Sample records for carbon dioxide process

  1. Carbon dioxide separation using adsorption with steam regeneration

    DOEpatents

    Elliott, Jeannine Elizabeth; Copeland, Robert James; Leta, Daniel P.; McCall, Patrick P.; Bai, Chuansheng; DeRites, Bruce A.

    2016-11-29

    A process for separating a carbon dioxide from a gas stream is disclosed. The process can include passing the gas stream over a sorbent that adsorbs the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement. A carbon dioxide separation system is also disclosed. Neither the system nor the process rely on temperature swing or pressure swing adsorption.

  2. Optimized heat exchange in a CO2 de-sublimation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Larry; Terrien, Paul; Tessier, Pascal

    The present invention is a process for removing carbon dioxide from a compressed gas stream including cooling the compressed gas in a first heat exchanger, introducing the cooled gas into a de-sublimating heat exchanger, thereby producing a first solid carbon dioxide stream and a first carbon dioxide poor gas stream, expanding the carbon dioxide poor gas stream, thereby producing a second solid carbon dioxide stream and a second carbon dioxide poor gas stream, combining the first solid carbon dioxide stream and the second solid carbon dioxide stream, thereby producing a combined solid carbon dioxide stream, and indirectly exchanging heat betweenmore » the combined solid carbon dioxide stream and the compressed gas in the first heat exchanger.« less

  3. Energy efficient solvent regeneration process for carbon dioxide capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shaojun; Meyer, Howard S.; Li, Shiguang

    A process for removing carbon dioxide from a carbon dioxide-loaded solvent uses two stages of flash apparatus. Carbon dioxide is flashed from the solvent at a higher temperature and pressure in the first stage, and a lower temperature and pressure in the second stage, and is fed to a multi-stage compression train for high pressure liquefaction. Because some of the carbon dioxide fed to the compression train is already under pressure, less energy is required to further compress the carbon dioxide to a liquid state, compared to conventional processes.

  4. Technical and economical evaluation of carbon dioxide capture and conversion to methanol process

    NASA Astrophysics Data System (ADS)

    Putra, Aditya Anugerah; Juwari, Handogo, Renanto

    2017-05-01

    Phenomenon of global warming, which is indicated by increasing of earth's surface temperature, is caused by high level of greenhouse gases level in the atmosphere. Carbon dioxide, which increases year by year because of high demand of energy, gives the largest contribution in greenhouse gases. One of the most applied solution to mitigate carbon dioxide level is post-combustion carbon capture technology. Although the technology can absorb up to 90% of carbon dioxide produced, some worries occur that captured carbon dioxide that is stored underground will be released over time. Utilizing captured carbon dioxide could be a promising solution. Captured carbon dioxide can be converted into more valuable material, such as methanol. This research will evaluate the conversion process of captured carbon dioxide to methanol, technically and economically. From the research, it is found that technically methanol can be made from captured carbon dioxide. Product gives 25.6905 kg/s flow with 99.69% purity of methanol. Economical evaluation of the whole conversion process shows that the process is economically feasible. The capture and conversion process needs 176,101,157.69 per year for total annual cost and can be overcome by revenue gained from methanol product sales.

  5. Production of magnesium metal

    DOEpatents

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  6. A carbon dioxide stripping model for mammalian cell culture in manufacturing scale bioreactors.

    PubMed

    Xing, Zizhuo; Lewis, Amanda M; Borys, Michael C; Li, Zheng Jian

    2017-06-01

    Control of carbon dioxide within the optimum range is important in mammalian bioprocesses at the manufacturing scale in order to ensure robust cell growth, high protein yields, and consistent quality attributes. The majority of bioprocess development work is done in laboratory bioreactors, in which carbon dioxide levels are more easily controlled. Some challenges in carbon dioxide control can present themselves when cell culture processes are scaled up, because carbon dioxide accumulation is a common feature due to longer gas-residence time of mammalian cell culture in large scale bioreactors. A carbon dioxide stripping model can be used to better understand and optimize parameters that are critical to cell culture processes at the manufacturing scale. The prevailing carbon dioxide stripping models in literature depend on mass transfer coefficients and were applicable to cell culture processes with low cell density or at stationary/cell death phase. However, it was reported that gas bubbles are saturated with carbon dioxide before leaving the culture, which makes carbon dioxide stripping no longer depend on a mass transfer coefficient in the new generation cell culture processes characterized by longer exponential growth phase, higher peak viable cell densities, and higher specific production rate. Here, we present a new carbon dioxide stripping model for manufacturing scale bioreactors, which is independent of carbon dioxide mass transfer coefficient, but takes into account the gas-residence time and gas CO 2 saturation time. The model was verified by CHO cell culture processes with different peak viable cell densities (7 to 12 × 10 6  cells mL -1 ) for two products in 5,000-L and 25,000-L bioreactors. The model was also applied to a next generation cell culture process to optimize cell culture conditions and reduce carbon dioxide levels at manufacturing scale. The model provides a useful tool to understand and better control cell culture carbon dioxide profiles for process development, scale up, and characterization. Biotechnol. Bioeng. 2017;114: 1184-1194. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Process for sequestering carbon dioxide and sulfur dioxide

    DOEpatents

    Maroto-Valer, M Mercedes [State College, PA; Zhang, Yinzhi [State College, PA; Kuchta, Matthew E [State College, PA; Andresen, John M [State College, PA; Fauth, Dan J [Pittsburgh, PA

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  8. Production of magnesium metal

    DOEpatents

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2012-04-10

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  9. Carbon dioxide absorbent and method of using the same

    DOEpatents

    Perry, Robert James; O'Brien, Michael Joseph

    2015-12-29

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  10. Carbon dioxide absorbent and method of using the same

    DOEpatents

    Perry, Robert James; O'Brien, Michael Joseph

    2014-06-10

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  11. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    DOEpatents

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    2014-10-07

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

  12. Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process.

    PubMed

    Lehtinen, Tapio; Efimova, Elena; Tremblay, Pier-Luc; Santala, Suvi; Zhang, Tian; Santala, Ville

    2017-11-01

    Microbial electrosynthesis (MES) is a promising technology for the reduction of carbon dioxide into value-added multicarbon molecules. In order to broaden the product profile of MES processes, we developed a two-stage process for microbial conversion of carbon dioxide and electricity into long chain alkyl esters. In the first stage, the carbon dioxide is reduced to organic compounds, mainly acetate, in a MES process by Sporomusa ovata. In the second stage, the liquid end-products of the MES process are converted to the final product by a second microorganism, Acinetobacter baylyi in an aerobic bioprocess. In this proof-of-principle study, we demonstrate for the first time the bacterial production of long alkyl esters (wax esters) from carbon dioxide and electricity as the sole sources of carbon and energy. The process holds potential for the efficient production of carbon-neutral chemicals or biofuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream,more » to a destination where it is used or confined, preferably in an environmentally benign manner.« less

  14. Measurement of carbon capture efficiency and stored carbon leakage

    DOEpatents

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  15. Supercritical carbon dioxide for textile applications and recent developments

    NASA Astrophysics Data System (ADS)

    Eren, H. A.; Avinc, O.; Eren, S.

    2017-10-01

    In textile industry, supercritical carbon dioxide (scCO2), possessing liquid-like densities, mostly find an application on textile dyeing processes such as providing hydrophobic dyes an advantage on dissolving. Their gas-like low viscosities and diffusion properties can result in shorter dyeing periods in comparison with the conventional water dyeing process. Supercritical carbon dioxide dyeing is an anhydrous dyeing and this process comprises the usage of less energy and chemicals when compared to conventional water dyeing processes leading to a potential of up to 50% lower operation costs. The advantages of supercritical carbon dioxide dyeing method especially on synthetic fiber fabrics hearten leading textile companies to alter their dyeing method to this privileged waterless dyeing technology. Supercritical carbon dioxide (scCO2) waterless dyeing is widely known and applied green method for sustainable and eco-friendly textile industry. However, not only the dyeing but also scouring, desizing and different finishing applications take the advantage of supercritical carbon dioxide (scCO2). In this review, not only the principle, advantages and disadvantages of dyeing in supercritical carbon dioxide but also recent developments of scCO2 usage in different textile processing steps such as scouring, desizing and finishing are explained and commercial developments are stated and summed up.

  16. Thermochemical cyclic system for splitting water and/or carbon dioxide by means of cerium compounds and reactions useful therein

    DOEpatents

    Bamberger, C.E.; Robinson, P.R.

    A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cyclic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.

  17. Thermochemical cyclic system for splitting water and/or carbon dioxide by means of cerium compounds and reactions useful therein

    DOEpatents

    Bamberger, Carlos E.; Robinson, Paul R.

    1980-01-01

    A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cylic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.

  18. Measuring the Spectral Expression of Carbon Dioxide in the Solar Reflected Spectrum with AVIRIS

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    2001-01-01

    Carbon dioxide is a low-concentration, but important, component of the Earth's atmosphere. This gas absorbs electromagnetic radiation (EMR) in several regions of the spectrum. Absorption of energy by carbon dioxide adds heat to the atmosphere. In the world today, the burning of fossil fuels and other anthropogenic processes adds carbon dioxide to the atmosphere. Other natural processes in the Earth's system both add and remove carbon dioxide. Overall, measurements of atmospheric carbon dioxide at selected sites around the globe show an increased carbon dioxide concentration in the atmosphere. A figure shows the measured carbon dioxide from Mauna Loa, Hawaii, from 1958 to 2000. Overall, the concentration has increased from 315 to 365 ppm at this site over this period. (There is also a yearly cycle to the concentration that is timed with and hypothesized to be related to the vegetation growing season in the Northern Hemisphere.) The overall expected effect of this increase of atmospheric carbon dioxide is trapping of heat in the atmosphere and global warming. While this overall relationship between carbon dioxide and global warming seems straightforward, many of the specific details relating to regional and local sources and sinks and gradients of carbon dioxide are not well understood. A remote sensing capability to measure carbon dioxide could provide important inputs for scientific research to better understand the distribution and change in atmospheric carbon dioxide at detailed spatial and temporal levels. In pursuit of this remote sensing of carbon dioxide objective, this paper analyzes the expression of carbon dioxide in the spectral range measured by the Airborne Visible/Infrared Imagery Spectrometer (AVIRIS). Based on these analyses, a spectral-fitting algorithm that uses AVIRIS measured spectra and MODTRAN radiative-transfer code modeled spectra to derive total column carbon dioxide abundance has been developed. This algorithm has been applied to an AVIRIS data set acquired over Pasadena, California, in 1999 and a data set acquired over the Pacific Ocean near Hawaii in 2000 with promising results. This is ongoing research; the current initial analyses, measurements, and results are reported in this paper.

  19. Carbon dioxide removal process

    DOEpatents

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  20. A hybrid absorption–adsorption method to efficiently capture carbon

    PubMed Central

    Liu, Huang; Liu, Bei; Lin, Li-Chiang; Chen, Guangjin; Wu, Yuqing; Wang, Jin; Gao, Xueteng; Lv, Yining; Pan, Yong; Zhang, Xiaoxin; Zhang, Xianren; Yang, Lanying; Sun, Changyu; Smit, Berend; Wang, Wenchuan

    2014-01-01

    Removal of carbon dioxide is an essential step in many energy-related processes. Here we report a novel slurry concept that combines specific advantages of metal-organic frameworks, ion liquids, amines and membranes by suspending zeolitic imidazolate framework-8 in glycol-2-methylimidazole solution. We show that this approach may give a more efficient technology to capture carbon dioxide compared to conventional technologies. The carbon dioxide sorption capacity of our slurry reaches 1.25 mol l−1 at 1 bar and the selectivity of carbon dioxide/hydrogen, carbon dioxide/nitrogen and carbon dioxide/methane achieves 951, 394 and 144, respectively. We demonstrate that the slurry can efficiently remove carbon dioxide from gas mixtures at normal pressure/temperature through breakthrough experiments. Most importantly, the sorption enthalpy is only −29 kJ mol−1, indicating that significantly less energy is required for sorbent regeneration. In addition, from a technological point of view, unlike solid adsorbents slurries can flow and be pumped. This allows us to use a continuous separation process with heat integration. PMID:25296559

  1. Supercritical Carbon Dioxide Regeneration of Activated Carbon Loaded with Contaminants from Rocky Mountain Arsenal Well Water.

    DTIC Science & Technology

    1982-05-01

    PROCESSING COST OF ACTIVATED CHARCOAL REGENERATION BY SUPERCRITICAL CARBON DIOXIDE PROCESS ........................... 25 l IV-4 SENSITIVITY OF GAC...PROCESSING COSTS TO GAC WORKING CAPACITY ................................. 27 IV-5 ESTIMATED PROCESSING COST OF ACTIVATED CHARCOAL REGENERATION BY THERMAL...34 VI-2 COMPARISON OF THREE GRANULAR ACTIVATED CARBONS - SUPERCRITICAL CO2 REACTIVATION - GRANULAR CARBON ISOTHERMS - PHASE I RAW DATA

  2. Advanced air revitalization system modeling and testing

    NASA Technical Reports Server (NTRS)

    Dall-Baumann, Liese; Jeng, Frank; Christian, Steve; Edeer, Marybeth; Lin, Chin

    1990-01-01

    To support manned lunar and Martian exploration, an extensive evaluation of air revitalization subsystems (ARS) is being conducted. The major operations under study include carbon dioxide removal and reduction; oxygen and nitrogen production, storage, and distribution; humidity and temperature control; and trace contaminant control. A comprehensive analysis program based on a generalized block flow model was developed to facilitate the evaluation of various processes and their interaction. ASPEN PLUS was used in modelling carbon dioxide removal and reduction. Several life support test stands were developed to test new and existing technologies for their potential applicability in space. The goal was to identify processes which use compact, lightweight equipment and maximize the recovery of oxygen and water. The carbon dioxide removal test stands include solid amine/vacuum desorption (SAVD), regenerative silver oxide chemisorption, and electrochemical carbon dioxide concentration (EDC). Membrane-based carbon dioxide removal and humidity control, catalytic reduction of carbon dioxide, and catalytic oxidation of trace contaminants were also investigated.

  3. The carbon dioxide cycle

    USGS Publications Warehouse

    James, P.B.; Hansen, G.B.; Titus, T.N.

    2005-01-01

    The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  4. Conversion of Carbon Dioxide into Ethanol by Electrochemical Synthesis Method Using Cu-Zn Electrode

    NASA Astrophysics Data System (ADS)

    Riyanto; Ramadan, S.; Fariduddin, S.; Aminudin, A. R.; Hayatri, A. K.

    2018-01-01

    Research on conversion of carbon dioxide into ethanol has been done. The conversion process is carried out in a sodium bicarbonate electrolyte solution in an electrochemical synthesis reactor. As cathode was used Cu-Zn, while as anode carbon was utilized. Variations of voltage, concentration of sodium bicarbonate electrolyte solution and time of electrolysis were performed to determine the optimum conditions to convert carbon dioxide into ethanol. Sample of the electrochemical synthesis process was analyzed by gas chromatography. From the result, it is found that the optimum conditions of the electrochemical synthesis process of carbon dioxide conversion into ethanol are voltage, concentration of sodium bicarbonate electrolyte solution and time of electrolysis are 3 volts, 0.4 M and 90 minutes with the ethanol concentration of 10.44%.

  5. Carbon capture by sorption-enhanced water-gas shift reaction process using hydrotalcite-based material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Selow, E.R.; Cobden, P.D.; Verbraeken, P.A.

    2009-05-15

    A novel route for precombustion decarbonization is the sorption-enhanced water-gas shift (SEWGS) process. In this process carbon dioxide is removed from a synthesis gas at elevated temperature by adsorption. Simultaneously, carbon monoxide is converted to carbon dioxide by the water-gas shift reaction. The periodic adsorption and desorption of carbon dioxide is induced by a pressure swing cycle, and the cyclic capacity can be amplified by purging with steam. From previous studies is it known that for SEWGS applications, hydrotalcite-based materials are particularly attractive as sorbent, and commercial high-temperature shift catalysts can be used for the conversion of carbon monoxide. Tabletsmore » of a potassium promoted hydrotalcite-based material are characterized in both breakthrough and cyclic experiments in a 2 m tall fixed-bed reactor. When exposed to a mixture of carbon dioxide, steam, and nitrogen at 400{sup o}C, the material shows a breakthrough capacity of 1.4 mmol/g. In subsequent experiments the material was mixed with tablets of promoted iron-chromium shift catalyst and exposed to a mixture of carbon dioxide, carbon monoxide, steam, hydrogen, and nitrogen. It is demonstrated that carbon monoxide conversion can be enhanced to 100% in the presence of a carbon dioxide sorbent. At breakthrough, carbon monoxide and carbon dioxide simultaneously appear at the end of the bed. During more than 300 cycles of adsorption/reaction and desorption, the capture rate, and carbon monoxide conversion are confirmed to be stable. Two different cycle types are investigated: one cycle with a CO{sub 2} rinse step and one cycle with a steam rinse step. The performance of both SEWGS cycles are discussed.« less

  6. Carbon dioxide capture process with regenerable sorbents

    DOEpatents

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  7. The Path of Carbon in Photosynthesis IX. Photosynthesis, Photoreduction, and the Hydrogen-Oxygen-Carbon Dioxide Dark Reaction

    DOE R&D Accomplishments Database

    Badin, E. J.; Calvin, M.

    1950-02-01

    A comparison of the rates of fixation of Carbon 14 dioxide in algae for the processes of photosynthesis, photoreduction and the hydrogen-oxygen-carbon dioxide dark reaction has been made. For the same series of experiments, rates of incorporation of tracer carbon into the separate soluble components using the radiogram method have been determined. The mechanism of carbon dioxide uptake has been shown to occur via two distinct paths. In all cases studied, essentially the same compounds appear radioactive. The distribution with time, however, differs markedly.

  8. Enhanced open ocean storage of CO2 from shelf sea pumping.

    PubMed

    Thomas, Helmuth; Bozec, Yann; Elkalay, Khalid; de Baar, Hein J W

    2004-05-14

    Seasonal field observations show that the North Sea, a Northern European shelf sea, is highly efficient in pumping carbon dioxide from the atmosphere to the North Atlantic Ocean. The bottom topography-controlled stratification separates production and respiration processes in the North Sea, causing a carbon dioxide increase in the subsurface layer that is ultimately exported to the North Atlantic Ocean. Globally extrapolated, the net uptake of carbon dioxide by coastal and marginal seas is about 20% of the world ocean's uptake of anthropogenic carbon dioxide, thus enhancing substantially the open ocean carbon dioxide storage.

  9. Carbon dioxide absorbent and method of using the same

    DOEpatents

    Perry, Robert James [Niskayuna, NY; Lewis, Larry Neil [Scotia, NY; O'Brien, Michael Joseph [Clifton Park, NY; Soloveichik, Grigorii Lev [Latham, NY; Kniajanski, Sergei [Clifton Park, NY; Lam, Tunchiao Hubert [Clifton Park, NY; Lee, Julia Lam [Niskayuna, NY; Rubinsztajn, Malgorzata Iwona [Ballston Spa, NY

    2011-10-04

    In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.

  10. Semiconductor-Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis.

    PubMed

    Pang, Hong; Masuda, Takuya; Ye, Jinhua

    2018-01-18

    The photoelectrochemical (PEC) carbon dioxide reduction process stands out as a promising avenue for the conversion of solar energy into chemical feedstocks, among various methods available for carbon dioxide mitigation. Semiconductors derived from cheap and abundant elements are interesting candidates for catalysis. Whether employed as intrinsic semiconductors or hybridized with metallic cocatalysts, biocatalysts, and metal molecular complexes, semiconductor photocathodes exhibit good performance and low overpotential during carbon dioxide reduction. Apart from focusing on carbon dioxide reduction materials and chemistry, PEC cells towards standalone devices that use photohybrid electrodes or solar cells have also been a hot topic in recent research. An overview of the state-of-the-art progress in PEC carbon dioxide reduction is presented and a deep understanding of the catalysts of carbon dioxide reduction is also given. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Designing and Demonstrating a Master Student Project to Explore Carbon Dioxide Capture Technology

    ERIC Educational Resources Information Center

    Asherman, Florine; Cabot, Gilles; Crua, Cyril; Estel, Lionel; Gagnepain, Charlotte; Lecerf, Thibault; Ledoux, Alain; Leveneur, Sebastien; Lucereau, Marie; Maucorps, Sarah; Ragot, Melanie; Syrykh, Julie; Vige, Manon

    2016-01-01

    The rise in carbon dioxide (CO[subscript 2]) concentration in the Earth's atmosphere, and the associated strengthening of the greenhouse effect, requires the development of low carbon technologies. New carbon capture processes are being developed to remove CO[subscript 2] that would otherwise be emitted from industrial processes and fossil fuel…

  12. Pressure pumping of carbon dioxide from soil

    Treesearch

    E. S. Takle; J. R. Brandle; R. A. Schmidt; R. Garcia; I. V. Litvina; G. Doyle; X. Zhou; Q. Hou; C. W. Rice; W. J. Massman

    2000-01-01

    Recent interest in atmospheric increases in carbon dioxide have heightened the need for improved accuracy in measurements of fluxes of carbon dioxide from soils. Diffusional movement has long been considered the dominant process by which trace gases move from the subsurface source to the surface, although there has been some indication that atmospheric pressure...

  13. Numerical simulation of injection process of warm carbon dioxide into layer saturated with methane and its hydrate

    NASA Astrophysics Data System (ADS)

    Khasanov, M. K.; Stolpovsky, M. V.; Gimaltdinov, I. K.

    2018-05-01

    In this article, in a flat-one-dimensional approximation, a mathematical model is presented for injecting warm carbon dioxide into a methane hydrate formation of finite length. It is established that the model of formation of hydrate of carbon dioxide in the absence of an area saturated with methane and water, under certain parameters, leads to thermodynamic contradiction. The mathematical model of carbon dioxide injection with formation of the region saturated with methane and water is constructed.

  14. Refurbishment of one-person regenerative air revitalization system

    NASA Technical Reports Server (NTRS)

    Powell, Ferolyn T.

