Science.gov

Sample records for carbon dioxide laser

  1. Tunable pulsed carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Megie, G. J.; Menzies, R. T.

    1981-01-01

    Transverse electrically-excited-atmosphere (TEA) laser is continuously tunable over several hundred megahertz about centers of spectral lines of carbon dioxide. It is operated in single longitudinal mode (SLM) by injection of beam from continuous-wave, tunable-waveguide carbon dioxide laser, which serves as master frequency-control oscillator. Device measures absorption line of ozone; with adjustments, it is applicable to monitoring of atmospheric trace species.

  2. Carbon dioxide slab laser

    SciTech Connect

    Tulip, J.

    1988-01-12

    A gas slab laser is described comprising: first and second elongated electrodes each including a planar light reflecting surface disposed so as to form a light guide only in a plane perpendicular to the planar surface and to define a gas discharge gap therebetween; a laser gas disposed in the gap; and means for applying a radio frequency current between the first and second electrodes to establish a laser-exciting discharge in the laser gas.

  3. Laser surgery: using the carbon dioxide laser.

    PubMed Central

    Wright, V. C.

    1982-01-01

    In 1917 Einstein theorized tha through an atomic process a unique kind of electromagnetic radiation could be produced by stimulated emission. When such radiation is in the optical or infrared spectrum it is termed laser (light amplification by stimulated emission of radiation) light. A laser, a high-intensity light source, emits a nearly parallel electromagnetic beam of energy at a given wavelength that can be captured by a lens and concentrated in the focal spot. The wavelength determines how the laser will be used. The carbon dioxide laser is now successfully employed for some surgical procedures in gynecology, otorhinolaryngology, neurosurgery, and plastic and general surgery. The CO2 laser beam is directed through the viewing system of an operating microscope or through a hand-held laser component. Its basic action in tissue is thermal vaporization; it causes minimal damage to adjacent tissues. Surgeons require special training in the basic methods and techniques of laser surgery, as well as in the safety standards that must be observed. Images FIG. 5 PMID:7074503

  4. Carbon Dioxide Laser Fiber Optics In Endoscopy

    NASA Astrophysics Data System (ADS)

    Fuller, Terry A.

    1982-12-01

    Carbon dioxide laser surgery has been limited to a great extent to surgical application on the integument and accessible cavities such as the cervix, vagina, oral cavities, etc. This limitation has been due to the rigid delivery systems available to all carbon dioxide lasers. Articulating arms (series of hollow tubes connected by articulating mirrors) have provided an effective means of delivery of laser energy to the patient as long as the lesion was within the direct line of sight. Even direct line-of-sight applications were restricted to physical dimension of the articulating arm or associated hand probes, manipulators and hollow tubes. The many attempts at providing straight endoscopic systems to the laser only stressed the need for a fiber optic capable of carrying the carbon dioxide laser wavelength. Rectangular and circular hollow metal waveguides, hollow dielectric waveguides have proven ineffective to the stringent requirements of a flexible surgical delivery system. One large diameter (1 cm) fiber optic delivery system, incorporates a toxic thalliumAbased fiber optic material. The device is an effective alternative to an articulating arm for external or conventional laser surgery, but is too large and stiff to use as a flexible endoscopic tool. The author describes the first highly flexible inexpensive series of fiber optic systems suitable for either conventional or endoscopic carbon dioxide laser surgery. One system (IRFLEX 3) has been manufactured by Medlase, Inc. for surgical uses capable of delivering 2000w, 100 mJ pulsed energy and 15w continuous wave. The system diameter is 0.035 inches in diameter. Surgically suitable fibers as small as 120 um have been manufactured. Other fibers (IRFLEX 142,447) have a variety of transmission characteristics, bend radii, etc.

  5. Pulsed-discharge carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1990-01-01

    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  6. New Trends In Carbon Dioxide Laser Microsurgery

    NASA Astrophysics Data System (ADS)

    Smith, M. R.; Miller, James B.

    1981-05-01

    The carbon dioxide laser has been used for cutting and cauterizing tissue in a variety of surgical procedures by means of a dry-field air/tissue interface approach. Recently, a new wet-field CO2 laser technique has been developed and is being used successfully in humans to seal intraocular fibrovascular fronds and retinal tears at the time of vitrectomy, to close rubeotic vessels in the iris, and to excise fibrovascular fronds and epiretinal membranes in cases of severe diabetic retinopathy. Specialized wet-field CO2 photosurgical probes for use in gynecologic microsurgery have been developed and are being studied experimentally. Other potential applications include otolaryngologic micro-surgery, neurosurgery, and gastrointestinal and urologic wet-field surgery.

  7. Endoscopic Carbon Dioxide Laser Photocoagulation Of Bleeding Canine Gastric Ulcers

    NASA Astrophysics Data System (ADS)

    Gal, Dov; Ron, Nimrod; Orgad, Uri; Katzir, Abraham

    1987-04-01

    This is the first report which describes carbon dioxide laser photocoagulation of upper gastrointestinal bleeding via a flexible endoscope, using an infrared transmitting siver nalide fiber. Various laser parameters were checked to determine the optimal conditions for hemostasis. Both the acute effects of laser irradiation on tissue and the chronic effects on healing process were examined. Preliminary results indicate that carbon dioxide laser beam can successfully photocoagulate moderately bleeding ulcers.

  8. Fractional carbon dioxide laser in recalcitrant vulval lichen sclerosus.

    PubMed

    Lee, Andrew; Lim, Adrian; Fischer, Gayle

    2016-02-01

    Vulval lichen sclerosus is an uncommon skin condition that can usually be managed with topical corticosteroids to maintain remission. However, there is a subset of patients in whom it remains recalcitrant despite treatment with super-potent topical corticosteroids. We report a case series of four patients undergoing fractional carbon dioxide laser resurfacing and one with ablative carbon dioxide laser for severe, hyperkeratotic vulval lichen sclerosus not responding to super-potent topical corticosteroids. In these patients, carbon dioxide laser was successful in achieving remission. Their vulval lichen sclerosus was subsequently able to be maintained with topical corticosteroid treatment.

  9. 21 CFR 179.43 - Carbon dioxide laser for etching food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbon dioxide laser for etching food. 179.43... § 179.43 Carbon dioxide laser for etching food. Carbon dioxide laser light may be safely used for... consists of a carbon dioxide laser designed to emit pulsed infrared radiation with a wavelength of...

  10. 21 CFR 179.43 - Carbon dioxide laser for etching food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Carbon dioxide laser for etching food. 179.43... FOOD Radiation and Radiation Sources § 179.43 Carbon dioxide laser for etching food. Carbon dioxide... conditions: (a) The radiation source consists of a carbon dioxide laser designed to emit pulsed...

  11. Aesthetic Depigmentation of Gingival Smoker's Melanosis Using Carbon Dioxide Lasers

    PubMed Central

    Monteiro, Luis Silva; Costa, José Adriano; da Câmara, Marco Infante; Albuquerque, Rui; Martins, Marco; Pacheco, José Júlio; Salazar, Filomena; Figueira, Fernando

    2015-01-01

    Melanic pigmentation results from melanin produced by the melanocytes present in the basal layer of the oral epithelium. One of the most common causes of oral pigmentation is smoker melanosis, a condition associated with the melanocyte stimulation caused by cigarette smoke. This paper aims to illustrate the use of a carbon dioxide laser in the removal of the gingival melanic pigmentation for aesthetic reasons in a 27-year-old female patient with history of a smoking habit. The carbon dioxide laser vaporisation was performed on the gingival mucosa with effective and quick results and without any complications or significant symptoms after the treatment. We conclude that a carbon dioxide laser could be a useful, effective, and safe instrument to treat the aesthetic complications caused by oral smoker melanosis. PMID:25954535

  12. TIR-1 carbon dioxide laser system for fusion

    NASA Astrophysics Data System (ADS)

    Adamovich, V. A.; Anisimov, V. N.; Afonin, E. A.; Baranov, V. Iu.; Borzenko, V. L.; Kozochkin, S. M.; Maliuta, D. D.; Satov, Iu. A.; Sebrant, A. Iu.; Smakovski, Iu. B.

    1980-03-01

    The paper examines the TIR-1 carbon dioxide laser system for fusion. The current efforts are concentrated on (1) the microsecond laser pulse plasma heating in solenoids and theta pinches, and (2) nanosecond CO2 laser utilization for inertial confinement fusion. The TIR-1 system was designed to develop nanosecond CO2 laser technology and to study laser-target interaction at 10 microns. This system consists of an oscillator-preamplifier that produces about 1-nsec laser pulse with an energy contrast ratio of 1 million, a large triple-pass amplifier, and a target chamber with diagnostic equipment.

  13. A high-pressure carbon dioxide gasdynamic laser

    NASA Technical Reports Server (NTRS)

    Kuehn, D. M.

    1973-01-01

    A carbon dioxide gasdynamic laser was operated over a range of reservoir pressure and temperature, test-gas mixture, and nozzle geometry. A significant result is the dominant influence of nozzle geometry on laser power at high pressure. High reservoir pressure can be effectively utilized to increase laser power if nozzle geometry is chosen to efficiently freeze the test gas. Maximum power density increased from 3.3 W/cu cm of optical cavity volume for an inefficient nozzle to 83.4 W/cu cm at 115 atm for a more efficient nozzle. Variation in the composition of the test gas also caused large changes in laser power output. Most notable is the influence of the catalyst (helium or water vapor) that was used to depopulate the lower vibrational state of the carbon dioxide. Water caused an extreme deterioration of laser power at high pressure (100 atm), whereas, at low pressure the laser for the two catalysts approached similar values. It appears that at high pressure the depopulation of the upper laser level of the carbon dioxide by the water predominates over the lower state depopulation, thus destroying the inversion.

  14. Treatment of digital myxoid cysts with carbon dioxide laser vaporization.

    PubMed

    Huerter, C J; Wheeland, R G; Bailin, P L; Ratz, J L

    1987-07-01

    Digital myxoid cysts represent a relatively uncommon cutaneous disorder which have often proven refractory to conservative management. We report a series of ten patients with this condition who were effectively treated with carbon dioxide (CO2) laser vaporization. There has been no recurrence of cysts during a follow-up period ranging from 14 to 44 months.

  15. Syneresis of vitreous by carbon dioxide laser radiation.

    PubMed

    Bridges, T J; Patel, C K; Strnad, A R; Wood, O R; Brewer, E S; Karlin, D B

    1983-03-11

    In carbon dioxide laser surgery of the vitreous a process of vaporization has been advocated. In this report syneresis, a thermal liquefaction of gel, is shown to be over ten times more efficient on an energy basis than vaporization. Syneresis of vitreous is experimentally shown to be a first-order kinetic process with an activation energy of 41 +/- 0.5 kilocalories per mole. A theory of laser surgery in which this figure is used agrees closely with results from laser experiments on human eye-bank vitreous. The syneresis of vitreous by carbon dioxide laser radiation could lead to a more delicate form of ocular microsurgery, and application to other biological systems may be possible.

  16. Syneresis of Vitreous by Carbon Dioxide Laser Radiation

    NASA Astrophysics Data System (ADS)

    Bridges, T. J.; Patel, C. K. N.; Strnad, A. R.; Wood, O. R.; Brewer, E. S.; Karlin, D. B.

    1983-03-01

    In carbon dioxide laser surgery of the vitreous a process of vaporization has been advocated. In this report syneresis, a thermal liquefaction of gel, is shown to be over ten times more efficient on an energy basis than vaporization. Syneresis of vitreous is experimentally shown to be a first-order kinetic process with an activation energy of 41 ± 0.5 kilocalories per mole. A theory of laser surgery in which this figure is used agrees closely with results from laser experiments on human eye-bank vitreous. The syneresis of vitreous by carbon dioxide laser radiation could lead to a more delicate form of ocular microsurgery, and application to other biological systems may be possible.

  17. Superpulsed carbon dioxide laser: an update on cutaneous surgical applications

    NASA Astrophysics Data System (ADS)

    Wheeland, Ronald G.

    1990-06-01

    Superpulsing the carbon dioxide laser allows delivery of high energy pulses separated by short pauses during which tissue cooling can occur.1 This new technology can provide several important advantages in cutaneous surgery over similar procedures performed with conventional continuous discharge carbon dioxide laser systems. In the excisional mode, there is a two-thirds reduction in thermal necrosis of the wound edge.2 This should translate into more rapid healing3 and increased rate of gain in tensile strength. In the vaporizational mode, precise, superficial and bloodless ablation of multiple benign appendigeal tumors is possible with less thermal damage yielding excellent cosmetic results. The establishment through additional research of accurate laser parameters, pulse duration, peak energy levels, and frequency of pulses, will help improve the specificity of the laser-tissue interaction to provide even better surgical results.

  18. 21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ear, nose, and throat microsurgical carbon dioxide..., nose, and throat microsurgical carbon dioxide laser. (a) Identification. An ear, nose, and throat microsurgical carbon dioxide laser is a device intended for the surgical excision of tissue from the ear,...

  19. 21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ear, nose, and throat microsurgical carbon dioxide..., nose, and throat microsurgical carbon dioxide laser. (a) Identification. An ear, nose, and throat microsurgical carbon dioxide laser is a device intended for the surgical excision of tissue from the ear,...

  20. 21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ear, nose, and throat microsurgical carbon dioxide..., nose, and throat microsurgical carbon dioxide laser. (a) Identification. An ear, nose, and throat microsurgical carbon dioxide laser is a device intended for the surgical excision of tissue from the ear,...

  1. Carbon dioxide laser oral safety parameters for teeth

    SciTech Connect

    Powell, G.L.; Whisenant, B.K.; Morton, T.H. )

    1990-01-01

    The carbon dioxide laser is used in the oral cavity for a variety of procedures. Although the procedures may not involve the teeth directly, precaution should be exercised to preserve their integrity. The results of this study indicate that the most limiting parameter for oral use of the CO{sub 2} laser is damage to the enamel surface, which could be inflicted with as little as 5 W for 0.2 second and a 1 mm beam. Care should be exercised to prevent inadvertent damage to the surface enamel of teeth even at very low energy levels.

  2. Solar pumped continuous wave carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Yesil, O.; Christiansen, W. H.

    1978-01-01

    In an effort to demonstrate the feasibility of a solar pumped laser concept, gain has been measured in a CO2-He laser medium optically pumped by blackbody radiation. Various gas mixtures of CO2 and He have been pumped by blackbody radiation emitted from an electrically heated oven. Using a CO2 laser as a probe, an optical gain coefficient of 1.8 x 10 to the -3rd/cm has been measured at 10.6 microns for a 9:1 CO2-He mixture at an oven temperature of about 1500 K, a gas temperature of about 400 K and a pressure of about 1 torr. This corresponds to a small signal gain coefficient when allowance is made for saturation effects due to the probe beam, in reasonable agreement with a theoretical value.

  3. a Blackbody-Pumped Carbon Dioxide Laser

    NASA Astrophysics Data System (ADS)

    Insuik, Robin Joy

    A proof of concept experiment has been carried out to demonstrate the feasibility of using blackbody radiation to pump a gas laser. Building on earlier experiments in which optical gain was measured in a CO(,2) laser mixture exposed to blackbody radiation at a temperature of 1500(DEGREES)K, continuous wave oscillation of CO(,2) has been achieved, for the first time, using radiation from a blackbody cavity as the pump source. This was made possible by actively cooling the laser mixture as it was exposed to the radiation field of an electrically heated oven. Output power measurements are presented from a series of experiments using mixtures of CO(,2), He, and Ar. Maximum output power was obtained with a 20%CO(,2) - 15%He- 65%Ar mixture at pressures around 6-10 Torr. The output power was found to vary greatly with the gas temperature and the blackbody temperature. By varying these parameters output powers up to 8 mW have been achieved. The effects of the buffer gas are also shown to be important. Based on the experimental results, it is believed that the buffer gas is needed to inhibit diffusion of the excited species out of the laser mode volume. This diffusion leads to deactivation at the walls. Adding more CO(,2) results in a decrease in output power, indicating that the gas has a finite optical depth and the mode volume is not pumped if too much CO(,2) is present. A model which incorporates these effects is presented. The predicted small signal gains and powers based on this model adequately match the trends observed experimentally.

  4. Carbon dioxide laser resurfacing with fast recovery.

    PubMed

    Chajchir, Abel; Benzaquen, Iliana

    2005-01-01

    ABTRACT: Long sun exposure, in addition to ozone layer damage, produces structural damase to the normal skin. Injury to the dermal collagen and elastic fiber results in facial wrinkles. Photodamage to the skin is one of the most common sources of concern for patients visiting the plastic surgeon or dermatologist. Over the years, many alternative solutions have been developed. CO2 laser treatment is one of the alternatives bringing unique benefits and satisfactory results for both patient and surgeons. However, the initial problems of emotional discomfort, prolonged postoperative recovery and delayed return to normal activities have made patients reluctant to accept this method. This article discusses single-pass CO2 laser resurfacing with lower energy. Also, it proposes a technique that does not use wet gauze to remove the surface of the skin. This technique is applied in combination with an intensive skin care treatment. Different authors propose a single pass of CO2 laser with excellent results. With the reported method, identical long-lasting benefits are achieved, but the post-operative time is shorter.

  5. 21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... laser. 874.4500 Section 874.4500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND..., nose, and throat microsurgical carbon dioxide laser. (a) Identification. An ear, nose, and throat microsurgical carbon dioxide laser is a device intended for the surgical excision of tissue from the ear,...

  6. Efficiency of Carbon Dioxide Fractional Laser in Skin Resurfacing

    PubMed Central

    Petrov, Andrej

    2016-01-01

    AIM: The aim of the study was to confirm the efficiency and safety of the fractional CO2 laser in skin renewal and to check the possibility of having a synergistic effect in patients who besides carbon dioxide laser are treated with PRP (platelet-rich plasma) too. MATERIAL AND METHODS: The first group (Examined Group 1 or EG1) included 107 patients treated with fractional CO2 laser (Lutronic eCO2) as mono-therapy. The second group (Control Group or CG) covered 100 patients treated with neither laser nor plasma in the same period but subjected to local therapy with drugs or other physio-procedures under the existing protocols for treatment of certain diseases. The third group (Examined Group 2 or EG2) treated 25 patients with combined therapy of CO2 laser and PRP in the treatment of facial rejuvenation or treatment of acne scars. RESULTS: Patient’s satisfaction, in general, is significantly greater in both examined groups (EG1 and EG2) (p < 0.001). It was found the significant difference between control and examined group from the treatment in acne scar (Fisher exact two tailed p < 0.001). Patients satisfaction with the treatment effect in rejuvenation of the skin is significant (χ2 = 39.41; df = 4; p < 0.001). But, patients satisfaction from the treatment with HPV on the skin was significantly lower in examined group (treated with laser), p = 0.0002. CONCLUSION: Multifunctional fractional carbon dioxide laser used in treatment of patients with acne and pigmentation from acne, as well as in the treatment of scars from different backgrounds, is an effective and safe method that causes statistically significant better effect of the treatment, greater patients’ satisfaction, minimal side effects and statistically better response to the therapy, according to assessments by the patient and the therapist. PMID:27335599

  7. Removal of oral cavity leiomyoma with carbon dioxide laser.

    PubMed

    Janas, Anna; Grzesiak-Janas, Grazyna; Sporny, Stanislaw

    2008-01-01

    Myoma is a nonmalignant neoplasm rarely found in the oral cavity and even more rarely mentioned in the world's dental or surgical literature. Not one case of oral cavity leiomyoma has been reported in Poland. This article describes a case of leiomyoma of the oral cavity in a 51-year-old patient. To remove the tumor, a carbon dioxide laser was used. Because of the method used, perioperative bleeding was avoided, which enabled better visibility of the surgical area and minimized duration of the operation. The postoperative wound did not require sutures, and healing occurred without complications. PMID:18551205

  8. Fractional Carbon Dioxide Laser in Treatment of Acne Scars

    PubMed Central

    Petrov, Andrej; Pljakovska, Vesna

    2016-01-01

    BACKGROUND: Scars appear as a result of skin damage during the process of the skin healing. There are two types of acne scars, depending on whether there is a loss or accumulation of collagen: atrophic and hypertrophic. In 80-90% it comes to scars with loss of collagen compared to smaller number of hypertrophic scars and keloids. AIM: The aim of the study was to determine efficiency and safety of fractional carbon dioxide laser in the treatment of acne scars. MATERIAL AND METHODS: The study was carried out in Acibadem Sistina Clinical Hospital, Skopje at the Department of Dermatovenerology, with a total of 40 patients treated with fractional carbon dioxide laser (Lutronic eCO2). The study included patients with residual acne scars of a different type. RESULTS: Comedogenic and papular acne in our material were proportionately presented in 50% of cases, while the other half were the more severe clinical forms of acne - pustular inflammatory acne and nodulocystic acne that leave residual lesions in the form of second, third and fourth grade of scars. CONCLUSION: The experiences of our work confirm the world experiences that the best result with this method is achieved in dotted ice pick or V-shaped acne scars. PMID:27275326

  9. Improvement of Microstomia in Scleroderma after Carbon Dioxide Laser Treatment.

    PubMed

    Bennani, Imane; Lopez, Raphael; Bonnet, Delphine; Prevot, Gregoire; Constantin, Arnaud; Chauveau, Dominique; Paul, Carle; Bulai Livideanu, Cristina

    2016-01-01

    Limited mouth opening (LMO) is a frequent complication of systemic sclerosis (SS). Its management is complex and there are limited treatment options. We report four patients with SS and severe LMO [interincisal distance (IID) <30 mm] treated with pulsed carbon dioxide (CO2) laser. Pulsed CO2 laser treatment of the white lips was performed after all patients had signed a written informed consent in the absence of alternative treatment. Treatment was carried out under locoregional anaesthesia using a Sharplan 30C CO2 laser in the Silk Touch® resurfacing mode. One to three laser sessions were performed at intervals of 8-12 months between sessions. Assessments were performed at 3 and 12 months with measurement of the IID using a ruler, calculation of the Mouth Handicap in Systemic Sclerosis (MHISS) scale and global evaluation by the patients. Adverse events were also reported. In all four patients, an improvement in IID occurred 3 months after the first session with a mean gain of +5 mm (range: 2-7). At 12 months, a mean gain of +8.5 mm (range: 7-10) in IID was observed. The MHISS score decreased by a mean of •14 (range: 11-17). All patients showed improvement of lip flexibility or mouth opening, allowing better phonation and mastication and easier dental care. Adverse effects were transient erythema and/or dyschromia. CO2 laser appears to be effective and well tolerated in the improvement of LMO in SS. PMID:27403126

  10. Laser-induced nucleation of carbon dioxide bubbles.

    PubMed

    Ward, Martin R; Jamieson, William J; Leckey, Claire A; Alexander, Andrew J

    2015-04-14

    A detailed experimental study of laser-induced nucleation (LIN) of carbon dioxide (CO2) gas bubbles is presented. Water and aqueous sucrose solutions supersaturated with CO2 were exposed to single nanosecond pulses (5 ns, 532 nm, 2.4-14.5 MW cm(-2)) and femtosecond pulses (110 fs, 800 nm, 0.028-11 GW cm(-2)) of laser light. No bubbles were observed with the femtosecond pulses, even at high peak power densities (11 GW cm(-2)). For the nanosecond pulses, the number of bubbles produced per pulse showed a quadratic dependence on laser power, with a distinct power threshold below which no bubbles were observed. The number of bubbles observed increases linearly with sucrose concentration. It was found that filtering of solutions reduces the number of bubbles significantly. Although the femtosecond pulses have higher peak power densities than the nanosecond pulses, they have lower energy densities per pulse. A simple model for LIN of CO2 is presented, based on heating of nanoparticles to produce vapor bubbles that must expand to reach a critical bubble radius to continue growth. The results suggest that non-photochemical laser-induced nucleation of crystals could also be caused by heating of nanoparticles.

  11. Theoretical and Experimental studies on CH3OH THz Laser Pumped by Pulse Carbon Dioxide Laser

    NASA Astrophysics Data System (ADS)

    Fei, Fei; Jing, Wang; Zhaoshuo, Tian; Yanchao, Zhang; Shiyou, Fu; Qi, Wang

    2011-02-01

    In this paper, according to the molecular structure and vibration mode of micro-asymmetric gyroscope CH3OH molecule, dynamic process of optically pumped Terahertz laser is analyzed theoretically. The rate equation models based on three level systems are given according to the theory of typical laser rate equation. The output THz pulsed laser waveform is obtained by solving the rate equation model. An all-metal Terahertz laser pumped by RF waveguide carbon dioxide laser is designed with CH3OH as its working gas. The pulsed Terahertz laser output is obtained. The waveform and repetition frequency of the optically pumped laser are measured in the experiments. The Terahertz laser designed does not need water cooling system. It also has the advantages of simple structure and small size.

  12. The use of the carbon dioxide laser in head and neck lymphangioma.

    PubMed

    White, B; Adkins, W Y

    1986-01-01

    The carbon dioxide laser has been used to treat various lesions of the head and neck, ranging from carcinomas to hemangiomas, and even including tatoos. A search of the literature does not reveal any reports of the carbon dioxide laser being used to treat lymphangioma. This report discusses the efficacy of treating lymphangioma of the air and food passages with the carbon dioxide laser, and presents three patients who have been treated in this fashion-two for palliation and one for cure. PMID:2426548

  13. Low-fluence carbon dioxide laser irradiation of lentigines

    SciTech Connect

    Dover, J.S.; Smoller, B.R.; Stern, R.S.; Rosen, S.; Arndt, K.A.

    1988-08-01

    Low-fluence carbon dioxide (CO2) laser irradiation of skin has previously been shown to induce damage limited primarily to the epidermis. To evaluate whether this technique was therapeutically effective for pigmented epidermal lesions, ten lentigines caused by methoxsalen and ultraviolet light therapy were treated in one patient using the CO2 laser at fluences ranging from 3.0 to 7.7 J/cm2 for 0.1-s exposures with 4.5-mm spot size. Based on substantial clearing in seven of ten lesions treated, 146 solar lentigines were treated in five patients at fluences of 3.0, 3.7, or 4.4 J/cm2. Biopsies were performed on a total of 30 lesions immediately and 24 hours, seven days, and six weeks after irradiation. Of 125 lesions followed up clinically for six weeks, 12 cleared completely, 81 lightened substantially, and 28 remained unchanged. Only two demonstrated atrophic change. Hyperpigmentation or hypopigmentation did not occur. All lesions that improved had been treated at 3.7 or 4.4 J/cm2. Immediate histologic injury consisted of vacuolar and spindly change and subsequent vesiculation limited to the basilar epidermis. Twenty-four hours later there was epidermal necrosis with regeneration, 0.1 mm of dermal basophilia and stromal condensation, and a mild inflammatory infiltrate. These alterations were dose-dependent, with near complete epidermal necrosis and superficial dermal involvement at the highest fluence, and only focal epidermal necrosis at the lowest. At seven days, epidermal regeneration was complete with traces of melanin remaining in keratinocytes. Melanophages first appeared at seven days and persisted at six weeks, by which time the inflammatory infiltrate had cleared. No lentiginous proliferation was evident and epidermal pigmentation had become normal. Low-fluence CO2 laser irradiation is an effective means of damaging the epidermis with only minimal dermal change.

  14. The NASA high power carbon dioxide laser: A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1976-01-01

    A closed-cycle, continuous wave, carbon dioxide high power laser has been designed and fabricated to support research for the identification and evaluation of possible high power laser applications. The device is designed to generate up to 70 kW of laser power in annular shape beams from 1 to 9 cm in diameter. Electric discharge, either self sustained or electron beam sustained, is used for excitation. This laser facility provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams. The facility provides a well defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  15. Clinical study on 71 anorectal cases treated by carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Li, Gui-hua

    1993-03-01

    This paper describes the effective result of carbon dioxide laser on type I and II internal hemorrhoids, mixed hemorrhoids, anal fissure or fistula, etc. At present, simple hemorrhoidectomy is less acceptable to patients for its excessive bleeding and severe pain during and after the operation. Therefore, the results of 71 anorectal cases of hemorrhoidectomy using carbon dioxide laser have been observed in our hospital. The rates of effective treatment and cure were 100% and 94.3%, respectively.

  16. LASCAT - DESIGN OF CATALYTIC MONOLITHS FOR CLOSED-CYCLE CARBON DIOXIDE LASERS

    NASA Technical Reports Server (NTRS)

    Guinn, K.

    1994-01-01

    Pulsed carbon dioxide lasers are useful in many areas, including aeronautics, space research, and weather monitoring. Most applications require a closed-cycle carbon dioxide laser, which is more portable and self-sustaining than an open-cycle system. Without a fresh carbon dioxide supply and provisions for byproduct disposal, the closed-cycle laser must recycle the carbon monoxide and oxygen gas produced by the lasing of carbon dioxide. The recombination of the carbon monoxide and oxygen gas byproducts to form a constant supply of carbon dioxide requires an active catalyst, which must be carefully designed to optimize laser performance in accordance with design requirements specific to the laser's application. LASCAT (Design of Catalytic Monoliths for Closed-Cycle Carbon Dioxide Lasers) aids in the design of the monolith catalyst by simulating the results of design decisions on the performance of the laser. In portable laser systems, considerations of size, weight, and cost are critical. LASCAT provides the opportunity for the designer to explore trade-offs between the catalyst activity, catalyst dimensions, monolith dimensions, pressure drop (a result of gas flow through the monolith), Oxygen gas conversion, and other variables. The program uses a flexible, simplified model of the monolith catalyst designed to determine the bulk-avarage gas temperature, composition, and pressure along its length. The user specifies values for the several parameters which define the catalyst's operating conditions, including monolith dimensions, gas inlet properties, thermal operation properties, and catalyst properties. LASCAT provides results which indicate whether the experimental design meets user-defined constraints such as limits on conversion rate, maximum gas temperature, and monolith weight. LASCAT is written in FORTRAN 77 and is designed for use with any text or character-based terminal or computer display. The program requires roughly 40 KB memory. LASCAT was developed

  17. Mechanism of skin resurfacing using the ultrapulse carbon dioxide laser: animal study

    NASA Astrophysics Data System (ADS)

    Yuan, Wei-Wei; Liu, Chun-Li; Lai, Huang-Wen; Yung, Chuan-Hong

    1998-11-01

    Ultrapulse carbon dioxide laser ablations of rabbit skin were investigated. Macroscopic, microscopic and electron microscopic appearances of the ablation sites were evaluated. Results showed that the effect of laser treatment was on the epidermis and the papillary dermis. All or some of the cell layers of epidermis were ablated degeneration took place in the papillary dermis. Wrinkles of the new epidermis were shallow and seldom. The new collagenous fibers were more elastic which made the skin tighter and few wrinkles. Results also demonstrated that ultrapulse carbon dioxide laser stimulated hairs to grow fast.

  18. Carbon dioxide (CO2) laser treatment of cutaneous papillomas in a common snapping turtle, Chelydra serpentina.

    PubMed

    Raiti, Paul

    2008-06-01

    Carbon dioxide (CO2) laser was used to treat multiple cutaneous papillomas on an adult female common snapping turtle, Chelydra serpentina serpentina. A combination of excisional and ablative techniques provided excellent intraoperative visibility and postoperative results due to the laser's unique ability to incise and vaporize soft tissue. PMID:18634218

  19. The NASA high-power carbon dioxide laser - A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1977-01-01

    The NASA Lewis Research Center has designed and fabricated a closed-cycle, continuous wave (CW), carbon dioxide (CO2) high-power laser to support research for the identification and evaluation of possible high-power laser applications. The device is designed to generate up to 70 kW of laser power in annular-shape beams from 1 to 9 cm in diameter. Electric discharge, either self-sustained or electron-beam-sustained, is used for excitation. This laser facility can be used in two ways. First, it provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high-power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams, all of which are important whether the laser application is government or industry oriented. Second, the facility provides a well-defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  20. Wound healing in porcine skin following low-output carbon dioxide laser irradiation of the incision

    SciTech Connect

    Robinson, J.K.; Garden, J.M.; Taute, P.M.; Leibovich, S.J.; Lautenschlager, E.P.; Hartz, R.S.

    1987-06-01

    Wound healing of scalpel incisions to the depth of adipose tissue closed with conventional methods was compared with closure by low-output carbon dioxide laser irradiation. In 3 Pitman-Moore minipigs wound healing was evaluated at intervals from 1 to 90 days by the following methods: clinical variables of wound healing; formation of the basement membrane components bullous pemphigoid antigen, laminin, and fibronectin; and histological evaluation of the regeneration of the epidermis, neovascularization, and elastin and collagen formation. There was no significant difference in healing between wounds closed by the various conventional methods and by the low-output carbon dioxide laser.

  1. Electromagnetic system for the management of the output power of the carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Martsinukov, S. A.; Kostrin, D. K.; Chernigovskiy, V. V.; Lisenkov, A. A.

    2016-07-01

    The methods to control the output power of the gas-discharge lasers are shown. An electromagnetic system for the management of the output power of the carbon dioxide laser is described. The results of calculation and modeling of the magnetic field in the working gap of the electromagnetic system are presented. Experimental studies on the distribution of magnetic induction in the electromagnetic system are carried out.

  2. Comparison of pulsed and continuous-wave carbon dioxide laser interactions with cutaneous tissue

    NASA Astrophysics Data System (ADS)

    Reinisch, Lou; Rivas, Mike; Ossoff, Jacob; Deriso, Walter; Sternemann, Jeff; Ossoff, Robert H.

    1997-05-01

    We measured the acute tissue shrinkage using a continuous wave and a pulsed carbon dioxide laser for skin resurfacing. The tissue shrinkage was measured on in vitro, non-facial human skin samples. We also examined the amount of thermal damage in the skin acutely and three days after laser resurfacing using a piglet model. The pulsed laser used a 100 microsecond pulse and delivered 500 mJ in a 3 by 3 mm square spot. The continuous wave laser was delivered with a hand piece that moved the beam in a 3.4 mm spiral during the 0.2 s irradiation. The continuous wave laser was set to 8 W. As expected, the pulsed laser showed less thermal damage acutely and after three days when compared to the continuous wave laser. However, the pulsed laser also showed more tissue shrinkage than was observed with the continuous wave laser. These results imply that the tissue shrinkage from carbon dioxide laser resurfacing may be related to the tissue removal more than collagen denaturation.

  3. Effect of a new carbon dioxide laser treatment on dissolution profiles of dental enamel

    NASA Astrophysics Data System (ADS)

    Featherstone, John D. B.; Le, Charles Q.; Fried, Daniel

    2003-06-01

    Previous studies have shown that pretreatment of dental enamel by specific carbon dioxide laser conditions inhibited subsequent acid dissolution of the enamel surface. The aim of the present study was to examine the dissolution profiles following irradiation by a new short pulse carbon dioxide laser treatment. Bovine enamel blocks were irradiated at 9.6 μm with a 5-8 μs or a 20-30 μs pulse duration laser using overlapping spots, and a range of fluences. Dissolution profiles were measured in an acetate buffer. Higher fluences produced rapid initial dissolution followed by a plateau with a low dissolution rate. For caries inhibition purposes the high solubility decomposition phases need to be avoided or removed.

  4. Direct determination of carbon dioxide in aqueous solution using mid-infrared quantum cascade lasers.

    PubMed

    Schaden, S; Haberkorn, M; Frank, J; Baena, J R; Lendl, B

    2004-06-01

    A method for the direct determination of carbon dioxide in aqueous solutions using a room-temperature mid-infrared (MIR) quantum cascade laser at 2330 cm(-1) is reported. The absorption values of different carbon dioxide concentrations were measured in a 119 microm CaF2 flow-through cell. An optical system made of parabolic mirrors was used to probe the flow cell and to focus the laser beam on the mercury cadmium telluride (MCT) detector. Aqueous carbon dioxide standards were prepared by feeding different mixtures of gaseous N2 and CO2 through wash bottles at controlled temperature. The concentration of the dissolved CO2 was calculated according to Henry's law, taking into account the temperature and the partial pressure of CO2. The carbon dioxide standards were connected via a selection valve to a peristaltic pump for subsequent, automated measurement in the flow-through cell. A calibration curve was obtained in the range of 0.338 to 1.350 g/L CO2 with a standard deviation of the method sxo equal to 19.4 mg/L CO2. The limit of detection was calculated as three times the baseline noise over time and was determined to be 39 mg/L.

