Science.gov

Sample records for carbon dioxide cycling

  1. The carbon dioxide cycle

    USGS Publications Warehouse

    James, P.B.; Hansen, G.B.; Titus, T.N.

    2005-01-01

    The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. Recuperative supercritical carbon dioxide cycle

    SciTech Connect

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  3. Discussion of Refrigeration Cycle Using Carbon Dioxide as Refrigerant

    NASA Astrophysics Data System (ADS)

    Ji, Amin; Sun, Miming; Li, Jie; Yin, Gang; Cheng, Keyong; Zhen, Bing; Sun, Ying

    Nowadays, the problem of the environment goes worse, it urges people to research and study new energy-saving and environment-friendly refrigerants, such as carbon dioxide, at present, people do research on carbon dioxide at home and abroad. This paper introduces the property of carbon dioxide as a refrigerant, sums up and analyses carbon dioxide refrigeration cycles, and points out the development and research direction in the future.

  4. A weekly cycle in atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Cerveny, Randall S.; Coakley, Kevin J.

    2002-01-01

    We present a new statistic called the ``Mean Symmetrized Residual'' (MSR) for detection and quantification of a weekly cycle in measured daily atmospheric carbon dioxide (CO2). At the Mauna Loa Observatory in Hawaii, we conclude that CO2 concentrations, on average, are significantly lower (0.022 parts per million by volume, ppmv) on weekends (Saturday-Sunday) than during the rest of the week. Over the past twenty-five years, the variation of the mean values of MSR (as a function of day of the week) has been relatively stable. We speculate that the observed weekday/weekend variation in CO2 at Mauna Loa is the result of anthropogenic emissions on Hawaii and nearby sources. We do not detect a weekly cycle in daily CO2 concentration measured at South Pole, Antarctica. This methodology has applicability to a variety of datasets.

  5. Using the 5E Learning Cycle Sequence with Carbon Dioxide

    ERIC Educational Resources Information Center

    Schlenker, Richard M.; Blanke, Regina; Mecca, Peter

    2007-01-01

    The authors used the 5E learning cycle (engage, explore, explain, extend, and evaluate) and a pulmonary carbon dioxide mystery to introduce eighth grade students to the study of chemistry. The activity engages students in measurement, data collection, data analysis, media and internet research, research design, and report writing as they search…

  6. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    SciTech Connect

    Anderson, Mark; Sienicki, James; Moisseytsev, Anton; Nellis, Gregory; Klein, Sanford

    2015-10-21

    Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO2 (S-CO2) or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see

  7. Atmospheric carbon dioxide and the global carbon cycle

    SciTech Connect

    Trabalka, J R

    1985-12-01

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  8. Carbon Dioxide Carbonates in the Earth;s Mantle: Implications to the Deep Carbon Cycle

    SciTech Connect

    Yoo, Choong-Shik; Sengupta, Amartya; Kim, Minseob

    2012-05-22

    An increase in the ionic character in C-O bonds at high pressures and temperatures is shown by the chemical/phase transformation diagram of CO{sub 2}. The presence of carbonate carbon dioxide (i-CO{sub 2}) near the Earth's core-mantle boundary condition provides insights into both the deep carbon cycle and the transport of atmospheric CO{sub 2} to anhydrous silicates in the mantle and iron core.

  9. Gasification combined cycle: Carbon dioxide recovery, transport, and disposal

    SciTech Connect

    Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.; Livengood, C.D. ); Johnson, R.A. )

    1993-01-01

    Initiatives to limit carbon dioxide (CO[sub 2]) emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation. This process can reduce C0[sub 2] production because of its higher efficiency, and it is amenable to C0[sub 2] capture, because C0[sub 2] can be removed before combustion and the associated dilution with atmospheric nitrogen. This paper presents a process-design baseline that encompasses the IGCC system, C0[sub 2] transport by pipeline, and land-based sequestering of C0[sub 2] in geological reservoirs.The intent of this study is to provide the C0[sub 2] budget, or an equivalent C0[sub 2]'' budget, associated with each of the individual energy-cycle steps. Design capital and operating costs for the process are included in the full study but are not reported in the present paper. The value used for the equivalent C0[sub 2]'' budget will be 1 kg C0[sub 2]/kWh[sub e].

  10. Carbon dioxide, ground air and carbon cycling in Gibraltar karst

    NASA Astrophysics Data System (ADS)

    Mattey, D. P.; Atkinson, T. C.; Barker, J. A.; Fisher, R.; Latin, J.-P.; Durrell, R.; Ainsworth, M.

    2016-07-01

    We put forward a general conceptual model of CO2 behaviour in the vadose zone of karst aquifers, based on physical principles of air flow through porous media and caves, combined with a geochemical interpretation of cave monitoring data. This 'Gibraltar model' links fluxes of water, air and carbon through the soil with the porosity of the vadose zone, the circulation of ground air and the ventilation of caves. Gibraltar hosts many natural caves whose locations span the full length and vertical range of the Rock. We report results of an 8-year monitoring study of carbon in soil organic matter and bedrock carbonate, dissolved inorganic carbon in vadose waters, and gaseous CO2 in soil, cave and ground air. Results show that the regime of cave air CO2 results from the interaction of cave ventilation with a reservoir of CO2-enriched ground air held within the smaller voids of the bedrock. The pCO2 of ground air, and of vadose waters that have been in close contact with it, are determined by multiple factors that include recharge patterns, vegetation productivity and root respiration, and conversion of organic matter to CO2 within the soil, the epikarst and the whole vadose zone. Mathematical modelling and field observations show that ground air is subject to a density-driven circulation that reverses seasonally, as the difference between surface and underground temperatures reverses in sign. The Gibraltar model suggests that cave air pCO2 is not directly related to CO2 generated in the soil or the epikarstic zone, as is often assumed. Ground air CO2 formed by the decay of organic matter (OM) washed down into the deeper unsaturated zone is an important additional source of pCO2. In Gibraltar the addition of OM-derived CO2 is the dominant control on the pCO2 of ground air and the Ca-hardness of waters within the deep vadose zone. The seasonal regime of CO2 in cave air depends on the position of a cave in relation to the density-driven ground air circulation pattern which

  11. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.

    PubMed

    Fink, Cornel; Montandon-Clerc, Mickael; Laurenczy, Gabor

    2015-01-01

    This year Mankind will release about 39 Gt carbon dioxide into the earth's atmosphere, where it acts as a greenhouse gas. The chemical transformation of carbon dioxide into useful products becomes increasingly important, as the CO(2) concentration in the atmosphere has reached 400 ppm. One approach to contribute to the decrease of this hazardous emission is to recycle CO(2), for example reducing it to formic acid. The hydrogenation of CO(2) can be achieved with a series of catalysts under basic and acidic conditions, in wide variety of solvents. To realize a hydrogen-based charge-discharge device ('hydrogen battery'), one also needs efficient catalysts for the reverse reaction, the dehydrogenation of formic acid. Despite of the fact that the overwhelming majority of these reactions are carried out using precious metals-based catalysts (mainly Ru), we review here developments for catalytic hydrogen evolution from formic acid with iron-based complexes.

  12. A model ensemble for explaining the seasonal cycle of globally averaged atmospheric carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Alexandrov, Georgii; Eliseev, Alexey

    2015-04-01

    The seasonal cycle of the globally averaged atmospheric carbon dioxide concentrations results from the seasonal changes in the gas exchange between the atmosphere and other carbon pools. Terrestrial pools are the most important. Boreal and temperate ecosystems provide a sink for carbon dioxide only during the warm period of the year, and, therefore, the summertime reduction in the atmospheric carbon dioxide concentration is usually explained by the seasonal changes in the magnitude of terrestrial carbon sink. Although this explanation seems almost obvious, it is surprisingly difficult to support it by calculations of the seasonal changes in the strength of the sink provided by boreal and temperate ecosystems. The traditional conceptual framework for modelling net ecosystem exchange (NEE) leads to the estimates of the NEE seasonal cycle amplitude which are too low for explaining the amplitude of the seasonal cycle of the atmospheric carbon dioxide concentration. To propose a more suitable conceptual framework we develop a model ensemble that consists of nine structurally different models and covers various approaches to modelling gross primary production and heterotrophic respiration, including the effects of light saturation, limited light use efficiency, limited water use efficiency, substrate limitation and microbiological priming. The use of model ensembles is a well recognized methodology for evaluating structural uncertainty of model-based predictions. In this study we use this methodology for exploratory modelling analysis - that is, to identify the mechanisms that cause the observed amplitude of the seasonal cycle of the atmospheric carbon dioxide concentration and its slow but steady growth.

  13. Carbon Dioxide Cycling and the Climate of Ancient Earth

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Sleep, Norman H.

    2001-01-01

    The continental cycle of silicate weathering and metamorphism dynamically buffers atmospheric CO2 and climate. Feedback is provided by the strong temperature dependence of silicate weathering. Here we argue that hydrothermal alteration of oceanic basalts also dynamically buffers CO2. The oceanic cycle links with the mantle via subduction and the midocean ridges. Feedback is provided by the dependence of carbonatization on dissolved carbonates in seawater. Unlike the continental cycle, the oceanic cycle has no thermostat. Currently the continental cycle is more important, but earlier in Earth's history, especially if heat flow were higher than it is now, more vigorous plate tectonics would have made the oceanic cycle dominant. We find that CO2 greenhouses thick enough to defeat the faint early Sun are implausible and that, if no other greenhouse gases are invoked, very cold climates are expected for much of the Proterozoic and the Archean. We echo current fashion and favor biogenic methane as the chief supplement to CO2. Fast weathering and probable subduction of abundant impact ejecta would have reduced CO2 levels still further in the Hadean. Despite its name, the Hadean would have been the coldest era in the history of the Earth.

  14. Carbon Dioxide Cycling And The Climate of Ancient Earth

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Sleep, Norman H.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The continental cycle of silicate weathering and metamorphism dynamically buffers atmospheric CO2 and climate. Feedback is provided by the strong temperature dependence of silicate weathering. Here we argue that hydrothermal alteration of oceanic basalts also dynamically buffers CO2. The oceanic cycle links with the mantle via subduction and the midocean ridges. Feedback is provided by the dependence of carbonatization on dissolved carbonates in seawater. Unlike the continental cycle, the oceanic cycle has no thermostat. Currently the continental cycle is more important, but earlier in Earth's history, especially if heat flow were higher than it is now, more vigorous plate tectonics would have made the oceanic cycle dominant. We find that CO2 greenhouses thick enough to defeat the faint early sun are implausible and that, if no other greenhouse gases are invoked, very cold climates are expected for much of the Proterozoic and the Archean. We echo current fashion and favor biogenic methane as the chief supplement to CO2. Fast weathering and probable subduction of abundant impact ejecta would have reduced CO2 levels still further in the Hadean. Despite its name, the Hadean would have been the coldest era in the history of the Earth.

  15. Effects of elevated atmospheric carbon dioxide on soil nitrogen cycling

    NASA Astrophysics Data System (ADS)

    Hofmockel, Kirsten S.

    Human activities including fossil fuel combustion, deforestation, and land conversion to agriculture have caused the concentration of atmospheric CO2 to increase since the Industrial Revolution. One approach to atmospheric CO2 reduction is sequestration in forest ecosystems. Presently little is known about the overall impact of elevated atmospheric CO2 on net ecosystem carbon storage, particularly in terms of nutrient limitations. In this dissertation I tested the hypothesis that elevated atmospheric CO2 will stimulate soil N availability, supporting long-term CO 2 sequestration in southeastern forests, examined asymbiotic N2 fixation, amino acid assimilation and ecosystem scale N cycling to understand changes in soil N cycling induced by elevated atmospheric CO 2. All research was conducted at the Duke Forest free Air CO2 Enrichment (FACE) experiment, where atmospheric CO2 concentrations have been maintained at 200 ul l-1 above ambient levels in the 30-m diameter treatment plots since 1996. This body of research indicates that elevated atmospheric CO2 does not stimulate soil N cycling at the decadal time scale. Field measurements of exogenous N inputs via asymbiotic N2 fixing bacteria reveal no CO2 stimulation. Soil moisture was the most important factor controlling field rates of N2 fixation. Changes in endogenous N cycling were evaluated using stable isotope tracer field experiments. Short-term experiments showed that more amino acid N was assimilated by both fine roots and microbes under ambient compared to elevated CO2. This significant treatment effect indicates that soil C limitation was a stronger driver of amino acid cycling than N limitation. Intact amino acid assimilation was comparable to NH4 assimilation and may make a small, but important contribution to plant N uptake in warm-temperate forest ecosystems. Inorganic N cycling was not affected by elevated atmospheric CO2. After two growing seasons, a 15N field tracer experiment showed no effects of

  16. LASCAT - DESIGN OF CATALYTIC MONOLITHS FOR CLOSED-CYCLE CARBON DIOXIDE LASERS

    NASA Technical Reports Server (NTRS)

    Guinn, K.

    1994-01-01

    Pulsed carbon dioxide lasers are useful in many areas, including aeronautics, space research, and weather monitoring. Most applications require a closed-cycle carbon dioxide laser, which is more portable and self-sustaining than an open-cycle system. Without a fresh carbon dioxide supply and provisions for byproduct disposal, the closed-cycle laser must recycle the carbon monoxide and oxygen gas produced by the lasing of carbon dioxide. The recombination of the carbon monoxide and oxygen gas byproducts to form a constant supply of carbon dioxide requires an active catalyst, which must be carefully designed to optimize laser performance in accordance with design requirements specific to the laser's application. LASCAT (Design of Catalytic Monoliths for Closed-Cycle Carbon Dioxide Lasers) aids in the design of the monolith catalyst by simulating the results of design decisions on the performance of the laser. In portable laser systems, considerations of size, weight, and cost are critical. LASCAT provides the opportunity for the designer to explore trade-offs between the catalyst activity, catalyst dimensions, monolith dimensions, pressure drop (a result of gas flow through the monolith), Oxygen gas conversion, and other variables. The program uses a flexible, simplified model of the monolith catalyst designed to determine the bulk-avarage gas temperature, composition, and pressure along its length. The user specifies values for the several parameters which define the catalyst's operating conditions, including monolith dimensions, gas inlet properties, thermal operation properties, and catalyst properties. LASCAT provides results which indicate whether the experimental design meets user-defined constraints such as limits on conversion rate, maximum gas temperature, and monolith weight. LASCAT is written in FORTRAN 77 and is designed for use with any text or character-based terminal or computer display. The program requires roughly 40 KB memory. LASCAT was developed

  17. Carbon Cycle Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to carbon cycle includes: • Terrestrial Carbon Sequestration Data Sets • Area and Carbon Content of Sphagnum Since Last Glacial Maximum (2002) (Trends Online) • Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2002) (Trends Online) • Estimates of Monthly CO2 Emissions and Associated 13C/12C Values from Fossil-Fuel Consumption in the U.S.A., (2004) (Trends Online) • Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A. and the District of Columbia for Each Year from 1960 through 2001 (Trends Online) • Global, Regional, and National Annual CO2 Emissions from Fossil-Fuel Burning, Cement Production, and Gas Flaring: 1751-1999 (updated 2002) • Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (1997) • Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis (1998) • AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Intergovernmental Panel on Climate Change (IPCC), Working Group 1, 1994: Modelling Results Relating Future Atmospheric CO2 Concentrations to Industrial Emissions (1995) • Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994) (2003) • Global

  18. Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.

    SciTech Connect

    Moore, Robert Charles; Conboy, Thomas M.

    2012-02-01

    A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

  19. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)

    SciTech Connect

    Neises, T.; Turchi, C.

    2013-09-01

    Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of the cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.

  20. Capture and release of carbon dioxide by carbon nanotubes via temperature cycling

    NASA Astrophysics Data System (ADS)

    Rende{2}, Deniz; Baysal, Nihat; Ozisik, Rahmi

    2011-03-01

    Carbon nanotubes (CNTs) received remarkable attention since they were shown to possess many unique properties as well as being effective and stable adsorbent materials that make them potentially useful for gas storage and separation of various gas mixtures. In this study, the effect of temperature variations on carbon dioxide (CO2) capture via single walled carbon nanotubes (SWNTs) and multi walled carbon nanotubes (MWNTs) were investigated with molecular dynamics simulations. SWNTs of type (10,10), (15,15), and (20,20) and MWNTs formed from the combination of these were simulated. The temperature was varied between 300 and 360 K. The results suggest that absorption of CO2 into the CNTs were directly related to the internal volume of the nanotube, but the cross-sectional area of the tube entrance had a significant effect on the number of CO2 molecules retained. The number of CO2 molecules collected in CNTs gradually decreases with increasing temperature. Separate simulations were performed to understand the potential use of CNTs as thermal pumps to collect/discharge CO2 molecules via temperature cycling. Supported by the NSF (CMMI-0500324 and DMR-0117792).

  1. The seasonal cycle of carbon dioxide on Mars

    NASA Technical Reports Server (NTRS)

    James, Philip B.; Kieffer, Hugh H.; Paige, David A.

    1992-01-01

    Results of Viking investigations relevant to the CO2 cycle on Mars are presented, and the extensive modeling efforts directed towards understanding this cycle and its couplings to the seasonal cycles of water and dust are reviewed. It is found that winter condensation is suppressed either because the solid CO2 deposits are inefficient radiators or because of the scattering effects of CO2 clouds. With regard to the qualitative difference between the spring regression curves and between the wind systems for the two seasonal caps, it is suggested that the greater amount of aerosols in the atmosphere during northern winter results in a greater proportion of atmospheric condensation there than in the south. The seasonal pressure curves obtained by the Viking Landers during four Martian years are remarkably similar. It is suggested that the CO2 cycle is not sensitive to atmospheric dust and the meteorological variations accompanying global storms or that some subtle cancellation between different mechanisms suppresses variations.

  2. New Adsorption Cycles for Carbon Dioxide Capture and Concentration

    SciTech Connect

    James Ritter; Armin Ebner; Steven Reynolds Hai Du; Amal Mehrotra

    2008-07-31

    The objective of this three-year project was to study new pressure swing adsorption (PSA) cycles for CO{sub 2} capture and concentration at high temperature. The heavy reflux (HR) PSA concept and the use of a hydrotalcite like (HTlc) adsorbent that captures CO{sub 2} reversibly at high temperatures simply by changing the pressure were two key features of these new PSA cycles. Through the completion or initiation of nine tasks, a bench-scale experimental and theoretical program has been carried out to complement and extend the process simulation study that was carried out during Phase I (DE-FG26-03NT41799). This final report covers the entire project from August 1, 2005 to July 31, 2008. This program included the study of PSA cycles for CO{sub 2} capture by both rigorous numerical simulation and equilibrium theory analysis. The insight gained from these studies was invaluable toward the applicability of PSA for CO{sub 2} capture, whether done at ambient or high temperature. The rigorous numerical simulation studies showed that it is indeed possible to capture and concentrate CO{sub 2} by PSA. Over a wide range of conditions it was possible to achieve greater than 90% CO{sub 2} purity and/or greater than 90% CO{sub 2} recovery, depending on the particular heavy reflux (HR) PSA cycle under consideration. Three HR PSA cycles were identified as viable candidates for further study experimentally. The equilibrium theory analysis, which represents the upper thermodynamic limit of the performance of PSA process, further validated the use of certain HR PSA cycles for CO{sub 2} capture and concentration. A new graphical approach for complex PSA cycle scheduling was also developed during the course of this program. This new methodology involves a priori specifying the cycle steps, their sequence, and the number of beds, and then following a systematic procedure that requires filling in a 2-D grid based on a few simple rules, some heuristics and some experience. It has been

  3. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    SciTech Connect

    Moisseytsev, A.; Sienicki, J. J.; Lv, Q.

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  4. Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles

    SciTech Connect

    Green, H.J. ); Guenther, P.R. )

    1990-09-01

    This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

  5. Design of catalytic monoliths for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1988-01-01

    A computer program was written that allows the design of catalytic monoliths for closed-cycle carbon dioxide lasers. Using design parameters obtained from workers at NASA Langley Research Center and from the literature, several specific monoliths were designed and the results were communicated to the research group working on this project at Langley. Two oral presentations were made at NASA-sponsored workshops - at Langley in January 1988 and in Gainesville, Florida in May 1988.

  6. Monolith catalysts for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1994-01-01

    The general subject area of the project involved the development of solid catalysts that have high activity at low temperature for the oxidation of gases such as CO. The original application considered was CO oxidation in closed-cycle CO2 lasers. The scope of the project was subsequently extended to include oxidation of gases in addition to CO and applications such as air purification and exhaust gas emission control. The primary objective of the final phase grant was to develop design criteria for the formulation of new low-temperature oxidation catalysts utilizing Monte Carlo simulations of reaction over NASA-developed catalysts.

  7. Solar cycle effect on atmospheric carbon dioxide levels. Final report

    SciTech Connect

    Kirk, B.L.; Rust, B.W.

    1983-01-01

    The authors present a causal time-series model for the Mauna Loa atmospheric CO2 record which supersedes a mathematical model consisting of four effects represented by exponential and sine functions. One effect is a 142-month oscillation which trails the sunspot numbers by exactly a quarter-cycle. This suggests that solar activity affects the rate of change in the atmospheric CO2 abundance. The new model replaces the mathematical functions with four measured time series representing proposed physical causes and reduces the number of adjustable parameters from 13 to 5 with no significant deterioration in the fit. The authors present evidence that solar activity affects the CO2 abundance through variations in ocean temperature or circulation.

  8. DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES

    SciTech Connect

    Ashish Gupta

    2002-06-01

    A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

  9. Water cycle dynamic increases resilience of vegetation under higher atmospheric carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Lemordant, L. A.; Gentine, P.; Stéfanon, M.; Drobinski, P. J.; Fatichi, S.

    2015-12-01

    Plant stomata couple the energy, water and carbon cycles. Photosynthesis requires stomata to open to take up carbon dioxide. In the process water vapor is released as transpiration. As atmospheric CO2 concentration rises, for the same amount of CO2 uptake, less water vapor is transpired, translating into higher water use efficiency. Reduced water vapor losses will increase soil water storage if the leaf area coverage remains similar. This will in turn alter the surface energy partitioning: more heat will be dissipated as sensible heat flux, resulting in possibly higher surface temperatures. In contrast with this common hypothesis, our study shows that the water saved during the growing season by increased WUE can be mobilized by the vegetation and help reduce the maximum temperature of mid-latitude heat waves. The large scale meteorological conditions of 2003 are the basis of four regional model simulations coupling an atmospheric model to a surface model. We performed two simulations with respectively 2003 (CTL) and 2100 (FUT) atmospheric CO2 applied to both the atmospheric and surface models. A third (RAD) and a fourth (FER) simulations are run with 2100 CO2 concentration applied to respectively the atmospheric model only and the surface model only. RAD investigates the impact of the radiative forcing, and FER the response to vegetation CO2 fertilization. Our results show that the water saved through higher water use efficiency during the growing season enabled by higher atmospheric carbon dioxide concentrations helps the vegetation to cope during severe heat and dryness conditions in the summer of mid-latitude climate. These results demonstrate that consideration of the vegetation carbon cycle is essential to model the seasonal water cycle dynamic and land-atmosphere interactions, and enhance the accuracy of the model outputs especially for extreme events. They also have important implications for the future of agriculture, water resources management, ecosystems

  10. Carbon dioxide effects research and assessment program. A comprehensive plan. Part I. The global carbon cycle and climatic effects of increasing carbon dioxide

    SciTech Connect

    Slade, David H.

    1980-08-01

    Initial plans for research of the carbon dioxide (CO/sub 2/) and climate issue were prepared in 1978 and were reviewed extensively at that time by federal agencies and members of the scientific community. Since then the plans have been used to guide early phases of the Department of Energy's and the nation's efforts related to this issue. This document represents a revision of the 1978 plan to (a) reflect recent ideas and strategies for carbon cycle research, and (b) expand the scope of research on climatic responses to increasing atmospheric concentrations of CO/sub 2/. The revised plan takes into account a number of investigations already being supported by various agencies, and it attempts to build on or add to existing research where there is a crucial need for information directly related to the CO/sub 2/ issue. It should be recognized that this document is the first section of a comprehensive plan on the overall consequences of increasing concentrations of CO/sub 2/, and includes guidelines for research on the Global Carbon Cycle and Climatic Effects of Increasing CO/sub 2/.

  11. Development of advanced off-design models for supercritical carbon dioxide power cycles

    SciTech Connect

    Dyreby, J. J.; Klein, S. A.; Nellis, G. F.; Reindl, D. T.

    2012-07-01

    In the search for increased efficiency of utility-scale electricity generation, Brayton cycles operating with supercritical carbon dioxide (S-CO{sub 2}) have found considerable interest. There are two main advantages of a S-CO{sub 2} Brayton cycle compared to a Rankine cycle: 1) equal or greater thermal efficiencies can be realized using significantly smaller turbomachinery, and 2) heat rejection is not limited by the saturation temperature of the working fluid, which has the potential to reduce or completely eliminate the need for cooling water and instead allow dry cooling. While dry cooling is especially advantageous for power generation in arid climates, a reduction of water consumption in any location will be increasingly beneficial as tighter environmental regulations are enacted in the future. Because daily and seasonal weather variations may result in a plant operating away from its design point, models that are capable of predicting the off-design performance of S-CO{sub 2} power cycles are necessary for characterizing and evaluating cycle configurations and turbomachinery designs on an annual basis. To this end, an off-design model of a recuperated Brayton cycle was developed based on the radial turbomachinery currently being investigated by Sandia National Laboratory. (authors)

  12. THERMODYNAMIC ANALYSIS OF AMMONIA-WATER-CARBON DIOXIDE MIXTURES FOR DESIGNING NEW POWER GENERATION CYCLES

    SciTech Connect

    Ashish Gupta

    2003-01-15

    This project was undertaken with the goal of developing a computational package for the thermodynamic properties of ammonia-water-carbon dioxide mixtures at elevated temperature and pressure conditions. This objective was accomplished by modifying an existing set of empirical equations of state for ammonia-water mixtures. This involved using the Wagner equation of state for the gas phase properties of carbon dioxide. In the liquid phase, Pitzer's ionic model was used. The implementation of this approach in the form of a computation package that can be used for the optimization of power cycles required additional code development. In particular, this thermodynamic model consisted of a large set of non-linear equations. Consequently, in the interest of computational speed and robustness that is required when applied to optimization problems, analytic gradients were incorporated in the Newton solver routines. The equations were then implemented using a stream property predictor to make initial guesses of the composition, temperature, pressure, enthalpy, entropy, etc. near a known state. The predictor's validity is then tested upon the convergence of an iteration. It proved difficult to obtain experimental data from the literature that could be used to test the accuracy of the new thermodynamic property package, and this remains a critical need for future efforts in the area. It was possible, however, to assess the feasibility of using this complicated property prediction package for power cycle design and optimization. Such feasibility was first demonstrated by modification of our Kalina cycle optimization code to use the package with either a deterministic optimizer, MINOS, or a stochastic optimizer using differential evolution, a genetic-algorithm-based technique. Beyond this feasibility demonstration, a new approach to the design and optimization of power cycles was developed using a graph theoretic approach.

  13. Life cycle analysis of geothermal power generation with supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Frank, Edward D.; Sullivan, John L.; Wang, Michael Q.

    2012-09-01

    Life cycle analysis methods were employed to model the greenhouse gas emissions and fossil energy consumption associated with geothermal power production when supercritical carbon dioxide (scCO2) is used instead of saline geofluids to recover heat from below ground. Since a significant amount of scCO2 is sequestered below ground in the process, a constant supply is required. We therefore combined the scCO2 geothermal power plant with an upstream coal power plant that captured a portion of its CO2 emissions, compressed it to scCO2, and transported the scCO2 by pipeline to the geothermal power plant. Emissions and energy consumption from all operations spanning coal mining and plant construction through power production were considered, including increases in coal use to meet steam demand for the carbon capture. The results indicated that the electricity produced by the geothermal plant more than balanced the increase in energy use resulting from carbon capture at the coal power plant. The effective heat rate (BTU coal per total kW h of electricity generated, coal plus geothermal) was comparable to that of traditional coal, but the ratio of life cycle emissions from the combined system to that of traditional coal was 15% when 90% carbon capture efficiency was assumed and when leakage from the surface was neglected. Contributions from surface leakage were estimated with a simple model for several hypothetical surface leakage rates.

  14. Design of catalytic monoliths for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, R. K.; Guinn, K.; Goldblum, S.; Noskowski, E.

    1989-01-01

    Pulsed carbon dioxide (CO2) lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers in hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalyst and design methods for implementation of catalysts in CO2 laser systems. A monolith catalyst section model and associated design computer program, LASCAT, are presented to assist in the design of a monolith catalyst section of a closed cycle CO2 laser system. Using LASCAT,the designer is able to specify a number of system parameters and determine the monolith section performance. Trade-offs between the catalyst activity, catalyst dimensions, monolith dimensions, pressure drop, O2 conversion, and other variables can be explored and adjusted to meet system design specifications. An introduction describes a typical closed-cycle CO2 system, and indicates some advantages of a closed cycle laser system over an open cycle system and some advantages of monolith support over other types of supports. The development and use of a monolith catalyst model is presented. The results of a design study and a discussion of general design rules are given.

  15. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    SciTech Connect

    Middleton, Bobby; Pasch, James Jay; Kruizenga, Alan Michael; Walker, Matthew

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation

  16. Carbon Dioxide and Water Cycling in a Semiarid Savanna in Southern Arizona, USA

    NASA Astrophysics Data System (ADS)

    Scott, R. L.; Hultine, K.; Barron-Gafford, G.; Huxman, T.

    2007-12-01

    The consequences of recent woody plant encroachment on the carbon and water cycling of semiarid ecosystems are not well understood. In this presentation, we present measurements made from 2004 - 2006 using sap flow and eddy covariance techniques to examine the carbon dioxide and water fluxes that occurred over a semiarid savanna on the Santa Rita Experimental Range in southern Arizona, USA. Over the last one hundred years this site has been transformed from a desert grassland to a savanna with greater than 35% tree cover by the encroachment of the native woody plant, mesquite ( Prosopis velutina). We have found that mesquite, even when they were dormant above ground, readily redistributed water upwards and downwards in the soil profile via their roots. This redistribution had important ecohydrological consequences like extending the season over which photosynthesis occurred. During the study period the site experienced below normal precipitation especially during the winter and spring period, and the site each year appeared to be a net carbon source. The two decades that preceded our study had above average precipitation, and this possibly resulted in a great deal of carbon accumulation that is now being released due to the current drought that has truncated the growing season.

  17. Membrane separation of carbon dioxide in the integrated gasification combined cycle systems

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Skorek-osikowska, Anna; Janusz-szymańska, Katarzyna

    2010-09-01

    Integrated gasification combined cycle systems (IGCC) are becoming more popular because of the characteristics, by which they are characterized, including low pollutants emissions, relatively high efficiency of electricity production and the ability to integrate the installation of carbon capture and storage (CCS). Currently, the most frequently used CO2 capture technology in IGCC systems is based on the absorption process. This method causes a significant increase of the internal load and decreases the efficiency of the entire system. It is therefore necessary to look for new methods of carbon dioxide capture. The authors of the present paper propose the use of membrane separation. The paper reviews available membranes for use in IGCC systems, indicates, inter alia, possible places of their implementation in the system and the required operation parameters. Attention is drawn to the most important parameters of membranes (among other selectivity and permeability) influencing the cost and performance of the whole installation. Numerical model of a membrane was used, among others, to analyze the influence of the basic parameters of the selected membranes on the purity and recovery ratio of the obtained permeate, as well as to determine the energetic cost of the use of membranes for the CO2 separation in IGCC systems. The calculations were made within the environment of the commercial package Aspen Plus. For the calculations both, membranes selective for carbon dioxide and membranes selective for hydrogen were used. Properly selected pressure before and after membrane module allowed for minimization of energy input on CCS installation assuring high purity and recovery ratio of separated gas.

  18. Electrochemical Capture and Release of Carbon Dioxide Using a Disulfide-Thiocarbonate Redox Cycle.

    PubMed

    Singh, Poonam; Rheinhardt, Joseph H; Olson, Jarred Z; Tarakeshwar, Pilarisetty; Mujica, Vladimiro; Buttry, Daniel A

    2017-01-25

    We describe a new electrochemical cycle that enables capture and release of carbon dioxide. The capture agent is benzylthiolate (RS(-)), generated electrochemically by reduction of benzyldisulfide (RSSR). Reaction of RS(-) with CO2 produces a terminal, sulfur-bound monothiocarbonate, RSCO2(-), which acts as the CO2 carrier species, much the same as a carbamate serves as the CO2 carrier for amine-based capture strategies. Oxidation of the thiocarbonate releases CO2 and regenerates RSSR. The newly reported S-benzylthiocarbonate (IUPAC name benzylsulfanylformate) is characterized by (1)H and (13)C NMR, FTIR, and electrochemical analysis. The capture-release cycle is studied in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP TFSI) and dimethylformamide. Quantum chemical calculations give a binding energy of CO2 to benzyl thiolate of -66.3 kJ mol(-1), consistent with the experimental observation of formation of a stable CO2 adduct. The data described here represent the first report of electrochemical behavior of a sulfur-bound terminal thiocarbonate.

  19. Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties

    DOE R&D Accomplishments Database

    Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.

    1987-12-01

    The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.

  20. Atmospheric carbon dioxide and the global carbon cycle: The key uncertainties

    SciTech Connect

    Peng, T.H.; Post, W.M.; DeAngelis, D.L.; Dale, V.H.; Farrell, M.P.

    1987-01-01

    The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO/sub 2/ concentrations. The observed increase in atmospheric CO/sub 2/ content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO/sub 2/ produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO/sub 2/ uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO/sub 2/ uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO/sub 2/ than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO/sub 2/ fluxes. The instability of current models to estimate accurately oceanic uptake of CO/sub 2/ creates one of the key uncertainties in predictions of atmospheric CO/sub 2/ increases and climate responses over the next 100 to 200 years. 60 refs., 1 fig., 2 tabs.

  1. The Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Wigley, T. M. L.; Schimel, D. S.

    2005-08-01

    Reducing carbon dioxide (CO2) emissions is imperative to stabilizing our future climate. Our ability to reduce these emissions combined with an understanding of how much fossil-fuel-derived CO2 the oceans and plants can absorb is central to mitigating climate change. In The Carbon Cycle, leading scientists examine how atmospheric carbon dioxide concentrations have changed in the past and how this may affect the concentrations in the future. They look at the carbon budget and the "missing sink" for carbon dioxide. They offer approaches to modeling the carbon cycle, providing mathematical tools for predicting future levels of carbon dioxide. This comprehensive text incorporates findings from the recent IPCC reports. New insights, and a convergence of ideas and views across several disciplines make this book an important contribution to the global change literature.

