissima) were estimated by internal mechanism of G4M model and Korean yield tables. C dynamics in DOMs were determined by balance between input and output (decomposition) of DOMs in the FBDC model. Annual input of DOM was estimated by multiplying C stock of biomass compartment with turnover rate. Decomposition of DOM was estimated by C stock of DOM, mean air temperature, and decay rate. C stock in each C pool was initialized by spin-up process with consideration of severe deforestation by Japanese exploitation and Korean War. No disturbance was included in the simulation process. Total forest C stock (Tg C) and mean C density (Mg C ha-1) decreased from 657.9 and 112.1 in 1954 to 607.2 and 103.4 in 1973. Especially, C stock in mineral soil decreased at a rate of 0.5 Mg C ha-1 yr-1 during the period due to suppression of regeneration. However, total forest C stock (Tg C) and mean C density (Mg C ha-1) gradually increased from 607.0 and 103.4 in 1974 to 1240.7 and 211.3 in 2015 due to the national reforestation program since 1973. After the reforestation program, Korean forests became C sinks. Model estimates were also verified by comparison of these estimates and national forest inventory data (2006-2010). High similarity between the model estimates and the inventory data showed a reliability of down

  4. Estimating forest carbon dynamics in South Korea from 1954 to 2050 - coupling global forestry model and forest soil carbon model

    NASA Astrophysics Data System (ADS)

    Lee, Jongyeol; Kim, Moonil; Lakyda, Ivan; Pietsch, Stephan; Shvidenko, Anatoly; Kraxner, Florian; Forsell, Nicklas; Son, Yowhan

    2016-04-01

    There have been demands on reporting national forest carbon (C) inventories to mitigate global climate change. Global forestry models estimate growth of stem volume and C at various spatial and temporal scales but they do not consider dead organic matter (DOM) C. In this study, we simulated national forest C dynamics in South Korea with a calibrated global forestry model (G4M model) and a module of DOM C dynamics in Korean forest C model (FBDC model). 3890 simulation units (1-16 km2) were established in entire South Korea. Growth functions of stem for major tree species (Pinus densiflora, P. rigida, Larix kaempferi, Quercus variabilis, Q. mongolica, and Q. acutissima) were estimated by internal mechanism of G4M model and Korean yield tables. C dynamics in DOMs were determined by balance between input and output (decomposition) of DOMs in the FBDC model. Annual input of DOM was estimated by multiplying C stock of biomass compartment with turnover rate. Decomposition of DOM was estimated by C stock of DOM, mean air temperature, and decay rate. C stock in each C pool was initialized by spin-up process with consideration of severe deforestation by Japanese exploitation and Korean War. No disturbance was included in the simulation process. Total forest C stock (Tg C) and mean C density (Mg C ha‑1) decreased from 657.9 and 112.1 in 1954 to 607.2 and 103.4 in 1973. Especially, C stock in mineral soil decreased at a rate of 0.5 Mg C ha‑1 yr‑1 during the period due to suppression of regeneration. However, total forest C stock (Tg C) and mean C density (Mg C ha‑1) gradually increased from 607.0 and 103.4 in 1974 to 1240.7 and 211.3 in 2015 due to the national reforestation program since 1973. After the reforestation program, Korean forests became C sinks. Model estimates were also verified by comparison of these estimates and national forest inventory data (2006-2010). High similarity between the model estimates and the inventory data showed a reliability of down

  5. Modeling of the HiPco process for carbon nanotube production. II. Reactor-scale analysis

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Dateo, Christopher E.; Meyyappan, M.

    2002-01-01

    The high-pressure carbon monoxide (HiPco) process, developed at Rice University, has been reported to produce single-walled carbon nanotubes from gas-phase reactions of iron carbonyl in carbon monoxide at high pressures (10-100 atm). Computational modeling is used here to develop an understanding of the HiPco process. A detailed kinetic model of the HiPco process that includes of the precursor, decomposition metal cluster formation and growth, and carbon nanotube growth was developed in the previous article (Part I). Decomposition of precursor molecules is necessary to initiate metal cluster formation. The metal clusters serve as catalysts for carbon nanotube growth. The diameter of metal clusters and number of atoms in these clusters are some of the essential information for predicting carbon nanotube formation and growth, which is then modeled by the Boudouard reaction with metal catalysts. Based on the detailed model simulations, a reduced kinetic model was also developed in Part I for use in reactor-scale flowfield calculations. Here this reduced kinetic model is integrated with a two-dimensional axisymmetric reactor flow model to predict reactor performance. Carbon nanotube growth is examined with respect to several process variables (peripheral jet temperature, reactor pressure, and Fe(CO)5 concentration) with the use of the axisymmetric model, and the computed results are compared with existing experimental data. The model yields most of the qualitative trends observed in the experiments and helps to understanding the fundamental processes in HiPco carbon nanotube production.

  6. Estimating dead organic matter carbon dynamics of an intact mixed dipterocarp forest in Brunei with a forest carbon model

    NASA Astrophysics Data System (ADS)

    Lee, J.; Lee, S.; Han, S. H.; Kim, S.; Roh, Y.; Abu Salim, K.; Davies, S. J.; Son, Y.

    2015-12-01

    Intact tropical forests contain substantial amount of carbon (C) and play an important role in global carbon cycles. Field measurement is needed to quantify dead organic matter (DOM) C dynamics in tropical forests while it requires much labor and cost. In contrast, forest carbon models can simulate C dynamics, overcoming the limitation of field measurement. In this study, we simulated the DOM C dynamics of an intact mixed dipterocarp forest at Kuala Belalong in Brunei, by using a forest carbon model. In order to estimate the annual changes in the C stocks of litter layer, dead root, coarse woody debris (CWD), and soils, a forest carbon model, KFSC model, was parameterized to the study site. In order to initialize the KFSC model, the C stocks in biomass, litter layer, CWD, and soils were measured in twenty seven 20 m x 20 m plots in 2014. The measured C stocks (Mg C ha-1) in litter layer, dead root, CWD, and soils were 3.2 ± 0.5, 4.0 ± 1.9, 32.5 ± 38.9, and 75.2 ± 9.2, respectively. The simulation results showed that the annual changes in the C stocks (Mg C ha-1 yr-1) of litter layer, dead root, CWD, and soils were 2.7 ± 2.0, 1.4 ± 1.8, -1.5 ± 7.7, and 0.5 ± 1.8, respectively. The total DOM C stocks tended to increase at the rate of 3.3 ± 9.6 Mg C ha-1 yr-1, but it exhibited the high variation. This might be attributed to the high variation of the annual changes in the CWD C stocks. Our results exhibited the applicability of forest carbon models to quantify DOM C dynamics in intact tropical rain forests. This study was supported by Korea Ministry of Environment (2014001310008) and Korea Forest Service (S121314L130110).

  7. Modeling Pacific Northwest carbon and water cycling using CARAIB Dynamic Vegetation Model

    NASA Astrophysics Data System (ADS)

    Dury, M.; Kim, J. B.; Still, C. J.; Francois, L. M.; Jiang, Y.

    2015-12-01

    While uncertainties remain regarding projected temperature and precipitation changes, climate warming is already affecting ecosystems in the Pacific Northwest (PNW). Decrease in ecosystem productivity as well as increase in mortality of some plant species induced by drought and disturbance have been reported. Here, we applied the process-based dynamic vegetation model CARAIB to PNW to simulate the response of water and carbon cycling to current and future climate change projections. The vegetation model has already been successfully applied to Europe to simulate plant physiological response to climate change. We calibrated CARAIB to PNW using global Plant Functional Types. For calibration, the model is driven with the gridded surface meteorological dataset UIdaho MACA METDATA with 1/24-degree (~4-km) resolution at a daily time step for the period 1979-2014. The model ability to reproduce the current spatial and temporal variations of carbon stocks and fluxes was evaluated using a variety of available datasets, including eddy covariance and satellite observations. We focused particularly on past severe drought and fire episodes. Then, we simulated future conditions using the UIdaho MACAv2-METDATA dataset, which includes downscaled CMIP5 projections from 28 GCMs for RCP4.5 and RCP8.5. We evaluated the future ecosystem carbon balance resulting from changes in drought frequency as well as in fire risk. We also simulated future productivity and drought-induced mortality of several key PNW tree species.