  5. Carbon Dioxide Laser Microsurgical Median Glossotomy for Resection of Lingual Dermoid Cysts

    PubMed Central

    Corvers, Kristien; Hens, Greet; Meulemans, Jeroen; Delaere, Pierre; Hermans, Robert; Vander Poorten, Vincent

    2016-01-01

    Dermoid cysts are epithelial-lined cavities with skin adnexae in the capsule. Only 7% is present in the head and neck. Between 2004 and 2013, four patients with a lingual dermoid cyst underwent a microsurgical carbon dioxide laser resection via a median sagittal glossotomy approach. This approach is an elegant technique combining superior visualization, hemostasis, and little postoperative edema with good wound healing, allowing for perfect function preservation of the tongue. PMID:27504448

  6. JPL Carbon Dioxide Laser Absorption Spectrometer Data Processing Results for the 2010 Flight Campaign

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Spiers, Gary D.; Menzie, Robert T.; Christensen, Lance E.

    2011-01-01

    As a precursor to and validation of the core technology necessary for NASA's Active Sensing of CO2 Emissions over Nights, Days,and Seasons (ASCENDS) mission, we flew JPL's Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) in a campaign of five flights onboard NASA's DC-8 Airborne Laboratory in July 2010. This is the latest in a series of annual flight campaigns that began in 2006, and our first on the DC-8 aircraft.

  7. Design of catalytic monoliths for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1988-01-01

    A computer program was written that allows the design of catalytic monoliths for closed-cycle carbon dioxide lasers. Using design parameters obtained from workers at NASA Langley Research Center and from the literature, several specific monoliths were designed and the results were communicated to the research group working on this project at Langley. Two oral presentations were made at NASA-sponsored workshops - at Langley in January 1988 and in Gainesville, Florida in May 1988.

  8. Selective removal of dental composite using a rapidly scanned carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Daniel

    2011-03-01

    Dental restorative materials are color matched to the tooth and are difficult to remove by mechanical means without excessive removal or damage to peripheral enamel and dentin. Lasers are ideally suited for selective ablation to minimize healthy tissue loss when replacing existing restorations, sealants or removing composite adhesives such as residual composite left after debonding orthodontic brackets. In this study a carbon dioxide laser operating at high laser pulse repetition rates integrated with a galvanometer based scanner was used to selectively remove composite from tooth surfaces. A diode array spectrometer was used to measure the plume emission after each laser pulse and determine if the ablated material was tooth mineral or composite. The composite was placed on tooth buccal and occlusal surfaces and the carbon dioxide laser was scanned across the surface to selectively remove the composite without excessive damage to the underlying sound enamel. The residual composite and the damage to the underlying enamel was evaluated using optical microscopy. The laser was able to rapidly remove the composites rapidly from both surfaces with minimal damage to the underlying sound enamel.

  9. Selective Removal of Dental Composite using a Rapidly Scanned Carbon Dioxide Laser.

    PubMed

    Chan, Kenneth H; Fried, Daniel

    2011-01-01

    Dental restorative materials are color matched to the tooth and are difficult to remove by mechanical means without excessive removal or damage to peripheral enamel and dentin. Lasers are ideally suited for selective ablation to minimize healthy tissue loss when replacing existing restorations, sealants or removing composite adhesives such as residual composite left after debonding orthodontic brackets. In this study a carbon dioxide laser operating at high laser pulse repetition rates integrated with a galvanometer based scanner was used to selectively remove composite from tooth surfaces. A diode array spectrometer was used to measure the plume emission after each laser pulse and determine if the ablated material was tooth mineral or composite. The composite was placed on tooth buccal and occlusal surfaces and the carbon dioxide laser was scanned across the surface to selectively remove the composite without excessive damage to the underlying sound enamel. The residual composite and the damage to the underlying enamel was evaluated using optical microscopy. The laser was able to rapidly remove the composites rapidly from both surfaces with minimal damage to the underlying sound enamel. PMID:21927546

  10. Selective Removal of Dental Composite using a Rapidly Scanned Carbon Dioxide Laser.

    PubMed

    Chan, Kenneth H; Fried, Daniel

    2011-01-01

    Dental restorative materials are color matched to the tooth and are difficult to remove by mechanical means without excessive removal or damage to peripheral enamel and dentin. Lasers are ideally suited for selective ablation to minimize healthy tissue loss when replacing existing restorations, sealants or removing composite adhesives such as residual composite left after debonding orthodontic brackets. In this study a carbon dioxide laser operating at high laser pulse repetition rates integrated with a galvanometer based scanner was used to selectively remove composite from tooth surfaces. A diode array spectrometer was used to measure the plume emission after each laser pulse and determine if the ablated material was tooth mineral or composite. The composite was placed on tooth buccal and occlusal surfaces and the carbon dioxide laser was scanned across the surface to selectively remove the composite without excessive damage to the underlying sound enamel. The residual composite and the damage to the underlying enamel was evaluated using optical microscopy. The laser was able to rapidly remove the composites rapidly from both surfaces with minimal damage to the underlying sound enamel.

  11. Endotracheal tube fires during carbon dioxide laser surgery on the larynx--a case report.

    PubMed

    Kuo, C H; Tan, P H; Chen, J J; Peng, C H; Lee, C C; Chung, H C; Tseng, C K

    2001-03-01

    Endotracheal tube (ETT) fire is a catastrophic disaster that may occur during laser surgery of the upper airway. Several means are available for protection of polyvinyl chloride (PVC) tube from fire, but they are not perfect in prevention of fires caused by laser beam. The PVC tube is hazardous for carbon dioxide (CO2) laser surgery if it is not well wrapped with metallized foil tape. We report a case that a PVC ETT wrapped with aluminum foil ignited during CO2 laser surgery of the larynx. In this report, we emphasize the shaft of the PVC tube must be completely wrapped with aluminum foil to prevent exposure of any surface if it is used in CO2 laser surgery of the upper aero digestive tract. PMID:11407297

  12. Surgical Coagulator With Carbon Dioxide Laser For Gynecology

    NASA Astrophysics Data System (ADS)

    Wolinski, Wieslaw; Kazmirowski, Antoni; Korobowicz, Witold; Olborski, Zbigniew

    1987-10-01

    The technical data and parameters of the CO2 surgical laser for gynecology are given. Coagulator was designed and constructed in Institute of Microelectronics and Optoelectronics Warsaw Technical University.

  13. Carbon dioxide lasers. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Cavagnaro, D. M.

    1980-10-01

    Citations on theory, design, operation, output and diagnostics of CO2 lasers are presented. Studies relating to excitation, frequency conversion, modulation, laser pumping, reaction kinetics, gas dynamics, and plasmas are included. The development and efficiency of optical components such as mirrors, resonators, tuning devices, infrared optical materials, amplifiers, and gratings are also discussed. This updated bibliography contains 214 citations, 70 of which are new entries to the previous edition.

  14. The 2014 ASCENDS Field Campaign - a Carbon Dioxide Laser Absorption Spectrometer Perspective

    NASA Astrophysics Data System (ADS)

    Spiers, G. D.; Menzies, R. T.; Jacob, J. C.; Geier, S.; Fregoso, S. F.

    2014-12-01

    NASA's ASCENDS mission has been flying several candidate lidar instruments on board the NASA DC-8 aircraft to obtain column integrated measurements of Carbon Dioxide. Each instrument uses a different approach to making the measurement and combined they have allowed for the informed development of the ASCENDS mission measurement requirements(1). The JPL developed Carbon Dioxide Laser Absorption Spectrometer, CO2LAS is one of these instruments. The CO2LAS measures the weighted, column averaged carbon dioxide between the aircraft and the ground using a continuous-wave heterodyne technique. The instrument operates at a 2.05 micron wavelength optimized for enhancing sensitivity to boundary layer carbon dioxide. Since the 2013 field campaign the instrument has undergone significant upgrades that improve the data collection efficiency and instrument stability and has recently been re-integrated onto the NASA DC-8 for the August 2014 ASCENDS field campaign. This presentation will summarize the instrument and algorithm improvements and review the 2014 field campaign flights and preliminary results. (1) Abshire, J.B. et al., "An overview of NASA's ASCENDS Mission lidar measurement requirements", submitted to 2014 Fall AGU Conference.

  15. Simultaneously Photoacoustic Measurement of Carbon Dioxide and Nitrous Oxide Using a Quantum Cascade Laser

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Cao, Zh.; Shao, Sh.; Zhu, W.; Huang, H.; Gao, X.; Li, X.

    2016-09-01

    In this paper a photoacoustic senor for carbon dioxide and nitrous oxide detection is described which uses a quantum cascade laser. The sensor relies on a 4.43 μm continuous-wave room temperature quantum-cascade laser source and a homemade photoacoustic cell based on a cylindrical acoustic resonator. Primary laboratory tests have been performed for estimation of the achievable detection limits and possible applications for in situ and real time atmosphere measurements. It is demonstrated that the minimum detectable concentration of 13CO2 and N2O under laboratory conditions is 8 ppbv and 0.45 ppbv, respectively.

  16. Carbon dioxide laser-induced combustion of extravasated intraocular silicone oil in the eyelid mimicking xanthelasma.

    PubMed

    Santaella, Ricardo M; Ng, John D; Wilson, David J

    2011-01-01

    A 48-year-old woman with a history of retinal detachment repair with vitrectomy, scleral buckling, and silicone oil with subsequent oil removal was referred for unilateral upper eyelid ptosis with edema and overlying skin changes simulating xanthelasma. During surgical excision, a white flare-like plume was noted when the carbon dioxide (CO2) laser was used to make the incisions. The pathology report confirmed silicone oil intrusion in the conjunctiva and upper eyelid. A postoperative in vitro experiment showed that silicone oil was readily ignited by the CO2 laser.

  17. Carbon dioxide (CO2) laser treatment of bovine penile persistent frenulum and fibropapillomas

    NASA Astrophysics Data System (ADS)

    Tate, Lloyd P.

    1995-05-01

    Persistent Frenulum and Fibropapillomas are commonly encountered diseases of young bulls. Both are amenable to simple resection with ligation of bleeders followed by mucosa suturing. Sexual rest for several weeks is generally required. Carbon dioxide laser was applied in resection of both these two maladies in six bulls (2 Persistent Frenulum, 4 with fibropapillomas) without the need for ligation of bleeders or mucosal suturing. No immediate postsurgery complications occurred related to the laser being used and potential recurrence of fibropapilloma neoplasia did not occur. The CO2 laser, compared to the steel scalpel, provided better visibility and improved hemostatic capabilities for performing the resection. The CO2 laser incisions healed completely by two weeks postirradiation, and the bulls required only one week sexual rest to allow healing to progress prior to entering an active breeding program.

  18. Dissociation phenomena in electron-beam sustained carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Harris, Michael R.; Willetts, David V.

    1990-01-01

    A number of applications are emerging requiring efficient, long pulse, long-life sealed CO2 lasers. Examples include the proposed NASA and ESA wind lidars. Electron-beam sustained discharge devices are strong contenders. Unlike self-sustained discharges, e-beam sustenance readily provides efficient performance from large volume discharges and offers pulse lengths well in excess of the microsecond or so generally associated with self-sustained devices. In the case of the e-beam sustained laser, since the plasma is externally maintained and operated at electric field strengths less than that associated with the glow to arc transition, the discharges can be run even in the presence of strongly attacking species such as O2. Build up of large levels of attacking contaminants is nevertheless undesirable as their presence reduces the current drawn by the plasma and thus the pumping rate to the upper laser level. The impedance rise leads to a mismatch of the pulse forming network with a consequent loss of control over energy deposition, operating E/N, and gain. Clearly CO2 dissociation rates, the influence of dissociation products on the discharge and gain, and tolerance of the discharge to these products need to be determined. This information can then be used to assess co-oxidation catalyst requirements for sealed operation.

  19. Polymeric Carbon Dioxide

    SciTech Connect

    Yoo, C-S.

    1999-11-02

    Synthesis of polymeric carbon dioxide has long been of interest to many chemists and materials scientists. Very recently we discovered the polymeric phase of carbon dioxide (called CO{sub 2}-V) at high pressures and temperatures. Our optical and x-ray results indicate that CO{sub 2}-V is optically non-linear, generating the second harmonic of Nd: YLF laser at 527 nm and is also likely superhard similar to cubic-boron nitride or diamond. CO{sub 2}-V is made of CO{sub 4} tetrahedra, analogous to SiO{sub 2} polymorphs, and is quenchable at ambient temperature at pressures above 1 GPa. In this paper, we describe the pressure-induced polymerization of carbon dioxide together with the stability, structure, and mechanical and optical properties of polymeric CO{sub 2}-V. We also present some implications of polymeric CO{sub 2} for high-pressure chemistry and new materials synthesis.

  20. Selective removal of demineralization using near infrared cross polarization reflectance and a carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Daniel

    2012-01-01

    Lasers can ablate/remove tissue in a non-contact mode of operation and a pulsed laser beam does not interfere with the ability to image the tooth surface, therefore lasers are ideally suited for integration with imaging devices for image-guided ablation. Laser energy can be rapidly and efficiently delivered to tooth surfaces using a digitally controlled laser beam scanning system for precise and selective laser ablation with minimal loss of healthy tissues. Under the appropriate irradiation conditions such laser energy can induce beneficial chemical and morphological changes in the walls of the drilled cavity that can increase resistance to further dental decay and produce surfaces with enhanced adhesive properties to restorative materials. Previous studies have shown that images acquired using near-IR transillumination, optical coherence tomography and fluorescence can be used to guide the laser for selective removal of demineralized enamel. Recent studies have shown that NIR reflectance measurements at 1470-nm can be used to obtain images of enamel demineralization with very high contrast. The purpose of this study was to demonstrate that image guided ablation of occlusal lesions can be successfully carried out using a NIR reflectance imaging system coupled with a carbon dioxide laser operating at 9.3-μm with high pulse repetition rates.

  1. Monolith catalysts for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1994-01-01

    The general subject area of the project involved the development of solid catalysts that have high activity at low temperature for the oxidation of gases such as CO. The original application considered was CO oxidation in closed-cycle CO2 lasers. The scope of the project was subsequently extended to include oxidation of gases in addition to CO and applications such as air purification and exhaust gas emission control. The primary objective of the final phase grant was to develop design criteria for the formulation of new low-temperature oxidation catalysts utilizing Monte Carlo simulations of reaction over NASA-developed catalysts.

  2. Laser therapy for the treatment of Hailey-Hailey disease: a systematic review with focus on carbon dioxide laser resurfacing.

    PubMed

    Falto-Aizpurua, L A; Griffith, R D; Yazdani Abyaneh, M A; Nouri, K

    2015-06-01

    Benign familial chronic pemphigus, or Hailey-Hailey disease (HHD), is a recurrent bullous dermatitis that tends to have a chronic course with frequent relapses. Long-term treatment options include surgery with skin grafting or dermabrasion. Both are highly invasive and carry significant risks and complications. More recently, 'laser-abrasion' has been described as a less invasive option with a better side-effect profile. In this article, we systematically review the safety and efficacy of carbon dioxide laser therapy as a long-term treatment option for HHD, as well as provide a review of other lasers that have been reported with this goal. A total of 23 patients who had been treated with a carbon dioxide laser were identified. After treatment, 10 patients (43%) had had no recurrence, 10 (43%) had greater than 50% improvement, 2 (8%) had less than 50% improvement and 1 (4%) patient had no improvement at all (follow-up period ranged from 4 to 144 months). Laser parameter variability was wide and adverse effects were minimal, including dyspigmentation and scarring. Reviewed evidence indicates this therapy offers a safe, effective treatment alternative for HHD with minimal risk of side-effects. Larger, well-designed studies are necessary to determine the optimal treatment parameters.

  3. Airborne Carbon Dioxide Laser Absorption Spectrometer for IPDA Measurements of Tropospheric CO2: Recent Results

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Menzies, Robert T.

    2008-01-01

    The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.

  4. Enamel fusion using a carbon dioxide laser: A technique for sealing pits and fissures

    SciTech Connect

    Walsh, L.J.; Perham, S.J. )

    1991-05-01

    The well-established enhanced resistance of lased enamel to demineralization is the basis for clinical application of the carbon dioxide laser to caries prevention. This in vitro study examined the effect of focused infrared laser radiation on sound enamel and early pit and fissure caries. Low power levels (2-5 W) induced localized melting and resolidification of enamel with little surface destruction. For sound fissures, fusion of enamel from the lateral walls of the fissure eliminated the fissure space, providing a sealant effect; while in carious fissures, carious enamel was vaporized and adjacent sound enamel fused to partially eliminate the defect. The technique for enamel fusion using CO2 lasers has potential application for sealing pits and fissures and producing physicochemical alterations in enamel which may have preventive benefits.

  5. Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2

    NASA Technical Reports Server (NTRS)

    Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason

    2011-01-01

    The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.

  6. Study on ceramic coating on the enamel surface using a carbon dioxide laser.

    PubMed

    Nihei, Tomotaro; Kurata, Shigeaki; Ohashi, Katsura; Umemoto, Kozo; Teranaka, Toshio

    2011-01-01

    The aims of this study were to evaluate a new restorative method using a carbon dioxide laser (CO(2)-laser) and to evaluate the acid resistance of teeth. Experimental calcium phosphate glass (CPG) powder and two low melting point ceramics (Finesse and zirconium silicate) were fused to enamel surfaces using a CO(2)-laser at an irradiation intensity of 1.0 watt for 30 seconds with a beam size of 0.49 mm at the focal point. The treated teeth were observed with a scanning electron microscope, and the acid resistance of the treated enamel surfaces was evaluated. The CPG fused successfully to the enamel surface, and the treated enamel surface showed high acid resistance compared with the low melting point ceramics and the non-irradiated surfaces. This system may lead to the development of new restorative methods that do not require the use of bonding agents. PMID:21422667

  7. Monolith catalysts for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.; Badlani, Ajay

    1991-01-01

    The objective was to explore ways of making a monolithic form of catalyst for CO2 lasers. The approach chosen was to pelletize the catalyst material, Au/MnO2 powder, and epoxy the pellets to stainless steel sheets as structural supports. The CO oxidation reaction over Au/MnO2 powder was found to be first overall, and the reaction rate constant at room temperature was 4.4 +/- 0.3 cc/(g x sec). The activation energy was 5.7 kcal/mol. The BET surface area of the pellets was found to vary from 125 to 140 sq m/g between different batches of catalyst. Pellets epoxied to stainless steel strips showed no sign of fracture or dusting when subjected to thermal tests. Pellets can be dropped onto hard surfaces with chipping of edges but no breakage of the pellets. Mechanical strength tests performed on the pellets showed that the crush strength is roughly one-fourth of the pelletizing force. The apparent activity and activation energy over the pellets were found to be less than over the powdered form of the catalyst. The lower apparent activity and activation energy of the pellets are due to the fact that the internal surface area of a pellet is not exposed to the reactant concentration present in the flowing gas as a result of intrapellet diffusion resistance. Effectiveness factors varied from 0.44, for pellets having thickness of 2 mm and attached with epoxy to a stainless steel strip. The epoxy and the stainless steel strip were found to simply block off one of the circular faces of the pellets. The epoxy did not penetrate the pellets and block the active sites. The values of the effective diffusivities were estimated to be between 2.3 x 10(exp -3) and 4.9 x 10(exp -3) sq cm/s. With measurements performed on one powder sample and one pellet configuration, reasonable accurate predictions can be made of conversions that would be obtained with other pellet thickness and configurations.

  8. Design of catalytic monoliths for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, R. K.; Guinn, K.; Goldblum, S.; Noskowski, E.

    1989-01-01

    Pulsed carbon dioxide (CO2) lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers in hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalyst and design methods for implementation of catalysts in CO2 laser systems. A monolith catalyst section model and associated design computer program, LASCAT, are presented to assist in the design of a monolith catalyst section of a closed cycle CO2 laser system. Using LASCAT,the designer is able to specify a number of system parameters and determine the monolith section performance. Trade-offs between the catalyst activity, catalyst dimensions, monolith dimensions, pressure drop, O2 conversion, and other variables can be explored and adjusted to meet system design specifications. An introduction describes a typical closed-cycle CO2 system, and indicates some advantages of a closed cycle laser system over an open cycle system and some advantages of monolith support over other types of supports. The development and use of a monolith catalyst model is presented. The results of a design study and a discussion of general design rules are given.

  9. Comparison of the erbium-yttrium aluminum garnet and carbon dioxide lasers for in vitro bone and cartilage ablation

    SciTech Connect

    Gonzalez, C.; van de Merwe, W.P.; Smith, M.; Reinisch, L. )

    1990-01-01

    The in vitro bone- and cartilage-ablation characteristics of the solid-state erbium:yttrium aluminum garnet laser were compared to those of the carbon dioxide laser. Ablations of fresh, frozen cadaver septal cartilage and maxillary sinus bone were performed using total energies between 1 and 6 J. Specimens were studied using hematoxylin and eosin stain and digitized, computer-assisted measurements of 35-mm photographs. Erbium-yttrium aluminum garnet-ablated bone averaged 5 microns of adjacent tissue thermal injury, compared with 67 microns with carbon dioxide-ablated bone. Erbium-yttrium aluminum garnet-ablated cartilage averaged 2 microns of adjacent tissue thermal injury, compared with 21 microns with the carbon dioxide-ablated cartilage. The tissue-ablation characteristics of the erbium-yttrium aluminum garnet laser are promising for future otolaryngologic applications.

  10. Photodynamic Therapy with Ablative Carbon Dioxide Fractional Laser in Treatment of Actinic Keratosis

    PubMed Central

    Jang, Yong Hyun; Lee, Dong Jun; Shin, Jaeyoung; Kang, Hee Young; Lee, Eun-So

    2013-01-01

    Background Recently, photodynamic therapy (PDT) has been shown to be an effective first-line treatment for actinic keratosis (AK). However, a major limitation of PDT is the long incubation time required to allow penetration of the photosensitizer. Objective The aim of this study was to assess if pretreatment with an ablative carbon dioxide (CO2) fractional laser can reduce the incubation time of the photosensitizer. Methods Initially, 29 patients with a total of 34 AK lesions were treated with an ablative CO2 fractional laser at Ajou University Hospital between January and December 2010. Immediately after the laser treatment, topical 20% 5-aminolevulinic acid or methyl-aminolevulinate was applied to the AK lesions and incubated for 70 to 90 minutes. Then, the treated areas were illuminated with a red light source. Improvement was clinically or histologically assessed eight weeks after the treatment. Results In spite of the short incubation time, 24 lesions (70.6%) showed a complete response (CR) within three sessions of PDT (10 lesions a clinical CR and 14 lesions a clinical/histological CR). There were no significant side effects associated with the combination of ablative CO2 fractional laser and PDT. Conclusion Ablative CO2 fractional laser may be considered an additional treatment option for reducing the incubation time of the photosensitizer in PDT. PMID:24371387

  11. Visual sensing and range measurement by scanning of carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Kawata, Koichi; Takahashi, Hidemi; Yamada, Osamu; Kimura, Minoru; Naito, Hiroshi

    1992-11-01

    A laser vision sensor has been developed to enable range measurement and identification of targets through flames, smoke, and fog which are invisible to the human eye. This vision sensor employs a 10.6 micrometers -wavelength carbon dioxide laser for its long wavelength. The target is scanned two-dimensionally by the laser beam, directed by a pair of galvanometer mirrors, to produce the target image and measure the range of the target. The laser beam, amplitude-modulated to 5 MHz with an electro-optic modulator, is projected onto a target, and the reflected beam is detected by a cadmium mercury telluride detector. The phase difference between the projected and reflected light signals is used to provide range data up to 30 m. The indoor test is carried out with a 1 cubic meter box in which flames, smoke, and fog can be generated. The laser beam is projected through this box, and the targets behind this box are detected. The reproduced image is sufficient for identification through flames, smoke, and fog.

  12. Fractional Carbon Dioxide Laser for Keratosis Pilaris: A Single-Blind, Randomized, Comparative Study

    PubMed Central

    Vachiramon, Vasanop; Anusaksathien, Pattarin; Kanokrungsee, Silada; Chanprapaph, Kumutnart

    2016-01-01

    Objective. Keratosis pilaris (KP) is a common condition which can frequently be cosmetically disturbing. Topical treatments can be used with limited efficacy. The objective of this study is to evaluate the effectiveness and safety of fractional carbon dioxide (CO2) laser for the treatment of KP. Patients and Methods. A prospective, randomized, single-blinded, intraindividual comparative study was conducted on adult patients with KP. A single session of fractional CO2 laser was performed to one side of arm whereas the contralateral side served as control. Patients were scheduled for follow-up at 4 and 12 weeks after treatment. Clinical improvement was graded subjectively by blinded dermatologists. Patients rated treatment satisfaction at the end of the study. Results. Twenty patients completed the study. All patients stated that the laser treatment improved KP lesions. At 12-week follow-up, 30% of lesions on the laser-treated side had moderate to good improvement according to physicians' global assessment (p = 0.02). Keratotic papules and hyperpigmentation appeared to respond better than the erythematous component. Four patients with Fitzpatrick skin type V developed transient pigmentary alteration. Conclusions. Fractional CO2 laser treatment may be offered to patients with KP. Dark-skinned patients should be treated with special caution. PMID:27247936

  13. Proximal gastric vagotomy with carbon dioxide laser: Experimental studies in animals

    SciTech Connect

    Kadota, T.; Mimura, K.; Kanabe, S.; Ohsaki, Y.; Tamakuma, S. )

    1990-06-01

    Proximal gastric vagotomy has been widely used as a surgical treatment for peptic ulcer disease. However, it is technically complex and time-consuming. Moreover, it may cause circulatory problems in the gastric mucosa. We have reported a new method of blood flow-preserving vagotomy with a carbon dioxide laser (CO2 laser vagotomy) developed in our laboratory. To assess its efficacy, we used cysteamine-induced ulcer and measured gastric mucosal blood flow in rats. The incidence of cysteamine-induced ulcer formation was reduced significantly in the group that underwent CO{sub 2} laser vagotomy compared with a group treated with proximal gastric vagotomy. Gastric mucosal blood flow was significantly better in the CO{sub 2} laser vagotomy group. Long-term follow-up of acid reduction was evaluated in dogs by the pentagastrin-stimulation test. Acid reduction in dogs was satisfactory during the 12 months of this study. CO{sub 2} laser vagotomy is a new, easy, time-saving, and circulatory-preserving technique for peptic ulcer disease.

  14. Observations on pulpal response to carbon dioxide laser drilling of dentine in healthy human third molars.

    PubMed

    Nair, P N R; Baltensperger, M; Luder, H U; Eyrich, G K H

    2005-01-01

    Preservation of pulpal health is the primary prerequisite for successful application of laser systems in the hard tissue management of vital teeth. The purpose of this study was to investigate the short and long-term pulpal effects to cavity preparations in healthy human teeth using carbon dioxide (CO2) laser. A total of seven, healthy, third molars that were scheduled to be removed due to space problems were used. After the laser drilling, the occlusal cavities were closed temporarily, and the teeth were extracted 7 days (n=5) and 3 months (n=2) after the operation. The specimens were fixed, decalcified, subdivided and processed for light and transmission electron microscopy. Seven days postoperatively all the five teeth that had been irradiated with the CO2 laser did not reveal any pathological changes in the pulpo-dentine complex. Three months postoperatively the two teeth that were prepared with the laser showed subtle but distinct apposition of tertiary dentine that was lined with intact odontoblasts. One of the specimens at 3 months revealed the presence of a mild, but very circumscribed, pulpal infiltration of chronic inflammatory cells subjacent to the cavity preparation. The latter is unlikely to be due to a direct effect of the laser irradiation but a possible consequence of microleakage of oral antigens and/or other tissue-irritating molecules through the temporary restoration and the remaining dentine thickness (RDT). Although these preliminary histological results suggest that the CO2 laser under investigation induced only minimal response of the dentine-pulp complex when used as a hard-tissue drilling tool, with specific energy settings, pulse duration within thermal relaxation time and emitting radiations at 9.6 microm of wavelength, larger clinical trials involving various types of teeth are necessary to reach definite conclusions for large-scale clinical application of the laser device. PMID:15647971

  15. Use of the carbon dioxide laser in guided tissue regeneration wound healing in the beagle dog

    NASA Astrophysics Data System (ADS)

    Rossmann, Jeffrey A.; Parlar, Ates; Abdel-Ghaffar, Khaled A.; El-Khouli, Amr M.; Israel, Michael

    1996-04-01

    The concept of guided tissue regeneration (GTR) allowing cells from the periodontal ligament and alveolar bone to repopulate the treated root surface has shown the ability to obtain periodontal new attachment. Healing studies have also shown that conventional GTR therapy still does not exclude all the epithelium. This epithelial proliferation apically interferes with the establishment of the new connective tissue attachment to the root surface. The objective of this research study was to examine whether controlled de-epithelialization with the carbon dioxide laser during the healing phase after periodontal surgery, would retard the apical migration of the epithelium and thereby enhance the results obtained through guided tissue regeneration. Eight beagle dogs were used, the experimental side received de-epithelialization with the CO2 laser in conjunction with flap reflection and surgically created buccal osseous defects. Selected defects on each side were treated with ePTFE periodontal membranes. The laser de-epithelialization was repeated every 10 days until removal of the membranes. The control side received the same surgical treatment without laser application. This experimental design allowed histologic study of the new attachment obtained in defects treated with flap debridement with or without laser de-epithelialization and with or without ePTFE membranes. A statistical analysis was performed on the histometric data from 48 teeth in the 8 dogs after 4 months of healing. The results showed significant amounts of new attachment obtained from all four treatment modalities with no statistically significant differences for any one treatment. However, the trend towards enhanced regeneration with the combined treatment of laser and membrane vs. membrane alone or debridement alone was evident. The histologic analysis revealed a significant amount of newly formed `fat cementum' seen only on the laser treated teeth. This feature was the most remarkable finding of the

  16. Effect of carbon dioxide laser treatment on lesion progression in an intraoral model

    NASA Astrophysics Data System (ADS)

    Featherstone, John D. B.; Fried, Daniel; Gansky, Stuart A.; Stookey, George K.; Dunipace, Ann J.

    2001-04-01

    Previous studies have shown that pretreatment of dental enamel by specific carbon dioxide laser conditions inhibited subsequent progression of caries-like lesions in vitro. The aim of the present study was to use an intra-oral model to determine whether similar inhibition is observed in the human mouth. A cross over study with 23 subjects and three regimens was used. Pre-formed varies-like lesions were made in extracted human enamel and exposed intra-orally in partial dentures in each subject to A) placebo dentifrice and no laser treatment, B) placebo dentifrice following laser pretreatment, or C) sodium fluoride dentifrice and no laser treatment during each of three study periods. Samples were assessed by micro radiography to compare the mineral loss before and after each treatment and drive a net change in mineral value. Overall P was not significantly different form L but both P and L were different from F. For those subjects who demineralized in P, L and F were significantly better than P, with L showing an 84 percent inhibition of further demineralization, but no enhancement of demineralization.

  17. Effect of a new carbon dioxide laser and fluoride on sound and demineralized enamel

    NASA Astrophysics Data System (ADS)

    dos Santos, Marines N.; Featherstone, John D. B.; Fried, Daniel

    2001-04-01

    The present study aimed to test the hypothesis that irradiation of dental enamel by a TEA carbon dioxide laser together with fluoride, can effectively inhibit caries-like progression in sound and demineralized enamel. Blocks of human sound and demineralized dental enamel were divided into 11 treatment groups. Eighty enamel blocks were partially demineralized in a 50 percent HAP/0.1 M lactic acid/carbopol solution. Samples were treated with/without laser and/or F according to the above groups. The blocks were then submitted to 5 days of pH cycling. Microradiography was performed on 100 micrometers thin sections to determine the relative mineral loss as (Delta) Z and the percentage of caries inhibition for the laser and F treated groups. Mean (Delta) Z values for groups I-X were, respectively: 1043; 683; 614; 2294; 1803; 1708; 1547; 1791; 1656;; and 1385. The percent caries inhibition for groups II, III, V-X was respectively: 35, 41; 49; 62; 42; 53 and 76 percent. The combination of this new TEA CO2 laser and F treatment produced a significant protective effect against lesion progression.

  18. Effect of a new carbon dioxide laser and fluoride on occlusal caries progression in dental enamel

    NASA Astrophysics Data System (ADS)

    Nobre dos Santos, Marines; Fried, Daniel; Rapozo-Hilo, Marcia L.; Featherstone, John D. B.

    2002-06-01

    The purpose of this study was to investigate the effect of a new TEA carbon dioxide (CO2) laser (.9.6 micrometers , 5-8 microsecond(s) pulse duration) combined with fluoride (F), on the inhibition of caries-like progression in occlusal surfaces in sound and demineralized enamel. Of 120 occlusal tooth surfaces (10 per group), 90 were partially demineralized in a 50% HAP/0.1 M Lactic acid/carbopol solution (pH 5.0). Samples were treated with/without the laser (2.0 j/cm2 or 3.0 J/cm2) and/or F (as APF). Caries-like progression was tested by 5 days of pH cycling. Results were assessed by cross-sectional quantitative microradiography. The percent inhibition of caries progression with laser and/or F ranged from 87-170%. This new TEA CO2 laser produced significant protective effect against lesion progression, and in combination with fluoride treatment lesion reversal occurred.

  19. Interaction of carbon dioxide laser radiation with a nanotube array in the presence of a constant electric field

    SciTech Connect

    Sadykov, N. R.; Scorkin, N. A.

    2012-06-15

    The dependence of the current density on the leading edge width of the alternating (high-frequency) field amplitude is studied at various constant (or unsteady) fields. The dependence of amplified microwaves in the two-millimeter range on a longitudinal coordinate is determined. The problem of submillimeter radiation generation in a system of parallel carbon nanotubes exposed to two-frequency carbon dioxide (CO{sub 2} laser) laser radiation in the presence of a constant (or unsteady) field is studied. The possibility of using freely oriented carbon nanotubes parallel to each other is shown.

  20. Evaluation of Carbon Dioxide Laser in the Treatment of Epidermal Nevi

    PubMed Central

    Bhat, Yasmeen Jabeen; Hassan, Iffat; Sajad, Peerzada; Yaseen, Atiya; Mubashir, Syed; Akhter, Saniya; Wani, Roohi

    2016-01-01

    Background: Epidermal naevi are benign hamartomatous growths of the skin which are generally asymptomatic with a benign course but are cosmetically disagreeable. Topical treatments such as steroids, calcipotriol, 5 fluorouracil, podophyllin, retinoids and cryotherapy are ineffective and surgical excision results in scar formation. Therapy is often challenging. Aim of the Study: To study the response of carbon dioxide (CO2) laser in the management of epidermal naevi. Subjects and Methods: We conducted a study of CO2 laser treatment on 15 patients of epidermal naevi, eight with verrucous epidermal naevi and seven with sebaceous naevi. A thorough history and examination was done to rule out any epidermal naevus syndrome. The diagnosis was confirmed by histopathology. The number of treatment sessions varied from 1 to 8. Results: Response was excellent (>90% reduction in lesion size) in three patients, very good (>75% reduction) in five, good (>50% reduction in lesion size) in five and poor (<50% reduction in lesion size) in two patients. The side effects were hyperpigmentation and scarring. Long-term follow-up over a period of 10 months showed a recurrence rate of 20%. Conclusion: We conclude that CO2 laser treatment might be an effective option with long-term safety, minimal discomfort and rapid recovery. PMID:27761089

  1. Method to produce a short pulse on rf discharge excitation slab-type carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Mori, Akira; Suzuki, Kaoru; Nakata, Junji

    1998-10-01

    We propose a novel system to produce the short pulse using a halved confocal of the unstable concave-convex resonator on radio frequency discharge excitation slab type carbon dioxide laser. This method is provided a full reflection concave mirror to have a function of variable curvature which can control using a piezo electric device (PZT). Generally, the slab type laser is directly modulated by applying pulse voltage for pulsation of laser. There is a large capacity and fluctuation of plasma at the transition of pulsation. Consequently, the pulse width is longer than 1.0 micro second and repetitive frequency is less than 10 kilo Hertz. On the other hand, the pulse oscillation by our proposed method has the short pulse width which is 300 nano second and maximum repetitive frequency is about 100 kilo Hertz. We can choose the pulse oscillation or the continuous wave (CW) oscillation at the each condition on same resonator. The peak power at the pulse oscillation is about 12 times as high as that at the CW oscillation.

  2. Pulsed 2-micron Laser Transmitter For Carbon Dioxide Sensing From Space

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Yu, J.; Bai, Y.; Petros, M.