  2. Ocean Carbon Cycle Models from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    The following Ocean Carbon Cycle models and modeling results are available from CDIAC: • CSIRO/Matear Data [Model simulation of climate change from 1880 till 2100 (Matear and Hirst 2003, GBC) • Lequere Data, Model Results • McKinley MITgcm offline biogeochemical model - posted May 2004 • McKinley MITgcm offline biogeochemical model - posted December 2004 • NCOM-Pacific-Biogeochemical Modeling Results from Fei Chai • ROMS-Pacific-Biogeochemical Modeling Results from Fei CHai • WHOI/NCAR/Irvine Eco-BGC (Doney, Moore, Lindsay, and Lima) - Posted May 2005 • Max-Planck-Institut f?r Biogeochemie (Lequere, Buitenhuis) Modeling Results • Max-Planck-Institut f?r Biogeochemie (Lequere, Buitenhuis) Modeling Results - Posted March 2005 • Jim Christian model output for (a) Climatologies of T, S, PO4 at 50 m depth intervals; (b) SST, SSS, MLD, pCO2, CO2 flux from 1990-2003, and (c) climatological surface horizontal velocity • Max-Planck-Institut f?r Biogeochemie (Lequere, Buitenhuis) Modeling Results • Deutsch (UW) model output results for Oxygen variability in the North Pacific • Pacific data-model intercomparison from Patrick Wetzel (Max Planck Institute for Meteorology, Germany)

  3. The biogeochemical cycling of carbon dioxide in the oceans--perturbations by man.

    PubMed

    Dyrssen, D W

    2001-09-28

    The purpose of the paper is to follow up the contribution by Dyrssen and Turner to the Hemavan meeting in 1993 on CO2 chemistry. Machta's treatment from 1971 of the role of oceans and biosphere in the carbon dioxide cycle is reviewed. Using data on the emission of CO2 and the atmospheric content in addition to the value recently presented by Takahashi et al. for the net sink for global oceans the following numbers have been calculated for the period 1990 to 2000, annual emission of CO2, 6.185 PgC (Petagram = 10(15) g). Annual atmospheric accumulation, 2.930 PgC. Annual sinks, 3.255 PgC. Net uptake for 1990 by the oceans, 1.151 PgC/year. Solubility pump into the mixed layer, 0.828 PgC/year. Residual input (e.g. riverborne), 0.323 PgC/year. Annual uptake by land phytomass, 2.104 PgC. In addition, perturbations involving irrigation and fertilization, limestone dissolution, iron and clathrate addition are mentioned.

  4. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report

    SciTech Connect

    Chang H. Oh

    2006-06-01

    Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for stateof-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency.

  5. The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems

    SciTech Connect

    Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

    1994-06-01

    Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification/combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production through efficient fuel used is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy-efficiency impacts of controlling CO{sub 2} in such systems and to provide the CO{sub 2} budget, or an to equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. The value used for the ``equivalent CO{sub 2}`` budget is 1 kg/kWh CO{sub 2}. The base case for the comparison is a 457-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal, and in-bed sulfur removal. Mining, preparation, and transportation of the coal and limestone result in a net system electric power production of 454 MW with a 0.835 kg/kwh CO{sub 2} release rate. For comparison, the gasifier output is taken through a water-gas shift to convert CO to CO{sub 2} and then processed in a glycol-based absorber unit to recover CO{sub 2} Prior to the combustion turbine. A 500-km pipeline then transports the CO{sub 2} for geological sequestering. The net electric power production for the system with CO{sub 2} recovery is 381 MW with a 0.156 kg/kwh CO{sub 2} release rate.

  6. Carbon dioxide control costs for gasification combined-cycle plants in the United States

    SciTech Connect

    Brown, D.R.; Humphreys, K.K.; Vail, L.W.

    1993-06-01

    This study focused on evaluating the cost of recovering CO{sub 2} from coal gasification, combined-cycle (GCC) power plants and transporting the CO{sub 2} in pipelines for disposal in deep ocean water, depleted oil and gas reservoirs, or aquifers. Other fuels and conversion technologies were not evaluated. Technical feasibility, environmental acceptability, and other implementation issues were not addressed in detail. Ocean disposal of CO{sub 2} offers essentially unlimited capacity, but is distant from most US coal-fired power plants and presents environmental concerns at the disposal point. Depleted oil and gas reservoirs are also distant from most US coal-fired power plants and have a more limited disposal capacity,, but were calculated to have a potential capacity more than double that required to dispose of all CO{sub 2} from 830 GCC power plants (380-mwe each) for a period of 40 years. The existence of oil and gas reservoirs provides ``proof`` of the long-term CO{sub 2} confinement potential in these formations. In contrast, aquifer disposal is believed to be significantly riskier. Key concerns are lack of geologic knowledge at depths adequate for CO{sub 2} disposal; uncertainty about geochemical impacts from decreased water pH; and long-term confinement, which is unproven for non-petroleum formations. Carbon dioxide recovery at GCC plants increased the levelized energy cost (LEC) by about one third relative to a reference GCC plant without CO{sub 2} recovery. The transmission distance is the key factor affecting total CO{sub 2} control costs.

  7. Proceedings: carbon dioxide research conference: carbon dioxide, science and consensus

    SciTech Connect

    Not Available

    1983-01-01

    Papers presented discussed the carbon cycle climate modelling, the West Antarctic ice sheet, and first detection of climate change. An appendix lists the carbon dioxide research programs of the European Community and of the World Meteorological Organization. A list of delegates is also included.

  8. Carbon dioxide concentrator

    NASA Technical Reports Server (NTRS)

    Williams, C. F.; Huebscher, R. G.

    1972-01-01

    Passed exhaled air through electrochemical cell containing alkali metal carbonate aqueous solution, and utilizes platinized electrodes causing reaction of oxygen at cathode with water in electrolyte, producing hydroxyl ions which react with carbon dioxide to form carbonate ions.

  9. Carbon Dioxide Absorbents

    DTIC Science & Technology

    1950-05-17

    carbondioxide content of the solution was then determined. A gas mixture containing 2.6% carbon dioxide and 97.4% nitrogen was prepared in the...which carbon dioxide is removed by heat0 Since this step is usually carried out by "steam stripping ", that is, contacting the solution at its boiling...required to produce the steam required for stripping the carbon dioxide from the s olution. The method ueed in this investigation for determining the

  10. CARBON DIOXIDE REDUCTION SYSTEM.

    DTIC Science & Technology

    CARBON DIOXIDE , *SPACE FLIGHT, RESPIRATION, REDUCTION(CHEMISTRY), RESPIRATION, AEROSPACE MEDICINE, ELECTROLYSIS, INSTRUMENTATION, ELECTROLYTES, VOLTAGE, MANNED, YTTRIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, NICKEL.

  11. Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera".

    PubMed

    Rasigraf, Olivia; Kool, Dorien M; Jetten, Mike S M; Sinninghe Damsté, Jaap S; Ettwig, Katharina F

    2014-04-01

    Methane is an important greenhouse gas and the most abundant hydrocarbon in the Earth's atmosphere. Methanotrophic microorganisms can use methane as their sole energy source and play a crucial role in the mitigation of methane emissions in the environment. "Candidatus Methylomirabilis oxyfera" is a recently described intra-aerobic methanotroph that is assumed to use nitric oxide to generate internal oxygen to oxidize methane via the conventional aerobic pathway, including the monooxygenase reaction. Previous genome analysis has suggested that, like the verrucomicrobial methanotrophs, "Ca. Methylomirabilis oxyfera" encodes and transcribes genes for the Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. Here we provide multiple independent lines of evidence for autotrophic carbon dioxide fixation by "Ca. Methylomirabilis oxyfera" via the CBB cycle. The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), a key enzyme of the CBB cycle, in cell extracts from an "Ca. Methylomirabilis oxyfera" enrichment culture was shown to account for up to 10% of the total methane oxidation activity. Labeling studies with whole cells in batch incubations supplied with either (13)CH4 or [(13)C]bicarbonate revealed that "Ca. Methylomirabilis oxyfera" biomass and lipids became significantly more enriched in (13)C after incubation with (13)C-labeled bicarbonate (and unlabeled methane) than after incubation with (13)C-labeled methane (and unlabeled bicarbonate), providing evidence for autotrophic carbon dioxide fixation. Besides this experimental approach, detailed genomic and transcriptomic analysis demonstrated an operational CBB cycle in "Ca. Methylomirabilis oxyfera." Altogether, these results show that the CBB cycle is active and plays a major role in carbon assimilation by "Ca. Methylomirabilis oxyfera" bacteria. Our results suggest that autotrophy might be more widespread among methanotrophs than was previously assumed and implies that a methanotrophic

  12. Carbon Dioxide Absorption Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  13. Carbon Dioxide and Climate.

    ERIC Educational Resources Information Center

    Brewer, Peter G.

    1978-01-01

    The amount of carbon dioxide in the atmosphere is increasing at a rate that could cause significant warming of the Earth's climate in the not too distant future. Oceanographers are studying the role of the ocean as a source of carbon dioxide and as a sink for the gas. (Author/BB)

  14. Carbon Dioxide Fountain

    ERIC Educational Resources Information Center

    Kang, Seong-Joo; Ryu, Eun-Hee

    2007-01-01

    This article presents the development of a carbon dioxide fountain. The advantages of the carbon dioxide fountain are that it is odorless and uses consumer chemicals. This experiment also is a nice visual experiment that allows students to see evidence of a gaseous reagent being consumed when a pressure sensor is available. (Contains 3 figures.)…

  15. FY-05 Second Quarter Report On Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    SciTech Connect

    Chang Oh

    2005-04-01

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas- Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future.

  16. NERI Quarterly Progress Report -- April 1 - June 30, 2005 -- Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    SciTech Connect

    Chang Oh

    2005-07-01

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas-Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future.

  17. Carbon dioxide removal process

    DOEpatents

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  18. Nonlinear Interactions between Climate and Atmospheric Carbon Dioxide Drivers of Terrestrial and Marine Carbon Cycle Changes from 1850 to 2300

    NASA Astrophysics Data System (ADS)

    Hoffman, F. M.; Randerson, J. T.; Moore, J. K.; Goulden, M.; Lindsay, K. T.; Munoz, E.; Fu, W.; Swann, A. L. S.; Koven, C. D.; Mahowald, N. M.; Bonan, G. B.

    2015-12-01

    Quantifying feedbacks between the global carbon cycle and Earth's climate system is important for predicting future atmospheric CO2 levels and informing carbon management and energy policies. We applied a feedback analysis framework to three sets of Historical (1850-2005), Representative Concentration Pathway 8.5 (2006-2100), and its extension (2101-2300) simulations from the Community Earth System Model version 1.0 (CESM1(BGC)) to quantify drivers of terrestrial and ocean responses of carbon uptake. In the biogeochemically coupled simulation (BGC), the effects of CO2 fertilization and nitrogen deposition influenced marine and terrestrial carbon cycling. In the radiatively coupled simulation (RAD), the effects of rising temperature and circulation changes due to radiative forcing from CO2, other greenhouse gases, and aerosols were the sole drivers of carbon cycle changes. In the third, fully coupled simulation (FC), both the biogeochemical and radiative coupling effects acted simultaneously. We found that climate-carbon sensitivities derived from RAD simulations produced a net ocean carbon storage climate sensitivity that was weaker and a net land carbon storage climate sensitivity that was stronger than those diagnosed from the FC and BGC simulations. For the ocean, this nonlinearity was associated with warming-induced weakening of ocean circulation and mixing that limited exchange of dissolved inorganic carbon between surface and deeper water masses. For the land, this nonlinearity was associated with strong gains in gross primary production in the FC simulation, driven by enhancements in the hydrological cycle and increased nutrient availability. We developed and applied a nonlinearity metric to rank model responses and driver variables. The climate-carbon cycle feedback gain at 2300 was 42% higher when estimated from climate-carbon sensitivities derived from the difference between FC and BGC than when derived from RAD. These differences are important to

  19. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    SciTech Connect

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features

  20. Environmental carbon dioxide control

    NASA Technical Reports Server (NTRS)

    Onischak, M.; Baker, B.; Gidaspow, D.

    1974-01-01

    A study of environmental carbon dioxide control for NASA EVA missions found solid potassium carbonate to be an effective regenerable absorbent in maintaining low carbon dioxide levels. The supported sorbent was capable of repeated regeneration below 150 C without appreciable degradation. Optimum structures in the form of thin pliable sheets of carbonate, inert support and binder were developed. Interpretation of a new solid-gas pore closing model helped predict the optimum sorbent and analysis of individual sorbent sheet performance in a thin rectangular channel sorber can predict packed bed performance.

  1. Carbon dioxide sensor

    DOEpatents

    Dutta, Prabir K [Worthington, OH; Lee, Inhee [Columbus, OH; Akbar, Sheikh A [Hilliard, OH

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  2. Carbon dioxide recycling

    EPA Science Inventory

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  3. Polymeric Carbon Dioxide

    SciTech Connect

    Yoo, C-S.

    1999-11-02

    Synthesis of polymeric carbon dioxide has long been of interest to many chemists and materials scientists. Very recently we discovered the polymeric phase of carbon dioxide (called CO{sub 2}-V) at high pressures and temperatures. Our optical and x-ray results indicate that CO{sub 2}-V is optically non-linear, generating the second harmonic of Nd: YLF laser at 527 nm and is also likely superhard similar to cubic-boron nitride or diamond. CO{sub 2}-V is made of CO{sub 4} tetrahedra, analogous to SiO{sub 2} polymorphs, and is quenchable at ambient temperature at pressures above 1 GPa. In this paper, we describe the pressure-induced polymerization of carbon dioxide together with the stability, structure, and mechanical and optical properties of polymeric CO{sub 2}-V. We also present some implications of polymeric CO{sub 2} for high-pressure chemistry and new materials synthesis.

  4. Method for carbon dioxide splitting

    DOEpatents

    Miller, James E.; Diver, Jr., Richard B.; Siegel, Nathan P.

    2017-02-28

    A method for splitting carbon dioxide via a two-step metal oxide thermochemical cycle by heating a metal oxide compound selected from an iron oxide material of the general formula A.sub.xFe.sub.3-xO.sub.4, where 0.ltoreq.x.ltoreq.1 and A is a metal selected from Mg, Cu, Zn, Ni, Co, and Mn, or a ceria oxide compound of the general formula M.sub.aCe.sub.bO.sub.c, where 0carbon dioxide, and heating to a temperature less than approximately 1400 C, thereby producing carbon monoxide gas and the original metal oxide compound.

  5. CARBON DIOXIDE SEPARATION BY SELECTIVE PERMEATION.

    DTIC Science & Technology

    CARBON DIOXIDE , SEPARATION), (*PERMEABILITY, CARBON DIOXIDE ), POROUS MATERIALS, SILICON COMPOUNDS, RUBBER, SELECTION, ADSORPTION, TEMPERATURE, PRESSURE, POLYMERS, FILMS, PLASTICS, MEMBRANES, HUMIDITY.

  6. Bench Remarks: Carbon Dioxide.

    ERIC Educational Resources Information Center

    Bent, Henry A.

    1987-01-01

    Discusses the properties of carbon dioxide in its solid "dry ice" stage. Suggests several demonstrations and experiments that use dry ice to illustrate Avogadro's Law, Boyle's Law, Kinetic-Molecular Theory, and the effects of dry ice in basic solution, in limewater, and in acetone. (TW)

  7. The ocean quasi-homogeneous layer model and global cycle of carbon dioxide in system of atmosphere-ocean

    NASA Astrophysics Data System (ADS)

    Glushkov, Alexander; Glushkov, Alexander; Loboda, Nataliya; Khokhlov, Valery; Serbov, Nikoly; Svinarenko, Andrey

    The purpose of this paper is carrying out the detailed model of the CO2 global turnover in system of "atmosphere-ocean" with using the ocean quasi-homogeneous layer model. Practically all carried out models are functioning in the average annual regime and accounting for the carbon distribution in bio-sphere in most general form (Glushkov et al, 2003). We construct a modified model for cycle of the carbon dioxide, which allows to reproduce a season dynamics of carbon turnover in ocean with account of zone ocean structure (up quasi-homogeneous layer, thermocline and deepest layer). It is taken into account dependence of the CO2 transfer through the bounder between atmosphere and ocean upon temperature of water and air, wind velocity, buffer mechanism of the CO2 dissolution. The same program is realized for atmosphere part of whole system. It is obtained a tempo-ral and space distribution for concentration of non-organic carbon in ocean, partial press of dissolute CO2 and value of exchange on the border between atmosphere and ocean. It is estimated a role of the wind intermixing of the up ocean layer. The increasing of this effect leads to increasing the plankton mass and further particles, which are transferred by wind, contribute to more quick immersion of microscopic shells and organic material. It is fulfilled investigation of sen-sibility of the master differential equations system solutions from the model parameters. The master differential equa-tions system, describing a dynamics of the CO2 cycle, is numerically integrated by the four order Runge-Cutt method under given initial values of valuables till output of solution on periodic regime. At first it is indicated on possible real-zation of the chaos scenario in system. On our data, the difference of the average annual values for the non-organic car-bon concentration in the up quasi-homogeneous layer between equator and extreme southern zone is 0.15 mol/m3, be-tween the equator and extreme northern zone is 0

  8. Encapsulated liquid sorbents for carbon dioxide capture.

    PubMed

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  9. Carbon dioxide dangers demonstration model

    USGS Publications Warehouse

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  10. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  11. Carbon Dioxide Effects Research and Assessment Program. The role of tropical forests on the world carbon cycle

    SciTech Connect

    Brown, S.; Lugo, A. E.; Liegel, B.

    1980-08-01

    Tropical forests constitute about half of the world's forest and are characterized by rapid rates of organic matter turnover and high storages of organic matter. Tropical forests are considered to be one of the most significant terrestrial elements in the equation that balances the carbon cycle of the world. As discussed in the paper by Tosi, tropical and subtropical latitudes are more complex in terms of climate and vegetation composition than temperate and boreal latitudes. The implications of the complexity of the tropics and the disregard of this complexity by many scientists is made evident in the paper by Brown and Lugo which shows that biomass estimates for tropical ecosystems have been overestimated by at least 100%. The paper by Brown shows that that rates of succession in the tropics are extremely rapid in terms of the ability of moist and wet forests to accumulate organic matter. Yet, in arid tropical Life Zones succession is slow. This leads to the idea that the question of whether tropical forests are sinks or sources of carbon must be analyzed in relation to Life Zones and to intensities of human activity in these Zones. The paper by Lugo presents conceptual models to illustrate this point and the paper by Tosi shows how land uses in the tropics also correspond to Life Zone characteristics. The ultimate significance of land use to the question of the carbon balance in a large region is addressed in the paper by Detwiler and Hall.

  12. Carbon dioxide absorption methanol process

    SciTech Connect

    Apffel, F.

    1989-08-29

    This patent describes a process for removing carbon dioxide from a feed stream of natural gas having at least methane, ethane and heavier. It comprises: first, separating the feed stream in a first separator to form a first stream having substantially all of the propane and heavier hydrocarbons and carbon dioxide and ethane and a second stream, having methane, carbon dioxide and ethane; separating the second stream in a second separator into a stream of carbon dioxide product and a third stream having ethane, methane and carbon dioxide: mixing at least a portion of the third stream with a polar compound; stream after the mixing in an absorber; separating the vapor and liquid of the third stream after the mixing in an absorber; absorbing the remaining unabsorbed carbon dioxide in a lean portion of the polar compound in the absorber, the absorber carbon dioxide and ethane with the polar; separating the first stream in a third separator to separate the propane and heavier hydrocarbons from the carbon dioxide and ethane, which carbon dioxide and ethane forms a fifth stream; and separating the polar compound/carbon dioxide effluent of the absorber in a fourth separator, to separate the carbon dioxide from the polar compound, the polar compound forming a sixth stream.

  13. Evaluating the impacts of new walking and cycling infrastructure on carbon dioxide emissions from motorized travel: a controlled longitudinal study

    PubMed Central

    Brand, Christian; Goodman, Anna; Ogilvie, David

    2015-01-01

    Walking and cycling is widely assumed to substitute for at least some motorized travel and thereby reduce energy use and carbon dioxide (CO2) emissions. While the evidence suggests that a supportive built environment may be needed to promote walking and cycling, it is unclear whether and how interventions in the built environment that attract walkers and cyclists may reduce transport CO2 emissions. Our aim was therefore to evaluate the effects of providing new infrastructure for walking and cycling on CO2 emissions from motorised travel. A cohort of 1849 adults completed questionnaires at baseline (2010) and one-year follow-up (2011), before and after the construction of new high-quality routes provided as part of the Sustrans Connect2 programme in three UK municipalities. A second cohort of 1510 adults completed questionnaires at baseline and two-year follow-up (2012). The participants reported their past-week travel behaviour and car characteristics from which CO2 emissions by mode and purpose were derived using methods described previously. A set of exposure measures of proximity to and use of the new routes were derived. Overall transport CO2 emissions decreased slightly over the study period, consistent with a secular trend in the case study regions. As found previously the new infrastructure was well used at one- and two-year follow-up, and was associated with population-level increases in walking, cycling and physical activity at two-year follow-up. However, these effects did not translate into sizeable CO2 effects as neither living near the infrastructure nor using it predicted changes in CO2 emissions from motorised travel, either overall or disaggregated by journey purpose. This lack of a discernible effect on travel CO2 emissions are consistent with an interpretation that some of those living nearer the infrastructure may simply have changed where they walked or cycled, while others may have walked or cycled more but few, if any, may have substituted

  14. Evaluating the impacts of new walking and cycling infrastructure on carbon dioxide emissions from motorized travel: a controlled longitudinal study.

    PubMed

    Brand, Christian; Goodman, Anna; Ogilvie, David

    2014-09-01

    Walking and cycling is widely assumed to substitute for at least some motorized travel and thereby reduce energy use and carbon dioxide (CO2) emissions. While the evidence suggests that a supportive built environment may be needed to promote walking and cycling, it is unclear whether and how interventions in the built environment that attract walkers and cyclists may reduce transport CO2 emissions. Our aim was therefore to evaluate the effects of providing new infrastructure for walking and cycling on CO2 emissions from motorised travel. A cohort of 1849 adults completed questionnaires at baseline (2010) and one-year follow-up (2011), before and after the construction of new high-quality routes provided as part of the Sustrans Connect2 programme in three UK municipalities. A second cohort of 1510 adults completed questionnaires at baseline and two-year follow-up (2012). The participants reported their past-week travel behaviour and car characteristics from which CO2 emissions by mode and purpose were derived using methods described previously. A set of exposure measures of proximity to and use of the new routes were derived. Overall transport CO2 emissions decreased slightly over the study period, consistent with a secular trend in the case study regions. As found previously the new infrastructure was well used at one- and two-year follow-up, and was associated with population-level increases in walking, cycling and physical activity at two-year follow-up. However, these effects did not translate into sizeable CO2 effects as neither living near the infrastructure nor using it predicted changes in CO2 emissions from motorised travel, either overall or disaggregated by journey purpose. This lack of a discernible effect on travel CO2 emissions are consistent with an interpretation that some of those living nearer the infrastructure may simply have changed where they walked or cycled, while others may have walked or cycled more but few, if any, may have substituted

  15. Factors influencing anthropogenic carbon dioxide uptake in the North Atlantic in models of the ocean carbon cycle

    SciTech Connect

    Smith, R.S.; Marotzke, J.

    2008-09-30

    The uptake and storage of anthropogenic carbon in the North Atlantic is investigated using different configurations of ocean general circulation/carbon cycle models. We investigate how different representations of the ocean physics in the models, which represent the range of models currently in use, affect the evolution of CO{sub 2} uptake in the North Atlantic. The buffer effect of the ocean carbon system would be expected to reduce ocean CO{sub 2} uptake as the ocean absorbs increasing amounts of CO{sub 2}. We find that the strength of the buffer effect is very dependent on the model ocean state, as it affects both the magnitude and timing of the changes in uptake. The timescale over which uptake of CO{sub 2} in the North Atlantic drops to below preindustrial levels is particularly sensitive to the ocean state which sets the degree of buffering; it is less sensitive to the choice of atmospheric CO{sub 2} forcing scenario. Neglecting physical climate change effects, North Atlantic CO{sub 2} uptake drops below preindustrial levels between 50 and 300 years after stabilisation of atmospheric CO{sub 2} in different model configurations. Storage of anthropogenic carbon in the North Atlantic varies much less among the different model configurations, as differences in ocean transport of dissolved inorganic carbon and uptake of CO{sub 2} compensate each other. This supports the idea that measured inventories of anthropogenic carbon in the real ocean cannot be used to constrain the surface uptake. Including physical climate change effects reduces anthropogenic CO{sub 2} uptake and storage in the North Atlantic further, due to the combined effects of surface warming, increased freshwater input, and a slowdown of the meridional overturning circulation. The timescale over which North Atlantic CO{sub 2} uptake drops to below preindustrial levels is reduced by about one-third, leading to an estimate of this timescale for the real world of about 50 years after the stabilisation

  16. Carbon dioxide flux from rice paddy soils in central China: effects of intermittent flooding and draining cycles.

    PubMed

    Liu, Yi; Wan, Kai-yuan; Tao, Yong; Li, Zhi-guo; Zhang, Guo-shi; Li, Shuang-lai; Chen, Fang

    2013-01-01

    A field experiment was conducted to (i) examine the diurnal and seasonal soil carbon dioxide (CO(2)) fluxes pattern in rice paddy fields in central China and (ii) assess the role of floodwater in controlling the emissions of CO(2) from soil and floodwater in intermittently draining rice paddy soil. The soil CO(2) flux rates ranged from -0.45 to 8.62 µmol.m(-2).s(-1) during the rice-growing season. The net effluxes of CO(2) from the paddy soil were lower when the paddy was flooded than when it was drained. The CO(2) emissions for the drained conditions showed distinct diurnal variation with a maximum efflux observed in the afternoon. When the paddy was flooded, daytime soil CO(2) fluxes reversed with a peak negative efflux just after midday. In draining/flooding alternating periods, a sudden pulse-like event of rapidly increasing CO(2) efflux occured in response to re-flooding after draining. Correlation analysis showed a negative relation between soil CO(2) flux and temperature under flooded conditions, but a positive relation was found under drained conditions. The results showed that draining and flooding cycles play a vital role in controlling CO(2) emissions from paddy soils.

  17. CARBON DIOXIDE FIXATION.

    SciTech Connect

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  18. Development of the ANL plant dynamics code and control strategies for the supercritical carbon dioxide Brayton cycle and code validation with data from the Sandia small-scale supercritical carbon dioxide Brayton cycle test loop.

    SciTech Connect

    Moisseytsev, A.; Sienicki, J. J.

    2011-11-07

    Significant progress has been made in the ongoing development of the Argonne National Laboratory (ANL) Plant Dynamics Code (PDC), the ongoing investigation and development of control strategies, and the analysis of system transient behavior for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycles. Several code modifications have been introduced during FY2011 to extend the range of applicability of the PDC and to improve its calculational stability and speed. A new and innovative approach was developed to couple the Plant Dynamics Code for S-CO{sub 2} cycle calculations with SAS4A/SASSYS-1 Liquid Metal Reactor Code System calculations for the transient system level behavior on the reactor side of a Sodium-Cooled Fast Reactor (SFR) or Lead-Cooled Fast Reactor (LFR). The new code system allows use of the full capabilities of both codes such that whole-plant transients can now be simulated without additional user interaction. Several other code modifications, including the introduction of compressor surge control, a new approach for determining the solution time step for efficient computational speed, an updated treatment of S-CO{sub 2} cycle flow mergers and splits, a modified enthalpy equation to improve the treatment of negative flow, and a revised solution of the reactor heat exchanger (RHX) equations coupling the S-CO{sub 2} cycle to the reactor, were introduced to the PDC in FY2011. All of these modifications have improved the code computational stability and computational speed, while not significantly affecting the results of transient calculations. The improved PDC was used to continue the investigation of S-CO{sub 2} cycle control and transient behavior. The coupled PDC-SAS4A/SASSYS-1 code capability was used to study the dynamic characteristics of a S-CO{sub 2} cycle coupled to a SFR plant. Cycle control was investigated in terms of the ability of the cycle to respond to a linear reduction in the electrical grid demand from 100% to 0% at a rate of 5

  19. Carbon Dioxide Landforms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    19 March 2004 The martian south polar residual ice cap is mostly made of frozen carbon dioxide. There is no place on Earth that a person can go to see the landforms that would be produced by erosion and sublimation of hundreds or thousands of cubic kilometers of carbon dioxide. Thus, the south polar cap of Mars is as alien as alien can get. This image, acquired in February 2004 by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), shows how the cap appears in summer as carbon dioxide is subliming away, creating a wild pattern of pits, mesas, and buttes. Darker surfaces may be areas where the ice contains impurities, such as dust, or where the surface has been roughened by the removal of ice. This image is located near 86.3oS, 0.8oW. This picture covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the top/upper left.

  20. Frozen Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    1 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a south polar residual cap landscape, formed in frozen carbon dioxide. There is no place on Earth that one can go to visit a landscape covering thousands of square kilometers with frozen carbon dioxide, so mesas, pits, and other landforms of the martian south polar region are as alien as they are beautiful. The scarps of the south polar region are known from thousands of other MGS MOC images to retreat at a rate of about 3 meters (3 yards) per martian year, indiating that slowly, over the course of the MGS mission, the amount of carbon dioxide in the martian atmosphere has probably been increasing.

    Location near: 86.9oS, 25.5oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  1. Annual carbon dioxide cycle in a montane soil: observations, modeling, and implications for weathering

    SciTech Connect

    Solomon, D.K.; Cerling, T.E.

    1987-12-01

    Profiles of CO/sub 2/ concentrations in soil and snow, soil respiration, soil and snow temperatures, and shallow ground water chemistry were monitored from March 1984 to July 1985 in a montane region neat Brighton, Utah. Significant seasonal variations in the concentrations of CO/sub 2/ in soil and snow occurred, and two principal rise-decline cycles were observed. During the first cycle the concentration of soil CO/sub 2/ at 35 cm rose from 4200 ppmv in July to a maximum of 12,400 ppmv in August and then declined to 4300 ppmv by October. This cycle is attributed to the changing production rate of soil CO/sub 2/ during the growing season. During the second cycle the concentration of CO/sub 2/ at 35 cm began to rise in November, reached a maximum of 7200 ppmv in early spring, and quickly declined to 3200 ppmv by late spring shortly after the snow cover had melted. This cycle is attributed to deterioration in the exchange of CO/sub 2/ between the soil and atmosphere due to a deep snowpack. A model based on Fick's second law of diffusion was developed to account for the temporal and spatial distribution of soil CO/sub 2/. The model predicts that soil CO/sub 2/ at 35 cm is increased by as much as 15 times due to the deep snowpack. The elevated concentration of soil CO/sub 2/, abundance of water, and above-freezing soil temperatures imply that significant soil weathering occurs during the winter in montane regions.

  2. Carbon dioxide absorption methanol process

    SciTech Connect

    Apffel, F.P.

    1987-06-23

    A process is described for removing carbon dioxide from a feed stream of natural gas, having at least methane, ethane and heavier hydrocarbon, comprising: separating the feed stream in a first separator to form a first stream, having substantially all of the propane and heavier hydrocarbons and carbon dioxide and ethane, and a second stream, having methane, carbon dioxide and ethane; mixing the second stream with a polar compound to form a third stream; separating the vapor and liquid of the third stream in the bottom portion of an absorber; absorbing carbon dioxide and ethane from the separated vapor of Step C in a lean portion of the polar compound in the absorber, the absorber carbon dioxide and ethane forming a fourth stream; separating the ethane from the polar compound and carbon dioxide in a separator; separating the first stream in a third separator to separate the propane and heavier hydrocarbons from the carbon dioxide and ethane: carbon dioxide and ethane forms a fifth stream; and separating the polar compound/carbon dioxide effluent of the second separator in a fourth separator, to separate the carbon dioxide from the polar compound. The polar compound forming a sixth stream.

  3. Corrigendum to "Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields" [J. Power Sources 268 (5 December 2014) 439-442

    NASA Astrophysics Data System (ADS)

    Majidi, Pasha; Pickup, Peter G.

    2016-09-01

    The authors regret that Equation (5) is incorrect and has resulted in errors in Fig. 4 and the efficiencies stated on p. 442. The corrected equation, figure and text are presented below. In addition, the title should be 'Sinusoidal potential cycling operation of a direct ethanol fuel cell to improve carbon dioxide yields', and the reversible cell potential quoted on p. 441 should be 1.14 V. The authors would like to apologise for any inconvenience caused.

  4. Interannual variation in the seasonal cycle of carbon dioxide concentration at Mauna Loa

    SciTech Connect

    Enting, I.G.

    1987-05-20

    A band-pass filter is used to obtain an estimate of the seasonal CO/sub 2/ cycle at Mauna Loa from monthly mean concentration data. The signal that is extracted shows interannual variations in the amplitude with, as has frequently been noted, a preponderance of larger amplitudes in recent years. An interesting feature of the signal is that abnormally small amplitude peaks in the (northern) spring are almost always followed by small-amplitude troughs in the following fall but that there is no similar correlation between the amplitudes of peaks in fall and the following spring. This suggests that the amplitude variations reflect changes in individual northern growth seasons.

  5. CO2 leakage from carbon dioxide capture and storage (CCS) systems affects organic matter cycling in surface marine sediments.