  8. Modelling clustering of vertically aligned carbon nanotube arrays

    PubMed Central

    Schaber, Clemens F.; Filippov, Alexander E.; Heinlein, Thorsten; Schneider, Jörg J.; Gorb, Stanislav N.

    2015-01-01

    Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications. PMID:26464787

  9. Modelling clustering of vertically aligned carbon nanotube arrays.

    PubMed

    Schaber, Clemens F; Filippov, Alexander E; Heinlein, Thorsten; Schneider, Jörg J; Gorb, Stanislav N

    2015-08-01

    Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications. PMID:26464787

  10. Regional Mapping, Modelling, and Monitoring of Tree Aboveground Biomass Carbon

    NASA Astrophysics Data System (ADS)

    Hudak, Andrew

    2016-04-01

    Airborne lidar collections are preferred for mapping aboveground biomass carbon (AGBC), while historical Landsat imagery are preferred for monitoring decadal scale forest cover change. Our modelling approach tracks AGBC change regionally using Landsat time series metrics; training areas are defined by airborne lidar extents within which AGBC is accurately mapped with high confidence. Geospatial topographic and climate layers are also included in the predictive model. Validation is accomplished using systematically sampled Forest Inventory and Analysis (FIA) plot data that have been independently collected, processed and summarized at the county level. Our goal is to demonstrate that spatially and temporally aggregated annual AGBC map predictions show no bias when compared to annual county-level summaries across the Northwest USA. A prominent source of bias is trees outside forest; much of the more arid portions of our study area meet the FIA definition of non-forest because the tree cover does not exceed their minimum tree cover threshold. We employ detailed tree cover maps derived from high-resolution aerial imagery to extend our AGBC predictions into non-forest areas. We also employ Landsat-derived annual disturbance maps into our mapped AGBC predictions prior to aggregation and validation.

  11. The Response of Model and Astrophysical Thermonuclear Flames to Curvature and Stretch

    NASA Astrophysics Data System (ADS)

    Dursi, L. J.; Zingale, M.; Calder, A. C.; Fryxell, B.; Timmes, F. X.; Vladimirova, N.; Rosner, R.; Caceres, A.; Lamb, D. Q.; Olson, K.; Ricker, P. M.; Riley, K.; Siegel, A.; Truran, J. W.

    2003-10-01

    Critically understanding the standard candle-like behavior of Type Ia supernovae requires understanding their explosion mechanism. One family of models for Type Ia supernovae begins with a deflagration in a carbon-oxygen white dwarf that greatly accelerates through wrinkling and flame instabilities. While the planar speed and behavior of astrophysically relevant flames is increasingly well understood, more complex behavior, such as the flame's response to stretch and curvature, has not been extensively explored in the astrophysical literature; this behavior can greatly enhance or suppress instabilities and local flame-wrinkling, which in turn can increase or decrease the bulk burning rate. In this paper, we explore the effects of curvature on both nuclear flames and simpler model flames to understand the effect of curvature on the flame structure and speed.

  12. Transmission of Thermonuclear Detonations through Layers of Burned Material in Carbon-Oxygen White Dwarfs

    NASA Astrophysics Data System (ADS)

    Gamezo, V. N.; Oran, E. S.

    2006-06-01

    In three-dimensional delayed-detonation models of type Ia supernovae, detonations propagate through funnels of degenerate carbon-oxygen matter that are left unburned by turbulent deflagrations in central parts of a white dwarf. Some of these funnels can be disconnected from the rest of the unburned material, thus creating unburned pockets that cannot be directly reached by a detonation wave. These pockets may or may not ignite when strong shocks generated by detonations reach them through layers of burned material. In this work, we study the detonation transmission phenomena in exploding white dwarfs using one-dimensional time-dependent numerical simulations based on reactive Euler equations. The thermonuclear burning of carbon-oxygen mixture is modeled by a 13-nuclei alpha network. We use a steady-state solution for the reaction-zone structure of a one-dimensional detonation wave as an initial condition. Time-dependent computations performed for a fully resolved carbon reaction scale show that a detonation shock passing through a layer of burned material can initiate a new detonation or decay. The critical thickness of burned material that allows the detonation reignition is a function of density. This work was supported in part by the NASA ATP program (NRA-02-OSS-01-ATP) and by the Naval Research Laboratory (NRL) through the Office of Naval Research.

  13. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    SciTech Connect

    Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; Mayer, Bernhard

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modified to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.

  14. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    DOE PAGES

    Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; Mayer, Bernhard

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modifiedmore » to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.« less

  15. PALADYN, a comprehensive land surface-vegetation-carbon cycle model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    Willeit, Matteo; Ganopolski, Andrey

    2016-04-01

    PALADYN is presented, a new comprehensive and computationally efficient land surface-vegetation-carbon cycle model designed to be used in Earth system models of intermediate complexity for long-term simulations and paleoclimate studies. The model treats in a consistent manner the interaction between atmosphere, terrestrial vegetation and soil through the fluxes of energy, water and carbon. Energy, water and carbon are conserved. The model explicitly treats permafrost, both in physical processes and as important carbon pool. The model distinguishes 9 surface types of which 5 are different vegetation types, bare soil, land ice, lake and ocean shelf. Including the ocean shelf allows to treat continuous changes in sea level and shelf area associated with glacial cycles. Over each surface type the model solves the surface energy balance and computes the fluxes of sensible, latent and ground heat and upward shortwave and longwave radiation. It includes a single snow layer. The soil model distinguishes between three different macro surface types which have their own soil column: vegetation and bare soil, ice sheet and ocean shelf. The soil is vertically discretized into 5 layers where prognostic equations for temperature, water and carbon are consistently solved. Phase changes of water in the soil are explicitly considered. A surface hydrology module computes precipitation interception by vegetation, surface runoff and soil infiltration. The soil water equation is based on Darcy's law. Given soil water content, the wetland fraction is computed based on a topographic index. Photosynthesis is computed using a light use efficiency model. Carbon assimilation by vegetation is coupled to the transpiration of water through stomatal conductance. The model includes a dynamic vegetation module with 5 plant functional types competing for the gridcell share with their respective net primary productivity. Each macro surface type has its own carbon pools represented by a litter, a fast

  16. Uncertainties in carbon dioxide radiative forcing in atmospheric general circulation models.

    PubMed

    Cess, R D; Zhang, M H; Potter, G L; Barker, H W; Colman, R A; Dazlich, D A; Del Genio, A D; Esch, M; Fraser, J R; Galin, V; Gates, W L; Hack, J J; Ingram, W J; Kiehl, J T; Lacis, A A; Le Treut, H; Li, Z X; Liang, X Z; Mahfouf, J F; McAvaney, B J; Meleshko, V P; Morcrette, J J; Randall, D A; Roeckner, E; Royer, J F; Sokolov, A P; Sporyshev, P V; Taylor, K E; Wang, W C; Wetherald, R T

    1993-11-19

    Global warming caused by an increase in the concentrations of greenhouse gases, is the direct result of greenhouse gas-induced radiative forcing. When a doubling of atmospheric carbon dioxide is considered, this forcing differed substantially among 15 atmospheric general circulation models. Although there are several potential causes, the largest contributor was the carbon dioxide radiation parameterizations of the models.

  17. Uncertainties in Carbon Dioxide Radiative Forcing in Atmospheric General Circulation Models

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, M.-H.; Potter, G. L.; Gates, W. L.; Taylor, K. E.; Barker, H. W.; Colman, R. A.; Fraser, J. R.; McAvaney, B. J.; Dazlich, D. A.; Randall, D. A.; DelGenio, A. D.; Lacis, A. A.; Esch, M.; Roeckner, E.; Galin, V.; Hack, J. J.; Kiehl, J. T.; Ingram, W. J.; LeTreut, H.