    1989-01-01

    Regenerative processes for the revitalization of spacecraft atmospheres and reclamation of waste waters are essential for making long-term manned space missions a reality. Processes studied include: static feed water electrolysis for oxygen generation, Bosch carbon dioxide reduction, electrochemical carbon dioxide concentration, vapor compression distillation water recovery, and iodine monitoring. The objectives were to: provide engineering support to Marshall Space Flight Center personnel throughout all phases of the test program, e.g., planning through data analysis; fabricate, test, and deliver to Marshall Space Flight Center an electrochemical carbon dioxide module and test stand; fabricate and deliver an iodine monitor; evaluate the electrochemical carbon dioxide concentrator subsystem configuration and its ability to ensure safe utilization of hydrogen gas; evaluate techniques for recovering oxygen from a product oxygen and carbon dioxide stream; and evaluate the performance of an electrochemical carbon dioxide concentrator module to operate without hydrogen as a method of safe haven operation. Each of the tasks were related in that all focused on providing a better understanding of the function, operation, and performance of developmental pieces of environmental control and life support system hardware.

  15. Carbon Dioxide Reduction Systems

    NASA Technical Reports Server (NTRS)

    Burghardt, Stanley I.; Chandler, Horace W.; Taylor, T. I.; Walden, George

    1961-01-01

    The Methoxy system for regenerating oxygen from carbon dioxide was studied. Experiments indicate that the reaction between carbon dioxide and hydrogen can be carried out with ease in an efficient manner and with excellent heat conservation. A small reactor capable of handling the C02 expired by three men has been built and operated. The decomposition of methane by therma1,arc and catalytic processes was studied. Both the arc and catalytic processes gave encouraging results with over 90 percent of the methane being decomposed to carbon and hydrogen in some of the catalytic processes. Control of the carbon deposition in both the catalytic and arc processes is of great importance to prevent catalyst deactivation and short circuiting of electrical equipment. Sensitive analytical techniques have been developed for all of the components present in the reactor effluent streams.

  16. Nuclear Energy and Synthetic Liquid Transportation Fuels

    NASA Astrophysics Data System (ADS)

    McDonald, Richard

    2012-10-01

    This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.

  17. Mathematical modeling of the gas extraction from the gas hydrate deposit taking into account the replacement technology

    NASA Astrophysics Data System (ADS)

    Musakaev, N. G.; Khasanov, M. K.; Borodin, S. L.

    2018-03-01

    In the work on the basis of methods and equations of mechanics of multiphase systems the mathematical model of the process of carbon dioxide burial in the reservoir saturated with methane hydrate is proposed. Estimates are obtained that allow for this problem to neglect diffusion mixing of carbon dioxide and methane. The features of the process of methane displacement from CH4 hydrate by filling them with carbon dioxide are studied.

  18. Development of single shot 1D-Raman scattering measurements for flames

    NASA Astrophysics Data System (ADS)

    Biase, Amelia; Uddi, Mruthunjaya

    2017-11-01

    The majority of energy consumption in the US comes from burning fossil fuels which increases the concentration of carbon dioxide in the atmosphere. The increasing concentration of carbon dioxide in the atmosphere has negative impacts on the environment. One solution to this problem is to study the oxy-combustion process. A pure oxygen stream is used instead of air for combustion. Products contain only carbon dioxide and water. It is easy to separate water from carbon dioxide by condensation and the carbon dioxide can be captured easily. Lower gas volume allows for easier removal of pollutants from the flue gas. The design of a system that studies the oxy-combustion process using advanced laser diagnostic techniques and Raman scattering measurements is presented. The experiments focus on spontaneous Raman scattering. This is one of the few techniques that can provide quantitative measurements of the concentration and temperature of different chemical species in a turbulent flow. The experimental design and process of validating the design to ensure the data is accurate is described. The Raman data collected form an experimental data base that is used for the validation of spontaneous Raman scattering in high pressure environments for the oxy-combustion process. NSF EEC 1659710.

  19. Control of carbon balance in a silicon smelting furnace

    DOEpatents

    Dosaj, Vishu D.; Haines, Cathryn M.; May, James B.; Oleson, John D.

    1992-12-29

    The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

  20. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption

    PubMed Central

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-01-01

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g−1) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation. PMID:27572662

  1. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    PubMed Central

    Raie, Diana S.; Mhatre, Eisha; El-Desouki, Doaa S.; Labena, Ahmed; El-Ghannam, Gamal; Farahat, Laila A.; Youssef, Tareq; Fritzsche, Wolfgang; Kovács, Ákos T.

    2018-01-01

    The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite. PMID:29346268

  2. Artificial photosynthesis of. beta. -ketocarboxylic acids from carbon dioxide and ketones via enolate complexes of aluminum porphyrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirai, Yasuhiro; Aida, Takuzo; Inoue, Shohei

    1989-04-12

    Photochemical fixation of carbon dioxide is of much interest in connection with biological photosynthesis by green plants as well as from the viewpoint of carbon resource utilization. One of the important steps in the assimilation of carbon dioxide is the carboxylation of a carbonyl compound into ketocarboxylic acid, where the reaction proceeds via an enolate species as reactive intermediate. For example, in four carbon (C{sub 4}) pathway and Crassulacean acid metabolism (CAM) processes, pyruvate is converted with the aid of ATP into phosphoenolpyruvate, which is subsequently carboxylated to give oxaloacetate by the action of pyruvate carboxylase. In relation to thismore » interesting biological process, some artificial systems have been exploited for the synthesis of {beta}-ketocarboxylic acid derivatives from carbon dioxide and ketones using nucleophiles such as metal carbonates, thiazolates, phenolates, alkoxides, and strong organic as well as inorganic basis, which promote the enolization of ketones in the intermediate step. We wish to report here a novel, visible light-induced fixation of carbon dioxide with the enolate complex of aluminum porphyrin, giving {beta}-ketocarboxylic acid under mild conditions.« less

  3. Automatic Carbon Dioxide-Methane Gas Sensor Based on the Solubility of Gases in Water

    PubMed Central

    Cadena-Pereda, Raúl O.; Rivera-Muñoz, Eric M.; Herrera-Ruiz, Gilberto; Gomez-Melendez, Domingo J.; Anaya-Rivera, Ely K.

    2012-01-01

    Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0–100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA) platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible. PMID:23112626

  4. Automatic carbon dioxide-methane gas sensor based on the solubility of gases in water.

    PubMed

    Cadena-Pereda, Raúl O; Rivera-Muñoz, Eric M; Herrera-Ruiz, Gilberto; Gomez-Melendez, Domingo J; Anaya-Rivera, Ely K

    2012-01-01

    Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0-100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA) platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible.

  5. SEMICONDUCTOR TECHNOLOGY Supercritical carbon dioxide process for releasing stuck cantilever beams

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Chaoqun, Gao; Lei, Wang; Yupeng, Jing

    2010-10-01

    The multi-SCCO2 (supercritical carbon dioxide) release and dry process based on our specialized SCCO2 semiconductor process equipment is investigated and the releasing mechanism is discussed. The experiment results show that stuck cantilever beams were held up again under SCCO2 high pressure treatment and the repeatability of this process is nearly 100%.

  6. Ruthenium-catalysed alkoxycarbonylation of alkenes with carbon dioxide.

    PubMed

    Wu, Lipeng; Liu, Qiang; Fleischer, Ivana; Jackstell, Ralf; Beller, Matthias

    2014-01-01

    Alkene carbonylations represent a major technology for the production of value-added bulk and fine chemicals. Nowadays, all industrial carbonylation processes make use of highly toxic and flammable carbon monoxide. Here we show the application of abundantly available carbon dioxide as C1 building block for the alkoxycarbonylations of industrially important olefins in the presence of a convenient and inexpensive ruthenium catalyst system. In our system, carbon dioxide works much better than the traditional combination of carbon monoxide and alcohols. The unprecedented in situ formation of carbon monoxide from carbon dioxide and alcohols permits an efficient synthesis of carboxylic acid esters, which can be used as detergents and polymer-building blocks. Notably, this transformation allows the catalytic formation of C-C bonds with carbon dioxide as C1 source and avoids the use of sensitive and/or expensive reducing agents (for example, Grignard reagents, diethylzinc or triethylaluminum).

  7. Nonthermal processing of orange juice using a pilot-plant scale supercritical carbon dioxide system with a gas-liquid metal contactor

    USDA-ARS?s Scientific Manuscript database

    To evaluate the effect of pilot-plant scale, non-thermal supercritical carbon dioxide (SCCO2) processing on the safety and the quality of orange juice (OJ), SCCO2 processed juice was compared with untreated fresh juice and equivalently thermal processed juice in terms of lethality. SCCO2 processing ...

  8. Method of carbon dioxide-free hydrogen production from hydrocarbon decomposition over metal salts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlebacher, Jonah; Gaskey, Bernard

    A process to decompose methane into carbon (graphitic powder) and hydrogen (H.sub.2 gas) without secondary production of carbon dioxide, employing a cycle in which a secondary chemical is recycled and reused, is disclosed.

  9. Tuning Organic Carbon Dioxide Absorbents for Carbonation and Decarbonation

    PubMed Central

    Rajamanickam, Ramachandran; Kim, Hyungsoo; Park, Ji-Woong

    2015-01-01

    The reaction of carbon dioxide with a mixture of a superbase and alcohol affords a superbase alkylcarbonate salt via a process that can be reversed at elevated temperatures. To utilize the unique chemistry of superbases for carbon capture technology, it is essential to facilitate carbonation and decarbonation at desired temperatures in an easily controllable manner. Here, we demonstrate that the thermal stabilities of the alkylcarbonate salts of superbases in organic solutions can be tuned by adjusting the compositions of hydroxylic solvent and polar aprotic solvent mixtures, thereby enabling the best possible performances to be obtained from the various carbon dioxide capture agents based on these materials. The findings provides valuable insights into the design and optimization of organic carbon dioxide absorbents. PMID:26033537

  10. Long Term δ17O, δ18O measurements of tropospheric carbon dioxide and potential application to the global carbon cycle. (Invited)

    NASA Astrophysics Data System (ADS)

    Thiemens, M. H.

    2009-12-01

    Stable isotope ratio measurements have played an important role in defining the global carbon cycle for the past half century. In the past decades, mass independent isotopic measurements of stratospheric carbon dioxide have been shown to be an important indice for understanding stratospheric ozone chemistry and the interaction with carbon dioxide. In this specific role, it is the O(1D) produced from ozone photolysis that interacts with CO2 and inscribes a mass independent isotopic composition (see review by (1)). This photochemical process simultaneously provides an isotopic record in carbon dioxide of the integrated exposure to ozone/atomic oxygen and stratosphere troposphere mixing. As a consequence of these processes, it has been observed that tropospheric oxygen possesses a mass independent composition that may be used as a tracer of bioproductivity (2) and as a potential measure of carbon dioxide levels during and following the snowball earth event (3). In addition, the magnitude of the stratospheric anomaly in the troposphere may directly reflect the atmospheric turnover rates of carbon dioxide, which is an important component of the carbon cycle (4, 5). To further develop this new methodology, the rates and magnitude of the relevant processes must be identified and quantified. Samples of tropospheric carbon dioxide were obtained in La Jolla, Ca. over a 10 year plus time period. All samples were taken under identical conditions and analyzed immediately for all three oxygen isotopes. There was no sample storage and samples were thoroughly isolated from water. All conditions, including standardization and mass spectrometry were constant throughout that time period. The data are consistent with an identifiable steady state component of stratospheric carbon dioxide. In addition, other features of the data suggest other processes operative that are presently unaccounted for, and, are only observable in the mass independent composition. References 1. Thiemens, M.H. (2006). Annual Rev. earth Planet Sci. 34, 217 (2006). 2.Luz, B., Bender, M.L., Thiemens, M.H., Boering, K. Nature 400, 547 (2002). 3.Bao, H., Lyons, J.R., Zhou, Chuanming. Nature 453, 504 (2008). 4.Hoag, K.J., Still, C.J., Fung, I.Y., Boering, K.A. Geophys. Res. Lett 32, L02802 (2005). 5.Liang, M-C., Blake, G.A., Yung, Y.L. J. Geophys. Res 113, D12305 (2008).

  11. The carbon-nitrogen balance of the nodule and its regulation under elevated carbon dioxide concentration.

    PubMed

    Libault, Marc

    2014-01-01

    Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency.

  12. The Carbon-Nitrogen Balance of the Nodule and Its Regulation under Elevated Carbon Dioxide Concentration

    PubMed Central

    2014-01-01

    Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency. PMID:24987690

  13. Examination of Treatment Methods for Cyanide Wastes.

    DTIC Science & Technology

    1979-05-15

    industry,is alkaline chlorination. This process oxidizes cyanide to cyanate followed by complete decomposition yielding carbon dioxide and nitrogen or...decomposition yielding carbon dioxide and nitrogen, or ammonium salts depending on final treatment methods. The major oxidizing agents that have been...2H20 (X represents a cation.) 29 NADC-78198-60 This liberates carbon dioxide and nitrogen gas as end products. Possible acid hydrolysis has been

  14. Volcanic CO2 abundance of Kilauea plume retrieved by means of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Pieri, David; Spinetti, C.; Carrere, V.; Buongiorno, M. F.

    2004-01-01

    Absorbing the electromagnetic radiation in several regions of the solar spectrum, C02 plays an important role in the Earth radiation budget since it produces the greenhouse effect. Many natural processes in the Earth's system add and remove carbon dioxide. Overall, measurements of atmospheric carbon dioxide at different sites around the world show an increased carbon dioxide concentration in the atmosphere.

  15. The Effects of Voltage and Concentration of Sodium Bicarbonate on Electrochemical Synthesis of Ethanol from Carbon Dioxide Using Brass as Cathode

    NASA Astrophysics Data System (ADS)

    Ramadan, Septian; Fariduddin, Sholah; Rizki Aminudin, Afianti; Kurnia Hayatri, Antisa; Riyanto

    2017-11-01

    The effects of voltage and concentration of sodium bicarbonate were investigated to determine the optimum conditions of the electrochemical synthesis process to convert carbon dioxide into ethanol. The conversion process is carried out using a sodium bicarbonate electrolyte solution in an electrochemical synthesis reactor equipped with a cathode and anode. As the cathode was used brass, while as the anode carbon was utilized. Sample of the electrochemical synthesis process was analyzed by gas chromatography to determine the content of the compounds produced. The optimum electrochemical synthesis conditions to convert carbon dioxide into ethanol are voltage and concentration of sodium bicarbonate are 3 volts and 0.4 M with ethanol concentration of 1.33%.

  16. Integrated Testing of a Carbon Dioxide Removal Assembly and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    NASA Technical Reports Server (NTRS)

    Knox, J. C.; Mulloth, Lila; Frederick, Kenneth; Affleck, Dave

    2003-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The carbon dioxide removal assembly (CDRA) of ISS currently operates in an open loop mode without a compressor. This paper describes the integrated test results of a flight-like CDRA and a temperature-swing adsorption compressor (TSAC) for carbon dioxide removal and compression. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  17. Using FIA data to inform United States forest carbon national-level accounting needs: 1990-2010

    Treesearch

    Linda S. Heath

    2013-01-01

    Forests are partially made up of carbon. Live vegetation, dead wood, forest floor, and soil all contain carbon. Through the process of photosynthesis, trees reduce carbon dioxide to carbohydrates and store the carbon in wood. By removing carbon dioxide from the atmosphere, forests mitigate climate change that may be brought on by increased atmospheric CO2...

  18. Liquid phase methanol reactor staging process for the production of methanol

    DOEpatents

    Bonnell, Leo W.; Perka, Alan T.; Roberts, George W.

    1988-01-01

    The present invention is a process for the production of methanol from a syngas feed containing carbon monoxide, carbon dioxide and hydrogen. Basically, the process is the combination of two liquid phase methanol reactors into a staging process, such that each reactor is operated to favor a particular reaction mechanism. In the first reactor, the operation is controlled to favor the hydrogenation of carbon monoxide, and in the second reactor, the operation is controlled so as to favor the hydrogenation of carbon dioxide. This staging process results in substantial increases in methanol yield.

  19. Removing Biostatic Agents From Fermentation Solutions

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Liquid carbon dioxide inexpensive solvent. Inexpensive process proposed for removing such poisons as furfural and related compounds from fermentation baths of biomass hydrolysates. New process based on use of liquid carbon dioxide as extraction solvent. Liquid CO2 preferable to such other liquid solvents as ether or methylene chloride.

  20. High performance hydrophobic solvent, carbon dioxide capture

    DOEpatents

    Nulwala, Hunaid; Luebke, David

    2017-05-09

    Methods and compositions useful, for example, for physical solvent carbon capture. A method comprising: contacting at least one first composition comprising carbon dioxide with at least one second composition to at least partially dissolve the carbon dioxide of the first composition in the second composition, wherein the second composition comprises at least one siloxane compound which is covalently modified with at least one non-siloxane group comprising at least one heteroatom. Polydimethylsiloxane (PDMS) materials and ethylene-glycol based materials have high carbon dioxide solubility but suffer from various problems. PDMS is hydrophobic but suffers from low selectivity. Ethylene-glycol based systems have good solubility and selectivity, but suffer from high affinity to water. Solvents were developed which keep the desired combinations of properties, and result in a simplified, overall process for carbon dioxide removal from a mixed gas stream.

  1. A regenerable carbon dioxide removal and oxygen recovery system for the Japanese Experiment Module.

    PubMed

    Otsuji, K; Hirao, M; Satoh, S

    1987-01-01

    The Japanese Space Station Program is now under Phase B study by the National Space Development Agency of Japan in participation with the U.S. Space Station Program. A Japanese Space Station participation will be a dedicated pressurized module to be attached to the U.S. Space Station, and is called Japanese Experiment Module (JEM). Astronaut scientists will conduct various experimental operations there. Thus an environment control and life support system is required. Regenerable carbon dioxide removal and collection technique as well as oxygen recovery technique has been studied and investigated for several years. A regenerable carbon dioxide removal subsystem using steam desorbed solid amine and an oxygen recovery subsystem using Sabatier methane cracking have a good possibility for the application to the Japanese Experiment Module. Basic performance characteristics of the carbon dioxide removal and oxygen recovery subsystem are presented according to the results of a fundamental performance test program. The trace contaminant removal process is also investigated and discussed. The solvent recovery plant for the regeneration of various industrial solvents, such as hydrocarbons, alcohols and so on, utilizes the multi-bed solvent adsorption and steam desorption process, which is very similar to the carbon dioxide removal subsystem. Therefore, to develop essential components including adsorption tank (bed), condenser. process controller and energy saving system, the technology obtained from the experience to construct solvent recovery plant can be easily and effectively applicable to the carbon dioxide removal subsystem. The energy saving efficiency is evaluated for blower power reduction, steam reduction and waste heat utilization technique. According to the above background, the entire environment control and life support system for the Japanese Experiment Module including the carbon dioxide removal and oxygen recovery subsystem is evaluated and proposed.

  2. Fractionation of whey protein isolate with supercritical carbon dioxide – process modeling and cost estimation

    USDA-ARS?s Scientific Manuscript database

    An economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (sCO2) as an acid to produce enriched fractions of alpha-lactalbumin (alpha-La) and beta-lactoglobulin (beta-Lg) from a commercial whey protein isolate (WPI) containing 55% ...

  3. DEMONSTRATION OF A LIQUID CARBON DIOXIDE PROCESS FOR CLEANING METAL PARTS

    EPA Science Inventory

    The report gives results of a demonstration of liquid carbon dioxide (LCO2) as an alternative to chlorinated solvents for cleaning metal parts. It describes the LCO2 process, the parts tested, the contaminants removed, and results from preliminary laboratory testing and on-site d...

  4. Supercritical carbon dioxide process for pasteurization of fruit juices

    USDA-ARS?s Scientific Manuscript database

    Supercritical carbon dioxide (SCCO2) nonthermal processing inactivates microorganisms in juices using non-toxic and non-reactive CO2. However, data is lacking on the inactivation of E. coli K12 and L. plantarum in apple cider using pilot plant scale SCCO2 equipment. For this study, pasteurized pres...

  5. Carbon dioxide stripping in aquaculture -- part II: development of gas transfer models

    USGS Publications Warehouse

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The basic mass transfer equation for gases such as oxygen and carbon dioxide can be derived from integration of the driving force equation. Because of the physical characteristics of the gas transfer processes, slightly different models are used for aerators tested under the non steady-state procedures, than for packed columns, or weirs. It is suggested that the standard condition for carbon dioxide should be 20 °C, 1 atm, CCO2=20 mg/kg, and XCO2=0.000285. The selection of the standard condition for carbon dioxide based on a fixed mole fraction ensures that standardized carbon dioxide transfer rates will be comparable even though the value of C*CO2 in the atmosphere is increasing with time. The computation of mass transfer for carbon dioxide is complicated by the impact of water depth and gas phase enrichment on the saturation concentration within the unit, although the importance of either factor depends strongly on the specific type of aerator. For some types of aerators, the most accurate gas phase model remains to be determined for carbon dioxide. The assumption that carbon dioxide can be treated as a non-reactive gas in packed columns may apply for cold acidic waters but not for warm alkaline waters.

  6. INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED SALT BRINE TO MAKE BICARBONATE OF SODA. - Solvay Process Company, SA Wetside Building, Between Willis & Milton Avenue, Solvay, Onondaga County, NY

  7. Cyclic process for producing methane from carbon monoxide with heat removal

    DOEpatents

    Frost, Albert C.; Yang, Chang-lee

    1982-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  8. Method of detecting leakage from geologic formations used to sequester CO.sub.2

    DOEpatents

    White, Curt [Pittsburgh, PA; Wells, Arthur [Bridgeville, PA; Diehl, J Rodney [Pittsburgh, PA; Strazisar, Brian [Venetia, PA

    2010-04-27

    The invention provides methods for the measurement of carbon dioxide leakage from sequestration reservoirs. Tracer moieties are injected along with carbon dioxide into geological formations. Leakage is monitored by gas chromatographic analyses of absorbents. The invention also provides a process for the early leak detection of possible carbon dioxide leakage from sequestration reservoirs by measuring methane (CH.sub.4), ethane (C.sub.2H.sub.6), propane (C.sub.3H.sub.8), and/or radon (Rn) leakage rates from the reservoirs. The invention further provides a method for branding sequestered carbon dioxide using perfluorcarbon tracers (PFTs) to show ownership.