    PubMed

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; Amaro, Teresa; Greco, Silvestro; Lo Martire, Marco; Carugati, Laura; Queirós, Ana M; Widdicombe, Stephen; Danovaro, Roberto

    2016-12-01

    Carbon dioxide capture and storage (CCS), involving the injection of CO2 into the sub-seabed, is being promoted worldwide as a feasible option for reducing the anthropogenic CO2 emissions into the atmosphere. However, the effects on the marine ecosystems of potential CO2 leakages originating from these storage sites have only recently received scientific attention, and little information is available on the possible impacts of the resulting CO2-enriched seawater plumes on the surrounding benthic ecosystem. In the present study, we conducted a 20-weeks mesocosm experiment exposing coastal sediments to CO2-enriched seawater (at 5000 or 20,000 ppm), to test the effects on the microbial enzymatic activities responsible for the decomposition and turnover of the sedimentary organic matter in surface sediments down to 15 cm depth. Our results indicate that the exposure to high-CO2 concentrations reduced significantly the enzymatic activities in the top 5 cm of sediments, but had no effects on subsurface sediment horizons (from 5 to 15 cm depth). In the surface sediments, both 5000 and 20,000 ppm CO2 treatments determined a progressive decrease over time in the protein degradation (up to 80%). Conversely, the degradation rates of carbohydrates and organic phosphorous remained unaltered in the first 2 weeks, but decreased significantly (up to 50%) in the longer term when exposed at 20,000 ppm of CO2. Such effects were associated with a significant change in the composition of the biopolymeric carbon (due to the accumulation of proteins over time in sediments exposed to high-pCO2 treatments), and a significant decrease (∼20-50% at 5000 and 20,000 ppm respectively) in nitrogen regeneration. We conclude that in areas immediately surrounding an active and long-lasting leak of CO2 from CCS reservoirs, organic matter cycling would be significantly impacted in the surface sediment layers. The evidence of negligible impacts on the deeper sediments should be considered with

  6. Oil shales and carbon dioxide.

    PubMed

    Sundquist, E T; Miller, G A

    1980-05-16

    During retorting of oil shales in the western United States, carbonate minerals are calcined, releasing significant amounts of carbon dioxide. Residual organic matter in the shales may also be burned, adding more carbon dioxide to the atmosphere. The amount of carbon dioxide produced depends on the retort process and the grade and mineralogy of the shale. Preliminary calculations suggest that retorting of oil shales from the Green River Formation and burning of the product oil could release one and one-half to five times more carbon dioxide than burning of conventional oil to obtain the same amount of usable energy. The largest carbon dioxide releases are associated with retorting processes that operate at temperatures greater than about 600 degrees C.

  7. Carbon dioxide and climate

    SciTech Connect

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  8. There is more to climate than carbon dioxide.

    PubMed

    Walker, J C

    1995-07-01

    Discussion of climate change on a range of time scales has tended to focus on carbon dioxide and a changing greenhouse effect. Because carbon dioxide couples climate to ocean, land, and biota, it has appealed to scientists with an interest in the whole Earth system. Carbon dioxide has left a geological record in fossils, isotopes, and sediments, so we can reasonably expect to reconstruct its history. While important questions of detail remain to be resolved, many published applications of carbon cycle modelling suggest that we understand the biogeochemical cycles of carbon well enough to estimate carbon dioxide concentrations in the past and the future. Furthermore, we have an excellent instrumental record of recent changes in atmospheric carbon dioxide. While these considerations make carbon dioxide attractive to paleoclimatologists, they do not necessarily make it a major component of climate change. I shall argue in this paper that clouds deserve much more attention than they have been getting.

  9. Carbon dioxide/dewpoint monitor

    NASA Technical Reports Server (NTRS)

    Luczkowski, S.

    1977-01-01

    The portable Carbon Dioxide/Dewpoint Monitor was designed to permit measurements of carbon dioxide partial pressure and dewpoint and ambient gas temperature at any place within the Saturn Workshop. It required no vehicle interface other than storage. All components necessary for operation, including battery power source, were incorporated in the instrument.

  10. Coral reefs and carbon dioxide

    SciTech Connect

    Buddemeier, R.W.

    1996-03-01

    This commentary argues the conclusion from a previous article, which investigates diurnal changes in carbon dioxide partial pressure and community metabolism on coral reefs, that coral `reefs might serve as a sink, not a source, for atmospheric carbon dioxide.` Commentaries from two groups are given along with the response by the original authors, Kayanne et al. 27 refs.

  11. Carbon Cycling with Nuclear Power

    NASA Astrophysics Data System (ADS)

    Lackner, Klaus S.

    2011-11-01

    Liquid hydrocarbon fuels like gasoline, diesel or jet fuel are the most efficient ways of delivering energy to the transportation sector, in particular cars, ships and airplanes. Unfortunately, their use nearly unavoidably leads to the emission of carbon dioxide into the atmosphere. Unless an equivalent amount is removed from the air, the carbon dioxide will accumulate and significantly contribute to the man-made greenhouse effect. If fuels are made from biomass, the capture of carbon dioxide is a natural part of the cycle. Here, we discuss technical options for capturing carbon dioxide at much faster rates. We outline the basic concepts, discuss how such capture technologies could be made affordable and show how they could be integrated into a larger system approach. In the short term, the likely source of the hydrocarbon fuels is oil or gas; in the longer term, technologies that can provide energy to remove oxygen from carbon dioxide and water molecules and combine the remaining components into liquid fuels make it possible to recycle carbon between fuels and carbon dioxide in an entirely abiotic process. Here we focus on renewable and nuclear energy options for producing liquid fuels and show how air capture combined with fuel synthesis could be more economic than a transition to electric cars or hydrogen-fueled cars.

  12. Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation.

    PubMed

    Cramer, Wolfgang; Bondeau, Alberte; Schaphoff, Sibyll; Lucht, Wolfgang; Smith, Benjamin; Sitch, Stephen

    2004-03-29

    The remaining carbon stocks in wet tropical forests are currently at risk because of anthropogenic deforestation, but also because of the possibility of release driven by climate change. To identify the relative roles of CO2 increase, changing temperature and rainfall, and deforestation in the future, and the magnitude of their impact on atmospheric CO2 concentrations, we have applied a dynamic global vegetation model, using multiple scenarios of tropical deforestation (extrapolated from two estimates of current rates) and multiple scenarios of changing climate (derived from four independent offline general circulation model simulations). Results show that deforestation will probably produce large losses of carbon, despite the uncertainty about the deforestation rates. Some climate models produce additional large fluxes due to increased drought stress caused by rising temperature and decreasing rainfall. One climate model, however, produces an additional carbon sink. Taken together, our estimates of additional carbon emissions during the twenty-first century, for all climate and deforestation scenarios, range from 101 to 367 Gt C, resulting in CO2 concentration increases above background values between 29 and 129 p.p.m. An evaluation of the method indicates that better estimates of tropical carbon sources and sinks require improved assessments of current and future deforestation, and more consistent precipitation scenarios from climate models. Notwithstanding the uncertainties, continued tropical deforestation will most certainly play a very large role in the build-up of future greenhouse gas concentrations.

  13. Magnesian calcite sorbent for carbon dioxide capture.

    PubMed

    Mabry, James C; Mondal, Kanchan

    2011-01-01

    Magnesian calcite with controlled properties was synthesized for the removal of carbon dioxide. The results from characterization, reactivity and CO2 capture capacity for different synthesis conditions are reported. The magnesian calcite samples (CaCO3:MgCO3) were synthesized by the coprecipitation of specific amounts of commercially available CaO and MgO by carbon dioxide. Characterization was done with BET, SEM/EDS, particle size analysis and XRD. The capacity was measured using TGA cycles at 800 degrees C and compared for different preparation conditions. The effects of CaO, MgO and surfactant loading on the physical properties and carbonation activity were studied to determine the optimal synthesis condition. A long-term carbonation-calcination cycling test was conducted on the optimal sample. It was observed that the sample maintained its capacity to 86% of its original uptake even after 50 cycles.

  14. Carbon Dioxide (Reduction)

    SciTech Connect

    Fujita, Etsuko

    2000-01-12

    The twin problems of global warming, caused by an increase in atmospheric carbon dioxide (CO2) concentrations, and limited fossil fuel resources have stimulated research in the utilization of CO2. These problems would be partially alleviated by the development of artificial photochemical systems that could economically fix CO2 into fuels or useful chemicals. During the past one and a half decades, intensive efforts have been directed toward the photochemical production of carbon monoxide (CO) and formic acid (HCOOH) from CO2. These systems have several common elements: they all contain photosensitizers (such as metalloporphyrins, ruthenium or rhenium complexes with bipyridine), electron mediators or catalysts, and sacrificial electron donors (such as tertiary amines or ascorbic acid). Recent progress along these lines has resulted in advances in our understanding of the interaction of CO2 molecules with metal complexes, and the factors controlling the efficient storage of solar energy in the form of reduced carbon compounds.

  15. Carbon Dioxide and the Greenhouse Effect: A Problem Evaluation Activity.

    ERIC Educational Resources Information Center

    Brewer, Carol A.; Beiswenger, Jane M.

    1993-01-01

    Describes exercises to examine the global carbon cycle. Students are asked to predict consequences of increased carbon dioxide emissions into the atmosphere and to suggest ways to mitigate problems associated with these higher levels of atmospheric carbon dioxide. A comparison modeling exercise examines some of the variables related to the success…

  16. Forecasting carbon dioxide emissions.

    PubMed

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy.

  17. Carbon dioxide: atmospheric overload

    SciTech Connect

    Not Available

    1980-04-01

    The level of carbon dioxide in the atmosphere is increasing and may double within the next century. The result of this phenomenon, climatic alterations, will adversely affect crop production, water supplies, and global temperatures. Sources of CO2 include the combustion of fossil fuels, photosynthesis, and the decay of organic matter in soils. The most serious effect of possible climatic changes could occur along the boundaries of arid and semiarid regions. Shifts is precipitation patterns could accelerate the processes of desertification. An increase of 5..cap alpha..C in the average temperature of the top 1000 m of ocean water would raise sea level by 2 m. CO2 releases to the atmosphere can be reduced by controlling emissions from fossil fuel-fired facilities and by careful harvesting of forest regions. (3 photos, 5 references)

  18. Development of a prototype regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Onischak, M.

    1976-01-01

    Design information was obtained for a new, regenerable carbon dioxide control system for extravehicular activity life support systems. Solid potassium carbonate was supported in a thin porous sheet form and fabricated into carbon dioxide absorber units. Carbon dioxide and water in the life support system atmosphere react with the potassium carbonate and form potassium bicarbonate. The bicarbonate easily reverts to the carbonate by heating to 150 deg C. The methods of effectively packing the sorbent material into EVA-sized units and the effects of inlet concentrations, flowrate, and temperature upon performance were investigated. The cycle life of the sorbent upon the repeated thermal regenerations was demonstrated through 90 cycles.

  19. The Contemporary Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Houghton, R. A.

    2003-12-01

    The global carbon cycle refers to the exchanges of carbon within and between four major reservoirs: the atmosphere, the oceans, land, and fossil fuels. Carbon may be transferred from one reservoir to another in seconds (e.g., the fixation of atmospheric CO2 into sugar through photosynthesis) or over millennia (e.g., the accumulation of fossil carbon (coal, oil, gas) through deposition and diagenesis of organic matter). This chapter emphasizes the exchanges that are important over years to decades and includes those occurring over the scale of months to a few centuries. The focus will be on the years 1980-2000 but our considerations will broadly include the years ˜1850-2100. Chapter 8.09, deals with longer-term processes that involve rates of carbon exchange that are small on an annual timescale (weathering, vulcanism, sedimentation, and diagenesis).The carbon cycle is important for at least three reasons. First, carbon forms the structure of all life on the planet, making up ˜50% of the dry weight of living things. Second, the cycling of carbon approximates the flows of energy around the Earth, the metabolism of natural, human, and industrial systems. Plants transform radiant energy into chemical energy in the form of sugars, starches, and other forms of organic matter; this energy, whether in living organisms or dead organic matter, supports food chains in natural ecosystems as well as human ecosystems, not the least of which are industrial societies habituated (addicted?) to fossil forms of energy for heating, transportation, and generation of electricity. The increased use of fossil fuels has led to a third reason for interest in the carbon cycle. Carbon, in the form of carbon dioxide (CO2) and methane (CH4), forms two of the most important greenhouse gases. These gases contribute to a natural greenhouse effect that has kept the planet warm enough to evolve and support life (without the greenhouse effect the Earth's average temperature would be -33

  20. Reducing carbon dioxide to products

    SciTech Connect

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  1. Tunable pulsed carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Megie, G. J.; Menzies, R. T.

    1981-01-01

    Transverse electrically-excited-atmosphere (TEA) laser is continuously tunable over several hundred megahertz about centers of spectral lines of carbon dioxide. It is operated in single longitudinal mode (SLM) by injection of beam from continuous-wave, tunable-waveguide carbon dioxide laser, which serves as master frequency-control oscillator. Device measures absorption line of ozone; with adjustments, it is applicable to monitoring of atmospheric trace species.

  2. [Life support of the Mars exploration crew. Control of a zeolite system for carbon dioxide removal from space cabin air within a closed air regeneration cycle].

    PubMed

    Chekov, Iu F

    2009-01-01

    The author describes a zeolite system for carbon dioxide removal integrated into a closed air regeneration cycle aboard spacecraft. The continuous operation of a double-adsorbent regeneration system with pCO2-dependable productivity is maintained through programmable setting of adsorption (desorption) semicycle time. The optimal system regulation curve is presented within the space of statistical performance family obtained in quasi-steady operating modes with controlled parameters of the recurrent adsorption-desorption cycle. The automatically changing system productivity ensures continuous intake of concentrated CO2. Control of the adsorption-desorption process is based on calculation of the differential adsorption (desorption) heat from gradient of adsorbent and test inert substance temperatures. The adaptive algorithm of digital control is implemented through the standard spacecraft interface with the board computer system and programmable microprocessor-based controllers.

  3. Magnesite disposal of carbon dioxide

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Wendt, C.H.

    1997-08-01

    In this paper we report our progress on developing a method for carbon dioxide disposal whose purpose it is to maintain coal energy competitive even is environmental and political pressures will require a drastic reduction in carbon dioxide emissions. In contrast to most other methods, our approach is not aiming at a partial solution of the problem, or at buying time for phasing out fossil energy. Instead, its purpose is to obtain a complete and economic solution of the problem, and thus maintain access to the vast fossil energy reservoir. A successful development of this technology would guarantee energy availability for many centuries even if world economic growth the most optimistic estimates that have been put forward. Our approach differs from all others in that we are developing an industrial process which chemically binds the carbon dioxide in an exothermic reaction into a mineral carbonate that is thermodynamically stable and environmentally benign.

  4. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... performance. (b) Zero the carbon dioxide analyzer with either zero-grade air or zero-grade nitrogen....

  5. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle... nitrogen. (c) Calibrate on each normally used operating range with carbon dioxide in N2 calibration...

  6. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle... nitrogen. (c) Calibrate on each normally used operating range with carbon dioxide in N2 calibration...

  7. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... performance. (b) Zero the carbon dioxide analyzer with either zero-grade air or zero-grade nitrogen....

  8. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle... nitrogen. (c) Calibrate on each normally used operating range with carbon dioxide in N2 calibration...

  9. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle... nitrogen. (c) Calibrate on each normally used operating range with carbon dioxide in N2 calibration...

  10. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle... nitrogen. (c) Calibrate on each normally used operating range with carbon dioxide in N2 calibration...

  11. Carbon Dioxide - Our Common "Enemy"

    NASA Technical Reports Server (NTRS)

    James, John T.; Macatangay, Ariel

    2009-01-01

    Health effects of brief and prolonged exposure to carbon dioxide continue to be a concern for those of us who manage this pollutant in closed volumes, such as in spacecraft and submarines. In both examples, considerable resources are required to scrub the atmosphere to levels that are considered totally safe for maintenance of crew health and performance. Defining safe levels is not a simple task because of many confounding factors, including: lack of a robust database on human exposures, suspected significant variations in individual susceptibility, variations in the endpoints used to assess potentially adverse effects, the added effects of stress, and the fluid shifts associated with micro-gravity (astronauts only). In 2007 the National Research Council proposed revised Continuous Exposure Guidelines (CEGLs) and Emergency Exposure Guidelines (EEGLs) to the U.S. Navy. Similarly, in 2008 the NASA Toxicology Group, in cooperation with another subcommittee of the National Research Council, revised Spacecraft Maximum Allowable Concentrations (SMACs). In addition, a 1000-day exposure limit was set for long-duration spaceflights to celestial bodies. Herein we examine the rationale for the levels proposed to the U.S. Navy and compare this rationale with the one used by NASA to set its limits. We include a critical review of previous studies on the effects of exposure to carbon dioxide and attempt to dissect out the challenges associated with setting fully-defensible limits. We also describe recent experiences with management of carbon dioxide aboard the International Space Station with 13 persons aboard. This includes the tandem operations of the Russian Vozduk and the U.S. Carbon Dioxide Removal System. A third removal system is present while the station is docked to the Shuttle spacecraft, so our experience includes the lithium hydroxide system aboard Shuttle for the removal of carbon dioxide. We discuss strategies for highly-efficient, regenerable removal of carbon

  12. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Structural and creep-fatigue evaluation

    DOE PAGES

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; ...

    2016-06-06

    A supercritical carbon dioxide (sCO2) Brayton cycle is an emerging high energy-density cycle undergoing extensive research due to the appealing thermo-physical properties of sCO2 and single phase operation. Development of a solar receiver capable of delivering sCO2 at 20 MPa and 700 °C is required for implementation of the high efficiency (~50%) solar powered sCO2 Brayton cycle. In this work, extensive candidate materials are review along with tube size optimization using the ASME Boiler and Pressure Vessel Code. Moreover, temperature and pressure distribution obtained from the thermal-fluid modeling (presented in a complementary publication) are used to evaluate the thermal andmore » mechanical stresses along with detailed creep-fatigue analysis of the tubes. For resulting body stresses were used to approximate the lifetime performance of the receiver tubes. A cyclic loading analysis is performed by coupling the Strain-Life approach and the Larson-Miller creep model. The structural integrity of the receiver was examined and it was found that the stresses can be withstood by specific tubes, determined by a parametric geometric analysis. The creep-fatigue analysis display the damage accumulation due to cycling and the permanent deformation on the tubes showed that the tubes can operate for the full lifetime of the receiver.« less

  13. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Structural and creep-fatigue evaluation

    SciTech Connect

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Dutta, Pradip

    2016-06-06

    A supercritical carbon dioxide (sCO2) Brayton cycle is an emerging high energy-density cycle undergoing extensive research due to the appealing thermo-physical properties of sCO2 and single phase operation. Development of a solar receiver capable of delivering sCO2 at 20 MPa and 700 °C is required for implementation of the high efficiency (~50%) solar powered sCO2 Brayton cycle. In this work, extensive candidate materials are review along with tube size optimization using the ASME Boiler and Pressure Vessel Code. Moreover, temperature and pressure distribution obtained from the thermal-fluid modeling (presented in a complementary publication) are used to evaluate the thermal and mechanical stresses along with detailed creep-fatigue analysis of the tubes. For resulting body stresses were used to approximate the lifetime performance of the receiver tubes. A cyclic loading analysis is performed by coupling the Strain-Life approach and the Larson-Miller creep model. The structural integrity of the receiver was examined and it was found that the stresses can be withstood by specific tubes, determined by a parametric geometric analysis. The creep-fatigue analysis display the damage accumulation due to cycling and the permanent deformation on the tubes showed that the tubes can operate for the full lifetime of the receiver.

  14. Advancing the use of radiocarbon in studies of global and regional carbon cycling with high precision measurements of carbon-14 in carbon dioxide from the Scripps Carbon Dioxide Program

    NASA Astrophysics Data System (ADS)

    Graven, Heather Dawn

    Measurements of 14C in atmospheric CO2 have served as a powerful geochemical tracer since the first observation programs began over 50 years ago. As the nuclear weapons tests of the 1950s and 60s caused an enormous perturbation to natural atmospheric 14C levels, tracking the response of 14C in CO2 provided a measure of exchange rates between different regions of the atmosphere and between the troposphere and the ocean surface and terrestrial biosphere. Early measurements of 14C/12C, or Delta14 C, in tree rings provided clear evidence that rising CO2 concentrations were due to human activities by revealing the dilution of 14C in the atmosphere by the combustion of million year old fossil carbon, a process termed the "Suess Effect". This thesis aimed to continue and expand the use of Delta14 C in atmospheric CO2 for investigating carbon cycle dynamics. Since much of the excess 14C derived from nuclear weapons testing has been redistributed into oceanic and biospheric reservoirs, trends and gradients in Delta14C of CO2 have diminished to levels that are nearly commensurate with measurement precision at most laboratories. Development of improved methods for Delta14C analysis by accelerator mass spectrometry at Lawrence Livermore National Laboratory advanced measurement uncertainty to 1.7‰. Application of the improved analytical procedures to an archive of CO 2 samples from the Scripps CO2 Program produced 2-15 year monthly time series of Delta14C at seven global sampling stations. The high precision observations show variability in the secular trend of Delta14C that could enable new insights to the climatic influences on CO2 exchange. Measurement of a shift in the Delta 14C gradient between the Northern and Southern Hemispheres since the 1980s also places constraints on regional fluxes of carbon, with particular relevance to Southern Ocean dynamics. The measurements presented here contribute significantly to the amount and global coverage of recent Delta14 C

  15. Carbon dioxide embolism during laparoscopic surgery.

    PubMed

    Park, Eun Young; Kwon, Ja-Young; Kim, Ki Jun

    2012-05-01

    Clinically significant carbon dioxide embolism is a rare but potentially fatal complication of anesthesia administered during laparoscopic surgery. Its most common cause is inadvertent injection of carbon dioxide into a large vein, artery or solid organ. This error usually occurs during or shortly after insufflation of carbon dioxide into the body cavity, but may result from direct intravascular insufflation of carbon dioxide during surgery. Clinical presentation of carbon dioxide embolism ranges from asymptomatic to neurologic injury, cardiovascular collapse or even death, which is dependent on the rate and volume of carbon dioxide entrapment and the patient's condition. We reviewed extensive literature regarding carbon dioxide embolism in detail and set out to describe the complication from background to treatment. We hope that the present work will improve our understanding of carbon dioxide embolism during laparoscopic surgery.

  16. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  17. Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation.

    PubMed

    Khadem, Ahmad F; Pol, Arjan; Wieczorek, Adam; Mohammadi, Seyed S; Francoijs, Kees-Jan; Stunnenberg, Henk G; Jetten, Mike S M; Op den Camp, Huub J M

    2011-09-01

    Genome data of the extreme acidophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicumstrain SolV indicated the ability of autotrophic growth. This was further validated by transcriptome analysis, which showed that all genes required for a functional Calvin-Benson-Bassham (CBB) cycle were transcribed. Experiments with (13)CH(4) or (13)CO(2) in batch and chemostat cultures demonstrated that CO(2) is the sole carbon source for growth of strain SolV. In the presence of CH(4), CO(2) concentrations in the headspace below 1% (vol/vol) were growth limiting, and no growth was observed when CO(2)concentrations were below 0.3% (vol/vol). The activity of the key enzyme of the CBB cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), measured with a (13)C stable-isotope method was about 70 nmol CO(2) fixed · min(-1)· mg of protein(-1). An immune reaction with antibody against the large subunit of RuBisCO on Western blots was found only in the supernatant fractions of cell extracts. The apparent native mass of the RuBisCO complex in strain SolV was about 482 kDa, probably consisting of 8 large (53-kDa) and 8 small (16-kDa) subunits. Based on phylogenetic analysis of the corresponding RuBisCO gene, we postulate that RuBisCO of the verrucomicrobial methanotrophs represents a new type of form I RuBisCO.

  18. Process for sequestering carbon dioxide and sulfur dioxide

    DOEpatents

    Maroto-Valer, M. Mercedes; Zhang, Yinzhi; Kuchta, Matthew E.; Andresen, John M.; Fauth, Dan J.

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  19. The carbon cycle and atmospheric CO2: Natural variations archean to present; Proceedings of the Chapman Conference on Natural Variations in Carbon Dioxide and the Carbon Cycle, Tarpon Springs, FL, January 9-13, 1984

    NASA Astrophysics Data System (ADS)

    Sundquist, E. T.; Broecker, W. S.

    The present conference on the history of the relationship between atmospheric CO2 and the carbon cycle treats data obtained concerning the most recent deglaciation, the Pleistocene, the Zenozoic, and the Phanerozoic-Precambrian. Specific attention is given to the geophysical implications of the tropospheric methane cycle, transient response of the marine carbon cycle, factors regulating glacial to interglacial CO2 changes, the high latitude ocean as a control of atmospheric CO2, and the relationships among atmospheric CO2, orbital forcing, and climate. Also discussed are the distribution of major vegetation types during the Tertiary, a 'Strangelove' ocean in the earliest Tertiary, high atmospheric CO2 as a plausible mechanism for warm Cretaceous climates, and potential estimation errors in carbonate rock accumulation over geologic time.

  20. Carbon dioxide transport over complex terrain

    USGS Publications Warehouse

    Sun, Jielun; Burns, Sean P.; Delany, A.C.; Oncley, S.P.; Turnipseed, A.; Stephens, B.; Guenther, A.; Anderson, D.E.; Monson, R.

    2004-01-01

    The nocturnal transport of carbon dioxide over complex terrain was investigated. The high carbon dioxide under very stable conditions flows to local low-ground. The regional drainage flow dominates the carbon dioxide transport at the 6 m above the ground and carbon dioxide was transported to the regional low ground. The results show that the local drainage flow was sensitive to turbulent mixing associated with local wind shear.

  1. High capacity carbon dioxide sorbent

    DOEpatents

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  2. Modelling Sublimation of Carbon Dioxide

    ERIC Educational Resources Information Center

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  3. Enhanced oil recovery using carbon dioxide

    SciTech Connect

    Cullick, A.S.

    1986-09-02

    A method is described for increasing the solubility of a polymer in dense-phase carbon dioxide, which comprises dissolving a substantially water-insoluble polymer in dense-phase carbon dioxide in the presence of an entrainer which is soluble in the dense phase carbon dioxide.

  4. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  5. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  6. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  7. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  8. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  9. 40 CFR 86.1524 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and...

  10. 40 CFR 86.1524 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and...

  11. 40 CFR 86.1524 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and...

  12. 40 CFR 86.1524 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Carbon dioxide analyzer calibration... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New...

  13. 40 CFR 86.1524 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and...

  14. Moisture swing sorbent for carbon dioxide capture from ambient air.

    PubMed

    Wang, Tao; Lackner, Klaus S; Wright, Allen

    2011-08-01

    An amine-based anion exchange resin dispersed in a flat sheet of polypropylene was prepared in alkaline forms so that it would capture carbon dioxide from air. The resin, with quaternary ammonium cations attached to the polymer structure and hydroxide or carbonate groups as mobile counterions, absorbs carbon dioxide when dry and releases it when wet. In ambient air, the moist resin dries spontaneously and subsequently absorbs carbon dioxide. This constitutes a moisture induced cycle, which stands in contrast to thermal pressure swing based cycles. This paper aims to determine the isothermal performance of the sorbent during such a moisture swing. Equilibrium experiments show that the absorption and desorption process can be described well by a Langmuir isothermal model. The equilibrium partial pressure of carbon dioxide over the resin at a given loading state can be increased by 2 orders of magnitude by wetting the resin.

  15. CARBON DIOXIDE AS A FEEDSTOCK.

    SciTech Connect

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  16. Effects of pressure and pressure cycling on disinfection of Enterococcus sp. in seawater using pressurized carbon dioxide with different content rates.

    PubMed

    Dang, Loc T T; Imai, Tsuyoshi; Le, Tuan V; Nishihara, Satoshi; Higuchi, Takaya; Nguyen, Mai K D; Kanno, Ariyo; Yamamoto, Koichi; Sekine, Masahiko

    2016-09-18

    Interest is growing in a disinfection technique for water treatment without disinfection byproducts. This study presents the result of using a liquid-film-forming apparatus at less than 1.0 MPa for disinfection of seawater. The sensitivity of Enterococcus sp. (ATCC 202155) to the pressurized carbon dioxide (CO2) was examined under various conditions of pressure cycling, pressure, working volume ratio (WVR), and CO2 content rate. The key influences on frequency and magnitude of pressure cycling in enhancing Enterococcus sp. inactivation are elucidated. The results reveal strong correlation between pressure cycling and inactivation efficiency (P-value < 0.001). The outcome of linear regression model analysis suggests that the model can explain 93%, 85%, and 89% of the inactivation efficiency of (25% CO2 + 75% N2), (50% CO2 + 50% N2), and 100% CO2, respectively. The predicted value was fit with experimental results (p-value <0.05). Under identical treatment conditions (pressure = 0.9 MPa, ΔP = 0.14 MPa, 70% WVR, and 20 ± 1°C), treatment with pressurized CO2 (100% purity) resulted in complete inactivation 5.2 log of Enterococcus sp. after 70 cycles within 20 min. The Enterococcus sp. inactivation of pressurized CO2 followed first-order reaction kinetics. The smallest D-value (largest k-value) was induced by pressurized CO2 (100% purity) at 0.9 MPa, which was obtained at 3.85 min (0.5988 min(-1), R(2) ≥ 0.95). The findings could provide an effective method for enhanced bactericidal performance of pressurized CO2, to address recently emerging problems in water disinfection.

  17. Carbon dioxide conversion over carbon-based nanocatalysts.

    PubMed

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.

  18. Summer Ice and Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Kukla, G.; Gavin, J.

    1981-10-01

    The extent of Antarctic pack ice in the summer, as charted from satellite imagery, decreased by 2.5 million square kilometers between 1973 and 1980. The U.S. Navy and Russian atlases and whaling and research ship reports from the 1930's indicate that summer ice conditions earlier in this century were heavier than the current average. Surface air temperatures along the seasonally shifting belt of melting snow between 55 degrees and 80 degrees N during spring and summer were higher in 1974 to 1978 than in 1934 to 1938. The observed departures in the two hemispheres qualitatively agree with the predicted impact of an increase in atmospheric carbon dioxide. However, since it is not known to what extent the changes in snow and ice cover and in temperature can be explained by the natural variability of the climate system or by other processes unrelated to carbon dioxide, a cause-and-effect relation cannot yet be established.

  19. Summer ice and carbon dioxide

    SciTech Connect

    Kukla, G.; Gavin, J.

    1981-10-30

    The extent of Antarctic pack ice in the summer, as charted from satellite imagery, decreased by 2.5 million square kilometers between 1973 and 1980. The U.S. Navy and Russian atlases and whaling and reseach ship reports from the 1930's indicate that summer ice conditions earlier in this century were heavier than the current average. Surface air temperatures along the seasonally shifting belt of melting snow between 55/sup o/ and 80/sup o/N during spring and summer were higher in 1974 to 1978 than in 1934 to 1938. The observed departures in the two hemispheres qualitatively agree with the predicted impact of an increase in atmospheric carbon dioxide. However, since it is not known to what extent the changes in snow and ice cover and in temperature can be explained by the natural variability of the climate system or by other processes unrelated to carbon dioxide, a cause-and-effect relation cannot yet be established.

  20. Method for carbon dioxide sequestration

    SciTech Connect

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  1. Oxygen and carbon dioxide sensing

    NASA Technical Reports Server (NTRS)

    Ren, Fan (Inventor); Pearton, Stephen John (Inventor)

    2012-01-01

    A high electron mobility transistor (HEMT) capable of performing as a CO.sub.2 or O.sub.2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.

  2. The Impact of Carbon Dioxide on Climate.

    ERIC Educational Resources Information Center

    MacDonald, Gordon J.

    1979-01-01

    Examines the relationship between climatic change and carbon dioxide from the historical perspective; details the contributions of carbon-based fuels to increasing carbon dioxide concentrations; and using global circulation models, discusses the future impact of the heavy reliance of our society on carbon-based fuels on climatic change. (BT)

  3. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    SciTech Connect

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  4. Seeing the Carbon Cycle

    ERIC Educational Resources Information Center

    Drouin, Pamela; Welty, David J.; Repeta, Daniel; Engle-Belknap, Cheryl A.; Cramer, Catherine; Frashure, Kim; Chen, Robert

    2006-01-01

    In this article, the authors present a classroom experiment that was developed to introduce middle school learners to the carbon cycle. The experiment deals with transfer of CO[subscript 2] between liquid reservoirs and the effect CO[subscript 2] has on algae growth. It allows students to observe the influence of the carbon cycle on algae growth,…

  5. The carbon cycle revisited

    NASA Technical Reports Server (NTRS)

    Bolin, Bert; Fung, Inez

    1992-01-01

    Discussions during the Global Change Institute indicated a need to present, in some detail and as accurately as possible, our present knowledge about the carbon cycle, the uncertainties in this knowledge, and the reasons for these uncertainties. We discuss basic issues of internal consistency within the carbon cycle, and end by summarizing the key unknowns.

  6. Carbon Dioxide Removal via Passive Thermal Approaches

    NASA Technical Reports Server (NTRS)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  7. Carbon dioxide review 1982

    SciTech Connect

    Clark, W.C.

    1982-01-01

    The buildup of CO/sub 2/ is a reality, monitored with increasing precision since 1957 and inferred for much earlier dates. A statistical section gives the monitored values to 1980, as well as a review of a long series of measurements made at Mauna Loa by the pioneers of such monitoring, Charles D. Keeling, Robert B. Bacastow, and Timothy P. Whorf. The book discusses internal transport processes in the ocean, of ocean-atmosphere interaction, of the magnitude of forest and soil carbon wastage, of the future course of fossil-fuel consumption. Yet something else emerges, too: if the CO/sub 2/ buildup continues; if the big general circulation models are right about its impact on climate, and if we have not miscalculated the potential role of the oceans, then we face a climatic change in the next century and a half like nothing the post-glacial world, and hence civilized humanity, has seen.

  8. Comments on the BLAG model: the carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1984-01-01

    A self-consistent method of determining initial conditions for the model presented by Berner, Lasaga, and Garrels (1983) (henceforth, the BLAG model) is derived, based on the assumption that the CO2 geochemical cycle was in steady state at t = -100 my (million years). This initialization procedure leads to a dissolved magnesium concentration higher than that calculated by Berner, Lasaga, and Garrels and to a low ratio of dissolved calcium to bicarbonate prior to 60 my ago. The latter prediction conflicts with the geologic record of evaporite deposits, which requires that this ratio remain greater than 0.5. The contradiction is probably caused by oversimplifications in the BLAG model, such as the neglect of the cycles of organic carbon and sulfur.