    1993-01-01

    Global warming, caused by an increase in the concentrations of greenhouse gases, is the direct result of greenhouse gas-induced radiative forcing. When a doubling of atmospheric carbon dioxide is considered, this forcing differed substantially among 15 atmospheric general circulation models. Although there are several potential causes, the largest contributor was the carbon dioxide radiation parameterizations of the models.

  18. Predicting carbon dynamics in integrated production systems in Brazil using the CQESTR model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Process-based carbon models are research tools to predict management impact on soil organic carbon (SOC) and options to increase SOC stocks and reduce CO2. The CQESTR model was used to examine the effect of soil management practices, including integrated crop-livestock system (iCLS), and various sc...

  19. Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models

    DOE PAGES

    Koven, C. D.; Chambers, J. Q.; Georgiou, K.; Knox, R.; Negron-Juarez, R.; Riley, W. J.; Arora, V. K.; Brovkin, V.; Friedlingstein, P.; Jones, C. D.

    2015-09-07

    To better understand sources of uncertainty in projections of terrestrial carbon cycle feedbacks, we present an approach to separate the controls on modeled carbon changes. We separate carbon changes into four categories using a linearized, equilibrium approach: those arising from changed inputs (productivity-driven changes), and outputs (turnover-driven changes), of both the live and dead carbon pools. Using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations for five models, we find that changes to the live pools are primarily explained by productivity-driven changes, with only one model showing large compensating changes to live carbon turnover times. For dead carbon pools, themore » situation is more complex as all models predict a large reduction in turnover times in response to increases in productivity. This response arises from the common representation of a broad spectrum of decomposition turnover times via a multi-pool approach, in which flux-weighted turnover times are faster than mass-weighted turnover times. This leads to a shift in the distribution of carbon among dead pools in response to changes in inputs, and therefore a transient but long-lived reduction in turnover times. Since this behavior, a reduction in inferred turnover times resulting from an increase in inputs, is superficially similar to priming processes, but occurring without the mechanisms responsible for priming, we call the phenomenon "false priming", and show that it masks much of the intrinsic changes to dead carbon turnover times as a result of changing climate. These patterns hold across the fully coupled, biogeochemically coupled, and radiatively coupled 1 % yr−1 increasing CO2 experiments. We disaggregate inter-model uncertainty in the globally integrated equilibrium carbon responses to initial turnover times, initial productivity, fractional changes in turnover, and fractional changes in productivity. For both the live and dead carbon pools, inter-model

  20. Controls on terrestrial carbon feedbacks by productivity vs. turnover in the CMIP5 Earth System Models

    DOE PAGES

    Koven, C. D.; Chambers, J. Q.; Georgiou, K.; Knox, R.; Negron-Juarez, R.; Riley, W. J.; Arora, V. K.; Brovkin, V.; Friedlingstein, P.; Jones, C. D.

    2015-04-16

    To better understand sources of uncertainty in projections of terrestrial carbon cycle feedbacks, we present an approach to separate the controls on modeled carbon changes. We separate carbon changes into 4 categories using a linearized, equilibrium approach: those arising from changed inputs (productivity-driven changes), and outputs (turnover-driven changes), and apply the analysis separately to the live and dead carbon pools. Using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations for 5 models, we find that changes to the live pools are primarily explained by productivity-driven changes, with only one model showing large compensating changes to live carbon turnover times. Formore » dead carbon pools, the situation is more complex as all models predict a large reduction in turnover times in response to increases in productivity. This responses arises from the common representation of a broad spectrum of decomposition turnover times via a multi-pool approach, in which flux-weighted turnover times are faster than mass-weighted turnover times. This leads to a shift in the distribution of carbon among dead pools in response to changes in inputs, and therefore a transient but long-lived reduction in turnover times in response to increases in productivity. Since this behavior, a reduction in inferred turnover times resulting from an increase in inputs, is superficially similar to priming processes, but occurring without the mechanisms responsible for priming, we call the phenomenon "false priming", and show that it masks much of the intrinsic changes to dead carbon turnover times as a result of changing climate. These patterns hold across the fully-coupled, biogeochemically-coupled, and radiatively-coupled 1% yr−1 increasing CO2 experiments. We disaggregate inter-model uncertainty in the globally-integrated equilibrium carbon responses to initial turnover times, inital productivity, fractional changes in turnover, and fractional changes in

  1. Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Chambers, J. Q.; Georgiou, K.; Knox, R.; Negron-Juarez, R.; Riley, W. J.; Arora, V. K.; Brovkin, V.; Friedlingstein, P.; Jones, C. D.

    2015-09-01

    To better understand sources of uncertainty in projections of terrestrial carbon cycle feedbacks, we present an approach to separate the controls on modeled carbon changes. We separate carbon changes into four categories using a linearized, equilibrium approach: those arising from changed inputs (productivity-driven changes), and outputs (turnover-driven changes), of both the live and dead carbon pools. Using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations for five models, we find that changes to the live pools are primarily explained by productivity-driven changes, with only one model showing large compensating changes to live carbon turnover times. For dead carbon pools, the situation is more complex as all models predict a large reduction in turnover times in response to increases in productivity. This response arises from the common representation of a broad spectrum of decomposition turnover times via a multi-pool approach, in which flux-weighted turnover times are faster than mass-weighted turnover times. This leads to a shift in the distribution of carbon among dead pools in response to changes in inputs, and therefore a transient but long-lived reduction in turnover times. Since this behavior, a reduction in inferred turnover times resulting from an increase in inputs, is superficially similar to priming processes, but occurring without the mechanisms responsible for priming, we call the phenomenon "false priming", and show that it masks much of the intrinsic changes to dead carbon turnover times as a result of changing climate. These patterns hold across the fully coupled, biogeochemically coupled, and radiatively coupled 1 % yr-1 increasing CO2 experiments. We disaggregate inter-model uncertainty in the globally integrated equilibrium carbon responses to initial turnover times, initial productivity, fractional changes in turnover, and fractional changes in productivity. For both the live and dead carbon pools, inter-model spread in

  2. Controls on terrestrial carbon feedbacks by productivity vs. turnover in the CMIP5 Earth System Models

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Chambers, J. Q.; Georgiou, K.; Knox, R.; Negron-Juarez, R.; Riley, W. J.; Arora, V. K.; Brovkin, V.; Friedlingstein, P.; Jones, C. D.

    2015-04-01

    To better understand sources of uncertainty in projections of terrestrial carbon cycle feedbacks, we present an approach to separate the controls on modeled carbon changes. We separate carbon changes into 4 categories using a linearized, equilibrium approach: those arising from changed inputs (productivity-driven changes), and outputs (turnover-driven changes), and apply the analysis separately to the live and dead carbon pools. Using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations for 5 models, we find that changes to the live pools are primarily explained by productivity-driven changes, with only one model showing large compensating changes to live carbon turnover times. For dead carbon pools, the situation is more complex as all models predict a large reduction in turnover times in response to increases in productivity. This responses arises from the common representation of a broad spectrum of decomposition turnover times via a multi-pool approach, in which flux-weighted turnover times are faster than mass-weighted turnover times. This leads to a shift in the distribution of carbon among dead pools in response to changes in inputs, and therefore a transient but long-lived reduction in turnover times in response to increases in productivity. Since this behavior, a reduction in inferred turnover times resulting from an increase in inputs, is superficially similar to priming processes, but occurring without the mechanisms responsible for priming, we call the phenomenon "false priming", and show that it masks much of the intrinsic changes to dead carbon turnover times as a result of changing climate. These patterns hold across the fully-coupled, biogeochemically-coupled, and radiatively-coupled 1% yr-1 increasing CO2 experiments. We disaggregate inter-model uncertainty in the globally-integrated equilibrium carbon responses to initial turnover times, inital productivity, fractional changes in turnover, and fractional changes in productivity. For