    2011-12-01

    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. Studies of the carbon cycle are limited by the tools available to precisely measure CO2 concentrations by remote sensing. Active sensing, using the Integrated Path Differential Absorption (IPDA) approach, permits measurements day and night, at all latitudes and seasons. The development of a high pulse energy 2-μm laser transmitter for high-precision CO2 measurements from space leverages years of NASA investment in solid-state laser technology. Under NASA Laser Risk Reduction Program, funded by Earth Science Technology Office, researchers at NASA Langley Research Center developed an injection seeded, high repetition rate, Q-switched Ho:YLF laser transmitter for CO2 Differential Absorption Lidar/IPDA (profile/column) measurements from ground and airborne platforms. This master-slave laser system has high optical-to-optical efficiency and seeding success rate. NASA LaRC's 2-micron pulsed laser transmitter possesses advantages over current passive and CW active sensors. First, the pulsed format provides a built-in means for determining range to the scattering target and effectively filtering out the scattering from thin clouds and aerosols, thus eliminating a source of measurement bias. Second, by concentrating the laser energy into a pulse, sufficient backscatter signal strength can be obtained from aerosol scattering rather than relying on a hard target at a known distance. Third, the absorption line at the 2.05 μm band is ideally suited for the CO2 concentration measurement. In particular, the weighting function of 2 μm is optimum for measurement in the lower troposphere where the sources and sinks of CO2 are located. The planned laser transmitter development will lead to a Tm:Fiber pumped Ho:YLF laser transmitter capable of

  3. Carbon dioxide concentrator

    NASA Technical Reports Server (NTRS)

    Williams, C. F.; Huebscher, R. G.

    1972-01-01

    Passed exhaled air through electrochemical cell containing alkali metal carbonate aqueous solution, and utilizes platinized electrodes causing reaction of oxygen at cathode with water in electrolyte, producing hydroxyl ions which react with carbon dioxide to form carbonate ions.

  4. The carbon dioxide cycle

    USGS Publications Warehouse

    James, P.B.; Hansen, G.B.; Titus, T.N.

    2005-01-01

    The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. Indoor carbon dioxide monitoring with diode laser absorption at 2 μm

    NASA Astrophysics Data System (ADS)

    Li, Jinyi; Du, Zhenhui; Ma, Yiwen; Liu, Jingwang

    2015-05-01

    In order to investigate the variation of indoor carbon dioxide concentration and how it changes with human activities, a tunable diode laser absorption spectroscopy (TDLAS) system was used to monitor the indoor CO2 concentration. Based on Wavelength Modulation Spectroscopy double frequency detection (WMS-2f), the 2v1+v3 characteristic line (4991.26 cm-1) of CO2 was measured by a DFB laser. The measured concentration values were calibrated by means of a cell filled with reference gas. The results show that the daily average indoor CO2 concentrations is about 419ppm which is slightly higher than that of the outdoor and the changing range is between 380ppm and 510ppm in a day. The indoor CO2 concentration was influenced by the change of ventilation and indoor staff. The respiration of the indoor staff makes a greater impact on a relatively confined indoor CO2 concentration. The CO2 increasing rate is measured to be 80ppm/hour in the case of occupant density of 0.06 people/m3. Therefore, the staff crowded indoor should ventilate timely to prevent excessive CO2 causing people discomfort.

  6. An Open-Path Tunable Diode Laser Sensor for Simultaneous Measurement of Methane And Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Bailey, D. M.; Adkins, E. M.; Wilson, E. L.; Miller, J. H. H.

    2014-12-01

    In a collaboration between NASA Goddard Space Flight Center, University of Alaska-Fairbanks, and George Washington University a study of the feedbacks to climate change caused by thawing permafrost has been initiated. An array of ground experiments at three unique permafrost sites will record permafrost depth, structure, meteorological data, and emissions of key greenhouse gases during a springtime permafrost thaw. Ground data will be linked to climate models and landscape structure from satellite imagery to gauge the magnitude of the feedbacks. GWU will deploy an open path instrument for independent measurement of ground-level carbon dioxide and methane. For several decades, our laboratory has developed diode laser absorption techniques using mid-infrared diode lasers as well as cavity- enhanced absorption measurements using near-infrared source. In the current project, we will continue to develop a system for open path measurements that builds on our past experience with deployment of multi-laser, multi species sensors. Spectral simulations suggest that at ambient levels of CO2 and CH4 (390 and 2 ppmV, respectively) we will observe extinction coefficients of ≈ 10-4 m-1 or ≈ 1% absorption over a 200 m path. Prior work in our laboratory suggests that a SNR in excess of 100 will be achievable at these absorption levels using wavelength-modulation techniques. Wavelength modulation spectroscopy entails applying a small amplitude modulation (on the order of the width of a spectral feature) to a laser's emitted frequency as it tunes through a spectrum. This is readily accomplished with near infrared telecom lasers whose frequency can be swept by varying the injection current going into the laser at fixed temperature. By sampling the detector's signal at a multiple of the modulation frequency, the resulting signal takes on the appearance of the spectrum's derivative. Typically, this is accomplished using a lock-in amplifier. To avoid the power burden of this

  7. Carbon Dioxide and Climate.

    ERIC Educational Resources Information Center

    Brewer, Peter G.

    1978-01-01

    The amount of carbon dioxide in the atmosphere is increasing at a rate that could cause significant warming of the Earth's climate in the not too distant future. Oceanographers are studying the role of the ocean as a source of carbon dioxide and as a sink for the gas. (Author/BB)

  8. Carbon Dioxide Fountain

    ERIC Educational Resources Information Center

    Kang, Seong-Joo; Ryu, Eun-Hee

    2007-01-01

    This article presents the development of a carbon dioxide fountain. The advantages of the carbon dioxide fountain are that it is odorless and uses consumer chemicals. This experiment also is a nice visual experiment that allows students to see evidence of a gaseous reagent being consumed when a pressure sensor is available. (Contains 3 figures.)…

  9. Progress on High-Energy 2-micron Solid State Laser for NASA Space-Based Wind and Carbon Dioxide Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2011-01-01

    Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  10. Infectious papillomavirus in the vapor of warts treated with carbon dioxide laser or electrocoagulation: Detection and protection

    SciTech Connect

    Sawchuk, W.S.; Weber, P.J.; Lowy, D.R.; Dzubow, L.M.

    1989-07-01

    Papillomavirus DNA has been reported recently in the vapor (smoke plume) derived from warts treated with carbon dioxide laser; this raises concerns for operator safety. We therefore have studied a group of human and bovine warts to define further the potential risk of wart therapy and to test whether a surgical mask could reduce exposure. Half of each wart was treated with carbon dioxide laser and the other half with electrocoagulation. The vapor produced by each form of therapy was collected with a dry filter vacuum apparatus and analyzed for the presence of papillomavirus. Vapor from human plantar warts was analyzed for the presence of human papillomavirus DNA, because there is no infectivity assay for human papillomavirus. Of plantar warts treated, five of eight laser-derived vapors and four of seven electrocoagulation-derived vapors were positive for human papillomavirus DNA. Greater amounts of papillomavirus DNA were usually recovered in the laser vapor than in the electrocoagulation vapor from the same wart. Bioassay readily detected infectious bovine papillomavirus in the vapor from bovine warts treated with either modality; more virus was present in laser-derived material. A surgical mask was found capable of removing virtually all laser- or electrocoagulation-derived virus, strongly suggesting that such masks can protect operators from potential inhalation exposure to papillomavirus.

  11. Interaction of pulsed carbon dioxide laser beams with teeth in vitro.

    PubMed

    Brune, D

    1980-08-01

    Beams of pulsed carbon dioxide lasers with energy densities of about 10, 100 or 200 J/mm2 have been applied perpendicularly to third molars in vitro for the purpose of preparing cavities or pin holes for retention. A pulsed beam with an energy density of about 10 J/mm2 produced a hole approximately 2 mm deep with a diameter of about 0.2 mm. With a beam of 100 J/mm2 the hole produced penetrated the tooth to a depth of 4 mm. Minor cracks around the hole in both enamel and dentin could be observed. Around the position where the beam entered the enamel matrix a white mineralized layer was observed, while a brown discoloration was formed around the hole in the dentin at the beam exit. With an energy density of 200 J/mm2 the formation of cracks and discoloration was very pronounced. X-ray diffraction of lased tissue revealed an apatite structure. The wall in the lased hole exhibited a Vicker hardness number similar to that of enamel.

  12. Carbon dioxide removal process

    DOEpatents

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  13. Comparison of the effect of the carbon dioxide laser and the bipolar coagulator on the cat brain

    SciTech Connect

    Cozzens, J.W.; Cerullo, L.J.

    1985-04-01

    The carbon dioxide laser has recently received clinical acceptance in neurosurgical practice. There are, however, few studies reported in the neurosurgical literature, either clinical or experimental, concerning its safety or efficacy on a physiological level by comparison to a more conventional tool. This study is not a description of a surgical technique, but is rather a basic physiological comparison of two surgical instruments. In this study, 11 cats were pretreated with the protein-bound dye, Evans blue. A corticotomy was performed in one hemisphere with the carbon dioxide laser and in the other with a microbipolar coagulator and a sharp blade. The subsequent extravasation of dye was presumed to be proportional to the amount of blood-brain barrier disruption associated with each lesion. When effective power settings for the two devices were compared, the laser lesions had significantly less extravasation of blue dye. This indicated that there was less damage to the blood-brain barrier surrounding laser corticotomy than surrounding conventional bipolar coagulation and sharp dissection at comparable power settings for each modality.

  14. Environmental carbon dioxide control

    NASA Technical Reports Server (NTRS)

    Onischak, M.; Baker, B.; Gidaspow, D.

    1974-01-01

    A study of environmental carbon dioxide control for NASA EVA missions found solid potassium carbonate to be an effective regenerable absorbent in maintaining low carbon dioxide levels. The supported sorbent was capable of repeated regeneration below 150 C without appreciable degradation. Optimum structures in the form of thin pliable sheets of carbonate, inert support and binder were developed. Interpretation of a new solid-gas pore closing model helped predict the optimum sorbent and analysis of individual sorbent sheet performance in a thin rectangular channel sorber can predict packed bed performance.

  15. Carbon dioxide sensor

    DOEpatents

    Dutta, Prabir K.; Lee, Inhee; Akbar, Sheikh A.

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  16. Carbon dioxide recycling

    EPA Science Inventory

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  17. Modeling of carbon monoxide oxidation kinetics over NASA carbon dioxide laser catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1989-01-01

    The recombination of CO and O2 formed by the dissociation of CO2 in a sealed CO2 laser discharge zone is examined. Conventional base-metal-oxide catalysts and conventional noble-metal catalysts are not effective in recombining the low O2/CO ratio at the low temperatures used by the lasers. The use of Pt/SnO2 as the noble-metal reducible-oxide (NMRO), or other related materials from Group VIIIA and IB and SnO2 interact synergistically to produce a catalytic activity that is substantially higher than either componet separately. The Pt/SnO2 and Pd/SnO2 were reported to have significant reaction rates at temperatures as low as -27 C, conditions under which conventional catalysts are inactive. The gas temperature range of lasers is 0 + or - 40 C. There are three general ways in which the NMRO composite materials can interact synergistically: one component altering the properties of another component; the two components each providing independent catalytic functions in a complex reaction mechanism; and the formation of catalytic sites through the combination of two components at the atomic level. All three of these interactions may be important in low temperature CO oxidation over NMRO catalysts. The effect of the noble metal on the oxide is discussed first, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  18. Correction method of bending loss in the hollow optical fiber for endoscopic submucosal dissection using carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Kusakari, Daisuke; Hazama, Hisanao; Awazu, Kunio

    2015-03-01

    Endoscopic submucosal dissection using carbon dioxide laser is a promising treatment of early digestive cancer because it can avoid the risk of perforation. Although a hollow optical fiber transmitting mid-infrared light has been used, it was observed that the irradiation effect was influenced by bending a gastrointestinal gastrointestinal endoscope due to the change in transmittance by the bending loss. Therefore, we quantitatively evaluated the change in the irradiation effect by bending the hollow optical fiber in the gastrointestinal endoscope and proposed a correction method to stabilize the irradiation effect. First, the relationship between the irradiated laser energy density and the incision depth for porcine stomach was measured by bending the head of the gastrointestinal endoscope. Next, the relationship between the bending angle of the head of the gastrointestinal endoscope and the temperature rise of the hollow optical fiber in the head of the gastrointestinal endoscope was measured during the laser irradiation. As a result, the laser energy density and the incision depth decreased as the bending angle increased, and linear correlation between the laser energy density and the incision depth was observed. It was found that the bending angle can be estimated by the ratio of the setting laser power to time derivative of the temporal profile of the temperature of the hollow optical fiber. In conclusion, it is suggested that the correction of the laser energy density and stabilization of the incision capability is possible by measuring the temporal profile of the temperature of the hollow optical fiber.

  19. Carbon dioxide laser as a surgical instrument for sarcoid therapy--a retrospective study on 60 cases.

    PubMed Central

    Carstanjen, B; Jordan, P; Lepage, O M

    1997-01-01

    The objective of this retrospective clinical study was to evaluate the carbon dioxide laser in the treatment of single and multiple sarcoids in 60 animals (44 horses, 13 donkeys, 2 mules, and 1 pony). Only animals that had been operated on 6 mo or more ago were included. Recurrence, new manifestation rate, and cosmetic outcome were determined. Recurrence was observed in 23 (38%) individuals. Animals with new sarcoid manifestation with or without recurrence of a sarcoid were observed in 35 cases (58%). Cases of scar tissue formation and, rarely, leukotrichia were observed. Animals presented with multiple sarcoids were more predisposed to recurrence. Donkeys showed a significantly lower recurrence rate than horses. PMID:9426943

  20. Inflammatory papillary hyperplasia of the palate: treatment with carbon dioxide laser, followed by restoration with an implant-supported prosthesis.

    PubMed

    Infante-Cossio, P; Martinez-de-Fuentes, R; Torres-Carranza, E; Gutierrez-Perez, J L

    2007-12-01

    Inflammatory papillary hyperplasia of the palate is a persistant non-neoplastic lesion that is normally caused by poorly fitting dentures and Candida infection. We describe a case that was managed primarily with topical miconazole, and complete removal of the old acrylic denture. A multidisciplinary approach between surgeon and prosthodontist was used that combined carbon dioxide laser followed by substitution of the old removable denture for a new implant-supported screw retained prosthesis. This avoided direct support of the prosthesis by the palatal mucosa and made oral hygiene easier. The treatment has resulted in complete remission and there has been no recurrence occurred during 3 years of follow-up.

  1. Excellent Aesthetic and Functional Outcome After Fractionated Carbon Dioxide Laser Skin Graft Revision Surgery: Case Report and Review of Laser Skin Graft Revision Techniques.

    PubMed

    Ho, Derek; Jagdeo, Jared

    2015-11-01

    Skin grafts are utilized in dermatology to reconstruct a defect secondary to surgery or trauma of the skin. Common indications for skin grafts include surgical removal of cutaneous malignancies, replacement of tissue after burns or lacerations, and hair transplantation in alopecia. Skin grafts may be cosmetically displeasing, functionally limiting, and significantly impact patient's quality-of-life. There is limited published data regarding skin graft revision to enhance aesthetics and function. Here, we present a case demonstrating excellent aesthetic and functional outcome after fractionated carbon dioxide (CO2) laser skin graft revision surgery and review of the medical literature on laser skin graft revision techniques. PMID:26580878

  2. Synergistic effects of sequential carbon dioxide and neodymium:yttrium aluminum garnet laser injuries. Experimental observations and measurements

    SciTech Connect

    Primrose, W.J.; McDonald, G.A.; O'Brien, M.J.; Vaughan, C.W.; Strong, M.S.

    1987-01-01

    The carbon dioxide and neodymium:yttrium aluminum garnet lasers have well documented but characteristically different biological effects, yet little is known about their cumulative, synergistic, or paradoxical effects when used sequentially on living tissue. Using a Merrimack ML 880 laser, a series of superimposed CO/sub 2/ and Nd:YAG lesions in various combinations were produced on the undersurface of dog tongues. Therapeutic time and power settings were chosen and the number of applications varied, with suitable controls. Observations and measurements were made on acute, healing, and healed lesions. All lesions were excised and submitted for routine hematoxylin and eosin histology. Acute lesions were also assessed for cell viability using rhodamine 123 as a supravital marker. The results show that, even though all the lesions eventually heal, the actual cell damage produced by the Nd:YAG laser is much more than is suggested by the size of the acute lesion. This cell damage can be reduced by the surface carbonization produced by initial application of the CO/sub 2/ laser. Higher surface temperatures are reached in this combination with less fibrosis and scarring than equal energy counterparts where the Nd:YAG laser was applied first. The knowledge of these synergistic effects can be used to advantage in the clinical setting. The rhodamine 123 technique also appears to be a valid measure of acute thermal tissue injury.

  3. Recent progress in development of a laser based, ultra-high precision isotope monitor for carbon dioxide

    NASA Astrophysics Data System (ADS)

    Nelson, David; McManus, Barry; Herndon, Scott; Zahniser, Mark

    2015-04-01

    Greenhouse gas (GHG) emissions are the primary drivers of global climate change and hence there is a crucial need to quantify their sources and sinks. A general technique to help constrain source and sink strengths in GHG exchange processes is the analysis of the relative proportions of isotopic variants of GHG's. Very high precision measurements of isotopologue ratios are necessary in order to identify sources and sinks because the characteristic changes are small. The standard method of isotopologue measurement has been mass spectrometry, but this technique typically requires significant sample preparation and relatively high instrument maintenance. Laser spectroscopy has the potential to ease these burdens and also to allow easy separation of interfering isobars such as 13C-CO2 and 17O-CO2. We present recent results demonstrating ultra-high precision measurements of carbon dioxide isotope ratios which have the potential to rival the accuracy of mass spectrometric measurements. These measurements were performed using Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS). We have obtained isotopic measurement precisions of ~10 per meg for both 13C-CO2 and 18O-CO2 while measuring ambient air samples with continuous flow. We have also developed a method for analyzing air samples from canisters by alternately and rapidly trapping sample gas and reference gas in the optical cell. The ultimate goal is to create an automated, ultra-high accuracy carbon dioxide isotope monitor able to quantify small (~100 standard ml), discreet air samples. We will also discuss current instrument performance results and prospects for the measurement of the clumped isotopes of carbon dioxide in ambient air samples.

  4. High-Performance Carbon Monoxide Oxidation Catalysts Engineered for Carbon Dioxide Lasers

    NASA Astrophysics Data System (ADS)

    Gardner, Steven Dwayne

    1990-01-01

    The low-temperature CO oxidation activity of numerous materials has been evaluated in order to develop efficient catalysts for use in CO_2 lasers. The materials were screened for activity in small, stoichiometric concentrations of CO and O_2 at temperatures near 55^circC. An Au/MnO_{rm x} catalyst was synthesized which exhibited exceptional CO oxidation activity while maintaining negligible performance decay over a period of at least 70 days. The data suggest that Au/MnO_{rm x} has potential applications in air purification and CO gas sensing as well. Extensive surface characterization data from Pt/SnO _{rm x} and Au/MnO _{rm x} catalysts are reported which relate surface composition and chemical state information to corresponding CO oxidation activity data. Ion scattering spectroscopy (ISS), Auger electron spectroscopy (AES), angle-resolved Auger electron spectroscopy (ARAES) and X-ray photoelectron spectroscopy (XPS) were utilized to observe the behavior of these surfaces as a function of numerous pretreatments which alter their catalytic activity. The results suggest that Pt(OH)_2 and Pt/Sn alloy formation may play a key role in the CO oxidation mechanism on Pt/SnO_{ rm x} surfaces. A Pt_3 Sn alloy was subsequently characterized before and after H_2 reduction to study its surface characteristics. Surface characterization of Au/MnO_ {rm x} and MnO_{ rm x} was performed in order to elucidate the CO oxidation mechanism. The spectral data yield evidence that the enhanced CO oxidation activity of Au/MnO _{rm x} is related to Mn present primarily as Mn_3O _4 with substantial amounts of water or hydroxyl groups. The spectra are consistent with very small Au particles which may exist in an oxidized state. The behavior of Au/MnO_{rm x} and MnO_{rm x} toward an inert pretreatment suggests the possibility of a Au -MnO_{rm x} interaction.

  5. Bench Remarks: Carbon Dioxide.

    ERIC Educational Resources Information Center

    Bent, Henry A.

    1987-01-01

    Discusses the properties of carbon dioxide in its solid "dry ice" stage. Suggests several demonstrations and experiments that use dry ice to illustrate Avogadro's Law, Boyle's Law, Kinetic-Molecular Theory, and the effects of dry ice in basic solution, in limewater, and in acetone. (TW)

  6. Carbon dioxide dangers demonstration model

    USGS Publications Warehouse

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  7. Evaluation of carbon dioxide laser irradiation associated with calcium hydroxide in the treatment of dentinal hypersensitivity. A preliminary study.

    PubMed

    Romano, Ana Cristina Cury Camargo; Aranha, Ana Cecilia Corrêa; da Silveira, Bruno Lopes; Baldochi, Sônia Lícia; Eduardo, Carlos de Paula

    2011-01-01

    Attempts have been made to treat dentinal hypersensitivity by sealing exposed dentinal tubules, and the carbon dioxide (CO(2)) laser has been shown to have a sealing effect on dentinal surfaces. The purpose of this study was to analyze the morphological ultra-structure and temperature change after CO(2) laser irradiation of dentin. Fourteen human third molars were selected and cleaned. An area was delimited, and the samples were randomly divided into seven groups: Group 1 (G1): control; G2, calcium hydroxide paste (CA) + CO(2) laser (L) (0.5 W/63,69 W/cm(2)); G3, CA + L (1 W/125,38 W/cm(2)); G4, CA + L (1.5 W/191,08 W/cm(2)); G5, L (0.5 W); G6, L (1 W); G7, L (1.5 W). All irradiation was performed in unfocused mode. The electron micrographs were analyzed by three observers. For temperature analysis, a thermocouple was used. Data were subjected to statistical analysis. The Kruskal-Wallis non-parametric test showed statistical differences between the groups (P < 0.05). For the two by two comparisons, all groups treated with calcium hydroxide paste presented significantly higher mean scores. In the groups treated by CO(2) laser only, fusion, re-crystallization, cracks and carbonization were observed. A change of 1 ± 5°C was noted in the temperature. Under the limitation of an in vitro study, and with the protocols used, we concluded that CO(2) laser is safe to use for the establishment of partial fusion and re-solidification of the dentinal surface. PMID:20127133

  8. Transendoscopic and freehand use of flexible hollow fibers for carbon dioxide laser surgery in the upper airway of the horse: a preliminary report

    NASA Astrophysics Data System (ADS)

    Palmer, Scott E.

    1991-05-01

    Hollow plastic fibers lined with metal and dielectric films that transmit carbon dioxide laser energy were evaluated for clinical use in upper airway surgery of the horse. These flexible waveguides were used both freehand and through the biopsy channel of an endoscope to incise, coagulate and vaporize tissues in the pharynx and larynx of 4 horses.

  9. Carbon Dioxide Landscape

    NASA Technical Reports Server (NTRS)

    2005-01-01

    23 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a view of some of the widely-varied terrain of the martian south polar residual cap. The landforms here are composed mainly of frozen carbon dioxide. Each year since MGS arrived in 1997, the scarps that bound each butte and mesa, or line the edges of each pit, in the south polar region, have changed a little bit as carbon dioxide is sublimed away. The scarps retreat at a rate of about 3 meters (3 yards) per martian year. Most of the change occurs during each southern summer.

    Location near: 86.7oS, 9.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  10. CARBON DIOXIDE FIXATION.

    SciTech Connect

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  11. Frozen Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    1 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a south polar residual cap landscape, formed in frozen carbon dioxide. There is no place on Earth that one can go to visit a landscape covering thousands of square kilometers with frozen carbon dioxide, so mesas, pits, and other landforms of the martian south polar region are as alien as they are beautiful. The scarps of the south polar region are known from thousands of other MGS MOC images to retreat at a rate of about 3 meters (3 yards) per martian year, indiating that slowly, over the course of the MGS mission, the amount of carbon dioxide in the martian atmosphere has probably been increasing.

    Location near: 86.9oS, 25.5oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  12. Carbon Dioxide Landforms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    19 March 2004 The martian south polar residual ice cap is mostly made of frozen carbon dioxide. There is no place on Earth that a person can go to see the landforms that would be produced by erosion and sublimation of hundreds or thousands of cubic kilometers of carbon dioxide. Thus, the south polar cap of Mars is as alien as alien can get. This image, acquired in February 2004 by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), shows how the cap appears in summer as carbon dioxide is subliming away, creating a wild pattern of pits, mesas, and buttes. Darker surfaces may be areas where the ice contains impurities, such as dust, or where the surface has been roughened by the removal of ice. This image is located near 86.3oS, 0.8oW. This picture covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the top/upper left.

  13. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    DOE PAGES

    Levine, Zachary H.; Pintar, Adam L.; Dobler, Jeremy T.; Blume, Nathan; Braun, Michael; Zaccheo, T. Scott; Pernini, Timothy G.

    2016-04-13

    Laser absorption spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from point-like sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant ratemore » giving rise to a plume with a concentration and distribution that depend on the wind velocity. We demonstrate the ability of our approach to detect a leak using numerical simulation and also present a preliminary measurement.« less

  14. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    PubMed Central

    Levine, Zachary H.; Pintar, Adam L.; Dobler, Jeremy T.; Blume, Nathan; Braun, Michael; Scott Zaccheo, T.; Pernini, Timothy G.

    2016-01-01

    Laser absorption spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from point-like sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant rate giving rise to a plume with a concentration and distribution that depend on the wind velocity. We demonstrate the ability of our approach to detect a leak using numerical simulation and also present a preliminary measurement. PMID:27453761

  15. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    NASA Astrophysics Data System (ADS)

    Levine, Z. H.; Pintar, A. L.; Dobler, J.; Blume, N.; Braun, M.; Zaccheo, T. S.; Pernini, T. G.

    2015-11-01

    Laser Absorption Spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from pointlike sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant rate giving rise to a plume with a concentration and distribution that depend on the wind velocity. We demonstrate the ability of our approach to detect a leak using numerical simulation and a preliminary measurement.

  16. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    NASA Astrophysics Data System (ADS)

    Levine, Zachary H.; Pintar, Adam L.; Dobler, Jeremy T.; Blume, Nathan; Braun, Michael; Zaccheo, T. Scott; Pernini, Timothy G.

    2016-04-01

    Laser absorption spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from point-like sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant rate giving rise to a plume with a concentration and distribution that depend on the wind velocity. We demonstrate the ability of our approach to detect a leak using numerical simulation and also present a preliminary measurement.

  17. Recent Progress in Development of a Laser Based, Ultra-High Precision Isotope Monitor for Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Nelson, D. D.; McManus, J. B.; Herndon, S. C.; Zahniser, M. S.

    2015-12-01

    Greenhouse gas (GHG) emissions are the primary drivers of global climate change and hence there is a crucial need to quantify their sources and sinks. A general technique to help constrain source and sink strengths in GHG exchange processes is the analysis of the relative proportions of isotopic variants of GHG's. Very high precision measurements of isotopologue ratios are necessary in order to identify sources and sinks because the characteristic changes are small. The standard method of isotopologue measurement has been mass spectrometry, but this technique typically requires significant sample preparation and relatively high instrument maintenance. Laser spectroscopy has the potential to ease these burdens and also to allow easy separation and analysis of interfering isobars such as 13C-CO2 and 17O-CO2. We present recent results demonstrating ultra-high precision measurements of carbon dioxide isotope ratios which rival the accuracy of mass spectrometric measurements. These measurements were performed using Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS). We have developed a method for analyzing air samples from canisters by alternately and rapidly trapping sample gas and working reference gas in the optical cell. Using this technique, we have obtained isotopic measurement precisions of ~7 per meg for both 13C-CO2 and 18O-CO2 while measuring trapped ambient air samples with volumes as small as 200 ml with a 16 minute measurement duration. The figure shows a histogram of 2 minute measurements. Our current measurement precision for 17O-CO2 is 30 per meg, but we expect to reduce this to 10 per meg by working in a better spectral region. Our ultimate goal is to create an automated, ultra-high accuracy carbon dioxide isotope monitor able to quantify 13C-, 18O-, and 17O-CO2at the 10 per meg level using small (~100 standard ml), discreet air samples. We will also discuss recent progress in the measurement of the clumped isotopes of carbon dioxide in

  18. Use of Zernike polynomials and interferometry in the optical design and assembly of large carbon-dioxide laser systems

    SciTech Connect

    Viswanathan, V.K.

    1981-01-01

    This paper describes the need for non-raytracing schemes in the optical design and analysis of large carbon-dioxide lasers like the Gigawatt, Gemini, and Helios lasers currently operational at Los Alamos, and the Antares laser fusion system under construction. The scheme currently used at Los Alamos involves characterizing the various optical components with a Zernike polynomial set obtained by the digitization of experimentally produced interferograms of the components. A Fast Fourier Transform code then propagates the complex amplitude and phase of the beam through the whole system and computes the optical parameters of interest. The analysis scheme is illustrated through examples of the Gigawatt, Gemini, and Helios systems. A possible way of using the Zernike polynomials in optical design problems of this type is discussed. Comparisons between the computed values and experimentally obtained results are made and it is concluded that this appears to be a valid approach. As this is a review article, some previously published results are also used where relevant.

  19. A novel method of carbon dioxide clumped isotope analysis with tunable infra-red laser direct absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Prokhorov, Ivan; Kluge, Tobias; Janssen, Christof

    2016-04-01

    Precise clumped isotopes analysis of carbon dioxide opens up new horizons of atmospheric and biogeochemical research. Recent advances in laser and spectroscopic techniques provides us necessary instrumentation to access extremely low sub-permill variations of multiply-substituted isotopologues. We present an advanced analysis method of carbon dioxide clumped isotopes using direct absorption spectroscopy. Our assessments predict the ultimate precision of the new method on the sub-permill level comparable to state of the art mass spectrometry. Among the most auspicious intrinsic properties of this method we highlight genuine Δ16O13C18O and Δ16O13C18O measurements without isobaric interference, measurement cycle duration of several minutes versus hours for mass spectrometric analysis, reduced sample size of ˜ 10 μmol and high flexibility, allowing us to perform in-situ measurements. The pilot version of the instrument is being developed in an international collaboration framework between Heidelberg University, Germany and Pierre and Marie Curie University, Paris, France. It employs two continuous interband quantum cascade lasers tuned at 4.439 μm and 4.329 μm to measure doubly ( 16O13C18O, 16O13C17O) and singly ( 16O12C16O, 16O13C16O, 16O12C17O, 16O12C18O) substituted isotopologues, respectively. Two identical Herriot cells are filled with dry pure CO2 sample and reference gas at working pressure of 1 ‑ 10 mbar. Cells provide optical path lengths of ˜ 17 m for the laser tuned at doubly substituted isotopologues lines and use a single pass for the laser tuned at the stronger lines of singly substituted isotopologues. Light outside of the gas cells is coupled into optical fiber to avoid absorption by ambient air CO2. Simulations predict sub-permill precision at working pressure of 1 mbar and room temperature stabilised at the ±10 mK level. Our prime target is to apply the proposed method for continuous in-situ analysis of CO2. We are foreseeing potential

  20. A novel method of carbon dioxide clumped isotope analysis with tunable infra-red laser direct absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Prokhorov, Ivan; Kluge, Tobias; Janssen, Christof

    2016-04-01

    Precise clumped isotopes analysis of carbon dioxide opens up new horizons of atmospheric and biogeochemical research. Recent advances in laser and spectroscopic techniques provides us necessary instrumentation to access extremely low sub-permill variations of multiply-substituted isotopologues. We present an advanced analysis method of carbon dioxide clumped isotopes using direct absorption spectroscopy. Our assessments predict the ultimate precision of the new method on the sub-permill level comparable to state of the art mass spectrometry. Among the most auspicious intrinsic properties of this method we highlight genuine Δ16O13C18O and Δ16O13C18O measurements without isobaric interference, measurement cycle duration of several minutes versus hours for mass spectrometric analysis, reduced sample size of ˜ 10 μmol and high flexibility, allowing us to perform in-situ measurements. The pilot version of the instrument is being developed in an international collaboration framework between Heidelberg University, Germany and Pierre and Marie Curie University, Paris, France. It employs two continuous interband quantum cascade lasers tuned at 4.439 μm and 4.329 μm to measure doubly ( 16O13C18O, 16O13C17O) and singly ( 16O12C16O, 16O13C16O, 16O12C17O, 16O12C18O) substituted isotopologues, respectively. Two identical Herriot cells are filled with dry pure CO2 sample and reference gas at working pressure of 1 - 10 mbar. Cells provide optical path lengths of ˜ 17 m for the laser tuned at doubly substituted isotopologues lines and use a single pass for the laser tuned at the stronger lines of singly substituted isotopologues. Light outside of the gas cells is coupled into optical fiber to avoid absorption by ambient air CO2. Simulations predict sub-permill precision at working pressure of 1 mbar and room temperature stabilised at the ±10 mK level. Our prime target is to apply the proposed method for continuous in-situ analysis of CO2. We are foreseeing potential

  1. Simultaneous Measurements of Leaf and Soil Carbon Dioxide Flux Using a Tunable Diode Laser

    NASA Astrophysics Data System (ADS)

    Hunt, J. E.; Barbour, M. M.

    2007-12-01

    A portable photosynthesis system (Li-6400, Li-Cor, NE) and a through-flow soil chamber were used to continuously measure the gas exchange of leaf and below ground components in pots containing corn, Triticale and a non-planted control. Temperature was kept constant through-out the experiment, and measurements were made at 4 min intervals over a full diurnal light cycle. A tunable diode laser (TGA100A, Campbell Scientific, UT) was used to measure the concentration and stable isotopic composition (δ13C and δ18O) of the air entering and exiting both chambers. End-member isotope values were determined by short-term incubation of component parts in Tedlar bags, and the evolved gas was measured with the laser. These data were used to determine the isotopic signature of CO2 derived from root respiration, microbial respiration of plant derived exudates and soil organic matter (SOM) to allow the partitioning of the total flux into component parts. The δ13C of SOM respiration was identical when measured with the soil chamber on the control pots and when using incubated samples from the same pots. However, incubation of the potting mix in the other treatments was more enriched (corn) and more depleted (Triticale) than the control, indicating that end-member determination of the original SOM was confounded by exudates from the plants. Using a mixing model to partition the soil respiration, and the δ13C of SOM from the control pots, corn roots contributed 25% and Triticale 72% of the below-ground respiration. Incubation of soil with the roots removed allowed non-root respiration to be partitioned into contributions from pre-existing SOM and more recent plant derived exudates for corn (23% recent carbon) and Triticale (36% recent carbon).

  2. Ex vivo investigations of laser auricular cartilage reshaping with carbon dioxide spray cooling in a rabbit model

    PubMed Central

    Wu, Edward C.; Sun, Victor; Manuel, Cyrus T.; Protsenko, Dmitriy E.; Jia, Wangcun; Nelson, J. Stuart; Wong, Brian J. F.

    2014-01-01

    Laser cartilage reshaping (LCR) with cryogen spray cooling is a promising modality for producing cartilage shape change while reducing cutaneous thermal injury. However, LCR in thicker tissues, such as auricular cartilage, requires higher laser power, thus increasing cooling requirements. To eliminate the risks of freeze injury characteristic of high cryogen spray pulse rates, a carbon dioxide (CO2) spray, which evaporates rapidly from the skin, has been proposed as the cooling medium. This study aims to identify parameter sets which produce clinically significant reshaping while producing minimal skin thermal injury in LCR with CO2 spray cooling in ex vivo rabbit auricular cartilage. Excised whole rabbit ears were mechanically deformed around a cylindrical jig and irradiated with a 1.45-μm wavelength diode laser (fluence 12–14 J/cm2 per pulse, four to six pulse cycles per irradiation site, five to six irradiation sites per row for four rows on each sample) with concomitant application of CO2 spray (pulse duration 33–85 ms) to the skin surface. Bend angle measurements were performed before and after irradiation, and the change quantified. Surface temperature distributions were measured during irradiation/cooling. Maximum skin surface temperature ranged between 49.0 to 97.6 °C following four heating/cooling cycles. Significant reshaping was achieved with all laser dosimetry values with a 50–70 °C difference noted between controls (no cooling) and irradiated ears. Increasing cooling pulse duration yielded progressively improved gross skin protection during irradiation. CO2 spray cooling may potentially serve as an alternative to traditional cryogen spray cooling in LCR and may be the preferred cooling medium for thicker tissues. Future studies evaluating preclinical efficacy in an in vivo rabbit model are in progress. PMID:23307439

  3. Effect of smoke evacuation on limiting thermal damage when using the carbon dioxide laser for cutaneous surgery

    NASA Astrophysics Data System (ADS)

    Waters, Ruth A.; Thomas, J. M.; Clement, Marc; Davies, S.