  9. Comments on the BLAG model - The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1984-01-01

    A self-consistent method of determining initial conditions for the model presented by Berner, Lasaga, and Garrels (1983) (henceforth, the BLAG model) is derived, based on the assumption that the CO2 geochemical cycle was in steady state at t = -100 m.y. (million years). This initialization procedure leads to a dissolved magnesium concentration higher than that calculated by Berner, Lasaga, and Garrels and to a low ratio of dissolved calcium to bicarbonate prior to 60 m.y. ago. The latter prediction conflicts with the geologic record of evaporite deposits, which requires that this ratio remain greater than 0.5. The contradiction is probably caused by oversimplifications in the BLAG model, such as the neglect of the cycles of organic carbon and sulfur.

  10. Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting.

    PubMed

    Gibbons, William T; Venstrom, Luke J; De Smith, Robert M; Davidson, Jane H; Jackson, Gregory S

    2014-07-21

    Zirconium-doped ceria (Ce(1-x)Zr(x)O2) was synthesized through a controlled electrospinning process as a promising approach to cost-effective, sinter-resistant material structures for high-temperature, solar-driven thermochemical redox cycles. To approximate a two-step redox cycle for solar fuel production, fibrous Ce(1-x)Zr(x)O2 with relatively low levels of Zr-doping (0 < x < 0.1) were cycled in an infrared-imaging furnace with high-temperature (up to 1500 °C) partial reduction and lower-temperature (∼800 °C) reoxidation via CO2 splitting to produce CO. Increases in Zr content improve reducibility and sintering resistance, and, for x≤ 0.05, do not significantly slow reoxidation kinetics for CO production. Cycle stability of the fibrous Ce(1-x)Zr(x)O2 (with x = 0.025) was assessed for a range of conditions by measuring rates of O2 release during reduction and CO production during reoxidation and by assessing post-cycling fiber crystallite sizes and surface areas. Sintering increases with reduction temperature but occurs primarily along the fiber axes. Even after 108 redox cycles with reduction at 1400 °C and oxidation with CO2 at 800 °C, the fibers maintain their structure with surface areas of ∼0.3 m(2) g(-1), higher than those observed in the literature for other ceria-based structures operating at similarly high temperature conditions. Total CO production and peak production rate stabilize above 3.0 mL g(-1) and 13.0 mL min(-1) g(-1), respectively. The results show the potential for electrospun oxides as sinter-resistant material structures with adequate surface area to support rapid CO2 splitting in solar thermochemical redox cycles.

  11. Atmospheric Carbon Dioxide and its Relation to Carbon Cycle Perturbations During Ocean Anoxic Event 1d: A High Resolution Record From Dispersed Plant Cuticle

    NASA Astrophysics Data System (ADS)

    Richey, J. D.; Upchurch, G. R.; Joeckel, R.; Smith, J. J.; Ludvigson, G. A.; Lomax, B. H.

    2013-12-01

    Past geological greenhouse intervals are associated with Ocean Anoxic Events (OAEs), which result from an increase in marine primary productivity and/or an increase in the preservation of organic matter. The end point is widespread black shale deposition combined with a long-term atmospheric positive δ13C excursion and an increase in the burial of 12C. Some OAEs show a negative δ13C excursion preceding the positive excursion, indicating a perturbation in the global carbon cycle prior to the initiation of these events. The Rose Creek (RCP) locality, southeastern Nebraska, is the only known terrestrial section that preserves OAE1d (Cretaceous, Albian-Cenomanian Boundary) and has abundant charcoal and plant cuticle. These features allow for a combined carbon isotope and stomatal index (SI) analysis to determine both changes in the cycling between carbon pools (C isotope analysis) and changes in paleo-CO2 via changes in SI. Preliminary (and ongoing) SI data analysis using dispersed cuticle of Pandemophyllum kvacekii (an extinct Laurel) collected at 30 cm intervals indicate changes in SI consistent with changes in CO2. Fitting our samples to a published RCP δ13C profile, pre-excursion CO2 concentrations are high. CO2 decreases to lower concentrations in the basal 1.2 m of the RCP section, where δ13Cbulk shows a negative excursion and δ13Ccharcoal remains at pre-excursion values. CO2 concentrations become higher toward the top of the negative δ13C excursion, where δ13Cbulk and δ13Ccharcoal are at their most negative values, and drop as the negative carbon excursion terminates. Using published transfer functions, we estimate that pre-excursion CO2 concentrations were a maximum of 900 ppm. In the basal 1.2 m of RCP, CO2 drops to a maximum of 480 ppm, and rises to a maximum of 710 ppm near the top of the negative excursion. As δ13C values rise towards pre-excursion values, CO2 declines to a maximum of 400 ppm. The trend in SI is comparable to the trend in δ13

  12. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    SciTech Connect

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Yellowhair, Julius; Dutta, Pradip

    2016-05-30

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat flux profiles on the receiver and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.

  13. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    DOE PAGES

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; ...

    2016-05-30

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat flux profiles on the receivermore » and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less

  14. Solubility of Carbon Dioxide in Water.

    ERIC Educational Resources Information Center

    Bush, Pat; And Others

    1992-01-01

    Describes an activity measuring the amount of dissolved carbon dioxide in carbonated water at different temperatures. The amount of carbon dioxide is measured by the amount of dilute ammonia solution needed to produce a pH indicator color change. (PR)

  15. Stability of IRA-45 solid amine resin as a function of carbon dioxide absorption and steam desorption cycling

    NASA Technical Reports Server (NTRS)

    Wood, Peter C.; Wydeven, Theodore

    1987-01-01

    The removal of CO2 from the NASA Space Station's cabin atmosphere, which may be undertaken by a solid-amine water (steam)-desorbed system, is presently evaluated with a view to long-term amine resin stability and adsorption/desorption cycling by means of an automated laboratory flow-testing facility. While the CO2-adsorption capacity of the IRA-45 amine resin used gradually decreased over time, the rate of degradation significantly decreased after the first 10 cycles. Attention is given to the presence (and possible need for removal) of trimethylamine in the process air downstream of the resin bed.

  16. Thermochemical generation of hydrogen and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D. (Inventor); England, Christopher (Inventor)

    1984-01-01

    Mixing of carbon in the form of high sulfur coal with sulfuric acid reduces the temperature of sulfuric acid decomposition from 830.degree. C. to between 300.degree. C. and 400.degree. C. The low temperature sulfuric acid decomposition is particularly useful in thermal chemical cycles for splitting water to produce hydrogen. Carbon dioxide is produced as a commercially desirable byproduct. Lowering of the temperature for the sulfuric acid decomposition or oxygen release step simplifies equipment requirements, lowers thermal energy input and reduces corrosion problems presented by sulfuric acid at conventional cracking temperatures. Use of high sulfur coal as the source of carbon for the sulfuric acid decomposition provides an environmentally safe and energy efficient utilization of this normally polluting fuel.

  17. Scaling of Carbon Cycle Processes in a Mountain Ecosystem Using Isotopes of Respired Carbon Dioxide in Nocturnal Cold-air Drainage

    NASA Astrophysics Data System (ADS)

    Bond, B. J.; Barnard, H.; Conklin, D.; Hauck, M.; Kayler, Z.; Mix, A. C.; Phillips, C.; Pypker, T.; Sulzman, E.; Unsworth, M.

    2006-12-01

    Nocturnal air drainage in mountain ecosystems offers a unique opportunity for scaling of carbon cycle processes in complex terrain using stable isotopes. We have found that more than half of ecosystem-respired CO2 can be transferred advectively from a small (100 ha) watershed at night, and the range of CO2 concentrations in the air collected from a 37 m tower situated at the base of the watershed is sufficient for Keeling plot analysis to determine the carbon isotope composition of ecosystem-respired CO2, or δ13CR-eco. We now seek to determine, 1) What is the spatial "footprint" of δ13CR- eco measurements, and how does this footprint vary over time? 2) What is the relationship between δ13CR-eco and measurements of isofluxes from soils and foliage across a range of specific sites in the watershed? 3) What is the relationship between δ13CR-eco and carbon cycle processes in the watershed? To answer these questions we conducted extensive measurements of atmospheric processes, augmented by experimental releases of an inert gas (SF6) in collaboration with Dr. Brian Lamb, Washington State University. We installed and instrumented eight plots along a ridge-to-ridge transect; we are continuously measuring above- and belowground microclimate in all plots and in a subset of plots we are continuously measuring sapflow and periodically measuring soil and leaf respiration and their isotopic composition. Atmospheric analyses indicated that air collected for Keeling plot analysis represented a well-mixed sample of all or nearly all of the watershed, and for several hours of most nights this footprint was stable. Respiratory fluxes and isofluxes from both soils and foliage varied both temporally and spatially; the variation among plots was often greater than the temporal variation of a particular plot over the growing season. Scaled to the ecosystem level, respiratory fluxes from foliage exceeded soil fluxes by as much as a factor of two, and fluxes from the south-facing slope

  18. Volcanic versus anthropogenic carbon dioxide

    USGS Publications Warehouse

    Gerlach, T.

    2011-01-01

    Which emits more carbon dioxide (CO2): Earth's volcanoes or human activities? Research findings indicate unequivocally that the answer to this frequently asked question is human activities. However, most people, including some Earth scientists working in fields outside volcanology, are surprised by this answer. The climate change debate has revived and reinforced the belief, widespread among climate skeptics, that volcanoes emit more CO2 than human activities [Gerlach, 2010; Plimer, 2009]. In fact, present-day volcanoes emit relatively modest amounts of CO2, about as much annually as states like Florida, Michigan, and Ohio.

  19. Seasonal cycle of carbon dioxide and its isotopic composition in an urban atmosphere: Anthropogenic and biogenic effects

    NASA Astrophysics Data System (ADS)

    Pataki, D. E.; Bowling, D. R.; Ehleringer, J. R.

    2003-12-01

    Atmospheric CO2 mixing ratios and carbon and oxygen isotope composition were measured at 18 m above the ground in Salt Lake City, Utah, United States, for a one-year period. Mixing ratios were highest in the wintertime with maximum values approaching 600 μmol.mol-1 during atmospheric inversions. Nighttime carbon and oxygen isotope ratios of source CO2 showed a seasonal pattern with isotopically depleted values in the wintertime and isotopically enriched values in the spring and summer. The effects of gasoline combustion, natural gas combustion, and biogenic respiration of plants and soils on CO2 mixing ratio were quantified with a mass balance calculation using dual carbon and oxygen isotopic tracers. The calculations showed large contributions of natural gas combustion in the winter and significant nighttime biogenic respiration in the spring and late summer/early fall. The isotope-tracer technique used shows promise for quantifying the impacts of urban processes on the isotopic composition of the atmosphere and partitioning urban CO2 sources into their component parts.

  20. The oxygen and carbon dioxide balance in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.

    1975-01-01

    The oxygen-carbon dioxide cycle is described in detail, and steps which are sensitive to perturbation or instability are identified. About half of the carbon dioxide consumption each year in photosynthesis occurs in the oceans. Phytoplankton, which are the primary producers, have been shown to assimilate insecticides and herbicides. The impact of such materials on phytoplankton photosynthesis, both direct and as the indirect result of detrimental effects higher up in the food chain, cannot be assessed. Net oxygen production is very small in comparison with the total production and occurs almost exclusively in a few ocean areas with anoxic bottom conditions and in peat-forming marshes which are sensitive to anthropogenic disturbances. The carbon dioxide content of the atmosphere is increasing at a relatively rapid rate as the result of fossil fuel combustion. Increases in photosynthesis as the result of the hothouse effect may in turn reduce the carbon dioxide content of the atmosphere, leading to global cooling.

  1. Comparison of life cycle carbon dioxide emissions and embodied energy in four renewable electricity generation technologies in New Zealand.

    PubMed

    Rule, Bridget M; Worth, Zeb J; Boyle, Carol A

    2009-08-15

    In order to make the best choice between renewable energy technologies, it is important to be able to compare these technologies on the basis of their sustainability, which may include a variety of social, environmental, and economic indicators. This study examined the comparative sustainability of four renewable electricity technologies in terms of their life cycle CO2 emissions and embodied energy, from construction to decommissioning and including maintenance (periodic component replacement plus machinery use), using life cycle analysis. The models developed were based on case studies of power plants in New Zealand, comprising geothermal, large-scale hydroelectric, tidal (a proposed scheme), and wind-farm electricity generation. The comparative results showed that tidal power generation was associated with 1.8 g of CO2/kWh, wind with 3.0 g of CO2/kWh, hydroelectric with 4.6 g of CO2/kWh, and geothermal with 5.6 g of CO2/kWh (not including fugitive emissions), and that tidal power generation was associated with 42.3 kJ/kWh, wind with 70.2 kJ/kWh, hydroelectric with 55.0 kJ/kWh, and geothermal with 94.6 kJ/kWh. Other environmental indicators, as well as social and economic indicators, should be applied to gain a complete picture of the technologies studied.

  2. Sorption of carbon dioxide onto sodium carbonate

    SciTech Connect

    Sang-Wook Park; Deok-Ho Sung; Byoung-Sik Choi; Kwang-Joong Oh; Kil-Ho Moon

    2006-07-01

    Sodium carbonate was used as a sorbent to capture CO{sub 2} from a gaseous stream of carbon dioxide, nitrogen, and moisture. The breakthrough data of CO{sub 2} were measured in a fixed bed to observe the reaction kinetics of CO{sub 2}-carbonate reaction. Several models such as the shrinking-core model, the homogeneous model, and the deactivation model in the non-catalytic heterogeneous reaction systems were used to explain the kinetics of reaction among CO{sub 2}, Na{sub 2}CO{sub 3}, and moisture using analysis of the experimental breakthrough data. Good agreement of the deactivation model was obtained with the experimental breakthrough data. The sorption rate constant and the deactivation rate constant were evaluated by analysis of the experimental breakthrough data using a nonlinear least squares technique and described as Arrhenius form.

  3. Carbon dioxide disposal in solid form

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Sharp, D.H.; Wendt, C.H.

    1995-12-31

    Coal reserves can provide for the world`s energy needs for centuries. However, coal`s long term use may be severely curtailed if the emission of carbon dioxide into the atmosphere is not eliminated. We present a safe and permanent method of carbon dioxide disposal that is based on combining carbon dioxide chemically with abundant raw materials to form stable carbonate minerals. We discuss the availability of raw materials and potential process designs. We consider our initial rough cost estimate of about 3{cents}/kWh encouraging. The availability of a carbon dioxide fixation technology would serve as insurance in case global warming, or the perception of global warming, causes severe restrictions on carbon dioxide emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would quite likely be unavoidable.

  4. Carbon Dioxide Effects Research and Assessment Program: Proceedings of the carbon dioxide and climate research program conference

    SciTech Connect

    Schmitt, L E

    1980-12-01

    Papers presented at the Carbon Dioxide and Climate Research Program Conference are included in this volume. Topics discussed are: the carbon cycle; modeling the carbon system; climatic response due to increased CO2; climate modeling; the use of paleoclimatic data in understanding climate change; attitudes and implications of CO2; social responses to the CO2 problem; a scenario for atmospheric CO2 to 2025; marine photosynthesis and the global carbon cycle; and the role of tropical forests in the carbon balance of the world. Separate abstracts of nine papers have been prepared for inclusion in the Energy Data Base. (RJC)

  5. Carbon dioxide research plan. A summary

    SciTech Connect

    Trivelpiece, Alvin W.; Koomanoff, F. A.; Suomi, Verner E.

    1983-11-01

    The Department of Energy is the lead federal agency for research related to atmospheric carbon dioxide. Its responsibility is to sponsor a program of relevant research, and to coordinate this research with that of others. As part of its responsibilities, the Department of Energy has prepared a research plan. The plan documented in this Summary delineated the logic, objectives, organization, background and current status of the research activities. The Summary Plan is based on research subplans in four specific areas: global carbon cycle, climate effects, vegetative response and indirect effects. These subplans have emanated from a series of national and international workshops, conferences, and from technical reports. The plans have been peer reviewed by experts in the relevant scientific fields. Their execution is being coordinated between the responsible federal and international government agencies and the involved scientific community.

  6. Seasonal cycle of carbon dioxide and atmospheric circulation in Mars' southern hemisphere as observed by neutron spectroscopy

    SciTech Connect

    Prettyman, T. H.; Wiens, R. C.; Reisner, J. M.; Murphy, J. R.; Feldman, W. C.

    2004-01-01

    The south polar seasonal cap consists of CO{sub 2} ice that condenses and sublimes in response to seasonal changes in insolation, advancing equatorward during the fall and winter and receding poleward during spring. Cycling of CO{sub 2} between the surface and atmosphere at high latitudes plays a significant role in global atmospheric circulation. During winter, the south polar seasonal cap may contain up to 30% of the total atmospheric mass. The rate of cap growth and recession depends on factors such as atmospheric dust optical depth, surface thermal inertia, and the albedo of the CO{sub 2} ice, all of which affect the polar energy balance. While the martian atmosphere consists primarily of CO{sub 2}, it also contains lesser amounts of noncondensable gases, including N{sub 2} and Ar. As the cap grows, mass is advected poleward from lower latitudes. Because the net flow of mass is towards the pole and CO{sub 2} is being removed from the atmosphere, an increase in the column abundance of noncondensable gases at high latitudes is expected to occur. As the CO{sub 2} ice sublimes during spring, the situation is reversed, and noncondensable gases may be depleted relative to the global average. For example, enrichment of noncondensable gases near the surface in the polar regions has been considered in interpreting observations of anomalously low condensation temperatures (cold spots) by Viking and Mars Global Surveyor; however, other possibilities such as granular ice or snowfall may also explain these observations. Dynamical weather patterns, such as the formation of a polar vortex, and turbulent phenomena such as eddy diffusion affect the enrichment and depletion of noncondensables. Thus, noncondensable gases could serve as an atmospheric tracer, providing information needed to understand these processes. The purpose of this study is to analyze data from Mars Odyssey Neutron Spectrometer to determine the column abundance of noncondensable gases and CO{sub 2} ground

  7. Carbon dioxide sequestration by mineral carbonation

    SciTech Connect

    Gerdemann, Stephen J.; Dahlin David C.; O'Connor William K.; Penner Larry R.

    2003-11-01

    Concerns about global warming caused by the increasing concentration of carbon dioxide and other greenhouse gases in the earth’s atmosphere have resulted in the need for research to reduce or eliminate emissions of these gases. Carbonation of magnesium and calcium silicate minerals is one possible method to achieve this reduction. It is possible to carry out these reactions either in situ (storage underground and subsequent reaction with the host rock to trap CO2 as carbonate minerals) or ex situ (above ground in a more traditional chemical processing plant). Research at the Department of Energy’s Albany Research Center has explored both of these routes. This paper will explore parameters that affect the direct carbonation of magnesium silicate minerals serpentine (Mg3Si2O5(OH)4) and olivine (Mg2SiO4) to produce magnesite (MgCO3), as well as the calcium silicate mineral, wollastonite (CaSiO3), to form calcite (CaCO3). The Columbia River Basalt Group is a multi-layered basaltic lava plateau that has favorable mineralogy and structure for storage of CO2. Up to 25% combined concentration of Ca, Fe2+, and Mg cations could react to form carbonates and thus sequester large quantities of CO2. Core samples from the Columbia River Basalt Group were reacted in an autoclave for up to 2000 hours at temperatures and pressures to simulate in situ conditions. Changes in core porosity, secondary minerals, and solution chemistry were measured.

  8. Microfluidic studies of carbon dioxide.

    PubMed

    Abolhasani, Milad; Günther, Axel; Kumacheva, Eugenia

    2014-07-28

    Carbon dioxide (CO2) sequestration, storage and recycling will greatly benefit from comprehensive studies of physical and chemical gas-liquid processes involving CO2. Over the past five years, microfluidics emerged as a valuable tool in CO2-related research, due to superior mass and heat transfer, reduced axial dispersion, well-defined gas-liquid interfacial areas and the ability to vary reagent concentrations in a high-throughput manner. This Minireview highlights recent progress in microfluidic studies of CO2-related processes, including dissolution of CO2 in physical solvents, CO2 reactions, the utilization of CO2 in materials science, and the use of supercritical CO2 as a "green" solvent.

  9. Electrocatalysts for carbon dioxide conversion

    DOEpatents

    Masel, Richard I; Salehi-Khojin, Amin

    2015-04-21

    Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  10. Carbon dioxide cleaning pilot project

    SciTech Connect

    Knight, L.; Blackman, T.E.

    1994-01-21

    In 1989, radioactive-contaminated metal at the Rocky Flats Plant (RFP) was cleaned using a solvent paint stripper (Methylene chloride). One-third of the radioactive material was able to be recycled; two-thirds went to the scrap pile as low-level mixed waste. In addition, waste solvent solutions also required disposal. Not only was this an inefficient process, it was later prohibited by the Resource Conservation and Recovery Act (RCRA), 40 CFR 268. A better way of doing business was needed. In the search for a solution to this situation, it was decided to study the advantages of using a new technology - pelletized carbon dioxide cleaning. A proof of principle demonstration occurred in December 1990 to test whether such a system could clean radioactive-contaminated metal. The proof of principle demonstration was expanded in June 1992 with a pilot project. The purpose of the pilot project was three fold: (1) to clean metal so that it can satisfy free release criteria for residual radioactive contamination at the Rocky Flats Plant (RFP); (2) to compare two different carbon dioxide cleaning systems; and (3) to determine the cost-effectiveness of decontamination process in a production situation and compare the cost of shipping the metal off site for waste disposal. The pilot project was completed in August 1993. The results of the pilot project were: (1) 90% of those items which were decontaminated, successfully met the free release criteria , (2) the Alpheus Model 250 was selected to be used on plantsite and (3) the break even cost of decontaminating the metal vs shipping the contaminated material offsite for disposal was a cleaning rate of 90 pounds per hour, which was easily achieved.

  11. Carbon cycle modeling calculations for the IPCC

    SciTech Connect

    Wuebbles, D.J.; Jain, A.K.

    1993-08-12

    We carried out essentially all the carbon cycle modeling calculations that were required by the IPCC Working Group 1. Specifically, IPCC required two types of calculations, namely, ``inverse calculations`` (input was CO{sub 2} concentrations and the output was CO{sub 2} emissions), and the ``forward calculations`` (input was CO{sub 2} emissions and output was CO{sub 2} concentrations). In particular, we have derived carbon dioxide concentrations and/or emissions for several scenarios using our coupled climate-carbon cycle modelling system.

  12. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    SciTech Connect

    Shao, Yixin

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  13. Carbon dioxide capture process with regenerable sorbents

    DOEpatents

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  14. A new look at atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hofmann, David J.; Butler, James H.; Tans, Pieter P.

    Carbon dioxide is increasing in the atmosphere and is of considerable concern in global climate change because of its greenhouse gas warming potential. The rate of increase has accelerated since measurements began at Mauna Loa Observatory in 1958 where carbon dioxide increased from less than 1 part per million per year (ppm yr -1) prior to 1970 to more than 2 ppm yr -1 in recent years. Here we show that the anthropogenic component (atmospheric value reduced by the pre-industrial value of 280 ppm) of atmospheric carbon dioxide has been increasing exponentially with a doubling time of about 30 years since the beginning of the industrial revolution (˜1800). Even during the 1970s, when fossil fuel emissions dropped sharply in response to the "oil crisis" of 1973, the anthropogenic atmospheric carbon dioxide level continued increasing exponentially at Mauna Loa Observatory. Since the growth rate (time derivative) of an exponential has the same characteristic lifetime as the function itself, the carbon dioxide growth rate is also doubling at the same rate. This explains the observation that the linear growth rate of carbon dioxide has more than doubled in the past 40 years. The accelerating growth rate is simply the outcome of exponential growth in carbon dioxide with a nearly constant doubling time of about 30 years (about 2%/yr) and appears to have tracked human population since the pre-industrial era.

  15. Terrestrial Carbon Cycle Variability.

    PubMed

    Baldocchi, Dennis; Ryu, Youngryel; Keenan, Trevor

    2016-01-01

    A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO 2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO 2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial) respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO 2, temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions). The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y (-1)) with respect to a large and uncertain background (123 +/- 4 Pg-C y (-1)), and

  16. Terrestrial Carbon Cycle Variability

    PubMed Central

    Baldocchi, Dennis; Ryu, Youngryel; Keenan, Trevor

    2016-01-01

    A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO 2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO 2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial) respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO 2, temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions). The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y -1) with respect to a large and uncertain background (123 +/- 4 Pg-C y -1), and

  17. Photolytical Generation of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Palmer, E. E.; Brown, R. H.

    2008-12-01

    Carbon dioxide has been found by Cassini VIMS throughout the Saturnian system in locations such as Iapetus' equator where the temperature is too high for it to remain as free ice for more than a few hundred years. We suggest that the 4.26 micron absorption feature found on Iapetus and Hyperion (that has been attributed to complexed CO2) is the result of either UV photolysis or ion bombardment driving chemistry between the carbon rich layer and the water ice regolith. We conducted experiments to simulate the generation of CO2 by UV radiation under conditions similar to those on the surface of Iapetus. A simulated icy regolith was created in an argon atmosphere using flash-frozen, degassed water crushed into sub-millimeter sized particles. Isotopically labeled amorphous carbon (13C), which was ground into a fine dust, was mixed into the regolith allowing for extensive grain contact. This sample was placed in a vacuum chamber and cooled to temperatures as low at 60K. The sample was irradiated with UV light, and the products were measured using both a mass spectrometer to identify free molecules and an IR spectrometer for molecules that remained trapped on and in the simulated regolith. We report on the production and reaction rates of CO2 and CO, as well as the generation of free hydrogen and oxygen as detected by a SRS-100 mass spectrometer. We also identify residual products that either freeze on the surface or become entrained by or adsorbed onto the ice grains. We attempt to match the CO2 absorption feature found on Iapetus with that seen in our simulation, perhaps identifying a possible source of CO2 in the Saturnian system. Finally, we estimate the time required for these reactions to occur on Iapetus to see if UV photolysis would be effective.

  18. Transition Organometallic Heterobimettalic Microns-Carbon Dioxide and Microns-Format Complexes in Homogeneous Carbon Dioxide Fixation

    DTIC Science & Technology

    1992-08-12

    optimizing and combining these ligand reactions into a reaction cycle or a catalytic system. Our approach exploits bimetallic complexation of carbon ... dioxide and uses a third metal system as the reductant (e.g., catalytic hydrosilation). These bimetallic CO2 adducts feature synergistic CO2 binding

  19. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  20. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  1. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  2. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  3. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  4. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b)...

  5. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  6. 46 CFR 169.732 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  7. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  8. 46 CFR 108.627 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next...

  9. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  10. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  11. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  12. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  13. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626... AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  14. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11... Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into...

  15. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11... Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into...

  16. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  17. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  18. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  19. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  20. 46 CFR 169.732 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  1. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located within the...

  2. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8... Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space...

  3. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626... AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  4. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b)...

  5. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  6. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  7. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  8. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817... Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  9. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817... Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  10. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  11. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  12. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  13. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8... Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space...

  14. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  15. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11... Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into...

  16. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  17. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817... Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  18. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  19. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located within the...

  20. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626... AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  1. 46 CFR 108.627 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next...

  2. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  3. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8... Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space...

  4. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... colorless, odorless, noncombustible gas at normal temperatures and pressures. The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon dioxide is prepared as a...

  5. Carbon dioxide-soluble polymers and swellable polymers for carbon dioxide applications

    DOEpatents

    DeSimone, Joseph M.; Birnbaum, Eva; Carbonell, Ruben G.; Crette, Stephanie; McClain, James B.; McCleskey, T. Mark; Powell, Kimberly R.; Romack, Timothy J.; Tumas, William

    2004-06-08

    A method for carrying out a catalysis reaction in carbon dioxide comprising contacting a fluid mixture with a catalyst bound to a polymer, the fluid mixture comprising at least one reactant and carbon dioxide, wherein the reactant interacts with the catalyst to form a reaction product. A composition of matter comprises carbon dioxide and a polymer and a reactant present in the carbon dioxide. The polymer has bound thereto a catalyst at a plurality of chains along the length of the polymer, and wherein the reactant interacts with the catalyst to form a reaction product.

  6. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P.Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

    2002-10-01

    The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that higher temperature calcination of trona leds to reduced carbonation activity in subsequent cycles, but that calcination in dry carbon dioxide did not result in decreased activity relative to calcination in helium. Following higher temperature calcination, sodium bicarbonate (SBC) No.3 has greater activity than either coarse or fine grades of trona. Fixed bed testing of calcined SBC No.3 at 70 C confirmed that high rates of carbon dioxide absorption are possible and that the resulting product is a mixture of Wegscheider's salt and sodium carbonate. In fluidized bed testing of supported potassium carbonate, very rapid carbonation rates were observed. Activity of the support material complicated the data analysis. A milled, spherical grade of SBC appeared to be similar in attrition and abrasion characteristics to an unmilled, less regularly shaped SBC. The calcination behavior, at 107 C, for the milled and unmilled materials was also similar.

  7. Separation of Carbon Monoxide and Carbon Dioxide for Mars ISRU

    NASA Technical Reports Server (NTRS)

    Walton, Krista S.; LeVan, M. Douglas

    2004-01-01

    The atmosphere of Mars has many resources that can be processed to produce things such as oxygen, fuel, buffer gas, and water for support of human exploration missions. Successful manipulation of these resources is crucial for safe, cost-effective, and self-sufficient long-term human exploration of Mars. In our research, we are developing enabling technologies that require fundamental knowledge of adsorptive gas storage and separation processes. In particular, we are designing and constructing an innovative, low mass, low power separation device to recover carbon dioxide and carbon monoxide for Mars ISRU (in-situ resource utilization). The technology has broad implications for gas storage and separations for gas-solid systems that are ideally suited for reduced gravitational environments. This paper describes our separation process design and experimental procedures and reports results for the separation of CO2 and CO by a four-step adsorption cycle.

  8. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

    2006-09-30

    This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

  9. Carbon dioxide separation using adsorption with steam regeneration

    DOEpatents

    Elliott, Jeannine Elizabeth; Copeland, Robert James; Leta, Daniel P.; McCall, Patrick P.; Bai, Chuansheng; DeRites, Bruce A.

    2016-11-29

    A process for separating a carbon dioxide from a gas stream is disclosed. The process can include passing the gas stream over a sorbent that adsorbs the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement. A carbon dioxide separation system is also disclosed. Neither the system nor the process rely on temperature swing or pressure swing adsorption.

  10. Global carbon dioxide emissions from inland waters

    USGS Publications Warehouse

    Raymond, Peter A.; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory P.; Hoover, Mark; Butman, David; Striegl, Robert G.; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Durr, Hans H.; Meybeck, Michel; Ciais, Philippe; Guth, Peter

    2013-01-01

    Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8   petagrams of carbon (Pg C) per year from streams and rivers and 0.32  Pg C yr−1 from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr−1 is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.

  11. Global carbon dioxide emissions from inland waters.

    PubMed

    Raymond, Peter A; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory; Hoover, Mark; Butman, David; Striegl, Robert; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Dürr, Hans; Meybeck, Michel; Ciais, Philippe; Guth, Peter

    2013-11-21

    Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8(+0.25)(-0.25)  petagrams of carbon (Pg C) per year from streams and rivers and 0.32(+0.52)(-0.26)  Pg C yr(-1) from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr(-1) is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.

  12. Natural sources of greenhouse gases: carbon dioxide emissions from volcanoes

    USGS Publications Warehouse

    Gerlach, Terrence

    1990-01-01

    Volcanic degassing of carbon dioxide plays an important role in keeping the atmosphere-ocean portion of the carbon geochemical cycle in balance. The atmosphere-ocean carbon deficit requires replenishment of 6??1012 mol CO2/yr, and places an upper limit on the output of carbon dioxide from volcanoes. The CO2 output of the global mid-oceanic ridge system is ca. 0.7??1012 mol/yr, thus supplying only a fraction of the amount needed to balance the carbon deficit. The carbon dioxide flux from subaerial volcanoes is poorly known, but it appears to be at least as large as the mid-oceanic ridge flux. Much (perhaps most) of the CO2 emitted from volcanoes is degassed noneruptively. This mode of degassing may lead to impacts on the environment and biosphere that are fundamentally different in character from those envisioned in published scenarios, which are based on the assumption that CO2 degassing occurs predominantly by eruptive processes. Although the flux of carbon dioxide from volcanoes is poorly constrained at present, it is clearly two orders of magnitude lower than the anthropogenic output of CO2.

  13. Mineralization strategies for carbon dioxide sequestration

    SciTech Connect

    Penner, Larry R.; O'Connor, William K.; Gerdemann, Stephen J.; Dahlin, David C.

    2003-01-01

    Progress is reported in three primary research areas--each concerned with sequestering carbon dioxide into mineral matrices. Direct mineral carbonation was pioneered at Albany Research Center. The method treats the reactant, olivine or serpentine in aqueous media with carbon dioxide at high temperature and pressure to form stable mineral carbonates. Recent results are introduced for pretreatment by high-intensity grinding to improve carbonation efficiency. To prove feasibility of the carbonation process, a new reactor was designed and operated to progress from batch tests to continuous operation. The new reactor is a prototype high-temperature, high-pressure flow loop reactor that will furnish information on flow, energy consumption, and wear and corrosion resulting from slurry flow and the carbonation reaction. A promising alternative mineralization approach is also described. New data are presented for long-term exposure of carbon dioxide to Colombia River Basalt to determine the extent of conversion of carbon dioxide to permanent mineral carbonates. Batch autoclave tests were conducted using drill-core samples of basalt and reacted under conditions that simulate in situ injection into basalt-containing geological formations.

  14. Turning carbon dioxide into fuel.

    PubMed

    Jiang, Z; Xiao, T; Kuznetsov, V L; Edwards, P P

    2010-07-28

    Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity-and a burgeoning challenge-to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes. Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953-996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion-and hence the utilization-of CO2. Here, we hope to illustrate that advances

  15. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon, is capable of recovering all the oxygen from carbon dioxide, and it is a promising alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon, and the resulting carbon buildup eventually fouls the catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  16. Can the carbon dioxide problem be resolved

    SciTech Connect

    Lemons, J.