  9. The separation of lanthanides and actinides in supercritical fluid carbon dioxide

    DOE PAGES

    Mincher, Bruce J.; Wai, Chien M.; Fox, Robert V.; ...

    2015-10-28

    Supercritical fluid carbon dioxide presents an attractive alternative to conventional solvents for recovery of the actinides and lanthanides. Carbon dioxide is a good solvent for fluorine and phosphate-containing ligands, including the traditional tributylphosphate ligand used in process-scale uranium separations. Actinide and lanthanide oxides may even be directly dissolved in carbon dioxide containing the complexes formed between these ligands and mineral acids, obviating the need for large volumes of acids for leaching and dissolution, and the corresponding organic liquid–liquid solvent extraction solutions. As a result, examples of the application of this novel technology for actinide and lanthanide separations are presented.

  10. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  11. Penetration of Solar Radiation into Solid Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Chinnery, H. E.; Hagermann, A.; Kaufmann, E.; Lewis, S. R.; Grady, M. M.

    2017-09-01

    Carbon dioxide ice exists naturally on the surface of Mars. This is a unique environment, with no Earth analogues, and so determining the properties of such a surface is important to further our understanding of the Martian environment. Laboratory experiments have determined the e-folding scale, or absorption scale length, for carbon dioxide slab ice, granular ice and snow. This is a universal measure of how transparent a material is to visible light, and so has implications for the radiative budget of carbon dioxide ice covered surfaces, as well as physical processes, such as the so-called spider formations in the cryptic region near the Martian south pole.

  12. Ocean Acidification: Investigation and Presentation of the Effects of Elevated Carbon Dioxide Levels on Seawater Chemistry and Calcareous Organisms

    ERIC Educational Resources Information Center

    Buth, Jeffrey M.

    2016-01-01

    Ocean acidification refers to the process by which seawater absorbs carbon dioxide from the atmosphere, producing aqueous carbonic acid. Acidic conditions increase the solubility of calcium carbonate, threatening corals and other calcareous organisms that depend on it for protective structures. The global nature of ocean acidification and the…

  13. Endoscopic Carbon Dioxide Laser Photocoagulation Of Bleeding Canine Gastric Ulcers

    NASA Astrophysics Data System (ADS)

    Gal, Dov; Ron, Nimrod; Orgad, Uri; Katzir, Abraham

    1987-04-01

    This is the first report which describes carbon dioxide laser photocoagulation of upper gastrointestinal bleeding via a flexible endoscope, using an infrared transmitting siver nalide fiber. Various laser parameters were checked to determine the optimal conditions for hemostasis. Both the acute effects of laser irradiation on tissue and the chronic effects on healing process were examined. Preliminary results indicate that carbon dioxide laser beam can successfully photocoagulate moderately bleeding ulcers.

  14. Controlling Processes on Carbonate Chemistry across the Pacific

    NASA Astrophysics Data System (ADS)

    Hartman, S. E.

    2016-12-01

    The SWIRE NOC Ocean Monitoring System (SNOMS) project is an innovative programme helping to answer important questions about global climate change by using a commercial ship of opportunity to measure carbon in the surface of the ocean. Daily sampling coupled to continuous underway observation from a ship of opportunity (MV Shengking) provides new insights into the processes controlling variability in the carbonate system across the Pacific. The ships track runs from Vancouver (Canada) to Brisbane (Australia). Daily samples were taken on-board and measurements of Total alkalinity (TA) and total dissolved inorganic carbon (DIC) were determined. This was alongside measurements of nutrients and continuous records of temperature, salinity, chlorophyll-fluorescence, carbon dioxide and dissolved oxygen (DO). These sensor based measurements were validated using the discrete samples. Carbon dioxide calculated from DIC and TA showed an offset from the sensor data of up to 8uatm. This and comparisons with climatology were used to calibrate the sensor data. The data have been compared with previous data from the MV Pacific Celebes that ran a similar route until 2012. The data show a clear increase in seawater carbon dioxide, tracking the atmospheric increases. Along track the partial pressure of seawater carbon dioxide varied by over 150 uatm. The highest values were seen just south of the equator in the Pacific, which is an important source region for carbon dioxide to the atmosphere.

  15. Selective growth of palladium and titanium dioxide nanostructures inside carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Hevia, Samuel; Homm, Pía; Cortes, Andrea; Núñez, Verónica; Contreras, Claudia; Vera, Jenniffer; Segura, Rodrigo

    2012-06-01

    Hybrid nanostructured arrays based on carbon nanotubes (CNT) and palladium or titanium dioxide materials have been synthesized using self-supported and silicon-supported anodized aluminum oxide (AAO) as nanoporous template. It is well demonstrated that carbon nanotubes can be grown using these membranes and hydrocarbon precursors that decompose at temperatures closer to 600°C without the use of a metal catalyst. In this process, carbonic fragments condensate to form stacked graphitic sheets, which adopt the shape of the pores, yielding from these moulds' multi-walled carbon nanotubes. After this process, the ends of the tubes remain open and accessible to other substances, whereas the outer walls are protected by the alumina. Taking advantage of this fact, we have performed the synthesis of palladium and titanium dioxide nanostructures selectively inside carbon nanotubes using these CNT-AAO membranes as nanoreactors.

  16. Selective growth of palladium and titanium dioxide nanostructures inside carbon nanotube membranes.

    PubMed

    Hevia, Samuel; Homm, Pía; Cortes, Andrea; Núñez, Verónica; Contreras, Claudia; Vera, Jenniffer; Segura, Rodrigo

    2012-06-25

    Hybrid nanostructured arrays based on carbon nanotubes (CNT) and palladium or titanium dioxide materials have been synthesized using self-supported and silicon-supported anodized aluminum oxide (AAO) as nanoporous template. It is well demonstrated that carbon nanotubes can be grown using these membranes and hydrocarbon precursors that decompose at temperatures closer to 600°C without the use of a metal catalyst. In this process, carbonic fragments condensate to form stacked graphitic sheets, which adopt the shape of the pores, yielding from these moulds' multi-walled carbon nanotubes. After this process, the ends of the tubes remain open and accessible to other substances, whereas the outer walls are protected by the alumina. Taking advantage of this fact, we have performed the synthesis of palladium and titanium dioxide nanostructures selectively inside carbon nanotubes using these CNT-AAO membranes as nanoreactors.

  17. Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste: Taking kitchen waste synergetic digestion project in Zhenjiang as an example.

    PubMed

    Guo, Qia; Dai, Xiaohu

    2017-11-01

    With the popularization of municipal sewage treatment facilities, the improvement of sewage treatment efficiency and the deepening degree of sewage treatment, the sludge production of sewage plant has been sharply increased. Carbon emission during the process of municipal sewage treatment and disposal has become one of the important sources of greenhouse gases that cause greenhouse effect. How to reduce carbon dioxide emissions during sewage treatment and disposal process is of great significance for reducing air pollution. Kitchen waste and excess sludge, as two important organic wastes, once uses anaerobic synergetic digestion technology in the treatment process can on the one hand, avoid instability of sludge individual anaerobic digestion, improve sludge degradation rate and marsh gas production rate, and on the other hand, help increase the reduction of carbon dioxide emissions to a great extent. The paper uses material balance method, analyzes and calculates the carbon dioxide emissions from kitchen waste and sludge disposed by the anaerobic synergetic digestion technology, compares the anaerobic synergetic digestion technology with traditional sludge sanitary landfill technology and works out the carbon dioxide emission reductions after synergetic digestion. It takes the kitchen waste and sludge synergetic digestion engineering project of Zhenjiang city in Jiangsu province as an example, makes material balance analysis using concrete data and works out the carbon dioxide daily emission reductions. The paper analyzes the actual situation of emission reduction by comparing the data, and found that the synergetic digestion of kitchen waste and sludge can effectively reduce the carbon dioxide emission, and the reduction is obvious especially compared with that of sludge sanitary landfill, which has a certain effect on whether to promote the use of the technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Separation of Carbon Monoxide and Carbon Dioxide for Mars ISRU-Concepts

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas; Finn, John E.; Sridhar, K. R.

    2000-01-01

    Solid oxide electrolyzers, such as electrolysis cells utilizing yttria-stabilized zirconia, can produce oxygen from Mars atmospheric carbon dioxide and reject carbon monoxide and unreacted carbon dioxide in a separate stream. The oxygen-production process has been shown to be far more efficient if the high-pressure, unreacted carbon dioxide can be separated and recycled back into the feed stream. Additionally, the mass of the adsorption compressor can be reduced. Also, the carbon monoxide by-product is a valuable fuel for space exploration and habitation, with applications from fuel cells to production of hydrocarbons and plastics. In our research, we will design, construct, and test an innovative, robust, low mass, low power separation device that can recover carbon dioxide and carbon monoxide for Mars ISRU. Such fundamental process technology, involving gas-solid phase separation in a reduced gravitational environment, will help to enable Human Exploration and Development of Space. The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, respectively. In our research, we will design, construct, and test an innovative, robust, low mass, low power separation device that can recover carbon dioxide and carbon monoxide for Mars ISRU, Such fundamental process technology, involving gas-solid phase separation in a reduced gravitational environment, will help to enable Human Exploration and Development of Space. The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, Research needs for the design shown are as follows: (1) The best adsorbent for the process must be determined. (2) Adsorption isotherms must be measured, both for pure components and mixtures. (3) Mathematical modeling must be performed to provide a solid framework for design. (4) The separation system must be constructed and tested. (5) System integration must be studied.

  19. Carbon dioxide reduction by the Bosch process

    NASA Technical Reports Server (NTRS)

    Manning, M. P.; Reid, R. C.

    1975-01-01

    Prototype units for carrying out the reduction of carbon dioxide to elementary carbon have been built and operated successfully. In some cases, however, startup difficulties have been reported. Moreover, the recycle reactor product has been reported to contain only small amounts of water and undesirably high yields of methane. This paper presents the results of the first phase of an experimental study that was carried out to define the mechanisms occurring in the reduction process. Conclusions are drawn and possible modifications to the present recycle process are suggested.

  20. High temperature electrolysis for syngas production

    DOEpatents

    Stoots, Carl M [Idaho Falls, ID; O'Brien, James E [Idaho Falls, ID; Herring, James Stephen [Idaho Falls, ID; Lessing, Paul A [Idaho Falls, ID; Hawkes, Grant L [Sugar City, ID; Hartvigsen, Joseph J [Kaysville, UT

    2011-05-31

    Syngas components hydrogen and carbon monoxide may be formed by the decomposition of carbon dioxide and water or steam by a solid-oxide electrolysis cell to form carbon monoxide and hydrogen, a portion of which may be reacted with carbon dioxide to form carbon monoxide. One or more of the components for the process, such as steam, energy, or electricity, may be provided using a nuclear power source.

  1. Electrocatalytic process for carbon dioxide conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masel, Richard I.; Salehi-Khojin, Amin; Kutz, Robert

    An electrocatalytic process for carbon dioxide conversion includes combining a Catalytically Active Element and a Helper Polymer in the presence of carbon dioxide, allowing a reaction to proceed to produce a reaction product, and applying electrical energy to said reaction to achieve electrochemical conversion of said carbon dioxide reactant to said reaction product. The Catalytically Active Element can be a metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. The reaction products comprise at least one of CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH,more » C.sub.2H.sub.6, (COOH).sub.2, (COO.sup.-).sub.2, and CF.sub.3COOH.« less

  2. Cyclic process for producing methane in a tubular reactor with effective heat removal

    DOEpatents

    Frost, Albert C.; Yang, Chang-Lee

    1986-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  3. Trade, transport, and sinks extend the carbon dioxide responsibility of countries: An editorial essay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Glen P; Marland, Gregg; Hertwich, Edgar G.

    2009-01-01

    Globalization and the dynamics of ecosystem sinks need be considered in post-Kyoto climate negotiations as they increasingly affect the carbon dioxide concentration in the atmosphere. Currently, the allocation of responsibility for greenhouse gas mitigation is based on territorial emissions from fossil-fuel combustion, process emissions and some land-use emissions. However, at least three additional factors can significantly alter a country's impact on climate from carbon dioxide emissions. First, international trade causes a separation of consumption from production, reducing domestic pollution at the expense of foreign producers, or vice versa. Second, international transportation emissions are not allocated to countries for the purposemore » of mitigation. Third, forest growth absorbs carbon dioxide and can contribute to both carbon sequestration and climate change protection. Here we quantify how these three factors change the carbon dioxide emissions allocated to China, Japan, Russia, USA, and European Union member countries. We show that international trade can change the carbon dioxide currently allocated to countries by up to 60% and that forest expansion can turn some countries into net carbon sinks. These factors are expected to become more dominant as fossil-fuel combustion and process emissions are mitigated and as international trade and forest sinks continue to grow. Emission inventories currently in wide-spread use help to understand the global carbon cycle, but for long-term climate change mitigation a deeper understanding of the interaction between the carbon cycle and society is needed. Restructuring international trade and investment flows to meet environmental objectives, together with the inclusion of forest sinks, are crucial issues that need consideration in the design of future climate policies. And even these additional issues do not capture the full impact of changes in the carbon cycle on the global climate system.« less

  4. Inclined fluidized bed system for drying fine coal

    DOEpatents

    Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  5. Submarine seep of carbon dioxide in Norton Sound, Alaska

    USGS Publications Warehouse

    Kvenvolden, K.A.; Weliky, K.; Nelson, H.; Des Marais, D.J.

    1979-01-01

    Earlier workers have described a submarine gas seep in Norton Sound having an unusual mixture of petroleum-like, low-molecular-weight hydrocarbons. Actually, only about 0.04 percent of the seeping gas is hydrocarbons and 98 percent is carbon dioxide. The isotopic compositions of carbon dioxide (??13CPDB = -2.7 per mil) and methane (??13CPDB = -36 per mil, where PDB is the Peedee belemnite standard) indicate that geothermal processes are active here. Copyright ?? 1979 AAAS.

  6. Evaluation of an Atmosphere Revitalization Subsystem for Deep Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Abney, Morgan B.; Conrad, Ruth E.; Frederick, Kenneth R.; Greenwood, Zachary W.; Kayatin, Matthew J.; Knox, James C.; Newton, Robert L.; Parrish, Keith J.; Takada, Kevin C.; hide

    2015-01-01

    An Atmosphere Revitalization Subsystem (ARS) suitable for deployment aboard deep space exploration mission vehicles has been developed and functionally demonstrated. This modified ARS process design architecture was derived from the International Space Station's (ISS) basic ARS. Primary functions considered in the architecture include trace contaminant control, carbon dioxide removal, carbon dioxide reduction, and oxygen generation. Candidate environmental monitoring instruments were also evaluated. The process architecture rearranges unit operations and employs equipment operational changes to reduce mass, simplify, and improve the functional performance for trace contaminant control, carbon dioxide removal, and oxygen generation. Results from integrated functional demonstration are summarized and compared to the performance observed during previous testing conducted on an ISS-like subsystem architecture and a similarly evolved process architecture. Considerations for further subsystem architecture and process technology development are discussed.

  7. Global Coupled Carbon and Nitrogen Models: Successes, Failures and What next?

    NASA Astrophysics Data System (ADS)

    Holland, E. A.

    2011-12-01

    Over the last few years, there has been a great deal of progress in modeling coupled terrestrial global carbon and nitrogen cycles and their roles in Earth System models. The collection of recent models provides some surprising results and insights. A critical question for Earth system models is: How do the coupled C/N model results impact atmospheric carbon dioxide concentrations compared to carbon only models? Some coupled models predict increased atmospheric carbon dioxide concentrations, the result expected from nitrogen-limited photosynthesis uptake of carbon dioxide, while others predict little change or decreased carbon dioxide uptake with a coupled carbon and nitrogen cycle. With this range of impacts for climate critical atmospheric carbon dioxide concentrations, there is clearly a need for additional comparison of measurements and models. Randerson et al.'s CLAMP study provided important constraints and comparison for primarily for aboveground carbon uptake. However, nitrogen supply is largely determined decomposition and soil processes. I will present comparisons of NCAR's CESM results with soil and litter carbon and nitrogen fluxes and standing stocks. These belowground data sets of both carbon and nitrogen provide important benchmarks for coupled C/N models.

  8. Diffusion of gas mixtures in the sI hydrate structure

    NASA Astrophysics Data System (ADS)

    Waage, Magnus H.; Trinh, Thuat T.; van Erp, Titus S.

    2018-06-01

    Replacing methane with carbon dioxide in gas hydrates has been suggested as a way of harvesting methane, while at the same time storing carbon dioxide. Experimental evidence suggests that this process is facilitated if gas mixtures are used instead of pure carbon dioxide. We studied the free energy barriers for diffusion of methane, carbon dioxide, nitrogen, and hydrogen in the sI hydrate structure using molecular simulation techniques. Cage hops between neighboring cages were considered with and without a water vacancy and with a potential inclusion of an additional gas molecule in either the initial or final cage. Our results give little evidence for enhanced methane and carbon dioxide diffusion if nitrogen is present as well. However, the inclusion of hydrogen seems to have a substantial effect as it diffuses rapidly and can easily enter occupied cages, which reduces the barriers of diffusion for the gas molecules that co-occupy a cage with hydrogen.

  9. Chemistry for Kids: Generating Carbon Dioxide in Elementary School Chemistry and Using a Computer To Write about It.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.; Yoshida, Sarah

    This material describes an activity using vinegar and baking soda to generate carbon dioxide, and writing a report using the Appleworks word processing program for grades 3 to 8 students. Time requirement, relevant process skills, vocabulary, mathematics skills, computer skills, and materials are listed. Activity procedures including class…

  10. Nano-spike Catalysts Convert Carbon Dioxide Directly into Ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondinone, Adam

    2016-10-12

    In a new twist to waste-to-fuel technology, scientists at the Department of Energy’s Oak Ridge National Laboratory have developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol. Their finding, which involves nanofabrication and catalysis science, was serendipitous.

  11. Mixed uranium dicarbide and uranium dioxide microspheres and process of making same

    DOEpatents

    Stinton, David P.

    1983-01-01

    Nuclear fuel microspheres are made by sintering microspheres containing uranium dioxide and uncombined carbon in a 1 mole percent carbon monoxide/99 mole percent argon atmosphere at 1550.degree. C. and then sintering the microspheres in a 3 mole percent carbon monoxide/97 mole percent argon atmosphere at the same temperature.

  12. Selective growth of palladium and titanium dioxide nanostructures inside carbon nanotube membranes

    PubMed Central

    2012-01-01

    Hybrid nanostructured arrays based on carbon nanotubes (CNT) and palladium or titanium dioxide materials have been synthesized using self-supported and silicon-supported anodized aluminum oxide (AAO) as nanoporous template. It is well demonstrated that carbon nanotubes can be grown using these membranes and hydrocarbon precursors that decompose at temperatures closer to 600°C without the use of a metal catalyst. In this process, carbonic fragments condensate to form stacked graphitic sheets, which adopt the shape of the pores, yielding from these moulds' multi-walled carbon nanotubes. After this process, the ends of the tubes remain open and accessible to other substances, whereas the outer walls are protected by the alumina. Taking advantage of this fact, we have performed the synthesis of palladium and titanium dioxide nanostructures selectively inside carbon nanotubes using these CNT-AAO membranes as nanoreactors. PMID:22731888

  13. Electrochemical reduction of carbon dioxide. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaConti, A.B.; Molter, T.M.; Zagaja, J.A.

    1986-05-01

    Many researchers have studied the electrochemical reduction of carbon dioxide and related organic species to form concentrated liquid/gaseous products in laboratory-scale hardware. Hamilton Standard has developed a high pressure SPE electrolysis cell capable of reducing carbon dioxide streams to form pure, concentrated alcohols, carboxylic acids, and other hydrocarbons. The process is unique in that the byproducts of reaction include oxygen and, under some test conditions water. In addition, a relatively simple test system was designed and constructed permitting both batch and semibatch type electrochemical reduction studies. In this study, cathode materials were developed which 1) had a characteristic high hydrogenmore » overvoltage, and 2) possessed the intrinsic affinity for electrochemical reduction of the carbon dioxide species. In addition, suitable anode electrocatalyst materials were identified. Studies involving the electrochemical reduction of carbon dioxide required the ability to identify and quantify reaction products obtained during cell evaluation. Gas chromatographic techniques were developed along with the establishment of ion chromatographic methods permitting the analysis of organic reaction products. Hamilton Standard has evaluated electrochemical carbon dioxide reduction cells under a variety of test conditions.« less

  14. Predator-induced reduction of freshwater carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  15. Natural sources of greenhouse gases: carbon dioxide emissions from volcanoes

    USGS Publications Warehouse

    Gerlach, Terrence

    1990-01-01

    Volcanic degassing of carbon dioxide plays an important role in keeping the atmosphere-ocean portion of the carbon geochemical cycle in balance. The atmosphere-ocean carbon deficit requires replenishment of 6??1012 mol CO2/yr, and places an upper limit on the output of carbon dioxide from volcanoes. The CO2 output of the global mid-oceanic ridge system is ca. 0.7??1012 mol/yr, thus supplying only a fraction of the amount needed to balance the carbon deficit. The carbon dioxide flux from subaerial volcanoes is poorly known, but it appears to be at least as large as the mid-oceanic ridge flux. Much (perhaps most) of the CO2 emitted from volcanoes is degassed noneruptively. This mode of degassing may lead to impacts on the environment and biosphere that are fundamentally different in character from those envisioned in published scenarios, which are based on the assumption that CO2 degassing occurs predominantly by eruptive processes. Although the flux of carbon dioxide from volcanoes is poorly constrained at present, it is clearly two orders of magnitude lower than the anthropogenic output of CO2.

  16. Solubility and Phase Behavior of CL20 and RDX in Supercritical Carbon Dioxide

    DTIC Science & Technology

    2004-12-01

    with Enhanced mass transfer (SAS-EMTM) are potential green processes for producing ultrafine particles . In these processes, the material to be...particulated will be dissolved (solubilized) into an environmentally benign solvent such as supercritical carbon dioxide and then condensed to ultrafine ... particles by reducing the pressure and temperature of the mixture. Theoretical and/or predictive models are required for process simulation and to

  17. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide.