    1990-06-01

    We have conducted a study of the use of the carbon dioxide (C02) laser for ablation of multiple cutaneous recurrences of melanoma. Lesions of primary malignant melanoma are usually widely excised to try and prevent local recurrence. Despite this, recurrent cutaneous lesions do occur. These lesions may be small and numerous making local excision impractical. Hyperthermic isolated limb perfusion has shown some success in controlling the local disease but this procedure has a significant morbidty, some patients show only a limited response and post-perfusion recurrences are common.1 Also, in some patients, thelesions will not be confined to a limb. No other method of local control has provided an ideal solution and amputation has sometimes been a last resort. We have therefore selected patients for laser ablation if they have had lesions too numerous for local excision, or have had recurrences following perfusion or were otherwise suitable for perfusion. The lesions were vaporized under local or general anaesthesia according to their size and number. The wounds were then left to heal by secondary intention. Simple dry dressings were applied and all patients were discharged home within 24 hours. In total we have treated over 1,500 lesions in 30 patients. The results of the initial study have been very encouraging. The procedure is quick and simple with absent or minimal post-operative pain. Although the incidence of recurrent tumour at a previously lasered site is less than 1%, new tumours may develop at other sites. These are amenable to further laser treatment.

  4. Promising Option for Treatment of Striae Alba: Fractionated Microneedle Radiofrequency in Combination with Fractional Carbon Dioxide Laser

    PubMed Central

    Fatemi Naeini, Farahnaz; Behfar, Shadi; Abtahi-Naeini, Bahareh; Keyvan, Shima; Pourazizi, Mohsen

    2016-01-01

    Background. A consistent treatment has not been proposed for treatment of Striae Alba (SA). The present study was designed to compare the fractionated microneedle radiofrequency (FMR) alone and in combination with fractional carbon dioxide laser (FMR + CO2) in the treatment of SA. Methods. Forty-eight pairs of SA from six patients were selected. Right or left SAs were randomly assigned to one of the treatment groups. The surface area of the SA before and after treatment and clinical improvement using a four-point scale were measured at the baseline, after one and three months. Results. The mean age of the patients was 30.17 ± 5.19 years. The mean difference of the surface area between pre- and posttreatment in the FMR + CO2 group was significantly higher than that in the FMR group (p = 0.003). Clinical improvement scales showed significantly higher improvement in the FMR + CO2 group than in the FMR group in the first and second follow-up (p = 0.002 and 0.004, resp.). There were no major persistence side-effects in both groups. Conclusions. The results showed that FMR + CO2 laser was more effective than FMR alone in the treatment of SA. PMID:27069471

  5. Carbon Dioxide Capture and Disposal

    NASA Astrophysics Data System (ADS)

    Lackner, K. S.

    2002-05-01

    Unless carbon dioxide from fossil fuel combustion is captured and disposed of safely and permanently, the concerns over climate change will eventually lead to the demise of fossil fuels. Because of their importance in today's energy market the phasing out of fossil fuels would likely precipitate a major energy crisis. Mineral sequestration and extraction of carbon dioxide from the air are two advanced technologies for carbon sequestration that aim at maintaining access to the vast fossil energy resources for centuries to come. While it is straightforward to dispose of carbon dioxide in limited amounts and for a limited time, permanent disposal of trillions of tons of carbon poses serious challenges. The formation of solid mineral carbonates from readily available minerals would provide safe and permanent storage. Capture of carbon dioxide from air makes it possible to sequester carbon dioxide emissions from sources other than power plants. This is important considering that even the relatively minor reductions suggested by the Kyoto Accord would have required the US to eliminate carbon dioxide emissions comparable to those of the entire 1990 coal fired power plant fleet. Capture of carbon dioxide from the air, would make it possible to close the carbon cycle in the transportation sector without phasing out liquid hydrocarbon fuels. It eliminates the need for long distance transport of carbon dioxide and allows the continued use of the existing energy infrastructure. Mineral sequestration at remote sites combined with on site carbon dioxide capture from air, would allow for long term stabilization of atmospheric carbon dioxide levels. I will outline the current state of the technology and point to advances required before these approaches are ready for large-scale implementation.

  6. Carbon dioxide and climate

    SciTech Connect

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  7. Development and Preliminary Tests of an Open-Path Airborne Diode Laser Absorption Instrument for Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Diskin, G. S.; DiGangi, J. P.; Yang, M. M.; Rana, M.; Slate, T. A.

    2015-12-01

    Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight intercomparison data have been obtained and will be discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016.

  8. Development and Preliminary Tests of an Open-Path Airborne Diode Laser Absorption Instrument for Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Diskin, Glenn S.; DiGangi, Joshua P.; Yang, Melissa; Slate, Thomas A.; Rana, Mario

    2015-01-01

    Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight data have been obtained and are discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016.

  9. Low-output carbon dioxide laser for cutaneous wound closure of scalpel incisions: comparative tensile strength studies of the laser to the suture and staple for wound closure

    SciTech Connect

    Garden, J.M.; Robinson, J.K.; Taute, P.M.; Lautenschlager, E.P.; Leibovich, S.J.; Hartz, R.S.

    1986-01-01

    The low-output carbon dioxide (CO/sub 2/) laser was used for cutaneous wound closure of scalpel incisions. Cutaneous scalpel incisions were placed over the dorsum of three minipigs and were then closed by either the laser, sutures, or staples. At multiple time points after wound closure, up to day 90, the tensile strengths of these wounds were comparatively evaluated. All wounds, including those closed with the laser, clinically appeared to heal similarly with no evidence of wound dehiscence or infection. Tensile strength studies revealed similar sigmoid curves for all wound closure modalities with low initial tensile strengths up to days 14 to 21, which afterwards increased rapidly, with a plateau toward day 90. From our study, it appears that the CO/sub 2/ laser, in the low-output mode, can be used for cutaneous wound closure and that similar clinical healing and tensile strength measurements are obtained relative to the conventional cutaneous wound closure modalities of the suture or staple.

  10. Coral reefs and carbon dioxide

    SciTech Connect

    Buddemeier, R.W.

    1996-03-01

    This commentary argues the conclusion from a previous article, which investigates diurnal changes in carbon dioxide partial pressure and community metabolism on coral reefs, that coral `reefs might serve as a sink, not a source, for atmospheric carbon dioxide.` Commentaries from two groups are given along with the response by the original authors, Kayanne et al. 27 refs.

  11. Dissociation and regeneration kinetics of carbon dioxide in the active medium of sealed-off transverse RF-excited CO{sub 2} lasers

    SciTech Connect

    Vesnov, I G

    2010-06-23

    An improved mathematical model describing the dissociation and regenerations kinetics of carbon dioxide in the active medium of sealed-off transverse RF-excited CO{sub 2} lasers is presented. It is shown that the calculation of the active medium composition of such lasers requires the equations of the gas-mixture kinetics to take into account the diffuse flow of oxygen atoms on metal electrodes and on the surface of heterogeneous catalysts used to reduce the degree of the carbon dioxide dissociation. The rate constants of the heterogeneous recombination reaction CO + O {yields} CO{sub 2} on the surface of alumina ceramics and Al{sub 2}O{sub 3} are determined. (active media)

  12. Forecasting carbon dioxide emissions.

    PubMed

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy.

  13. Carbon Dioxide Landscape

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 July 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a mid-summer view of the south polar residual cap at full MOC resolution, 1.5 m (5 ft) per pixel. During each of the three summers since the start of the MGS mapping mission in March 1999, the scarps that form mesas and pits in the 'Swiss cheese'-like south polar terrain have retreated an average of about 3 meters (1 yard). The material is frozen carbon dioxide; another 3 meters or so of each scarp is expected to be removed during the next summer, in late 2005. This image is located near 86.0oS, 350.8oW, and covers an area about 1.5 km (0.9 mi) wide. Sunlight illuminates the scene from the top/upper left.

  14. Forecasting carbon dioxide emissions.

    PubMed

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. PMID:26081307

  15. Fires of endotracheal tubes of three different materials during carbon dioxide laser surgery.

    PubMed

    Lai, Hui-Chin; Juang, Sin-Ei; Liu, Tsun-Jui; Ho, Wai-Ming

    2002-03-01

    The hazards of fire during CO2 laser surgery of the airway necessitate the use of special endotracheal tubes. We reviewed 227 cases receiving CO2 laser laryngeal surgery over the past 7 years, of whom 3 suffered the complications as a result of endotracheal fire. Tracheal tubes made of different materials were used among them, including silicone T-tube (Montgomery Safe-T-tube), jet ventilation tube and Xomed laser shield endotracheal tube. In addition, we tested in vitro the combustibility of endotracheal tubes of six different materials which included silicone T-tube, jet ventilation tube, Xomed laser shield endotracheal tube, stainless Laser-Flex tracheal tube, polyvinyl chloride (PVC) endotracheal tube and aluminum foil wrapped PVC endotracheal tube by exposing them to continuous operating CO2 laser in room air. The time to initiation of fire and burn through the lumen was 0.3 second for T-tube, 0.5 s for jet ventilation tube, 5 s for Xomed laser shield endotracheal tube, and 0.8 s for PVC endotracheal tube, respectively. The Laser-Flex tracheal tube (stainless) and aluminum foil wrapped PVC endotracheal tube did not catch fire after 30 s of CO2 laser irradiation. The silicone T-tube seemed to be the most dangerous. Jet ventilation tube and Xomed laser shield endotracheal tube have the risk of fire. Aluminum foil wrapped PVC endotracheal tube was reported to catch fire before. Therefore we are of the opinion that the stainless endotracheal tube is the safest tube during CO2 laser surgery. PMID:11989049

  16. Carbon dioxide laser vaporization of facial siliconomas: flash in the pan or way of the future?

    PubMed

    Chui, Christopher Hoe Kong; Fong, Poh Him

    2008-03-01

    In 1988, Becker first described the "laser silicone flash" encountered while using the CO2 laser to remove breast siliconosis, but no subsequent use of the CO2 laser to remove siliconomas has been reported since. To our knowledge, lasers have not been described to treat facial silicone granulomas. Three cases of facial silicone granuloma (cheek, upper eyelids, and chin) were treated using the technique of CO2 laser vaporization.We describe a novel and effective method to remove facial siliconomas. This technique could avoid the need for radical resection of functional facial tissues such as nerves. Tiny globules of injected silicone in the face were vaporized without any untoward effects. Whether larger siliconomas can be treated in the same way remains to be seen and is an area of potential study.

  17. Carbon dioxide laser turbinectomy versus submucosal diathermy of hypertrophied turbinates. Histopathological prospective study

    NASA Astrophysics Data System (ADS)

    Mohamed Bofares, Khalid

    2010-05-01

    Aim: To assess suspected turbinate mucosal distractive changes of CO2 laser partial turbinectomy as compared to submucosal diathermy technique of hypertrophied inferior turbinates and thus risk of appearance of mucosal atrophic changes. Introduction: CO2 laser turbinotomy or turbinectomy has become an established well documented line of treatment of hypertrophied inferior turbinates not responding to medical treatment. Although there have been several reports discussing the clinical aspects of laser turbinectomy, but exact pathological changes that take place following laser application to the turbinate have not been described completely and clearly. For this reason this study was conducted to confirm these possible histopathological changes and compared with those following submucosal diathermy technique. Patients and methods: Twenty patients with chronic hypertrophied inferior turbinates and presenting mainly with nasal obstruction, ten out of them were subjected to CO2 laser turbinectomy while other half underwent to submucosal diathermy technique. Tiny biopsies were taken immediately after surgery (within one week after surgery ), as well as 4-6 weeks later and processed for further histopathological evaluation. Results: By 100%, the all patients of two groups showed areas of epithelial loss were observed immediately after both techniques. 4-6 weeks after laser application 60% of patients showed normal epithelial areas as compared to second group where 20% of patients who showed normal epithelial picture. Conclusion: CO2 laser turbinectomy can be considered as more preservative technique for nasal mucosa as well as the function of the nose as compared to submucosal diathermy technique.

  18. Carbon dioxide laser ablation with immediate autografting in a full-thickness porcine burn model.

    PubMed Central

    Glatter, R D; Goldberg, J S; Schomacker, K T; Compton, C C; Flotte, T J; Bua, D P; Greaves, K W; Nishioka, N S; Sheridan, R L

    1998-01-01

    OBJECTIVE: To compare the long-term clinical and histologic outcome of immediate autografting of full-thickness burn wounds ablated with a high-power continuous-wave CO2 laser to sharply débrided wounds in a porcine model. SUMMARY BACKGROUND DATA: Continuous-wave CO2 lasers have performed poorly as tools for burn excision because the large amount of thermal damage to viable subeschar tissues precluded successful autografting. However, a new technique, in which a high-power laser is rapidly scanned over the eschar, results in eschar vaporization without significant damage to underlying viable tissues, allowing successful immediate autografting. METHODS: Full-thickness paravertebral burn wounds measuring 36 cm2 were created on 11 farm swine. Wounds were ablated to adipose tissue 48 hours later using either a surgical blade or a 150-Watt continuous-wave CO2 laser deflected by an x-y galvanometric scanner that translated the beam over the tissue surface, removing 200 microm of tissue per scan. Both sites were immediately autografted and serially evaluated clinically and histologically for 180 days. RESULTS: The laser-treated sites were nearly bloodless. The mean residual thermal damage was 0.18+/-0.05 mm. The mean graft take was 96+/-11% in manual sites and 93+/-8% in laser sites. On postoperative day 7, the thickness of granulation tissue at the graft-wound bed interface was greater in laser-debrided sites. By postoperative day 180, the manual and laser sites were histologically identical. Vancouver scar assessment revealed no differences in scarring at postoperative day 180. CONCLUSIONS: Long-term scarring, based on Vancouver scar assessments and histologic evaluation, was equivalent at 6 months in laser-ablated and sharply excised sites. Should this technology become practical, the potential clinical implications include a reduction in surgical blood loss without sacrifice of immediate engraftment rates or long-term outcome. Images Figure 1. Figure 2. Figure 3

  19. A new endotracheal tube for carbon dioxide and KTP laser surgery of the aerodigestive tract.

    PubMed

    Ossoff, R H; Aly, A; Gonzales, D; Koriwchak, M J; Houchin, N

    1993-01-01

    We have tested the fire-resistance of a new endotracheal tube designed for use in laser surgery of the upper aerodigestive tract. This Teflon/metallic-wrapped silicone tube seems capable of withstanding occasional, accidental pulsed laser impact at power settings used clinically (1 to 10 watts) without fire. On rare occasions when continuous mode is used, the tube seems capable of withstanding at least several seconds of continuous irradiation at clinical power settings without igniting. When used with other recommended safety procedures, this tube should minimize the risk of endotracheal tube fire from accidental laser impact. PMID:8437882

  20. Geologic Sequestration of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Benson, S. M.

    2003-04-01

    Geologic sequestration of carbon dioxide has emerged as one of the most promising options for making deep cuts in carbon dioxide emissions. Geologic sequestration involves the two-step process of first capturing carbon dioxide by separating it from stack emissions, followed by injection and long term storage in deep geologic formations. Sedimentary basins, including depleted oil and gas reservoirs, deep unminable coal seams, and brine-filled formations, provide the most attractive storage reservoirs. Over the past few years significant advances have been made in this technology, including development of simulation models and monitoring systems, implementation of commercial scale demonstration projects, and investigation of natural and industrial analogues for geologic storage of carbon dioxide. While much has been accomplished in a short time, there are many questions that must be answered before this technology can be employed on the scale needed to make significant reductions in carbon dioxide emissions. Questions such as how long must the carbon dioxide remain underground, to what extent will geochemical reactions completely immobilize the carbon dioxide, what can be done in the event that a storage site begins to leak at an unacceptable rate, what is the appropriate risk assessment, regulatory and legal framework, and will the public view this option favorably? This paper will present recent advances in the scientific and technological underpinnings of geologic sequestration and identify areas where additional information is needed.

  1. New technique for feline carbon dioxide laser onychectomy by resection of the redundant epidermis of the ungual crest

    NASA Astrophysics Data System (ADS)

    Young, William P.

    2000-05-01

    A new technique for feline carbon dioxide laser onychectomy can further minimize postoperative pain and complications in any age animal. This procedure is accomplished by resection of the redundant epidermis over the ungual crest. Resection of the redundant epidermis allows complete dissection and removal of the claw from a strictly cranio-dorsal approach, thereby minimizing trauma to the surrounding tissues and post- operative complications. The laser setting is preferred at four to six watts continuous power. The epidermis of the ungual crest is resected in a circumferential manner at its most distal edge. This tissue is pushed proximally over the ungual crest. A second circumferential incision is made 3 mm proximal to the first incision. Deeper subcutaneous fascia is also pushed proximally over the ungual crest. An incision of the extensor tendon is made at its insertion on the ungual crest keeping the redundant epidermis proximal to this incision. The incision through the extensor tendon is continued deeper to the synovium of PII and PIII. Gentle traction in a palmar direction will disarticulate the joint space between PII and PIII. Incisions into the lateral and medial collateral ligaments from a cranio-dorsal origin in palmar direction further disarticulate the joint. Care must be exercised to preserve all epidermal tissue lying immediately adjacent to the collateral ligaments. Continual palmar traction will expose the base of PIII and the insertion of the flexor tendon. A dorsal incision is made into the flexor tendon in a palmar direction. Extreme palmar rotation of PIII will allow the dissection of the subcutaneous tissue of the pad from PIII. The redundant epidermal tissue will now cover the majority of the onychectomy site. No sutures or tissue adhesive are advised.

  2. 1579 NM Fiber Laser Source for Spaceborne Monitoring of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Cézard, Nicolas; Lombard, Laurent; Le Gouët, Julien; Goular, Didier; Bresson, Alexandre; Dolfi-Bouteyre, Agnès; Canat, Guillaume

    2016-06-01

    We report on the development of a 1579 nm pulsed fiber laser source with high peak-power, intended to be used as a lidar source for CO2 monitoring from space. We first discuss water-vapor sensitivity of spaceborne CO2 measurements by lidar and point the interest of the 1579 nm wavelength with that respect. Then we detail the current development status of the pulsed fiber laser source.

  3. Linear verrucous epidermal nevi-effects of carbon dioxide laser therapy.

    PubMed

    Borzecki, Adam; Strus-Rosińska, Beata; Raszewska-Famielec, Magdalena; Sajdak-Wojtaluk, Agnieszka; Pilat, Pawel

    2016-10-01

    Linear epidermal nevus is a congenital malformation characterized by linear, often one-sided arrangement. The lesions are localized along the Blaschko's lines, are present at birth, or appear in early childhood. They can be single or multiple, and have various colors-from skin color to dark brown. These lesions persist through the whole life making a significant cosmetic defect. Here, we present three clinical cases of epidermal nevus treated with CO2 laser. In a female patient, verrucous, dark brown skin eruptions were observed at the back of earlobe and down the neck. In the cases of the male patients, the lesions were located in the area of the neck and left blade. The removal of nevi was performed in stages, by cutting and evaporation using a CO2 laser. A very good therapeutic effect was obtained. CO2 laser treatment is the method of choice for the removal of extensive epidermal nevi. It is characterized by high efficacy and safety.

  4. A semiconductor injection-switched high-pressure sub-10-picosecond carbon dioxide laser amplifier

    NASA Astrophysics Data System (ADS)

    Hughes, Michael Kon Yew

    A multiatmospheric-pressure-broadened CO2 laser amplifier was constructed to amplify sub-10-picosecond pulses generated with semiconductor switching. High-intensity, mid-infrared, amplified pulses have many applications: especially in fields such as non-linear optics, laser-plasma interaction, and laser particle acceleration. The injected pulses are produced by exciting GaAs (or an engineered, fast-recombination time semiconductor) with an ultrafast visible laser pulse to induce transient free carriers with sufficient density to reflect a co-incident hybrid-CO2 laser pulse. The short pulse is injected directly into the regenerative amplifier cavity from an intra-cavity semiconductor switch. The CO2-gas-mix amplifier is operated at 1.24 MPa which is sufficient to collisionally broaden the individual rotational spectral lines so that they merge to produce a gain spectrum wide enough to support pulses less than 10 ps long. After sufficient amplification, the pulse is switched out with another semiconductor switch pumped with a synchronized visible-laser pulse. This system is demonstrated and analysed spectrally and temporally. The pulse-train spectral analysis is done for a GaAs-GaAs double-switch arrangement using a standard spectrometer and two HgCdTe detectors; one of which is used for a reference signal. An infrared autocorrelator was designed and constructed to temporally analyse the pulse trains emerging from the amplifier. Interpretation of the results was aided by the development of a computer model for short-pulse amplification which incorporated saturation effects, rotational- and vibrational-mode energy redistribution between pulse round trips, and the gain enhancement due to one sequence band. The results show that a sub-10-picosecond pulse is injected into the cavity and that it is amplified with some trailing pulses at 18 ps intervals generated by coherent effects. The energy level reached, estimated through modelling, was >100 mJ/cm2.

  5. Reconstructive microsurgery of the female reproductive tract utilizing the carbon dioxide laser.

    PubMed

    Bellina, J H

    1982-01-01

    The use of the CO2 laser as an adjunct to microsurgery for restoration of the female reproductive tract was studied in 82 patients from March 1980-March 1981. No accidents or operative complications were experienced. The details of the surgical procedures using the CO2 laser beam to incise, excise, and vaporize tissue are presented. 21 conceptions occurred in 20 patients after limited exposure to pregnancy. This represents 48% of 42 patients at risk of conception. Follow-up is continuing in the patient population. Based upon experience to date, more conceptions are expected as exposure to pregnancy lengthens and more patients become at risk. (author's modified)

  6. Infrared image construction with computer-generated reflection holograms. [using carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Angus, J. C.; Coffield, F. E.; Edwards, R. V.; Mann, J. A., Jr.; Rugh, R. W.; Gallagher, N. C.

    1977-01-01

    Computer-generated reflection holograms hold substantial promise as a means of carrying out complex machining, marking, scribing, welding, soldering, heat treating, and similar processing operations simultaneously and without moving the work piece or laser beam. In the study described, a photographically reduced transparency of a 64 x 64 element Lohmann hologram was used to make a mask which, in turn, was used (with conventional photoresist techniques) to produce a holographic reflector. Images from a commercial CO2 laser (150W TEM(00)) and the holographic reflector are illustrated and discussed.

  7. Comparative bactericidal exposures for selected oral bacteria using carbon dioxide laser radiation

    SciTech Connect

    Dederich, D.N.; Pickard, M.A.; Vaughn, A.S.; Tulip, J.; Zakariasen, K.L. )

    1990-01-01

    Although relatively high CO{sub 2} laser energies have been shown to sterilize root canals, the response of several bacterial strains to decreasing exposures of CO{sub 2} laser energy remains unknown. Freshly grown bacterial cells were irradiated on glass microscope coverslips. A comparison of equivalent energy exposures with differing parameters was made on the bacterial viability. No statistically significant difference was found in the energy required to kill closely related bacterial species. However, the energy density required to kill greater than 99.5% of the bacteria is less than 200 J/cm{sup 2}, much less than that shown to sterilize in a previous study.

  8. Reducing carbon dioxide to products

    DOEpatents

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  9. Recuperative supercritical carbon dioxide cycle

    SciTech Connect

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  10. Three-body fragmentation dynamics of carbon-dioxide dimers induced by intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fan, Yameng; Wu, Chengyin; Xie, Xiguo; Wang, Peng; Zhong, Xunqi; Shao, Yun; Sun, Xufei; Liu, Yunquan; Gong, Qihuang

    2016-06-01

    We experimentally studied three-body fragmentation dynamics of (CO2)23+ generated by intense femtosecond laser fields. Three-dimensional momentum vectors as well as kinetic energies were measured for correlated fragmental ions using the technology of coincidence measurement. The results demonstrate that sequential fragmentation channel dominates for three-body fragmentation of (CO2)23+, in which the weak van der Waals bond breaks first and then one strong covalent bond.

  11. Photodynamic Therapy with Ablative Carbon Dioxide Fractional Laser for Treating Bowen Disease

    PubMed Central

    Kim, Sue Kyung; Park, Ji-Youn; Song, Hyo Sang; Kim, You-Sun

    2013-01-01

    Background Topical photodynamic therapy (PDT) has been increasingly used to treat malignant skin tumors including the Bowen disease. However, patients could be displeased with the long incubation time required for conventional PDT. Objective We evaluated the efficacy and safety of PDT with a short incubation time of ablative CO2 fractional laser pretreatment for treating Bowen disease. Methods Ten patients were included. Just before applying the topical photosensitizer, all lesions were treated with ablative CO2 fractional laser, following the application of methyl aminolevulinate and irradiation with red light (Aktilite CL 128). Histological confirmation, rebiopsy, and clinical assessments were performed. Adverse events were also recorded. Results Five of the ten (50%) lesions showed a complete response (CR) within three PDT sessions. After four treatment sessions, all lesions except one penile shaft lesion (90%) achieved clinical and histological CR or clinical CR only. The average number of treatments to CR was 3.70±1.70. The treatments showed favorable cosmetic outcomes and no serious adverse events. Conclusion The results suggest that pretreatment with an ablative fractional CO2 laser before PDT has similar treatment efficacy and requires a shorter photosensitizer incubation time compared with the conventional PDT method. PMID:24003277

  12. Mitigation of Laser Damage Growth in Fused Silica NIF Optics with a Galvanometer Scanned Carbon Dioxide Laser

    SciTech Connect

    Bass, I L; Draggoo, V; Guss, G M; Hackel, R P; Norton, M A

    2006-04-06

    Economic operation of the National Ignition Facility at the Lawrence Livermore National Laboratory depends on controlling growth of laser damage in the large, high cost optics exposed to UV light at 351 nm. Mitigation of the growth of damage sites on fused silica surfaces greater than several hundred microns in diameter has been previously reported by us using galvanometer scanning of a tightly focused 10.6 {micro}m CO{sub 2} laser spot over an area encompassing the laser damage. Further investigation revealed that fused silica vapor re-deposited on the surface as ''debris'' led to laser damage at unexpectedly low fluences when exposed to multiple laser shots at 351 nm. Additionally, laser power and spatial mode fluctuations in the mitigation laser led to poor repeatability of the process. We also found that the shape of the mitigation pit could produce downstream intensification that could damage other NIF optics. Modifications were made to both the laser system and the mitigation process in order to address these issues. Debris was completely eliminated by these changes, but repeatability and downstream intensification issues still persist.

  13. 21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4500 Ear..., and throat area. The device is used, for example, in microsurgical procedures to excise lesions and... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ear, nose, and throat microsurgical carbon...

  14. Experiment and modeling: Ignition of aluminum particles with a carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Mohan, Salil

    Aluminum is a promising ingredient for high energy density compositions used in propulsion systems, explosives, and pyrotechnics. Aluminum powder fuel additives enable one to achieve higher combustion enthalpies and reaction temperatures. Therefore, to develop aluminum based novel and customized high density energetic materials, understanding of ignition and combustion kinetics of aluminum powders is required. In most practical systems, metal ignition and combustion occur in environments with rapidly changing temperatures and gas compositions. The kinetics of exothermic reactions in related energetic materials is commonly characterized by thermal analysis, where the heating rates are very low, on the order of 1--50 K/min. The extrapolation of the identified kinetics to the high heating rates is difficult and requires direct experimental verification. This difficulty led to development of new experimental approaches to directly characterize ignition kinetics for the heating rates in the range of 103--104 K/s. However, the practically interesting heating rates of 106 K/s range have not been achieved. This work is directed at development of an experimental technique and respective heat transfer model for studying ignition of aluminum and other micron-sized metallic particles at heating rates varied around 106 K/s. The experimental setup uses a focused CO2 laser as a heating source and a plate capacitor aerosolizer to feed the aluminum particles into the laser beam. The setup allows using different environment for particle aerosolization. The velocities of particles in the jet are in the range of 0.1 --0 3 m/s. For each selected jet velocity, the laser power is increased until the particles are observed to ignite. The ignition is detected optically using a digital camera and a photomultiplier. The ignition thresholds for spherical aluminum powder were measured at three different particle jet velocities, in air environment. A single particle heat transfer model was

  15. Flexible Fiber Optic Carbon-Dioxide Laser Assisted Stapedotomy in Otosclerosis

    PubMed Central

    2016-01-01

    Objective. The aim of this study is to analyze the hearing and vestibular outcome of patients with otosclerosis who have been operated on by fiber optic flexible CO2 laser. Study Design. A preliminary and retrospective study was conducted in 30 patients with otosclerosis. Results. Comparative analysis of average air conduction thresholds (53.41 ± 11.81 dB versus 26.37 ± 11.04 dB) and air-bone gaps (34 ± 9.92 dB versus 12.03 ± 6.02 dB) before and after the surgery were statistically significant (<0.001). Air-bone gap closed within 10 dB or less in 50% of the cases and within 20 dB or less in 90% of the cases. Average bone conduction threshold after the surgery (16.68 ± 12.00 dB) was better than that before the surgery (20.13 ± 8.59). However, no statistically significant difference was found (p = 0.213). One patient had tinnitus after surgery. None of the patients had severe sickness or vomiting due to surgery. Eleven patients (36.6%) had very mild nystagmus beating toward the counter-lateral side. All patients were stable at 10 days after surgery. Conclusion. The results indicate that fiber optic flexible CO2 laser provides the surgeon with a very safe and precise surgical instrumentation even in cases with extensive and obliterative otosclerosis. PMID:27725835

  16. Magnesite disposal of carbon dioxide

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Wendt, C.H.

    1997-08-01

    In this paper we report our progress on developing a method for carbon dioxide disposal whose purpose it is to maintain coal energy competitive even is environmental and political pressures will require a drastic reduction in carbon dioxide emissions. In contrast to most other methods, our approach is not aiming at a partial solution of the problem, or at buying time for phasing out fossil energy. Instead, its purpose is to obtain a complete and economic solution of the problem, and thus maintain access to the vast fossil energy reservoir. A successful development of this technology would guarantee energy availability for many centuries even if world economic growth the most optimistic estimates that have been put forward. Our approach differs from all others in that we are developing an industrial process which chemically binds the carbon dioxide in an exothermic reaction into a mineral carbonate that is thermodynamically stable and environmentally benign.

  17. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  18. Carbon Dioxide - Our Common "Enemy"

    NASA Technical Reports Server (NTRS)

    James, John T.; Macatangay, Ariel

    2009-01-01

    Health effects of brief and prolonged exposure to carbon dioxide continue to be a concern for those of us who manage this pollutant in closed volumes, such as in spacecraft and submarines. In both examples, considerable resources are required to scrub the atmosphere to levels that are considered totally safe for maintenance of crew health and performance. Defining safe levels is not a simple task because of many confounding factors, including: lack of a robust database on human exposures, suspected significant variations in individual susceptibility, variations in the endpoints used to assess potentially adverse effects, the added effects of stress, and the fluid shifts associated with micro-gravity (astronauts only). In 2007 the National Research Council proposed revised Continuous Exposure Guidelines (CEGLs) and Emergency Exposure Guidelines (EEGLs) to the U.S. Navy. Similarly, in 2008 the NASA Toxicology Group, in cooperation with another subcommittee of the National Research Council, revised Spacecraft Maximum Allowable Concentrations (SMACs). In addition, a 1000-day exposure limit was set for long-duration spaceflights to celestial bodies. Herein we examine the rationale for the levels proposed to the U.S. Navy and compare this rationale with the one used by NASA to set its limits. We include a critical review of previous studies on the effects of exposure to carbon dioxide and attempt to dissect out the challenges associated with setting fully-defensible limits. We also describe recent experiences with management of carbon dioxide aboard the International Space Station with 13 persons aboard. This includes the tandem operations of the Russian Vozduk and the U.S. Carbon Dioxide Removal System. A third removal system is present while the station is docked to the Shuttle spacecraft, so our experience includes the lithium hydroxide system aboard Shuttle for the removal of carbon dioxide. We discuss strategies for highly-efficient, regenerable removal of carbon

  19. Carbon Dioxide Absorption Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  20. Infrared planar laser-induced fluorescence imaging and applications to imaging of carbon monoxide and carbon dioxide

    NASA Astrophysics Data System (ADS)

    Kirby, Brian James

    This dissertation introduces infrared planar laser- induced fluorescence (IR PLIF) techniques for visualization of species that lack convenient electronic transitions and are therefore unsuitable for more traditional electronic PLIF measurements. IR PLIF measurements can generate high signal levels that scale linearly with both laser energy and species concentration, thereby demonstrating advantages over Raman and multiphoton PLIF techniques. IR PLIF is shown to be a straightforward and effective tool for visualization of CO and CO2 in reactive flows. The slow characteristic times of vibrational relaxation and the large mole fractions of CO and CO2 in typical flows lead to high IR PLIF signal levels, despite the low emission rates typical of vibrational transitions. Analyses of rotational energy transfer (RET) and vibrational energy transfer (VET) show that excitation schemes in either linear (weak) or saturated (strong) limits may be developed, with the fluorescence collected directly from the laser-excited species or indirectly from bath gases in vibrational resonance with the laser-excited species. Use of short (~1 μs) exposures (for CO) or short exposures combined with long-pulse, high-pulse-energy excitation (for CO2) minimizes unwanted signal variation due to spatially-dependent VET rates. Results are presented for flows ranging from room- temperature mixing to a benchmark CH4 laminar diffusion flame. Linear excitation is appropriate for CO due to its slow vibrational relaxation. However, linear excitation is not well-suited for CO2 imaging due to fast H 2O-enhanced VET processes and the attendant difficulty in interpreting the resulting signal. Saturated excitation using a CO2 laser (or combined CO2 laser-OPO) technique is most appropriate for CO 2, as it generates high signal and minimizes spatial variations in fluorescence quantum yield. Since IR PLIF is applicable to most IR-active species, it has a high potential for expanding the diagnostic

  1. Process for sequestering carbon dioxide and sulfur dioxide

    DOEpatents

    Maroto-Valer, M. Mercedes; Zhang, Yinzhi; Kuchta, Matthew E.; Andresen, John M.; Fauth, Dan J.

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  2. High capacity carbon dioxide sorbent

    DOEpatents

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  3. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and....1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No. 124-38-9) occurs as a..., sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon dioxide is prepared as a...

  4. Carbon dioxide transport over complex terrain

    USGS Publications Warehouse

    Sun, Jielun; Burns, Sean P.; Delany, A.C.; Oncley, S.P.; Turnipseed, A.; Stephens, B.; Guenther, A.; Anderson, D.E.; Monson, R.

    2004-01-01

    The nocturnal transport of carbon dioxide over complex terrain was investigated. The high carbon dioxide under very stable conditions flows to local low-ground. The regional drainage flow dominates the carbon dioxide transport at the 6 m above the ground and carbon dioxide was transported to the regional low ground. The results show that the local drainage flow was sensitive to turbulent mixing associated with local wind shear.