    1984-01-01

    The combustion of fossil fuels increases atmospheric levels of carbon dioxide (CO/sub 2/). This may cause a long-term warming of the atmosphere. Solutions to the CO/sub 2/ problem are particularly difficult because adverse effects will be felt by future generations, but remedial action and sacrifices must be made by present generations. Decisions regarding the problem which affect both the immediate and long-range future must be made deliberately or by default in perhaps only 15 to 20 years, before we are reasonably confident of our knowledge of the problem and before we know whether atmospheric warming will, in fact, occur. Empirical and evaluative data do not seem compelling to decision makers. First, remedial actions require present generations to conserve fossil fuels for the benefit of posterity, and there is no consensus that an ethical obligation to posterity exists. Second, actions must be based upon uncertain projections of future energy use and uncertain scientific knowledge of the carbon cycle and the environment. Third, economic and social factors may preclude resolution of the problem. Fourth, speculation from moral psychology suggests that mankind may be psychologically incapable of caring enough for posterity to make serious sacrifices. Therefore, public policy regarding sacrifice by present generations for the benefit of posterity is not likely to be forthcoming from policy makers or suported by the public. 120 references.

  17. Method for Extracting and Sequestering Carbon Dioxide

    SciTech Connect

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO2) from a stream or volume of gas wherein said method and apparatus hydrates CO2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO2 from a gaseous environment.

  18. Method for extracting and sequestering carbon dioxide

    DOEpatents

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said method and apparatus hydrates CO.sub.2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  19. Apparatus for extracting and sequestering carbon dioxide

    DOEpatents

    Rau, Gregory H.; Caldeira, Kenneth G.

    2010-02-02

    An apparatus and method associated therewith to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said apparatus hydrates CO.sub.2 and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  20. Carbon Dioxide in the Gulf of Trieste

    NASA Astrophysics Data System (ADS)

    Turk, D.; Malacic, V.; Degrandpre, M. D.; McGillis, W. R.

    2009-04-01

    Coastal marine regions such as the Gulf of Trieste (GOT) in the Northern Adriatic Sea serve as the link between carbon cycling on land and the ocean interior and potentially contribute large uncertainties in the estimate of anthropogenic CO2 uptake. This system may be either a sink or a source for atmospheric CO2. Understanding the sources and sinks as a result of biological and physical controls for air-sea carbon dioxide fluxes in coastal waters may substantially alter the current view of the global carbon budget for unique terrestrial and ocean regions such as the GOT. GOT is a semi-enclosed Mediterranean basin situated in the northern part of Adriatic Sea. It is one of the most productive regions in the Mediterranean and is affected by extreme fresh river input, phytoplankton blooms, and large changes of air-sea exchange during Bora high wind events. The unique combination of these environmental processes and relatively small size of the area makes the region an excellent study site for investigations of air-sea interaction, and changes in biology and carbon chemistry. Here we investigate biological (phytoplankton blooms) and physical (freshwater input and winds) controls on the temporal variability of pCO2 in the GOT. The aqueous CO2 was measured at the Coastal Oceanographic buoy VIDA, Slovenia using the SAMI CO2 sensor. Our results indicate that: 1) The GOT was a sink for atmospheric CO2 in late spring of 2007; 2) Aqueous pCO2 was influenced by fresh water input from rivers entering the GOT and biological production associated with high nutrient input; 3) Surface water pCO2 showed a strong correlation with SST when river plumes where not present at the buoy location, and reasonable correlation with SSS during the presence of the plume.

  1. The Disordered Kinetics of Earth's Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Rothman, Daniel

    2008-03-01

    The carbon cycle describes the transformations of carbon as it cycles through living organisms and the physical environment. In its simplest form, the cycle amounts to a loop between photosynthesis and respiration. Photosynthesis produces organic carbon and molecular oxygen from carbon dioxide and water. Respiration reverses the process by oxidation of organic carbon. The duration of the cycle spans a vast range of time scales: from days or less for fast-growing plankton in the oceans, to hundreds of millions of years or more for the small fraction of organic matter that is buried as rock. The rates at which the cycle is closed set atmospheric carbon dioxide levels at short time scales and oxygen levels at geologic time scales. Respiration rates thereby influence not only climate---by the determination of equilibrium carbon dioxide concentrations---but also biological evolution---because the oxygenation of Earth's atmosphere must have preceded the advent of aerobic metabolism. We review recent advances in the understanding of the rates that control the carbon cycle, with emphasis on the respiratory back-reaction. Given considerable biological, chemical, and environmental variation, it comes as no surprise that measurements of rates vary greatly. Observations suggest, however, some surprising simplicity: for example, the rates of microbial consumption of organic matter in sediments and soils slow down systematically like the inverse of the age of the organic matter. This aging effect can be quantitatively understood as the macroscopic observation of microscopically disordered kinetics. The disorder can arise purely physically as the consequence of a reaction-diffusion process in porous media, but any combination of physical, chemical, and biological parameters that yield a wide range of rates suffices. A predicted practical consequence is a slow, logarithmic decay of organic matter in sediments and soils, which compares well with measurements. Further observations

  2. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also

  3. Material Flows and Carbon Cycles

    NASA Astrophysics Data System (ADS)

    Worrell, E.

    2003-12-01

    The industrial sector emits almost 43 percent of the global anthropogenic carbon dioxide emissions to produce materials and products. Furthermore, energy is used to move materials and products and process the waste. Hence, a large amount of energy is consumed and CO2 is emitted to sustain our materials system. Until recently, studies investigating mitigation options focused on changes in the energy system. For industrial processes most studies evaluate how the current materials system can be maintained producing fewer greenhouse gas emissions. Three elements of a strategy to improve the long-term materials productivity are the reduction of dissipative uses of non-biodegradable materials, secondly, the re-design of products to use less material or design for re-use or recycling, and thirdly, develop more efficient technologies for material conversion and recycling. This will reduce or eliminate the need to extract virgin materials from the environment, and reduce CO2 emissions from the energy-intensive production processes. To assess measures to reduce materials consumption, fossil fuels consumption and CO2 emissions, detailed understanding of the material system is needed. The lifecycle of materials has to be investigated including all branches of industry with all the inputs and outputs. We start with a discussion of materials and the carbon cycle focusing on the contribution of materials to anthropogenic carbon flows. We discuss CO2 emissions from energy use in materials extraction and production, fossil (e.g. plastics) and biomass carbon (e.g. lumber, paper) used as feedstock of materials, and mineral sources (e.g. cement). We discuss opportunities to reduce CO2 emissions by improving the efficiency with which society uses materials through product design, material substitution, product reuse and material recycling.

  4. Designed amyloid fibers as materials for selective carbon dioxide capture.

    PubMed

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M; Eisenberg, David S

    2014-01-07

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture.

  5. Adsorption of Carbon Dioxide, Ammonia, Formaldehyde, and Water Vapor on Regenerable Carbon Sorbents

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is nonregenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for simultaneous carbon dioxide, ammonia, formaldehyde, and water sorption. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also the enhancement of formaldehyde sorption by the presence of ammonia in the gas mixture.

  6. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1... Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid... anchorage of tanks must be made of carbon steel conforming to ASTM A 516/A 516M (IBR, see § 171.7 of...

  7. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1... Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid... anchorage of tanks must be made of carbon steel conforming to ASTM A 516/A 516M (IBR, see § 171.7 of...

  8. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  9. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  10. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  11. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  12. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1... Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid... anchorage of tanks must be made of carbon steel conforming to ASTM A 516/A 516M (IBR, see § 171.7 of...

  13. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  14. Carbon dioxide capture and geological storage.

    PubMed

    Holloway, Sam

    2007-04-15

    Carbon dioxide capture and geological storage is a technology that could be used to reduce carbon dioxide emissions to the atmosphere from large industrial installations such as fossil fuel-fired power stations by 80-90%. It involves the capture of carbon dioxide at a large industrial plant, its transport to a geological storage site and its long-term isolation in a geological storage reservoir. The technology has aroused considerable interest because it can help reduce emissions from fossil fuels which are likely to remain the dominant source of primary energy for decades to come. The main issues for the technology are cost and its implications for financing new or retrofitted plants, and the security of underground storage.

  15. Polymers for metal extractions in carbon dioxide

    DOEpatents

    DeSimone, Joseph M.; Tumas, William; Powell, Kimberly R.; McCleskey, T. Mark; Romack, Timothy J.; McClain, James B.; Birnbaum, Eva R.

    2001-01-01

    A composition useful for the extraction of metals and metalloids comprises (a) carbon dioxide fluid (preferably liquid or supercritical carbon dioxide); and (b) a polymer in the carbon dioxide, the polymer having bound thereto a ligand that binds the metal or metalloid; with the ligand bound to the polymer at a plurality of locations along the chain length thereof (i.e., a plurality of ligands are bound at a plurality of locations along the chain length of the polymer). The polymer is preferably a copolymer, and the polymer is preferably a fluoropolymer such as a fluoroacrylate polymer. The extraction method comprises the steps of contacting a first composition containing a metal or metalloid to be extracted with a second composition, the second composition being as described above; and then extracting the metal or metalloid from the first composition into the second composition.

  16. Wetting and drying cycles drive variations in the stable carbon isotope ratio of respired carbon dioxide in semi-arid grassland.

    PubMed

    Shim, Jee H; Pendall, Elise; Morgan, Jack A; Ojima, Dennis S

    2009-05-01

    In semi-arid regions, where plants using both C(3) and C(4) photosynthetic pathways are common, the stable C isotope ratio (delta(13)C) of ecosystem respiration (delta(13)C(R)) is strongly variable seasonally and inter-annually. Improved understanding of physiological and environmental controls over these variations will improve C cycle models that rely on the isotopic composition of atmospheric CO(2). We hypothesized that timing of precipitation events and antecedent moisture interact with activity of C(3) and C(4) grasses to determine net ecosystem CO(2) exchange (NEE) and delta(13)C(R). Field measurements included CO(2) and delta(13)C fluxes from the whole ecosystem and from patches of different plant communities, biomass and delta(13)C of plants and soils over the 2000 and 2001 growing seasons. NEE shifted from C source to sink in response to rainfall events, but this shift occurred after a time lag of up to 2 weeks if a dry period preceded the rainfall. The seasonal average of delta(13)C(R) was higher in 2000 (-16 per thousand) than 2001 (20 per thousand), probably due to drier conditions during the 2000 growing season (79.7 mm of precipitation from April up to and including July) than in 2001 (189 mm). During moist conditions, delta(13)C averaged -22 per thousand from C(3) patches, -16 per thousand from C(4) patches, and -19 per thousand from mixed C(3) and C(4) patches. However, during dry conditions the apparent spatial differences were not obvious, suggesting reduced autotrophic activity in C(4) grasses with shallow rooting depth, soon after the onset of dry conditions. Air and soil temperatures were negatively correlated with delta(13)C(R); vapor pressure deficit was a poor predictor of delta(13)C(R), in contrast to more mesic ecosystems. Responses of respiration components to precipitation pulses were explained by differences in soil moisture thresholds between C(3) and C(4) species. Stable isotopic composition of respiration in semi-arid ecosystems is

  17. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema

    Smit, Berend

    2016-07-12

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  18. The changing carbon cycle of the coastal ocean.

    PubMed

    Bauer, James E; Cai, Wei-Jun; Raymond, Peter A; Bianchi, Thomas S; Hopkinson, Charles S; Regnier, Pierre A G

    2013-12-05

    The carbon cycle of the coastal ocean is a dynamic component of the global carbon budget. But the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood. Here we discuss the sources, exchanges and fates of carbon in the coastal ocean and how anthropogenic activities have altered the carbon cycle. Recent evidence suggests that the coastal ocean may have become a net sink for atmospheric carbon dioxide during post-industrial times. Continued human pressures in coastal zones will probably have an important impact on the future evolution of the coastal ocean's carbon budget.

  19. Carbon dioxide hydrate and floods on Mars.

    PubMed

    Milton, D J

    1974-02-15

    Ground ice on Mars probably consists largely of carbon dioxide hydrate, CO(2) . 6H(2)O. This hydrate dissociates upon release of pressure at temperatures between 0 degrees and 10 degrees C. The heat capacity of the ground would be sufficient to produce up to 4 percent (by volume) of water at a rate equal to that at which it can be drained away. Catastrophic dissociation of carbon dioxide hydrate during some past epoch when the near surface temperature was in this range would have produced chaotic terrain and flood channels.

  20. Carbon dioxide hydrate and floods on Mars

    NASA Technical Reports Server (NTRS)

    Milton, D. J.

    1974-01-01

    Ground ice on Mars probably consists largely of carbon dioxide hydrate. This hydrate dissociates upon release of pressure at temperatures between 0 and 10 C. The heat capacity of the ground would be sufficient to produce up to 4% (by volume) of water at a rate equal to that at which it can be drained away. Catastrophic dissociation of carbon dioxide hydrate during some past epoch when the near-surface temperature was in this range would have produced chaotic terrain and flood channels.

  1. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1991-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  2. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1993-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  3. International Space Station Carbon Dioxide Removal Assembly Testing

    NASA Technical Reports Server (NTRS)

    Knox, James C.

    2000-01-01

    Performance testing of the International Space Station Carbon Dioxide Removal Assembly flight hardware in the United States Laboratory during 1999 is described. The CDRA exceeded carbon dioxide performance specifications and operated flawlessly. Data from this test is presented.

  4. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Tyler Moore; Douglas P. Harrison

    2003-08-01

    This report describes research conducted between April 1, 2003 and June 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Grade 1 sodium bicarbonate performed similarly to grade 5 sodium bicarbonate in fixed bed testing in that activity improved after the first carbonation cycle and did not decline over the course of 5 cycles. Thermogravimetric analysis indicated that sodium bicarbonate sorbents produced by calcination of sodium bicarbonate are superior to either soda ash or calcined trona. Energy requirements for regeneration of carbon dioxide sorbents (either wet or dry) is of primary importance in establishing the economic feasibility of carbon dioxide capture processes. Recent studies of liquid amine sorption processes were reviewed and found to incorporate conflicting assumptions of energy requirements. Dry sodium based processes have the potential to be less energy intensive and thus less expensive than oxygen inhibited amine based systems. For dry supported sorbents, maximizing the active fraction of the sorbent is of primary importance in developing an economically feasible process.

  5. Tuning Organic Carbon Dioxide Absorbents for Carbonation and Decarbonation

    PubMed Central

    Rajamanickam, Ramachandran; Kim, Hyungsoo; Park, Ji-Woong

    2015-01-01

    The reaction of carbon dioxide with a mixture of a superbase and alcohol affords a superbase alkylcarbonate salt via a process that can be reversed at elevated temperatures. To utilize the unique chemistry of superbases for carbon capture technology, it is essential to facilitate carbonation and decarbonation at desired temperatures in an easily controllable manner. Here, we demonstrate that the thermal stabilities of the alkylcarbonate salts of superbases in organic solutions can be tuned by adjusting the compositions of hydroxylic solvent and polar aprotic solvent mixtures, thereby enabling the best possible performances to be obtained from the various carbon dioxide capture agents based on these materials. The findings provides valuable insights into the design and optimization of organic carbon dioxide absorbents. PMID:26033537

  6. Acid sorption regeneration process using carbon dioxide

    DOEpatents

    King, C. Judson; Husson, Scott M.

    2001-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

  7. Recovery of carbon dioxide from fuel cell exhaust

    SciTech Connect

    Healy, H.C.; Kolodney, M.; Levy, A.H.; Trocciola, P.

    1988-06-14

    An acid fuel cell power plant system operable to produce carbon dioxide as a by-product is described comprising: (a) fuel cell stack means having anode means, cathode means, and fuel cell cooling means, the cooling means using a water coolant; (b) means for delivering a hydrogen-rich fuel gas which contains carbon dioxide to the anode means for consumption of hydrogen by the anode means in an electrochemical reaction in the stack; (c) carbon dioxide absorber means including an absorbent for stripping carbon dioxide from gaseous mixtures thereof; (d) means for delivering hydrogen-depleted exhaust gas containing carbon dioxide from the anode means to the carbon dioxide absorber means for absorption of carbon dioxide from the exhaust gas; (e) an absorbent regenerator; (f) means for delivering carbon dioxide-enriched absorbent from the absorber means to the regenerator for separation of carbon dioxide from the absorbent; (g) means for exhausting carbon dioxide from the regenerator, the means for exhausting further including means for cooling and compressing carbon dioxide exhausted from the regenerator; and (h) means for removing the compressed carbon dioxide from the power plant.

  8. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  9. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  10. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  11. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  12. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  13. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  14. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  15. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  16. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  17. 9 CFR 313.5 - Chemical; carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Chemical; carbon dioxide. 313.5... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering of sheep, calves and swine with the use of carbon dioxide gas and the handling in...

  18. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  19. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565... Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide required for each space protected must be equal to the gross volume...

  20. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565... Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide required for each space protected must be equal to the gross volume...

  1. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Exhaust Test Procedures § 86.1324-84 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter, the NDIR carbon dioxide analyzer shall be calibrated as follows:...

  2. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  3. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  4. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  5. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  6. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  7. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  8. 9 CFR 313.5 - Chemical; carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Chemical; carbon dioxide. 313.5... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering of sheep, calves and swine with the use of carbon dioxide gas and the handling in...

  9. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  10. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  11. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  12. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  13. 9 CFR 313.5 - Chemical; carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Chemical; carbon dioxide. 313.5... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering of sheep, calves and swine with the use of carbon dioxide gas and the handling in...

  14. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  15. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  16. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  17. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  18. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  19. 40 CFR 91.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Carbon dioxide analyzer calibration. 91....320 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service, and monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon dioxide...

  20. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  1. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  2. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  3. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  4. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  5. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  6. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Carbon dioxide analyzer calibration. 90... Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial use and monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon dioxide...

  7. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  8. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  9. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  10. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Exhaust Test Procedures § 86.1324-84 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter, the NDIR carbon dioxide analyzer shall be calibrated as follows:...

  11. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  12. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  13. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  14. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  15. [Forest carbon cycle model: a review].

    PubMed

    Wang, Ping

    2009-06-01

    Forest carbon cycle is one of the important items in the research of terrestrial carbon cycle, while carbon cycle model is an important means in studying the carbon cycle mechanisms of forest ecosystem and in estimating carbon fluxes. Based on the sum-up of main carbon cycle models, this paper classified the forest carbon cycle models into two categories, i.e., patch scale forest carbon cycle models and regional scale terrestrial carbon cycle models, with their features commented. The future development trend in the research of forest carbon cycle models in China was discussed.

  16. Subject keywords index for the Carbon Dioxide Information Center's Bibliographic Information System

    SciTech Connect

    Millemann, R.E.; Cushman, R.M.

    1986-10-01

    Keywords (descriptors) are listed that are used to retrieve records from the Carbon Dioxide Information Center's Bibliographic Information System, which is a computerized data base of about 8,600 records on the carbon cycle, effects of atmospheric carbon dioxide on vegetation, climatology (especially as affected by carbon dioxide), and effects of climated on sea level and natural resources (e.g., agriculture, water resources, forestry, ecology, fisheries, and human health). The list of keyworks may be expanded in the future as additional descriptors are needed.

  17. Catalyst cartridge for carbon dioxide reduction unit

    NASA Technical Reports Server (NTRS)

    Holmes, R. F. (Inventor)

    1973-01-01

    A catalyst cartridge, for use in a carbon dioxide reducing apparatus in a life support system for space vehicles, is described. The catalyst cartridge includes an inner perforated metal wall, an outer perforated wall space outwardly from the inner wall, a base plate closing one end of the cartridge, and a cover plate closing the other end of the cartridge. The cover plate has a central aperture through which a supply line with a heater feeds a gaseous reaction mixture comprising hydrogen and carbon dioxide at a temperature from about 1000 to about 1400 F. The outer surfaces of the internal wall and the inner surfaces of the outer wall are lined with a ceramic fiber batting material of sufficient thickness to prevent carbon formed in the reaction from passing through it. The portion of the surfaces of the base and cover plates defined within the inner and outer walls are also lined with ceramic batting. The heated reaction mixture passes outwardly through the inner perforated wall and ceramic batting and over the catalyst. The solid carbon product formes is retained within the enclosure containing the catalyst. The solid carbon product formed is retained within the enclosure containing the catalyst. The water vapor and unreacted carbon dioxide and any intermediate products pass through the perforations of the outer wall.

  18. Carbon Dioxide Effects Research and Assessment Program. Carbon Dioxide Research Progress Report, fiscal year 1979

    SciTech Connect

    Dahlman, R. C.; Gross, T.; Machta, L.; Elliott, W.; MacCracken, M.

    1980-04-01

    Research on the global carbon cycle and the effects of increased carbon dioxide on the global climate system is reported. Environmental and societal effects related to CO/sub 2/ and environmental control technology for CO/sub 2/ are also discussed. Lists of research projects and reports and publications of the Carbon Dioxide and Climate Research Program are included. An expanded CO/sub 2/ monitoring network is providing increased coverage for interpretation of patterns of sources and sinks seasonal variability, and documentation of the global growth of CO/sub 2/. Modeling studies emphasized that knowledge of the transport and mixing of surface ocean waters is important in understanding deep oceanic circulation. Initial studies in the equatorial Pacific are helping quantify estimates of the amount of outgassing CO/sub 2/ from tropical waters. During fiscal year 1979, there was a substantial increase in appreciation of the role of the ocean in controlling not only atmospheric CO/sub 2/ concentrations but also the climatic response to changes in concentration. Model simulations of the effect of doubled CO/sub 2/ concentration carried out with fixed ocean temperatures a situation that is possible during perhaps the next 20 years, showed relatively small summer heating over land areas. On the other hand, simulations in which the oceanic temperatures could come into instantaneous equilibrium with atmospheric conditions continued to show global temperature increases of 3 +- 1.5/sup 0/C, accentuated at high latitudes. To improve understanding of possible regional climate changes, there were increased efforts to reconstruct regional climatic patterns prevailing during past warm periods that might serve as analogs of future climatic conditions. Particular attention was directed to the climates of the United States and other countries bordering the North Atlantic Ocean during the warm period 5000 to 7000 years ago.

  19. RESEARCH ON ELECTRIC ARC REDUCTION OF CARBON DIOXIDE,

    DTIC Science & Technology

    CARBON DIOXIDE , REDUCTION(CHEMISTRY), ELECTRIC ARCS, CHEMICAL REACTIONS, HEAT OF REACTION, GAS FLOW, OXYGEN, CARBON COMPOUNDS, MONOXIDES, ELECTRODES, LABORATORY EQUIPMENT, HIGH TEMPERATURE, PLASMAS(PHYSICS), ENERGY.

  20. Soil organic carbon enrichment of dust emissions: Magnitude, mechanisms and its implications for the carbon cycle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion is an important component of the global carbon cycle. However, little attention has been given to the role of aeolian processes in influencing soil organic carbon (SOC) flux and the release of greenhouse gasses, such as carbon-dioxide (CO2), to the atmosphere. Understanding the magnitu...

  1. Carbon cycling in terrestrial environments: Chapter 17

    USGS Publications Warehouse

    Wang, Yang; Huntington, Thomas G.; Osher, Laurie J.; Wassenaar, Leonard I; Trumbore, Susan E.; Amundson, Ronald; Harden, Jennifer W.; McKnight, Diane M.; Schiff, Sherry L.; Aiken, George R.; Lyons, W. Berry; Aravena, Ramon O.; Baron, Jill S.

    1998-01-01

    This chapter reviews a number of applications of isotopic techniques for the investigation of carbon cycling processes. Carbon dioxide (C02) is an important greenhouse gas. Its concentration in the atmosphere has increased from an estimated 270 ppm at the beginning of the industrial revolution to ∼ 360 ppm at present. Climatic conditions and atmospheric C02 concentration also influence isotopic discrimination during photosynthesis. Natural and anthropogenically induced variations in the carbon isotopic abundance can be exploited to investigate carbon transformations between pools on various time scales. It also discusses one of the isotopes of carbon, the 14C, that is produced in the atmosphere by interactions of cosmic-ray produced neutrons with stable isotopes of nitrogen (N), oxygen (O), and carbon (C), and has a natural abundance in the atmosphere of ∼1 atom 14 C per 1012 atoms 12C. The most important factor affecting the measured 14C ages of soil organic matter is the rate of organic carbon cycling in soils. Differences in the dynamics of soil carbon among different soils or soil horizons will result in different soil organic 14C signatures. As a result, the deviation of the measured 14C age from the true age could differ significantly among different soils or soil horizons.

  2. Ocean uptake of carbon dioxide

    SciTech Connect

    Peng, Tsung-Hung; Takahashi, Taro

    1993-06-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0{sup 2} include carbon chemistry, distribution of alkalinity, pCO{sup 2} and total concentration of dissolved C0{sup 2}, sea-air pCO{sup 2} difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0{sup 2} uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0{sup 2} from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0{sup 2} fertilization is a potential candidate for such missing carbon sinks.

  3. Ocean uptake of carbon dioxide

    SciTech Connect

    Peng, Tsung-Hung ); Takahashi, Taro . Lamont-Doherty Earth Observatory)

    1993-01-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0[sup 2] include carbon chemistry, distribution of alkalinity, pCO[sup 2] and total concentration of dissolved C0[sup 2], sea-air pCO[sup 2] difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0[sup 2] uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0[sup 2] from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0[sup 2] fertilization is a potential candidate for such missing carbon sinks.

  4. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

    2003-01-01

    The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates or intermediate salts through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that high calcination temperatures decrease the activity of sodium bicarbonate Grade 1 (SBC No.1) during subsequent carbonation cycles, but there is little or no progressive decrease in activity in successive cycles. SBC No.1 appears to be more active than SBC No.3. As expected, the presence of SO{sub 2} in simulated flue gas results in a progressive loss of sorbent capacity with increasing cycles. This is most likely due to an irreversible reaction to produce Na{sub 2}SO{sub 3}. This compound appears to be stable at calcination temperatures as high as 200 C. Tests of 40% supported potassium carbonate sorbent and plain support material suggest that some of the activity observed in tests of the supported sorbent may be due to adsorption by the support material rather than to carbonation of the sorbent.

  5. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  6. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  7. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  8. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  9. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport

  10. Comparison of buried soil sensors, surface chambers and above ground measurements of carbon dioxide fluxes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon dioxide (CO2) flux is an important component of the terrestrial carbon cycle. Accurate measurements of soil CO2 flux aids determinations of carbon budgets. In this study, we investigated soil CO2 fluxes with time and depth and above ground CO2 fluxes in a bare field. CO2 concentrations w...

  11. [Photosynthesis and flows of organic carbon, carbon dioxide, and oxygen in the ocean].

    PubMed

    Kuznetsov, A P; Vinogradov, M E

    2001-01-01

    The modern concept of photosynthesis as a mechanism for utilizing the energy of solar radiation is used as the basis for assessing the scale of photosynthetic production of initial organic matter in the ocean (primary biological production), its destruction, the carbon and carbon dioxide cycles (flows) involved in this process, and the size of oil- and gas-bearing hydrocarbonaceous formations originating in sedimentary deposits.

  12. Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications

    DOEpatents

    Gay, McMahan; Choi, Sunho; Jones, Christopher W

    2014-09-16

    A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

  13. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-04-01

    This report describes research conducted between January 1, 2004 and March 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. RTI has produced laboratory scale batches (approximately 300 grams) of supported sorbents (composed of 20 to 40% sodium carbonate) with high surface area and acceptable activity. Initial rates of weight gain of the supported sorbents when exposed to a simulated flue gas exceeded that of 100% calcined sodium bicarbonate. One of these sorbents was tested through six cycles of carbonation/calcination by thermogravimetric analysis and found to have consistent carbonation activity. Kinetic modeling of the regeneration cycle on the basis of diffusion resistance at the particle surface is impractical, because the evolving gases have an identical composition to those assumed for the bulk fluidization gas. A kinetic model of the reaction has been developed on the basis of bulk motion of water and carbon dioxide at the particle surface (as opposed to control by gas diffusion). The model will be used to define the operating conditions in future laboratory- and pilot-scale testing.

  14. Measuring the Spectral Expression of Carbon Dioxide in the Solar Reflected Spectrum with AVIRIS

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    2001-01-01

    Carbon dioxide is a low-concentration, but important, component of the Earth's atmosphere. This gas absorbs electromagnetic radiation (EMR) in several regions of the spectrum. Absorption of energy by carbon dioxide adds heat to the atmosphere. In the world today, the burning of fossil fuels and other anthropogenic processes adds carbon dioxide to the atmosphere. Other natural processes in the Earth's system both add and remove carbon dioxide. Overall, measurements of atmospheric carbon dioxide at selected sites around the globe show an increased carbon dioxide concentration in the atmosphere. A figure shows the measured carbon dioxide from Mauna Loa, Hawaii, from 1958 to 2000. Overall, the concentration has increased from 315 to 365 ppm at this site over this period. (There is also a yearly cycle to the concentration that is timed with and hypothesized to be related to the vegetation growing season in the Northern Hemisphere.) The overall expected effect of this increase of atmospheric carbon dioxide is trapping of heat in the atmosphere and global warming. While this overall relationship between carbon dioxide and global warming seems straightforward, many of the specific details relating to regional and local sources and sinks and gradients of carbon dioxide are not well understood. A remote sensing capability to measure carbon dioxide could provide important inputs for scientific research to better understand the distribution and change in atmospheric carbon dioxide at detailed spatial and temporal levels. In pursuit of this remote sensing of carbon dioxide objective, this paper analyzes the expression of carbon dioxide in the spectral range measured by the Airborne Visible/Infrared Imagery Spectrometer (AVIRIS). Based on these analyses, a spectral-fitting algorithm that uses AVIRIS measured spectra and MODTRAN radiative-transfer code modeled spectra to derive total column carbon dioxide abundance has been developed. This algorithm has been applied to an AVIRIS

  15. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide.

    PubMed

    Walker, J C; Kasting, J F

    1992-01-01

    We develop a numerical simulation of the global biogeochemical cycles of carbon that works over time scales extending from years to millions of years. The ocean is represented by warm and cold shallow water reservoirs, a thermocline reservoir, and deep Atlantic, Indian, and Pacific reservoirs. The atmosphere is characterized by a single carbon reservoir and the global biota by a single biomass reservoir. The simulation includes the rock cycle, distinguishing between shelf carbonate and pelagic carbonate precipitation, with distinct lysocline depths in the three deep ocean reservoirs. Dissolution of pelagic carbonates in response to decrease in lysocline depth is included. The simulation is tuned to reproduce the observed radiocarbon record resulting from atomic weapon testing. It is tuned also to reproduce the distribution of dissolved phosphate and total dissolved carbon between the ocean reservoirs as well as the carbon isotope ratios for both 13C and 14C in ocean and atmosphere. The simulation reproduces reasonably well the historical record of carbon dioxide partial pressure as well as the atmospheric isotope ratios for 13C and 14C over the last 200 yr as these have changed in response to fossil fuel burning and land use changes, principally forest clearance. The agreements between observation and calculation involves the assumption of a carbon dioxide fertilization effect in which the rate of production of biomass increases with increasing carbon dioxide partial pressure. At present the fertilization effect of increased carbon dioxide outweighs the effects of forest clearance, so the biota comprises an overall sink of atmospheric carbon dioxide sufficiently large to bring the budget approximately into balance. This simulation is used to examine the future evolution of carbon dioxide and its sensitivity to assumptions about the rate of fossil fuel burning and of forest clearance. Over times extending up to thousands of years, the results are insensitive to the

  16. The long-term carbon cycle, fossil fuels and atmospheric composition.

    PubMed

    Berner, Robert A

    2003-11-20

    The long-term carbon cycle operates over millions of years and involves the exchange of carbon between rocks and the Earth's surface. There are many complex feedback pathways between carbon burial, nutrient cycling, atmospheric carbon dioxide and oxygen, and climate. New calculations of carbon fluxes during the Phanerozoic eon (the past 550 million years) illustrate how the long-term carbon cycle has affected the burial of organic matter and fossil-fuel formation, as well as the evolution of atmospheric composition.

  17. The synthesis of organic carbonates from carbon dioxide.

    PubMed

    Sakakura, Toshiyasu; Kohno, Kazufumi

    2009-03-21

    Carbon dioxide (CO(2)) is an easily available, renewable carbon resource, which has the advantages of being non-toxic, abundant and economical. CO(2) is also attractive as an environmentally friendly chemical reagent, and is especially useful as a phosgene substitute. CO(2) is an "anhydrous carbonic acid" that rapidly reacts with basic compounds. Nucleophilic attack at CO(2) conveniently produces carboxyl and carbamoyl groups. Further reactions of these species with electrophiles lead to the formation of organic carbonates and carbamates. The present article deals with the synthetic technologies leading to organic carbonates using CO(2) as a raw material.

  18. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas.

    PubMed

    Kim, Seung Hyo; Kim, Kwang Hee; Hong, Soon Hyeok

    2014-01-13

    A carbon capture and use (CCU) strategy was applied to organic synthesis. Carbon dioxide (CO2) captured directly from exhaust gas was used for organic transformations as efficiently as hyper-pure CO2 gas from a commercial source, even for highly air- and moisture-sensitive reactions. The CO2 capturing aqueous ethanolamine solution could be recycled continuously without any diminished reaction efficiency.

  19. Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles

    SciTech Connect

    Ngo, Tri Lam; Kato, Yasuyoshi; Nikitin, Konstantin; Ishizuka, Takao

    2007-11-15

    A new microchannel heat exchanger (MCHE) with S-shaped fins was developed using the three-dimensional computational fluid dynamics (3D CFD) FLUENT code. The MCHE provided 6-7 times lower pressure drop while maintaining heat-transfer performance that was almost equivalent to that of a conventional MCHE with zigzag fins. This study was done to confirm the simulation results of thermal-hydraulic performance using a supercritical carbon dioxide loop, and to propose empirical correlations of Nusselt numbers and pressure-drop factors for a new MCHE with S-shaped fins and a conventional one with zigzag fins. This study is also intended to confirm the independence of Pr obtained in the previous study by widely varying Pr from 0.75 to 2.2. Experimental results show that the pressure-drop factor of the MCHEs with S-shaped fins is 4-5 times less than that of MCHE with zigzag fins, although Nu is 24-34% less, depending on the Re within its range. The Nusselt number correlations are expressed, respectively as Nu{sub S-shaped} {sub fins} = 0.1740 Re{sup 0.593}Pr{sup 0.430} and Nu{sub zigzag} {sub fins} = 0.1696 Re{sup 0.629}Pr{sup 0.317} for the MCHE with S-shaped and zigzag fins, and their pressure-drop factors are given as f{sub S-shaped} {sub fins} = 0.4545 Re{sup -0.340} and f{sub zigzag} {sub fins} = 0.1924 Re{sup -0.091}. The Nu correlation of the MCHE with S-shaped fins reproduces the experimental data of overall heat transfer coefficients with a standard deviation (1 sigma) of {+-}2.3%, although it is {+-}3.0% for the MCHE with zigzag fins. The calculated pressure drops obtained from pressure-drop factor correlations agree with the experimental data within a standard deviation of {+-}16.6% and {+-}13.5% for the MCHEs with S-shaped and zigzag fins, respectively. (author)

  20. Recycling technology of emitted carbon dioxide

    SciTech Connect

    Arakawa, Hironori

    1993-12-31

    Ways to halt global warming are being discussed worldwide. Global warming is an energy problem which is mainly attributed to the large volumes of carbon dioxide (CO{sub 2}) released into the atmosphere from the rapid increase in energy consumption since the Industrial Revolution. The basic solution to the problem, therefore, is to cut consumption of fossil fuels. To this end, it is important to promote energy conservation by improving the fuel efficiency of machines, as well as shift to energy sources that do not emit carbon dioxide and develop related technologies. If current trends in economic growth continue in the devloping world as well as the developed countries, there can be no doubt that energy consumption will increase. Therefore, alongside energy conservation and the development of alternative energies, the importance of technologies to recover and fix CO{sub 2} will increase in the fight against global warming.