  3. SUB-CHANDRASEKHAR MASS MODELS FOR SUPERNOVAE

    SciTech Connect

    Woosley, S. E.; Kasen, Daniel

    2011-06-10

    For carbon-oxygen white dwarfs accreting hydrogen or helium at rates in the range {approx}(1-10) x 10{sup -8} M{sub sun} yr{sup -1}, a variety of explosive outcomes is possible well before the star reaches the Chandrasekhar mass. These outcomes are surveyed for a range of white dwarf masses (0.7-1.1 M{sub sun}), accretion rates ((1-7) x 10{sup -8} M{sub sun} yr{sup -1}), and initial white dwarf temperatures (0.01 and 1 L{sub sun}). The results are particularly sensitive to the convection that goes on during the last few minutes before the explosion. Unless this convection maintains a shallow temperature gradient and unless the density is sufficiently high, the accreted helium does not detonate. Below a critical helium ignition density, which we estimate to be (5-10) x 10{sup 5} g cm{sup -3}, either helium novae or helium deflagrations result. The hydrodynamics, nucleosynthesis, light curves, and spectra of a representative sample of detonating and deflagrating models are explored. Some can be quite faint indeed, powered at peak for a few days by the decay of {sup 48}Cr and {sup 48}V. Only the hottest, most massive white dwarfs considered with the smallest helium layers, show reasonable agreement with the light curves and spectra of common Type Ia supernovae (SNe Ia). For the other models, especially those involving lighter white dwarfs, the helium shell mass exceeds 0.05 M{sub sun} and the mass of the {sup 56}Ni that is synthesized exceeds 0.01 M{sub sun}. These explosions do not look like ordinary SNe Ia or any other frequently observed transient.

  4. Evaluating the Carbon Cycle of a Coupled Atmosphere-Biosphere Model

    SciTech Connect

    Delire, C; Foley, J A; Thompson, S

    2002-08-21

    We investigate how well a coupled biosphere-atmosphere model, CCM3-IBIS, can simulate the functioning of the terrestrial biosphere and the carbon cycling through it. The simulated climate is compared to observations, while the vegetation cover and the carbon cycle are compared to an offline version of the biosphere model IBIS forced with observed climatic variables. The simulated climate presents some local biases that strongly affect the vegetation (e.g., a misrepresentation of the African monsoon). Compared to the offline model, the coupled model simulates well the globally averaged carbon fluxes and vegetation pools. The zonal mean carbon fluxes and the zonal mean seasonal cycle are also well represented except between 0{sup o} and 20{sup o}N due to the misrepresentation of the African monsoon. These results suggest that, despite regional biases in climate and ecosystem simulations, this coupled atmosphere-biosphere model can be used to explore geographic and temporal variations in the global carbon cycle.

  5. Modeling carbon utilization by bacteria in natural water systems. (Chapter 9). Book chapter

    SciTech Connect

    Connolly, J.P.; Coffin, R.B.; Landeck, R.E.

    1992-01-01

    A mathematical model of carbon fluxes through the heterotrophic microbial food web is developed from a synthesis of laboratory and field research. The basis of the model is the segregation of organic carbon into lability classes that are defined by bioassay experiments. Bacteria, phytoplankton, nano-, micro- and mesozooplankton and dissolved organic carbon (DOC) and particulate organic carbon (POC) are modeled. The descriptions of bacterial growth and utilization of the various classes of substrate were treated as 'universal constants' in the application of the model to three distinct ecosystems, ranging from oligotrophic to highly eutrophic. The successful application of the model to these diverse ecosystems supports the basic validity of the description of the microbial food web and the dynamics of carbon flux.

  6. [Modeling of carbon dioxide measurement and optimization on building ceramic industry].

    PubMed

    Peng, Jun-Xi; Zhao, Yu-Bo; Jiao, Li-Hua; Zeng, Lu; Zheng, Wei-Min

    2012-02-01

    Input-output model and low carbon programming model on building ceramic industry were established. Carbon dioxide emissions of key steps and carbon footprint of products were calculated and predicted using the input-output model. While products planning was optimized using the low carbon programming model. The results showed that CO2 emission in the enterprise reached 182 543.9 t a year and CO2 emission per unit product was 10% more than advanced level in the world. 80% of the total CO2 was emitted during the processes of firing and drying. As a result, we should focus on these two steps in order to reduce carbon dioxide emission of building ceramic industry. Carbon footprint of blank tile, polished tile, and glazed tile were 150.2 t, 168.0 t, 159.6 t respectively. Optimized by the low carbon model, The ceramic enterprise could reduce carbon dioxide emission by 5.4% while not sacrificing any profit, and also could obtain profit 5.6% higher than before while unrise the carbon dioxide emission.

  7. Carbon budget estimation of a subarctic catchment using a dynamic ecosystem model at high spatial resolution

    NASA Astrophysics Data System (ADS)

    Tang, J.; Miller, P. A.; Persson, A.; Olefeldt, D.; Pilesjo, P.; Heliasz, M.; Jackowicz-Korczynski, M.; Yang, Z.; Smith, B.; Callaghan, T. V.; Christensen, T. R.

    2015-05-01

    A large amount of organic carbon is stored in high-latitude soils. A substantial proportion of this carbon stock is vulnerable and may decompose rapidly due to temperature increases that are already greater than the global average. It is therefore crucial to quantify and understand carbon exchange between the atmosphere and subarctic/arctic ecosystems. In this paper, we combine an Arctic-enabled version of the process-based dynamic ecosystem model, LPJ-GUESS (version LPJG-WHyMe-TFM) with comprehensive observations of terrestrial and aquatic carbon fluxes to simulate long-term carbon exchange in a subarctic catchment at 50 m resolution. Integrating the observed carbon fluxes from aquatic systems with the modeled terrestrial carbon fluxes across the whole catchment, we estimate that the area is a carbon sink at present and will become an even stronger carbon sink by 2080, which is mainly a result of a projected densification of birch forest and its encroachment into tundra heath. However, the magnitudes of the modeled sinks are very dependent on future atmospheric CO2 concentrations. Furthermore, comparisons of global warming potentials between two simulations with and without CO2 increase since 1960 reveal that the increased methane emission from the peatland could double the warming effects of the whole catchment by 2080 in the absence of CO2 fertilization of the vegetation. This is the first process-based model study of the temporal evolution of a catchment-level carbon budget at high spatial resolution, including both terrestrial and aquatic carbon. Though this study also highlights some limitations in modeling subarctic ecosystem responses to climate change, such as aquatic system flux dynamics, nutrient limitation, herbivory and other disturbances, and peatland expansion, our study provides one process-based approach to resolve the complexity of carbon cycling in subarctic ecosystems while simultaneously pointing out the key model developments for capturing

  8. Modeling Water and Carbon Budgets in Current and Future Agricultural Land Use

    NASA Astrophysics Data System (ADS)

    Drewniak, B.; Song, J.; Prell, J.; Kotamarthi, R.; Jacob, R.

    2008-12-01

    Biofuels are a key component of renewable energy mix proposed as a substitute to fossil fuels. Biofuels are suggested as both economical and having potential for reducing atmospheric emissions of carbon from the transportation sector, by building up soil carbon levels when planted on lands where these levels have been reduced by intensive tillage. The purpose of this research is to develop a carbon-nitrogen based crop module (CNC) for the community land model (CLM) and to improve the characterization of the below and above ground carbon sequestration for bioenergy crops. The CNC simulates planting, growing, maturing and harvesting stages for three major crops: maize, soybean and wheat. In addition, dynamic root module is implemented to simulate fine root distribution and development based on relative availability of soil water and nitrogen in the root zone. Coupled CLM-CNC models is used to study crop yields, geographic locations for bioenergy crop production and soil carbon changes. Bioenergy crop cultivation is based on current crop cultivation and future land use change dataset. Soil carbon change has been simulated based on carbon input to the soil from the leaf, stem and root, and carbon emission from soil carbon decomposition. Simulated water and carbon fluxes have been compared with field observations and soil carbon content has been examined under different harvest practices.

  9. Chemical analysis and molecular models for calcium-oxygen-carbon interactions in black carbon found in fertile Amazonian anthrosoils.