  5. Modelling Sublimation of Carbon Dioxide

    ERIC Educational Resources Information Center

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  6. Efficacy of Punch Elevation Combined with Fractional Carbon Dioxide Laser Resurfacing in Facial Atrophic Acne Scarring: A Randomized Split-face Clinical Study

    PubMed Central

    Faghihi, Gita; Nouraei, Saeid; Asilian, Ali; Keyvan, Shima; Abtahi-Naeini, Bahareh; Rakhshanpour, Mehrdad; Nilforoushzadeh, Mohammad Ali; Hosseini, Sayed Mohsen

    2015-01-01

    Background: A number of treatments for reducing the appearance of acne scars are available, but general guidelines for optimizing acne scar treatment do not exist. The aim of this study was to compare the clinical effectiveness and side effects of fractional carbon dioxide (CO2) laser resurfacing combined with punch elevation with fractional CO2 laser resurfacing alone in the treatment of atrophic acne scars. Materials and Methods: Forty-two Iranian subjects (age range 18–55) with Fitzpatrick skin types III to IV and moderate to severe atrophic acne scars on both cheeks received randomized split-face treatments: One side received fractional CO2 laser treatment and the other received one session of punch elevation combined with two sessions of laser fractional CO2 laser treatment, separated by an interval of 1 month. Two dermatologists independently evaluated improvement in acne scars 4 and 16 weeks after the last treatment. Side effects were also recorded after each treatment. Results: The mean ± SD age of patients was 23.4 ± 2.6 years. Clinical improvement of facial acne scarring was assessed by two dermatologists blinded to treatment conditions. No significant difference in evaluation was observed 1 month after treatment (P = 0.56). Their evaluation found that fractional CO2 laser treatment combined with punch elevation had greater efficacy than that with fractional CO2 laser treatment alone, assessed 4 months after treatment (P = 0.02). Among all side effects, coagulated crust formation and pruritus at day 3 after fractional CO2 laser treatment was significant on both treatment sides (P < 0.05). Conclusion: Concurrent use of fractional laser skin resurfacing with punch elevation offers a safe and effective approach for the treatment of acne scarring. PMID:26538695

  7. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  8. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  9. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  10. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  11. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  12. A Comparison between the Effects of Glucantime, Topical Trichloroacetic Acid 50% plus Glucantime, and Fractional Carbon Dioxide Laser plus Glucantime on Cutaneous Leishmaniasis Lesions

    PubMed Central

    Jaffary, Fariba; Nilforoushzadeh, Mohammad Ali; Siadat, Amirhossein; Haftbaradaran, Elaheh; Ansari, Nazli; Ahmadi, Elham

    2016-01-01

    Background. Cutaneous leishmaniasis is an endemic disease in Iran. Pentavalent antimonial drugs have been the first line of therapy in cutaneous leishmaniasis for many years. However, the cure rate of these agents is still not favorable. This study was carried out to compare the efficacies of intralesional glucantime with topical trichloroacetic acid 50% (TCA 50%) + glucantime and fractional carbon dioxide laser + glucantime in the treatment of cutaneous leishmaniasis. Methods. A total of 90 patients were randomly divided into three groups of 30 to be treated with intralesional injection of glucantime, a combination of topical TCA 50% and glucantime, or a combination of fractional laser and glucantime. The overall clinical improvement and changes in sizes of lesions and scars were assessed and compared among three groups. Results. The mean duration of treatment was 6.1 ± 2.1 weeks in all patients (range: 2–12 weeks) and 6.8 ± 1.7, 5.2 ± 1.0, and 6.3 ± 3.0 weeks in glucantime, topical TCA plus glucantime, and fractional laser plus glucantime groups, respectively (P = 0.011). Complete improvement was observed in 10 (38.5%), 27 (90%), and 20 (87%) patients of glucantime, glucantime + TCA, and glucantime + laser groups, respectively (P < 0.001). Conclusion. Compared to glucantime alone, the combination of intralesional glucantime and TCA 50% or fractional CO2 laser had significantly higher and faster cure rate in patients with cutaneous leishmaniasis. PMID:27148363

  13. CARBON DIOXIDE AS A FEEDSTOCK.

    SciTech Connect

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  14. Oxygen and carbon dioxide sensing

    NASA Technical Reports Server (NTRS)

    Ren, Fan (Inventor); Pearton, Stephen John (Inventor)

    2012-01-01

    A high electron mobility transistor (HEMT) capable of performing as a CO.sub.2 or O.sub.2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.

  15. Method for carbon dioxide sequestration

    SciTech Connect

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  16. Summer Ice and Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Kukla, G.; Gavin, J.

    1981-10-01

    The extent of Antarctic pack ice in the summer, as charted from satellite imagery, decreased by 2.5 million square kilometers between 1973 and 1980. The U.S. Navy and Russian atlases and whaling and research ship reports from the 1930's indicate that summer ice conditions earlier in this century were heavier than the current average. Surface air temperatures along the seasonally shifting belt of melting snow between 55 degrees and 80 degrees N during spring and summer were higher in 1974 to 1978 than in 1934 to 1938. The observed departures in the two hemispheres qualitatively agree with the predicted impact of an increase in atmospheric carbon dioxide. However, since it is not known to what extent the changes in snow and ice cover and in temperature can be explained by the natural variability of the climate system or by other processes unrelated to carbon dioxide, a cause-and-effect relation cannot yet be established.

  17. Summer ice and carbon dioxide

    SciTech Connect

    Kukla, G.; Gavin, J.

    1981-10-30

    The extent of Antarctic pack ice in the summer, as charted from satellite imagery, decreased by 2.5 million square kilometers between 1973 and 1980. The U.S. Navy and Russian atlases and whaling and reseach ship reports from the 1930's indicate that summer ice conditions earlier in this century were heavier than the current average. Surface air temperatures along the seasonally shifting belt of melting snow between 55/sup o/ and 80/sup o/N during spring and summer were higher in 1974 to 1978 than in 1934 to 1938. The observed departures in the two hemispheres qualitatively agree with the predicted impact of an increase in atmospheric carbon dioxide. However, since it is not known to what extent the changes in snow and ice cover and in temperature can be explained by the natural variability of the climate system or by other processes unrelated to carbon dioxide, a cause-and-effect relation cannot yet be established.

  18. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  19. The Impact of Carbon Dioxide on Climate.

    ERIC Educational Resources Information Center

    MacDonald, Gordon J.

    1979-01-01

    Examines the relationship between climatic change and carbon dioxide from the historical perspective; details the contributions of carbon-based fuels to increasing carbon dioxide concentrations; and using global circulation models, discusses the future impact of the heavy reliance of our society on carbon-based fuels on climatic change. (BT)

  20. Carbon dioxide conversion over carbon-based nanocatalysts.

    PubMed

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.

  1. Carbon Dioxide Removal via Passive Thermal Approaches

    NASA Technical Reports Server (NTRS)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  2. Experimental carbon dioxide laser brain lesions and intracranial dynamics. Part 2. Effect on brain water content and its response to acute therapy

    SciTech Connect

    Tiznado, E.G.; James, H.E.; Moore, S.

    1985-04-01

    Experimental brain lesions were created over the left parietooccipital cortex of the albino rabbit through the intact dura mater with high radiating carbon dioxide laser energy. The brain water content was studied 2, 6, and 24 hours after the insult. Another two groups of animals received acute therapy with either dexamethasone (1 mg/kg) or furosemide (1 mg/kg). In all groups, Evans blue extravasation uniformly extended from the impact crater into the surrounding white matter. The brain water content in the gray matter was elevated from the control value by 2 hours after impact and remained elevated at 6 and 24 hours. The white matter brain water content did not increase until 6 hours after impact and remained elevated in the 24-hour group. After dexamethasone treatment, there was a significant decrease of water in the gray matter, but not in the white matter. With furosemide therapy, there was no reduction of gray or white matter brain water.

  3. [High-Sensitive Carbon Dioxide Detection Using Quartz-Enhanced Photoacoustic Spectroscopy with a 2.0 μm Distributed Feedback Laser].

    PubMed

    Liu, Xiao-li; Wu, Hong-peng; Shao, Jie; Dong, Lei; Zhang, Lei; Ma, Wei-guang; Yin, Wang-bao; Jia, Suo-tang

    2015-08-01

    A carbon dioxide (CO2) sensor is developed using quartz enhanced photoacoustic spectroscopy (QEPAS) with a 2.0 μm distributed feedback diode laser. The detection is based on a 2f wavelength-modulation spectroscopy approach by dithering and scanning the laser current. The laser modulation depth is optimized at normal atmosphere pressure and room temperature. The influence of the H2O presence in the sample gas mixture on the CO2 sensor performance is also investigated. The results show that, with 1% CO2 concentration, the H2O in the concentration ranges of 0 to 0.2% has an effect on the CO2 signal amplitude and phase, and the largest amplitude difference is ~2.1 times. When the H2O concentration is over 0.2%, the CO2 signal amplitude is saturated and remains steady. Atmospheric CO2 concentration is well measured using the optimal sensor parameters. Benefiting from the strong absorption line intensity at 4989.97 cm(-1), a detection limit of 19 ppm (1σ, 300 ms averaging time) is achieved, which corresponds to a normalized noise equivalent absorption coefficient of 4.71 × 10(-9) cm(-1) · W · Hz(-1/2). PMID:26672270

  4. Solubility of Carbon Dioxide in Water.

    ERIC Educational Resources Information Center

    Bush, Pat; And Others

    1992-01-01

    Describes an activity measuring the amount of dissolved carbon dioxide in carbonated water at different temperatures. The amount of carbon dioxide is measured by the amount of dilute ammonia solution needed to produce a pH indicator color change. (PR)

  5. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C....

  6. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C....

  7. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C....

  8. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C....

  9. Aircraft monitoring of surface carbon dioxide exchange

    SciTech Connect

    Desjardins, R.L.; Alvo, P.; Schuepp, P.H.

    1982-05-01

    Aircraft-mounted sensors were used to measure the exchange of carbon dioxide above a cornfield, a forest, and a lake under midday conditions. Mean absorption values of 3400, 1200, and 100 milligrams of carbon dioxide per square meter per hour, respectively, are consistent with reported ground-based observations of carbon dioxide flux. Such information, gathered by aircraft, could be used to provide a quantitative evaluation of source and sink distributions of carbon dioxide in the biosphere, to establish a correlation between satellite data and near-surface measurements, and to monitor crop performance.

  10. Carbon dioxide and intergenerational choice

    SciTech Connect

    D'Arge, R.C.; Schulze, W.D.; Brookshire, D.S.

    1982-05-01

    Depending on ethical beliefs, different decisions emerge for resolving the carbon dioxide (CO/sup 2/) issue. It is doubtful that an international consensus can be reached on a correct ethical criterion. Perhaps the best strategy would be to delay acceptance of either a particular set of beliefs or the existing scientific evidence and wait for more-accurate and conclusive research to emerge. If the scientific evidence is accepted as valid, and all future generations that will exist are evaluated equally, then the optimal current regulatory strategy is to restrict, as much as possible, current emissions of CO/sup 2/. 17 references, 2 figure, 1 table.

  11. Volcanic versus anthropogenic carbon dioxide

    USGS Publications Warehouse

    Gerlach, T.

    2011-01-01

    Which emits more carbon dioxide (CO2): Earth's volcanoes or human activities? Research findings indicate unequivocally that the answer to this frequently asked question is human activities. However, most people, including some Earth scientists working in fields outside volcanology, are surprised by this answer. The climate change debate has revived and reinforced the belief, widespread among climate skeptics, that volcanoes emit more CO2 than human activities [Gerlach, 2010; Plimer, 2009]. In fact, present-day volcanoes emit relatively modest amounts of CO2, about as much annually as states like Florida, Michigan, and Ohio.

  12. Carbon dioxide disposal in solid form

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Sharp, D.H.; Wendt, C.H.

    1995-12-31

    Coal reserves can provide for the world`s energy needs for centuries. However, coal`s long term use may be severely curtailed if the emission of carbon dioxide into the atmosphere is not eliminated. We present a safe and permanent method of carbon dioxide disposal that is based on combining carbon dioxide chemically with abundant raw materials to form stable carbonate minerals. We discuss the availability of raw materials and potential process designs. We consider our initial rough cost estimate of about 3{cents}/kWh encouraging. The availability of a carbon dioxide fixation technology would serve as insurance in case global warming, or the perception of global warming, causes severe restrictions on carbon dioxide emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would quite likely be unavoidable.

  13. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect

    K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

    2001-06-15

    The authors' long term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The major objectives of the project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coal being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals, to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. The specific accomplishments of this project during this reporting period are summarized below in three broad categories outlining experimentation, model development, and coal characterization. (1) Experimental Work: Our adsorption apparatus was reassembled, and all instruments were tested and calibrated. Having confirmed the viability of the experimental apparatus and procedures used, adsorption isotherms for pure methane, carbon dioxide and nitrogen on wet Fruitland coal were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 2%. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on two other coals. (2) Model Development: The experimental data were used to evaluate the

  14. Field-based stable isotope analysis of carbon dioxide by mid-infrared laser spectroscopy for carbon capture and storage monitoring.

    PubMed

    van Geldern, Robert; Nowak, Martin E; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A C; Jost, Hans-Jürg

    2014-12-16

    A newly developed isotope ratio laser spectrometer for CO2 analyses has been tested during a tracer experiment at the Ketzin pilot site (northern Germany) for CO2 storage. For the experiment, 500 tons of CO2 from a natural CO2 reservoir was injected in supercritical state into the reservoir. The carbon stable isotope value (δ(13)C) of injected CO2 was significantly different from background values. In order to observe the breakthrough of the isotope tracer continuously, the new instruments were connected to a stainless steel riser tube that was installed in an observation well. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10 day carbon stable isotope data set with 30 min resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within analytical precision. This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time stable isotope data directly in the field. The laser spectroscopy data revealed for the first time a prior to this experiment unknown, intensive dynamic with fast changing δ(13)C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The short-term variances as observed in this study might have been missed during previous works that applied laboratory-based IRMS analysis. The new technique could contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long

  15. Field-based stable isotope analysis of carbon dioxide by mid-infrared laser spectroscopy for carbon capture and storage monitoring.

    PubMed

    van Geldern, Robert; Nowak, Martin E; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A C; Jost, Hans-Jürg

    2014-12-16

    A newly developed isotope ratio laser spectrometer for CO2 analyses has been tested during a tracer experiment at the Ketzin pilot site (northern Germany) for CO2 storage. For the experiment, 500 tons of CO2 from a natural CO2 reservoir was injected in supercritical state into the reservoir. The carbon stable isotope value (δ(13)C) of injected CO2 was significantly different from background values. In order to observe the breakthrough of the isotope tracer continuously, the new instruments were connected to a stainless steel riser tube that was installed in an observation well. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10 day carbon stable isotope data set with 30 min resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within analytical precision. This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time stable isotope data directly in the field. The laser spectroscopy data revealed for the first time a prior to this experiment unknown, intensive dynamic with fast changing δ(13)C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The short-term variances as observed in this study might have been missed during previous works that applied laboratory-based IRMS analysis. The new technique could contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long

  16. Silanediol-catalyzed carbon dioxide fixation.

    PubMed

    Hardman-Baldwin, Andrea M; Mattson, Anita E

    2014-12-01

    Carbon dioxide is an abundant and renewable C1 source. However, mild transformations with carbon dioxide at atmospheric pressure are difficult to accomplish. Silanediols have been discovered to operate as effective hydrogen-bond donor organocatalysts for the atom-efficient conversion of epoxides to cyclic carbonates under environmentally friendly conditions. The reaction system is tolerant of a variety of epoxides and the desired cyclic carbonates are isolated in excellent yields. PMID:25328125

  17. Carbon Dioxide for pH Control

    SciTech Connect

    Wagonner, R.C.

    2001-08-16

    Cardox, the major supplier of carbon dioxide, has developed a diffuser to introduce carbon dioxide into a water volume as small bubbles to minimize reagent loss to the atmosphere. This unit is integral to several configurations suggested for treatment to control alkalinity in water streams.

  18. Encapsulated liquid sorbents for carbon dioxide capture.

    PubMed

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  19. Encapsulated liquid sorbents for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Vericella, John J.; Baker, Sarah E.; Stolaroff, Joshuah K.; Duoss, Eric B.; Hardin, James O.; Lewicki, James; Glogowski, Elizabeth; Floyd, William C.; Valdez, Carlos A.; Smith, William L.; Satcher, Joe H.; Bourcier, William L.; Spadaccini, Christopher M.; Lewis, Jennifer A.; Aines, Roger D.

    2015-02-01

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  20. Carbon dioxide sequestration by mineral carbonation

    SciTech Connect

    Gerdemann, Stephen J.; Dahlin David C.; O'Connor William K.; Penner Larry R.

    2003-11-01

    Concerns about global warming caused by the increasing concentration of carbon dioxide and other greenhouse gases in the earth’s atmosphere have resulted in the need for research to reduce or eliminate emissions of these gases. Carbonation of magnesium and calcium silicate minerals is one possible method to achieve this reduction. It is possible to carry out these reactions either in situ (storage underground and subsequent reaction with the host rock to trap CO2 as carbonate minerals) or ex situ (above ground in a more traditional chemical processing plant). Research at the Department of Energy’s Albany Research Center has explored both of these routes. This paper will explore parameters that affect the direct carbonation of magnesium silicate minerals serpentine (Mg3Si2O5(OH)4) and olivine (Mg2SiO4) to produce magnesite (MgCO3), as well as the calcium silicate mineral, wollastonite (CaSiO3), to form calcite (CaCO3). The Columbia River Basalt Group is a multi-layered basaltic lava plateau that has favorable mineralogy and structure for storage of CO2. Up to 25% combined concentration of Ca, Fe2+, and Mg cations could react to form carbonates and thus sequester large quantities of CO2. Core samples from the Columbia River Basalt Group were reacted in an autoclave for up to 2000 hours at temperatures and pressures to simulate in situ conditions. Changes in core porosity, secondary minerals, and solution chemistry were measured.

  1. Field Results from Three Campaigns to Validate the Performance of the Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Measuring Carbon Dioxide and Methane in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston; Clarke, Greg B.; Melroy, Hilary; Ott, Lesley; Steel, Emily Wilson

    2014-01-01

    In a collaboration between NASA GSFC and GWU, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrallyresolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. In the last year, the instrument was deployed for field measurements at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument has been observed. In the latest work the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. An overview of the measurement campaigns and the data retrieval algorithm for the calculation of column concentrations will be presented. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio

  2. Fractional carbon dioxide laser-assisted drug delivery of topical timolol solution for the treatment of deep infantile hemangioma: a pilot study.

    PubMed

    Ma, Gang; Wu, Pinru; Lin, Xiaoxi; Chen, Hui; Hu, Xiaojie; Jin, Yunbo; Qiu, Yajing

    2014-01-01

    Infantile hemangiomas (IHs) are benign vascular tumors of infancy. Topical timolol has recently been reported to be an effective treatment for superficial IHs, although it failed to have an effect on deep IHs. This prospective study was aimed at evaluating the feasibility of ablative fractional laser-assisted drug delivery for enhancing topical timolol permeation into deep IHs. Nine patients ages 1 to 6 months with deep IHs were enrolled. A fractional carbon dioxide (CO2 ) laser system was applied to the skin surface of deep IHs using the DeepFx mode (25-30 mJ/pulse, 5% density, single pulse) at 1-week intervals. Topical timolol maleate 0.5% ophthalmic solution was applied under occlusion for 30 minutes four to five times per day for an average treatment duration of 14.2 weeks. Clinical improvement was evaluated according to a global score and the Hemangioma Activity Score (HAS). Four patients (44.4%) demonstrated excellent regression, four (44.4%) showed good response, and one (11.1%) experienced moderate regression. The HAS declined from 4.1 ± 0.7 at baseline to 1.7 ± 0.7 at 1 week (p < 0.001) and 1.4 ± 0.7 at 3 months (p = 0.03) after the last treatment procedure. Plasma timolol concentration was not detected in any of the patients after the first administration of topical timolol. No systemic complication or skin side effects were observed in any of the patients. Ablative fractional laser-assisted transdermal delivery of topical timolol is a safe and effective method for the treatment of deep IHs.

  3. Electrocatalysts for carbon dioxide conversion

    SciTech Connect

    Masel, Richard I; Salehi-Khojin, Amin

    2015-04-21

    Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  4. Carbon dioxide cleaning pilot project

    SciTech Connect

    Knight, L.; Blackman, T.E.

    1994-01-21

    In 1989, radioactive-contaminated metal at the Rocky Flats Plant (RFP) was cleaned using a solvent paint stripper (Methylene chloride). One-third of the radioactive material was able to be recycled; two-thirds went to the scrap pile as low-level mixed waste. In addition, waste solvent solutions also required disposal. Not only was this an inefficient process, it was later prohibited by the Resource Conservation and Recovery Act (RCRA), 40 CFR 268. A better way of doing business was needed. In the search for a solution to this situation, it was decided to study the advantages of using a new technology - pelletized carbon dioxide cleaning. A proof of principle demonstration occurred in December 1990 to test whether such a system could clean radioactive-contaminated metal. The proof of principle demonstration was expanded in June 1992 with a pilot project. The purpose of the pilot project was three fold: (1) to clean metal so that it can satisfy free release criteria for residual radioactive contamination at the Rocky Flats Plant (RFP); (2) to compare two different carbon dioxide cleaning systems; and (3) to determine the cost-effectiveness of decontamination process in a production situation and compare the cost of shipping the metal off site for waste disposal. The pilot project was completed in August 1993. The results of the pilot project were: (1) 90% of those items which were decontaminated, successfully met the free release criteria , (2) the Alpheus Model 250 was selected to be used on plantsite and (3) the break even cost of decontaminating the metal vs shipping the contaminated material offsite for disposal was a cleaning rate of 90 pounds per hour, which was easily achieved.

  5. Carbon dioxide capture process with regenerable sorbents

    DOEpatents

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  6. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect

    K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

    2001-06-15

    During the present reporting period, six complementary tasks involving experimentation, model development, and coal characterization were undertaken to meet our project objectives: (1) A second adsorption apparatus, utilizing equipment donated by BP Amoco, was assembled. Having confirmed the reliability of this additional experimental apparatus and procedures, adsorption isotherms for CO{sub 2}, methane, ethane, and nitrogen on wet Fruitland coal and on activated carbon were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 3%. The addition of this new facility has allowed us to essentially double our rate of data production. (2) Adsorption isotherms for pure CO{sub 2}, methane, and nitrogen on wet Illinois-6 coal and on activated carbon were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia) on our first apparatus. The activated carbon measurements showed good agreement with literature data and with measurements obtained on our second apparatus. The expected uncertainty of the data is about 3%. The Illinois-6 adsorption measurements are a new addition to the existing database. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on DESC-8 coal. (3) Adsorption from binary mixtures of methane, nitrogen and CO{sub 2} at a series of compositions was also measured on the wet Fruitland coal at 319.3 K (115 F), using our first apparatus. The nominal compositions of these mixtures are 20%/80%, 40%/60%, 60%/40%, and 80%/20%. The experiments were conducted at pressures from 100 psia to 1800 psia. The expected uncertainty for these binary mixture data varies from 2 to 9%. (4) A study was completed to address the previously-reported rise in the CO{sub 2} absolute adsorption on wet Fruitland coal at 115 F and pressures exceeding 1200 psia. Our additional adsorption measurements on

  7. Monitoring annealing via carbon dioxide laser heating of defect populations in fused silica surfaces using photoluminescence microscopy

    SciTech Connect

    Raman, R N; Matthews, M J; Adams, J J; Demos, S G

    2010-02-01

    Photoluminescence (PL) microscopy and spectroscopy under 266 nm and 355 nm laser excitation are explored as a means of monitoring defect populations in laser-modified sites on the surface of fused silica and their subsequent response to heating to different temperatures via exposure to a CO{sub 2} laser beam. Laser-induced temperature changes were estimated using an analytic solution to the heat flow equation and compared to changes in the PL emission intensity. The results indicate that the defect concentrations decrease significantly with increasing CO{sub 2} laser exposure and are nearly eliminated when the peak surface temperature exceeds the softening point of fused silica ({approx}1900K), suggesting that this method might be suitable for in situ monitoring of repair of defective sites in fused silica optical components.

  8. Evaluation of the safety of the carbon dioxide laser used in conjunction with root form implants: a pilot study.

    PubMed

    Ganz, C H

    1994-01-01

    This in vitro study was designed to test the safety of the CO2 laser when used around two different types of implant surfaces, hydroxyapatite-coated and commercially pure titanium, in a pig mandible. The implants were subjected to specific amounts of laser energy and then evaluated for temperature change at five different sites. The CO2 laser, when used at clinically applicable power densities of 2 and 4 watts in a continuous mode for up to 4 seconds, did not cause a temperature change in excess of 7 degrees F.

  9. Development and metrological characterization of a tunable diode laser absorption spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor.

    PubMed

    Pogány, Andrea; Wagner, Steven; Werhahn, Olav; Ebert, Volker

    2015-01-01

    Simultaneous detection of two analytes, carbon dioxide (CO2) and water vapor (H2O), has been realized using tunable diode laser absorption spectroscopy (TDLAS) with a single distributed feedback diode laser at 2.7 μm. The dynamic range of the spectrometer is extended from the low parts per million to the percentage range using two gas cells, a single-pass cell with 0.77 m, and a Herriott-type multipass cell with 76 m path length. Absolute measurements were carried out, i.e., amount fractions of the analytes were calculated based on previously determined spectral line parameters, without the need for an instrument calibration using gas standards. A thorough metrological characterization of the spectrometer is presented. We discuss traceability of all parameters used for amount fraction determination and provide a comprehensive uncertainty assessment. Relative expanded uncertainties (k = 2, 95% confidence level) of the measured amount fractions are shown to be in the 2-3% range for both analytes. Minimum detectable amount fractions are 0.16 μmol/mol for CO2 and 1.1 μmol/mol for H2O for 76 m path length and 5 s averaging time. This corresponds to normalized detection limits of 27 μmol/mol m Hz(-1/2) for CO2 and 221 μmol/mol m Hz(-1/2) for H2O. Precision of the spectrometer, determined using Allan variance analysis, is 3.3 nmol/mol for CO2 and 21 nmol/mol for H2O. The spectrometer has been validated using reference gas mixtures with known CO2 and H2O amount fractions. An application example of the absolute TDLAS spectrometer as a reference instrument to validate other sensors is also presented.

  10. Fiber-Based Laser Transmitter at 1.57 Micrometers for Remote Sensing of Atmospheric Carbon Dioxide from Satellites

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Abshire, James B.; Stephen, Mark A.; Chen, Jeffrey R.; Wu, Stewart; Gonzalez, Brayler; Han, Lawrence; Numata, Kenji; Allan, Graham R.; Hasselbrack, William; Nicholson, Jeffrey W.; Yan, Man; Wisk, Patrick; DeSantolo, Anthony; DeSantolo, Anthony; Mangan, Brian; Puc, Gabe; Engin, Doruk; Mathason, Brian; Storm, Mark

    2015-01-01

    Over the past 20 years, NASA Goddard has successfully developed space-based lidar for remote sensing studies of the Earth and planets. The lidar in all missions to date have used diode pumped Nd:YAG laser transmitters. Recently we have been concentrating work on developing integrated path differential absorption (IPDA) lidar to measure greenhouse gases, with the goal of measurements from space. Due to the absorption spectrum of CO2 a fiber-based master oscillator power amplifier (MOPA) laser with a tunable seed source is an attractive laser choice. Fiber-based lasers offer a number of potential advantages for space, but since they are relatively new, challenges exist in developing them. In order to reduce risks for new missions using fiber-based lasers, we developed a 30- month plan to mature the technology of a candidate laser transmitter for space-based CO2 measurements to TRL-6. This work is also intended to reduce development time and costs and increase confidence in future mission success.

  11. Carbon dioxide conversion over carbon-based nanocatalysts.

    PubMed

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity. PMID:23901504

  12. Treatment of hypertrophic scars and keloids by fractional carbon dioxide laser: a clinical, histological, and immunohistochemical study.

    PubMed

    Azzam, O A; Bassiouny, D A; El-Hawary, M S; El Maadawi, Z M; Sobhi, R M; El-Mesidy, M S

    2016-01-01

    Treatment of keloids (K) and hypertrophic scars (HTS) is challenging. A few case reports reported good results in HTS treated by fractional CO2 laser. The aim of the present study was the assessment of the clinical response as well as histological changes in K and HTS treated by fractional CO2 laser and the role of matrix metalloproteinase 9 (MMP9) in the response. A randomized half of the scar was treated by fractional CO2 laser in 30 patients (18 K, 12 HTS) for a total of four sessions 6 weeks apart. Vancouver scar score (VSS) was done before and 1, 3, and 6 months after the last laser session by a blinded observer. Biopsies taken from normal skin, untreated scar, and treated scar tissue 1 and 3 months after the laser sessions were stained by HX & E for histological changes and Masson trichrome for collagen fiber arrangement. Immunohistochemical staining for MMP9 was done in before and 1 month after samples. Quantitative morphometric analysis was done for collagen and MMP9 by image analyzer. Nineteen patients completed the 6-month follow-up period (12 K, 7 HTS). VSS score was significantly lower in the treated compared to untreated areas after 3 and 6 months in both K and HTS but was mainly due to improved pliability of the scar. Histologically, dense inflammatory infiltrate and increased vascularity was apparent 1 month after laser sessions and disappeared at 3 months. Thinner better organized collagen bundle could be seen in 3 months after samples. MMP9 was significantly increased in after treatment samples but without significant correlation with VSS. Fractional CO2 resurfacing is safe but affects mainly pliability of K and HTS with collagen remodeling apparent 3 months after therapy. MMP9 may play a role in mechanism of action of CO2 laser in K and HTS.

  13. Treatment of hypertrophic scars and keloids by fractional carbon dioxide laser: a clinical, histological, and immunohistochemical study.

    PubMed

    Azzam, O A; Bassiouny, D A; El-Hawary, M S; El Maadawi, Z M; Sobhi, R M; El-Mesidy, M S

    2016-01-01

    Treatment of keloids (K) and hypertrophic scars (HTS) is challenging. A few case reports reported good results in HTS treated by fractional CO2 laser. The aim of the present study was the assessment of the clinical response as well as histological changes in K and HTS treated by fractional CO2 laser and the role of matrix metalloproteinase 9 (MMP9) in the response. A randomized half of the scar was treated by fractional CO2 laser in 30 patients (18 K, 12 HTS) for a total of four sessions 6 weeks apart. Vancouver scar score (VSS) was done before and 1, 3, and 6 months after the last laser session by a blinded observer. Biopsies taken from normal skin, untreated scar, and treated scar tissue 1 and 3 months after the laser sessions were stained by HX & E for histological changes and Masson trichrome for collagen fiber arrangement. Immunohistochemical staining for MMP9 was done in before and 1 month after samples. Quantitative morphometric analysis was done for collagen and MMP9 by image analyzer. Nineteen patients completed the 6-month follow-up period (12 K, 7 HTS). VSS score was significantly lower in the treated compared to untreated areas after 3 and 6 months in both K and HTS but was mainly due to improved pliability of the scar. Histologically, dense inflammatory infiltrate and increased vascularity was apparent 1 month after laser sessions and disappeared at 3 months. Thinner better organized collagen bundle could be seen in 3 months after samples. MMP9 was significantly increased in after treatment samples but without significant correlation with VSS. Fractional CO2 resurfacing is safe but affects mainly pliability of K and HTS with collagen remodeling apparent 3 months after therapy. MMP9 may play a role in mechanism of action of CO2 laser in K and HTS. PMID:26498451

  14. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for...) Each transport vehicle and freight container containing solid carbon dioxide must be...

  15. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  16. 46 CFR 108.627 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next...

  17. 46 CFR 169.732 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  18. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  19. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626... AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  20. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  1. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626... AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  2. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  3. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  4. 46 CFR 169.732 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  5. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  6. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  7. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  8. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11... Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into...

  9. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8... Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space...

  10. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  11. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11... Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into...

  12. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b)...

  13. 46 CFR 108.627 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next...

  14. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  15. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located within the...

  16. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817... Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  17. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b)...

  18. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  19. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  20. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located within the...

  1. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11... Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into...

  2. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626... AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  3. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8... Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space...

  4. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  5. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  6. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817... Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  7. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  8. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  9. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  10. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8... Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space...

  11. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  12. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  13. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  14. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  15. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  16. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817... Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  17. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  18. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  19. Silver oxide sorbent for carbon dioxide

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.

    1974-01-01

    Material can be regenerated at least 20 times by heating at 250 C. Sorbent is compatible with environment of high humidity; up to 20% by weight of carbon dioxide can be absorbed. Material is prepared from silver carbonate, potassium hydroxide or carbonate, and sodium silicate.

  20. Carbon dioxide dialysis will save the lung.

    PubMed

    Pesenti, Antonio; Patroniti, Nicolò; Fumagalli, Roberto

    2010-10-01

    Mechanical ventilation and ventilator-associated lung injury could be avoided by decreasing the ventilatory needs of the patient by extracorporeal carbon dioxide removal. The reasons for the increased ventilatory needs of the patients with acute respiratory distress syndrome are outlined, as well as some of the mechanisms of continuing damage. Extracorporeal gas exchange has been used mainly as a rescue procedure for severely hypoxic patients. Although this indication remains valid, we propose that extracorporeal carbon dioxide removal could control the ventilatory needs of the patient and allow the maintenance of spontaneous breathing while avoiding intubation and decreasing the concurrent sedation needs. A scenario is depicted whereby an efficient carbon dioxide removal device can maintain blood gas homeostasis of the patient with invasiveness comparable to hemodialysis. High carbon dioxide removal efficiency may be achieved by combinations of hemofiltration and metabolizable acid loads.

  1. Carbon dioxide-soluble polymers and swellable polymers for carbon dioxide applications

    DOEpatents

    DeSimone, Joseph M.; Birnbaum, Eva; Carbonell, Ruben G.; Crette, Stephanie; McClain, James B.; McCleskey, T. Mark; Powell, Kimberly R.; Romack, Timothy J.; Tumas, William

    2004-06-08

    A method for carrying out a catalysis reaction in carbon dioxide comprising contacting a fluid mixture with a catalyst bound to a polymer, the fluid mixture comprising at least one reactant and carbon dioxide, wherein the reactant interacts with the catalyst to form a reaction product. A composition of matter comprises carbon dioxide and a polymer and a reactant present in the carbon dioxide. The polymer has bound thereto a catalyst at a plurality of chains along the length of the polymer, and wherein the reactant interacts with the catalyst to form a reaction product.

  2. Greater surgical precision of a flexible carbon dioxide laser fiber compared to monopolar electrosurgery in porcine myometrium.

    PubMed

    Bailey, Amelia P; Lancerotto, Luca; Gridley, Chad; Orgill, Dennis P; Nguyen, Hiep; Pescarini, Elena; Lago, Gianluigi; Gargiulo, Antonio R

    2014-01-01

    The objective of this experimental animal study was to compare the surgical precision of a flexible CO2 laser fiber with that of monopolar electrosurgery in porcine myometrium. The subjects were 6 live adult non-pregnant female pigs. Linear injury to the uterine horns was created using a flexible CO2 laser fiber at 5W, 10W, and 15W and with monopolar electrosurgery at 10W, 20W, 30W, and 40W in both cut and coagulation modes. Hysterectomy was then performed in the live animals. Cross-sections of the tissue were processed and stained using Masson trichrome to differentiate damaged from undamaged myometrium. Measurement means were compared using analysis of variance with Tukey honest significant difference correction; p <.05 indicated significance. Incision width of the laser at 5W and 10W was significantly less than both monopolar coagulation at all power settings and monopolar cut at 30W and 40W (all p <.01), at 5W was also significantly less than monopolar cut at 10W (p = .03), and at 15W was significantly less than monopolar coagulation at 40W (p = .001). Incision depth of the laser at 5W was significantly less than monopolar coagulation at 40W and laser at 15W (both p = .01), at 15W was significantly greater than monopolar coagulation at 10W and monopolar cut at 10, 20, and 30W (p ≤.01), and increased proportional to power for all 3 energy types. Collateral thermal damage width at all laser power settings was significantly less than at all monopolar coagulation power settings (p ≤.04) with the exception of the laser at 15W compared with monopolar coagulation at 10W (p = .30), and at all laser power settings was significantly less than at all monopolar coagulation power settings (p <.001). Collateral thermal damage depth of the laser at 5W and 10W was significantly less than monopolar cut at 30W (p ≤.002) and increased proportional to power in monopolar coagulation mode but remained constant with the laser. Incising efficiency of the laser at 5W was

  3. A wide angle search technique for a 10.6 micron ladar. [scanning radar using Q switched carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Levinson, S.; Adelman, S.; Lowrey, D. O.

    1975-01-01

    A ladar (laser radar) sensor designed around a pulsed passively Q-switched CO2 laser, capable of a efficient and rapid scans with a narrow beam over a wide field of view, is considered for surveillance and tracking applications in space. The output is a train of narrow pulses with a controllable pulse repetition rate. A resonant vibrating mirror in back of a classical Gregorian telescope, and a plane pointing mirror in front for beam steering, are used in scanning. Scan pulse sequences are described and illustrated. The 10.6 micron ladar set is under consideration as baseline sensor for various space rendezvous and docking applications.

  4. Mineralization strategies for carbon dioxide sequestration

    SciTech Connect

    Penner, Larry R.; O'Connor, William K.; Gerdemann, Stephen J.; Dahlin, David C.