  1. Sequestering ADM ethanol plant carbon dioxide

    USGS Publications Warehouse

    Finley, R.J.; Riddle, D.

    2008-01-01

    Archer Daniels Midland Co. (ADM) and the Illinois State Geological Survey (ISGS) are collaborating on a project in confirming that a rock formation can store carbon dioxide from the plant in its pores. The project aimed to sequester the gas underground permanently to minimize release of the greenhouse gas into the atmosphere. It is also designed to store one million tons of carbon dioxide over a three-year period. The project is worth $84.3M, funded by $66.7M from the US Department Energy, supplemented by co-funding from ADM and other corporate and state resources. The project will start drilling of wells to an expected depth over 6500 feet into the Mount Simon Sandstone formation.

  2. Climate impact of increasing atmospheric carbon dioxide.

    PubMed

    Hansen, J; Johnson, D; Lacis, A; Lebedeff, S; Lee, P; Rind, D; Russell, G

    1981-08-28

    The global temperature rose by 0.2 degrees C between the middle 1960's and 1980, yielding a warming of 0.4 degrees C in the past century. This temperature increase is consistent with the calculated greenhouse effect due to measured increases of atmospheric carbon dioxide. Variations of volcanic aerosols and possibly solar luminosity appear to be primary causes of observed fluctuations about the mean trend of increasing temperature. It is shown that the anthropogenic carbon dioxide warming should emerge from the noise level of natural climate variability by the end of the century, and there is a high probability of warming in the 1980's. Potential effects on climate in the 21st century include the creation of drought-prone regions in North America and central Asia as part of a shifting of climatic zones, erosion of the West Antarctic ice sheet with a consequent worldwide rise in sea level, and opening of the fabled Northwest Passage.

  3. Regulation of cerebral autoregulation by carbon dioxide.

    PubMed

    Meng, Lingzhong; Gelb, Adrian W

    2015-01-01

    Cerebral autoregulation describes a mechanism that maintains cerebral blood flow stable despite fluctuating perfusion pressure. Multiple nonperfusion pressure processes also regulate cerebral perfusion. These mechanisms are integrated. The effect of the interplay between carbon dioxide and perfusion pressure on cerebral circulation has not been specifically reviewed. On the basis of the published data and speculation on the aspects that are without supportive data, the authors offer a conceptualization delineating the regulation of cerebral autoregulation by carbon dioxide. The authors conclude that hypercapnia causes the plateau to progressively ascend, a rightward shift of the lower limit, and a leftward shift of the upper limit. Conversely, hypocapnia results in the plateau shifting to lower cerebral blood flows, unremarkable change of the lower limit, and unclear change of the upper limit. It is emphasized that a sound understanding of both the limitations and the dynamic and integrated nature of cerebral autoregulation fosters a safer clinical practice.

  4. The direct viscosity enhancement of carbon dioxide

    SciTech Connect

    Iezzi, A.; Enick, R.; Brady, J. . Dept. of Chemistry)

    1988-01-01

    A high pressure viscometer has been constructed for use over a wide range of temperatures and pressures, including near-critical and supercritical conditions. An aluminum cylinder falls through a tube containing a stationary column of fluid, enabling viscosities to be determined from terminal velocity measurements. Preliminary results are presented on the search for an additive which can enhance the viscosity of carbon dioxide when present in low (less than 1%) concentrations.

  5. Electrochemical carbon dioxide concentrator: Math model

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Schubert, F. H.; Carlson, J. N.

    1973-01-01

    A steady state computer simulation model of an Electrochemical Depolarized Carbon Dioxide Concentrator (EDC) has been developed. The mathematical model combines EDC heat and mass balance equations with empirical correlations derived from experimental data to describe EDC performance as a function of the operating parameters involved. The model is capable of accurately predicting performance over EDC operating ranges. Model simulation results agree with the experimental data obtained over the prediction range.

  6. Carbon dioxide supersaturation promotes primary production in lakes.

    PubMed

    Jansson, Mats; Karlsson, Jan; Jonsson, Anders

    2012-06-01

    A majority of the world's lakes are supersaturated with respect to carbon dioxide (CO(2) ). By experimental manipulation of the CO(2) concentration in supersaturated boreal lakes, we demonstrate that phytoplankton primary production was up to 10 times higher in supersaturated lake water in comparison with water with CO(2) at equilibrium concentrations and that CO(2) , together with nutrients, explained most of the variation in pelagic primary production and phytoplankton biomass over a wide variety of unproductive lakes. These results suggest that phytoplankton can be co-limited by CO(2) and nutrients in unproductive lakes. As import of terrestrial organic carbon and its subsequent microbial mineralisation in lakes is a driving force of CO(2) -supersaturation our results suggest that lake productivity and carbon cycling may respond to variations in terrestrial organic carbon export, (e.g. caused by land use or climate change) in ways not described before.

  7. Carbon dioxide makes heat therapy work

    SciTech Connect

    Sherman, H.

    1987-01-01

    Scientists can now propagate healthy blueberry and raspberry plants from virus-infected stock by treating it with heat and carbon dioxide. Plants are grown at 100/sup 0/F, which makes them develop faster than the virus can spread. Then cuttings are taken of the new growth - less than an inch long - and grown into full-sized, virus-free plants. But in this race to outdistance the virus, some plant species are not able to take the heat. Some even die. Chemical reactions double for every 14/sup 0/F rise in temperature. So, if you try to grow a plant at 100/sup 0/F that was originally growing at 86/sup 0/F, it will double its respiration rate. Adding carbon dioxide increases the rate of photosynthesis in plants, which increases the plant's food reserves. What carbon dioxide does to allow some plants to grow at temperatures at which they would otherwise not survive and it allows other plants to grow for longer periods at 100/sup 0/F. One problem with the process, says Converse, is that the longer plants are exposed to heat the greater the mutation rate. So, resulting clones should be closely examined for trueness to horticultural type.

  8. Carbon dioxide in Arctic and subarctic regions

    SciTech Connect

    Gosink, T. A.; Kelley, J. J.

    1981-03-01

    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, the hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.

  9. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin

    PubMed Central

    Shen, Jing; Kortlever, Ruud; Kas, Recep; Birdja, Yuvraj Y.; Diaz-Morales, Oscar; Kwon, Youngkook; Ledezma-Yanez, Isis; Schouten, Klaas Jan P.; Mul, Guido; Koper, Marc T. M.

    2015-01-01

    The electrochemical conversion of carbon dioxide and water into useful products is a major challenge in facilitating a closed carbon cycle. Here we report a cobalt protoporphyrin immobilized on a pyrolytic graphite electrode that reduces carbon dioxide in an aqueous acidic solution at relatively low overpotential (0.5 V), with an efficiency and selectivity comparable to the best porphyrin-based electrocatalyst in the literature. While carbon monoxide is the main reduction product, we also observe methane as by-product. The results of our detailed pH-dependent studies are explained consistently by a mechanism in which carbon dioxide is activated by the cobalt protoporphyrin through the stabilization of a radical intermediate, which acts as Brønsted base. The basic character of this intermediate explains how the carbon dioxide reduction circumvents a concerted proton–electron transfer mechanism, in contrast to hydrogen evolution. Our results and their mechanistic interpretations suggest strategies for designing improved catalysts. PMID:26324108

  10. Limiting future atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Sarmiento, Jorge L.; Le QuéRé, Corinne; Pacala, Stephen W.

    1995-03-01

    We estimate anthropogenic carbon emissions required to stabilize future atmospheric CO2 at various levels ranging from 350 ppm to 750 ppm. Over the next three centuries, uptake by the ocean and terrestrial biosphere would permit emissions to be 3 to 6 times greater than the total atmospheric increase, with each of them contributing approximately equal amounts. Owing to the nonlinear dependence of oceanic and terrestrial biospheric uptake on CO2 concentration, the uptake by these two sinks decreases substantially at higher atmospheric CO2 levels. The uptake also decreases with increased atmospheric CO2 growth rate. All the stabilization scenarios require a substantial future reduction in emissions.

  11. Carbon dioxide reduction by the Bosch process

    NASA Technical Reports Server (NTRS)

    Manning, M. P.; Reid, R. C.

    1975-01-01

    Prototype units for carrying out the reduction of carbon dioxide to elementary carbon have been built and operated successfully. In some cases, however, startup difficulties have been reported. Moreover, the recycle reactor product has been reported to contain only small amounts of water and undesirably high yields of methane. This paper presents the results of the first phase of an experimental study that was carried out to define the mechanisms occurring in the reduction process. Conclusions are drawn and possible modifications to the present recycle process are suggested.

  12. A miniature chemiresistor sensor for carbon dioxide.

    PubMed

    Srinives, Sira; Sarkar, Tapan; Hernandez, Raul; Mulchandani, Ashok

    2015-05-18

    A carpet-like nanostructure of polyaniline (PANI) nanothin film functionalized with poly(ethyleneimine), PEI, was used as a miniature chemiresistor sensor for detection of CO2 at room temperature. Good sensing performance was observed upon exposing the PEI-PANI device to 50-5000 ppm CO2 in presence of humidity with negligible interference from ammonia, carbon monoxide, methane and nitrogen dioxide. The sensing mechanism relied on acid-base reaction, CO2 dissolution and amine-catalyzed hydration that yielded carbamates and carbonic acid for a subsequent pH detection. The sensing device showed reliable results in detecting an unknown concentration of CO2 in air.

  13. Reconstructing Late Ordovician carbon cycle variations

    NASA Astrophysics Data System (ADS)

    Pancost, Richard D.; Freeman, Katherine H.; Herrmann, Achim D.; Patzkowsky, Mark E.; Ainsaar, Leho; Martma, Tõnu

    2013-03-01

    The role of carbon dioxide in regulating climate during the early Paleozoic, when severe glaciations occurred during a putative greenhouse world, remains unclear. Here, we present the first molecular carbon isotope proxy-based estimates for Late Ordovician (early Katian) pCO2 levels, and explore the limitations of applying this approach to the reconstruction of Paleozoic pCO2. Carbon isotope profiles from three sites in Laurentia (Iowa, Ontario and Pennsylvania) and one site in Baltica (Estonia) exhibit overall low isotope fractionation between organic and inorganic carbon during photosynthesis (ɛp) and these values declined during the early Katian carbonate carbon isotope excursion (or Guttenberg Carbon Isotope Excursion, GICE). Algal ɛp values are sensitive to changes in CO2 concentrations, algae cell morphologies, and cell growth rates. To constrain these factors, we present molecular evidence that a decrease in the relative abundance of cyanobacteria and a change in the eukaryotic algae community co-occurred with the GICE. Regardless of local biotic or oceanographic influences, a decline in ɛp values indicates photosynthesis was sensitive to carbon concentrations, and via analogy with modern taxa, constrains pCO2 to below ˜8× pre-industrial levels (PIL), or about half of previous estimates. In addition, the global, positive carbon isotope excursions expressed in a wide variety of sedimentary materials (carbonate, bulk organic matter, n-alkanes, acyclic and cyclic isoprenoid hydrocarbons), provide compelling evidence for perturbation of the global carbon cycle, and this was likely associated with a decrease in pCO2 approximately 10 million years prior to the Hirnantian glaciations. Isotopic records from deeper water settings suggest a complex interplay of carbon sources and sinks, with pCO2 increasing prior to and during the early stages of the GICE and then decreasing when organic carbon burial outpaced increased volcanic inputs.

  14. Method of immobilizing carbon dioxide from gas streams

    DOEpatents

    Holladay, David W.; Haag, Gary L.

    1979-01-01

    This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.

  15. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC{number_sign}3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO{sub 2}. Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO{sub 2}/20% H{sub 2}O, and lowest subsequent to calcination in pure CO{sub 2} at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO{sub 2} in the simulated flue gas. CO{sub 2} evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC{number_sign}3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first carbonation cycle, CO

  16. Ionic Liquid Membranes for Carbon Dioxide Separation

    SciTech Connect

    Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

    2008-07-12

    Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on

  17. Automated carbon dioxide cleaning system

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.

    1991-01-01

    Solidified CO2 pellets are an effective blast media for the cleaning of a variety of materials. CO2 is obtained from the waste gas streams generated from other manufacturing processes and therefore does not contribute to the greenhouse effect, depletion of the ozone layer, or the environmental burden of hazardous waste disposal. The system is capable of removing as much as 90 percent of the contamination from a surface in one pass or to a high cleanliness level after multiple passes. Although the system is packaged and designed for manual hand held cleaning processes, the nozzle can easily be attached to the end effector of a robot for automated cleaning of predefined and known geometries. Specific tailoring of cleaning parameters are required to optimize the process for each individual geometry. Using optimum cleaning parameters the CO2 systems were shown to be capable of cleaning to molecular levels below 0.7 mg/sq ft. The systems were effective for removing a variety of contaminants such as lubricating oils, cutting oils, grease, alcohol residue, biological films, and silicone. The system was effective on steel, aluminum, and carbon phenolic substrates.

  18. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  19. Carbon dioxide: A substitute for phosgene

    SciTech Connect

    Aresta, M.; Quaranta, E.

    1997-03-01

    One of the many goals of the green chemistry movement is to eliminate the use of phosgene (COCl{sub 2}), an extremely hazardous compound used in many syntheses, including the production of carbamates, organic carbonates, and polymers. One of the most interesting options for eliminating this compound is to replace it with CO{sub 2}. In addition to carbon dioxide`s abundance and benign nature, it has the benefits of recycling carbon and of reducing the amount of CO{sub 2} released into the atmosphere when its use is linked with other processes that emit CO{sub 2}. Several synthetic strategies that do not use phosgene are under development. The authors briefly review the most interesting ones and then expand on the use of CO{sub 2} as a potential building block for organic carbamates, carbonates, and isocyanates. One of these routes, polycarbonate synthesis, is already in industrial-scale operation: PAC Polymers Inc. currently produces CO{sub 2}-epoxide copolymers. The synthesis of carbamates and substituted ureas has been developed, and this process awaits industrial exploitation.

  20. Modelling feedback mechanisms in the carbon cycle: balancing the carbon budget

    NASA Astrophysics Data System (ADS)

    Rotmans, J.; den Elzen, M. G. J.

    1993-09-01

    Within the carbon cycle feedback, mechanisms that amplify or dampen the exchange of carbon dioxide between the different reservoirs to enhance concentrations of carbon dioxide and increase temperature from anthropogenic perturbations, play a crucial rôle. Quite a lot of these feedbacks are known, but most of them only potentially. This article evaluates the role of a number of these feedback processes within the carbon cycle. In order to assess their impact, some terrestrial feedbacks have been built into a coupled carbon cycle and climate model, as part of the integrated climate assessment model IMAGE. A number of simulation experiments have been performed with this coupled carbon cycle/climate model to compare historical atmospheric concentration values of carbon dioxide with simulated values. Also global biospheric and oceanic carbon fluxes were validated against other modelling estimates. Based on the assumptions of the IPCC's 1990 Business-as-Usual (BaU-1990) scenario, future projections of the carbon dioxide concentration have been made. A key principle in this is that we have used the modelled feedbacks in order to balance the past and present carbon budget. For atmospheric carbon dioxide, this results in substantially lower projections than the IPCC-estimates: the difference in 2100 is approximately 16% from the 1990 level. Furthermore, the IPCC's 'best guess' or 'central estimate' value of the CO2 concentration in 2100 falls outside the uncertainty range estimated with our balanced modelling approach. Sensitivity experiments with the model have been performed to quantify to what extent the terrestrial feedback processes and oceanic fluxes influence the global carbon balance in the model. It is shown that a historical and present carbon balance can be obtained in many different ways, resulting in different biospheric fluxes and thus in considerably different atmospheric CO2 projections.

  1. Enriching blast furnace gas by removing carbon dioxide.

    PubMed

    Zhang, Chongmin; Sun, Zhimin; Chen, Shuwen; Wang, Baohai

    2013-12-01

    Blast furnace gas (BF gas) produced in the iron making process is an essential energy resource for a steel making work. As compared with coke oven gas, the caloric value of BF gas is too low to be used alone as fuel in hot stove because of its high concentrations of carbon dioxide and nitrogen. If the carbon dioxide in BF gas could be captured efficiently, it would meet the increasing need of high caloric BF gas, and develop methods to reusing and/or recycling the separated carbon dioxide further. Focused on this, investigations were done with simple evaluation on possible methods of removing carbon dioxide from BF gas and basic experiments on carbon dioxide capture by chemical absorption. The experimental results showed that in 100 minutes, the maximum absorbed doses of carbon dioxide reached 20 g/100 g with ionic liquid as absorbent.

  2. Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study

    SciTech Connect

    Edwards, A.G.; Ho, C.S.

    1988-06-20

    Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase of 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur.

  3. The nature of carbon dioxide waters in Snaefellsnes, western Iceland

    USGS Publications Warehouse

    Arnorsson, S.; Barnes, I.

    1983-01-01

    Over 20 occurrences of thermal and non-thermal waters rich in carbon dioxide are known in the Snaefellsnes Peninsula of western Iceland. On the basis of the thermal, chemical and isotopic characteristics of these waters, and hydrological considerations, it is concluded that they represent meteoric waters which have seeped to variable depths into the bedrock. Ascending carbon dioxide gas originating from intrusions or the mantle mixes with the meteoric waters to produce carbon dioxide waters: at considerable depth in the case of the thermal carbon dioxide waters but close to the surface in the case of cold carbon dioxide waters. The occurrence of carbon dioxide waters cannot be regarded as evidence for underground geothermal reservoirs. ?? 1983.

  4. Designed amyloid fibers as materials for selective carbon dioxide capture

    PubMed Central

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077

  5. Copolymerization of carbon dioxide and butadiene via a lactone intermediate.

    PubMed

    Nakano, Ryo; Ito, Shingo; Nozaki, Kyoko

    2014-04-01

    Although carbon dioxide has attracted broad interest as a renewable carbon feedstock, its use as a monomer in copolymerization with olefins has long been an elusive endeavour. A major obstacle for this process is that the propagation step involving carbon dioxide is endothermic; typically, attempted reactions between carbon dioxide and an olefin preferentially yield olefin homopolymerization. Here we report a strategy to circumvent the thermodynamic and kinetic barriers for copolymerizations of carbon dioxide and olefins by using a metastable lactone intermediate, 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one, which is formed by the palladium-catalysed condensation of carbon dioxide and 1,3-butadiene. Subsequent free-radical polymerization of the lactone intermediate afforded polymers of high molecular weight with a carbon dioxide content of 33 mol% (29 wt%). Furthermore, the protocol was applied successfully to a one-pot copolymerization of carbon dioxide and 1,3-butadiene, and one-pot terpolymerizations of carbon dioxide, butadiene and another 1,3-diene. This copolymerization technique provides access to a new class of polymeric materials made from carbon dioxide.

  6. Copolymerization of carbon dioxide and butadiene via a lactone intermediate

    NASA Astrophysics Data System (ADS)

    Nakano, Ryo; Ito, Shingo; Nozaki, Kyoko

    2014-04-01

    Although carbon dioxide has attracted broad interest as a renewable carbon feedstock, its use as a monomer in copolymerization with olefins has long been an elusive endeavour. A major obstacle for this process is that the propagation step involving carbon dioxide is endothermic; typically, attempted reactions between carbon dioxide and an olefin preferentially yield olefin homopolymerization. Here we report a strategy to circumvent the thermodynamic and kinetic barriers for copolymerizations of carbon dioxide and olefins by using a metastable lactone intermediate, 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one, which is formed by the palladium-catalysed condensation of carbon dioxide and 1,3-butadiene. Subsequent free-radical polymerization of the lactone intermediate afforded polymers of high molecular weight with a carbon dioxide content of 33 mol% (29 wt%). Furthermore, the protocol was applied successfully to a one-pot copolymerization of carbon dioxide and 1,3-butadiene, and one-pot terpolymerizations of carbon dioxide, butadiene and another 1,3-diene. This copolymerization technique provides access to a new class of polymeric materials made from carbon dioxide.

  7. 40 CFR 91.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Provisions § 91.320 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service, and monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon...

  8. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  9. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  10. 40 CFR 91.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Provisions § 91.320 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service, and monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon...

  11. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  12. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  13. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  14. SIMULATION OF CARBON DIOXIDE EMISSIONS FROM DAIRY FARMS TO ASSESS GREENHOUSE GAS REDUCTION STRATEGIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farming practices can have a large impact on the soil carbon cycle and the resulting net emission of greenhouse gases including carbon dioxide (CO**2), methane and nitrous oxide. Primary sources of CO**2 emission on dairy farms are soil, plant, and animal respiration with smaller contributions from ...

  15. Soil carbon dioxide fluxes with time and depth in a bare field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon dioxide (CO2) efflux is an important component of the terrestrial carbon cycle. The amount of CO2 emitted from soil to the atmosphere has significant effects on the soil-atmosphere system. The objectives of this study are 1) to determine bare soil CO2 fluxes continuously with time and de...

  16. Carbon dioxide emission from bamboo culms.

    PubMed

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan.

  17. Upgrading carbon dioxide by incorporation into heterocycles.

    PubMed

    Yu, Bing; He, Liang-Nian

    2015-01-01

    Carbon dioxide is commonly regarded as the primary greenhouse gas, but from a synthetic standpoint can be utilized as an alternative and sustainable C1 synthon in organic synthesis rather than a waste. This results in the production of organic carbonates, carboxylic acids, and derivatives. Recently, CO2 has emerged as an appealing tool for heterocycle synthesis under mild conditions without using stoichiometric amounts of organometallic reducing reagents. This Minireview summarizes recent advances on methodologies for CO2 incorporation into N-, O-, and C-nucleophiles to provide various heterocycles, including cyclic carbamates, benzoxazine-2-one, 4-hydroxyquinolin-2-one, quinazoline-2,4(1 H,3 H)-diones, benzimidazolones, α-alkylidene cyclic carbonate.

  18. Supercritical carbon dioxide: a solvent like no other

    PubMed Central

    Peach, Jocelyn

    2014-01-01

    Summary Supercritical carbon dioxide (scCO2) could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs). Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and attempts to enhance scCO2 viscosity. PMID:25246947

  19. The Carbon Cycle at the Nile Headwaters

    NASA Astrophysics Data System (ADS)

    Jones, Michael; Saunders, Matthew

    2014-05-01

    The carbon cycle at the Nile headwaters M B Jones, School of Natural Sciences, Trinity College, University of Dublin, Dublin 2, Ireland M Saunders, Environmental and Biochemical Sciences Group, The James Hutton Institute, Aberdeen, Scotland River systems play an integral role in the global carbon cycle by connecting the terrestrial biosphere, the atmosphere and the oceans. Extensive wetland systems, such as those found in the Amazon region, have been shown to export significant amounts of carbon to river waters as dissolved carbon dioxide (CO2) that can be transported and emitted hundreds of km downstream. The assessment of both regional and global carbon budgets could therefore be improved by quantifying these lateral carbon fluxes, especially from highly productive temporarily or permanently flooded areas where substantial CO2 evasion from inland waters can occur. The Nile is the longest river in the world and the headwaters are located in the extensive Papyrus dominated wetlands in central Africa that are associated with Lake Victoria. From its source the White Nile flows northwards through wetlands in Uganda and Sudan before it joins the Blue Nile. Papyrus wetlands have been shown to be some of the most productive global ecosystems, with recorded rates of aerial net primary productivity of up to 3.09 kg C m-2 yr-1. In addition, where anaerobic conditions occur they also accumulate large amounts of carbon in the form of peat, and under these circumstances they represent a significant carbon sink. However, as water moves through these wetlands and is exchanged with surrounding rivers and lakes significant quantities of dissolved organic and inorganic carbon as well as suspended particulate organic matter are exported, which are either released further downstream by degassing, decomposition or deposition. Information on such losses from these wetland ecosystems is extremely sparse but in order to better constrain ecosystem scale carbon dynamics more accurate

  20. THERMAL CONDUCTIVITY OF CARBON DIOXIDE AT ONE ATMOSPHERE.

    DTIC Science & Technology

    CARBON DIOXIDE , THERMAL CONDUCTIVITY, VISCOSITY, HIGH TEMPERATURE, GASES, NITROGEN COMPOUNDS, OXYGEN, LAMINAR FLOW, TEST EQUIPMENT, DIFFUSION, PRESSURE, DENSITY, MEASUREMENT, WATER, CYLINDRICAL BODIES, THEORY.

  1. Carbon dioxide absorbent and method of using the same

    SciTech Connect

    Perry, Robert James; O'Brien, Michael Joseph

    2014-06-10

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  2. Carbon dioxide absorbent and method of using the same

    SciTech Connect

    Perry, Robert James; O'Brien, Michael Joseph

    2015-12-29

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  3. A tenuous carbon dioxide atmosphere on Jupiter's moon Callisto

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.

    1999-01-01

    An off-limb scan of Callisto was conducted by the Galileo near-infrared mapping spectrometer to search for a carbon dioxide atmosphere. Airglow in the carbon dioxide nu3 band was observed up to 100 kilometers above the surface and indicates the presence of a tenuous carbon dioxide atmosphere with surface pressure of 7.5 x 10(-12) bar and a temperature of about 150 kelvin, close to the surface temperature. A lifetime on the order of 4 years is suggested, based on photoionization and magnetospheric sweeping. Either the atmosphere is transient and was formed recently or some process is currently supplying carbon dioxide to the atmosphere.

  4. A tenuous carbon dioxide atmosphere on Jupiter's moon Callisto.

    PubMed

    Carlson, R W

    1999-02-05

    An off-limb scan of Callisto was conducted by the Galileo near-infrared mapping spectrometer to search for a carbon dioxide atmosphere. Airglow in the carbon dioxide nu3 band was observed up to 100 kilometers above the surface and indicates the presence of a tenuous carbon dioxide atmosphere with surface pressure of 7.5 x 10(-12) bar and a temperature of about 150 kelvin, close to the surface temperature. A lifetime on the order of 4 years is suggested, based on photoionization and magnetospheric sweeping. Either the atmosphere is transient and was formed recently or some process is currently supplying carbon dioxide to the atmosphere.

  5. Amorphous silica-like carbon dioxide

    NASA Astrophysics Data System (ADS)

    Santoro, Mario; Gorelli, Federico A.; Bini, Roberto; Ruocco, Giancarlo; Scandolo, Sandro; Crichton, Wilson A.

    2006-06-01

    Among the group IV elements, only carbon forms stable double bonds with oxygen at ambient conditions. At variance with silica and germania, the non-molecular single-bonded crystalline form of carbon dioxide, phase V, only exists at high pressure. The amorphous forms of silica (a-SiO2) and germania (a-GeO2) are well known at ambient conditions; however, the amorphous, non-molecular form of CO2 has so far been described only as a result of first-principles simulations. Here we report the synthesis of an amorphous, silica-like form of carbon dioxide, a-CO2, which we call `a-carbonia'. The compression of the molecular phase III of CO2 between 40 and 48GPa at room temperature initiated the transformation to the non-molecular amorphous phase. Infrared spectra measured at temperatures up to 680K show the progressive formation of C-O single bonds and the simultaneous disappearance of all molecular signatures. Furthermore, state-of-the-art Raman and synchrotron X-ray diffraction measurements on temperature-quenched samples confirm the amorphous character of the material. Comparison with vibrational and diffraction data for a-SiO2 and a-GeO2, as well as with the structure factor calculated for the a-CO2 sample obtained by first-principles molecular dynamics, shows that a-CO2 is structurally homologous to the other group IV dioxide glasses. We therefore conclude that the class of archetypal network-forming disordered systems, including a-SiO2, a-GeO2 and water, must be extended to include a-CO2.

  6. Six-fold Coordinated Carbon Dioxide VI

    SciTech Connect

    Iota, V; Yoo, C; Klepeis, J; Jenei, Z

    2006-03-01

    Under standard conditions, carbon dioxide (CO{sub 2}) is a simple molecular gas and an important atmospheric constituent while silicon dioxide (SiO{sub 2}) is a covalent solid, and represents one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO{sub 2} transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO{sub 2} tridymite. Here, we present the discovery of a new extended-solid phase of carbon dioxide (CO{sub 2}): a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO{sub 2}-II above 50GPa at 530-650K. Together with the previously reported CO{sub 2}-V and a-carbonia, this new extended phase indicates a fundamental similarity between CO{sub 2}--a prototypical molecular solid, and SiO{sub 2}--one of Earth's fundamental building blocks. The phase diagram suggests a limited stability domain for molecular CO{sub 2}-I, and proposes that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II, III, and IV. The crystal structure of phase VI suggests strong disorder along the caxis in stishovite-like P4{sub 2}/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp{sup 3} hybridization.

  7. Carbon dioxide inhalation causes pulmonary inflammation.

    PubMed

    Abolhassani, Mohammad; Guais, Adeline; Chaumet-Riffaud, Philippe; Sasco, Annie J; Schwartz, Laurent

    2009-04-01

    The aim of this study was to assess whether one of the most common poisons of cellular respiration, i.e., carbon dioxide, is proinflammatory. CO(2) is naturally present in the atmosphere at the level of 0.038% and involved in numerous cellular biochemical reactions. We analyzed in vitro the inflammation response induced by exposure to CO(2) for 48 h (0-20% with a constant O(2) concentration of 21%). In vivo mice were submitted to increasing concentrations of CO(2) (0, 5, 10, and 15% with a constant O(2) concentration of 21%) for 1 h. The exposure to concentrations above 5% of CO(2) resulted in the increased transcription (RNase protection assay) and secretion (ELISA) of proinflammatory cytokines [macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, MIP-2, IL-8, IL-6, monocyte chemoattractant protein-1, and regulated upon activation, normal T cell expressed, and, presumably, secreted (RANTES)] by epithelial cell lines HT-29 or A549 and primary pulmonary cells retrieved from the exposed mice. Lung inflammation was also demonstrated in vivo by mucin 5AC-enhanced production and airway hyperreactivity induction. This response was mostly mediated by the nuclear translocation of p65 NF-kappaB, itself a consequence of protein phosphatase 2A (PP2A) activation. Short inhibiting RNAs (siRNAs) targeted toward PP2Ac reversed the effect of carbon dioxide, i.e., disrupted the NF-kappaB activation and the proinflammatory cytokine secretion. In conclusion, this study strongly suggests that exposure to carbon dioxide may be more toxic than previously thought. This may be relevant for carcinogenic effects of combustion products.

  8. Amazon River carbon dioxide outgassing fuelled by wetlands.

    PubMed

    Abril, Gwenaël; Martinez, Jean-Michel; Artigas, L Felipe; Moreira-Turcq, Patricia; Benedetti, Marc F; Vidal, Luciana; Meziane, Tarik; Kim, Jung-Hyun; Bernardes, Marcelo C; Savoye, Nicolas; Deborde, Jonathan; Souza, Edivaldo Lima; Albéric, Patrick; Landim de Souza, Marcelo F; Roland, Fabio

    2014-01-16

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.

  9. 75 FR 29534 - Inorganic Nitrates-Nitrite, Carbon and Carbon Dioxide, and Sulfur Registration Review; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... Nitrates-Nitrite, Carbon and Carbon Dioxide, and Sulfur Registration Review; Draft Ecological Risk... ecological risk assessment for the registration review of inorganic nitrates - nitrites, carbon and carbon... inorganic nitrates- nitrites, carbon and carbon dioxide uses, as well as gas cartridge uses of sulfur....

  10. Carbon dioxide detection in adult Odonata.

    PubMed

    Piersanti, Silvana; Frati, Francesca; Rebora, Manuela; Salerno, Gianandrea

    2016-04-01

    The present paper shows, by means of single-cell recordings, responses of antennal sensory neurons of the damselfly Ischnura elegans when stimulated by air streams at different CO2 concentrations. Unlike most insects, but similarly to termites, centipedes and ticks, Odonata possess sensory neurons strongly inhibited by CO2, with the magnitude of the off-response depending upon the CO2 concentration. The Odonata antennal sensory neurons responding to CO2 are also sensitive to airborne odors; in particular, the impulse frequency is increased by isoamylamine and decreased by heptanoic and pentanoic acid. Further behavioral investigations are necessary to assign a biological role to carbon dioxide detection in Odonata.

  11. Capture of carbon dioxide by hybrid sorption

    SciTech Connect

    Srinivasachar, Srivats

    2014-09-23

    A composition, process and system for capturing carbon dioxide from a combustion gas stream. The composition has a particulate porous support medium that has a high volume of pores, an alkaline component distributed within the pores and on the surface of the support medium, and water adsorbed on the alkaline component, wherein the proportion of water in the composition is between about 5% and about 35% by weight of the composition. The process and system contemplates contacting the sorbent and the flowing gas stream together at a temperature and for a time such that some water remains adsorbed in the alkaline component when the contact of the sorbent with the flowing gas ceases.

  12. Searching for clues to ancient carbon dioxide

    SciTech Connect

    Appenzeller, T.

    1993-02-12

    Something on Earth just won't stop fiddling with the thermostat. In the past 500 million years, the planet has shivered through ice ages lasting millions of years and sweltered through episodes of global warmth. Climatologists, eager to know what keeps jiggling the planet's temperature setting, have focused their suspicions on carbon dioxide, the same heat-trapping gas expected to drive up temperatures in coming decades. Catching this suspect in the act has been difficult, however; the atmospheres of millions of years ago are gone with the wind.