    PubMed

    Archanjo, Braulio S; Araujo, Joyce R; Silva, Alexander M; Capaz, Rodrigo B; Falcão, Newton P S; Jorio, Ado; Achete, Carlos A

    2014-07-01

    Carbon particles containing mineral matter promote soil fertility, helping it to overcome the rather unfavorable climate conditions of the humid tropics. Intriguing examples are the Amazonian Dark Earths, anthropogenic soils also known as "Terra Preta de Índio'' (TPI), in which chemical recalcitrance and stable carbon with millenary mean residence times have been observed. Recently, the presence of calcium and oxygen within TPI-carbon nanoparticles at the nano- and mesoscale ranges has been demonstrated. In this work, we combine density functional theory calculations, scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier transformed infrared spectroscopy, and high resolution X-ray photoelectron spectroscopy of TPI-carbons to elucidate the chemical arrangements of calcium-oxygen-carbon groups at the molecular level in TPI. The molecular models are based on graphene oxide nanostructures in which calcium cations are strongly adsorbed at the oxide sites. The application of material science techniques to the field of soil science facilitates a new level of understanding, providing insights into the structure and functionality of recalcitrant carbon in soil and its implications for food production and climate change. PMID:24892495

  10. Chemical analysis and molecular models for calcium-oxygen-carbon interactions in black carbon found in fertile Amazonian anthrosoils.

    PubMed

    Archanjo, Braulio S; Araujo, Joyce R; Silva, Alexander M; Capaz, Rodrigo B; Falcão, Newton P S; Jorio, Ado; Achete, Carlos A

    2014-07-01

    Carbon particles containing mineral matter promote soil fertility, helping it to overcome the rather unfavorable climate conditions of the humid tropics. Intriguing examples are the Amazonian Dark Earths, anthropogenic soils also known as "Terra Preta de Índio'' (TPI), in which chemical recalcitrance and stable carbon with millenary mean residence times have been observed. Recently, the presence of calcium and oxygen within TPI-carbon nanoparticles at the nano- and mesoscale ranges has been demonstrated. In this work, we combine density functional theory calculations, scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier transformed infrared spectroscopy, and high resolution X-ray photoelectron spectroscopy of TPI-carbons to elucidate the chemical arrangements of calcium-oxygen-carbon groups at the molecular level in TPI. The molecular models are based on graphene oxide nanostructures in which calcium cations are strongly adsorbed at the oxide sites. The application of material science techniques to the field of soil science facilitates a new level of understanding, providing insights into the structure and functionality of recalcitrant carbon in soil and its implications for food production and climate change.

  11. Design of Higher Education Teaching Models and Carbon Impacts

    ERIC Educational Resources Information Center

    Caird, Sally; Lane, Andy; Swithenby, Ed; Roy, Robin; Potter, Stephen

    2015-01-01

    Purpose: This research aims to examine the main findings of the SusTEACH study of the carbon-based environmental impacts of 30 higher education (HE) courses in 15 UK institutions, based on an analysis of the likely energy consumption and carbon emissions of a range of face-to-face, distance, online and information and communication technology…

  12. Parameterizing A Surface Water Model for Multiwalled Carbon Nanotubes

    EPA Science Inventory

    The unique electronic, mechanical, and structural properties of carbon nanotubes (CNTs) has lead to increasing production of these versatile materials; currently, the use of carbon-based nanomaterials in consumer products is second only to that of nano-scale silver. Although ther...

  13. Carbon dioxide fluid-flow modeling and injectivity calculations

    USGS Publications Warehouse

    Burke, Lauri

    2011-01-01

    These results were used to classify subsurface formations into three permeability classifications for the probabilistic calculations of storage efficiency and containment risk of the U.S. Geological Survey geologic carbon sequestration assessment methodology. This methodology is currently in use to determine the total carbon dioxide containment capacity of the onshore and State waters areas of the United States.

  14. Growth mechanism of carbon nanotubes: a nano Czochralski model

    PubMed Central

    2012-01-01

    Carbon nanotubes (CNTs) have been under intense investigations during the past two decades due to their unique physical and chemical properties; however, there is still no commonly accepted growth mechanism to describe the growth behavior of CNTs. Here, we propose a nano Czochralski (CZ) model which regards the catalytic growth of a CNT as a CZ process taking place on the nano scale. The main idea is that, during the CNT growth, each catalyst particle acts as a nano crucible to nucleate and maintain the CNT growth, and the extruding CNT rotates relative to the nano crucible, leading to a chirality-dependent growth rate. In this case, the structural quality gradually changes along the CNT due to the dynamic generation-reconstruction-diffusion of defects during the CNT growth. The nano CZ mechanism may also apply to the catalytic growth of many other one-dimensional (1D) nanostructures (including various nanotubes and nanowires), thus further efforts will be stimulated in the quality and property control, as well as application explorations of these 1D nanomaterials. PMID:22747835

  15. Continuum modeling of breathing-like modes of spherical carbon onions

    NASA Astrophysics Data System (ADS)

    Ghavanloo, Esmaeal; Ahmad Fazelzadeh, S.

    2015-08-01

    In this letter, an analytical formulation is developed for predicting the breathing-like modes of spherical carbon onions consisting of an arbitrary number of layers. The spherical layers of the carbon onions are concentrically nested, and are coupled through van der Waals (vdW) forces between two adjacent layers. Lennard-Jones potential and continuum models are utilized to estimate the vdW interaction coefficients and the breathing-like modes of the carbon onions. The formulation is justified by a good agreement between the results given by the present model and available experimental and numerical data. Finally, numerical results are obtained for various carbon onions.

  16. A new biogeochemical model to simulate regional scale carbon emission from lakes, ponds and wetlands

    NASA Astrophysics Data System (ADS)

    Bayer, Tina; Brakebusch, Matthias; Gustafsson, Erik; Beer, Christian

    2016-04-01

    Small aquatic systems are receiving increasing attention for their role in global carbon cycling. For instance, lakes and ponds in permafrost are net emitters of carbon to the atmosphere, and their capacity to process and emit carbon is significant on a landscape scale, with a global flux of 8-103 Tg methane per year which amounts to 5%-30% of all natural methane emissions (Bastviken et al 2011). However, due to the spatial and temporal highly localised character of freshwater methane emissions, fluxes remain poorly qualified and are difficult to upscale based on field data alone. While many models exist to model carbon cycling in individual lakes and ponds, we perceived a lack of models that can work on a larger scale, over a range of latitudes, and simulate regional carbon emission from a large number of lakes, ponds and wetlands. Therefore our objective was to develop a model that can simulate carbon dioxide and methane emission from freshwaters on a regional scale. Our resulting model provides an additional tool to assess current aquatic carbon emissions as well as project future responses to changes in climatic drivers. To this effect, we have combined an existing large-scale hydrological model (the Variable Infiltration Capacity Macroscale Hydrologic Model (VIC), Liang & Lettenmaier 1994), an aquatic biogeochemical model (BALTSEM, Savchuk et al., 2012; Gustafsson et al., 2014) and developed a new methane module for lakes. The resulting new process-based biogeochemical model is designed to model aquatic carbon emission on a regional scale, and to perform well in high-latitude environments. Our model includes carbon, oxygen and nutrient cycling in lake water and sediments, primary production and methanogenesis. Results of calibration and validation of the model in two catchments (Torne-Kalix in Northern Sweden and of a large arctic river catchment) will be presented.

  17. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-11-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use LPJ-GUESS, a dynamic vegetation model employing a detailed individual- and patch-based representation of vegetation dynamics, to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one representative "business-as-usual" climate scenario). Single-factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model as documented in previous studies using other global models. Under an RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics up to the present. However, during the 21st century, nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contrasts with previous results with other global models that have shown an 8 to 37% decrease in carbon uptake relative to modern baseline conditions. Implications for the plausibility of earlier projections of future terrestrial C dynamics based on C-only models are discussed.

  18. Multi-century Changes to Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model

    SciTech Connect

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C

    2005-02-17

    In this paper, we use a coupled climate and carbon cycle model to investigate the global climate and carbon cycle changes out to year 2300 that would occur if CO{sub 2} emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By year 2300, the global climate warms by about 8 K and atmospheric CO{sub 2} reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In our simulation, the rate of emissions peak at over 30 PgC yr{sup -1} early in the 22nd century. Even at year 2300, nearly 50% of cumulative emissions remain in the atmosphere. In our simulations both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, our model projections suggest severe long-term consequences for global climate if all the fossil-fuel carbon is ultimately released to the atmosphere.