    2003-01-01

    Progress is reported in three primary research areas--each concerned with sequestering carbon dioxide into mineral matrices. Direct mineral carbonation was pioneered at Albany Research Center. The method treats the reactant, olivine or serpentine in aqueous media with carbon dioxide at high temperature and pressure to form stable mineral carbonates. Recent results are introduced for pretreatment by high-intensity grinding to improve carbonation efficiency. To prove feasibility of the carbonation process, a new reactor was designed and operated to progress from batch tests to continuous operation. The new reactor is a prototype high-temperature, high-pressure flow loop reactor that will furnish information on flow, energy consumption, and wear and corrosion resulting from slurry flow and the carbonation reaction. A promising alternative mineralization approach is also described. New data are presented for long-term exposure of carbon dioxide to Colombia River Basalt to determine the extent of conversion of carbon dioxide to permanent mineral carbonates. Batch autoclave tests were conducted using drill-core samples of basalt and reacted under conditions that simulate in situ injection into basalt-containing geological formations.

  5. Therapeutic benefits of carbon dioxide (CO2) laser on single-site HPV lesions in the lower female genital tract

    NASA Astrophysics Data System (ADS)

    Urru, Giovanni; Moretti, Gianfranco

    1998-01-01

    Numerous studies have shown contradictory variable percentages of recurrent HPV lesions, after various therapies. The present study therefore evaluates the effectiveness of CO2 laser vaporization in the treatment of single-site HPV lesions of the lower female genital tract in order to confirm the conviction that physical therapy alone, in agreement with some findings reported in the literature, is capable of guaranteeing a high cure rate in selected patients. From January 1995 to June 1996, seventy- five female patients were treated with CO2 laser vaporization for single-site genital HPV lesions, some of which were associated with low-grade intra-epithelial neoplasia. The success rate after 12 months proved to be 97%. The pre-existing clinical symptoms disappeared in all the patients treated. No complication in the vaporization procedure was encountered.

  6. Optical Emission Studies of Copper Plasma Induced Using Infrared Transversely Excited Atmospheric (IR TEA) Carbon Dioxide Laser Pulses.

    PubMed

    Momcilovic, Milos; Kuzmanovic, Miroslav; Rankovic, Dragan; Ciganovic, Jovan; Stoiljkovic, Milovan; Savovic, Jelena; Trtica, Milan

    2015-04-01

    Spatially resolved, time-integrated optical emission spectroscopy was applied for investigation of copper plasma produced by a nanosecond infrared (IR) transversely excited atmospheric (TEA) CO2 laser, operating at 10.6 μm. The effect of surrounding air pressure, in the pressure range 0.1 to 1013 mbar, on plasma formation and its characteristics was investigated. A linear dependence of intensity threshold for plasma formation on logarithm of air pressure was found. Lowering of the air pressure reduces the extent of gas breakdown, enabling better laser-target coupling and thus increases ablation. Optimum air pressure for target plasma formation was 0.1 mbar. Under that pressure, the induced plasma consisted of two clearly distinguished and spatially separated regions. The maximum intensity of emission, with sharp and well-resolved spectral lines and negligibly low background emission, was obtained from a plasma zone 8 mm from the target surface. The estimated excitation temperature in this zone was around 7000 K. The favorable signal to background ratio obtained in this plasma region indicates possible analytical application of TEA CO2 laser produced copper plasma. Detection limits of trace elements present in the Cu sample were on the order of 10 ppm (parts per million). Time-resolved measurements of spatially selected plasma zones were used to find a correlation between the observed spatial position and time delay. PMID:25741748

  7. Safe and effective one-session fractional skin resurfacing using a carbon dioxide laser device in super-pulse mode: a clinical and histologic study.

    PubMed

    Trelles, Mario A; Shohat, Michael; Urdiales, Fernando

    2011-02-01

    Carbon dioxide (CO(2)) laser ablative fractional resurfacing produces skin damage, with removal of the epidermis and variable portions of the dermis as well as associated residual heating, resulting in new collagen formation and skin tightening. The nonresurfaced epidermis helps tissue to heal rapidly, with short-term postoperative erythema. The results for 40 patients (8 men and 32 women) after a single session of a fractional CO(2) resurfacing mode were studied. The treatments included resurfacing of the full face, periocular upper lip, and residual acne scars. The patients had skin prototypes 2 to 4 and wrinkle degrees 1 to 3. The histologic effects, efficacy, and treatment safety in various clinical conditions and for different phototypes are discussed. The CO(2) laser for fractional treatment is used in super-pulse mode. The beam is split by a lens into several microbeams, and super-pulse repetition is limited by the pulse width. The laser needs a power adaptation to meet the set fluence per microbeam. Laser pulsing can operate repeatedly on the same spot or be moved randomly over the skin, using several passes to achieve a desired residual thermal effect. Low, medium, and high settings are preprogrammed in the device, and they indicate the strength of resurfacing. A single treatment was given with the patient under topical anesthesia. However, the anesthesia was injected on areas of scar tissue. Medium settings (2 Hz, 30 W, 60 mJ) were used, and two passes were made for dark skins and degree 1 wrinkles. High settings (2 Hz, 60 W, 120 mJ) were used, and three passes were made for degree 3 wrinkles and scar tissue. Postoperatively, resurfaced areas were treated with an ointment of gentamycin, Retinol Palmitate, and DL-methionine (Novartis; Farmaceutics, S.A., Barcelona, Spain). Once epithelialization was achieved, antipigment and sun protection agents were recommended. Evaluations were performed 15 days and 2 months after treatment by both patients and

  8. Turning carbon dioxide into fuel.

    PubMed

    Jiang, Z; Xiao, T; Kuznetsov, V L; Edwards, P P

    2010-07-28

    Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity-and a burgeoning challenge-to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes. Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953-996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion-and hence the utilization-of CO2. Here, we hope to illustrate that advances

  9. Turning carbon dioxide into fuel.

    PubMed

    Jiang, Z; Xiao, T; Kuznetsov, V L; Edwards, P P

    2010-07-28

    Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity-and a burgeoning challenge-to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes. Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953-996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion-and hence the utilization-of CO2. Here, we hope to illustrate that advances

  10. Improved analysis of column carbon dioxide and methane data from ground-based Miniaturized Laser Heterodyne Radiometer (Mini-LHR)

    NASA Astrophysics Data System (ADS)

    Wilson, E. L.; Melroy, H.; Ramanathan, A. K.; Mao, J.; Clarke, G.; McLinden, M.; Ott, L. E.; Miller, J. H. H.; Allan, G. R.; Holben, B. N.

    2014-12-01

    We present an improved data analysis for the Mini-LHR column measurements of CO2 and CH4 that includes corrections for refraction through the atmosphere and meteorological conditions. Multi-scan averaging has also been added to compensate for current shot noise limitations and improve instrument sensitivity. Data with the improved analysis will be shown for field measurements at the TCCON site at CalTech (March 2014), Calpoly during COW-Gas (March 2014), at Mauna Loa Observatory (May 2013), and Atwater, CA (February 2013). The Mini-LHR is a miniaturized version of a laser heterodyne radiometer that implements telecommunications lasers and components to produce a significantly reduced size, low-cost instrument. Laser heterodyne radiometry has been used since the 1970s to measure atmospheric gases such as ozone, water vapor, methane, ammonia, chlorine monoxide, and nitrous oxide. The Mini-LHR is passive and uses sunlight as the primary light source to measure absorption of CO2 and CH4 in the infrared. Sunlight is collected with collimation optics mounted to the AERONET sun tracker and superimposed with laser light in a single mode fiber coupler. The signals are mixed in a fast photoreceiver (InGaAs detector), and the RF (radio frequency) beat signal is extracted. Changes in concentration of the trace gas are realized through analyzing changes in the beat frequency amplitude. In addition to the complementary aerosol optical depth measurement, tandem operation with AERONET provides a clear pathway for the mini-LHR to be expanded into a global monitoring network. AERONET has more than 450 instruments worldwide and offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern. A mini-LHR global ground network can also provide an uninterrupted data record that will both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3, and

  11. Fluorescence quantum yield of carbon dioxide for quantitative UV laser-induced fluorescence in high-pressure flames

    NASA Astrophysics Data System (ADS)

    Lee, T.; Bessler, W. G.; Yoo, J.; Schulz, C.; Jeffries, J. B.; Hanson, R. K.

    2008-11-01

    The fluorescence quantum yield for ultraviolet laser-induced fluorescence of CO2 is determined for selected excitation wavelengths in the range 215-250 nm. Wavelength-resolved laser-induced fluorescence (LIF) spectra of CO2, NO, and O2 are measured in the burned gases of a laminar CH4/air flame ( φ=0.9 and 1.1) at 20 bar with additional NO seeded into the flow. The fluorescence spectra are fit to determine the relative contribution of the three species to infer an estimate of fluorescence quantum yield for CO2 that ranges from 2-8×10-6 depending on temperature and excitation wavelength with an estimated uncertainty of ±0.5×10-6. The CO2 fluorescence signal increases linearly with gas pressure for flames with constant CO2 mole fraction for the 10 to 60 bar range, indicating that collisional quenching is not an important contributor to the CO2 fluorescence quantum yield. Spectral simulation calculations are used to choose two wavelengths for excitation of CO2, 239.34 and 242.14 nm, which minimize interference from LIF of NO and O2. Quantitative LIF images of CO2 are demonstrated using these two excitation wavelengths and the measured fluorescence quantum yield.

  12. Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy.

    PubMed

    McCurdy, Matthew R; Bakhirkin, Yury; Wysocki, Gerard; Tittel, Frank K

    2007-01-01

    Exhaled nitric oxide (NO) is an important biomarker in asthma and other respiratory disorders. The optical performance of a NOCO(2) sensor employing integrated cavity output spectroscopy (ICOS) with a quantum cascade laser operating at 5.22 microm capable of real-time NO and CO(2) measurements in a single breath cycle is reported. A NO noise-equivalent concentration of 0.4 ppb within a 1-sec integration time is achieved. The off-axis ICOS sensor performance is compared to a chemiluminescent NO analyzer and a nondispersive infrared (NDIR) CO(2) absorption capnograph. Differences between the gas analyzers are assessed by the Bland-Altman method to estimate the expected variability between the gas sensors. The off-axis ICOS sensor measurements are in good agreement with the data acquired with the two commercial gas analyzers. This work demonstrates the performance characteristics and merits of mid-infrared spectroscopy for exhaled breath analysis.

  13. Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy.

    PubMed

    McCurdy, Matthew R; Bakhirkin, Yury; Wysocki, Gerard; Tittel, Frank K

    2007-01-01

    Exhaled nitric oxide (NO) is an important biomarker in asthma and other respiratory disorders. The optical performance of a NOCO(2) sensor employing integrated cavity output spectroscopy (ICOS) with a quantum cascade laser operating at 5.22 microm capable of real-time NO and CO(2) measurements in a single breath cycle is reported. A NO noise-equivalent concentration of 0.4 ppb within a 1-sec integration time is achieved. The off-axis ICOS sensor performance is compared to a chemiluminescent NO analyzer and a nondispersive infrared (NDIR) CO(2) absorption capnograph. Differences between the gas analyzers are assessed by the Bland-Altman method to estimate the expected variability between the gas sensors. The off-axis ICOS sensor measurements are in good agreement with the data acquired with the two commercial gas analyzers. This work demonstrates the performance characteristics and merits of mid-infrared spectroscopy for exhaled breath analysis. PMID:17614742

  14. Treatment of developmental defect of upper lip with carbon dioxide laser radiation (CO2): first surgical time.

    PubMed

    Niccoli-Filho, Walter; Murilo-Santos, Lucio; Schubert, Mark; Morosolli, Aline Cantarelli

    2005-06-01

    With the exception of the cleft lip, developmental defects (DD) of the lip are rare. The upper lip originates from the ectomesenchyme and is formed by the merging of the nasal medial and lateral processes with the maxillary process. Disturbances during this formation period can cause DD with functional and/or esthetic repercussions. We present a case of DD of the upper lip in a patient with a history of progressive growth of the left lateral portion of the upper lip that occurred from the time of birth until the age of 22 years. Clinical examination revealed hypertrophy of the area from the left philtral columns to the left commissure of the lip, extending the portion of the surface mucosa creating a flaccid and asymptomatic tissue mass. All other buccal structures appeared to be within normal limits and without any evidence of defects or deformities. In the surgical planning we decided to carry out corrective surgery in two phases. The first phase accomplished a conservative excision of the total abnormal labial tissue mass with a CO2 laser radiation (5 W in continuous mode, bunch diameter Phi = 0.6 mm with a power density of 768 W/cm2 and fluency of 0.231 J/cm2) being careful to preserve the vermilion portion of the lip. Postsurgical clinical evaluations were done every three days until the skin sutures were removed and then every seven days until two months post surgery. While the entire mass of excessive tissue could not be completely removed, the removal of the excessive mucosal tissue produced a very good outcome relative to lip function, with a good esthetic result without scarring, and good tissue mobility. The results showed that the CO2 laser is an extremely useful instrument that can provide excellent control of the surgical field and allow for healing that produces excellent functional and esthetic results.

  15. Pulsed and scanned carbon dioxide laser resurfacing 2 years after treatment: comparison by means of scanning electron microscopy.

    PubMed

    Trelles, Mario A; Garcia, Luisa; Rigau, Josepa; Allones, Inès; Velez, Marìano

    2003-05-01

    Studies have reported short-term and long-term (1-year) findings for laser skin resurfacing. Two of the most popular systems used for this procedure, the continuous-wave Sharplan 40C SilkTouch system and the pulsed Coherent 5000C UltraPulse system with a computer pattern generator, were previously compared for a range of follow-up times up to 1 year, using light microscopy and transmission electron microscopy. This study analyzed the 2-year morphological differences using scanning electron microscopy. Tissue samples were obtained from 10 patients (age range, 50 to 72 years; skin types II and III) who had undergone laser resurfacing 2 years previously. One half of the face of each patient had been treated with the continuous-wave system and the other half with the pulsed system. The samples were subjected to scanning electron microscopy. On the continuous-wave-treated side, significantly better dermal collagen organization was observed at 2 years, with plump-appearing fibers that were closely knit to form a compact structure. On the side treated with the pulsed system, the collagen fibers in the papillary dermis were more loosely arranged and appeared drier. In both the continuous-wave-treated and pulsed-treated areas, the epidermis appeared healthy and exhibited some signs of age-related deterioration, with slightly flatter plaques and somewhat more flaking keratin on the pulsed-treated side. Probably because of the greater degree of residual thermal damage associated with the continuous-wave system, at 2 years after treatment there was more prolific synthesis and better orientation of collagen fibers, which were maintained for longer times, compared with the pulsed-treated specimens.

  16. Method for Extracting and Sequestering Carbon Dioxide

    SciTech Connect

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO2) from a stream or volume of gas wherein said method and apparatus hydrates CO2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO2 from a gaseous environment.

  17. Method for extracting and sequestering carbon dioxide

    DOEpatents

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said method and apparatus hydrates CO.sub.2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  18. Apparatus for extracting and sequestering carbon dioxide

    DOEpatents

    Rau, Gregory H.; Caldeira, Kenneth G.

    2010-02-02

    An apparatus and method associated therewith to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said apparatus hydrates CO.sub.2 and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  19. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also

  20. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect

    K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

    2003-03-10

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The originally-stated, major objectives of the current project are to (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project has developed, an important additional objective has been added to the above original list. Namely, we have been encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we have participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects

  1. Continuous measurements of nitrous oxide, carbon monoxide, methane and carbon dioxide in the surface ocean with novel laser-absorption analysers

    NASA Astrophysics Data System (ADS)

    Kaiser, Jan; Grefe, Imke; Wager, Natalie; Bakker, Dorothee C. E.; Lee, Gareth A.

    2013-04-01

    In recent years, improvements in spectroscopic technology have revolutionised atmospheric trace gas research. In particular, cavity-based optical absorption analysers allow determination of gas concentrations with high frequency, repeatability, reproducibility and long-term stability. These qualities make them particularly suitable for autonomous measurements on voluntary observing ships (VOS). Here, we present results from three of the first deployments of such analysers on research ships, as a first step towards VOS installations. Los Gatos off-axis ICOS (Integrated Cavity Output Spectroscopy) analysers were used to measure nitrous oxide (N2O), carbon monoxide (CO), methane (CH4) and carbon dioxide (CO2) mixing ratios in ocean surface water during research cruises in 2010, 2011 and 2012. The analysers were coupled to an equilibrator fed by the scientific seawater supply in the ship's laboratories. The equilibrator measurements were alternated with regular measurements of marine air and calibrated standard gases. Short-term precision for 10 s-average N2O mole fractions at an acquisition rate of 1 Hz was better than 0.2 nmol mol-1. The same value was achieved for duplicate measurements of a standard gas analysed within 1 hour of each other. The response time to concentration changes in water was 142-203 s, depending on the headspace flow rate. During the first deployment on the AMT20 cruise (Atlantic Meridional Transect, Southampton to Punta Arenas, 12 October to 25 November 2010), we unexpectedly found the subtropical gyres to be slightly undersaturated in N2O, implying that this region acted as a sink for this greenhouse gas. In contrast, the equatorial region was supersaturated and a source of nitrous oxide to the atmosphere. Mean sea-to-air fluxes were overall small and ranged between -1.6 and 0.11 μmol m-2 d-1 (negative fluxes imply an net uptake by the ocean). Despite the good short-term repeatability, significant calibration drift occurred between the six

  2. Rapid vibrational and rotational energy-transfer rates in heated carbon dioxide collisions by double-resonance laser spectroscopy

    SciTech Connect

    Thomason, M.D.

    1982-07-01

    Rates for resonant vibrational and rotational energy transfer from the 001 state by CO/sub 2/ + CO/sub 2/ collisions have been measured. All data were obtained by double resonance spectroscopy with CO/sub 2/ lasers in a 2.5 meter absorption cell at 700/sup 0/K. Results for rotation transfer include pumped-level relaxation and the response of other 001 levels with ..delta..J up to 18. These data are compared to four relevant collision models via a 35-level rate equation analysis. Sequence-band (002 ..-->.. 101) and hot-band (011 ..-->.. 110) lasting have been used to observe resonant nu/sub 3/-transfer relaxation involving 001 + 001 reversible 002 + 000, 001 + 100 reversible 101 + 000, and 001 + 010 reversible 011 + 000. A multilevel rate analysis has been utilized to determine the rate coefficients for 001 going to the 002, the 101, and the 011 levels. Part of the hot-band data has been interpreted as due to 110 + 000 reversible 100 + 010, and the associated rate constant has been estimated. The results of the study are compared to the theory and to other experiments.

  3. Progress in Measurement of Carbon Dioxide Using a Broadband Lidar

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2010-01-01

    In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. In order to uncover the 'missing sink" that is responsible for the large discrepancies in the budget as we presently understand it calculation has indicated that measurement accuracy on the order of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of .25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget in order to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong requirements on the laser system used for the measurement. This work presents an overview of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics We have been examining the possibility of making precise measurements of atmospheric carbon dioxide using broad band source of radiation. This means that many of the difficulties in wavelength control can be treated in the detector portion of the system rather than the laser source. It also greatly reduces the number of individual lasers required to make a measurement. Simplifications such as these are extremely desirable for systems designed to operate from space.

  4. Designed amyloid fibers as materials for selective carbon dioxide capture.

    PubMed

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M; Eisenberg, David S

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture.

  5. Polymers for metal extractions in carbon dioxide

    DOEpatents

    DeSimone, Joseph M.; Tumas, William; Powell, Kimberly R.; McCleskey, T. Mark; Romack, Timothy J.; McClain, James B.; Birnbaum, Eva R.

    2001-01-01

    A composition useful for the extraction of metals and metalloids comprises (a) carbon dioxide fluid (preferably liquid or supercritical carbon dioxide); and (b) a polymer in the carbon dioxide, the polymer having bound thereto a ligand that binds the metal or metalloid; with the ligand bound to the polymer at a plurality of locations along the chain length thereof (i.e., a plurality of ligands are bound at a plurality of locations along the chain length of the polymer). The polymer is preferably a copolymer, and the polymer is preferably a fluoropolymer such as a fluoroacrylate polymer. The extraction method comprises the steps of contacting a first composition containing a metal or metalloid to be extracted with a second composition, the second composition being as described above; and then extracting the metal or metalloid from the first composition into the second composition.

  6. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  7. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  8. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  9. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  10. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1... Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid... anchorage of tanks must be made of carbon steel conforming to ASTM A 516/A 516M (IBR, see § 171.7 of...

  11. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  12. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1... Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid... anchorage of tanks must be made of carbon steel conforming to ASTM A 516/A 516M (IBR, see § 171.7 of...

  13. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1... Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid... anchorage of tanks must be made of carbon steel conforming to ASTM A 516/A 516M (IBR, see § 171.7 of...

  14. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1... Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid... anchorage of tanks must be made of carbon steel conforming to ASTM A 516/A 516M (IBR, see § 171.7 of...

  15. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1...) § 179.102-1 Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide... and anchorage of tanks must be made of carbon steel conforming to ASTM A 516/A 516M (IBR, see §...

  16. Carbon dioxide hydrate and floods on Mars

    NASA Technical Reports Server (NTRS)

    Milton, D. J.

    1974-01-01

    Ground ice on Mars probably consists largely of carbon dioxide hydrate. This hydrate dissociates upon release of pressure at temperatures between 0 and 10 C. The heat capacity of the ground would be sufficient to produce up to 4% (by volume) of water at a rate equal to that at which it can be drained away. Catastrophic dissociation of carbon dioxide hydrate during some past epoch when the near-surface temperature was in this range would have produced chaotic terrain and flood channels.

  17. Morphological Changes of Human Dentin after Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) and Carbon Dioxide (CO2) Laser Irradiation and Acid-etch Technique: An Scanning Electron Microscopic (SEM) Evaluation

    PubMed Central

    Shahabi, Sima; Chiniforush, Nasim; Juybanpoor, Nasrin

    2013-01-01

    Introduction: The aim of this study was to investigate the morphological changes of human dentin after Erbium-Doped Yttrium Aluminum Garnet (Er:YAG), Carbon Dioxide(CO2) laser-irradiation and acid-etching by means of scanning electron microscopic (SEM) Methods: 9 extracted human third molars were used in this study. The teeth were divided in three groups: first group, CO2 laser with power of 1.5 w and frequency of 80 Hz; second group, Er:YAG laser with output power of 1.5 W frequency of 10 Hz, very short pulse with water and air spray was applied; and third group, samples were prepared by acid-etching 37% for 15 sec and rinsed with air-water spray for 20 sec. Then, the samples were prepared for SEM examination. Results: Melting and cracks can be observed in CO2 laser but in Er:YAG laser cleanedablated surfaces and exposed dentinal tubules, without smear layer was seen. Conclusion: It can be concluded that Er:YAG laser can be an alternative technique for surface treatment and can be considered as safe as the conventional methods. But CO2 laser has some thermal side effects which make this device unsuitable for this purpose. PMID:25606306

  18. Global deforestation: contribution to atmospheric carbon dioxide

    SciTech Connect

    Woodwell, G.M.; Hobbie, J.E.; Houghton, R.A.; Melillo, J.M.; Moore, B.; Peterson, B.J.; Shaver, G.R.

    1983-12-09

    A study of effects of terrestrial biota on the amount of carbon dioxide in the atmosphere suggests that the global net release of carbon due to forest clearing between 1960 and 1980 was between 135 X 10/sup 15/ and 228 X 10/sup 15/ grams. Between 1.8 X 10/sup 15/ and 4.7 X 10/sup 15/ grams of carbon were released in 1980, of which nearly 80 percent was due to deforestation, principally in the tropics. The annual release of carbon from the biota and soils exceeded the release from fossil fuels until about 1960. Because the biotic release has been and remains much larger than is commonly assumed, the airborne fraction, usually considered to be about 50 percent of the releases from fossil fuels, was probably between 22 and 43 percent of the total carbon released in 1980. The increase in carbon dioxide in the atmosphere is thought by some to be increasing the storage of carbon in the earth's remaining forests sufficiently to offset the release from deforestation. The interpretation of the evidence presented here suggests no such effect; deforestation appears to be the dominant biotic effect on atmospheric carbon dioxide. If deforestation increases in proportion to population, the biotic release of carbon will reach 9 X 10/sup 15/ grams per year before forests are exhausted early in the next century. The possibilities for limiting the accumulation of carbon dioxide in the atmosphere through reduction in use of fossil fuels and through management of forests may be greater than is commonly assumed.

  19. Lidar detection of carbon dioxide in volcanic plumes

    NASA Astrophysics Data System (ADS)

    Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro

    2015-06-01

    Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.

  20. International Space Station Carbon Dioxide Removal Assembly Testing

    NASA Technical Reports Server (NTRS)

    Knox, James C.

    2000-01-01

    Performance testing of the International Space Station Carbon Dioxide Removal Assembly flight hardware in the United States Laboratory during 1999 is described. The CDRA exceeded carbon dioxide performance specifications and operated flawlessly. Data from this test is presented.

  1. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1991-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  2. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1993-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  3. Gas diffusion cell removes carbon dioxide from occupied airtight enclosures

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Small, lightweight permeable cell package separates and removes carbon dioxide from respiratory gas mixtures. The cell is regenerative while chemically inert in the presence of carbon dioxide so that only adsorption takes place.

  4. Tuning Organic Carbon Dioxide Absorbents for Carbonation and Decarbonation

    PubMed Central

    Rajamanickam, Ramachandran; Kim, Hyungsoo; Park, Ji-Woong

    2015-01-01

    The reaction of carbon dioxide with a mixture of a superbase and alcohol affords a superbase alkylcarbonate salt via a process that can be reversed at elevated temperatures. To utilize the unique chemistry of superbases for carbon capture technology, it is essential to facilitate carbonation and decarbonation at desired temperatures in an easily controllable manner. Here, we demonstrate that the thermal stabilities of the alkylcarbonate salts of superbases in organic solutions can be tuned by adjusting the compositions of hydroxylic solvent and polar aprotic solvent mixtures, thereby enabling the best possible performances to be obtained from the various carbon dioxide capture agents based on these materials. The findings provides valuable insights into the design and optimization of organic carbon dioxide absorbents. PMID:26033537

  5. Discussion of Refrigeration Cycle Using Carbon Dioxide as Refrigerant

    NASA Astrophysics Data System (ADS)

    Ji, Amin; Sun, Miming; Li, Jie; Yin, Gang; Cheng, Keyong; Zhen, Bing; Sun, Ying

    Nowadays, the problem of the environment goes worse, it urges people to research and study new energy-saving and environment-friendly refrigerants, such as carbon dioxide, at present, people do research on carbon dioxide at home and abroad. This paper introduces the property of carbon dioxide as a refrigerant, sums up and analyses carbon dioxide refrigeration cycles, and points out the development and research direction in the future.

  6. Acid sorption regeneration process using carbon dioxide

    DOEpatents

    King, C. Judson; Husson, Scott M.

    2001-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

  7. Catalyst cartridge for carbon dioxide reduction unit

    NASA Technical Reports Server (NTRS)

    Holmes, R. F. (Inventor)

    1973-01-01

    A catalyst cartridge, for use in a carbon dioxide reducing apparatus in a life support system for space vehicles, is described. The catalyst cartridge includes an inner perforated metal wall, an outer perforated wall space outwardly from the inner wall, a base plate closing one end of the cartridge, and a cover plate closing the other end of the cartridge. The cover plate has a central aperture through which a supply line with a heater feeds a gaseous reaction mixture comprising hydrogen and carbon dioxide at a temperature from about 1000 to about 1400 F. The outer surfaces of the internal wall and the inner surfaces of the outer wall are lined with a ceramic fiber batting material of sufficient thickness to prevent carbon formed in the reaction from passing through it. The portion of the surfaces of the base and cover plates defined within the inner and outer walls are also lined with ceramic batting. The heated reaction mixture passes outwardly through the inner perforated wall and ceramic batting and over the catalyst. The solid carbon product formes is retained within the enclosure containing the catalyst. The solid carbon product formed is retained within the enclosure containing the catalyst. The water vapor and unreacted carbon dioxide and any intermediate products pass through the perforations of the outer wall.

  8. Carbon Dioxide Snow Storms During the Polar Night on Mars

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Colaprete, Anthony

    2001-01-01

    The Mars Orbiter Laser Altimeter (MOLA) detected clouds associated with topographic features during the polar night on Mars. While uplift generated from flow over mountains initiates clouds on both Earth and Mars, we suggest that the Martian clouds differ greatly from terrestrial mountain wave clouds. Terrestrial wave clouds are generally compact features with sharp edges due to the relatively small particles in them. However, we find that the large mass of condensible carbon dioxide on Mars leads to clouds with snow tails that may extend many kilometers down wind from the mountain and even reach the surface. Both the observations and the simulations suggest substantial carbon dioxide snow precipitation in association with the underlying topography. This precipitation deposits CO2, dust and water ice to the polar caps, and may lead to propagating geologic features in the Martian polar regions.

  9. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565... Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide required for each space protected must be equal to the gross volume...

  10. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  11. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565... Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide required for each space protected must be equal to the gross volume...

  12. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  13. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565... Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide required for each space protected must be equal to the gross volume...

  14. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Exhaust Test Procedures § 86.1324-84 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter, the NDIR carbon dioxide analyzer shall be calibrated as follows:...

  15. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  16. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  17. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  18. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  19. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  20. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  1. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  2. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Exhaust Test Procedures § 86.1324-84 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter, the NDIR carbon dioxide analyzer shall be calibrated as follows:...

  3. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  4. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  5. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  6. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  7. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  8. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  9. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  10. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  11. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  12. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  13. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  14. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  15. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  16. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  17. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  18. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  19. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  20. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  1. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  2. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  3. 9 CFR 313.5 - Chemical; carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Chemical; carbon dioxide. 313.5... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering of sheep, calves and swine with the use of carbon dioxide gas and the handling in...

  4. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  5. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  6. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  7. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  8. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  9. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  10. 9 CFR 313.5 - Chemical; carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Chemical; carbon dioxide. 313.5... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering of sheep, calves and swine with the use of carbon dioxide gas and the handling in...

  11. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  12. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  13. 9 CFR 313.5 - Chemical; carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Chemical; carbon dioxide. 313.5... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering of sheep, calves and swine with the use of carbon dioxide gas and the handling in...

  14. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  15. Ocean uptake of carbon dioxide

    SciTech Connect

    Peng, Tsung-Hung; Takahashi, Taro

    1993-06-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0{sup 2} include carbon chemistry, distribution of alkalinity, pCO{sup 2} and total concentration of dissolved C0{sup 2}, sea-air pCO{sup 2} difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0{sup 2} uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0{sup 2} from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0{sup 2} fertilization is a potential candidate for such missing carbon sinks.

  16. Ocean uptake of carbon dioxide

    SciTech Connect

    Peng, Tsung-Hung ); Takahashi, Taro . Lamont-Doherty Earth Observatory)

    1993-01-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0[sup 2] include carbon chemistry, distribution of alkalinity, pCO[sup 2] and total concentration of dissolved C0[sup 2], sea-air pCO[sup 2] difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0[sup 2] uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0[sup 2] from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0[sup 2] fertilization is a potential candidate for such missing carbon sinks.

  17. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  18. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  19. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  20. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  1. Plasma dynamics in double-pulse LIBS on dicarboxylic acids using combined 532 nm Nd:YAG and carbon dioxide laser pulses.

    PubMed

    Brown, Staci R; Akpovo, Charlemagne A; Martinez, Jorge; Johnson, Lewis

    2014-01-01

    Laser-induced breakdown spectroscopy (LIBS) was used as a method to monitor the evolution of C, hydrogen-α, carbon-carbon, and carbon-nitrogen spectral emissions from atmospheric recombination in a specific set of organic materials. Ablated samples were composed of a series of linear chain dicarboxylic acids with two to seven C atoms. Accumulated pulses of a focused neodymium-doped yttrium aluminum garnet (Nd:YAG) Q-switched laser beam operated at 532 nm generate a plasma in air at the sample surface. In this work, a dual-pulse LIBS technique was used to improve signal strength by enhancing the nanosecond LIBS plasma with CO2 transverse-excited breakdown in atmosphere laser pulses with an operating wavelength of 10.6 μm. Through a time-resolved analysis, we demonstrate the correlation between the signal strength of selected emissions and the number of C atoms in the linear chain. We also illustrate the effects that these constraints, along with the presence of a chiral C in the chain, have on the peak intensities of the individual lines with respect to each other by comparing the increase or nonexistence of certain spectral lines as we increase the number of C atoms in the linear chain.

  2. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas.

    PubMed

    Kim, Seung Hyo; Kim, Kwang Hee; Hong, Soon Hyeok

    2014-01-13

    A carbon capture and use (CCU) strategy was applied to organic synthesis. Carbon dioxide (CO2) captured directly from exhaust gas was used for organic transformations as efficiently as hyper-pure CO2 gas from a commercial source, even for highly air- and moisture-sensitive reactions. The CO2 capturing aqueous ethanolamine solution could be recycled continuously without any diminished reaction efficiency.

  3. Recycling technology of emitted carbon dioxide

    SciTech Connect

    Arakawa, Hironori

    1993-12-31

    Ways to halt global warming are being discussed worldwide. Global warming is an energy problem which is mainly attributed to the large volumes of carbon dioxide (CO{sub 2}) released into the atmosphere from the rapid increase in energy consumption since the Industrial Revolution. The basic solution to the problem, therefore, is to cut consumption of fossil fuels. To this end, it is important to promote energy conservation by improving the fuel efficiency of machines, as well as shift to energy sources that do not emit carbon dioxide and develop related technologies. If current trends in economic growth continue in the devloping world as well as the developed countries, there can be no doubt that energy consumption will increase. Therefore, alongside energy conservation and the development of alternative energies, the importance of technologies to recover and fix CO{sub 2} will increase in the fight against global warming.

  4. Sequestering ADM ethanol plant carbon dioxide

    USGS Publications Warehouse

    Finley, R.J.; Riddle, D.

    2008-01-01

    Archer Daniels Midland Co. (ADM) and the Illinois State Geological Survey (ISGS) are collaborating on a project in confirming that a rock formation can store carbon dioxide from the plant in its pores. The project aimed to sequester the gas underground permanently to minimize release of the greenhouse gas into the atmosphere. It is also designed to store one million tons of carbon dioxide over a three-year period. The project is worth $84.3M, funded by $66.7M from the US Department Energy, supplemented by co-funding from ADM and other corporate and state resources. The project will start drilling of wells to an expected depth over 6500 feet into the Mount Simon Sandstone formation.

  5. Climate impact of increasing atmospheric carbon dioxide.

    PubMed

    Hansen, J; Johnson, D; Lacis, A; Lebedeff, S; Lee, P; Rind, D; Russell, G

    1981-08-28

    The global temperature rose by 0.2 degrees C between the middle 1960's and 1980, yielding a warming of 0.4 degrees C in the past century. This temperature increase is consistent with the calculated greenhouse effect due to measured increases of atmospheric carbon dioxide. Variations of volcanic aerosols and possibly solar luminosity appear to be primary causes of observed fluctuations about the mean trend of increasing temperature. It is shown that the anthropogenic carbon dioxide warming should emerge from the noise level of natural climate variability by the end of the century, and there is a high probability of warming in the 1980's. Potential effects on climate in the 21st century include the creation of drought-prone regions in North America and central Asia as part of a shifting of climatic zones, erosion of the West Antarctic ice sheet with a consequent worldwide rise in sea level, and opening of the fabled Northwest Passage. PMID:17789014

  6. Climate impact of increasing atmospheric carbon dioxide.

    PubMed

    Hansen, J; Johnson, D; Lacis, A; Lebedeff, S; Lee, P; Rind, D; Russell, G

    1981-08-28

    The global temperature rose by 0.2 degrees C between the middle 1960's and 1980, yielding a warming of 0.4 degrees C in the past century. This temperature increase is consistent with the calculated greenhouse effect due to measured increases of atmospheric carbon dioxide. Variations of volcanic aerosols and possibly solar luminosity appear to be primary causes of observed fluctuations about the mean trend of increasing temperature. It is shown that the anthropogenic carbon dioxide warming should emerge from the noise level of natural climate variability by the end of the century, and there is a high probability of warming in the 1980's. Potential effects on climate in the 21st century include the creation of drought-prone regions in North America and central Asia as part of a shifting of climatic zones, erosion of the West Antarctic ice sheet with a consequent worldwide rise in sea level, and opening of the fabled Northwest Passage.

  7. Climate impact of increasing atmospheric carbon dioxide

    SciTech Connect

    Hansen, J.; Johnson, D.; Lacis, A.; Lebedeff, S.; Lee, P.; Rind, D.; Russell, G.