  13. Cost analysis of carbon dioxide concentrators

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1972-01-01

    A methodology is developed to predict the relevant contributions of the more intangible cost elements encountered in the development of flight-qualified hardware and is used to predict the costs of three carbon dioxide concentration systems. The cost and performance data from Gemini, Skylab, and other programs are utilized as a basis for establishing the cost estimating relationships. The concentration systems analyzed are the molecular sieves C02 concentrator, the hydrogen-depolarized concentrator, and the regenerable solid desiccant concentrator. Besides the cost estimates for each system, their comparative criteria including relative characteristics, operational differences, and development status are considered.

  14. Synthesis of carbonates and related compounds from carbon dioxide via methanesulfonyl carbonates.

    PubMed

    Bratt, Mark O; Taylor, Paul C

    2003-07-11

    Carbonate anions resulting from reaction of primary or secondary alcohols with carbon dioxide, when added to methanesulfonic anhydride in cooled acetonitrile solution, yield methanesulfonyl carbonates, a new class of synthetic intermediate. Base-mediated reaction of the methanesulfonyl carbonates with alcohols, thiols, and amines yields carbonates, thiocarbonates, and carbamates, respectively. Overall yields for the three steps vary from 19% to 42%.

  15. Simple ocean carbon cycle models

    SciTech Connect

    Caldeira, K.; Hoffert, M.I.; Siegenthaler, U.

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  16. Distribution of and changes in industrial carbon dioxide production

    SciTech Connect

    Rotty, R.M.

    1983-02-20

    The burning of fossils fuels is believed to be the major source responsible for an observed increase in the concentration of carbon dioxide in the atmosphere now measured at many locations around the world. This paper revises earlier published data on the annual amounts of carbon released to the atmosphere during the period 1950--1978 and updates the record through 1980. A latitudinal distribution of the fossil fuel source is presented as an aid in explaining the differences in the observed CO/sub 2/ concentrations at several stations. Data from Mauna Loa Observatory, the South Pole, and elsewhere around the world (Keeling et al., 1978a, b; Bolin and Bischof, 1970; Herbert, 1980) show an increase in the concentration of carbon dioxide in the atmosphere. Attempts to deduce from these records information about the global carbon cycle depend upon data pertaining to the sources of CO/sub 2/ introduced by man: burning of fossil fuels and conversion of the world's forests. The latitudinal distribution of the fossil fuel production of CO/sub 2/ should be an important aid in carbon-cycle analysis. Observations in the atmosphere show that the Northern Hemisphere CO/sub 2/ concentration is increasing more rapidly than the Southern Hemisphere concentration and that the most rapid increase is at 50/sup 0/--60/sup 0/N latitude. The greatest seasonal variation also occurs in this latitude band. This paper updates and documents the fossil fuel sources of CO/sub 2/. It revises global CO/sub 2/ emission values for 1950--1978 published earlier; it demonstrates that a change in the rate of increase of annual CO/sub 2/ emissions occurred in 1973; and it attempts to delineate the regional distribution of this source of CO/sub 2/.

  17. The kinetics of binding carbon dioxide in magnesium carbonate

    SciTech Connect

    Butt, D.P.; Lackner, K.S.; Wendt, C.H.; Vaidya, R.; Pile, D.L.; Park, Y.; Holesinger, T.; Harradine, D.M.; Nomura, Koji |

    1998-08-01

    Humans currently consume about 6 Gigatons of carbon annually as fossil fuel. In some sense, the coal industry has a unique advantage over many other anthropogenic and natural emitters of CO{sub 2} in that it owns large point sources of CO{sub 2} from which this gas could be isolated and disposed of. If the increased energy demands of a growing world population are to be satisfied from coal, the implementation of sequestration technologies will likely be unavoidable. The authors` method of sequestration involves binding carbon dioxide as magnesium carbonate, a thermodynamically stable solid, for safe and permanent disposal, with minimal environmental impact. The technology is based on extracting magnesium hydroxide from common ultramafic rock for thermal carbonation and subsequent disposition. The economics of the method appear to be promising, however, many details of the proposed process have yet to be optimized. Realization of a cost effective method requires development of optimal technologies for efficient extraction and thermal carbonation.

  18. Carbon Dioxide Capture Adsorbents: Chemistry and Methods.

    PubMed

    Patel, Hasmukh A; Byun, Jeehye; Yavuz, Cafer T

    2016-12-21

    Excess carbon dioxide (CO2 ) emissions and their inevitable consequences continue to stimulate hard debate and awareness in both academic and public spaces, despite the widespread lack of understanding on what really is needed to capture and store the unwanted CO2 . Of the entire carbon capture and storage (CCS) operation, capture is the most costly process, consisting of nearly 70 % of the price tag. In this tutorial review, CO2 capture science and technology based on adsorbents are described and evaluated in the context of chemistry and methods, after briefly introducing the current status of CO2 emissions. An effective sorbent design is suggested, whereby six checkpoints are expected to be met: cost, capacity, selectivity, stability, recyclability, and fast kinetics.

  19. Cooperative redox activation for carbon dioxide conversion

    NASA Astrophysics Data System (ADS)

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-12-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing `waste', produced through oxygen insertion into the Si-Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2.

  20. Modeling flow of mineralized carbon dioxide slurry

    SciTech Connect

    Penner, Larry R.; Dahlin, David C.; Gerdemann, Stephen J.; Saha, K.K.

    2005-04-01

    Direct mineral carbonation was investigated at Albany Research Center (US DOE) as a means to sequester carbon dioxide into stable mineral matrices. Although previous work focused on treating Mg-containing minerals in conventional autoclaves, recent work has been done using pipeline-reactor technology for the high-temperature, high-pressure (HTHP) reaction of the minerals in aqueous/CO2 media. Sequestration of CO2 using above-ground reactors may be uneconomical, but the technology may also be applicable in geological sequestration of CO2. Progress is described in using a prototype HTHP flow-loop reactor to model flow in the dynamic three-phase system to help determine the pumping-energy requirements to optimize reactivity.

  1. Influence of variable rates of neritic carbonate deposition on atmospheric carbon dioxide and pelagic sediments

    NASA Technical Reports Server (NTRS)

    Walker, J. C.; Opdyke, B. C.

    1995-01-01

    Short-term imbalances in the global cycle of shallow water calcium carbonate deposition and dissolution may be responsible for much of the observed Pleistocene change in atmospheric carbon dioxide content. However, any proposed changes in the alkalinity balance of the ocean must be reconciled with the sedimentary record of deep-sea carbonates. The possible magnitude of the effect of shallow water carbonate deposition on the dissolution of pelagic carbonate can be tested using numerical simulations of the global carbon cycle. Boundary conditions can be defined by using extant shallow water carbonate accumulation data and pelagic carbonate deposition/dissolution data. On timescales of thousands of years carbonate deposition versus dissolution is rarely out of equilibrium by more than 1.5 x 10(13) mole yr-1. Results indicate that the carbonate chemistry of the ocean is rarely at equilibrium on timescales less than 10 ka. This disequilibrium is probably due to sea level-induced changes in shallow water calcium carbonate deposition/dissolution, an interpretation that does not conflict with pelagic sedimentary data from the central Pacific.

  2. Elevated pressure of carbon dioxide affects growth of thermophilic Petrotoga sp.

    NASA Astrophysics Data System (ADS)

    Rakoczy, Jana; Gniese, Claudia; Schippers, Axel; Schlömann, Michael; Krüger, Martin

    2014-05-01

    Carbon capture and storage (CCS) is considered a promising new technology which reduces carbon dioxide emissions into the atmosphere and thereby decelerates global warming. During CCS, carbon dioxide is captured from emission sources (e.g. fossil fuel power plants or other industries), pressurised, and finally stored in deep geological formations, such as former gas or oil reservoirs as well as saline aquifers. However, with CCS being a very young technology, there are a number of unknown factors that need to be investigated before declaring CCS as being safe. Our research investigates the effect of high carbon dioxide concentrations and pressures on an indigenous microorganism that colonises a potential storage site. Growth experiments were conducted using the thermophilic thiosulphate-reducing bacterium Petrotoga sp., isolated from formation water of the gas reservoir Schneeren (Lower Saxony, Germany), situated in the Northern German Plain. Growth (OD600) was monitored over one growth cycle (10 days) at different carbon dioxide concentrations (50%, 100%, and 150% in the gas phase), and was compared to control cultures grown with 20% carbon dioxide. An additional growth experiment was performed over a period of 145 days with repeated subcultivation steps in order to detect long-term effects of carbon dioxide. Cultivation over 10 days at 50% and 100% carbon dioxide slightly reduced cell growth. In contrast, long-term cultivation at 150% carbon dioxide reduced cell growth and finally led to cell death. This suggested a more pronounced effect of carbon dioxide at prolonged cultivation and stresses the need for a closer consideration of long-term effects. Experiments with supercritical carbon dioxide at 100 bar completely inhibited growth of freshly inoculated cultures and also caused a rapid decrease of growth of a pre-grown culture. This demonstrated that supercritical carbon dioxide had a sterilising effect on cells. This effect was not observed in control cultures

  3. Do fossil plants signal palaeoatmospheric carbon dioxide concentration in the geological past?

    PubMed Central

    McElwain, J. C.

    1998-01-01

    Fossil, subfossil, and herbarium leaves have been shown to provide a morphological signal of the atmospheric carbon dioxide environment in which they developed by means of their stomatal density and index. An inverse relationship between stomatal density/index and atmospheric carbon dioxide concentration has been documented for all the studies to date concerning fossil and subfossil material. Furthermore, this relationship has been demonstrated experimentally by growing plants under elevated and reducedcarbon dioxide concentrations. To date, the mechanism that controls the stomatal density response to atmospheric carbon dioxide concentration remains unknown. However, stomatal parameters of fossil plants have been successfully used as a proxy indicator of palaeo-carbon dioxide levels. This paper presents new estimates of palaeo-atmospheric carbon dioxide concentrations for the Middle Eocene (Lutetian), based on the stomatal ratios of fossil Lauraceae species from Bournemouth in England. Estimates of atmospheric carbon dioxide concentrations derived from stomatal data from plants of the Early Devonian, Late Carboniferous, Early Permian and Middle Jurassic ages are reviewed in the light of new data. Semi-quantitative palaeo-carbon dioxide estimates based on the stomatal ratio (a ratio of the stomatal index of a fossil plant to that of a selected nearest living equivalent) have in the past relied on the use of a Carboniferous standard. The application of a new standard based on the present-day carbon dioxide level is reported here for comparison. The resultant ranges of palaeo-carbon dioxide estimates made from standardized fossil stomatal ratio data are in good agreement with both carbon isotopic data from terrestrial and marine sources and long-term carbon cycle modelling estimates for all the time periods studied. These data indicate elevated atmospheric carbon dioxide concentrations during the Early Devonian, Middle Jurassic and Middle Eocene, and reduced

  4. Monitoring the Carbon Cycle from Space

    NASA Astrophysics Data System (ADS)

    Bréon, François-Marie

    Carbon dioxide is the main driver of climate change while methane is also an important contributor with the potential for large feedbacks. Both of these gases are emitted through anthropogenic activities but their concentration in the atmosphere are also controlled by natural fluxes. Currently, roughly half of anthropogenic CO2 emissions are absorbed by ocean and vegetation but the processes that control these sinks are still poorly understood. There is therefore a need to monitor the sources and sinks of carbon as well as parameters related to processes linked to these processes. Surfaces fluxes of gases, such as Carbon dioxide and methane, generate concentration gradients that can be monitored from space. In return, the measurement of concentration gradients can be used to estimate the surface fluxes, using atmospheric transport inversion methods. The past decade has seen strong improvements in our ability to monitor the atmospheric concentration gradients starting with the SCIAMACHY instrument onboard ENVISAT. The gradients are tiny however, due to the long lifetime or CO2 and methane in the atmosphere, and the measurement accuracy remains a challenge to really bring new knowledge on the Carbon fluxes from space. This may change with the launch of the NASA OCO-2 mission (first one was lost at launch) that is dedicated to the measurement of the atmospheric CO2 column. Although the long term trend of atmospheric Carbon concentration is linked to anthropogenic emissions, the annual cycle is driven by vegetation photosynthesis. Indeed, annual photosynthesis flux is typically ten times larger than the fossil-fuel emissions. The monitoring of vegetation dynamics from space dates back 30 years, but recent advances make it possible to estimate additional parameters such as the total vegetation biomass or tree height. Improved accuracy make it possible to identify the impact of meteorological events on the vegetation functioning.

  5. Carbon dioxide extraction from air: Is it an option?

    SciTech Connect

    Lackner, K.S.; Grimes, P.; Ziock, H.J.

    1999-07-01

    Controlling the level of carbon dioxide in the atmosphere without limiting access to fossil energy resources is only possible if carbon dioxide is collected and disposed of away from the atmosphere. While it may be cost-advantageous to collect the carbon dioxide at concentrated sources without ever letting it enter the atmosphere, this approach is not available for the many diffuse sources of carbon dioxide. Similarly, for many older plants, a retrofit to collect the carbon dioxide is either impossible or prohibitively expensive. For these cases the authors investigate the possibility of collecting the carbon dioxide directly from the atmosphere. The authors conclude that there are no fundamental obstacles to this approach and that it deserves further investigation. Carbon dioxide extraction directly from the atmosphere would allow carbon management without the need for a completely changed infrastructure. In addition it eliminates the need for a completely changed infrastructure. In addition it eliminates the need for a complex carbon dioxide transportation infrastructure, thus at least in part offsetting the higher cost of extraction from air.

  6. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis.

    PubMed

    Bloom, Arnold J; Burger, Martin; Rubio Asensio, Jose Salvador; Cousins, Asaph B

    2010-05-14

    The concentration of carbon dioxide in Earth's atmosphere may double by the end of the 21st century. The response of higher plants to a carbon dioxide doubling often includes a decline in their nitrogen status, but the reasons for this decline have been uncertain. We used five independent methods with wheat and Arabidopsis to show that atmospheric carbon dioxide enrichment inhibited the assimilation of nitrate into organic nitrogen compounds. This inhibition may be largely responsible for carbon dioxide acclimation, the decrease in photosynthesis and growth of plants conducting C(3) carbon fixation after long exposures (days to years) to carbon dioxide enrichment. These results suggest that the relative availability of soil ammonium and nitrate to most plants will become increasingly important in determining their productivity as well as their quality as food.

  7. Electrocatalytic process for carbon dioxide conversion

    DOEpatents

    Masel, Richard I.; Salehi-Khojin, Amin

    2017-01-31

    An electrocatalytic process for carbon dioxide conversion includes combining a Catalytically Active Element and Helper Catalyst in the presence of carbon dioxide, allowing a reaction to proceed to produce a reaction product, and applying electrical energy to said reaction to achieve electrochemical conversion of said reactant to said reaction product. The Catalytically Active Element can be a metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. the reaction products comprise at least one of CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, (COO.sup.-).sub.2, and CF.sub.3COOH.

  8. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch.

    PubMed

    Kwak, Hyoung S; Uhm, Han S; Hong, Yong C; Choi, Eun H

    2015-12-17

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10(-3), nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10(-7), nO2/nN = 5.39 × 10(-5), where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.

  9. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    PubMed Central

    Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.

    2015-01-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10−3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10−7, nO2/nN = 5.39 × 10−5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. PMID:26674957

  10. Promising flame retardant textile in supercritical carbon dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since carbon dioxide is non-toxic, non-flammable and cost-effective, supercritical carbon dioxide (scCO2) is widely used in textile dyeing applications. Due to its environmentally benign character, scCO2 is considered in green chemistry as a substitute for organic solvents in chemical reactions. O...

  11. Solid amine compounds as sorbents for carbon dioxide: A concept

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    Solid amine compounds were examined as possible absorbents for removal of carbon dioxide in life support systems of type which may be employed in high altitude aircraft, spacecraft, or submarines. Many solid amine compounds release absorbed carbon dioxide when heated in vacuum, therefore, when properly packaged spent amine compounds can be readily regenerated and put back into service.

  12. Carbon dioxide and climate: Summaries of research in FY 1988

    SciTech Connect

    Not Available

    1988-10-01

    Detailed worldwide measurements indicate that the amount of carbon dioxide in the earth's atmosphere has increased about 25 percent during the past 188 years, primarily because of fossil-fuel combustion and deforestation. Carbon dioxide is one of several trace gases that can modify the earth's heat balance by absorbing outgoing radiation from the earth's surface, thereby increasing the amount of heat retained by the atmosphere--the so-called greenhouse effect. Scientific analyses suggest that this increase could substantially affect climate, agriculture, and other human endeavors. The Carbon Dioxide Research Program is aimed at improving the scientific knowledge base to enable researchers to project future atmospheric concentrations of carbon dioxide, to estimate carbon dioxide-induced global and regional climate changes, and to assess the responses of vegetation to higher concentrations of carbon dioxide and changing climate. The Department of Energy is the lead federal agency for research related to atmospheric carbon dioxide. Its responsibility is to sponsor a program of directed research and to coordinate this research with relevant activities of other federal agencies, private concerns, and international institutions. This Program Summary documents the activities and products of the Carbon Dioxide Research (CDR) Program in Fiscal Year 1988. The Summary provides descriptions of all projects funded during the year and a brief overview of the CDR Program's goals, objectives, and organization. 1 fig., 3 tabs.

  13. Investigating Diffusion and Entropy with Carbon Dioxide-Filled Balloons

    ERIC Educational Resources Information Center

    Jadrich, James; Bruxvoort, Crystal

    2010-01-01

    Fill an ordinary latex balloon with helium gas and you know what to expect. Over the next day or two the volume will decrease noticeably as helium escapes from the balloon. So what happens when a latex balloon is filled with carbon dioxide gas? Surprisingly, carbon dioxide balloons deflate at rates as much as an order of magnitude faster than…

  14. Carbon Dioxide and Global Warming: A Failed Experiment

    ERIC Educational Resources Information Center

    Ribeiro, Carla

    2014-01-01

    Global warming is a current environmental issue that has been linked to an increase in anthropogenic carbon dioxide in the atmosphere. To raise awareness of the problem, various simple experiments have been proposed to demonstrate the effect of carbon dioxide on the planet's temperature. This article describes a similar experiment, which…

  15. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Carbon dioxide analyzer calibration. 89... Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service, after any maintenance which could alter calibration, and bi-monthly thereafter, the NDIR...

  16. Cationic Polymerization of Vegetable Oils in Supercritical Carbon Dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymers derived from vegetable oils have been prepared in supercritical carbon dioxide (scCO2) medium by cationic polymerization. Boron trifluoride diethyl etherate BF3.O(C2H2)2 are used as initiator. Influences of polymerization temperature, initiator amount, and carbon dioxide pressure on the m...

  17. Global warming and marine carbon cycle feedbacks on future atmospheric CO2

    PubMed

    Joos; Plattner; Stocker; Marchal; Schmittner

    1999-04-16

    A low-order physical-biogeochemical climate model was used to project atmospheric carbon dioxide and global warming for scenarios developed by the Intergovernmental Panel on Climate Change. The North Atlantic thermohaline circulation weakens in all global warming simulations and collapses at high levels of carbon dioxide. Projected changes in the marine carbon cycle have a modest impact on atmospheric carbon dioxide. Compared with the control, atmospheric carbon dioxide increased by 4 percent at year 2100 and 20 percent at year 2500. The reduction in ocean carbon uptake can be mainly explained by sea surface warming. The projected changes of the marine biological cycle compensate the reduction in downward mixing of anthropogenic carbon, except when the North Atlantic thermohaline circulation collapses.

  18. Carbon Dioxide Detection and Indoor Air Quality Control.

    PubMed

    Bonino, Steve

    2016-04-01

    When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.

  19. Carbon dioxide stripping in aquaculture. part 1: terminology and reporting

    USGS Publications Warehouse

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The removal of carbon dioxide gas in aquacultural systems is much more complex than for oxygen or nitrogen gas because of liquid reactions of carbon dioxide and their kinetics. Almost all published carbon dioxide removal information for aquaculture is based on the apparent removal value after the CO2(aq) + HOH ⇔ H2CO3 reaction has reached equilibrium. The true carbon dioxide removal is larger than the apparent value, especially for high alkalinities and seawater. For low alkalinity freshwaters (<2000 μeq/kg), the difference between the true and apparent removal is small and can be ignored for many applications. Analytical and reporting standards are recommended to improve our understanding of carbon dioxide removal.

  20. Carbon dioxide absorbent and method of using the same

    DOEpatents

    Perry, Robert James; Lewis, Larry Neil; O'Brien, Michael Joseph; Soloveichik, Grigorii Lev; Kniajanski, Sergei; Lam, Tunchiao Hubert; Lee, Julia Lam; Rubinsztajn, Malgorzata Iwona

    2011-10-04

    In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.

  1. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers

    SciTech Connect

    Mayorga, E; Aufdenkampe, A K; Masiello, C A; Krusche, A V; Hedges, J I; Quay, P D; Richey, J E; Brown, T A

    2005-06-23

    Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition ({sup 13}C and {sup 14}C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than 5 years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in mid-size to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.

  2. Permafrost soils and carbon cycling

    DOE PAGES

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; ...

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore » this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  3. Photobiological hydrogen production and carbon dioxide sequestration

    NASA Astrophysics Data System (ADS)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  4. Carbon footprint estimation of municipal water cycle

    NASA Astrophysics Data System (ADS)

    Bakhshi, Ali A.

    2009-11-01

    This research investigates the embodied energy associated with water use. A geographic information system (GIS) was tested using data from Loudoun County, Virginia. The objective of this study is to estimate the embodied energy and carbon emission levels associated with water service at a geographical location and to improve for sustainability planning. Factors that affect the carbon footprint were investigated and the use of a GIS based model as a sustainability planning framework was evaluated. The carbon footprint metric is a useful tool for prediction and measurement of a system's sustainable performance over its expected life cycle. Two metrics were calculated: tons of carbon dioxide per year to represent the contribution to global warming and watt-hrs per gallon to show the embodied energy associated with water consumption. The water delivery to the building, removal of wastewater from the building and associated treatment of water and wastewater create a sizable carbon footprint; often the energy attributed to this water service is the greatest end use of electrical energy. The embodied energy in water depends on topographical characteristics of the area's local water supply, the efficiency of the treatment systems, and the efficiency of the pumping stations. The questions answered by this research are: What is the impact of demand side sustainable water practices on the embodied energy as represented by a comprehensive carbon footprint? What are the major energy consuming elements attributed to the system? What is a viable and visually identifiable tool to estimate the carbon footprint attributed to those Greenhouse Gas (GHG) producing elements? What is the embodied energy and emission associated with water use delivered to a building? Benefits to be derived from a standardized GIS applied carbon footprint estimation approach include: (1) Improved environmental and economic information for the developers, water and wastewater processing and municipal

  5. The influence of warm-season precipitation on the diel cycle of the surface energy balance and carbon dioxide at a Colorado subalpine forest site

    DOE PAGES

    Burns, S. P.; Blanken, P. D.; Turnipseed, A. A.; ...

    2015-12-15

    Precipitation changes the physical and biological characteristics of an ecosystem. Using a precipitation-based conditional sampling technique and a 14 year data set from a 25 m micrometeorological tower in a high-elevation subalpine forest, we examined how warm-season precipitation affected the above-canopy diel cycle of wind and turbulence, net radiation Rnet, ecosystem eddy covariance fluxes (sensible heat H, latent heat LE, and CO2 net ecosystem exchange NEE) and vertical profiles of scalars (air temperature Ta, specific humidity q, and CO2 dry mole fraction χc). This analysis allowed us to examine how precipitation modified these variables from hourly (i.e., the diel cycle)more » to multi-day time-scales (i.e., typical of a weather-system frontal passage). During mid-day we found the following: (i) even though precipitation caused mean changes on the order of 50–70 % to Rnet, H, and LE, the surface energy balance (SEB) was relatively insensitive to precipitation with mid-day closure values ranging between 90 and 110 %, and (ii) compared to a typical dry day, a day following a rainy day was characterized by increased ecosystem uptake of CO2 (NEE increased by ≈ 10 %), enhanced evaporative cooling (mid-day LE increased by ≈ 30 W m−2), and a smaller amount of sensible heat transfer (mid-day H decreased by ≈ 70 W m−2). Based on the mean diel cycle, the evaporative contribution to total evapotranspiration was, on average, around 6 % in dry conditions and between 15 and 25 % in partially wet conditions. Furthermore, increased LE lasted at least 18 h following a rain event. At night, even though precipitation (and accompanying clouds) reduced the magnitude of Rnet, LE increased from ≈ 10 to over 20 W m−2 due to increased evaporation. Any effect of precipitation on the nocturnal SEB closure and NEE was overshadowed by atmospheric phenomena such as horizontal advection and decoupling that create measurement difficulties. Above

  6. The influence of warm-season precipitation on the diel cycle of the surface energy balance and carbon dioxide at a Colorado subalpine forest site

    NASA Astrophysics Data System (ADS)

    Burns, S. P.; Blanken, P. D.; Turnipseed, A. A.; Hu, J.; Monson, R. K.

    2015-12-01

    Precipitation changes the physical and biological characteristics of an ecosystem. Using a precipitation-based conditional sampling technique and a 14 year data set from a 25 m micrometeorological tower in a high-elevation subalpine forest, we examined how warm-season precipitation affected the above-canopy diel cycle of wind and turbulence, net radiation Rnet, ecosystem eddy covariance fluxes (sensible heat H, latent heat LE, and CO2 net ecosystem exchange NEE) and vertical profiles of scalars (air temperature Ta, specific humidity q, and CO2 dry mole fraction χc). This analysis allowed us to examine how precipitation modified these variables from hourly (i.e., the diel cycle) to multi-day time-scales (i.e., typical of a weather-system frontal passage). During mid-day we found the following: (i) even though precipitation caused mean changes on the order of 50-70 % to Rnet, H, and LE, the surface energy balance (SEB) was relatively insensitive to precipitation with mid-day closure values ranging between 90 and 110 %, and (ii) compared to a typical dry day, a day following a rainy day was characterized by increased ecosystem uptake of CO2 (NEE increased by ≈ 10 %), enhanced evaporative cooling (mid-day LE increased by ≈ 30 W m-2), and a smaller amount of sensible heat transfer (mid-day H decreased by ≈ 70 W m-2). Based on the mean diel cycle, the evaporative contribution to total evapotranspiration was, on average, around 6 % in dry conditions and between 15 and 25 % in partially wet conditions. Furthermore, increased LE lasted at least 18 h following a rain event. At night, even though precipitation (and accompanying clouds) reduced the magnitude of Rnet, LE increased from ≈ 10 to over 20 W m-2 due to increased evaporation. Any effect of precipitation on the nocturnal SEB closure and NEE was overshadowed by atmospheric phenomena such as horizontal advection and decoupling that create measurement difficulties. Above-canopy mean χc during wet conditions was

  7. The effect of warm-season precipitation on the diel cycle of the surface energy balance and carbon dioxide at a Colorado subalpine forest site

    NASA Astrophysics Data System (ADS)

    Burns, S. P.; Blanken, P. D.; Turnipseed, A. A.; Monson, R. K.

    2015-06-01

    Precipitation changes the physical and biological characteristics of an ecosystem. Using a precipitation-based conditional sampling technique and a 14 year dataset from a 25 m micrometeorological tower in a high-elevation subalpine forest, we examined how warm-season precipitation affected the above-canopy diel cycle of wind and turbulence, net radiation Rnet, ecosystem eddy covariance fluxes (sensible heat H, latent heat LE, and CO2 net ecosystem exchange NEE) and vertical profiles of scalars (air temperature Ta, specific humidity q, and CO2 dry mole fraction χc). This analysis allowed us to examine how precipitation modified these variables from hourly (i.e., the diel cycle) to multi-day time-scales (i.e., typical of a weather-system frontal passage). During mid-day we found: (i) even though precipitation caused mean changes on the order of 50-70% to Rnet, H, and LE, the surface energy balance (SEB) was relatively insensitive to precipitation with mid-day closure values ranging between 70-80%, and (ii) compared to a typical dry day, a day following a rainy day was characterized by increased ecosystem uptake of CO2 (NEE increased by ≈ 10%), enhanced evaporative cooling (mid-day LE increased by ≈ 30 W m-2), and a smaller amount of sensible heat transfer (mid-day H decreased by ≈ 70 W m-2). Based on the mean diel cycle, the evaporative contribution to total evapotranspiration was, on average, around 6% in dry conditions and 20% in wet conditions. Furthermore, increased LE lasted at least 18 h following a rain event. At night, precipitation (and accompanying clouds) reduced Rnet and increased LE. Any effect of precipitation on the nocturnal SEB closure and NEE was overshadowed by atmospheric phenomena such as horizontal advection and decoupling that create measurement difficulties. Above-canopy mean χc during wet conditions was found to be about 2-3 μmol mol-1 larger than χc on dry days. This difference was fairly constant over the full diel cycle

  8. Uncovering the Neoproterozoic carbon cycle.

    PubMed

    Johnston, D T; Macdonald, F A; Gill, B C; Hoffman, P F; Schrag, D P

    2012-02-29

    Interpretations of major climatic and biological events in Earth history are, in large part, derived from the stable carbon isotope records of carbonate rocks and sedimentary organic matter. Neoproterozoic carbonate records contain unusual and large negative isotopic anomalies within long periods (10-100 million years) characterized by δ(13)C in carbonate (δ(13)C(carb)) enriched to more than +5 per mil. Classically, δ(13)C(carb) is interpreted as a metric of the relative fraction of carbon buried as organic matter in marine sediments, which can be linked to oxygen accumulation through the stoichiometry of primary production. If a change in the isotopic composition of marine dissolved inorganic carbon is responsible for these excursions, it is expected that records of δ(13)C(carb) and δ(13)C in organic carbon (δ(13)C(org)) will covary, offset by the fractionation imparted by primary production. The documentation of several Neoproterozoic δ(13)C(carb) excursions that are decoupled from δ(13)C(org), however, indicates that other mechanisms may account for these excursions. Here we present δ(13)C data from Mongolia, northwest Canada and Namibia that capture multiple large-amplitude (over 10 per mil) negative carbon isotope anomalies, and use these data in a new quantitative mixing model to examine the behaviour of the Neoproterozoic carbon cycle. We find that carbonate and organic carbon isotope data from Mongolia and Canada are tightly coupled through multiple δ(13)C(carb) excursions, quantitatively ruling out previously suggested alternative explanations, such as diagenesis or the presence and terminal oxidation of a large marine dissolved organic carbon reservoir. Our data from Namibia, which do not record isotopic covariance, can be explained by simple mixing with a detrital flux of organic matter. We thus interpret δ(13)C(carb) anomalies as recording a primary perturbation to the surface carbon cycle. This interpretation requires the revisiting of

  9. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption

    PubMed Central

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-01-01

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g−1) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation. PMID:27572662

  10. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption.

    PubMed

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-08-30

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g(-1)) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation.

  11. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption

    NASA Astrophysics Data System (ADS)

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-08-01

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g-1) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation.

  12. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Muscatello, Anthony C.; Meier, Anne J.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon is capable of recovering all the oxygen from carbon dioxide, and is the only real alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon and the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  13. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle; Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50 because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon is capable of recovering all the oxygen from carbon dioxide, and is the only real alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon and the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  14. Carbon dioxide removal with inorganic membranes

    SciTech Connect

    Judkins, R.R.; Fain, D.E.

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  15. Oxygen and carbon dioxide monitoring during sleep.

    PubMed

    Amaddeo, Alessandro; Fauroux, Brigitte

    2016-09-01

    Monitoring of oxygen and carbon dioxide (CO2) is of crucial importance during sleep-disordered breathing in order to assess the consequences of respiratory events on gas exchange. Pulse oximetry (SpO2) is a simple and cheap method that is used routinely for the recording of oxygen levels and the diagnosis of hypoxemia. CO2 recording is necessary for the diagnosis of alveolar hypoventilation and can be performed by means of the end-tidal (PetCO2) or transcutaneous CO2 (PtcCO2). However, the monitoring of CO2 is not performed on a routine basis due to the lack of simple, cheap and reliable CO2 monitors. This short review summarizes some technical aspects of gas exchange recording during sleep in children before discussing the different definitions of alveolar hypoventilation and the importance of CO2 recording.

  16. Biochemical Capture and Removal of Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Trachtenberg, Michael C.

    1998-01-01

    We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.

  17. Carbon dioxide laser management cervical intraepithelial neoplasia

    SciTech Connect

    Bellina, J.H.; Wright, V.C.; Voros, J.I.; Riopelle, M.A.; Hohenschutz, V.

    1981-12-01

    In this report we describe the use of the carbon dioxide laser for the outpatient management of cervical intraepithelial neoplasia (CIN). A comparison of treatment effectiveness for different grades of CIN is also included. Two hundred fifty-six cases were evaluated by colposcopy, cytology, and histopathology, treated by at least 5 to 6 mm of laser vaporization, and followed up for an average of 10.7 months. Follow-up examinations included cytology, colposcopy, and directed biopsy if a suspicious lesion was discovered. During the follow-up, 18 cases of persistent CIN were identified (7.0%). Most of these were successfully managed with repeat laser treatment. Overall success of laser surgery for CIN, one or two applications, was 97.6%. Few complications were encountered. Laser surgery appears to offer acceptable treatment effectiveness, early identification of persistent disease, and easy retreatment when required. (Am. J. Obstet. Gynecol. 141:828, 1981.)

  18. Thermodynamical effects during carbon dioxide release

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Böttcher, N.; Görke, U.-J.; Kolditz, O.