  19. Carbon-Structural Analysis of Global Land Models (C-SALM)

    NASA Astrophysics Data System (ADS)

    Rafique, R.; Xia, J.; Hararuk, O.; Luo, Y.; Dai, Y.; Macaulay, C.

    2013-12-01

    Abstract Better understanding of terrestrial carbon cycle is taking an increased scientific attention in the present era of climate change. Representation of the global carbon cycle is increasingly becoming complex in land models which results in large uncertainties in modeled outputs. Therefore, it is urgent to promote methods for quantitative and critical assessment of the models. Here we apply a systematic computational framework for Carbon-Structural Analysis of Global Land Model (C-SALM). The models used in this study are NCAR's Community Land Models (versions CLM3.5, CLM4.0 and CLM4.5) present in Community Earth System Model (CESM), Australian Community Atmosphere Biosphere Land Exchange (CABLE) and Common Land Model (CoLM) of China. The framework applied in this study facilitates the effective model comparison by decomposing a complex land model into traceable components based on fundamental properties of biogeochemical processes implemented in these models. The framework defines ecosystem carbon storage capacity (Xss) as a product of net primary productivity (NPP) and ecosystem residence time (τE). The τE is determined by (i) baseline carbon residence times (τ‧E), (ii) environmental scalars (ξ), and (iii) environmental forcings (Xia et al., 2013). The τ‧E can be further traced by partitioning coefficients (called vector B) and transfer coefficients (called A & C matrices) of NPP. To compare land models, the steady state annual average outputs were computed using 1990 forcing data at 1x1o resolution. The carbon storage capacity of each model was found to be determined differently which are due to differences present in carbon residence time and environmental scalars. The dependency of ξ was assessed based on temperature (ξT) and water (ξW) scalars. This study explains the carbon model pool structure for each model and identifies the A, B and C elements at each carbon pool. The C-SALM study also evaluates models at major plant functional types

  20. Evaluation of coral reef carbonate production models at a global scale

    NASA Astrophysics Data System (ADS)

    Jones, N. S.; Ridgwell, A.; Hendy, E. J.

    2014-09-01

    Calcification by coral reef communities is estimated to account for half of all carbonate produced in shallow water environments and more than 25% of the total carbonate buried in marine sediments globally. Production of calcium carbonate by coral reefs is therefore an important component of the global carbon cycle. It is also threatened by future global warming and other global change pressures. Numerical models of reefal carbonate production are essential for understanding how carbonate deposition responds to environmental conditions including future atmospheric CO2 concentrations, but these models must first be evaluated in terms of their skill in recreating present day calcification rates. Here we evaluate four published model descriptions of reef carbonate production in terms of their predictive power, at both local and global scales, by comparing carbonate budget outputs with independent estimates. We also compile available global data on reef calcification to produce an observation-based dataset for the model evaluation. The four calcification models are based on functions sensitive to combinations of light availability, aragonite saturation (Ωa) and temperature and were implemented within a specifically-developed global framework, the Global Reef Accretion Model (GRAM). None of the four models correlated with independent rate estimates of whole reef calcification. The temperature-only based approach was the only model output to significantly correlate with coral-calcification rate observations. The absence of any predictive power for whole reef systems, even when consistent at the scale of individual corals, points to the overriding importance of coral cover estimates in the calculations. Our work highlights the need for an ecosystem modeling approach, accounting for population dynamics in terms of mortality and recruitment and hence coral cover, in estimating global reef carbonate budgets. In addition, validation of reef carbonate budgets is severely

  1. Evaluation of coral reef carbonate production models at a global scale

    NASA Astrophysics Data System (ADS)

    Jones, N. S.; Ridgwell, A.; Hendy, E. J.

    2015-03-01

    Calcification by coral reef communities is estimated to account for half of all carbonate produced in shallow water environments and more than 25% of the total carbonate buried in marine sediments globally. Production of calcium carbonate by coral reefs is therefore an important component of the global carbon cycle; it is also threatened by future global warming and other global change pressures. Numerical models of reefal carbonate production are needed for understanding how carbonate deposition responds to environmental conditions including atmospheric CO2 concentrations in the past and into the future. However, before any projections can be made, the basic test is to establish model skill in recreating present-day calcification rates. Here we evaluate four published model descriptions of reef carbonate production in terms of their predictive power, at both local and global scales. We also compile available global data on reef calcification to produce an independent observation-based data set for the model evaluation of carbonate budget outputs. The four calcification models are based on functions sensitive to combinations of light availability, aragonite saturation (Ωa) and temperature and were implemented within a specifically developed global framework, the Global Reef Accretion Model (GRAM). No model was able to reproduce independent rate estimates of whole-reef calcification, and the output from the temperature-only based approach was the only model to significantly correlate with coral-calcification rate observations. The absence of any predictive power for whole reef systems, even when consistent at the scale of individual corals, points to the overriding importance of coral cover estimates in the calculations. Our work highlights the need for an ecosystem modelling approach, accounting for population dynamics in terms of mortality and recruitment and hence calcifier abundance, in estimating global reef carbonate budgets. In addition, validation of reef

  2. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 2. Modeling carbon sources, sinks, and δ13C evolution

    USGS Publications Warehouse

    McMahon, Peter B.; Chapelle, Francis H.

    1991-01-01

    Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was

  3. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model

    NASA Astrophysics Data System (ADS)

    Zeebe, R. E.

    2011-06-01

    The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.

  4. Modeling the role of terrestrial ecosystems in the global carbon cycle

    SciTech Connect

    Emanuel, W. R.; Post, W. M.; Shugart, Jr., H. H.

    1980-01-01

    A model for the global biogeochemical cycle of carbon which includes a five-compartment submodel for circulation in terrestrial ecosystems of the world is presented. Although this terrestrial submodel divides carbon into compartments with more functional detail than previous models, the variability in carbon dynamics among ecosystem types and in different climatic zones is not adequately treated. A new model construct which specifically treats this variability by modeling the distribution of ecosystem types as a function of climate on a 0.5/sup 0/ latitude by 0.5/sup 0/ longitude scale of resolution is proposed.

  5. Modeling the above and below ground carbon and nitrogen stocks in northern high latitude terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    ElMasri, B.; Jain, A. K.

    2012-12-01

    Climate change is expected to cause warming in the northern high latitudes, but it is still uncertain what the respond of the northern high latitudes ecosystem will be to such warming. One of the biggest scientific questions is to determine whether northern high latitude ecosystem are or will act as a terrestrial carbon sink or source. Therefore, it is essential to understand and quantify the biogeochemical cycle of the northern high latitude ecosystems in order to predict their respond to climate change. Using a land surface model, the Integrated Science Assessment Model (ISAM) with its coupled carbon-nitrogen cycle, we provide a detail quantification of the carbon and nitrogen in the vegetation pools and the soil carbon for the northern high latitude ecosystems. We focus on soil carbon and vegetation carbon and nitrogen, though we provide results for gross primary production (GPP), autotrophic respiration (Ra), net primary production (NPP), net ecosystem exchange (NEE), and heterotrophic respiration (Rh). In addition, we examine the effect of nitrogen limitation on the carbon fluxes and soil carbon. We present the results for several flux tower sites representative of the tundra and the boreal ecosystems as well as for the northern high latitude region. Our results provide a comprehensive assessment of below and above ground carbon and nitrogen pools in the northern high latitude and the model calibrated parameters can be used to improve the results of other land surface models.

  6. North American Carbon Project (NACP) Regional Interim Synthesis: Terrestrial Biospheric Model Intercomparison

    SciTech Connect

    Huntzinger, Deborah; Post, W. M.; Wei, Yaxing; Michalak, A. M.; West, Tristram O.; Jacobson, Andy; Baker, Ian; Chen, Jing Ming; Davis, K. J.; Hayes, D. J.; Hoffman, F. M.; Jain, Atul K.; Liu, S.; McGuire, A. David; Neilson, R. P.; Potter, Christopher; Poulter, Benjamin; Price, David; Raczka, B. M.; Tian, Hanqin; Thornton, P.; Tomelleri, E.; Viovy, N.; Xiao, J.; Yuan, Wenping; Zeng, Ning; Zhao, M.; Cook, R. B.