    1981-08-28

    The global temperature rose by 0.2/sup 0/C between the middle 1960's and 1980, yielding a warming of 0.4/sup 0/C in the past century. This temperature increase is consistent with the calculated greenhouse effect due to measured increases of atmospheric carbon dioxide. Variations of volcanic aerosols and possibly solar luminosity appear to be primary causes of observed fluctuations about the mean trend of increasing temperature. It is shown that the anthropogenic carbon dioxide warming should emerge from the noise level of natural climate variability by the end of the century, and there is a high probability of warming in the 1980's. Potential effects on climate in the 21st century include the creation of drought-prone regions in North America and central Asia as part of a shifting of climatic zones, erosion of the West Antarctic ice sheet with a consequent worldwide rise in sea level, and opening of the fabled Northwest Passage.

  8. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    SciTech Connect

    O'Connor, W.K.; Dahlin, D.C.; Nilsen, D.N.; Walters, R.P.; Turner, P.C.

    2000-07-01

    The Albany Research Center (ARC) of the US Department of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite and member (mg{sub 2}SiO{sub 4})], or serpentine [Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}]. This slurry is reacted with supercritical carbon dioxide (CO{sub 2}) to produce magnesite (MgCO{sub 3}). The CO{sub 2} is dissolved in water to form carbonic acid (H{sub 2}CO{sub 3}), which dissociates to H{sup +} and HCO{sub 3}{sup {minus}}. The H{sup +} reacts with the mineral, liberating Mg{sup 2+} cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO{sub 2} pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185 C and a partial pressure of CO{sub 2} (P{sub CO{sub 2}}) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction conditions, have achieved roughly 83% conversion of heat treated serpentine

  9. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    SciTech Connect

    O'Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    The Albany Research Center (ARC) of the U.S. Dept. of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. Other participants in this Program include the Los Alamos National Laboratory, Arizona State University, Science Applications International Corporation, and the DOE National Energy Technology Laboratory. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. This slurry is reacted with supercritical carbon dioxide (CO2) to produce magnesite (MgCO3). The CO2 is dissolved in water to form carbonic acid (H2CO3), which dissociates to H+ and HCO3 -. The H+ reacts with the mineral, liberating Mg2+ cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO2 pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185?C and a partial pressure of CO2 (PCO2) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction

  10. Electrochemical carbon dioxide concentrator: Math model

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Schubert, F. H.; Carlson, J. N.

    1973-01-01

    A steady state computer simulation model of an Electrochemical Depolarized Carbon Dioxide Concentrator (EDC) has been developed. The mathematical model combines EDC heat and mass balance equations with empirical correlations derived from experimental data to describe EDC performance as a function of the operating parameters involved. The model is capable of accurately predicting performance over EDC operating ranges. Model simulation results agree with the experimental data obtained over the prediction range.

  11. Dissolution rate measurements for resist processing in supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Pham, Victor Q.; Weibel, Gina L.; Rao, Nagesh G.; Ober, Christopher K.

    2002-07-01

    A dissolution rate monitor (DRM) was successfully constructed to study the behavior of thin photoresist films undergoing the dissolution process in supercritical carbon dioxide (SCCO2). The DRM is based on the principles of interferometry but requires special modifications to the processing vessel to allow for the passage of transmitted and reflected He-Ne laser light. Dissolution rates obtained agree well with independent profilometric measurements of film thickness loss. We found that for block and random copolymers of THPMA-F7MA, dissolution rates vary with film thickness, slowing down considerably towards the silicon surface. This behavior was also observed in TBMA-F7MA random copolymers.

  12. There is more to climate than carbon dioxide.

    PubMed

    Walker, J C

    1995-07-01

    Discussion of climate change on a range of time scales has tended to focus on carbon dioxide and a changing greenhouse effect. Because carbon dioxide couples climate to ocean, land, and biota, it has appealed to scientists with an interest in the whole Earth system. Carbon dioxide has left a geological record in fossils, isotopes, and sediments, so we can reasonably expect to reconstruct its history. While important questions of detail remain to be resolved, many published applications of carbon cycle modelling suggest that we understand the biogeochemical cycles of carbon well enough to estimate carbon dioxide concentrations in the past and the future. Furthermore, we have an excellent instrumental record of recent changes in atmospheric carbon dioxide. While these considerations make carbon dioxide attractive to paleoclimatologists, they do not necessarily make it a major component of climate change. I shall argue in this paper that clouds deserve much more attention than they have been getting.

  13. 75 FR 29534 - Inorganic Nitrates-Nitrite, Carbon and Carbon Dioxide, and Sulfur Registration Review; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... AGENCY Inorganic Nitrates-Nitrite, Carbon and Carbon Dioxide, and Sulfur Registration Review; Draft... and carbon dioxide, and gas cartridge uses of sulfur, and opens a public comment period on this... occur for all inorganic nitrates- nitrites, carbon and carbon dioxide uses, as well as gas...

  14. Carbon dioxide embolism during laparoscopic sleeve gastrectomy

    PubMed Central

    Zikry, Amir Abu; DeSousa, Kalindi; Alanezi, Khaled H

    2011-01-01

    Bariatric restrictive and malabsorptive operations are being carried out in most countries laparoscopically. Carbon dioxide or gas embolism has never been reported in obese patients undergoing bariatric surgery. We report a case of carbon dioxide embolism during laparoscopic sleeve gastrectomy (LSG) in a young super obese female patient. Early diagnosis and successful management of this complication are discussed. An 18-year-old super obese female patient with enlarged fatty liver underwent LSG under general anesthesia. During initial intra-peritoneal insufflation with CO2 at high flows through upper left quadrant of the abdomen, she had precipitous fall of end-tidal CO2 and SaO2 % accompanied with tachycardia. Early suspicion led to stoppage of further insufflation. Clinical parameters were stabilized after almost 30 min, while the blood gas analysis was restored to normal levels after 1 h. The area of gas entrainment on the damaged liver was recognized by the surgeon and sealed and the surgery was successfully carried out uneventfully. Like any other laparoscopic surgery, carbon dioxide embolism can occur during bariatric laparoscopic surgery also. Caution should be exercised when Veress needle is inserted through upper left quadrant of the abdomen in patients with enlarged liver. A high degree of suspicion and prompt collaboration between the surgeon and anesthetist can lead to complete recovery from this potentially fatal complication. PMID:21772696

  15. Carbon dioxide in Arctic and subarctic regions

    SciTech Connect

    Gosink, T. A.; Kelley, J. J.

    1981-03-01

    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, the hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.

  16. Carbon dioxide makes heat therapy work

    SciTech Connect

    Sherman, H.

    1987-01-01

    Scientists can now propagate healthy blueberry and raspberry plants from virus-infected stock by treating it with heat and carbon dioxide. Plants are grown at 100/sup 0/F, which makes them develop faster than the virus can spread. Then cuttings are taken of the new growth - less than an inch long - and grown into full-sized, virus-free plants. But in this race to outdistance the virus, some plant species are not able to take the heat. Some even die. Chemical reactions double for every 14/sup 0/F rise in temperature. So, if you try to grow a plant at 100/sup 0/F that was originally growing at 86/sup 0/F, it will double its respiration rate. Adding carbon dioxide increases the rate of photosynthesis in plants, which increases the plant's food reserves. What carbon dioxide does to allow some plants to grow at temperatures at which they would otherwise not survive and it allows other plants to grow for longer periods at 100/sup 0/F. One problem with the process, says Converse, is that the longer plants are exposed to heat the greater the mutation rate. So, resulting clones should be closely examined for trueness to horticultural type.

  17. Elevated atmospheric carbon dioxide increases soil carbon

    SciTech Connect

    Norby, Richard J; Jastrow, Julie D; Miller, Michael R; Matamala, Roser; Boutton, Thomas W; Rice, Charles W; Owensby, Clenton E

    2005-01-01

    In a study funded by the U.S. Department of Energy's Office of Science, researchers from Argonne and Oak Ridge National Laboratories and Kansas State and Texas A&M Universities evaluated the collective results of earlier studies by using a statistical procedure called meta-analysis. They found that on average elevated CO2 increased soil carbon by 5.6 percent over a two to nine year period. They also measured comparable increases in soil carbon for Tennessee deciduous forest and Kansas grassland after five to eight years of experimental exposure to elevated CO2.

  18. Carbon dioxide reduction by the Bosch process

    NASA Technical Reports Server (NTRS)

    Manning, M. P.; Reid, R. C.

    1975-01-01

    Prototype units for carrying out the reduction of carbon dioxide to elementary carbon have been built and operated successfully. In some cases, however, startup difficulties have been reported. Moreover, the recycle reactor product has been reported to contain only small amounts of water and undesirably high yields of methane. This paper presents the results of the first phase of an experimental study that was carried out to define the mechanisms occurring in the reduction process. Conclusions are drawn and possible modifications to the present recycle process are suggested.

  19. Carbon dioxide on the early earth.

    PubMed

    Walker, J C

    1985-01-01

    This paper uses arguments of geochemical mass balance to arrive at an estimate of the partial pressure of carbon dioxide in the terrestrial atmosphere very early in earth history. It appears that this partial pressure could have been as large as 10 bars. This large estimate depends on two key considerations. First, volatiles were driven out of the interior of the earth during the course of earth accretion or very shortly thereafter. This early degassing was a consequence of rapid accretion,which gave the young earth a hot and rapidly convecting interior. Second, the early earth lacked extensive, stable continental platforms on which carbon could be stored in the form of carbonate minerals for geologically significant periods of time. In the absence of continental platforms on the early earth, the earth's carbon must have been either in the atmosphere or ocean or in the form of shortlived sedimentary deposits on ephemeral sea floor.

  20. Carbon Dioxide Emissions Resulting from Space Tourism

    NASA Astrophysics Data System (ADS)

    Fawkes, S.

    An earlier paper by the author examined the links between space tourism and sustainable development. One important aspect of sustainable development is environmental impact and within that anthropogenic greenhouse gas emission is a key issue as it is linked to climate change. Space tourism operators need to consider the environmental impact of their operations and in particular measure their total carbon emissions (“carbon footprint”) and then put in place arrangements to reduce or offset them. This paper presents some initial calculations on the carbon dioxide emissions likely to result from both sub-orbital and orbital space tourism flights and discusses options and prices for carbon offsetting. The effect of scaling up the space tourism industry is also considered.

  1. Will peak oil accelerate carbon dioxide emissions?

    NASA Astrophysics Data System (ADS)

    Caldeira, K.; Davis, S. J.; Cao, L.

    2008-12-01

    The relative scarcity of oil suggests that oil production is peaking and will decline thereafter. Some have suggested that this represents an opportunity to reduce carbon dioxide emissions. However, in the absence of constraints on carbon dioxide emission, "peak oil" may drive a shift towards increased reliance on coal as a primary energy source. Because coal per unit energy, in the absence of carbon capture and disposal, releases more carbon dioxide to the atmosphere than oil, "peak oil" may lead to an acceleration of carbon dioxide emissions. We will never run out of oil. As oil becomes increasingly scarce, prices will rise and therefore consumption will diminish. As prices rise, other primary energy sources will become increasingly competitive with oil. The developed world uses oil primarily as a source of transportation fuels. The developing world uses oil primarily for heat and power, but the trend is towards increasing reliance on oil for transportation. Liquid fuels, including petroleum derivatives such as gasoline and diesel fuel, are attractive as transportation fuels because of their relative abundance of energy per unit mass and volume. Such considerations are especially important for the air transport industry. Today, there is little that can compete with petroleum-derived transportation fuels. Future CO2 emissions from the transportation sector largely depend on what replaces oil as a source of fuel. Some have suggested that biomass-derived ethanol, hydrogen, or electricity could play this role. Each of these potential substitutes has its own drawbacks (e.g., low power density per unit area in the case of biomass, low power density per unit volume in the case of hydrogen, and low power density per unit mass in the case of battery storage). Thus, it is entirely likely that liquefaction of coal could become the primary means by which transportation fuels are produced. Since the burning of coal produces more CO2 per unit energy than does the burning of

  2. Automated carbon dioxide cleaning system

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.

    1991-01-01

    Solidified CO2 pellets are an effective blast media for the cleaning of a variety of materials. CO2 is obtained from the waste gas streams generated from other manufacturing processes and therefore does not contribute to the greenhouse effect, depletion of the ozone layer, or the environmental burden of hazardous waste disposal. The system is capable of removing as much as 90 percent of the contamination from a surface in one pass or to a high cleanliness level after multiple passes. Although the system is packaged and designed for manual hand held cleaning processes, the nozzle can easily be attached to the end effector of a robot for automated cleaning of predefined and known geometries. Specific tailoring of cleaning parameters are required to optimize the process for each individual geometry. Using optimum cleaning parameters the CO2 systems were shown to be capable of cleaning to molecular levels below 0.7 mg/sq ft. The systems were effective for removing a variety of contaminants such as lubricating oils, cutting oils, grease, alcohol residue, biological films, and silicone. The system was effective on steel, aluminum, and carbon phenolic substrates.

  3. Method of immobilizing carbon dioxide from gas streams

    DOEpatents

    Holladay, David W.; Haag, Gary L.

    1979-01-01

    This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.

  4. Carbon Dioxide Transport through Membranes*

    PubMed Central

    Missner, Andreas; Kügler, Philipp; Saparov, Sapar M.; Sommer, Klaus; Mathai, John C.; Zeidel, Mark L.; Pohl, Peter

    2008-01-01

    Several membrane channels, like aquaporin-1 (AQP1) and the RhAG protein of the rhesus complex, were hypothesized to be of physiological relevance for CO2 transport. However, the underlying assumption that the lipid matrix imposes a significant barrier to CO2 diffusion was never confirmed experimentally. Here we have monitored transmembrane CO2 flux (JCO2) by imposing a CO2 concentration gradient across planar lipid bilayers and detecting the resulting small pH shift in the immediate membrane vicinity. An analytical model, which accounts for the presence of both carbonic anhydrase and buffer molecules, was fitted to the experimental pH profiles using inverse problems techniques. At pH 7.4, the model revealed that JCO2 was entirely rate-limited by near-membrane unstirred layers (USL), which act as diffusional barriers in series with the membrane. Membrane tightening by sphingomyelin and cholesterol did not alter JCO2 confirming that membrane resistance was comparatively small. In contrast, a pH-induced shift of the CO2 hydration-dehydration equilibrium resulted in a relative membrane contribution of about 15% to the total resistance (pH 9.6). Under these conditions, a membrane CO2 permeability (3.2 ± 1.6 cm/s) was estimated. It indicates that cellular CO2 uptake (pH 7.4) is always USL-limited, because the USL size always exceeds 1 μm. Consequently, facilitation of CO2 transport by AQP1, RhAG, or any other protein is highly unlikely. The conclusion was confirmed by the observation that CO2 permeability of epithelial cell monolayers was always the same whether AQP1 was overexpressed in both the apical and basolateral membranes or not. PMID:18617525

  5. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  6. Carbon Dioxide Separation Using Thermally Optimized Membranes

    NASA Astrophysics Data System (ADS)

    Young, J. S.; Jorgensen, B. S.; Espinoza, B. F.; Weimer, M. W.; Jarvinen, G. D.; Greenberg, A.; Khare, V.; Orme, C. J.; Wertsching, A. K.; Peterson, E. S.; Hopkins, S. D.; Acquaviva, J.

    2002-05-01

    The purpose of this project is to develop polymeric-metallic membranes for carbon dioxide separations that operate under a broad range of industrially relevant conditions not accessible with present membrane units. The last decade has witnessed a dramatic increase in the use of polymer membranes as an effective, economic and flexible tool for many commercial gas separations including air separation, the recovery of hydrogen from nitrogen, carbon monoxide, and methane mixtures, and the removal of carbon dioxide from natural gas. In each of these applications, high fluxes and excellent selectivities have relied on glassy polymer membranes which separate gases based on both size and solubility differences. To date, however, this technology has focused on optimizing materials for near ambient conditions. The development of polymeric materials that achieve the important combination of high selectivity, high permeability, and mechanical stability at temperatures significantly above 25oC and pressures above 10 bar, respectively, has been largely ignored. Consequently, there is a compelling rationale for the exploration of a new realm of polymer membrane separations. Indeed, the development of high temperature polymeric-metallic composite membranes for carbon dioxide separation at temperatures of 100-450 oC and pressures of 10-150 bar would provide a pivotal contribution with both economic and environmental benefits. Progress to date includes the first ever fabrication of a polymeric-metallic membrane that is selective from room temperature to 370oC. This achievement represents the highest demonstrated operating temperature at which a polymeric based membrane has successfully functioned. Additionally, we have generated the first polybenzamidizole silicate molecular composites. Finally, we have developed a technique that has enabled the first-ever simultaneous measurements of gas permeation and membrane compaction at elevated temperatures. This technique provides a unique

  7. The nature of carbon dioxide waters in Snaefellsnes, western Iceland

    USGS Publications Warehouse

    Arnorsson, S.; Barnes, I.

    1983-01-01

    Over 20 occurrences of thermal and non-thermal waters rich in carbon dioxide are known in the Snaefellsnes Peninsula of western Iceland. On the basis of the thermal, chemical and isotopic characteristics of these waters, and hydrological considerations, it is concluded that they represent meteoric waters which have seeped to variable depths into the bedrock. Ascending carbon dioxide gas originating from intrusions or the mantle mixes with the meteoric waters to produce carbon dioxide waters: at considerable depth in the case of the thermal carbon dioxide waters but close to the surface in the case of cold carbon dioxide waters. The occurrence of carbon dioxide waters cannot be regarded as evidence for underground geothermal reservoirs. ?? 1983.

  8. Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study

    SciTech Connect

    Edwards, A.G.; Ho, C.S.

    1988-06-20

    Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase of 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur.

  9. Enriching blast furnace gas by removing carbon dioxide.

    PubMed

    Zhang, Chongmin; Sun, Zhimin; Chen, Shuwen; Wang, Baohai

    2013-12-01

    Blast furnace gas (BF gas) produced in the iron making process is an essential energy resource for a steel making work. As compared with coke oven gas, the caloric value of BF gas is too low to be used alone as fuel in hot stove because of its high concentrations of carbon dioxide and nitrogen. If the carbon dioxide in BF gas could be captured efficiently, it would meet the increasing need of high caloric BF gas, and develop methods to reusing and/or recycling the separated carbon dioxide further. Focused on this, investigations were done with simple evaluation on possible methods of removing carbon dioxide from BF gas and basic experiments on carbon dioxide capture by chemical absorption. The experimental results showed that in 100 minutes, the maximum absorbed doses of carbon dioxide reached 20 g/100 g with ionic liquid as absorbent.

  10. Designed amyloid fibers as materials for selective carbon dioxide capture

    PubMed Central

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077

  11. Carbon dioxide emission from bamboo culms.

    PubMed

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan.

  12. Thermochemical generation of hydrogen and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D. (Inventor); England, Christopher (Inventor)

    1984-01-01

    Mixing of carbon in the form of high sulfur coal with sulfuric acid reduces the temperature of sulfuric acid decomposition from 830.degree. C. to between 300.degree. C. and 400.degree. C. The low temperature sulfuric acid decomposition is particularly useful in thermal chemical cycles for splitting water to produce hydrogen. Carbon dioxide is produced as a commercially desirable byproduct. Lowering of the temperature for the sulfuric acid decomposition or oxygen release step simplifies equipment requirements, lowers thermal energy input and reduces corrosion problems presented by sulfuric acid at conventional cracking temperatures. Use of high sulfur coal as the source of carbon for the sulfuric acid decomposition provides an environmentally safe and energy efficient utilization of this normally polluting fuel.

  13. Copolymerization of carbon dioxide and butadiene via a lactone intermediate.

    PubMed

    Nakano, Ryo; Ito, Shingo; Nozaki, Kyoko

    2014-04-01

    Although carbon dioxide has attracted broad interest as a renewable carbon feedstock, its use as a monomer in copolymerization with olefins has long been an elusive endeavour. A major obstacle for this process is that the propagation step involving carbon dioxide is endothermic; typically, attempted reactions between carbon dioxide and an olefin preferentially yield olefin homopolymerization. Here we report a strategy to circumvent the thermodynamic and kinetic barriers for copolymerizations of carbon dioxide and olefins by using a metastable lactone intermediate, 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one, which is formed by the palladium-catalysed condensation of carbon dioxide and 1,3-butadiene. Subsequent free-radical polymerization of the lactone intermediate afforded polymers of high molecular weight with a carbon dioxide content of 33 mol% (29 wt%). Furthermore, the protocol was applied successfully to a one-pot copolymerization of carbon dioxide and 1,3-butadiene, and one-pot terpolymerizations of carbon dioxide, butadiene and another 1,3-diene. This copolymerization technique provides access to a new class of polymeric materials made from carbon dioxide.

  14. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Carbon dioxide analyzer calibration. 89... Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction into... instrument start-up and operation. Adjust the analyzer to optimize performance. (2) Zero the carbon...

  15. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  16. 40 CFR 91.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Provisions § 91.320 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service, and monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon...

  17. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  18. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  19. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  20. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  1. Carbon Dioxide and the Greenhouse Effect: A Problem Evaluation Activity.

    ERIC Educational Resources Information Center

    Brewer, Carol A.; Beiswenger, Jane M.

    1993-01-01

    Describes exercises to examine the global carbon cycle. Students are asked to predict consequences of increased carbon dioxide emissions into the atmosphere and to suggest ways to mitigate problems associated with these higher levels of atmospheric carbon dioxide. A comparison modeling exercise examines some of the variables related to the success…

  2. Supercritical carbon dioxide: a solvent like no other.

    PubMed

    Peach, Jocelyn; Eastoe, Julian

    2014-01-01

    Supercritical carbon dioxide (scCO2) could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs). Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and attempts to enhance scCO2 viscosity.

  3. Supercritical carbon dioxide: a solvent like no other

    PubMed Central

    Peach, Jocelyn

    2014-01-01

    Summary Supercritical carbon dioxide (scCO2) could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs). Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and attempts to enhance scCO2 viscosity. PMID:25246947

  4. Six-fold Coordinated Carbon Dioxide VI

    SciTech Connect

    Iota, V; Yoo, C; Klepeis, J; Jenei, Z

    2006-03-01

    Under standard conditions, carbon dioxide (CO{sub 2}) is a simple molecular gas and an important atmospheric constituent while silicon dioxide (SiO{sub 2}) is a covalent solid, and represents one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO{sub 2} transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO{sub 2} tridymite. Here, we present the discovery of a new extended-solid phase of carbon dioxide (CO{sub 2}): a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO{sub 2}-II above 50GPa at 530-650K. Together with the previously reported CO{sub 2}-V and a-carbonia, this new extended phase indicates a fundamental similarity between CO{sub 2}--a prototypical molecular solid, and SiO{sub 2}--one of Earth's fundamental building blocks. The phase diagram suggests a limited stability domain for molecular CO{sub 2}-I, and proposes that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II, III, and IV. The crystal structure of phase VI suggests strong disorder along the caxis in stishovite-like P4{sub 2}/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp{sup 3} hybridization.

  5. Amorphous silica-like carbon dioxide.

    PubMed

    Santoro, Mario; Gorelli, Federico A; Bini, Roberto; Ruocco, Giancarlo; Scandolo, Sandro; Crichton, Wilson A

    2006-06-15

    Among the group IV elements, only carbon forms stable double bonds with oxygen at ambient conditions. At variance with silica and germania, the non-molecular single-bonded crystalline form of carbon dioxide, phase V, only exists at high pressure. The amorphous forms of silica (a-SiO2) and germania (a-GeO2) are well known at ambient conditions; however, the amorphous, non-molecular form of CO2 has so far been described only as a result of first-principles simulations. Here we report the synthesis of an amorphous, silica-like form of carbon dioxide, a-CO2, which we call 'a-carbonia'. The compression of the molecular phase III of CO2 between 40 and 48 GPa at room temperature initiated the transformation to the non-molecular amorphous phase. Infrared spectra measured at temperatures up to 680 K show the progressive formation of C-O single bonds and the simultaneous disappearance of all molecular signatures. Furthermore, state-of-the-art Raman and synchrotron X-ray diffraction measurements on temperature-quenched samples confirm the amorphous character of the material. Comparison with vibrational and diffraction data for a-SiO2 and a-GeO2, as well as with the structure factor calculated for the a-CO2 sample obtained by first-principles molecular dynamics, shows that a-CO2 is structurally homologous to the other group IV dioxide glasses. We therefore conclude that the class of archetypal network-forming disordered systems, including a-SiO2, a-GeO2 and water, must be extended to include a-CO2. PMID:16778885

  6. Selective free radical reactions using supercritical carbon dioxide.

    PubMed

    Cormier, Philip J; Clarke, Ryan M; McFadden, Ryan M L; Ghandi, Khashayar

    2014-02-12

    We report herein a means to modify the reactivity of alkenes, and particularly to modify their selectivity toward reactions with nonpolar reactants (e.g., nonpolar free radicals) in supercritical carbon dioxide near the critical point. Rate constants for free radical addition of the light hydrogen isotope muonium to ethylene, vinylidene fluoride, and vinylidene chloride in supercritical carbon dioxide are compared over a range of pressures and temperatures. Near carbon dioxide's critical point, the addition to ethylene exhibits critical speeding up, while the halogenated analogues display critical slowing. This suggests that supercritical carbon dioxide as a solvent may be used to tune alkene chemistry in near-critical conditions.

  7. A tenuous carbon dioxide atmosphere on Jupiter's moon Callisto.

    PubMed

    Carlson, R W

    1999-02-01

    An off-limb scan of Callisto was conducted by the Galileo near-infrared mapping spectrometer to search for a carbon dioxide atmosphere. Airglow in the carbon dioxide nu3 band was observed up to 100 kilometers above the surface and indicates the presence of a tenuous carbon dioxide atmosphere with surface pressure of 7.5 x 10(-12) bar and a temperature of about 150 kelvin, close to the surface temperature. A lifetime on the order of 4 years is suggested, based on photoionization and magnetospheric sweeping. Either the atmosphere is transient and was formed recently or some process is currently supplying carbon dioxide to the atmosphere.

  8. Carbon dioxide absorbent and method of using the same

    SciTech Connect

    Perry, Robert James; O'Brien, Michael Joseph

    2014-06-10

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  9. Carbon dioxide absorbent and method of using the same

    SciTech Connect

    Perry, Robert James; O'Brien, Michael Joseph

    2015-12-29

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  10. A tenuous carbon dioxide atmosphere on Jupiter's moon Callisto

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.

    1999-01-01

    An off-limb scan of Callisto was conducted by the Galileo near-infrared mapping spectrometer to search for a carbon dioxide atmosphere. Airglow in the carbon dioxide nu3 band was observed up to 100 kilometers above the surface and indicates the presence of a tenuous carbon dioxide atmosphere with surface pressure of 7.5 x 10(-12) bar and a temperature of about 150 kelvin, close to the surface temperature. A lifetime on the order of 4 years is suggested, based on photoionization and magnetospheric sweeping. Either the atmosphere is transient and was formed recently or some process is currently supplying carbon dioxide to the atmosphere.

  11. Preparation of perlite-based carbon dioxide absorbent.

    PubMed

    He, H; Wu, L; Zhu, J; Yu, B

    1994-02-01

    A new highly efficient carbon dioxide absorbent consisting of sodium hydroxide, expanded perlite and acid-base indicator was prepared. The absorption efficiency, absorption capacity, flow resistance and color indication for the absorbent were tested and compared with some commercial products. The absorbent can reduce the carbon dioxide content in gases to 3.3 ppb (v/v) and absorbs not less than 35% of its weight of carbon dioxide. Besides its large capacity and sharp color indication, the absorbent has an outstanding advantage of small flow resistance in comparison with other commercial carbon dioxide absorbents. Applications in gas analysis and purification were also investigated.

  12. Carbon dioxide detection in adult Odonata.

    PubMed

    Piersanti, Silvana; Frati, Francesca; Rebora, Manuela; Salerno, Gianandrea

    2016-04-01

    The present paper shows, by means of single-cell recordings, responses of antennal sensory neurons of the damselfly Ischnura elegans when stimulated by air streams at different CO2 concentrations. Unlike most insects, but similarly to termites, centipedes and ticks, Odonata possess sensory neurons strongly inhibited by CO2, with the magnitude of the off-response depending upon the CO2 concentration. The Odonata antennal sensory neurons responding to CO2 are also sensitive to airborne odors; in particular, the impulse frequency is increased by isoamylamine and decreased by heptanoic and pentanoic acid. Further behavioral investigations are necessary to assign a biological role to carbon dioxide detection in Odonata. PMID:26831359

  13. Capture of carbon dioxide by hybrid sorption

    SciTech Connect

    Srinivasachar, Srivats

    2014-09-23

    A composition, process and system for capturing carbon dioxide from a combustion gas stream. The composition has a particulate porous support medium that has a high volume of pores, an alkaline component distributed within the pores and on the surface of the support medium, and water adsorbed on the alkaline component, wherein the proportion of water in the composition is between about 5% and about 35% by weight of the composition. The process and system contemplates contacting the sorbent and the flowing gas stream together at a temperature and for a time such that some water remains adsorbed in the alkaline component when the contact of the sorbent with the flowing gas ceases.

  14. Searching for clues to ancient carbon dioxide

    SciTech Connect

    Appenzeller, T.

    1993-02-12

    Something on Earth just won't stop fiddling with the thermostat. In the past 500 million years, the planet has shivered through ice ages lasting millions of years and sweltered through episodes of global warmth. Climatologists, eager to know what keeps jiggling the planet's temperature setting, have focused their suspicions on carbon dioxide, the same heat-trapping gas expected to drive up temperatures in coming decades. Catching this suspect in the act has been difficult, however; the atmospheres of millions of years ago are gone with the wind.

  15. Electrochemical carbon dioxide concentrator subsystem development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dahlausen, M. J.; Schubert, F. H.

    1983-01-01

    The fabrication of a one-person Electrochemical Depolarized Carbon Dioxide Concentrator subsystem incorporating advanced electrochemical, mechanical, and control and monitor instrumentation concepts is discussed. This subsystem included an advanced liquid cooled unitized core composite cell module and integrated electromechanical components. Over 1800 hours with the subsystem with removal efficiencies between 90%. and 100%; endurance tests with a Fluid Control Assembly which integrates 11 gas handling components of the subsystem; and endurance testing of a coolant control assembly which integrates a coolant pump, diverter valve and a liquid accumulator were completed.

  16. High-pressure vapor-liquid equilibria of two binary systems: Carbon dioxide + cyclohexanol and carbon dioxide + cyclohexanone

    SciTech Connect

    Laugier, S.; Richon, D.

    1997-01-01

    Vapor-liquid equilibria for carbon dioxide + cyclohexanol and carbon dioxide + cyclohexanone were measured using an apparatus based on a static-analytic method with in situ samplings. P, T, x, y measurements were made at pressures up to 22 MPa. The carbon dioxide + cyclohexanol system was studied at 433 and 473 K, and carbon dioxide + cyclohexanone, at 433 and 473 K. The results are correlated by the Redlich-Kwong-Soave and Peng and Robinson equations and several mixing rules. The best fittings are obtained with the Peng-Robinson equation of state and a two-parameter mixing rule, i.e., within 1.1% for both pressures and vapor mole fractions on the carbon dioxide + cyclohexanone system and within 1.9% for pressures and 2.9% for vapor mole fractions on the carbon dioxide + cyclohexanol system. More recent equations by Patel and Teja and Salim and Trebble show no significant advantages.

  17. Radiochemical Reactions Between Tritium Molecule and Carbon Dioxide

    SciTech Connect

    Shu, W.M.; O'Hira, S.; Suzuki, T.; Nishi, M. F.

    2005-07-15

    To have better understanding of radiochemical reactions among oxygen baking products in a fusion reactor, reactions in equimolar tritium molecule (T{sub 2}) and carbon dioxide (CO{sub 2}) were examined by laser Raman spectroscopy and mass spectrometry. After mixing them at room temperature, T{sub 2} and CO{sub 2} decreased rapidly in the first 30 minutes and then the reactions between them became much slower. As the predominant products of the reactions, carbon monoxide (CO) and tritiated water (T{sub 2}O) were found in gaseous phase and condensed phase, respectively. However, there likely existed also some solid products that were thermally decomposed into CO, CO{sub 2}, T{sub 2}, T{sub 2}O, etc. during baking up to 523 K.

  18. Carbon dioxide research plan. A summary

    SciTech Connect

    Trivelpiece, Alvin W.; Koomanoff, F. A.; Suomi, Verner E.

    1983-11-01

    The Department of Energy is the lead federal agency for research related to atmospheric carbon dioxide. Its responsibility is to sponsor a program of relevant research, and to coordinate this research with that of others. As part of its responsibilities, the Department of Energy has prepared a research plan. The plan documented in this Summary delineated the logic, objectives, organization, background and current status of the research activities. The Summary Plan is based on research subplans in four specific areas: global carbon cycle, climate effects, vegetative response and indirect effects. These subplans have emanated from a series of national and international workshops, conferences, and from technical reports. The plans have been peer reviewed by experts in the relevant scientific fields. Their execution is being coordinated between the responsible federal and international government agencies and the involved scientific community.

  19. The kinetics of binding carbon dioxide in magnesium carbonate

    SciTech Connect

    Butt, D.P.; Lackner, K.S.; Wendt, C.H.; Vaidya, R.; Pile, D.L.; Park, Y.; Holesinger, T.; Harradine, D.M.; Nomura, Koji |

    1998-08-01

    Humans currently consume about 6 Gigatons of carbon annually as fossil fuel. In some sense, the coal industry has a unique advantage over many other anthropogenic and natural emitters of CO{sub 2} in that it owns large point sources of CO{sub 2} from which this gas could be isolated and disposed of. If the increased energy demands of a growing world population are to be satisfied from coal, the implementation of sequestration technologies will likely be unavoidable. The authors` method of sequestration involves binding carbon dioxide as magnesium carbonate, a thermodynamically stable solid, for safe and permanent disposal, with minimal environmental impact. The technology is based on extracting magnesium hydroxide from common ultramafic rock for thermal carbonation and subsequent disposition. The economics of the method appear to be promising, however, many details of the proposed process have yet to be optimized. Realization of a cost effective method requires development of optimal technologies for efficient extraction and thermal carbonation.

  20. Six-fold coordinated carbon dioxide VI

    SciTech Connect

    Iota, Valentin; Yoo, Choong-Shik; Klepeis, Jae-Hyun; Jenei, Zsolt; Evans, William; Cynn, Hyunchae

    2008-06-16

    Under standard conditions, carbon dioxide (CO{sub 2}) is a simple molecular gas and an important atmospheric constituent, whereas silicon dioxide (SiO{sub 2}) is a covalent solid, and one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO{sub 2} transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO{sub 2} tridymite. Here, we present the discovery of an extended-solid phase of CO{sub 2}: a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO{sub 2}-II above 50 GPa at 530-650 K. Together with the previously reported CO{sub 2}-V and a-carbonia, this extended phase indicates a fundamental similarity between CO{sub 2} (a prototypical molecular solid) and SiO{sub 2} (one of Earth's fundamental building blocks). We present a phase diagram with a limited stability domain for molecular CO{sub 2}-I, and suggest that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II, III and IV. The crystal structure of phase VI suggests strong disorder along the c axis in stishovite-like P4{sub 2}/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp{sup 3} hybridization.

  1. Pharmaceutical applications of supercritical carbon dioxide.

    PubMed

    Kaiser, C S; Römpp, H; Schmidt, P C

    2001-12-01

    The appearance of a supercritical state was already observed at the beginning of the 19th century. Nevertheless, the industrial extraction of plant and other natural materials started about twenty years ago with the decaffeination of coffee. Today carbon dioxide is the most common gas for supercritical fluid extraction in food and pharmaceutical industry. Since pure supercritical carbon dioxide is a lipophilic solvent, mixtures with organic solvents, especially alcohols, are used to increase the polarity of the extraction fluid; more polar compounds can be extracted in this way. The main fields of interest are the extraction of vegetable oils from plant material in analytical and preparative scale, the preparation of essential oils for food and cosmetic industry and the isolation of substances of pharmaceutical relevance. Progress in research was made by the precise measurement of phase equilibria data by means of different methods. Apart from extraction, supercritical fluid chromatography was introduced in the field of analytics, as well as micro- and nanoparticle formation using supercritical fluids as solvent or antisolvent. This review presents pharmaceutical relevant literature of the last twenty years with special emphasis on extraction of natural materials.