    2012-04-01

    Pruess [1] investigated the risk of carbon dioxide leakage from shallow storage sites by modeling scenarios. Such a fluid release is associated with mechanical work performed by formation fluid against expansion without taking heat from ambient environment. Understanding of heat related to mechanical work is essential to predict the temperature at the leak. According to the first law of thermodynamics, internal energy of working fluid decreases with an amount which is equivalent to this work hence, working fluid lost its own heat. Such kind of heat loss depends strongly on whether the expansion process is adiabatic or isothermal. Isothermal expansion allows the working fluid to interact thermally with the solid matrix. Adiabatic expansion is an isenthalpic process that takes heat from the working fluid and the ambient environment remains unchanged. This work is part of the CLEAN research project [6]. In this study, thermodynamic effects of mechanical work during eventual carbon dioxide leakage are investigated numerically. In particular, we are interested to detect the temperature at leakage scenarios and its deviation with different thermodynamic processes. Finite element simulation is conducted with a two-dimensional rectangular geometry representing a shallow storage site which bottom was located at -300m below the land surface. A fully saturated porous medium is assumed where the pore space is filled completely with carbon dioxide. Carbon dioxide accumulated in the secondary trap at 30 Bar and 24 °C is allowed to leak from top right point of rectangle with atmospheric pressure. With (i) adiabatic and (ii) isothermal compressibility factors, temperature around leakage area has been calculated which show a significant difference. With some simplification, this study detects leak temperature which is very close with [1]. Temporal evaluation at the leaky area shows that the working fluid temperature can be reduced to -20 °C when the leakage scenario is performed

  19. Layered solid sorbents for carbon dioxide capture

    DOEpatents

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  20. Carbon dioxide: Global warning for nephrologists

    PubMed Central

    Marano, Marco; D’Amato, Anna; Cantone, Alessandra

    2016-01-01

    The large prevalence of respiratory acid-base disorders overlapping metabolic acidosis in hemodialysis population should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients’ bloodstream every hemodialysis treatment and “acidosis by dialysate” may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the filter reenters arterial needle. PMID:27648406

  1. Pulsed-discharge carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1990-01-01

    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  2. Carbon dioxide effects on fuel alcohol fermentation

    SciTech Connect

    Kao, D.W.

    1996-10-01

    Carbon dioxide is known to be inhibitory to yeastgrowth, with inhibition becoming appreciable between 1.5 and 2 atm absolute under of the brewing industry. First, the conditions prevailing in an industrial corn to ethanol plant employing relatively small were determined. Second, lab glucose fed batch fermentations under similar conditions and CO{sub 2} pressures of 0.5, 1.5, 2.5, and 3.5 atm absolute were run. High CO{sub 2} decreased the maximum number of viable cells and increased the death rate. Elevated CO{sub 2} levels also decreased the early growth associated production of glycerol. Translation of these results back to fermentor design and operation issues will be discussed.

  3. Carbon Dioxide Sequestration in Geologic Coal Formations

    SciTech Connect

    2001-09-30

    BP Corporation North America, Inc. (BP) currently operates a nitrogen enhanced recovery project for coal bed methane at the Tiffany Field in the San Juan Basin, Colorado. The project is the largest and most significant of its kind wherein gas is injected into a coal seam to recover methane by competitive adsorption and stripping. The Idaho National Engineering and Environmental Laboratory (INEEL) and BP both recognize that this process also holds significant promise for the sequestration of carbon dioxide, a greenhouse gas, while economically enhancing the recovery of methane from coal. BP proposes to conduct a CO2 injection pilot at the tiffany Field to assess CO2 sequestration potential in coal. For its part the INEEL will analyze information from this pilot with the intent to define the Co2 sequestration capacity of coal and its ultimate role in ameliorating the adverse effects of global warming on the nation and the world.

  4. Layered solid sorbents for carbon dioxide capture

    SciTech Connect

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2013-02-25

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  5. Demographic change and carbon dioxide emissions.

    PubMed

    O'Neill, Brian C; Liddle, Brant; Jiang, Leiwen; Smith, Kirk R; Pachauri, Shonali; Dalton, Michael; Fuchs, Regina

    2012-07-14

    Relations between demographic change and emissions of the major greenhouse gas carbon dioxide (CO(2)) have been studied from different perspectives, but most projections of future emissions only partly take demographic influences into account. We review two types of evidence for how CO(2) emissions from the use of fossil fuels are affected by demographic factors such as population growth or decline, ageing, urbanisation, and changes in household size. First, empirical analyses of historical trends tend to show that CO(2) emissions from energy use respond almost proportionately to changes in population size and that ageing and urbanisation have less than proportional but statistically significant effects. Second, scenario analyses show that alternative population growth paths could have substantial effects on global emissions of CO(2) several decades from now, and that ageing and urbanisation can have important effects in particular world regions. These results imply that policies that slow population growth would probably also have climate-related benefits.

  6. Anthropogenic chemical carbon cycle for a sustainable future.

    PubMed

    Olah, George A; Prakash, G K Surya; Goeppert, Alain

    2011-08-24

    Nature's photosynthesis uses the sun's energy with chlorophyll in plants as a catalyst to recycle carbon dioxide and water into new plant life. Only given sufficient geological time, millions of years, can new fossil fuels be formed naturally. The burning of our diminishing fossil fuel reserves is accompanied by large anthropogenic CO(2) release, which is outpacing nature's CO(2) recycling capability, causing significant environmental harm. To supplement the natural carbon cycle, we have proposed and developed a feasible anthropogenic chemical recycling of carbon dioxide. Carbon dioxide is captured by absorption technologies from any natural or industrial source, from human activities, or even from the air itself. It can then be converted by feasible chemical transformations into fuels such as methanol, dimethyl ether, and varied products including synthetic hydrocarbons and even proteins for animal feed, thus supplementing our food chain. This concept of broad scope and framework is the basis of what we call the Methanol Economy. The needed renewable starting materials, water and CO(2), are available anywhere on Earth. The required energy for the synthetic carbon cycle can come from any alternative energy source such as solar, wind, geothermal, and even hopefully safe nuclear energy. The anthropogenic carbon dioxide cycle offers a way of assuring a sustainable future for humankind when fossil fuels become scarce. While biosources can play a limited role in supplementing future energy needs, they increasingly interfere with the essentials of the food chain. We have previously reviewed aspects of the chemical recycling of carbon dioxide to methanol and dimethyl ether. In the present Perspective, we extend the discussion of the innovative and feasible anthropogenic carbon cycle, which can be the basis of progressively liberating humankind from its dependence on diminishing fossil fuel reserves while also controlling harmful CO(2) emissions to the atmosphere. We also

  7. Trade, transport, and sinks extend the carbon dioxide responsibility of countries: An editorial essay

    SciTech Connect

    Peters, Glen P; Marland, Gregg; Hertwich, Edgar G.; Saikku, Laura

    2009-01-01

    Globalization and the dynamics of ecosystem sinks need be considered in post-Kyoto climate negotiations as they increasingly affect the carbon dioxide concentration in the atmosphere. Currently, the allocation of responsibility for greenhouse gas mitigation is based on territorial emissions from fossil-fuel combustion, process emissions and some land-use emissions. However, at least three additional factors can significantly alter a country's impact on climate from carbon dioxide emissions. First, international trade causes a separation of consumption from production, reducing domestic pollution at the expense of foreign producers, or vice versa. Second, international transportation emissions are not allocated to countries for the purpose of mitigation. Third, forest growth absorbs carbon dioxide and can contribute to both carbon sequestration and climate change protection. Here we quantify how these three factors change the carbon dioxide emissions allocated to China, Japan, Russia, USA, and European Union member countries. We show that international trade can change the carbon dioxide currently allocated to countries by up to 60% and that forest expansion can turn some countries into net carbon sinks. These factors are expected to become more dominant as fossil-fuel combustion and process emissions are mitigated and as international trade and forest sinks continue to grow. Emission inventories currently in wide-spread use help to understand the global carbon cycle, but for long-term climate change mitigation a deeper understanding of the interaction between the carbon cycle and society is needed. Restructuring international trade and investment flows to meet environmental objectives, together with the inclusion of forest sinks, are crucial issues that need consideration in the design of future climate policies. And even these additional issues do not capture the full impact of changes in the carbon cycle on the global climate system.

  8. Carbon dioxide absorbents for rebreather diving.

    PubMed

    Pennefather, John

    2016-09-01

    Firstly I would like to thank SPUMS members for making me a Life Member of SPUMS; I was surprised and greatly honoured by the award. I also want to confirm and expand on the findings on carbon dioxide absorbents reported by David Harvey et al. For about 35 years, I was the main player in deciding which absorbent went into Australian Navy and Army diving sets. On several occasions, suppliers of absorbents to the anaesthesia market tried to supply the Australian military market. On no occasion did they provide absorbent that came close to the minimum absorbent capacity required, generally being 30-40% less efficient than diving-grade absorbents. Because I regard lives as being more important than any likely dollar saving, the best absorbent was always selected unless two suppliers provided samples with the same absorbent capacity. On almost every occasion, there was a clear winner and cost was never considered. I suggest the same argument for the best absorbent should be used by members and their friends who dive using rebreather sets. I make this point because of my findings on a set that was brought to me after the death of its owner. The absorbent was not the type or grain size recommended by the manufacturer of the set and did not resemble any of the diving grade absorbents I knew of. I suspected by its appearance that it was anaesthetic grade absorbent. When I tested the set, the absorbent system failed very quickly so it is likely that carbon dioxide toxicity contributed to his death. The death was not the subject of an inquest and I have no knowledge of how the man obtained the absorbent. Possibly there was someone from an operating theatre staff who unintentionally caused their friend's death by supplying him with 'borrowed absorbent'. I make this point as I would like to discourage members from making a similar error.

  9. Coiled tubing drilling with supercritical carbon dioxide

    DOEpatents

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  10. Intraosseous Venography with Carbon Dioxide in Percutaneous Vertebroplasty: Carbon Dioxide Retention in Renal Veins

    SciTech Connect

    Komemushi, Atsushi Tanigawa, Noboru; Kariya, Shuji; Kojima, Hiroyuki; Shomura, Yuzo; Tokuda, Takanori; Nomura, Motoo; Terada, Jiro; Kamata, Minoru; Sawada, Satoshi

    2008-11-15

    The objective of the present study was to determine the frequency of gas retention in the renal vein following carbon dioxide intraosseous venography in the prone position and, while citing references, to examine its onset mechanisms. All percutaneous vertebroplasties performed at our hospital from January to December 2005 were registered and retrospectively analyzed. Of 43 registered procedures treating 79 vertebrae, 28 procedures treating 54 vertebrae were analyzed. Vertebral intraosseous venography was performed using carbon dioxide as a contrast agent in all percutaneous vertebroplasty procedures. In preoperative and postoperative vertebral CT, gas retention in the renal vein and other areas was assessed. Preoperative CT did not show gas retention (0/28 procedures; 0%). Postoperative CT confirmed gas retention in the renal vein in 10 of the 28 procedures (35.7%). Gas retention was seen in the right renal vein in 8 procedures (28.6%), in the left renal vein in 5 procedures (17.9%), in the left and right renal veins in 3 procedures (10.7%), in vertebrae in 22 procedures (78.6%), in the soft tissue around vertebrae in 14 procedures (50.0%), in the spinal canal in 12 procedures (42.9%), and in the subcutaneous tissue in 5 procedures (17.9%). In conclusion, in our study, carbon dioxide gas injected into the vertebra frequently reached and remained in the renal vein.

  11. Carbon and sulfur cycling through geologic time

    NASA Technical Reports Server (NTRS)

    Garrels, R. M.

    1985-01-01

    Mathematical models of the coupled global systems of sedimentary reservoirs and fluxes are used to infer variations in reservoir sizes and rates of sedimentation over periods of hundreds of millions of years. Perhaps most interesting is the coupled sulfide/sulfate carbon/carbonate system that controls global oxygen and carbon dioxide production and consumption is discussed.

  12. The Role of Carbon Cycle Observations and Knowledge in Carbon Management

    SciTech Connect

    Dilling, Lisa; Doney, Scott; Edmonds, James A.; Gurney, Kevin R.; Harriss, Robert; Schimel, David; Stephens, Britton; Stokes, Gerald M.

    2003-08-14

    Agriculture and industrial development have led to inadvertent changes in the natural carbon cycle. As a consequence, concentrations of carbon dioxide and other greenhouse gases have increased in the atmosphere, leading to potential changes in climate. The current challenge facing society is to develop options for future management of the carbon cycle. A variety of approaches has been suggested: direct reduction of emissions, deliberate manipulation of the natural carbon cycle to enhance sequestration, and capture and isolation of carbon from fossil fuel use. Policy development to date has laid out some of the general principles to which carbon management should adhere. These can be summarized as: how much carbon is stored, by what means, and for how long. To successfully manage carbon for climate purposes requires increased understanding of carbon cycle dynamics and improvement to the scientific capabilities available for measurement as well as policy needs. Specific needs for scientific information to underpin carbon cycle management decisions are not yet broadly known. A stronger dialogue between decision makers and scientists must be developed to foster improved application of scientific knowledge to decisions. This paper reviews the current state of knowledge of the carbon cycle and measurement capabilities, with an emphasis on the continental-scale, and its relevance to carbon sequestration goals.

  13. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary

  14. Reversible Electrochemical Trapping of Carbon Dioxide Using 4,4'-Bipyridine That Does Not Require Thermal Activation.

    PubMed

    Ranjan, Rajeev; Olson, Jarred; Singh, Poonam; Lorance, Edward D; Buttry, Daniel A; Gould, Ian R

    2015-12-17

    Sequestering carbon dioxide emissions by the trap and release of CO2 via thermally activated chemical reactions has proven problematic because of the energetic requirements of the release reactions. Here we demonstrate trap and release of carbon dioxide using electrochemical activation, where the reactions in both directions are exergonic and proceed rapidly with low activation barriers. One-electron reduction of 4,4'-bipyridine forms the radical anion, which undergoes rapid covalent bond formation with carbon dioxide to form an adduct. One-electron oxidation of this adduct releases the bipyridine and carbon dioxide. Reversible trap and release of carbon dioxide over multiple cycles is demonstrated in solution at room temperature, and without the requirement for thermal activation.

  15. An introduction to global carbon cycle management

    USGS Publications Warehouse

    Sundquist, Eric T.; Ackerman, Katherine V.; Parker, Lauren; Huntzinger, Deborah N.

    2009-01-01

    Past and current human activities have fundamentally altered the global carbon cycle. Potential future efforts to control atmospheric CO2 will also involve significant changes in the global carbon cycle. Carbon cycle scientists and engineers now face not only the difficulties of recording and understanding past and present changes but also the challenge of providing information and tools for new management strategies that are responsive to societal needs. The challenge is nothing less than managing the global carbon cycle.

  16. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas Nelson; Brian S. Turk; Paul Box; Raghubir P. Gupta

    2005-10-01

    This report describes research conducted between July 1, 2005, and September 30, 2005, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from flue gas from coal combustion. A new batch of supported sorbent containing 10% sodium carbonate (Na{sub 2}CO{sub 3}) was obtained and characterized. Thermogravimetric analysis (TGA) testing confirmed that the Na{sub 2}CO{sub 3} sorbent reacted with sulfur dioxide (SO{sub 2}) at temperatures between 40 and 160 C. Although the rate of reaction was more rapid at lower temperatures, these data suggest that SO{sub 2} will not be released from the sorbent under expected sorbent-regeneration conditions. Preliminary work has been conducted to establish the design specifications for a laboratory screw-conveyor sorbent regeneration/cooling apparatus. A plan for a scheduled pilot-scale test of a heated hollow-screw conveyor was developed. This test will be conducted at facilities of the screw conveyor fabricator. This test will confirm the extent of sorbent regeneration and will provide data to evaluate multi-cycle sorbent attrition rates associated with this type of processing.

  17. Yield and seed oil content response of dwarf, rapid-cycling Brassica to nitrogen treatments, planting density, and carbon dioxide enrichment

    NASA Technical Reports Server (NTRS)

    Frick, J.; Nielsen, S. S.; Mitchell, C. A.

    1994-01-01

    Effects of N level (15 to 30 mM), time of N increase (14 to 28 days after planting), and planting density (1163 to 2093 plants/m2) were determined for crop yield responses of dwarf, rapid-cycling brassica (Brassica napus L., CrGC 5-2, Genome: ACaacc). Crops were grown in solid-matrix hydroponic systems and under controlled-environment conditions, including nonsupplemented (ambient) or elevated CO2 concentrations (998 +/- 12 micromoles mol-1). The highest seed yield rate obtained (4.4 g m-2 day-1) occurred with the lowest N level (15 mM) applied at the latest treatment time (day 28). In all trials, CO2 enrichment reduced seed yield rate and harvest index by delaying the onset of flowering and senescence and stimulating vegetative shoot growth. The highest shoot biomass accumulation rate (55.5 g m-2 day-1) occurred with the highest N level (30 mM) applied at the earliest time (day 14). Seed oil content was not significantly affected by CO2 enrichment. Maximum seed oil content (30% to 34%, dry weight basis) was obtained using the lowest N level (15 mM) initiated at the latest treatment time (day 28). In general, an increase in seed oil content was accompanied by a decrease in seed protein. Seed carbohydrate, moisture, and ash contents did not vary significantly in response to experimental treatments. Effects of N level and time of N increase were consistently significant for most crop responses. Planting density was significant only under elevated CO2 conditions.

  18. Viscosity behavior of carbon dioxide treated Cut Bank crude oil

    SciTech Connect

    Cady, G.V.; Mosawi, H.

    1995-12-31

    Carbon dioxide injection, either by huff and puff or displacement operations, results in a crude oil viscosity reduction at pressures below the miscibility conditions. Carbon dioxide miscibility occurs in reservoirs at miscible temperature and pressure, but these conditions are not possible in shallow reservoirs. Improved oil recovery in a shallow reservoir depends on the degree of viscosity reduction at the reservoir temperature and pressure. A recovery project`s success depends on the interaction between the carbon dioxide and the reservoir system. A research project carried out at Montana Tech to study the viscosity reduction and carbon dioxide solubility in Cut Bank crude oil at the reservoir`s prevailing temperature and near fracture pressure shows a viscosity reduction ratio (crude-carbon dioxide mixture to original dead oil viscosity) of 0.22 at a pressure of 1,000 psig and 90 F. An original mobility of 20 Md/cp improves to 91 Md/cp under a carbon dioxide recovery process at or near the reservoir`s fracture pressure. Based on the authors` research, improved oil recovery operations in the Cut Bank Field, Montana, is viable when using a commercial on site carbon dioxide recovery or generating system to minimize the cost of CO{sub 2} transportation. The major benefits are oil viscosity reduction, mobility ratio improvement, gas drive, and crude oil swelling.

  19. Herbivore responses to plants grown in enriched carbon dioxide atmospheres

    SciTech Connect

    Lincoln, D.E.

    1990-05-01

    Our initial study of sagebrush and grasshopper responses to elevated and historical carbon dioxide atmospheres is complete and has been accepted for publication. The study on Biomass Allocation Patterns of Defoliated Sagebrush Grown Under Two Levels of Carbon Dioxide has completed and the manuscript has been submitted for publication. We have completed the study of plant growth under two nutrient and carbon dioxide regimes and grasshopper feeding responses. The study of a specialist feeding caterpillar, the cabbage butterfly, and a mustard hostplant has recently been completed. We were able to identify the principal allelochemicals of the mustard plants, butenyl and pentenyl isothiocyanates, by combined gas chromatography and mass spectrometry. Measurement of these chemicals has been a critical component of this study since these compounds contain nitrogen and sulphur and act as a feeding stimulant to the caterpillar. This insect responds to elevated carbon dioxide by consuming more leaves and we can now say that this is not due to a change in the feeding stimulants. Reduced leaf protein content is a critical factor for even specialist feeding insect herbivores under elevated carbon dioxide conditions. The study on Grasshopper Population Responses to Enriched Carbon Dioxide Concentration is currently in progress at the Duke University Phytotron. We have changed hostplant species in order to complement the investigations of carbon dioxide effects on tallgrass prairie. Specifically, we are using big bluestem, Andropogon geradii, as the host plant to feed to the grasshoppers. This experiment will be completed in July 1990.

  20. Generation, capture, and utilization of industrial carbon dioxide.

    PubMed

    Hunt, Andrew J; Sin, Emily H K; Marriott, Ray; Clark, James H

    2010-03-22

    As a carbon-based life form living in a predominantly carbon-based environment, it is not surprising that we have created a carbon-based consumer society. Our principle sources of energy are carbon-based (coal, oil, and gas) and many of our consumer goods are derived from organic (i.e., carbon-based) chemicals (including plastics, fabrics and materials, personal care and cleaning products, dyes, and coatings). Even our large-volume inorganic-chemicals-based industries, including fertilizers and construction materials, rely on the consumption of carbon, notably in the form of large amounts of energy. The environmental problems which we now face and of which we are becoming increasingly aware result from a human-induced disturbance in the natural carbon cycle of the Earth caused by transferring large quantities of terrestrial carbon (coal, oil, and gas) to the atmosphere, mostly in the form of carbon dioxide. Carbon is by no means the only element whose natural cycle we have disturbed: we are transferring significant quantities of elements including phosphorus, sulfur, copper, and platinum from natural sinks or ores built up over millions of years to unnatural fates in the form of what we refer to as waste or pollution. However, our complete dependence on the carbon cycle means that its disturbance deserves special attention, as is now manifest in indicators such as climate change and escalating public concern over global warming. As with all disturbances in materials balances, we can seek to alleviate the problem by (1) dematerialization: a reduction in consumption; (2) rematerialization: a change in what we consume; or (3) transmaterialization: changing our attitude towards resources and waste. The "low-carbon" mantra that is popularly cited by organizations ranging from nongovernmental organizations to multinational companies and from local authorities to national governments is based on a combination of (1) and (2) (reducing carbon consumption though greater

  1. Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor.

    SciTech Connect

    Moisseytsev, A.; Sienicki, J. J.

    2007-03-08

    STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO{sub 2} Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO{sub 2} flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal

  2. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Astrophysics Data System (ADS)

    Hagedorn, Norman H.

    1993-05-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  3. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Astrophysics Data System (ADS)

    Hagedorn, Norman H.

    1991-09-01

    An alkali metal, such as lithium, is the anodic reactant, carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant, and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is therefore especially useful in extraterrestrial environments.

  4. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Technical Reports Server (NTRS)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  5. Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.

    ERIC Educational Resources Information Center

    Alcamo, Joseph; De Vries, Bert

    1992-01-01

    Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…

  6. The rise and fall of carbon dioxide: Why controlling CO2 may be necessary in greenhouses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the winter production cycle, many of us focus on sealing up gaps in an effort to decrease air infiltration, and cut our heating bills substantially along the way. While making these changes or upgrades, we ignoring something the potential impact this has on carbon dioxide (CO2) and plant growth. ...

  7. Global Carbon Budget from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    The Global Carbon Project (GCP) was established in 2001 in recognition of the scientific challenge and critical importance of the carbon cycle for Earth's sustainability. The growing realization that anthropogenic climate change is a reality has focused the attention of the scientific community, policymakers and the general public on the rising concentration of greenhouse gases, especially carbon dioxide (CO2) in the atmosphere, and on the carbon cycle in general. Initial attempts, through the United Nations Framework Convention on Climate Change and its Kyoto Protocol, are underway to slow the rate of increase of greenhouse gases in the atmosphere. These societal actions require a scientific understanding of the carbon cycle, and are placing increasing demands on the international science community to establish a common, mutually agreed knowledge base to support policy debate and action. The Global Carbon Project is responding to this challenge through a shared partnership between the International Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme on Global Environmental Change (IHDP), the World Climate Research Programme (WCRP) and Diversitas. This partnership constitutes the Earth Systems Science Partnership (ESSP). This CDIAC collection includes datasets, images, videos, presentations, and archived data from previous years.

  8. Forest management techniques for carbon dioxide storage

    SciTech Connect

    Fujimori, Takao

    1993-12-31

    In the global ecosystem concerning carbon dioxide content in the atmosphere, the forest ecosystem plays an important role. In effect, the ratio of forest biomass to total terrestrial biomass is about 90%, and the ratio of carbon stored in the forest biomass to that in the atmosphere is two thirds. When soils and detritus of forests are added, there is more C stored in forests than in the atmosphere, about 1.3 times or more. Thus, forests can be regarded as the great holder of C on earth. If the area of forest land on the earth is constantly maintained and forests are in the climax stage, the uptake of C and the release of C by and from the forests will balance. In this case, forests are neither sinks nor sources of CO{sub 2} although they store a large amount of C. However, when forests are deforested, they become a source of C; through human activities, forests have become a source of C. According to a report by the IPCC, 1.6{+-}1.2 PgC is annually added to the atmosphere by deforestation. According to the FAO (1992), the area of land deforested annually in the tropics from 1981 to 1990 was 16.9 x 10{sup 6} ha. This value is nearly half the area of Japanese land. The most important thing for the CO{sub 2} environment concerning forests is therefore how to reduce deforestation and to successfully implement a forestation or reforestation.

  9. Cooperative redox activation for carbon dioxide conversion

    PubMed Central

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-01-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing ‘waste', produced through oxygen insertion into the Si–Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2. PMID:27981967

  10. Carbon dioxide warming of the early Earth.

    PubMed

    Arrhenius, G

    1997-02-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.

  11. Carbon dioxide warming of the early Earth

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1997-01-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.

  12. Fractional carbon dioxide laser in recalcitrant vulval lichen sclerosus.

    PubMed

    Lee, Andrew; Lim, Adrian; Fischer, Gayle

    2016-02-01

    Vulval lichen sclerosus is an uncommon skin condition that can usually be managed with topical corticosteroids to maintain remission. However, there is a subset of patients in whom it remains recalcitrant despite treatment with super-potent topical corticosteroids. We report a case series of four patients undergoing fractional carbon dioxide laser resurfacing and one with ablative carbon dioxide laser for severe, hyperkeratotic vulval lichen sclerosus not responding to super-potent topical corticosteroids. In these patients, carbon dioxide laser was successful in achieving remission. Their vulval lichen sclerosus was subsequently able to be maintained with topical corticosteroid treatment.

  13. A study of the abundance and {sup 13}C/{sup 12}C ratio of atmospheric carbon dioxide and oceanic carbon in relation to the global carbon cycle. Final technical report, February 15, 1990--July 31, 1995

    SciTech Connect

    Keeling, C.D.

    1995-12-31

    Knowledge can be gained about the fluxes and storage of carbon in natural systems and their relation to climate by detecting temporal and spatial patterns in atmospheric CO{sub 2}. When patterns in its {sup 13}C/{sup 12}C isotopic ratio are included in the analysis, there is also a basis for distinguishing organic and inorganic processes. The authors systematically measured the concentration and {sup 13}C/{sup 12}C ratio of atmospheric CO{sub 2} to produce time series data essential to reveal these temporal and spatial patterns. To pursue the significance of these patterns further, the result also involved measurements of inorganic carbon in sea water and of CO{sub 2} in air near growing land plants. The study was coordinated with a study of the same title concurrently funded by the National Science Foundation (NSF). The study called for continued atmospheric measurements at an array of ten stations from the Arctic Basin to the South Pole. Air was collected in flasks brought back to the laboratory for analysis, except at Mauna Loa. Observatory, Hawaii, where continuous measurements were also carried out.

  14. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    SciTech Connect

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  15. Simulation of the carbon cycle in the ocean

    SciTech Connect

    Fasham, M.J.R.

    1991-09-16

    A dual carbon-nitrogen biological model of the upper ocean has been developed, which has successfully allowed predictions of fluxes of carbon between atmosphere and the deep ocean to made. Regarding studying the carbon cycle in the ocean, the modelling has highlighted the need for a good understanding of the interactions between the carbon and nitrogen cycles, and also the importance of zooplankton grazing and levels of overwintering biological stocks. Problems have been encountered with the accuracy of prediction of the partial pressure of carbon dioxide in the surface ocean, and the sensitivity of the model to zooplankton parameters, and those parameters which effect overwintering stocks (e.g. mortality parameters). The model has recently been incorporated into a physical General Circulation Model of the Atlantic Ocean. Future work will involve assessing the performance of the biological model in General Circulation Models, and making necessary refinements in order to improve its predictive ability. 1 ref., 1 fig.

  16. Deriving Algorithms for the Remote Sensing of Carbon Dioxide Fugacity at the Ocean Surface

    NASA Astrophysics Data System (ADS)

    Minnett, P. J.; Wickramaratna, K.; Kubat, M.

    2010-12-01

    As concentrations of carbon dioxide in the atmosphere continue to rise, the capacity of the ocean to act as a carbon dioxide sink is of critical importance as it is the major sink of anthropogenic carbon dioxide. Uncertainties in our ability to quantify the role of the oceans in the carbon cycle, especially in computing the gas fluxes between atmosphere and ocean on global scales, leads directly to uncertainty in predicting the response of the of the climate system to increasing levels of carbon dioxide in the atmosphere. Here we report on a study to improve the accuracy of the retrievals of surface fugacity from earth observation satellites. A large data set of in situ measurements from equipment on the Royal Caribbean Cruise Lines ship Explorer of the Seas in the Caribbean Sea and western tropical Atlantic Ocean the relationship between the carbon dioxide concentration and variables measurable from space is explored using advanced computational techniques to improve on prior results derived by linear regression. Using natural selection as a conceptual model, the Genetic Algorithm approach maintains a population of “tentative” solutions that are subjected to “survival of the fittest” tests and to operators that implement mutation and recombination (mutual exchange of the “genetic information”). In our implementation, each specimen in the population represents one formula, expressed by a tree-like data structure. The fitness function that quantifies the individual's survival chances is defined as the mean square error scored by the given formula on the training data. We demonstrate in this case study that not only can the accuracy of satellite retrievals of surface fugacity of carbon dioxide be improved by using algorithms based on the information content of the data sets, but also the regions in which individual algorithms are applicable can also be determined. These regions align with the underlying dynamical oceanographic features. This approach can

  17. A high-altitude balloon platform for determining exchange of carbon dioxide over agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Bouche, Angie; Beck-Winchatz, Bernhard; Potosnak, Mark J.

    2016-11-01

    The exchange of carbon dioxide between the terrestrial biosphere and the atmosphere is a key process in the global carbon cycle. Given emissions from fossil fuel combustion and the appropriation of net primary productivity by human activities, understanding the carbon dioxide exchange of cropland agroecosystems is critical for evaluating future trajectories of climate change. In addition, human manipulation of agroecosystems has been proposed as a technique of removing carbon dioxide from the atmosphere via practices such as no-tillage and cover crops. We propose a novel method of measuring the exchange of carbon dioxide over croplands using a high-altitude balloon (HAB) platform. The HAB methodology measures two sequential vertical profiles of carbon dioxide mixing ratio, and the surface exchange is calculated using a fixed-mass column approach. This methodology is relatively inexpensive, does not rely on any assumptions besides spatial homogeneity (no horizontal advection) and provides data over a spatial scale between stationary flux towers and satellite-based inversion calculations. The HAB methodology was employed during the 2014 and 2015 growing seasons in central Illinois, and the results are compared to satellite-based NDVI values and a flux tower located relatively near the launch site in Bondville, Illinois. These initial favorable results demonstrate the utility of the methodology for providing carbon dioxide exchange data over a large (10-100 km) spatial area. One drawback is its relatively limited temporal coverage. While recruiting citizen scientists to perform the launches could provide a more extensive dataset, the HAB methodology is not appropriate for providing estimates of net annual carbon dioxide exchange. Instead, a HAB dataset could provide an important check for upscaling flux tower results and verifying satellite-derived exchange estimates.

  18. Contribution of fish to the marine inorganic carbon cycle.

    PubMed

    Wilson, R W; Millero, F J; Taylor, J R; Walsh, P J; Christensen, V; Jennings, S; Grosell, M

    2009-01-16

    Oceanic production of calcium carbonate is conventionally attributed to marine plankton (coccolithophores and foraminifera). Here we report that marine fish produce precipitated carbonates within their intestines and excrete these at high rates. When combined with estimates of global fish biomass, this suggests that marine fish contribute 3 to 15% of total oceanic carbonate production. Fish carbonates have a higher magnesium content and solubility than traditional sources, yielding faster dissolution with depth. This may explain up to a quarter of the increase in titratable alkalinity within 1000 meters of the ocean surface, a controversial phenomenon that has puzzled oceanographers for decades. We also predict that fish carbonate production may rise in response to future environmental changes in carbon dioxide, and thus become an increasingly important component of the inorganic carbon cycle.

  19. Carbon-Based Regenerable Sorbents for the Combined Carbon Dioxide and Ammonia Removal for the Primary Life Support System (PLSS)

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Manthina, Venkata; Singh, Prabhakar; Chullen, Cinda

    2014-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs). Since ammonia is the most important TC to be captured, data on TC sorption presented in this paper are limited to ammonia, with results relevant to other TCs to be reported at a later time. The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. The objective of this study was to demonstrate the feasibility of using carbon sorbents for the reversible, concurrent sorption of carbon dioxide and ammonia. Several carbon sorbents were fabricated and tested, and multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also a carbon surface conditioning technique that enhances the combined carbon dioxide and ammonia sorption without impairing sorbent regeneration.

  20. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    NASA Astrophysics Data System (ADS)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  1. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates.

    PubMed

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N; Vajtai, Robert; Yu, Aaron Z; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J A; Ajayan, Pulickel M

    2016-12-13

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  2. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    PubMed Central

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-01-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290

  3. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  4. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  5. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  6. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  7. 21 CFR 179.43 - Carbon dioxide laser for etching food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbon dioxide laser for etching food. 179.43... § 179.43 Carbon dioxide laser for etching food. Carbon dioxide laser light may be safely used for... consists of a carbon dioxide laser designed to emit pulsed infrared radiation with a wavelength of...

  8. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  9. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  10. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  11. 21 CFR 179.43 - Carbon dioxide laser for etching food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Carbon dioxide laser for etching food. 179.43... FOOD Radiation and Radiation Sources § 179.43 Carbon dioxide laser for etching food. Carbon dioxide... conditions: (a) The radiation source consists of a carbon dioxide laser designed to emit pulsed...

  12. 46 CFR 35.40-8 - Carbon dioxide warning signs-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Carbon dioxide warning signs-T/ALL. 35.40-8 Section 35... Marking Requirements-TB/ALL § 35.40-8 Carbon dioxide warning signs—T/ALL. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into which...

  13. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  14. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  15. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide fire extinguishing system requirements... Carbon dioxide fire extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  16. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  17. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide fire extinguishing system requirements... Carbon dioxide fire extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  18. 46 CFR 35.40-7 - Carbon dioxide alarm-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Carbon dioxide alarm-T/ALL. 35.40-7 Section 35.40-7... Requirements-TB/ALL. § 35.40-7 Carbon dioxide alarm—T/ALL. Adjacent to all carbon dioxide fire extinguishing... AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  19. 46 CFR 35.40-8 - Carbon dioxide warning signs-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Carbon dioxide warning signs-T/ALL. 35.40-8 Section 35... Marking Requirements-TB/ALL § 35.40-8 Carbon dioxide warning signs—T/ALL. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into which...

  20. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide fire extinguishing system requirements... Carbon dioxide fire extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...