    2012-05-10

    Understanding of carbon exchange between terrestrial ecosystems and the atmosphere can be improved through direct observations and experiments, as well as through modeling activities. Terrestrial biosphere models (TBMs) have become an integral tool for extrapolating local observations and understanding to much larger terrestrial regions. Although models vary in their specific goals and approaches, their central role within carbon cycle science is to provide a better understanding of the mechanisms currently controlling carbon exchange. Recently, the North American Carbon Program (NACP) organized several interim-synthesis activities to evaluate and inter-compare models and observations at local to continental scales for the years 2000 to 2005. Here, we compare the results from the TBMs collected as part of the regional and continental interim-synthesis (RCIS) activities. The primary objective of this work is to synthesize and compare the 19 participating TBMs to assess current understanding of the terrestrial carbon cycle in North America.

  7. Generation of saturation functions for simulation models of carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Huang, Qingfeng

    A rock type is the unit of rock deposited under similar conditions, which went through similar diagenetic processes, producing analogous rock fabric, with distinct set of pore types, and pore throat size distribution, having specific range of porosity and permeability. Rock typing can generally be used as a guide to assign petrophysical characteristics to different zones for detailed reservoir characterization, modeling and simulation, which provide valid frames for reservoir development. It is often assumed that conventional rock types are capable of assigning multiphase flow characteristics, such as capillary pressure and relative permeability to the cells of dynamic simulation models. However, these conventional rock types, or static reservoir rock types (SRRT) fail to capture the actual variability of capillary pressure and relative permeability, due to lack of representation of wettability difference at different elevation above the free water level (FWL) in carbonate reservoirs, especially in the highly heterogeneous reservoirs. This should be resolved through dynamic reservoir rock types (DRRT), in which wettability effect is imposed on the SRRTs to generate saturation functions for simulation models. This research studies Ghedan's comprehensive DRRT model7, and proposes a modified Ghedan's model. First, the defined static rock types are sub-divided into sub-static rock types based on porosity frequency. Second, three curve-fitting programs are coded to generate the related saturation-height functions. These are the modified Ghedan-Okuyiga equation, Cuddy function and Power Law function. Developed from Ghedan-Okuyiga function113, the recommended modified Ghedan-Okuyiga function has been proposed with saturation and implicit porosity as a function of height above FWL in the transition zone. Third, each sub-static rock type is divided into a number of DRRTs by determining the capillary pressure and relative permeability curves in the oil zone from gas

  8. Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Seitenzahl, Ivo R.; Ciaraldi-Schoolmann, Franco; Röpke, Friedrich K.; Fink, Michael; Hillebrandt, Wolfgang; Kromer, Markus; Pakmor, Rüdiger; Ruiter, Ashley J.; Sim, Stuart A.; Taubenberger, Stefan

    2013-02-01

    We present results for a suite of 14 three-dimensional, high-resolution hydrodynamical simulations of delayed-detonation models of Type Ia supernova (SN Ia) explosions. This model suite comprises the first set of three-dimensional SN Ia simulations with detailed isotopic yield information. As such, it may serve as a data base for Chandrasekhar-mass delayed-detonation model nucleosynthetic yields and for deriving synthetic observables such as spectra and light curves. We employ a physically motivated, stochastic model based on turbulent velocity fluctuations and fuel density to calculate in situ the deflagration-to-detonation transition probabilities. To obtain different strengths of the deflagration phase and thereby different degrees of pre-expansion, we have chosen a sequence of initial models with 1, 3, 5, 10, 20, 40, 100, 150, 200, 300 and 1600 (two different realizations) ignition kernels in a hydrostatic white dwarf with a central density of 2.9 × 109 g cm-3, as well as one high central density (5.5 × 109 g cm-3) and one low central density (1.0 × 109 g cm-3) rendition of the 100 ignition kernel configuration. For each simulation, we determined detailed nucleosynthetic yields by post-processing 106 tracer particles with a 384 nuclide reaction network. All delayed-detonation models result in explosions unbinding the white dwarf, producing a range of 56Ni masses from 0.32 to 1.11 M⊙. As a general trend, the models predict that the stable neutron-rich iron-group isotopes are not found at the lowest velocities, but rather at intermediate velocities (˜3000-10 000 km s-1) in a shell surrounding a 56Ni-rich core. The models further predict relatively low-velocity oxygen and carbon, with typical minimum velocities around 4000 and 10 000 km s-1, respectively.

  9. [Decomposition model of energy-related carbon emissions in tertiary industry for China].

    PubMed

    Lu, Yuan-Qing; Shi, Jun

    2012-07-01

    Tertiary industry has been developed in recent years. And it is very important to find the factors influenced the energy-related carbon emissions in tertiary industry. A decomposition model of energy-related carbon emissions for China is set up by adopting logarithmic mean weight Divisia method based on the identity of carbon emissions. The model is adopted to analyze the influence of energy structure, energy efficiency, tertiary industry structure and economic output to energy-related carbon emissions in China from 2000 to 2009. Results show that the contribution rate of economic output and energy structure to energy-related carbon emissions increases year by year. Either is the contribution rate of energy efficiency or the tertiary industry restraining to energy-related carbon emissions. However, the restrain effect is weakening.

  10. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-01-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use the dynamic vegetation model LPJ-GUESS to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one exemplary "business-as-usual" climate scenario). Single factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model, as documented in previous studies. Under a RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics until present. However, during the 21st century nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contradicts earlier model results that showed an 8 to 37% decrease in carbon uptake, questioning the often stated assumption that projections of future terrestrial C dynamics from C-only models are too optimistic.

  11. The biological carbon pump in the ocean: Reviewing model representations and its feedbacks on climate perturbations.

    NASA Astrophysics Data System (ADS)

    Hülse, Dominik; Arndt, Sandra; Ridgwell, Andy; Wilson, Jamie

    2016-04-01

    The ocean-sediment system, as the biggest carbon reservoir in the Earth's carbon cycle, plays a crucial role in regulating atmospheric carbon dioxide concentrations and climate. Therefore, it is essential to constrain the importance of marine carbon cycle feedbacks on global warming and ocean acidification. Arguably, the most important single component of the ocean's carbon cycle is the so-called "biological carbon pump". It transports carbon that is fixed in the light-flooded surface layer of the ocean to the deep ocean and the surface sediment, where it is degraded/dissolved or finally buried in the deep sediments. Over the past decade, progress has been made in understanding different factors that control the efficiency of the biological carbon pump and their feedbacks on the global carbon cycle and climate (i.e. ballasting = ocean acidification feedback; temperature dependant organic matter degradation = global warming feedback; organic matter sulphurisation = anoxia/euxinia feedback). Nevertheless, many uncertainties concerning the interplay of these processes and/or their relative significance remain. In addition, current Earth System Models tend to employ empirical and static parameterisations of the biological pump. As these parametric representations are derived from a limited set of present-day observations, their ability to represent carbon cycle feedbacks under changing climate conditions is limited. The aim of my research is to combine past carbon cycling information with a spatially resolved global biogeochemical model to constrain the functioning of the biological pump and to base its mathematical representation on a more mechanistic approach. Here, I will discuss important aspects that control the efficiency of the ocean's biological carbon pump, review how these processes of first order importance are mathematically represented in existing Earth system Models of Intermediate Complexity (EMIC) and distinguish different approaches to approximate

  12. Analysis of uncertainties in climate-carbon cycle feedback by using a simplified energy and carbon cycle coupled model

    NASA Astrophysics Data System (ADS)

    Murakami, K.; Ichii, K.; Yamaguchi, Y.