  2. Pharmaceutical applications of supercritical carbon dioxide.

    PubMed

    Kaiser, C S; Römpp, H; Schmidt, P C

    2001-12-01

    The appearance of a supercritical state was already observed at the beginning of the 19th century. Nevertheless, the industrial extraction of plant and other natural materials started about twenty years ago with the decaffeination of coffee. Today carbon dioxide is the most common gas for supercritical fluid extraction in food and pharmaceutical industry. Since pure supercritical carbon dioxide is a lipophilic solvent, mixtures with organic solvents, especially alcohols, are used to increase the polarity of the extraction fluid; more polar compounds can be extracted in this way. The main fields of interest are the extraction of vegetable oils from plant material in analytical and preparative scale, the preparation of essential oils for food and cosmetic industry and the isolation of substances of pharmaceutical relevance. Progress in research was made by the precise measurement of phase equilibria data by means of different methods. Apart from extraction, supercritical fluid chromatography was introduced in the field of analytics, as well as micro- and nanoparticle formation using supercritical fluids as solvent or antisolvent. This review presents pharmaceutical relevant literature of the last twenty years with special emphasis on extraction of natural materials. PMID:11802652

  3. Carbon dioxide extraction from air: Is it an option?

    SciTech Connect

    Lackner, K.S.; Grimes, P.; Ziock, H.J.

    1999-07-01

    Controlling the level of carbon dioxide in the atmosphere without limiting access to fossil energy resources is only possible if carbon dioxide is collected and disposed of away from the atmosphere. While it may be cost-advantageous to collect the carbon dioxide at concentrated sources without ever letting it enter the atmosphere, this approach is not available for the many diffuse sources of carbon dioxide. Similarly, for many older plants, a retrofit to collect the carbon dioxide is either impossible or prohibitively expensive. For these cases the authors investigate the possibility of collecting the carbon dioxide directly from the atmosphere. The authors conclude that there are no fundamental obstacles to this approach and that it deserves further investigation. Carbon dioxide extraction directly from the atmosphere would allow carbon management without the need for a completely changed infrastructure. In addition it eliminates the need for a completely changed infrastructure. In addition it eliminates the need for a complex carbon dioxide transportation infrastructure, thus at least in part offsetting the higher cost of extraction from air.

  4. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch.

    PubMed

    Kwak, Hyoung S; Uhm, Han S; Hong, Yong C; Choi, Eun H

    2015-12-17

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10(-3), nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10(-7), nO2/nN = 5.39 × 10(-5), where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.

  5. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    PubMed Central

    Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.

    2015-01-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10−3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10−7, nO2/nN = 5.39 × 10−5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. PMID:26674957

  6. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    NASA Astrophysics Data System (ADS)

    Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.

    2015-12-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10-3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10-7, nO2/nN = 5.39 × 10-5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.

  7. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch.

    PubMed

    Kwak, Hyoung S; Uhm, Han S; Hong, Yong C; Choi, Eun H

    2015-01-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10(-3), nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10(-7), nO2/nN = 5.39 × 10(-5), where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. PMID:26674957

  8. Hydropower’s Contribution to Carbon Dioxide Emission Reduction

    SciTech Connect

    Francfort, James E.

    1997-11-01

    The annual carbon dioxide emissions currently (1997 figures) avoided by the use of hydropower in electricity generation is 142 million metric tons, and it has a carbon tax value of $7.1 billion. Developing the identified additional hydropower capacity can yield an additional 34 million tons annually of avoided carbon dioxide emissions, with a value of $1.7 billion in carbon taxes. The total annual avoided emissions can exceed 176 million metric tons, with a value of $8.8 billion.

  9. Promising flame retardant textile in supercritical carbon dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since carbon dioxide is non-toxic, non-flammable and cost-effective, supercritical carbon dioxide (scCO2) is widely used in textile dyeing applications. Due to its environmentally benign character, scCO2 is considered in green chemistry as a substitute for organic solvents in chemical reactions. O...

  10. Carbon Dioxide and Global Warming: A Failed Experiment

    ERIC Educational Resources Information Center

    Ribeiro, Carla

    2014-01-01

    Global warming is a current environmental issue that has been linked to an increase in anthropogenic carbon dioxide in the atmosphere. To raise awareness of the problem, various simple experiments have been proposed to demonstrate the effect of carbon dioxide on the planet's temperature. This article describes a similar experiment, which…

  11. Investigating Diffusion and Entropy with Carbon Dioxide-Filled Balloons

    ERIC Educational Resources Information Center

    Jadrich, James; Bruxvoort, Crystal

    2010-01-01

    Fill an ordinary latex balloon with helium gas and you know what to expect. Over the next day or two the volume will decrease noticeably as helium escapes from the balloon. So what happens when a latex balloon is filled with carbon dioxide gas? Surprisingly, carbon dioxide balloons deflate at rates as much as an order of magnitude faster than…

  12. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Carbon dioxide analyzer calibration... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.124-78 Carbon dioxide analyzer calibration. Prior to...

  13. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration... (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1324-84 Carbon dioxide analyzer calibration. Prior to its introduction...

  14. Solid amine compounds as sorbents for carbon dioxide: A concept

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    Solid amine compounds were examined as possible absorbents for removal of carbon dioxide in life support systems of type which may be employed in high altitude aircraft, spacecraft, or submarines. Many solid amine compounds release absorbed carbon dioxide when heated in vacuum, therefore, when properly packaged spent amine compounds can be readily regenerated and put back into service.

  15. Carbon dioxide absorbent and method of using the same

    DOEpatents

    Perry, Robert James; Lewis, Larry Neil; O'Brien, Michael Joseph; Soloveichik, Grigorii Lev; Kniajanski, Sergei; Lam, Tunchiao Hubert; Lee, Julia Lam; Rubinsztajn, Malgorzata Iwona

    2011-10-04

    In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.

  16. Carbon Dioxide Detection and Indoor Air Quality Control.

    PubMed

    Bonino, Steve

    2016-04-01

    When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.

  17. Carbon dioxide stripping in aquaculture. part 1: terminology and reporting

    USGS Publications Warehouse

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The removal of carbon dioxide gas in aquacultural systems is much more complex than for oxygen or nitrogen gas because of liquid reactions of carbon dioxide and their kinetics. Almost all published carbon dioxide removal information for aquaculture is based on the apparent removal value after the CO2(aq) + HOH ⇔ H2CO3 reaction has reached equilibrium. The true carbon dioxide removal is larger than the apparent value, especially for high alkalinities and seawater. For low alkalinity freshwaters (<2000 μeq/kg), the difference between the true and apparent removal is small and can be ignored for many applications. Analytical and reporting standards are recommended to improve our understanding of carbon dioxide removal.

  18. Photobiological hydrogen production and carbon dioxide sequestration

    NASA Astrophysics Data System (ADS)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  19. Field results from 3 campaigns to validate the performance of the Miniaturized Laser Heterodyne Radiometer (mini-LHR) for measuring carbon dioxide and methane in the atmospheric column

    NASA Astrophysics Data System (ADS)

    Wilson, E. L.; Clarke, G. B.; Melroy, H.; Miller, J. H.; Allan, G. R.; McLinden, M. L.; Ott, L.; Holben, B. N.

    2013-12-01

    We present mini-LHR measurements of column CO2 and CH4 from our recent field campaign at Mauna Loa Observatory (MLO), HI in May 2013 as well as column CO2 measurements from Castle Airport in Merced, CA during the ASCENDS DC-8 campaign in February 2013, and column CO2 measurements made at the NOAA LEF/TCCON (Total Column Carbon Observing Network) site in Park Falls, WI in September 2012. The mini-LHR was completely automated at the MLO location and operates in tandem with an AERONET sun photometer and measures CO2 and CH4 every 15 minutes during daylight hours in clear sky conditions. Laser heterodyne radiometry has been an established receiver technique since the 1970s and has been used to measure a range of atmospheric gases such as ozone, water vapor, methane, ammonia, chlorine monoxide, and nitrous oxide. The mini-LHR is a passive variation on this technique that uses sunlight as the light source to measure absorption of CO2 and CH4 in the infrared. In this instrument, sunlight is collected with collimation optics mounted to the AERONET sun tracker and superimposed with laser light in a single mode fiber coupler. The signals are mixed in a fast photoreceiver (InGaAs detector), and the RF (radio frequency) beat signal is extracted. Changes in concentration of the trace gas are realized through analyzing changes in the beat frequency amplitude. Miniaturization was made possible through the use of smaller distributive feedback (DFB) lasers and related fiber optic components that have recently become commercially available and inexpensive through progress in the telecommunications industry. In addition to the complementary aerosol optical depth measurement, tandem operation with AERONET provides a clear pathway for the mini-LHR to be expanded into a global monitoring network. AERONET has more than 450 instruments worldwide and offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra

  20. Global carbon dioxide emissions from inland waters

    USGS Publications Warehouse

    Raymond, Peter A.; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory P.; Hoover, Mark; Butman, David; Striegl, Rob; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Durr, Hans H.; Meybeck, Michel; Ciais, Philippe; Guth, Peter

    2013-01-01

    Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8   petagrams of carbon (Pg C) per year from streams and rivers and 0.32  Pg C yr−1 from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr−1 is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.

  1. Carbon dioxide emission from bamboo culms.

    PubMed

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan. PMID:26802362

  2. Carbon dioxide: Global warning for nephrologists

    PubMed Central

    Marano, Marco; D’Amato, Anna; Cantone, Alessandra

    2016-01-01

    The large prevalence of respiratory acid-base disorders overlapping metabolic acidosis in hemodialysis population should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients’ bloodstream every hemodialysis treatment and “acidosis by dialysate” may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the filter reenters arterial needle. PMID:27648406

  3. Carbon dioxide: Global warning for nephrologists.

    PubMed

    Marano, Marco; D'Amato, Anna; Cantone, Alessandra

    2016-09-01

    The large prevalence of respiratory acid-base disorders overlapping metabolic acidosis in hemodialysis population should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients' bloodstream every hemodialysis treatment and "acidosis by dialysate" may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the filter reenters arterial needle. PMID:27648406

  4. Thermodynamical effects during carbon dioxide release

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Böttcher, N.; Görke, U.-J.; Kolditz, O.

    2012-04-01

    Pruess [1] investigated the risk of carbon dioxide leakage from shallow storage sites by modeling scenarios. Such a fluid release is associated with mechanical work performed by formation fluid against expansion without taking heat from ambient environment. Understanding of heat related to mechanical work is essential to predict the temperature at the leak. According to the first law of thermodynamics, internal energy of working fluid decreases with an amount which is equivalent to this work hence, working fluid lost its own heat. Such kind of heat loss depends strongly on whether the expansion process is adiabatic or isothermal. Isothermal expansion allows the working fluid to interact thermally with the solid matrix. Adiabatic expansion is an isenthalpic process that takes heat from the working fluid and the ambient environment remains unchanged. This work is part of the CLEAN research project [6]. In this study, thermodynamic effects of mechanical work during eventual carbon dioxide leakage are investigated numerically. In particular, we are interested to detect the temperature at leakage scenarios and its deviation with different thermodynamic processes. Finite element simulation is conducted with a two-dimensional rectangular geometry representing a shallow storage site which bottom was located at -300m below the land surface. A fully saturated porous medium is assumed where the pore space is filled completely with carbon dioxide. Carbon dioxide accumulated in the secondary trap at 30 Bar and 24 °C is allowed to leak from top right point of rectangle with atmospheric pressure. With (i) adiabatic and (ii) isothermal compressibility factors, temperature around leakage area has been calculated which show a significant difference. With some simplification, this study detects leak temperature which is very close with [1]. Temporal evaluation at the leaky area shows that the working fluid temperature can be reduced to -20 °C when the leakage scenario is performed

  5. Carbon dioxide removal with inorganic membranes

    SciTech Connect

    Judkins, R.R.; Fain, D.E.

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  6. Carbon dioxide: Global warning for nephrologists

    PubMed Central

    Marano, Marco; D’Amato, Anna; Cantone, Alessandra

    2016-01-01

    The large prevalence of respiratory acid-base disorders overlapping metabolic acidosis in hemodialysis population should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients’ bloodstream every hemodialysis treatment and “acidosis by dialysate” may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the filter reenters arterial needle.

  7. Biochemical Capture and Removal of Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Trachtenberg, Michael C.

    1998-01-01

    We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.

  8. Layered solid sorbents for carbon dioxide capture

    SciTech Connect

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  9. Carbon dioxide: Global warning for nephrologists.

    PubMed

    Marano, Marco; D'Amato, Anna; Cantone, Alessandra

    2016-09-01

    The large prevalence of respiratory acid-base disorders overlapping metabolic acidosis in hemodialysis population should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients' bloodstream every hemodialysis treatment and "acidosis by dialysate" may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the filter reenters arterial needle.

  10. Dissociation-excitation reactions of argon metastables with carbon dioxide.

    NASA Technical Reports Server (NTRS)

    Starr, W. L.

    1971-01-01

    Results of a study showing that a metastable argon-carbon dioxide reaction results in dissociation of carbon dioxide and electronic excitation of one of the products, carbon monoxide or oxygen. A flow system using a 2450-MHz discharge was used to produce metastable argon atoms. Metastable argon in the afterglow was confirmed by adding nitrogen to the afterglow. Without addition of carbon dioxide no argon line emission, or any other emission, is observed from the reaction zone. Absence of argon line emission produced by recombination indicates the absence of charged species.

  11. Six-fold coordinated carbon dioxide VI.

    PubMed

    Iota, Valentin; Yoo, Choong-Shik; Klepeis, Jae-Hyun; Jenei, Zsolt; Evans, William; Cynn, Hyunchae

    2007-01-01

    Under standard conditions, carbon dioxide (CO2) is a simple molecular gas and an important atmospheric constituent, whereas silicon dioxide (SiO2) is a covalent solid, and one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO2 transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO2 tridymite. Here, we present the discovery of an extended-solid phase of CO2: a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO2-II (refs 1,2) above 50 GPa at 530-650 K. Together with the previously reported CO2-V (refs 3-5) and a-carbonia, this extended phase indicates a fundamental similarity between CO2 (a prototypical molecular solid) and SiO2 (one of Earth's fundamental building blocks). We present a phase diagram with a limited stability domain for molecular CO2-I, and suggest that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II (refs 1,2), III (refs 7,8) and IV (refs 9,10). The crystal structure of phase VI suggests strong disorder along the c axis in stishovite-like P42/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp3 hybridization. PMID:17160005

  12. Coiled tubing drilling with supercritical carbon dioxide

    DOEpatents

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  13. Intraosseous Venography with Carbon Dioxide in Percutaneous Vertebroplasty: Carbon Dioxide Retention in Renal Veins

    SciTech Connect

    Komemushi, Atsushi Tanigawa, Noboru; Kariya, Shuji; Kojima, Hiroyuki; Shomura, Yuzo; Tokuda, Takanori; Nomura, Motoo; Terada, Jiro; Kamata, Minoru; Sawada, Satoshi

    2008-11-15

    The objective of the present study was to determine the frequency of gas retention in the renal vein following carbon dioxide intraosseous venography in the prone position and, while citing references, to examine its onset mechanisms. All percutaneous vertebroplasties performed at our hospital from January to December 2005 were registered and retrospectively analyzed. Of 43 registered procedures treating 79 vertebrae, 28 procedures treating 54 vertebrae were analyzed. Vertebral intraosseous venography was performed using carbon dioxide as a contrast agent in all percutaneous vertebroplasty procedures. In preoperative and postoperative vertebral CT, gas retention in the renal vein and other areas was assessed. Preoperative CT did not show gas retention (0/28 procedures; 0%). Postoperative CT confirmed gas retention in the renal vein in 10 of the 28 procedures (35.7%). Gas retention was seen in the right renal vein in 8 procedures (28.6%), in the left renal vein in 5 procedures (17.9%), in the left and right renal veins in 3 procedures (10.7%), in vertebrae in 22 procedures (78.6%), in the soft tissue around vertebrae in 14 procedures (50.0%), in the spinal canal in 12 procedures (42.9%), and in the subcutaneous tissue in 5 procedures (17.9%). In conclusion, in our study, carbon dioxide gas injected into the vertebra frequently reached and remained in the renal vein.

  14. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  15. Testing carbon sequestration site monitor instruments using a controlled carbon dioxide release facility

    NASA Astrophysics Data System (ADS)

    Humphries, Seth D.; Nehrir, Amin R.; Keith, Charlie J.; Repasky, Kevin S.; Dobeck, Laura M.; Carlsten, John L.; Spangler, Lee H.

    2008-02-01

    Two laser-based instruments for carbon sequestration site monitoring have been developed and tested at a controlled carbon dioxide (CO2) release facility. The first instrument uses a temperature tunable distributed feedback (DFB) diode laser capable of accessing the 2.0027-2.0042 μm spectral region that contains three CO2 absorption lines and is used for aboveground atmospheric CO2 concentration measurements. The second instrument also uses a temperature tunable DFB diode laser capable of accessing the 2.0032-2.0055 μm spectral region that contains five CO2 absorption lines for underground CO2 soil gas concentration measurements. The performance of these instruments for carbon sequestration site monitoring was studied using a newly developed controlled CO2 release facility. A 0.3 ton CO2/day injection experiment was performed from 3-10 August 2007. The aboveground differential absorption instrument measured an average atmospheric CO2 concentration of 618 parts per million (ppm) over the CO2 injection site compared with an average background atmospheric CO2 concentration of 448 ppm demonstrating this instrument's capability for carbon sequestration site monitoring. The underground differential absorption instrument measured a CO2 soil gas concentration of 100,000 ppm during the CO2 injection, a factor of 25 greater than the measured background CO2 soil gas concentration of 4000 ppm demonstrating this instrument's capability for carbon sequestration site monitoring

  16. Double-Pulse Two-Micron IPDA Lidar Simulation for Airborne Carbon Dioxide Measurements

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta

    2015-01-01

    An advanced double-pulsed 2-micron integrated path differential absorption lidar has been developed at NASA Langley Research Center for measuring atmospheric carbon dioxide. The instrument utilizes a state-of-the-art 2-micron laser transmitter with tunable on-line wavelength and advanced receiver. Instrument modeling and airborne simulations are presented in this paper. Focusing on random errors, results demonstrate instrument capabilities of performing precise carbon dioxide differential optical depth measurement with less than 3% random error for single-shot operation from up to 11 km altitude. This study is useful for defining CO2 measurement weighting, instrument setting, validation and sensitivity trade-offs.

  17. Redox Reactions of Metalloporphyrins and their Role in Catalyzed Reduction of Carbon Dioxide

    SciTech Connect

    Neta, P.

    2002-09-01

    Pulse radiolysis and laser photolysis are used to study redox processes of metalloporphyrins and related complexes in order to evaluate these light absorbing molecules as sensitizers and intermediates in solar energy conversion schemes. The main thrust of the current studies is to investigate the role of reduced metalloporphyrins as intermediates in the catalyzed reduction of carbon dioxide. Studies involve cobalt and iron porphyrins, phthalocyanines, corroles, and corrins as homogeneous catalysts for reduction of carbon dioxide in solution. The main aim is to understand the mechanisms of these photochemical schemes in order to facilitate their potential utilization.

  18. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary

  19. Herbivore responses to plants grown in enriched carbon dioxide atmospheres

    SciTech Connect

    Lincoln, D.E.

    1990-05-01

    Our initial study of sagebrush and grasshopper responses to elevated and historical carbon dioxide atmospheres is complete and has been accepted for publication. The study on Biomass Allocation Patterns of Defoliated Sagebrush Grown Under Two Levels of Carbon Dioxide has completed and the manuscript has been submitted for publication. We have completed the study of plant growth under two nutrient and carbon dioxide regimes and grasshopper feeding responses. The study of a specialist feeding caterpillar, the cabbage butterfly, and a mustard hostplant has recently been completed. We were able to identify the principal allelochemicals of the mustard plants, butenyl and pentenyl isothiocyanates, by combined gas chromatography and mass spectrometry. Measurement of these chemicals has been a critical component of this study since these compounds contain nitrogen and sulphur and act as a feeding stimulant to the caterpillar. This insect responds to elevated carbon dioxide by consuming more leaves and we can now say that this is not due to a change in the feeding stimulants. Reduced leaf protein content is a critical factor for even specialist feeding insect herbivores under elevated carbon dioxide conditions. The study on Grasshopper Population Responses to Enriched Carbon Dioxide Concentration is currently in progress at the Duke University Phytotron. We have changed hostplant species in order to complement the investigations of carbon dioxide effects on tallgrass prairie. Specifically, we are using big bluestem, Andropogon geradii, as the host plant to feed to the grasshoppers. This experiment will be completed in July 1990.

  20. Carbon Dioxide Sequestration and ECBM in the Powder River Basin

    NASA Astrophysics Data System (ADS)

    Colmenares, L. B.; Zoback, M. D.

    2003-12-01

    Coal seams are both a source of coal bed methane (CBM) and a potential carbon dioxide sink. For sub-bituminous coals like those in the Powder River Basin (PRB), the CO2/CH4 adsorption ratio is approximately 10:1, which indicates the significant potential for sequestering carbon dioxide. In addition, injected carbon dioxide would also enhance the production of methane from the coal seam because of its higher adsorption capacity. This means that the injection of carbon dioxide in coal beds may have the dual benefit of sequestering carbon dioxide and enhancing CBM production. Moreover, if carbon dioxide injection efficiently displaces the adsorbed methane, it may reduce the amount of water produced from CBM wells as part of the depressurization process. Our work in the Powder River Basin indicates that drilling and completion operations result in hydraulic fracturing of the coal and possibly the adjacent strata. This would result in both excess CBM water production and inefficient depressurization of coals. We have been able to collect water-enhancement tests data in coals to obtain the magnitude of the least principal stress in the coal seam. The preliminary data we have analyzed indicates that the hydrofracs are horizontal in some areas because the least principal stress corresponds to the overburden. It is interesting to speculate that one could use horizontal hydrofracs near the bottom of the coal seam for carbon dioxide injection and a horizontal hydrofrac near the upper part of the coal seam for methane production.

  1. Terahertz spectroscopy and laser induced infrared emission spectroscopy of nitromethane and optical properties of laser-induced carriers on semiconductor surfaces probed by a 10.6 micron wavelength carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Toyoda, Yoshimasa

    This work consists of two parts, (1) Terahertz (THz) spectroscopy and laser-induced infrared emission spectroscopy of nitromethane and (2) optical properties of laser-induced carriers on semiconductor surfaces probed by a 10.6 mum wavelength CO2 laser. In the spectroscopic study of nitromethane, previously unreported low resolution rotational-torsional spectra in the THz frequency were obtained by a Bruker IFS 66 v/S Fourier transform spectrometer. The acquired spectra were then compared with a calculation based on a rotational-torsional Hamiltonian which includes centrifugal distortions and rotational-torsional coupling terms. Even though the constants used in the calculation were a result of fitting the microwave spectrum, a discrepancy was observed between the calculated and the experimentally obtained spectrum. In addition, gaseous nitromethane was irradiated with a c.w. CO 2 laser (˜20 W cm-2 intensity, 10.6 mum wavelength) and the laser-induced steady state emission spectrum was analyzed with the IFS 66 v/S spectrometer. The laser-induced emission spectrum showed the characteristics consistent with the laser-heated thermal emission. The decay constant of the emission followed by a 100 ms CO2 laser pulse was measured with a pyroelectric detector and determined to be 0.3 s. In part II, several polycrystalline semiconductors [silicon (Si), germanium (Ge), gallium arsenide (GaAs), and cadmium telluride (CdTe)] were irradiated with a 150 Ps Nd:YAG laser (532/1064 nm wavelength) and induced changes in the optical properties were monitored by measuring the time-resolved reflectance and transmittance of a low power CO2 laser incident on the samples at the Brewster angle. The experimental results showed a sub-nanosecond increase in the reflectance and a longer increase in the absorption as a result of electron-hole pairs (i.e. carriers) generated by absorption of the incident Nd:YAG laser pulses.

  2. Forest management techniques for carbon dioxide storage

    SciTech Connect

    Fujimori, Takao

    1993-12-31

    In the global ecosystem concerning carbon dioxide content in the atmosphere, the forest ecosystem plays an important role. In effect, the ratio of forest biomass to total terrestrial biomass is about 90%, and the ratio of carbon stored in the forest biomass to that in the atmosphere is two thirds. When soils and detritus of forests are added, there is more C stored in forests than in the atmosphere, about 1.3 times or more. Thus, forests can be regarded as the great holder of C on earth. If the area of forest land on the earth is constantly maintained and forests are in the climax stage, the uptake of C and the release of C by and from the forests will balance. In this case, forests are neither sinks nor sources of CO{sub 2} although they store a large amount of C. However, when forests are deforested, they become a source of C; through human activities, forests have become a source of C. According to a report by the IPCC, 1.6{+-}1.2 PgC is annually added to the atmosphere by deforestation. According to the FAO (1992), the area of land deforested annually in the tropics from 1981 to 1990 was 16.9 x 10{sup 6} ha. This value is nearly half the area of Japanese land. The most important thing for the CO{sub 2} environment concerning forests is therefore how to reduce deforestation and to successfully implement a forestation or reforestation.

  3. Carbon dioxide warming of the early Earth.

    PubMed

    Arrhenius, G

    1997-02-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.

  4. Carbon dioxide warming of the early Earth

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1997-01-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.

  5. Carbon dioxide warming of the early Earth.

    PubMed

    Arrhenius, G

    1997-02-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure. PMID:11541253

  6. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Thomas Nelson; Brian S. Turk; Paul Box; Weijiong Li; Raghubir P. Gupta

    2005-07-01

    This report describes research conducted between April 1, 2005 and June 30, 2005 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas from coal combustion and synthesis gas from coal gasification. Supported sodium carbonate sorbents removed up to 76% of the carbon dioxide from simulated flue gas in a downflow cocurrent flow reactor system, with an approximate 15 second gas-solid contact time. This reaction proceeds at temperatures as low as 25 C. Lithium silicate sorbents remove carbon dioxide from high temperature simulated flue gas and simulated synthesis gas. Both sorbent types can be thermally regenerated and reused. The lithium silicate sorbent was tested in a thermogravimetric analyzer and in a 1-in quartz reactor at atmospheric pressure; tests were also conducted at elevated pressure in a 2-in diameter high temperature high pressure reactor system. The lithium sorbent reacts rapidly with carbon dioxide in flue gas at 350-500 C to absorb about 10% of the sorbent weight, then continues to react at a lower rate. The sorbent can be essentially completely regenerated at temperatures above 600 C and reused. In atmospheric pressure tests with synthesis gas of 10% initial carbon dioxide content, the sorbent removed over 90% of the carbon dioxide. An economic analysis of a downflow absorption process for removal of carbon dioxide from flue gas with a supported sodium carbonate sorbent suggests that a 90% efficient carbon dioxide capture system installed at a 500 MW{sub e} generating plant would have an incremental capital cost of $35 million ($91/kWe, assuming 20 percent for contingencies) and an operating cost of $0.0046/kWh. Assuming capital costs of $1,000/kW for a 500 MWe plant the capital cost of the down flow absorption process represents a less than 10% increase, thus meeting DOE goals as set forth in its Carbon Sequestration Technology Roadmap and Program Plan.

  7. Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.

    ERIC Educational Resources Information Center

    Alcamo, Joseph; De Vries, Bert

    1992-01-01

    Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…

  8. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Technical Reports Server (NTRS)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  9. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Astrophysics Data System (ADS)

    Hagedorn, Norman H.

    1993-05-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  10. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Astrophysics Data System (ADS)

    Hagedorn, Norman H.

    1991-09-01

    An alkali metal, such as lithium, is the anodic reactant, carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant, and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is therefore especially useful in extraterrestrial environments.

  11. Dissolution of uranium dioxide in supercritical fluid carbon dioxide.

    PubMed

    Samsonov, M D; Wai, C M; Lee, S C; Kulyako, Y; Smart, N G

    2001-09-21

    Uranium dioxide can be dissolved in supercritical CO2 with a CO2-philic TBP-HNO3 complexant to form a highly soluble UO2(NO3)(2).2TBP complex; this new method of dissolving UO2 that requires no water or organic solvent may have important applications for reprocessing of spent nuclear fuels and for treatment of nuclear wastes.

  12. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Thomas Nelson; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta

    2005-04-01

    This report describes research conducted between January 1, 2005 and March 31, 2005 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Engineered sorbents composed of sodium carbonate on a ceramic support were tested in a laboratory fluidized bed reactor system and found to be capable of essentially complete removal of carbon dioxide at 60 C in a short residence time. Upon breakthrough the sorbents can be thermally regenerated to recover essentially all of the absorbed carbon dioxide. An optimized supported sorbent tested in a pilot-scale entrained bed absorber retained its reactivity in multicycle tests and experienced no attrition. Removal of >90% of carbon dioxide in simulated flue gas was achieved in an entrained bed reactor.

  13. A mathematical model of carbon dioxide flooding with hydrate formation

    NASA Astrophysics Data System (ADS)

    Tsypkin, G. G.

    2014-10-01

    The injection of carbon dioxide into a reservoir that contains methane and water in a free state is investigated. A mathematical model of this process is proposed that suggests the formation of the CO2 hydrate on the surface of the phase transition separating regions of methane and carbon dioxide. The conditions on the interface are derived, and an asymptotic solution of the problem is found. Critical diagrams are obtained that define parameter ranges in which there is full or partial transition of gaseous carbon dioxide to a hydrate state.

  14. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    SciTech Connect

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  15. Membranes for separation of carbon dioxide

    DOEpatents

    Ku, Anthony Yu-Chung; Ruud, James Anthony; Ramaswamy, Vidya; Willson, Patrick Daniel; Gao, Yan

    2011-03-01

    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  16. Atmospheric carbon dioxide: its role in maintaining phytoplankton standing crops.

    PubMed

    Schindler, D W; Brunskill, G J; Emerson, S; Broecker, W S; Peng, T H

    1972-09-29

    The rate of invasion of carbon dioxide into an artificially eutrophic Canadian Shield lake with insufficient internal sources of carbon was determined by two methods: measuring the carbon : nitrogen : phosphorus ratios of seston after weekly additions of nitrogen and phosphorus, and measuring the loss of radon-222 tracer from the epilimnion. Both methods gave an invasion rate of about 0.2 gram of carbon per square meter per day. The results demonstrate that invasion of atmospheric carbon dioxide may be sufficient to permit eutrophication of any body of water receiving an adequate supply of phosphorus and nitrogen. PMID:5057624

  17. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  18. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  19. The source of carbon dioxide for gastric acid production.

    PubMed

    Steer, Howard

    2009-01-01

    The source of carbon dioxide for the chemical reaction leading to the production of gastric acid is unknown. The decarboxylation of an amino acid releases carbon dioxide. Pepsinogens provide a rich source of the amino acid arginine. Both the source of carbon dioxide, arginine, and the consequence of arginine decarboxylation, agmatine, have been studied. The site of carbon dioxide production has been related to the survival of the parietal cell. An immunohistochemical study has been carried out on glycol methacrylate embedded gastric biopsies from the normal stomach of 38 adult patients. The sections have been stained using polyclonal antibody to pepsinogen II, polyclonal antibody to agmatine, and polyclonal antibody to Helicobacter pylori. Pepsinogen II and agmatine are found in the parietal cell canaliculi. This is consistent with the production of carbon dioxide from arginine in the parietal cell canaliculi. Evidence is presented for the decarboxylation of arginine derived from the activation segment of pepsinogen as the source of carbon dioxide for the production of gastric acid. The production of carbon dioxide by the decarboxylation of arginine in the parietal cell canaliculus enables the extracellular hydration of carbon dioxide at the known site of carbonic anhydrase activity. The extracellular production of acid in the canaliculus together with the presence of agmatine helps to explain why the parietal cells are not destroyed during the formation of gastric acid. Agmatine is found in the mucus secreting cells of the stomach and its role in acid protection of the stomach is discussed. Anat Rec, 2009. (c) 2008 Wiley-Liss, Inc. PMID:18951509

  20. Time dependent measurements of nitrous oxide and carbon dioxide collisional relaxation processes by a frequency down-chirped quantum cascade laser: rapid passage signals and the time dependence of collisional processes.

    PubMed

    Tasinato, Nicola; Hay, Kenneth G; Langford, Nigel; Duxbury, Geoffrey; Wilson, David

    2010-04-28

    Intrapulse quantum cascade laser spectrometers are able to produce both saturation and molecular alignment of the gas sample. This is due to the rapid sweep of the radiation through the absorption features. The intrapulse time domain spectra closely resemble those recorded in coherent optical nutation experiments. In the present paper, the frequency down-chirped technique is employed to investigate the nitrous oxide-foreign gas collisions. We have demonstrated that the measurements may be characterized by the induced polarization dominated and collision dominated measurement limits. The first of these is directly related to the time dependence of the long range collision cross sections. Among the collisional partners considered, carbon dioxide shows a very unusual behavior of rapid polarization damping, resulting in the production of symmetrical line shapes at very low gas buffer pressures. In the collision dominated regime, the pressure broadening parameters, which we have derived, are comparable at slow chirp rates, with those derived from other experimental methods. By comparing the pressure broadening coefficients of Ar, N(2), and CO(2) with those of He, making use of the chirp rate independence of the pressure broadening by helium, we have shown that at higher chirp rates there is clear evidence of the chirp-rate dependence of the pressure broadening parameters of N(2) and CO(2).

  1. Pretreatment for cellulose hydrolysis by carbon dioxide explosion

    SciTech Connect

    Zheng, Y.; Lin, H.M.; Tsao, G.T.

    1998-11-01

    Cellulosic materials were treated with supercritical carbon dioxide to increase the reactivity of cellulose, thereby to enhance the rate and the extent of cellulose hydrolysis. In this pretreatment process, the cellulosic materials such as Avicel, recycled paper mix, sugarcane bagasse and the repulping waste of recycled paper are placed in a reactor under pressurized carbon dioxide at 35 C for a controlled time period. Upon an explosive release of the carbon dioxide pressure, the disruption of the cellulosic structure increases the accessible surface area of the cellulosic substrate to enzymatic hydrolysis. Results indicate that supercritical carbon dioxide is effective for pretreatment of cellulose. An increase in pressure facilitates the faster penetration of carbon dioxide molecules into the crystalline structures, thus more glucose is produced from cellulosic materials after the explosion as compared to those without the pretreatment. This explosion pretreatment enhances the rate of cellulosic material hydrolysis as well as increases glucose yield by as much as 50%. Results from the simultaneous saccharification and fermentation tests also show the increase in the available carbon source from the cellulosic materials for fermentation to produce ethanol. As an alternative method, this supercritical carbon dioxide explosion has a possibility to reduce expense compared with ammonia explosion, and since it is operated at the low temperature, it will not cause degradation of sugars such as those treated with steam explosion due to the high-temperature involved.

  2. 46 CFR 167.45-45 - Carbon dioxide fire-extinguishing system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide fire-extinguishing system requirements... Carbon dioxide fire-extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  3. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  4. 46 CFR 35.40-7 - Carbon dioxide alarm-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Carbon dioxide alarm-T/ALL. 35.40-7 Section 35.40-7... Requirements-TB/ALL. § 35.40-7 Carbon dioxide alarm—T/ALL. Adjacent to all carbon dioxide fire extinguishing... AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  5. 46 CFR 167.45-45 - Carbon dioxide fire-extinguishing system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide fire-extinguishing system requirements... Carbon dioxide fire-extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  6. 46 CFR 35.40-8 - Carbon dioxide warning signs-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Carbon dioxide warning signs-T/ALL. 35.40-8 Section 35... Marking Requirements-TB/ALL § 35.40-8 Carbon dioxide warning signs—T/ALL. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into which...

  7. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  8. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  9. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  10. 46 CFR 35.40-7 - Carbon dioxide alarm-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Carbon dioxide alarm-T/ALL. 35.40-7 Section 35.40-7... Requirements-TB/ALL. § 35.40-7 Carbon dioxide alarm—T/ALL. Adjacent to all carbon dioxide fire extinguishing... AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  11. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  12. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  13. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  14. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide fire extinguishing system requirements... Carbon dioxide fire extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  15. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  16. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  17. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  18. 46 CFR 35.40-8 - Carbon dioxide warning signs-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Carbon dioxide warning signs-T/ALL. 35.40-8 Section 35... Marking Requirements-TB/ALL § 35.40-8 Carbon dioxide warning signs—T/ALL. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into which...

  19. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide fire extinguishing system requirements... Carbon dioxide fire extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  20. 46 CFR 35.40-8 - Carbon dioxide warning signs-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Carbon dioxide warning signs-T/ALL. 35.40-8 Section 35... Marking Requirements-TB/ALL § 35.40-8 Carbon dioxide warning signs—T/ALL. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into which...