    PubMed

    Walker, J C; Kasting, J F

    1992-01-01

    We develop a numerical simulation of the global biogeochemical cycles of carbon that works over time scales extending from years to millions of years. The ocean is represented by warm and cold shallow water reservoirs, a thermocline reservoir, and deep Atlantic, Indian, and Pacific reservoirs. The atmosphere is characterized by a single carbon reservoir and the global biota by a single biomass reservoir. The simulation includes the rock cycle, distinguishing between shelf carbonate and pelagic carbonate precipitation, with distinct lysocline depths in the three deep ocean reservoirs. Dissolution of pelagic carbonates in response to decrease in lysocline depth is included. The simulation is tuned to reproduce the observed radiocarbon record resulting from atomic weapon testing. It is tuned also to reproduce the distribution of dissolved phosphate and total dissolved carbon between the ocean reservoirs as well as the carbon isotope ratios for both 13C and 14C in ocean and atmosphere. The simulation reproduces reasonably well the historical record of carbon dioxide partial pressure as well as the atmospheric isotope ratios for 13C and 14C over the last 200 yr as these have changed in response to fossil fuel burning and land use changes, principally forest clearance. The agreements between observation and calculation involves the assumption of a carbon dioxide fertilization effect in which the rate of production of biomass increases with increasing carbon dioxide partial pressure. At present the fertilization effect of increased carbon dioxide outweighs the effects of forest clearance, so the biota comprises an overall sink of atmospheric carbon dioxide sufficiently large to bring the budget approximately into balance. This simulation is used to examine the future evolution of carbon dioxide and its sensitivity to assumptions about the rate of fossil fuel burning and of forest clearance. Over times extending up to thousands of years, the results are insensitive to the formulation of the rock cycle and to the dissolution of deep sea carbonate sediments. Atmospheric carbon dioxide continues to increase as long fossil fuel is burned at a significant rate, because the rate of fossil fuel production of carbon dioxide far exceeds the rates at which geochemical processes can remove carbon dioxide from the atmosphere. The maximum concentration of carbon dioxide achieved in the atmosphere depends on the total amount of fossil fuel burned, but only weakly on the rate of burning. The future course of atmospheric carbon dioxide is, however, very sensitive to the fate of the forests in this simulation because of the important role assigned to carbon dioxide fertilization of plant growth rate. Forest clearance drives up atmospheric carbon dioxide not only by converting biomass into atmospheric carbon dioxide but more importantly by reducing the capacity of the biota to sequester fossil fuel carbon dioxide. In this simulation, atmospheric carbon dioxide levels could be sustained indefinitely below 500 parts per million (ppm) if fossil fuel combustion rates were immediately cut from their present value of 5 x 10(14) m/y to 0.2 x 10(14) m/y (a factor of 25 reduction) and if further forest clearance were halted. If neither of these conditions is met and if we consume most of the world's fossil fuel reserves, peak carbon dioxide concentrations of 1000-2000 ppm are probable within the next few centuries.

  18. Nano-spike Catalysts Convert Carbon Dioxide Directly into Ethanol

    ScienceCinema

    Rondinone, Adam

    2018-06-12

    In a new twist to waste-to-fuel technology, scientists at the Department of Energy’s Oak Ridge National Laboratory have developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol. Their finding, which involves nanofabrication and catalysis science, was serendipitous.

  19. Partitioning Carbon Dioxide and Water Vapor Fluxes Using Correlation Analysis

    USDA-ARS?s Scientific Manuscript database

    Partitioning of eddy covariance flux measurements is routinely done to quantify the contributions of separate processes to the overall fluxes. Measurements of carbon dioxide fluxes represent the difference between gross ecosystem photosynthesis and total respiration, while measurements of water vapo...

  20. Rotary moving bed for CO.sub.2 separation and use of same

    DOEpatents

    Elliott, Jeannine Elizabeth; Copeland, Robert James; McCall, Patrick P.

    2017-01-10

    A rotary moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The rotary moving bed can have a rotational assembly rotating on a vertical axis, and a plurality of sorbent cells positioned horizontally to the axis of rotation that fills a vertical space in the moving bed, where the sorbent cells adsorb the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement with steam. The gas flows in the system flow in a direction horizontal to the axis of rotation and in a direction opposite the rotational movement of the sorbent cells.

  1. Terraforming - Making an earth of Mars

    NASA Astrophysics Data System (ADS)

    McKay, C. P.

    1987-12-01

    The possibility of creating a habitable environment on Mars via terraforming is discussed. The first step is to determine the amount, distribution, and chemical state of water, carbon dioxide, and nitrogen. The process of warming Mars and altering its atmosphere naturally divides into two steps: in the first step, the planet would be heated by a warm thick carbon dioxide atmosphere, while the second step would be to convert the atmospheric carbon dioxide and soil nitrates to the desired oxygen and nitrogen mixture. It is concluded that life will play a major role in any terraforming of Mars, and that terraforming will be a gradual evolutionary process duplicating the early evolution of life on earth.

  2. Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process.

    PubMed

    Rudrangi, Shashi Ravi Suman; Kaialy, Waseem; Ghori, Muhammad U; Trivedi, Vivek; Snowden, Martin J; Alexander, Bruce David

    2016-07-01

    The aim of this study was to enhance the apparent solubility and dissolution properties of flurbiprofen through inclusion complexation with cyclodextrins. Especially, the efficacy of supercritical fluid technology as a preparative technique for the preparation of flurbiprofen-methyl-β-cyclodextrin inclusion complexes was evaluated. The complexes were prepared by supercritical carbon dioxide processing and were evaluated by solubility, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, practical yield, drug content estimation and in vitro dissolution studies. Computational molecular docking studies were conducted to study the possibility of molecular arrangement of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin. The studies support the formation of stable molecular inclusion complexes between the drug and cyclodextrin in a 1:1 stoichiometry. In vitro dissolution studies showed that the dissolution properties of flurbiprofen were significantly enhanced by the binary mixtures prepared by supercritical carbon dioxide processing. The amount of flurbiprofen dissolved into solution alone was very low with 1.11±0.09% dissolving at the end of 60min, while the binary mixtures processed by supercritical carbon dioxide at 45°C and 200bar released 99.39±2.34% of the drug at the end of 30min. All the binary mixtures processed by supercritical carbon dioxide at 45°C exhibited a drug release of more than 80% within the first 10min irrespective of the pressure employed. The study demonstrated the single step, organic solvent-free supercritical carbon dioxide process as a promising approach for the preparation of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin in solid-state. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Preparation of reactive beta-dicalcium silicate

    DOEpatents

    Shen, M.S.; Chen, J.M.; Yang, R.T.

    1980-02-28

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica, and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane, and hydrogen, at a temperature of about 850 to 1000/sup 0/C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  4. Preparation of reactive beta-dicalcium silicate

    DOEpatents

    Shen, Ming-Shing; Chen, James M.; Yang, Ralph T.

    1982-01-01

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane and hydrogen, at a temperature of about 850.degree.-1000.degree. C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  5. The costing of carbon credits from ocean nourishment plants.

    PubMed

    Shoji, K; Jones, I S

    2001-09-28

    Ocean nourishment is a process for stimulating the sequestration of atmospheric carbon dioxide in the deep ocean by providing the nutrients needed to enhance the production of phytoplankton. The carbon dioxide sink thus created, can be used to generate tradeable carbon credits. The costs of sequestering carbon by the process of ocean nourishment have been estimated using as a basis, the previous experience in nitrogen fixing of Toyo Engineering Corporation. While there are uncertainties about the biological uptake efficiency, these introduce only a moderate uncertainty in our overall estimates of costs. The major determinants of the costs are the interest that must be paid on capital and the cost of the feedstock, natural gas. We have used for discussion purposes, an interest rate of 4-8% per annum and natural gas costs of US$0.5-$2 per GJ. The costs of carbon credits lie in the range US$6.70-$12.40 per tonne of carbon dioxide emissions sequestered. It should be noted that we have adopted the measure of carbon avoided by non-emission, because of the complex partitioning of anthropogenic carbon between the atmosphere, land and ocean.

  6. Carbon dioxide mineralization process design and evaluation: concepts, case studies, and considerations.

    PubMed

    Yuen, Yeo Tze; Sharratt, Paul N; Jie, Bu

    2016-11-01

    Numerous carbon dioxide mineralization (CM) processes have been proposed to overcome the slow rate of natural weathering of silicate minerals. Ten of these proposals are mentioned in this article. The proposals are described in terms of the four major areas relating to CM process design: pre-treatment, purification, carbonation, and reagent recycling operations. Any known specifics based on probable or representative operating and reaction conditions are listed, and basic analysis of the strengths and shortcomings associated with the individual process designs are given in this article. The processes typically employ physical or chemical pseudo-catalytic methods to enhance the rate of carbon dioxide mineralization; however, both methods have its own associated advantages and problems. To examine the feasibility of a CM process, three key aspects should be included in the evaluation criteria: energy use, operational considerations as well as product value and economics. Recommendations regarding the optimal level of emphasis and implementation of measures to control these aspects are given, and these will depend very much on the desired process objectives. Ultimately, a mix-and-match approach to process design might be required to provide viable and economic proposals for CM processes.

  7. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOEpatents

    Rathke, J.W.; Klingler, R.J.

    1993-03-30

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  8. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOEpatents

    Rathke, Jerome W.; Klingler, Robert J.

    1993-01-01

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  9. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOEpatents

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  10. Cytotoxic Deoxypodophyllotoxin Can Be Extracted in High Purity from Anthriscus sylvestris Roots by Supercritical Carbon Dioxide.

    PubMed

    Seegers, Christel L C; Tepper, Pieter G; Setroikromo, Rita; Quax, Wim J

    2018-05-01

    Deoxypodophyllotoxin is present in the roots of Anthriscus sylvestris . This compound is cytotoxic on its own, but it can also be converted into podophyllotoxin, which is in high demand as a precursor for the important anticancer drugs etoposide and teniposide. In this study, deoxypodophyllotoxin is extracted from A. sylvestris roots by supercritical carbon dioxide extraction. The process is simple and scalable. The supercritical carbon dioxide method extracts 75 - 80% of the total deoxypodophyllotoxin content, which is comparable to a single extraction by traditional Soxhlet. However, less polar components are extracted. The activity of the supercritical carbon dioxide extract containing deoxypodophyllotoxin was assessed by demonstrating that the extract arrests A549 and HeLa cells in the G 2 /M phase of the cell cycle. We conclude that biologically active deoxypodophyllotoxin can be extracted from A. sylvestris by supercritical carbon dioxide extraction. The method is solvent free and more sustainable compared to traditional methods. Georg Thieme Verlag KG Stuttgart · New York.

  11. Iodide-Photocatalyzed Reduction of Carbon Dioxide to Formic Acid with Thiols and Hydrogen Sulfide.

    PubMed

    Berton, Mateo; Mello, Rossella; González-Núñez, María Elena

    2016-12-20

    The photolysis of iodide anions promotes the reaction of carbon dioxide with hydrogen sulfide or thiols to quantitatively yield formic acid and sulfur or disulfides. The reaction proceeds in acetonitrile and aqueous solutions, at atmospheric pressure and room temperature by irradiation using a low-pressure mercury lamp. This transition-metal-free photocatalytic process for CO 2 capture coupled with H 2 S removal may have been relevant as a prebiotic carbon dioxide fixation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dry-spraying of ascorbic acid or acetaminophen solutions with supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Wubbolts, F. E.; Bruinsma, O. S. L.; van Rosmalen, G. M.

    1999-03-01

    Carbon dioxide is a very poor solvent for many organic compounds, which makes it a good anti-solvent. When a solution is sprayed into carbon dioxide vapour the anti-solvent reduces the solubility within several tens of milliseconds and the solute precipitates. Two distinct regions can be identified, below and above the mixture critical pressure. Below this critical pressure the yield remains relatively low and the process is not well controlled. Above the critical pressure small crystals are obtained of about 2 μm with a yield of 90%.

  13. Phenolic Wastewater Treatment Alternatives.

    DTIC Science & Technology

    1980-06-01

    15 Potassium Permanganate ................ 19 Iron (VI) Ferrate ..................... 22 Catalytic Oxidation ..................... 22...carbon dioxide, potassium hydroxide, and manganese dioxide which were readily handled by the existing system. d. Iron (VI) Ferrate Ferrate is iron in...the following systems/processes: Granular Activated Carbon (GAC) adsorption, ozone oxidation, hydrogen peroxide oxidation, potassium permanganate

  14. KEY COMPARISON Final report on international comparison CCQM-K71: Measurement of stack gas

    NASA Astrophysics Data System (ADS)

    Nieuwenkamp, G.; van der Veen, A. M. H.; Wessel, R. M.; Qiao, Han; Oh, Sang-Hyub; Kim, Byung-Moon; Kim, Kwang-Sub; Pérez Castorena, Alejandro; Ramírez Nambo, Carlos; Koelliker Delgado, Jorge; Serrano Caballero, Victor M.; Rangel Murillo, Francisco; Avila Salas, Manuel de Jesus; Dias, Florbela; Baptista, Gonçalo; Konopelko, L. A.; Kustikov, Y. A.; Pankratov, V. V.; Selyukov, D. N.; Balandovich, V. S.; Vishnyakov, I. M.; Pavlov, M. V.; Maltsev, M. A.; Botha, Angelique; Valkova, Miroslava; Stovcik, Viliam; Musil, Stanislav; Milton, M. J. T.; Uprichard, I. J.; Vargha, G. M.; Guenther, F.; Gameson, L.; da Cunha, V.

    2010-01-01

    Industrial stack gas emission measurements are important for process control, control of air pollution, and for implementing legislation regarding carbon dioxide emission rights. Measurements are typically performed using a range of process analysers for carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), sulphur dioxide (SO2) and miscellaneous hydrocarbons. The calibration of these analysers is often performed using a series of binary mixtures of each component in nitrogen. For reasons of efficiency as well as a better match with true stack gas, the use of multi-component mixtures for this purpose would be preferred. The aim of this key comparison is to evaluate the measurement capabilities of national metrology institutes for carbon monoxide, carbon dioxide, nitrogen monoxide, sulphur dioxide and propane in nitrogen. Ten laboratories participated in the key comparison and one in the associated study. The key comparison reference value is based on the gravimetric preparation data. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  15. The ultrasonic-enhanced factor of mass-transfer coefficient in the supercritical carbon dioxide extraction

    NASA Astrophysics Data System (ADS)

    Luo, Benyi; Lu, Yigang

    2008-10-01

    Based on several hypotheses about the process of supercritical carbon dioxide extraction, the onflow around the solute granule is figured out by the Navier-Stocks equation. In combination with the Higbie’s solute infiltration model, the link between the mass-transfer coefficient and the velocity of flow is found. The mass-transfer coefficient with the ultrasonical effect is compared with that without the ultrasonical effect, and then a new parameter named the ultrasonic-enhanced factor of mass-transfer coefficient is brought forward, which describes the mathematical model of the supercritical carbon dioxide extraction process enhanced by ultrasonic. The model gives out the relationships among the ultrasonical power, the ultrasonical frequency, the radius of solute granule and the ultrasonic-enhanced factor of mass-transfer coefficient. The results calculated by this model fit well with the experimental data, including the extraction of Coix Lacryma-jobi Seed Oil (CLSO) and Coix Lacryma-jobi Seed Ester (CLSE) from coix seeds and the extraction of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) from the alga by means of the ultrasonic-enhanced supercritical carbon dioxide extraction (USFE) and the supercritical carbon dioxide extraction (SFE) respectively. This proves the rationality of the ultrasonic-enhanced factor model. The model provides a theoretical basis for the application of ultrasonic-enhanced supercritical fluid extraction technique.

  16. Procedures for Processing Requests to Redesignate Areas to Attainment

    EPA Pesticide Factsheets

    Guidance for processing requests for redesignation of nonattainment areas to attainment for ozone (O3), carbon monoxide (CO), particulate matter (PM-10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and lead (Pb).

  17. Precipitated Silica from Pumice and Carbon Dioxide Gas (Co2) in Bubble Column Reactor

    NASA Astrophysics Data System (ADS)

    Dewati, R.; Suprihatin, S.; Sumada, K.; Muljani, S.; Familya, M.; Ariani, S.

    2018-01-01

    Precipitated silica from silica and carbon dioxide gas has been studied successfully. The source of silica was obtained from pumice stone while precipitation process was carried out with carbon dioxide gas (CO2). The sodium silicate solution was obtained by extracting the silica from pumice stone with sodium hydroxide (NaOH) solution and heated to 100 °C for 1 h. The carbon dioxide gas is injected into the aqueous solution of sodium silicate in a bubble column reactor to form precipitated silica. m2/g. The results indicate that the products obtained are precipitate silica have surface area in the range of 100 - 227 m2/g, silica concentration more than 80%, white in appearance, and silica concentration reached 90% at pH 7.

  18. Unravelling the influence of carbon dioxide on the adsorptive recovery of butanol from fermentation broth using ITQ-29 and ZIF-8.

    PubMed

    Martin-Calvo, Ana; Van der Perre, Stijn; Claessens, Benjamin; Calero, Sofia; Denayer, Joeri F M

    2018-04-18

    The vapor phase adsorption of butanol from ABE fermentation at the head space of the fermenter is an interesting route for the efficient recovery of biobutanol. The presence of gases such as carbon dioxide that are produced during the fermentation process causes a stripping of valuable compounds from the aqueous into the vapor phase. This work studies the effect of the presence of carbon dioxide on the adsorption of butanol at a molecular level. With this aim in mind Monte Carlo simulations were employed to study the adsorption of mixtures containing carbon dioxide, butanol and ethanol. Molecular models for butanol and ethanol that reproduce experimental properties of the molecules such as polarity, vapor-liquid coexistence or liquid density have been developed. Pure component isotherms and heats of adsorption have been computed and compared to experimental data to check the accuracy of the interacting parameters. Adsorption of butanol/ethanol mixtures has been studied in absence and presence of CO2 on two representative materials, a pure silica LTA zeolite and a hydrophobic metal-organic framework ZIF-8. To get a better understanding of the molecular mechanism that governs the adsorption of the targeted mixture in the selected materials, the distribution of the molecules inside the structures was analyzed. The combination of these features allows obtaining a deeper understanding of the process and to identify the role of carbon dioxide in the butanol purification process.

  19. “Artificial Leaf” Turns Carbon Dioxide Into Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Researchers at Argonne and the University of Illinois at Chicago have found a way to convert carbon dioxide into a usable energy source using sunlight. The process is similar to photosynthesis, the way plants make fuel from light, so the system is called the “artificial leaf.”

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, L.K.; Phylipsen, G.J.M.; Worrell, E.

    Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop and as demand for steel products such as materials, automobiles, and appliances increases. In this report, we describe the key steel processes, discuss typical energy-intensity values for these processes, review historical trends in iron and steel production by process inmore » five key developing countries, describe the steel industry in each of the five key developing countries, present international comparisons of energy use and carbon dioxide emissions among these countries, and provide our assessment of the technical potential to reduce these emissions based on best-practice benchmarking. Using a best practice benchmark, we find that significant savings, in the range of 33% to 49% of total primary energy used to produce steel, are technically possible in these countries. Similarly, we find that the technical potential for reducing intensities of carbon dioxide emissions ranges between 26% and 49% of total carbon dioxide emissions from steel production in these countries.« less

  1. CO2 Injection Into CH4 Hydrate Reservoirs: Quantifying Controls of Micro-Scale Processes

    NASA Astrophysics Data System (ADS)

    Bigalke, N. K.; Deusner, C.; Kossel, E.; Haeckel, M.

    2014-12-01

    The exchangeability of methane for carbon dioxide in gas hydrates opens the possibility of producing emission-neutral hydrocarbon energy. Recent field tests have shown that the production of natural gas from gas hydrates is feasible via injection of carbon dioxide into sandy, methane-hydrate-bearing sediment strata. Industrial-scale application of this method requires identification of thermo- and fluid-dynamic as well as kinetic controls on methane yield from and carbon dioxide retention within the reservoir. Extraction of gas via injection of carbon dioxide into the hydrate reservoir triggers a number of macroscopic effects, which are revealed for example by changes of the hydraulic conductivity and geomechanical stability. Thus far, due to analytical limitations, localized reactions and fluid-flow phenomena held responsible for these effects remain unresolved on the microscale (1 µm - 1 mm) and at near-natural reservoir conditions. We address this deficit by showing results from high-resolution, two-dimensional Raman spectroscopy mappings of an artificial hydrate reservoir during carbon dioxide injection under realistic reservoir conditions. The experiments allow us to resolve hydrate conversion rate and efficiency as well as activation of fluid pathways in space and time and their effect on methane yield, carbon-dioxide retention and hydraulic conductivity of the reservoir. We hypothesize that the conversion of single hydrate grains is a diffusion-controlled process which starts at the grain surface before continuing into the grain interior and show that the conversion can be modeled simply by using published permeation coefficients for CO2 and CH4 in hydrate and grain size as only input parameters.

  2. Influences of elevated carbon dioxide and ozone on soil respiration and carbon accumulation in a no-till soybean-wheat system after six years

    USDA-ARS?s Scientific Manuscript database

    Atmospheric carbon dioxide and ozone often have counteracting influences on many C3 crops depending on the concentration of the gases and sensitivity of the crop and variety, but effects of these gases on plant-soil processes are poorly understood. The objective of this six-year experiment was to d...

  3. Influence of the preparation method on the physicochemical properties of indomethacin and methyl-β-cyclodextrin complexes.