    2006-12-01

    Global warming due to increased greenhouse gases attributed to industrial activities and deforestation is a serious problem. Its mechanism includes the coupled feedback processes of energy and carbon cycles. Uncertainties in the feedback processes lead to a wide range of future projections of carbon cycle and climate change, and thus temperature variation. Thus it is essential to evaluate the feedback processes by various sensitivity studies using a simplified earth system model that is suitable to analyze many feedback processes easily. The purpose of this study is to analyze the effects of feedback processes caused by global warming. We used a simplified one-dimensional zonally averaged energy and carbon cycle coupled model, to investigate the uncertainties in climate-carbon cycle feedback processes. The following feedback processes of energy and carbon cycles are included in the model; (1) biospheric CO2 fertilization on net primary production (NPP), (2) temperature dependency of NPP, (3) temperature dependency of soil decomposition, and (4) temperature dependency of ocean surface chemistry. The model was forced with total greenhouse gas emissions from industrial activities from 1750 to 2000, and calibrated to reproduce the historical variations in temperature and atmospheric CO2 concentration. Then, to understand the future terrestrial biosphere responses because of its large uncertainties in carbon uptake between atmosphere and terrestrial ecosystem that greatly influences global carbon balance, we performed the sensitivity studies for the fertilization effect by increasing of the atmospheric CO2 concentration of NPP and temperature dependency of soil decomposition. These results showed that NEP (net ecosystem production) turned to a decrease and also continued to increase when these parameters are changed in a realistic range. And its effects mainly appeared middle latitude at the northern hemisphere and low latitude, because those regions's carbon stocks

  13. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth system models.

    PubMed

    Xu, Xiaofeng; Schimel, Joshua P; Thornton, Peter E; Song, Xia; Yuan, Fengming; Goswami, Santonu

    2014-05-01

    A mechanistic understanding of microbial assimilation of soil organic carbon is important to improve Earth system models' ability to simulate carbon-climate feedbacks. A simple modelling framework was developed to investigate how substrate quality and environmental controls over microbial activity regulate microbial assimilation of soil organic carbon and on the size of the microbial biomass. Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality leads to higher ratio of microbial carbon to soil organic carbon. Microbial biomass carbon peaks and then declines as cumulative activity increases. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global data set at the biome level. The modelling framework developed in this study offers a simple approach to incorporate microbial contributions to the carbon cycling into Earth system models to simulate carbon-climate feedbacks and explain global patterns of microbial biomass.

  14. Model Effects on GLAS-Based Regional Estimates of Forest Biomass and Carbon

    NASA Technical Reports Server (NTRS)

    Nelson, Ross

    2008-01-01

    ICESat/GLAS waveform data are used to estimate biomass and carbon on a 1.27 million sq km study area. the Province of Quebec, Canada, below treeline. The same input data sets and sampling design are used in conjunction with four different predictive models to estimate total aboveground dry forest biomass and forest carbon. The four models include nonstratified and stratified versions of a multiple linear model where either biomass or (square root of) biomass serves as the dependent variable. The use of different models in Quebec introduces differences in Provincial biomass estimates of up to 0.35 Gt (range 4.942+/-0.28 Gt to 5.29+/-0.36 Gt). The results suggest that if different predictive models are used to estimate regional carbon stocks in different epochs, e.g., y2005, y2015, one might mistakenly infer an apparent aboveground carbon "change" of, in this case, 0.18 Gt, or approximately 7% of the aboveground carbon in Quebec, due solely to the use of different predictive models. These findings argue for model consistency in future, LiDAR-based carbon monitoring programs. Regional biomass estimates from the four GLAS models are compared to ground estimates derived from an extensive network of 16,814 ground plots located in southern Quebec. Stratified models proved to be more accurate and precise than either of the two nonstratified models tested.

  15. Comparing Different Model Structures for Carbon Allocation in the Community Land Model (CLM)

    NASA Astrophysics Data System (ADS)

    Montane, F.; Fox, A. M.; Arellano, A. F.; Scaven, V. L.; Alexander, M. R.; Moore, D. J.

    2015-12-01

    Quantifying the intensity of feedback mechanisms between terrestrial ecosystems and climate is a central challenge for understanding the global carbon cycle. Part of this challenge includes understanding how climate affects not only NPP, but also C allocation in different plant tissues (leaves, stem and roots) which determines the C residence time. For instance, C could be sequestered over longer time periods if changes in climate increase allocation to long-lived plant tissue (e.g. woody components) with respect to short-lived tissues (e.g. leaves). Networks of eddy covariance towers like AmeriFlux provide the infrastructure necessary to study relationships between ecosystem processes and climate forcing. We ran the Community Land Model (CLM) for six temperate forests in North America (AmeriFlux sites) using different model structures for the C allocation module: i) standard carbon allocation module in CLM, which allocates C to the stem and leaves as a dynamic function of NPP and with fixed coefficients for the rest of parameters; ii) alternative C allocation module, which allocates C to the root and stem as a dynamic function of NPP and with fixed coefficients for the rest of parameters; and iii) alternative C allocation module with fixed coefficients for all the parameters. We compare C allocation patterns and climate sensitivities betwen the different model structures and available observations for the sites. We suggest some future approaches to reduce model uncertainty in the current scheme for C allocation in CLM and its climate sensitivity.

  16. Oxidation of Carbon Fibers in a Cracked Ceramic Matrix Composite Modeled as a Function of Temperature

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Cawley, James D.; Eckel, Andrew J.

    2003-01-01

    The oxidation model simulates the oxidation of the reinforcing carbon fibers within a ceramic matrix composite material containing as-fabricated microcracks. The physics-based oxidation model uses theoretically and experimentally determined variables as input for the model. The model simulates the ingress of oxygen through microcracks into a two-dimensional plane within the composite material. Model input includes temperature, oxygen concentration, the reaction rate constant, the diffusion coefficient, and the crack opening width as a function of the mechanical and thermal loads. The model is run in an iterative process for a two-dimensional grid system in which oxygen diffuses through the porous and cracked regions of the material and reacts with carbon in short time steps. The model allows the local oxygen concentrations and carbon volumes from the edge to the interior of the composite to be determined over time. Oxidation damage predicted by the model was compared with that observed from microstructural analysis of experimentally tested composite material to validate the model for two temperatures of interest. When the model is run for low-temperature conditions, the kinetics are reaction controlled. Carbon and oxygen reactions occur relatively slowly. Therefore, oxygen can bypass the carbon near the outer edge and diffuse into the interior so that it saturates the entire composite at relatively high concentrations. The kinetics are limited by the reaction rate between carbon and oxygen. This results in an interior that has high local concentrations of oxygen and a similar amount of consumed carbon throughout the cross section. When the model is run for high-temperature conditions, the kinetics are diffusion controlled. Carbon and oxygen reactions occur very quickly. The carbon consumes oxygen as soon as it is supplied. The kinetics are limited by the relatively slow rate at which oxygen is supplied in comparison to the relatively fast rate at which carbon and

  17. Correspondence Between Long Term Carbon Sequestration and Measurable Variables in a Global Land Surface Model

    NASA Astrophysics Data System (ADS)

    Gerber, S.; Muller, S. J.

    2014-12-01

    The response of net atmosphere-land carbon exchange under future warming and increasing CO2 is key to the projection of future climate change. However, current land-surface model differ widely in their prediction of the land carbon sink by 2100. These models are increasingly complex and entail a large array of mechanisms. Consequently, the number of "knobs"(i.e. model parameters) available to tune model results has increased drastically. In principal, objectively tuning all parameters of a model to the measurements at hand should yield a best configuration. But in practice, it is important to know structure of data that helps best to improve a model's long-term carbon sink trajectory; or alternatively whether there are variables where a model data mismatch would not necessarily compromise the model outcome. We performed a sensitivity analysis of LM3VN, a land surface model with a prognostic nitrogen cycle, by varying 60 parameters, and checked for correspondence between the sensitivity of the model's long-term (1850-2100) carbon sink and contemporary (1980-2006) calibration variables. We found, that few parameters had a strong impact on the long term carbon sequestration, showing that the model entails a number of negative feedbacks. Importantly, the parameters to which the model was most sensitive were found to vary between individual gridcells, supporting the idea of point-specific and regional model assessment. The model's prediction of the current total carbon inventory correlated well with the prediction of the long term carbon sink, indicating that evaluation of models against current carbon inventories could improve their prediction of carbon sequestration over the this century, although the aggregation of such data is challenging. A promising correspondence is that of the interannual var