    PubMed

    Rudrangi, Shashi Ravi Suman; Bhomia, Ruchir; Trivedi, Vivek; Vine, George J; Mitchell, John C; Alexander, Bruce David; Wicks, Stephen Richard

    2015-02-20

    The main objective of this study was to investigate different manufacturing processes claimed to promote inclusion complexation between indomethacin and cyclodextrins in order to enhance the apparent solubility and dissolution properties of indomethacin. Especially, the effectiveness of supercritical carbon dioxide processing for preparing solid drug-cyclodextrin inclusion complexes was investigated and compared to other preparation methods. The complexes were prepared by physical mixing, co-evaporation, freeze drying from aqueous solution, spray drying and supercritical carbon dioxide processing methods. The prepared complexes were then evaluated by scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, solubility and dissolution studies. The method of preparation of the inclusion complexes was shown to influence the physicochemical properties of the formed complexes. Indomethacin exists in a highly crystalline solid form. Physical mixing of indomethacin and methyl-β-cyclodextrin appeared not to reduce the degree of crystallinity of the drug. The co-evaporated and freeze dried complexes had a lower degree of crystallinity than the physical mix; however the lowest degree of crystallinity was achieved in complexes prepared by spray drying and supercritical carbon dioxide processing methods. All systems based on methyl-β-cyclodextrin exhibited better dissolution properties than the drug alone. The greatest improvement in drug dissolution properties was obtained from complexes prepared using supercritical carbon dioxide processing, thereafter by spray drying, freeze drying, co-evaporation and finally by physical mixing. Supercritical carbon dioxide processing is well known as an energy efficient alternative to other pharmaceutical processes and may have application for the preparation of solid-state drug-cyclodextrin inclusion complexes. It is an effective and economic method that allows the formation of solid complexes with a high yield, without the use of organic solvents and problems associated with their residues. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Carbonation of metal silicates for long-term CO2 sequestration

    DOEpatents

    Blencoe, James G; Palmer, Donald A; Anovitz, Lawrence M; Beard, James S

    2014-03-18

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  5. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    DOEpatents

    Blencoe, James G [Harriman, TN; Palmer, Donald A [Oliver Springs, TN; Anovitz, Lawrence M [Knoxville, TN; Beard, James S [Martinsville, VA

    2012-02-14

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  6. Experimental investigation of the phase equilibria in the carbon dioxide-propane-3 M MDEA system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jou, F.Y.; Mather, A.E.; Otto, F.D.

    1995-07-01

    The treating of liquefied petroleum gas (LPG) to remove carbon dioxide and hydrogen sulfide using aqueous alkanolamine solutions is an important aspect of gas processing. One of the amines used in the natural gas industry is methyldiethanolamine (MDEA). Measurements of the phase equilibria in the carbon dioxide-propane-3 M MDEA system have been made at 25 and 40 C at pressures up to 15.5 MPa. Vapor-liquid, liquid-liquid, and vapor-liquid-liquid equilibria were determined. The vapor-liquid equilibrium data were compared with the model of Deshmukh and Mather.

  7. Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    This database provides information on the occurrence of ultramafic rocks in the conterminous United States that are suitable for sequestering captured carbon dioxide in mineral form, also known as mineral carbon-dioxide sequestration. Mineral carbon-dioxide sequestration is a proposed greenhouse gas mitigation technology whereby carbon dioxide (CO2) is disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium carbonate product. The technology offers a large capacity to permanently store CO2 in an environmentally benign form via a process that takes little effort to verify or monitor after disposal. These characteristics are unique among its peers in greenhouse gas disposal technologies. The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral CO2 sequestration is locating the magnesium-silicate bedrock available to sequester the carbon dioxide. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made in the United States that details their geographical distribution and extent, nor has anyone evaluated their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the conterminous United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. The focus of our national-scale map is entirely on ultramafic rock types, which typically consist primarily of olivine- and serpentine-rich rocks. These rock types are potentially suitable as source material for mineral CO2 sequestration.

  8. 40 CFR 98.210 - Definition of the source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in manufacturing processes that emit carbon dioxide. Table U-1 includes the following carbonates... that uses carbonates or carbonate containing minerals that are consumed in the production of cement...

  9. Modeling Separate and Combined Atmospheres in BIO-Plex

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Finn, Cory; Kwauk, Xianmin; Blackwell, Charles; Luna, Bernadette (Technical Monitor)

    2000-01-01

    We modeled BIO-Plex designs with separate or combined atmospheres and then simulated controlling the atmosphere composition. The BIO-Plex is the Bioregenerative Planetary Life Support Systems Test Complex, a large regenerative life support test facility under development at NASA Johnson Space Center. Although plants grow better at above-normal carbon dioxide levels, humans can tolerate even higher carbon dioxide levels. Incinerator exhaust has very high levels of carbon dioxide. An elaborate BIO-Plex design would maintain different atmospheres in the crew and plant chambers and isolate the incinerator exhaust in the airlock. This design easily controls the crew and plant carbon dioxide levels but it uses many gas processors, buffers, and controllers. If all the crew's food is grown inside BIO-Plex, all the carbon dioxide required by the plants is supplied by crew respiration and the incineration of plant and food waste. Because the oxygen mass flow must balance in a closed loop, the plants supply all the oxygen required by the crew and the incinerator. Using plants for air revitalization allows using fewer gas processors, buffers, and controllers. In the simplest design, a single combined atmosphere was used for the crew, the plant chamber, and the incinerator. All gas processors, buffers, and controllers were eliminated. The carbon dioxide levels were necessarily similar for the crew and plants. If most of the food is grown, carbon dioxide can be controlled at the desired level by scheduling incineration. An intermediate design uses one atmosphere for the crew and incinerator chambers and a second for the plant chamber. This allows different carbon dioxide levels for the crew and plants. Better control of the atmosphere is obtained by varying the incineration rate. Less gas processing storage and control is needed if more food is grown.

  10. Modeling Separate and Combined Atmospheres in BIO-Plex

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Finn, Cory; Kwauk, Xian-Min; Blackwell, Charles; Luna, Bernadette (Technical Monitor)

    2000-01-01

    We modeled BIO-Plex designs with separate or combined atmospheres and then simulated controlling the atmosphere composition. The BIO-Plex is the Bioregenerative Planetary Life Support Systems Test Complex, a large regenerative life support test facility under development at NASA Johnson Space Center. Although plants grow better at above-normal carbon dioxide levels, humans can tolerate even higher carbon dioxide levels. incinerator exhaust has very high levels of carbon dioxide. An elaborate BIO-Plex design would maintain different atmospheres in the crew and plant chambers and isolate the incinerator exhaust in the airlock. This design easily controls the crew and plant carbon dioxide levels but it uses many gas processors, buffers, and controllers. If all the crew's food is grown inside BIO-Plex, all the carbon dioxide required by the plants is supplied by crew respiration and the incineration of plant and food waste. Because the oxygen mass flow must balance in a closed loop, the plants supply all the oxygen required by the crew and the incinerator. Using plants for air revitalization allows using fewer gas processors, buffers, and controllers. In the simplest design, a single combined atmosphere was used for the crew, the plant chamber, and the incinerator. All gas processors, buffers, and controllers were eliminated. The carbon dioxide levels were necessarily similar for the crew and plants. If most of the food is grown, carbon dioxide can be controlled at the desired level by scheduling incineration. An intermediate design uses one atmosphere for the crew and incinerator chambers and a second for the plant chamber. This allows different carbon dioxide levels for the crew and plants. Better control of the atmosphere is obtained by varying the incineration rate. Less gas processing, storage, and control is needed if more food is grown.

  11. Hydrogenation of silyl formates: sustainable production of silanol and methanol from hydrosilane and carbon dioxide.

    PubMed

    Koo, Jangwoo; Kim, Seung Hyo; Hong, Soon Hyeok

    2018-05-10

    A new process for simultaneously obtaining two chemical building blocks, methanol and silanol, was realized starting from silyl formates which can be derived from silane and carbon dioxide. Understanding the reaction mechanism enabled us to improve the reaction efficiency by the addition of a small amount of methanol.

  12. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Heppner, D. B.; Hallick, T. M.; Woods, R. R.

    1979-01-01

    Two multicell, liquid-cooled, advanced electrochemical depolarized carbon dioxide concentrator modules were fabricated. The cells utilized advanced, lightweight, plated anode current collectors, internal liquid cooling and lightweight cell frames. Both were designed to meet the carbon dioxide removal requirements of one-person, i.e., 1.0 kg/d (2.2 lb/d).

  13. Fractionation of whey protein isolate with supercritical carbon dioxide to produce enriched alpha-lactalbumin and beta-lactoglobulin food ingredients

    USDA-ARS?s Scientific Manuscript database

    A potentially economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (SCO2) as an acid to produce enriched fractions of alpha-lactalbumin (a-LA) and beta-lactoglobulin (b-LG) from whey protein isolate. To prepare the fractions, so...

  14. Evaluation of statistical protocols for quality control of ecosystem carbon dioxide fluxes

    Treesearch

    Jorge F. Perez-Quezada; Nicanor Z. Saliendra; William E. Emmerich; Emilio A. Laca

    2007-01-01

    The process of quality control of micrometeorological and carbon dioxide (CO2) flux data can be subjective and may lack repeatability, which would undermine the results of many studies. Multivariate statistical methods and time series analysis were used together and independently to detect and replace outliers in CO2 flux...

  15. 21 CFR 179.43 - Carbon dioxide laser for etching food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Carbon dioxide laser for etching food. 179.43 Section 179.43 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE PRODUCTION, PROCESSING AND HANDLING OF...

  16. 21 CFR 179.43 - Carbon dioxide laser for etching food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbon dioxide laser for etching food. 179.43 Section 179.43 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) IRRADIATION IN THE PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources...

  17. Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor.

    PubMed

    Zhang, Rui; Liu, Xiupeng; Zhou, Tingting; Wang, Lili; Zhang, Tong

    2018-08-15

    Carbon (C) materials, which process excellent electrical conductivity and high carrier mobility, are promising sensing materials as active units for gas sensors. However, structural agglomeration caused by chemical processes results in a small resistance change and low sensing response. To address the above issues, structure-derived carbon-coated tin dioxide (SnO 2 ) nanoparticles having distinct core-shell morphology with a 3D net-like structure and highly uniform size are prepared by careful synthesis and fine structural design. The optimum carbon-coated SnO 2 nanoparticles (SnO 2 /C)-based gas sensor exhibits a low working temperature, excellent selectivity and fast response-recovery properties. In addition, the SnO 2 /C-based gas sensor can maintain a sensitivity to nitrogen dioxide (NO 2 ) of 3 after being cycled 4 times at 140 °C for, suggesting its good long-term stability. The structural integrity, good synergistic properties, and high gas-sensing performance of SnO 2 /C render it a promising sensing material for advanced gas sensors. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Microscopic Structure and Solubility Predictions of Multifunctional Solids in Supercritical Carbon Dioxide: A Molecular Simulation Study.

    PubMed

    Noroozi, Javad; Paluch, Andrew S

    2017-02-23

    Molecular dynamics simulations were employed to both estimate the solubility of nonelectrolyte solids, such as acetanilide, acetaminophen, phenacetin, methylparaben, and lidocaine, in supercritical carbon dioxide and understand the underlying molecular-level driving forces. The solubility calculations involve the estimation of the solute's limiting activity coefficient, which may be computed using conventional staged free-energy calculations. For the case of lidocaine, wherein the infinite dilution approximation is not appropriate, we demonstrate how the activity coefficient at finite concentrations may be estimated without additional effort using the dilute solution approximation and how this may be used to further understand the solvation process. Combining with experimental pure-solid properties, namely, the normal melting point and enthalpy of fusion, solubilities were estimated. The results are in good quantitative agreement with available experimental data, suggesting that molecular simulations may be a powerful tool for understanding supercritical processes and the design of carbon dioxide-philic molecular systems. Structural analyses were performed to shed light on the microscopic details of the solvation of different functional groups by carbon dioxide and the observed solubility trends.

  19. Investigation of the Prebiotic Synthesis of Amino Acids and RNA Bases from CO2 Using FeS/H2S As a Reducing Agent

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.; McDonald, Gene; Bada, Jeffrey

    1995-01-01

    An autotrophic theory of the origin of metabolism and life has been proposed in which carbon dioxide is reduced by ferrous sulfide and hydrogen sulfide by means of a reversed citric acid cycle, leading to the production of amino acids. Similar processes have been proposed for purine synthesis. Ferrous sulfide is a strong reducing agent in the presence of hydrogen sulfide and can produce hydrogen as well as reduce alkenes, alkynes, and thiols to saturated hydrocarbons and reduce ketones to thiols. However, the reduction of carbon dioxide has not been demonstrated. We show here that no amino acids, purities, or pyrimidines are produced from carbon dioxide with the ferrous sulfide and hydrogen sulfide system. Furthermore, this system does not produce amino acids from carboxylic acids by reductive amination and carboxylation. Thus, the proposed autotrophic theory, using carbon dioxide, ferrous sulfide, and hydrogen sulfide, lacks the robustness needed to be a geological process and is, therefore, unlikely to have played a role In the origin of metabolism or the origin of life.

  20. Investigation of the Prebiotic Synthesis of Amino Acids and RNA Bases from CO2 using FeS/H2S as a Reducing Agent

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.; McDonald, Gene; Bada, Jeffrey

    1995-01-01

    An autotrophic theory of the origin of metabolism and life has been proposed in which carbon dioxide is reduced by ferrous sulfide and hydrogen sulfide by means of a reversed citric acid cycle, leading to the production of amino acids. Similar processes have been proposed for purine synthesis. Ferrous sulfide is a strong reducing agent in the presence of hydrogen sulfide and can produce hydrogen as well as reduce alkenes, alkynes, and thiols to saturated hydrocarbons and reduce ketones to thiols. However, the reduction of carbon dioxide has not been demonstrated. We show here that no amino acids, purines, or pyrimidines are produced from carbon dioxide with the ferrous sulfide and hydrogen sulfide system. Furthermore, this system does not produce amino acids from carboxylic acids by reductive amination and carboxylation. Thus, the proposed autotrophic theory, using carbon dioxide, ferrous sulfide, and hydrogen sulfide, lacks the robustness needed to be a geological process and is, therefore, unlikely to have played a role in the origin of metabolism or the origin of life.

  1. Carbon Dioxide Collection and Purification System for Mars

    NASA Technical Reports Server (NTRS)

    Clark, D. Larry; Trevathan, Joseph R.

    2001-01-01

    One of the most abundant resources available on Mars is the atmosphere. The primary constituent, carbon dioxide, can be used to produce a wide variety of consumables including propellants and breathing air. The residual gases can be used for additional pressurization tasks including supplementing the oxygen partial pressure in human habitats. A system is presented that supplies pure, high-pressure carbon dioxide and a separate stream of residual gases ready for further processing. This power-efficient method freezes the carbon dioxide directly from the atmosphere using a pulse-tube cryocooler. The resulting CO2 mass is later thawed in a closed pressure vessel, resulting in a compact source of liquefied gas at the vapor pressure of the bulk fluid. Results from a demonstration system are presented along with analysis and system scaling factors for implementation at larger scales. Trace gases in the Martian atmosphere challenge the system designer for all carbon dioxide acquisitions concepts. The approximately five percent of other gases build up as local concentrations of CO2 are removed, resulting in diminished performance of the collection process. The presented system takes advantage of this fact and draws the concentrated residual gases away as a useful byproduct. The presented system represents an excelient volume and mass solution for collecting and compressing this valuable Martian resource. Recent advances in pulse-tube cryocooler technology have enabled this concept to be realized in a reliable, low power implementation.

  2. Carbon dioxide utilization in a microalga-based biorefinery: Efficiency of carbon removal and economic performance under carbon taxation.

    PubMed

    Wiesberg, Igor Lapenda; Brigagão, George Victor; de Medeiros, José Luiz; de Queiroz Fernandes Araújo, Ofélia

    2017-12-01

    Coal-fired power plants are major stationary sources of carbon dioxide and environmental constraints demand technologies for abatement. Although Carbon Capture and Storage is the most mature route, it poses severe economic penalty to power generation. Alternatively, this penalty is potentially reduced by Carbon Capture and Utilization, which converts carbon dioxide to valuable products, monetizing it. This work evaluates a route consisting of carbon dioxide bio-capture by Chlorella pyrenoidosa and use of the resulting biomass as feedstock to a microalgae-based biorefinery; Carbon Capture and Storage route is evaluated as a reference technology. The integrated arrangement comprises: (a) carbon dioxide biocapture in a photobioreactor, (b) oil extraction from part of the produced biomass, (b) gasification of remaining biomass to obtain bio-syngas, and (c) conversion of bio-syngas to methanol. Calculation of capital and operational expenditures are estimated based on mass and energy balances obtained by process simulation for both routes (Carbon Capture and Storage and the biorefinery). Capital expenditure for the biorefinery is higher by a factor of 6.7, while operational expenditure is lower by a factor of 0.45 and revenues occur only for this route, with a ratio revenue/operational expenditure of 1.6. The photobioreactor is responsible for one fifth of the biorefinery capital expenditure, with footprint of about 1000 ha, posing the most significant barrier for technical and economic feasibility of the proposed biorefinery. The Biorefinery and Carbon Capture and Storage routes show carbon dioxide capture efficiency of 73% and 48%, respectively, with capture cost of 139$/t and 304$/t. Additionally, the biorefinery has superior performance in all evaluated metrics of environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Carbon dioxide in the atmosphere. [and other research projects

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.

    1974-01-01

    Research projects for the period ending September 15, 1973 are reported as follows: (1) the abundances of carbon dioxide in the atmosphere, and the processes by which it is released from carbonate deposits in the earth and then transferred to organic material by photosynthesis; the pathways for movement of carbon and oxygen through the atmosphere; (2) space science computation assistance by PDP computer; the performance characteristics and user instances; (3) OGO-6 data analysis studies of the variations of nighttime ion temperature in the upper atmosphere.

  4. Preparation of olanzapine and methyl-β-cyclodextrin complexes using a single-step, organic solvent-free supercritical fluid process: An approach to enhance the solubility and dissolution properties.

    PubMed

    Rudrangi, Shashi Ravi Suman; Trivedi, Vivek; Mitchell, John C; Wicks, Stephen Richard; Alexander, Bruce David

    2015-10-15

    The purpose of this study was to evaluate a single-step, organic solvent-free supercritical fluid process for the preparation of olanzapine-methyl-β-cyclodextrin complexes with an express goal to enhance the dissolution properties of olanzapine. The complexes were prepared by supercritical carbon dioxide processing, co-evaporation, freeze drying and physical mixing. The prepared complexes were then analysed by differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, solubility and dissolution studies. Computational molecular docking studies were performed to study the formation of molecular inclusion complexation of olanzapine with methyl-β-cyclodextrin. All the binary mixtures of olanzapine with methyl-β-cyclodextrin, except physical mixture, exhibited a faster and greater extent of drug dissolution than the drug alone. Products obtained by the supercritical carbon dioxide processing method exhibited the highest apparent drug dissolution. The characterisation by different analytical techniques suggests complete complexation or amorphisation of olanzapine and methyl-β-cyclodextrin complexes prepared by supercritical carbon dioxide processing method. Therefore, organic solvent-free supercritical carbon dioxide processing method proved to be novel and efficient for the preparation of solid inclusion complexes of olanzapine with methyl-β-cyclodextrin. The preliminary data also suggests that the complexes of olanzapine with methyl-β-cyclodextrin will lead to better therapeutic efficacy due to better solubility and dissolution properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell

    NASA Technical Reports Server (NTRS)

    Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville

    2009-01-01

    A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon dioxide-saturated water or bicarbonate solution. The anode side of the cell is supplied with sodium hydroxide solution. The solutions are circulated past the electrodes in the electrochemical cell using pumps. A regulated power supply provides the electrical energy required for the reactions. Photovoltaic cells can be used to better mimic the photosynthetic reaction. The current flowing through the electrochemical cell, and the cell voltage, are monitored during experimentation. The products of the electrochemical reduction of carbon dioxide are allowed to accumulate in the cathode reservoir. Samples of the cathode solution are withdrawn for product analysis. Oxygen is generated on the anode side and is allowed to vent out of the reservoir.

  6. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  7. Electrochemical Cell for Obtaining Oxygen from Carbon Dioxide Atmospheres

    NASA Technical Reports Server (NTRS)

    Hooker, Matthew; Rast, H. Edward; Rogers, Darren K.; Borja, Luis; Clark, Kevin; Fleming, Kimberly; Mcgurren, Michael; Oldaker, Tom; Sweet, Nanette

    1989-01-01

    To support human life on the Martian surface, an electrochemical device will be required to obtain oxygen from the carbon dioxide rich atmosphere. The electrolyte employed in such a device must be constructed from extremely thin, dense membranes to efficiently acquire the oxygen necessary to support life. A forming process used industrially in the production of multilayer capacitors and electronic substrates was adapted to form the thin membranes required. The process, known as the tape casting, involves the suspension consisting of solvents and binders. The suspension is passed under a blade, resulting in the production of ceramic membranes between 0.1 and 0.5 mm thick. Once fired, the stabilized zirconia membranes were assembled into the cell design by employing a zirconium phosphate solution as the sealing agent. The resulting ceramic-to-ceramic seals were found to be structurally sound and gas-tight. Furthermore, by using a zirconia-based solution to assemble the cell, the problem of a thermal expansion mismatch was alleviated. By adopting an industrial forming process to produce thin membranes, an electrochemical cell for obtaining oxygen from carbon dioxide was produced. The proposed cell design is unique in that it does not require a complicated manifold system for separating the various gases present in this process, nor does it require a series of complex electrical connections. Thus, the device can reliably obtain the vital oxygen supply from the toxic carbon dioxide atmosphere.

  8. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blencoe, James G.; Palmer, Donald A.; Anovitz, Lawrence M.

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to producemore » a carbonate of the metal formerly contained in the metal silicate of step (a).« less

  9. CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Hu

    A new process called phase enhanced gas-liquid absorption has been developed in its early stage. It was found that adding another phase into the absorption system of gas/aqueous phase could enhance the absorption rate. A system with three phases was studied. In the system, gas phase was carbon dioxide. Two liquid phases were used. One was organic phase. Another was aqueous phase. By addition of organic phase into the absorption system of CO{sub 2}-aqueous phase, the absorption rate of CO{sub 2} was increased significantly. CO{sub 2} finally accumulated into aqueous phase. The experimental results proved that (1) Absorption rate ofmore » carbon dioxide was enhanced by adding organic phase into gas aqueous phase system; (2) Organic phase played the role of transportation of gas solute (CO{sub 2}). Carbon dioxide finally accumulated into aqueous phase.« less

  10. Accelerating electrostatic pair methods on graphical processing units to study molecules in supercritical carbon dioxide.

    PubMed

    Baker, John A; Hirst, Jonathan D

    2014-01-01

    Traditionally, electrostatic interactions are modelled using Ewald techniques, which provide a good approximation, but are poorly suited to GPU architectures. We use the GPU versions of the LAMMPS MD package to implement and assess the Wolf summation method. We compute transport and structural properties of pure carbon dioxide and mixtures of carbon dioxide with either methane or difluoromethane. The diffusion of pure carbon dioxide is indistinguishable when using the Wolf summation method instead of PPPM on GPUs. The optimum value of the potential damping parameter, α, is 0.075. We observe a decrease in accuracy when the system polarity increases, yet the method is robust for mildly polar systems. We anticipate the method can be used for a number of techniques, and applied to a variety of systems. Substitution of PPPM can yield a two-fold decrease in the wall-clock time.

  11. Estimation of CO2-Equivalent Emission under the Copper Fire Refining Process

    NASA Astrophysics Data System (ADS)

    Chesnokov, Yu N.; Lisienko, V. G.; Holod, S. I.; Anufriev, V. P.; Lapteva, A. V.

    2017-06-01

    Non-ferrous metallurgy is one of the most energy-consuming and carbon-emissive sectors of industry. This is due to the fact that the volume of greenhouse gas (GHG) emissions is stipulated by energy consumption. Uralelectromed is a city-forming enterprise of the Verkhnyaya Pyshma. The situation is similar other cities of the old industrial regions of the Russian Federation (Krasnouralsk, Verkhnaya Salda, Karabash, etc.) Verkhnyaya Pyshma has many characteristics of “a clever city”. It can be compared to Hamburg where blister copper is being produced at the center of the city at a copper smelting plant Aurubis. Following the example of such ecologically clean country as Germany and in order to assess how modern energy-efficient low-carbon technologies can provide a favorable habitat, and an acceptable level of carbon footprint, the authors estimated the level of greenhouse gas, i.e., carbon dioxide emission produced by the Uralelectromed. The emission of greenhouse gas -carbon dioxide in the process of fire refining of blister copper has been calculated. The anode melting process consists of several stages where the most important ones are melting of charge, oxidation, and copper melt reduction. Calculations are based on taking into account the mass of burnt carbon of natural gas and the thermal dissociation of fuel oil. It implies that a complete combustion of carbon takes place. The specific value of carbon dioxide emission of the copper refining process is averaged 181 kg CO2 per 1 ton of anode copper.

  12. Mathematical model of the methane replacement by carbon dioxide in the gas hydrate reservoir taking into account the diffusion kinetics

    NASA Astrophysics Data System (ADS)

    Musakaev, N. G.; Khasanov, M. K.; Rafikova, G. R.

    2018-03-01

    The problem of the replacement of methane in its hydrate by carbon dioxide in a porous medium is considered. The gas-exchange kinetics scheme is proposed in which the intensity of the process is limited by the diffusion of CO2 through the hydrate layer formed between the gas mixture flow and the CH4 hydrate. Dynamics of the main parameters of the process is numerically investigated. The main characteristic stages of the process are determined.

  13. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1967-01-01

    The oxygen production of a photosynthetic gas exchanger containing Chlorella pyrenoidosa (1% packed cell volume) was measured when various concentrations of carbon dioxide were present within the culture unit. The internal carbon dioxide concentrations were obtained by manipulating the entrance gas concentration and the flow rate. Carbon dioxide percentages were monitored by means of electrodes placed directly in the nutrient medium. The concentration of carbon dioxide in the nutrient medium which produced maximal photosynthesis was in the range of 1.5 to 2.5% by volume. Results were unaffected by either the level of carbon dioxide in the entrance gas or the rate of gas flow. Entrance gases containing 2% carbon dioxide flowing at 320 ml/min, 3% carbon dioxide at 135 ml/min, and 4% carbon dioxide at 55 ml/min yielded optimal carbon dioxide concentrations in the particular unit studied. By using carbon dioxide electrodes implanted directly in the gas exchanger to optimize the carbon dioxide concentration throughout the culture medium, it should be possible to design more efficient large-scale units. PMID:4382391

  14. Synthesis of Ethylene and Other Useful Products by Reduction of Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Rosenberg, Sanders D.; Makel, Darby B.; Finn, John E.

    1998-01-01

    The synthesis of ethylene and other useful products by reduction of carbon dioxide is discussed. The synthesis of ethylene from carbon dioxide has been undertaken. A few different chemical reactions are presented for the production of ethylene. This ethylene can then form the basis for the manufacture of a variety of useful products. It can be used in the preparation of a variety of plastics that can be used for the fabrication of structural materials, and can be used in creating life support systems, which can lead to the development of closed life support systems based on the use of inorganic processes and chemical engineering principles.

  15. Understanding trends in electrochemical carbon dioxide reduction rates

    DOE PAGES

    Liu, Xinyan; Xiao, Jianping; Peng, Hongjie; ...

    2017-05-22

    Electrochemical carbon dioxide reduction to fuels presents one of the great challenges in chemistry. Herein we present an understanding of trends in electrocatalytic activity for carbon dioxide reduction over different metal catalysts that rationalize a number of experimental observations including the selectivity with respect to the competing hydrogen evolution reaction. We also identify two design criteria for more active catalysts. The understanding is based on density functional theory calculations of activation energies for electrochemical carbon monoxide reduction as a basis for an electrochemical kinetic model of the process. Furthermore, we develop scaling relations relating transition state energies to the carbonmore » monoxide adsorption energy and determine the optimal value of this descriptor to be very close to that of copper.« less

  16. Understanding trends in electrochemical carbon dioxide reduction rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xinyan; Xiao, Jianping; Peng, Hongjie

    Electrochemical carbon dioxide reduction to fuels presents one of the great challenges in chemistry. Herein we present an understanding of trends in electrocatalytic activity for carbon dioxide reduction over different metal catalysts that rationalize a number of experimental observations including the selectivity with respect to the competing hydrogen evolution reaction. We also identify two design criteria for more active catalysts. The understanding is based on density functional theory calculations of activation energies for electrochemical carbon monoxide reduction as a basis for an electrochemical kinetic model of the process. Furthermore, we develop scaling relations relating transition state energies to the carbonmore » monoxide adsorption energy and determine the optimal value of this descriptor to be very close to that of copper.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Mark D.; McPherson, Brian J.; Grigg, Reid B.

    Numerical simulation is an invaluable analytical tool for scientists and engineers in making predictions about of the fate of carbon dioxide injected into deep geologic formations for long-term storage. Current numerical simulators for assessing storage in deep saline formations have capabilities for modeling strongly coupled processes involving multifluid flow, heat transfer, chemistry, and rock mechanics in geologic media. Except for moderate pressure conditions, numerical simulators for deep saline formations only require the tracking of two immiscible phases and a limited number of phase components, beyond those comprising the geochemical reactive system. The requirements for numerically simulating the utilization and storagemore » of carbon dioxide in partially depleted petroleum reservoirs are more numerous than those for deep saline formations. The minimum number of immiscible phases increases to three, the number of phase components may easily increase fourfold, and the coupled processes of heat transfer, geochemistry, and geomechanics remain. Public and scientific confidence in the ability of numerical simulators used for carbon dioxide sequestration in deep saline formations has advanced via a natural progression of the simulators being proven against benchmark problems, code comparisons, laboratory-scale experiments, pilot-scale injections, and commercial-scale injections. This paper describes a new numerical simulator for the scientific investigation of carbon dioxide utilization and storage in partially depleted petroleum reservoirs, with an emphasis on its unique features for scientific investigations; and documents the numerical simulation of the utilization of carbon dioxide for enhanced oil recovery in the western section of the Farnsworth Unit and represents an early stage in the progression of numerical simulators for carbon utilization and storage in depleted oil reservoirs.« less

  18. Volcanic Forcing of Global Warming during the Pleistocene?

    NASA Astrophysics Data System (ADS)

    Ericson, J. E.

    2002-12-01

    The volcanic forcing hypothesis is a new model of global climatic change that may have significance for the history of the Earth and palaeoclimate. The rapid injection of CO2 into the atmosphere during volcanic eruption through underlying massive carbonate appears to trigger global warming through the emission of this greenhouse gas. The record of eruptions (10-20 Kya) of 6 volcanoes overlying 900-10,000 meters of carbonate of the Cordillerian geosyncline in the American Southwest is synchronous with the Late Pleistocene marine transgression record. The record of volcanic eruptions through massive carbonates (20-71 Kya) in Italy, Indonesia and the American Southwest appears to be synchronous with the Wisconsin interstadial events. The extension of the volcanic eruption and climatic records to 71 Kya and inclusion of other volcanic regions represents additional supporting of evidence of the volcanic forcing hypothesis. As an example of these processes, the thermal dissociation of carbonate by magma forming a volcanic conduit (0.4 km high, 0.5 km radius) and subsequent release of carbon dioxide would increase the atmospheric carbon dioxide by 25%. The emitted CO2 would trigger a series of other processes, ocean-atmospheric CO2 exchange, increased photosynthesis and changes with terrestrial biome and global warming. [Recent field reconnaissance of Sunset Crater (erupted 1064-65 AD) indicates the evidence for thermal dissolution of limestone during basaltic extrusion.] Carbon dioxide emitted from volcanic-carbonate sources meets several observed conditions: a rapid increase (<20 years) in atmospheric carbon dioxide, abrupt increases of marine (isotopic) carbon, dilution of atmospheric radiocarbon activity independent of fluctuations of the geomagnetic field and cosmic ray fluxes, temporal covariation of sulfate, Ca+2, and CO2 in ice core records and random, interstadial events during glaciation. Volcanic forcing hypothesis represents a new model and synthesis of natural processes involving recycling of marine carbonate through volcanic eruption leading to global warming.

  19. Thermochemical cyclic system for decomposing H/sub 2/O and/or CO/sub 2/ by means of cerium-titanium-sodium-oxygen compounds

    DOEpatents

    Bamberger, C.E.

    1980-04-24

    A thermochemical closed cyclic process for the decomposition of water and/or carbon dioxide to hydrogen and/or carbon monoxide begins with the reaction of ceric oxide (CeO/sub 2/), titanium dioxide (TiO/sub 2/) and sodium titanate (Na/sub 2/TiO/sub 3/) to form sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) and oxygen. Sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) reacted with sodium carbonate (Na/sub 2/CO/sub 3/) in the presence of steam, produces hydrogen. The same reaction, in the absence of steam, produces carbon monoxide. The products, ceric oxide and sodium titanate, obtained in either case, are treated with carbon dioxide and water to produce ceric oxide, titanium dioxide, sodium titanate, and sodium bicarbonate. After dissolving sodium bicarbonate from the mixture in water, the remaining insoluble compounds are used as starting materials for a subsequent cycle. The sodium bicarbonate can be converted to sodium carbonate by heating and returned to the cycle.

  20. Thermochemical cyclic system for decomposing H.sub.2 O and/or CO.sub.2 by means of cerium-titanium-sodium-oxygen compounds

    DOEpatents

    Bamberger, Carlos E.

    1982-01-01

    A thermochemical closed cyclic process for the decomposition of water and/or carbon dioxide to hydrogen and/or carbon monoxide begins with the reaction of ceric oxide (CeO.sub.2), titanium dioxide (TiO.sub.2) and sodium titanate (Na.sub.2 TiO.sub.3) to form sodium cerous titanate (NaCeTi.sub.2 O.sub.6) and oxygen. Sodium cerous titanate (NaCeTi.sub.2 O.sub.6) reacted with sodium carbonate (Na.sub.2 CO.sub.3) in the presence of steam, produces hydrogen. The same reaction, in the absence of steam, produces carbon monoxide. The products, ceric oxide and sodium titanate, obtained in either case, are treated with carbon dioxide and water to produce ceric oxide, titanium dioxide, sodium titanate, and sodium bicarbonate. After dissolving sodium bicarbonate from the mixture in water, the remaining insoluble compounds are used as starting materials for a subsequent cycle. The sodium bicarbonate can be converted to sodium carbonate by heating and returned to the cycle.

  1. Greening the Mixture: An Evaluation of the Department of Defense’s Alternative Aviation Fuel Strategy

    DTIC Science & Technology

    2012-06-08

    process begins with gasification of feedstocks such as coal, natural gas, or biomass towards the production of alternative fuels. With adequate carbon...Barrels per day CBTL Coal and Biomass to Liquid CCS Carbon Dioxide Capture and Sequestration CTL Coal to Liquid DARPA Defense Advanced Research...sequestration. Captured carbon dioxide from coal-to-liquid (CTL) or coal and biomass -to-liquid (CBTL) production could be readily injected into the

  2. Carbon Dioxide Embolism during Laparoscopic Surgery

    PubMed Central

    Park, Eun Young; Kwon, Ja-Young

    2012-01-01

    Clinically significant carbon dioxide embolism is a rare but potentially fatal complication of anesthesia administered during laparoscopic surgery. Its most common cause is inadvertent injection of carbon dioxide into a large vein, artery or solid organ. This error usually occurs during or shortly after insufflation of carbon dioxide into the body cavity, but may result from direct intravascular insufflation of carbon dioxide during surgery. Clinical presentation of carbon dioxide embolism ranges from asymptomatic to neurologic injury, cardiovascular collapse or even death, which is dependent on the rate and volume of carbon dioxide entrapment and the patient's condition. We reviewed extensive literature regarding carbon dioxide embolism in detail and set out to describe the complication from background to treatment. We hope that the present work will improve our understanding of carbon dioxide embolism during laparoscopic surgery. PMID:22476987

  3. Regeneration of sulfated metal oxides and carbonates

    DOEpatents

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  4. A two-step process of nitrous oxide before carbon dioxide for humanely euthanizing piglets: on-farm trials

    USDA-ARS?s Scientific Manuscript database

    The current methods of euthanizing neonatal piglets are raising concerns from the public and scientists. Our experiment tests the use of a two-step euthanasia method using nitrous oxide (N2O) for six minutes and then carbon dioxide (CO2) as a more humane way to euthanize piglets compared to just usi...

  5. A Molecular Explanation of How the Fog Is Produced When Dry Ice Is Placed in Water

    ERIC Educational Resources Information Center

    Kuntzleman, Thomas S.; Ford, Nathan; No, Jin-Hwan; Ott, Mark E.

    2015-01-01

    Everyone enjoys seeing the cloudy white fog generated when solid carbon dioxide (dry ice) is placed in water. Have you ever wondered what physical and chemical processes occur to produce this fog? When asked this question, many chemical educators suggest that the fog is produced when atmospheric water vapor condenses on cold carbon dioxide gas…

  6. Acid sorption regeneration process using carbon dioxide

    DOEpatents

    King, C. Judson; Husson, Scott M.

    2001-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

  7. Efficacy of supercritical carbon dioxide for nonthermal inactivation of Escherichia coli K12 in apple cider

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the efficacy of a supercritical carbon dioxide (SCCO2) system with a gas-liquid porous metal contactor for eliminating Escherichia coli K12 in apple cider. Pasteurized, preservative-free apple cider was inoculated with E. coli K12 and processed using the SCCO2 system at CO2 conc...

  8. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton

    USDA-ARS?s Scientific Manuscript database

    Nutrients such as phosphorus availability may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of 21st century. Elevated CO2 may overcome the diffusional limitation to photosynthesis posed by stomata and mesop...

  9. Optimizing oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide.

    PubMed

    Salea, Rinaldi; Widjojokusumo, Edward; Veriansyah, Bambang; Tjandrawinata, Raymond R

    2014-09-01

    Oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide was optimized using Taguchi method. The factors considered were pressure, temperature, carbon dioxide flowrate and time at levels ranging between 10-25 MPa, 35-60 °C, 10-25 g/min and 60-240 min respectively. The highest oil yield (8.0 %) was achieved at factor combination of 15 MPa, 50 °C, 20 g/min and 180 min whereas the highest xanthorrhizol content (128.3 mg/g oil) in Curcuma xanthorrhiza oil was achieved at a factor combination of 25 MPa, 50 °C, 15 g/min and 60 min. Soxhlet extraction with n-hexane and percolation with ethanol gave oil yield of 5.88 %, 11.73 % and xanthorrhizol content of 42.6 mg/g oil, 75.5 mg/g oil, respectively. The experimental oil yield and xanthorrhizol content at optimum conditions agreed favourably with values predicted by computational process. The xanthorrizol content extracted using supercritical carbon dioxide was higher than extracted using Soxhlet extraction and percolation process.

  10. Utilization of heat from High Temperature Reactors (HTR) for dry reforming of methane

    NASA Astrophysics Data System (ADS)

    Jastrząb, Krzysztof

    2018-01-01

    One of the methods for utilization of waste carbon dioxide consists in reaction of methane with carbon dioxide, referred to as dry reforming of methane. It is an intensely endothermic catalytic process that takes place at the temperature above 700°C. Reaction of methane with carbon dioxide leads to formation of synthesis gas (syngas) that is a valuable chemical raw material. The energy that is necessary for the process to take place can be sourced from High Temperature Nuclear Reactors (HTR). The completed studies comprises a series of thermodynamic calculations and made it possible to establish optimum conditions for the process and demand for energy from HTR units. The dry reforming of methane needs also a catalytic agent with appropriate activity, therefore the hydrotalcite catalyser with admixture of cerium and nickel, developed at AGH University of Technology seems to be a promising solution. Thus, the researchers from the Institute for Chemical Processing of Coal (IChPW) in Zabrze have developed a methodology for production of the powdery hydrotalcite catalyser and investigated catalytic properties of the granulate obtained. The completed experiments confirmed that the new catalyser demonstrated high activity and is suitable for the process of methane dry reforming. In addition, optimum parameters of the were process (800°C, CO2:CH4 = 3:1) were established as well. Implementation of the technology in question into industrial practice, combined with utilization of HTR heat can be a promising method for management of waste carbon dioxide and may eventually lead to mitigation of the greenhouse effect.

  11. System and process for producing fuel with a methane thermochemical cycle

    DOEpatents

    Diver, Richard B.

    2015-12-15

    A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.

  12. Carbon dioxide conversion over carbon-based nanocatalysts.

    PubMed

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.

  13. Carbon dioxide of Pu`u`O`o volcanic plume at Kilauea retrieved by AVIRIS hyperspectral data

    USGS Publications Warehouse

    Spinetti, C.; Carrere, V.; Buongiorno, M. Fabrizia; Sutton, A.J.; Elias, T.

    2008-01-01

    A remote sensing approach permits for the first time the derivation of a map of the carbon dioxide concentration in a volcanic plume. The airborne imaging remote sensing overcomes the typical difficulties associated with the ground measurements and permits rapid and large views of the volcanic processes together with the measurements of volatile components exolving from craters. Hyperspectral images in the infrared range (1900-2100??nm), where carbon dioxide absorption lines are present, have been used. These images were acquired during an airborne campaign by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over the Pu`u` O`o Vent situated at the Kilauea East Rift zone, Hawaii. Using a radiative transfer model to simulate the measured up-welling spectral radiance and by applying the newly developed mapping technique, the carbon dioxide concentration map of the Pu`u` O`o Vent plume were obtained. The carbon dioxide integrated flux rate were calculated and a mean value of 396 ?? 138??t d- 1 was obtained. This result is in agreement, within the measurements errors, with those of the ground measurements taken during the airborne campaign. ?? 2008 Elsevier Inc.

  14. Significant solubility of carbon dioxide in Soluplus® facilitates impregnation of ibuprofen using supercritical fluid technology.

    PubMed

    Obaidat, Rana; Alnaief, Mohammed; Jaeger, Philip

    2017-04-13

    Treatment of Soluplus ® with supercritical carbon dioxide allows promising applications in preparing dispersions of amorphous solids. Several characterization techniques were employed to reveal this effect, including CO 2 gas sorption under high pressure and physicochemical characterizations techniques. A gravimetric method was used to determine the solubility of carbon dioxide in the polymer at elevated pressure. The following physicochemical characterizations were used: thermal analysis, X-ray diffraction, Fourier transform, infrared spectroscopy and scanning electron microscopy. Drug loading of the polymer with ibuprofen as a model drug was also investigated. The proposed treatment with supercritical carbon dioxide allows to prepare solid solutions of Soluplus ® in less than two hours at temperatures that do not exceed 45 °C, which is a great advantage to be used for thermolabile drugs. The advantages of using this technology for Soluplus ® formulations lies behind the high sorption capability of carbon dioxide inside the polymer. This will ensure rapid diffusion of the dissolved/dispersed drug inside the polymer under process conditions and rapid precipitation of the drug in the amorphous form during depressurization accompanied by foaming of the polymer.

  15. Game Changing Development Program - Next Generation Life Support Project: Oxygen Recovery From Carbon Dioxide Using Ion Exchange Membrane Electrolysis Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jiao, Feng

    2016-01-01

    This report summarizes the Phase I research and development work performed during the March 13, 2015 to July 13, 2016 period. The proposal for this work was submitted in response to NASA Research Announcement NNH14ZOA001N, "Space Technology Research, Development, Demonstration, and Infusion 2014 (SpaceTech-REDDI-2014)," Appendix 14GCD-C2 "Game Changing Development Program, Advanced Oxygen Recovery for Spacecraft Life Support Systems Appendix" The Task Agreement for this Phase I work is Document Control Number: GCDP-02-TA-15015. The objective of the Phase I project was to demonstrate in laboratories two Engineering Development Units (EDU) that perform critical functions of the low temperature carbon dioxide electrolysis and the catalytic conversion of carbon monoxide into carbon and carbon dioxide. The low temperature carbon dioxide electrolysis EDU was built by the University of Delaware with Dr. Feng Jiao as the principal investigator in charge of this EDU development (under NASA Contract NNC15CA04C). The carbon monoxide catalytic conversion EDU was built by the NASA Glenn Research Center with Kenneth Burke as the principal investigator and overall project leader for the development of both EDUs. Both EDUs were successfully developed and demonstrated the critical functions for each process. The carbon dioxide electrolysis EDU was delivered to the NASA Johnson Space Center and the carbon monoxide catalytic conversion EDU was delivered to the NASA Marshall Spaceflight Center.

  16. Monitoring and assessment of ocean acidification in the Arctic Ocean-A scoping paper

    USGS Publications Warehouse

    Robbins, Lisa L.; Yates, Kimberly K.; Feely, Richard; Fabry, Victoria

    2010-01-01

    Carbon dioxide (CO2) in the atmosphere is absorbed at the ocean surface by reacting with seawater to form a weak, naturally occurring acid called carbonic acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution. Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats. The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.

  17. Research Progress in Carbon Dioxide Storage and Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Wang, Gang; Lu, Chunjing

    2018-02-01

    With the rapid development of global economy, human beings have become highly dependent upon fossil fuel such as coal and petroleum. Much fossil fuel is consumed in industrial production and human life. As a result, carbon dioxide emissions have been increasing, and the greenhouse effects thereby generated are posing serious threats to environment of the earth. These years, increasing average global temperature, frequent extreme weather events and climatic changes cause material disasters to the world. After scientists’ long-term research, ample evidences have proven that emissions of greenhouse gas like carbon dioxide have brought about tremendous changes to global climate. To really reduce carbon dioxide emissions, governments of different countries and international organizations have invested much money and human resources in performing research related to carbon dioxide emissions. Manual underground carbon dioxide storage and carbon dioxide-enhanced oil recovery are schemes with great potential and prospect for reducing carbon dioxide emissions. Compared with other schemes for reducing carbon dioxide emissions, aforementioned two schemes exhibit high storage capacity and yield considerable economic benefits, so they have become research focuses for reducing carbon dioxide emissions. This paper introduces the research progress in underground carbon dioxide storage and enhanced oil recovery, pointing out the significance and necessity of carbon dioxide-driven enhanced oil recovery.

  18. Fischer-Tropsch synthesis in supercritical phase carbon dioxide: Recycle rates

    NASA Astrophysics Data System (ADS)

    Soti, Madhav

    With increasing oil prices and attention towards the reduction of anthropogenic CO2, the use of supercritical carbon dioxide for Fischer Tropsch Synthesis (FTS) is showing promise in fulfilling the demand of clean liquid fuels. The evidence of consumption of carbon dioxide means that it need not to be removed from the syngas feed to the Fischer Tropsch reactor after the gasification process. Over the last five years, research at SIUC have shown that FTS in supercritical CO2reduces the selectivities for methane, enhances conversion, reduces the net CO2produces in the coal to liquid fuels process and increase the life of the catalyst. The research has already evaluated the impact of various operating and feed conditions on the FTS for the once through process. We believe that the integration of unreacted feed recycle would enhance conversion, increase the yield and throughput of liquid fuels for the same reactor size. The proposed research aims at evaluating the impact of recycle of the unreacted feed gas along with associated product gases on the performance of supercritical CO2FTS. The previously identified conditions will be utilized and various recycle ratios will be evaluated in this research once the recycle pump and associated fittings have been integrated to the supercritical CO2FTS. In this research two different catalysts (Fe-Zn-K, Fe-Co-Zn-K) were analyzed under SC-FTS in different recycle rate at 350oC and 1200 psi. The use of recycle was found to improve conversion from 80% to close to 100% with both catalysts. The experiment recycle rate at 4.32 and 4.91 was clearly surpassing theoretical recycle curve. The steady state reaction rate constant was increased to 0.65 and 0.8 min-1 for recycle rate of 4.32 and 4.91 respectively. Carbon dioxide selectivity was decreased for both catalyst as it was converting to carbon monoxide. Carbon dioxide consumption was increased from 0.014 to 0.034 mole fraction. This concluded that CO2is being used in the system and converting which created the concentration of the feed gas higher inside the reactor. The research has provided the best conditions for the enhanced conversion while minimizing CO2formation. Though this research was not able to provide the optimal recycle rate it have created the path for the future research to proceed in the right direction. This reduction and utilization of CO2will help to reduce the cost of carbon dioxide removal and saves the environment from carbon dioxide emission.

  19. USGS Arctic Ocean carbon cruise 2010: field activity H-03-10-AR to collect carbon data in the Arctic Ocean, August - September 2010

    USGS Publications Warehouse

    Robbins, Lisa L.; Yates, Kimberly K.; Gove, Matthew D.; Knorr, Paul O.; Wynn, Jonathan; Byrne, Robert H.; Liu, Xuewu

    2013-01-01

    Carbon dioxide (CO2) in the atmosphere is absorbed at the surface of the ocean by reacting with seawater to form carbonic acid, a weak, naturally occurring acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution (Sabine and others, 2004). Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Caldeira and Wickett, 2003; Orr and others, 2005; Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats (Raven and others, 2005; Ruttiman, 2006). The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.

  20. USGS Arctic Ocean carbon cruise 2011: field activity H-01-11-AR to collect carbon data in the Arctic Ocean, August - September 2011

    USGS Publications Warehouse

    Robbins, Lisa L.; Yates, Kimberly K.; Knorr, Paul O.; Wynn, Jonathan; Lisle, John; Buczkowski, Brian J.; Moore, Barbara; Mayer, Larry; Armstrong, Andrew; Byrne, Robert H.; Liu, Xuewu

    2013-01-01

    Carbon dioxide (CO2) in the atmosphere is absorbed at the surface of the ocean by reacting with seawater to form a weak, naturally occurring acid called carbonic acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution (Sabine and others, 2004). Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Caldeira and Wickett, 2003; Orr and others, 2005; Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats (Raven and others, 2005; Ruttiman, 2006). The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.

  1. Weaning mechanical ventilation after off-pump coronary artery bypass graft procedures directed by noninvasive gas measurements.

    PubMed

    Chakravarthy, Murali; Narayan, Sandeep; Govindarajan, Raghav; Jawali, Vivek; Rajeev, Subramanyam

    2010-06-01

    Partial pressure of carbon dioxide and oxygen were transcutaneously measured in adults after off-pump coronary artery bypass (OPCAB) surgery. The clinical use of such measurements and interchangeability with arterial blood gas measurements for weaning patients from postoperative mechanical ventilation were assessed. This was a prospective observational study. Tertiary referral heart hospital. Postoperative OPCAB surgical patients. Transcutaneous oxygen and carbon dioxide measurements. In this prospective observational study, 32 consecutive adult patients in a tertiary care medical center underwent OPCAB surgery. Noninvasive measurement of respiratory gases was performed during the postoperative period and compared with arterial blood gases. The investigator was blinded to the reports of arterial blood gas studies and weaned patients using a "weaning protocol" based on transcutaneous gas measurement. The number of patients successfully weaned based on transcutaneous measurements and the number of times the weaning process was held up were noted. A total of 212 samples (pairs of arterial and transcutaneous values of oxygen and carbon dioxide) were obtained from 32 patients. Bland-Altman plots and mountain plots were used to analyze the interchangeability of the data. Twenty-five (79%) of the patients were weaned from the ventilator based on transcutaneous gas measurements alone. Transcutaneous carbon dioxide measurements were found to be interchangeable with arterial carbon dioxide during 96% of measurements, versus 79% for oxygen measurements. More than three fourths of the patients were weaned from mechanical ventilation and extubated based on transcutaneous gas values alone after OPCAB surgery. The noninvasive transcutaneous carbon dioxide measurement can be used as a surrogate for arterial carbon dioxide measurement to manage postoperative OPCAB patients. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Isotopic evidence for variations in the marine calcium cycle over the Cenozoic.

    PubMed

    De La Rocha, C L; DePaolo, D J

    2000-08-18

    Significant variations in the isotopic composition of marine calcium have occurred over the last 80 million years. These variations reflect deviations in the balance between inputs of calcium to the ocean from weathering and outputs due to carbonate sedimentation, processes that are important in controlling the concentration of carbon dioxide in the atmosphere and, hence, global climate. The calcium isotopic ratio of paleo-seawater is an indicator of past changes in atmospheric carbon dioxide when coupled with determinations of paleo-pH.

  3. [Plant responses to elevated atmospheric carbon dioxide and transmission to other trophic levels]. Progress report, May 1991, DOE Grant DE-FG09-84ER60255

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, D.E.

    1991-05-01

    Experiments were performed to determine the effects of carbon dioxide on plants and on the insects feeding on these plants. Current progress is reported for the following experiments: Response of a Specialist-Feeding Insect Herbivore to Carbon Dioxide Induced Changes in Its Hostplant; Growth and Reproduction of Grasshoppers Feeding on a C{sub 4} Grass Under Elevated Carbon Dioxide; Elevated Carbon Dioxide and Temperature Effects on Growth and Defense of Big Sagebrush; Sagebrush and Grasshopper Responses to Atmospheric Carbon Dioxide Concentration; Biomass Allocation Patterns of Defoliated Sagebrush Grown Under Two Levels of Carbon Dioxide; and Sagebrush Carbon Allocation Patterns and Grasshopper Nutrition:more » The Influence of Carbon Dioxide Enrichment and Soil Mineral Limitation.« less

  4. Electrocatalytic process for carbon dioxide conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masel, Richard I.; Salehi-Khojin, Amin

    2017-01-31

    An electrocatalytic process for carbon dioxide conversion includes combining a Catalytically Active Element and Helper Catalyst in the presence of carbon dioxide, allowing a reaction to proceed to produce a reaction product, and applying electrical energy to said reaction to achieve electrochemical conversion of said reactant to said reaction product. The Catalytically Active Element can be a metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. the reaction products comprise at least one of CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, (COO.sup.-).sub.2,more » and CF.sub.3COOH.« less

  5. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon dioxide...

  6. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon dioxide...

  7. 46 CFR 108.627 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next to...

  8. 46 CFR 169.732 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” ...

  9. 46 CFR 35.40-7 - Carbon dioxide alarm-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Carbon dioxide alarm-T/ALL. 35.40-7 Section 35.40-7... Requirements-TB/ALL. § 35.40-7 Carbon dioxide alarm—T/ALL. Adjacent to all carbon dioxide fire extinguishing... AT ONCE. CARBON DIOXIDE BEING RELEASED.” ...

  10. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon dioxide...

  11. 46 CFR 169.732 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” ...

  12. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon dioxide...

  13. 21 CFR 862.1160 - Bicarbonate/carbon dioxide test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bicarbonate/carbon dioxide test system. 862.1160... Systems § 862.1160 Bicarbonate/carbon dioxide test system. (a) Identification. A bicarbonate/carbon dioxide test system is a device intended to measure bicarbonate/carbon dioxide in plasma, serum, and whole...

  14. Carbon dioxide production during cardiopulmonary bypass: pathophysiology, measure and clinical relevance.

    PubMed

    Ranucci, Marco; Carboni, Giovanni; Cotza, Mauro; de Somer, Filip

    2017-01-01

    Carbon dioxide production during cardiopulmonary bypass derives from both the aerobic metabolism and the buffering of lactic acid produced by tissues under anaerobic conditions. Therefore, carbon dioxide removal monitoring is an important measure of the adequacy of perfusion and oxygen delivery. However, routine monitoring of carbon dioxide removal is not widely applied. The present article reviews the main physiological and pathophysiological sources of carbon dioxide, the available techniques to assess carbon dioxide production and removal and the clinically relevant applications of carbon dioxide-related variables as markers of the adequacy of perfusion during cardiopulmonary bypass.

  15. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    PubMed

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.

  16. Biogas reforming over multi walled carbon nanotubes with Co-Mo/MgO nanoparticles

    NASA Astrophysics Data System (ADS)

    Khavarian, Mehrnoush; Mohamed, Abdul Rahman

    2017-12-01

    The utilization of biogas for the production of valuable chemicals is among the very important processes in the energy research field. The most suitable process for biogas reforming is dry reforming of methane. An obvious drawback is the variable composition of biogas rather than the stoichiometrically equimolar quantities of methane and carbon dioxide. Moreover, activating the methane and carbon dioxide molecules in the reforming reaction provides many challenges in exploring new concepts and opportunities for development of unique catalysts. In the present work, the catalytic activity behavior of Co-Mo-MgO/multi-walled carbon nanotubes (MWCNTs) nanocomposite in dry reforming was investigated with different CO2/CH4 feed ratio to evaluate the performance of this catalyst for biogas reforming reaction. It was found that conversions of methane and carbon dioxide were greatly influenced by the feed gas ratio. The CH4 and CO2 conversions are 83 % and 87 % at the reaction temperature of 825 °C, GHSV of 175 L/h.gcat and CO2/CH4 feed ratio of unity. The minimum carbon deposition rate is observed at the CO2/CH4 feed ratio of 0.6 which is 0.080 gc/gcat-h.

  17. Carbonated Science Cleans Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau, Roger; Heldebrant, David; Glezakou, Vand

    Similar to the properties of soda, liquid solvents can efficiently capture and convert carbon dioxide from coal power plants. Researchers at PNNL explain this process and how this method can turn captured carbon into plastic or fuel.

  18. Chemical Demilitarization - Assembled Chemical Weapons Assessment (ACWA): Root Cause Analysis

    DTIC Science & Technology

    2011-07-01

    BGCAPP, supercritical water oxidation (SCWO) will subject the hydrolysate to very high temperatures and pressures, breaking it down into carbon dioxide ...ANS. The resulting hydrolysates from both the chemical and energetic process are then broken down into carbon dioxide , water and salts in the SCWO...Cutter Machine RDT&E Research, Development, Test and Evaluation RSM Rocket Shear Machine SAR Selected Acquisition Report SCWO Supercritical Water

  19. 46 CFR 35.40-8 - Carbon dioxide warning signs-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Carbon dioxide warning signs-T/ALL. 35.40-8 Section 35... Marking Requirements-TB/ALL § 35.40-8 Carbon dioxide warning signs—T/ALL. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into which carbon...

  20. 46 CFR 35.40-8 - Carbon dioxide warning signs-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Carbon dioxide warning signs-T/ALL. 35.40-8 Section 35... Marking Requirements-TB/ALL § 35.40-8 Carbon dioxide warning signs—T/ALL. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into which carbon...

  1. Visual and reversible carbon dioxide sensing enabled by doctor blade coated macroporous photonic crystals.

    PubMed

    Lin, Yi-Han; Suen, Shing-Yi; Yang, Hongta

    2017-11-15

    With significant impacts of carbon dioxide on global climate change, carbon dioxide sensing is of great importance. However, most of the existing sensing technologies are prone to interferences from carbon monoxide, or suffer from the use of sophisticated instruments. This research reports the development of reproducible carbon dioxide sensor using roll-to-roll compatible doctor blade coated three-dimensional macroporous photonic crystals. The pores are functionalized with amine groups to allow the reaction with carbon dioxide in the presence of humidity. The adsorption of carbon dioxide leads to red-shift and amplitude reduction of the optical stop bands, resulting in carbon dioxide detection with visible readout. The dependences of the diffraction wavelength on carbon dioxide partial pressure for various amine-functionalized photonic crystals and different humidities in the environment are systematically investigated. In addition, the reproducibility of carbon dioxide sensing has also been demonstrated in this research. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b) [Reserved] ...

  3. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING...

  4. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If the...

  5. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING...

  6. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with both...

  7. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING...

  8. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with both...

  9. Inactivation of the microbiota and effect on the quality attributes of pineapple juice using a continuous flow ultrasound-assisted supercritical carbon dioxide system.

    PubMed

    Paniagua-Martínez, I; Mulet, A; García-Alvarado, M A; Benedito, J

    2018-01-01

    Supercritical carbon dioxide inactivation technology represents a promising nonthermal processing method, as it causes minimum impact on the nutritional food properties. The aim of this study was to analyze the combined effect of supercritical carbon dioxide and high-power ultrasound on the inactivation of natural microbiota and the quality attributes of pineapple juice treated in a continuous flow system. Different juice residence times (3.06-4.6 min), at 100 bar and 31.5 ℃, were used. The results indicated that the microbiota inactivation was complete and the differences obtained in the quality attributes (2.2% for pH, 4.8% for °Brix, 2% for vitamin C) were minimal. During storage, microorganisms were not able to recover and the vitamin C decrease could be limited to 8.2% after four weeks. The results demonstrated that the supercritical carbon dioxide-high-power ultrasound technique could be an excellent alternative for the cold pasteurization of pineapple juice.

  10. An Impact of Mechanical Stress in Coal Briquettes on Sorption of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Wierzbicki, Mirosław

    2017-09-01

    The presence of gases (methane or carbon dioxide) in hard coal is connected with numerous threats for miners employed in underground mining facilities. When analyzing the coal-methane system, it is necessary to determine the relationship between pressure and gas sorption. Such a relationship should be determined under conditions similar to the natural ones - when it comes to both temperature and pressure. The present paper discusses the results of research conducted with the use of coal briquettes under the state of mechanical stress. Carbon dioxide sorption isotherms were determined for different values of stress affecting the coal material. For five coal samples collected in different mines of the Upper Silesian Coal Basin, Langmuir's sorption isotherms were determined. The results point to significant impact that mechanical stress has upon the sorption process. It is about 1 percent of the value obtained for coal not subjected to stress per 1 MPa. The research results can also prove useful when analyzing hard coal seams from the perspective of their carbon dioxide sequestration abilities.

  11. NASA Carbon Sleuth Begins Year Two

    NASA Image and Video Library

    2015-10-29

    Global average carbon dioxide concentrations as seen by NASA’s Orbiting Carbon Observatory-2 mission, June 1-15, 2015. OCO-2 measures carbon dioxide from the top of Earth's atmosphere to its surface. Higher carbon dioxide concentrations are in red, with lower concentrations in yellows and greens. Scientists poring over data from OCO-2 mission are seeing patterns emerge as they seek answers to questions about atmospheric carbon dioxide. Among the most striking features visible in the first year of OCO-2 data is the increase in carbon dioxide in the northern hemisphere during winter, when trees are not removing carbon dioxide, followed by its decrease in spring, as trees start to grow and remove carbon dioxide from the atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA20039

  12. Electrocatalytic Transformation of Carbon Dioxide into Low Carbon Compounds on Conducting Polymers Derived from Multimetallic Porphyrins.

    PubMed

    Dreyse, Paulina; Honores, Jessica; Quezada, Diego; Isaacs, Mauricio

    2015-11-01

    The electrochemical reduction of carbon dioxide is studied herein by using conducting polymers based on metallotetraruthenated porphyrins (MTRPs). The polymers on glassy carbon electrodes were obtained by electropolymerization processes of the monomeric MTRP. The linear sweep voltammetry technique resulted in polymeric films that showed electrocatalytic activity toward carbon dioxide reduction with an onset potential of -0.70 V. The reduction products obtained were hydrogen, formic acid, formaldehyde, and methanol, with a tendency for a high production of methanol with a maximum value of turnover frequency equal to 15.07 when using a zinc(II) polymeric surface. Studies of the morphology (AFM) and electrochemical impedance spectroscopy results provide an adequate background to explain that the electrochemical reduction is governed by the roughness of the polymer, for which the possible mechanism involves a series of one-electron reduction reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Molecular dynamics study of combustion reactions in supercritical environment. Part 1: Carbon dioxide and water force field parameters refitting and critical isotherms of binary mixtures

    DOE PAGES

    Masunov, Artem E.; Atlanov, Arseniy Alekseyevich; Vasu, Subith S.

    2016-10-04

    Oxy-fuel combustion process is expected to drastically increase the energy efficiency and enable easy carbon sequestration. In this technology the combustion products (carbon dioxide and water) are used to control the temperature and nitrogen is excluded from the combustion chamber, so that nitrogen oxide pollutants do not form. Therefore, in oxycombustion the carbon dioxide and water are present in large concentrations in their transcritical state, and may play an important role in kinetics. The computational chemistry methods may assist in understanding these effects, and Molecular Dynamics with ReaxFF force field seem to be a suitable tool for such a study.more » Here we investigate applicability of the ReaxFF to describe the critical phenomena in carbon dioxide and water and find that several nonbonding parameters need adjustment. We report the new parameter set, capable to reproduce the critical temperatures and pressures. Furthermore, the critical isotherms of CO 2/H 2O binary mixtures are computationally studied here for the first time and their critical parameters are reported.« less

  14. Molecular dynamics study of combustion reactions in supercritical environment. Part 1: Carbon dioxide and water force field parameters refitting and critical isotherms of binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masunov, Artem E.; Atlanov, Arseniy Alekseyevich; Vasu, Subith S.

    Oxy-fuel combustion process is expected to drastically increase the energy efficiency and enable easy carbon sequestration. In this technology the combustion products (carbon dioxide and water) are used to control the temperature and nitrogen is excluded from the combustion chamber, so that nitrogen oxide pollutants do not form. Therefore, in oxycombustion the carbon dioxide and water are present in large concentrations in their transcritical state, and may play an important role in kinetics. The computational chemistry methods may assist in understanding these effects, and Molecular Dynamics with ReaxFF force field seem to be a suitable tool for such a study.more » Here we investigate applicability of the ReaxFF to describe the critical phenomena in carbon dioxide and water and find that several nonbonding parameters need adjustment. We report the new parameter set, capable to reproduce the critical temperatures and pressures. Furthermore, the critical isotherms of CO 2/H 2O binary mixtures are computationally studied here for the first time and their critical parameters are reported.« less

  15. Method of removing carbon monoxide from gases

    DOEpatents

    Gerstein, Bernard C.; Macaulay, David B.

    1976-06-01

    A process and catalyst are disclosed for purifying an atmosphere containing carbon monoxide by passing the atmosphere through a bed of a catalyst of TbO.sub.x, where x = 1.8 to 1.5, which oxidizes the carbon monoxide to carbon dioxide.

  16. Rare isotope studies involving catalytic oxidation of CO over platinum-tin oxide

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T.; Wood, George M., Jr.; Hess, Robert V.; Hoyt, Ronald F.

    1987-01-01

    Results of studies utilizing normal and rare oxygen isotopes in the catalytic oxidation of carbon monoxide over a platinum-tin oxide catalyst substrate are presented. Chemisorption of labeled carbon monoxide on the catalyst followed by thermal desorption yielded a carbon dioxide product with an oxygen-18 composition consistent with the formation of a carbonate-like intermediate in the chemisorption process. The efficacy of a method developed for the oxygen-18 labeling of the platinum-tin oxide catalyst surface for use in closed cycle pulsed care isotope carbon dioxide lasers is demonstrated for the equivalent of 10 to the 6th power pulses at 10 pulses per second.

  17. Cleaning By Blasting With Pellets Of Dry Ice

    NASA Technical Reports Server (NTRS)

    Fody, Jody

    1993-01-01

    Dry process strips protective surface coats from parts to be cleaned, without manual scrubbing. Does not involve use of flammable or toxic solvents. Used to remove coats from variety of materials, including plastics, ceramics, ferrous and nonferrous metals, and composites. Adds no chemical-pollution problem to problem of disposal of residue of coating material. Process consists of blasting solid carbon dioxide (dry ice) pellets at surface to be cleaned. Pellets sublime on impact and pass into atmosphere as carbon dioxide gas. Size, harness, velocity, and quantity of pellets adjusted to suit coating material and substrate.

  18. A study of alternative methods for reclaiming oxygen from carbon dioxide and water by a solid-electrolyte process for spacecraft applications

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Two alternative technical approaches were studied for application of an electrochemical process using a solid oxide electrolyte (zirconia stabilized by yttria or scandia) to oxygen reclamation from carbon dioxide and water, for spacecraft life support systems. Among the topics considered are the advisability of proceeding to engineering prototype development and fabrication of a full scale model for the system concept, the optimum choice of method or approach to be carried into prototype development, and the technical problem areas which exist.

  19. PROCESS OF MAKING SHAPED FUEL FOR NUCLEAR REACTORS

    DOEpatents

    O'Leary, W.J.; Fisher, E.A.

    1964-02-11

    A process for making uranium dioxide fuel of great strength, density, and thermal conductivity by mixing it with 0.1 to 1% of a densifier oxide (tin, aluminum, zirconium, ferric, zinc, chromium, molybdenum, titanium, or niobium oxide) and with a plasticizer (0.5 to 3% of bentonite and 0.05 to 2% of methylcellulose, propylene glycol alginate, or ammonium alginate), compacting the mixture obtained, and sintering the bodies in an atmosphere of carbon monoxide or carbon dioxide, with or without hydrogen, or of a nitrogen-hydrogen mixture is described. (AEC)

  20. Development of system design information for carbon dioxide using an amine type sorber

    NASA Technical Reports Server (NTRS)

    Rankin, R. L.; Roehlich, F.; Vancheri, F.

    1971-01-01

    Development work on system design information for amine type carbon dioxide sorber is reported. Amberlite IR-45, an aminated styrene divinyl benzene matrix, was investigated to determine the influence of design parameters of sorber particle size, process flow rate, CO2 partial pressure, total pressure, and bed designs. CO2 capacity and energy requirements for a 4-man size system were related mathematically to important operational parameters. Some fundamental studies in CO2 sorber capacity, energy requirements, and process operation were also performed.

  1. An adsorption of carbon dioxide on activated carbon controlled by temperature swing adsorption

    NASA Astrophysics Data System (ADS)

    Tomas, Korinek; Karel, Frana

    2017-09-01

    This work deals with a method of capturing carbon dioxide (CO2) in indoor air. Temperature Swing Adsorption (TSA) on solid adsorbent was chosen for CO2 capture. Commercial activated carbon (AC) in form of extruded pellets was used as a solid adsorbent. There was constructed a simple device to testing effectiveness of CO2 capture in a fixed bed with AC. The TSA cycle was also simulated using the open-source software OpenFOAM. There was a good agreement between results obtained from numerical simulations and experimental data for adsorption process.

  2. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and....1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No. 124-38-9) occurs as a..., sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon dioxide is prepared as a byproduct...

  3. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...

  4. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...

  5. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...

  6. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...

  7. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...

  8. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... of carbon dioxide per 100 milliliters of wine or where the variation results from the use of methods...

  9. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure carbon dioxide fire extinguishing systems. (b) Low pressure systems, that is, those in which the carbon dioxide...

  10. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.

    1977-01-01

    A five-cell, liquid-cooled advanced electrochemical depolarized carbon dioxide concentrator module was fabricated. The cells utilized the advanced, lightweight, plated anode current collector concept and internal liquid-cooling. The five cell module was designed to meet the carbon dioxide removal requirements of one man and was assembled using plexiglass endplates. This one-man module was tested as part of an integrated oxygen generation and recovery subsystem.

  11. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy.

    PubMed

    Cha, Minjun; Shin, Kyuchul; Lee, Huen; Moudrakovski, Igor L; Ripmeester, John A; Seo, Yutaek

    2015-02-03

    In this study, the kinetics of methane replacement with carbon dioxide and nitrogen gas in methane gas hydrate prepared in porous silica gel matrices has been studied by in situ (1)H and (13)C NMR spectroscopy. The replacement process was monitored by in situ (1)H NMR spectra, where about 42 mol % of the methane in the hydrate cages was replaced in 65 h. Large amounts of free water were not observed during the replacement process, indicating a spontaneous replacement reaction upon exposing methane hydrate to carbon dioxide and nitrogen gas mixture. From in situ (13)C NMR spectra, we confirmed that the replacement ratio was slightly higher in small cages, but due to the composition of structure I hydrate, the amount of methane evolved from the large cages was larger than that of the small cages. Compositional analysis of vapor and hydrate phases was also carried out after the replacement reaction ceased. Notably, the composition changes in hydrate phases after the replacement reaction would be affected by the difference in the chemical potential between the vapor phase and hydrate surface rather than a pore size effect. These results suggest that the replacement technique provides methane recovery as well as stabilization of the resulting carbon dioxide hydrate phase without melting.

  12. Molecular dynamics studies of water deposition on hematite surfaces

    NASA Astrophysics Data System (ADS)

    Kvamme, Bjørn; Kuznetsova, Tatiana; Haynes, Martin

    2012-12-01

    The interest in carbon dioxide for enhanced oil recovery is increasing proportional to the decrease in naturally driven oil production and also due to the increasing demand for reduced emission of carbon dioxide to the atmosphere. Transport of carbon dioxide in offshore pipelines involves high pressure and low temperatures which may lead to the formation of hydrate between residual water dissolved in carbon dioxide. The critical question is whether the water at some condition of temperature and pressure will drop out as liquid droplets or as water adsorbed on the surfaces of the pipeline and then subsequently form hydrates heterogeneously. In this work we have used the 6-311G basis set with B3LYP to estimate the charge distribution of different sizes of hematite crystals. The obtained surface charge distribution were kept unchanged while the inner charge distribution where scaled so as to result in an overall neutral crystal. These rust particles were embedded in water and chemical potential for adsorbed water molecules were estimated through thermodynamic integration and compared to similar estimates for same size water cluster. Estimated values of water chemical potentials indicate that it is thermodynamically favorable for water to adsorb on hematite, and that evaluation of potential carbon dioxide hydrate formation conditions and kinetics should be based this sequence of processes.

  13. IMPROVEMENTS IN OR RELATING TO THE PRODUCTION OF SINTERED URANIUM DIOXIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, L.E.; Harrison, J.D.L.; Brett, N.H.

    A method is described for producing a dense sintered body of uranium dioxide or a mixture thereof with plutonium dioxide. Compacted uranium dioxide or a compacted uranium dioxide-plutonium dioxide mixture is heated to at least 1300 deg C in an atmosphere of carbon dioxide or carbon dioxide mixed with carbon monoxide. (R.J.S.)

  14. Electrochemical cell for obtaining oxygen from carbon dioxide atmospheres

    NASA Technical Reports Server (NTRS)

    Hooker, M. W.; Rast, H. E.; Rogers, D. K.

    1989-01-01

    For manned missions to Mars to become a reality, an efficient and reliable means of obtaining oxygen from the carbon dioxide-rich atmosphere will be required. Otherwise, the high cost of transporting the oxygen needed to sustain the astronauts will severely restrict the expedition to the martian surface. Recently, the use of electrochemical devices has been explored as a means of obtaining oxygen from the carbon dioxide-rich atmosphere. In these devices, oxygen ions diffuse through solid oxide membranes, thus, separating oxygen from the other gases presented. This phenomenon has only recently been explored as a means of obtaining large quantities of oxygen from toxic atmospheres, although first observed by Walter nernst in 1899. Nernst observed that stabilized zirconia will conduct oxygen ions when an electrical potential is applied across metallic electrodes applied to the ceramic membrane. Diatomic oxygen molecules are dissociated at the positive electrode/electrolyte interface. The oxygen ions enter the ceramic body due to the ion density gradient which is produced by the electrical potential across the electrolytic membrane. Once the ions have diffused through the membrane, they reform diatomic oxygen molecules at the anode. The separation of oxygen from carbon dioxide is achieved by the combination of thermal and electrochemical processes. The thermal decomposition of carbon dioxide (at 1000 C) results in the production of carbon monoxide and oxygen by the reaction.

  15. Modeling forest ecosystem responses to elevated carbon dioxide and ozone using artificial neural networks.

    PubMed

    Larsen, Peter E; Cseke, Leland J; Miller, R Michael; Collart, Frank R

    2014-10-21

    Rising atmospheric levels of carbon dioxide and ozone will impact productivity and carbon sequestration in forest ecosystems. The scale of this process and the potential economic consequences provide an incentive for the development of models to predict the types and rates of ecosystem responses and feedbacks that result from and influence of climate change. In this paper, we use phenotypic and molecular data derived from the Aspen Free Air CO2 Enrichment site (Aspen-FACE) to evaluate modeling approaches for ecosystem responses to changing conditions. At FACE, it was observed that different aspen clones exhibit clone-specific responses to elevated atmospheric levels of carbon dioxide and ozone. To identify the molecular basis for these observations, we used artificial neural networks (ANN) to examine above and below-ground community phenotype responses to elevated carbon dioxide, elevated ozone and gene expression profiles. The aspen community models generated using this approach identified specific genes and subnetworks of genes associated with variable sensitivities for aspen clones. The ANN model also predicts specific co-regulated gene clusters associated with differential sensitivity to elevated carbon dioxide and ozone in aspen species. The results suggest ANN is an effective approach to predict relevant gene expression changes resulting from environmental perturbation and provides useful information for the rational design of future biological experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Designed amyloid fibers as materials for selective carbon dioxide capture

    PubMed Central

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077

  17. CARNOL PROCESS FOR CO2 MITIGATION FROM POWER PLANTS AND THE TRANSFORMATION SECTOR

    EPA Science Inventory

    The report describes an alternative mitigation process that would convert waste carbon dioxide (CO2) to carbon an methanol using natural gas as process feedstock. The process yields 1 mole of methanol from each mole of CO2 recovered, resulting in a net zero CO2 emission when the ...

  18. 46 CFR 35.40-7 - Carbon dioxide and clean agent alarms-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms-T/ALL. 35.40-7... Marking Requirements-TB/ALL § 35.40-7 Carbon dioxide and clean agent alarms—T/ALL. Each carbon dioxide or...: “WHEN ALARM SOUNDS VACATE AT ONCE. [CARBON DIOXIDE/CLEAN AGENT—as appropriate] BEING RELEASED.” [USCG...

  19. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than 0...

  20. 46 CFR 35.40-7 - Carbon dioxide and clean agent alarms-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms-T/ALL. 35.40-7... Marking Requirements-TB/ALL § 35.40-7 Carbon dioxide and clean agent alarms—T/ALL. Each carbon dioxide or...: “WHEN ALARM SOUNDS VACATE AT ONCE. [CARBON DIOXIDE/CLEAN AGENT—as appropriate] BEING RELEASED.” [USCG...

  1. An Evaluation of the Feasibility of Combining Carbon Dioxide Flooding Technologies with Microbial Enhanced Oil Recovery Technologies in Order To Sequester Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd French; Lew Brown; Rafael Hernandez

    2009-08-19

    The need for more energy as our population grows results in an increase in the amount of CO2 introduced into the atmosphere. The effect of this introduction is currently debated intensely as to the severity of the effect of this. The bjective of this investigation was to determine if the production of more energy (i.e. petroleum) and the sequestration of CO2 could be coupled into one process. Carbon dioxide flooding is a well-established technique that introduces Compressed CO2 into a subsurface oil-bearing formation to aide in liquefying harder to extract petroleum and enhancing its mobility towards the production wells.

  2. Desiccant humidity control system. [for space shuttle cabins

    NASA Technical Reports Server (NTRS)

    Lunde, P. J.; Kester, F. L.

    1975-01-01

    A water vapor and carbon dioxide sorbent material (designated HS-C) was developed for potential application to the space shuttle and tested at full scale. Capacities of two percent for carbon dioxide and four percent for water vapor were achieved using space shuttle cabin adsorption conditions and a space vacuum for desorption. Performance testing shows that water vapor can be controlled by varying the air process flow, while maintaining the ability to remove carbon dioxide. A 2000 hour life test was successfully completed, as were tests for sensitivity to cleaning solvent vapors, vibration resistance, and flammability. A system design for the space shuttle shows a 200 pound weight advantage over competitive systems and an even larger advantage for longer missions.

  3. Separation of Carbon Monoxide and Carbon Dioxide for Mars ISRU

    NASA Technical Reports Server (NTRS)

    Walton, Krista S.; LeVan, M. Douglas

    2004-01-01

    The atmosphere of Mars has many resources that can be processed to produce things such as oxygen, fuel, buffer gas, and water for support of human exploration missions. Successful manipulation of these resources is crucial for safe, cost-effective, and self-sufficient long-term human exploration of Mars. In our research, we are developing enabling technologies that require fundamental knowledge of adsorptive gas storage and separation processes. In particular, we are designing and constructing an innovative, low mass, low power separation device to recover carbon dioxide and carbon monoxide for Mars ISRU (in-situ resource utilization). The technology has broad implications for gas storage and separations for gas-solid systems that are ideally suited for reduced gravitational environments. This paper describes our separation process design and experimental procedures and reports results for the separation of CO2 and CO by a four-step adsorption cycle.

  4. Self-repairable polyurethane networks by atmospheric carbon dioxide and water.

    PubMed

    Yang, Ying; Urban, Marek W

    2014-11-03

    Sugar moieties were incorporated into cross-linked polyurethane (PUR) networks in an effort to achieve self-repairing in the presence of atmospheric carbon dioxide (CO2) and water (H2O). When methyl-α-D-glucopyranoside (MGP) molecules are reacted with hexamethylene diisocyanate trimer (HDI) and polyethylene glycol (PEG) to form cross-linked MGP-polyurethane (PUR) networks, these materials are capable of self-repairing in air. This process requires atmospheric amounts of CO2 and H2O, thus resembling plant behavior of carbon fixation during the photosynthesis cycle. Molecular processes responsible for this unique self-repair process involve physical diffusion of cleaved network segments as well as the formation of carbonate and urethane linkages. Unlike plants, MGP-PUR networks require no photo-initiated reactions, and they are thus capable of repair in darkness under atmospheric conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Radiation Synthesis of Carbon Dioxide in Ice-coated Carbon: Implications for Interstellar Grains and Icy Moons

    NASA Astrophysics Data System (ADS)

    Raut, U.; Fulvio, D.; Loeffler, M. J.; Baragiola, R. A.

    2012-06-01

    We report the synthesis of carbon dioxide on an amorphous carbon-13 substrate coated with amorphous water ice from irradiation with 100 keV protons at 20 K and 120 K. The quantitative studies show that the CO2 is dispersed in the ice; its column density increases with ion fluence to a maximum value (in 1015 molecules cm-2) of ~1 at 20 K and ~3 at 120 K. The initial yield is 0.05 (0.1) CO2 per incident H+ at 20 (120) K. The CO2 destruction process, which limits the maximum column density, occurs with an effective cross section of ~2.5 (4.1) × 10-17 cm2 at 20 (120) K. We discuss radiation-induced oxidation by reactions of radicals in water with the carbon surface and demonstrate that these reactions can be a significant source of condensed carbon dioxide in interstellar grains and in icy satellites in the outer solar system.

  6. Zeolites for CO2-CO-O2 Separation to Obtain CO2-Neutral Fuels.

    PubMed

    Perez-Carbajo, Julio; Matito-Martos, Ismael; Balestra, Salvador R G; Tsampas, Mihalis N; van de Sanden, Mauritius C M; Delgado, José A; Águeda, V Ismael; Merkling, Patrick J; Calero, Sofia

    2018-06-20

    Carbon dioxide release has become an important global issue due to the significant and continuous rise in atmospheric CO 2 concentrations and the depletion of carbon-based energy resources. Plasmolysis is a very energy-efficient process for reintroducing CO 2 into energy and chemical cycles by converting CO 2 into CO and O 2 utilizing renewable electricity. The bottleneck of the process is that CO remains mixed with O 2 and residual CO 2 . Therefore, efficient gas separation and recuperation are essential for obtaining pure CO, which, via water gas shift and Fischer-Tropsch reactions, can lead to the production of CO 2 -neutral fuels. The idea behind this work is to provide a separation mechanism based on zeolites to optimize the separation of carbon dioxide, carbon monoxide, and oxygen under mild operational conditions. To achieve this goal, we performed a thorough screening of available zeolites based on topology and adsorptive properties using molecular simulation and ideal adsorption solution theory. FAU, BRE, and MTW are identified as suitable topologies for these separation processes. FAU can be used for the separation of carbon dioxide from carbon monoxide and oxygen and BRE or MTW for the separation of carbon monoxide from oxygen. These results are reinforced by pressure swing adsorption simulations at room temperature combining adsorption columns with pure silica FAU zeolite and zeolite BRE at a Si/Al ratio of 3. These zeolites have the added advantage of being commercially available.

  7. Carbon dioxide dangers demonstration model

    USGS Publications Warehouse

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  8. Methane Post-Processing for Oxygen Loop Closure

    NASA Technical Reports Server (NTRS)

    Greenwood, Zachary W.; Abney, Morgan B.; Miller, Lee

    2016-01-01

    State-of-the-art United States Atmospheric Revitalization carbon dioxide (CO2) reduction is based on the Sabatier reaction process, which recovers approximately 50% of the oxygen (O2) from crew metabolic CO2. Oxygen recovery from carbon dioxide is constrained by the limited availability of reactant hydrogen. Post-processing of methane to recover hydrogen with the Umpqua Research Company Plasma Pyrolysis Assembly (PPA) has the potential to further close the Atmospheric Revitalization oxygen loop. The PPA decomposes methane into hydrogen and hydrocarbons, predominantly acetylene, and a small amount of solid carbon. The hydrogen must then be purified before it can be recycled for additional oxygen recovery. Long duration testing and evaluation of a four crew-member sized PPA and a discussion of hydrogen recycling system architectures are presented.

  9. Screen for Carbon Dioxide.

    ERIC Educational Resources Information Center

    Foster, John; And Others

    1986-01-01

    Presents a set of laboratory experiments that can assist students in the detection of carbon dioxide. Offers a variation of the supported drop method of carbon dioxide detection that provides readily visible positive results. Includes background information on carbon dioxide. (ML)

  10. TiO2 Processed by pressurized hot solvents as a novel photocatalyst for photocatalytic reduction of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Reli, Martin; Kobielusz, Marcin; Matějová, Lenka; Daniš, Stanislav; Macyk, Wojciech; Obalová, Lucie; Kuśtrowski, Piotr; Rokicińska, Anna; Kočí, Kamila

    2017-01-01

    Anatase-brookite TiO2 photocatalysts were prepared by the sol-gel process controlled within reverse micelles and processing by pressurized hot solvents-water/methanol/water (TiO2(M)) and water/ethanol/water (TiO2(E)), as an unconventional alternative to common calcination. The main goal of this work was to prepare anatase-brookite mixtures by processing by two different alcohols (methanol and ethanol) and evaluate the influence of the alcohol on the photocatalytic activity. Prepared photocatalysts were characterized by organic elemental analysis, nitrogen physisorption, XRD, UV-vis, photoelectrochemical and spectroelectrochemical measurements and XPS. The prepared photocatalysts efficiency was tested on the photocatalytic reduction of carbon dioxide and compared with commercial TiO2 Evonik P25. Both prepared nanocomposites were more efficient towards methane production but Evonik P25 was the most efficient towards hydrogen generated through water splitting. The higher performance of anatase-brookite mixture towards methane production can be explained by (i) a higher photocatalytic activity of brookite than rutile; (ii) a large surface area of anatase-brookite composites enabling better carbon dioxide adsorption; (iii) the photoinduced electron transfer from the brookite conduction band to the anatase conduction band. On the other hand, a higher production of hydrogen in the presence of Evonik P25 is caused by a better charge separation in anatase-rutile than anatase-brookite phase compositions. TiO2(M) appeared more active than TiO2(E) in the photocatalytic reduction of carbon dioxide due to a lower density of defects created in the crystal lattice.

  11. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation.

    PubMed

    Sorlini, Sabrina; Gialdini, Francesca; Biasibetti, Michela; Collivignarelli, Carlo

    2014-05-01

    Disinfection is the last treatment stage of a Drinking Water Treatment Plant (DWTP) and is carried out to maintain a residual concentration of disinfectant in the water distribution system. Chlorine dioxide (ClO2) is a widely used chemical employed for this purpose. The aim of this work was to evaluate the influence of several treatments on chlorine dioxide consumption and on chlorite and chlorate formation in the final oxidation/disinfection stage. A number of tests was performed at laboratory scale employing water samples collected from the DWTP of Cremona (Italy). The following processes were studied: oxidation with potassium permanganate, chlorine dioxide and sodium hypochlorite, coagulation/flocculation with ferric chloride and aluminum sulfate, filtration and adsorption onto activated carbon. The results showed that the chlorine dioxide demand is high if sodium hypochlorite or potassium permanganate are employed in pre-oxidation. On the other hand, chlorine dioxide leads to the highest production of chlorite and chlorate. The coagulation/flocculation process after pre-oxidation shows that chlorine dioxide demand decreases if potassium permanganate is employed as an oxidant, both with ferric chloride and aluminum sulfate. Therefore, the combination of these processes leads to a lower production of chlorite and chlorate. Aluminum sulfate is preferable in terms of the chlorine dioxide demand reduction and minimization of the chlorite and chlorate formation. Activated carbon is the most effective solution as it reduced the chlorine dioxide consumption by about 50% and the DBP formation by about 20-40%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Method of immobilizing carbon dioxide from gas streams

    DOEpatents

    Holladay, David W.; Haag, Gary L.

    1979-01-01

    This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.

  13. Reduced graphene oxide supported gold nanoparticles for electrocatalytic reduction of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Saquib, Mohammad; Halder, Aditi

    2018-02-01

    Electrochemical reduction of carbon dioxide is one of the methods which have the capability to recycle CO2 into valuable products for energy and industrial applications. This research article describes about a new electrocatalyst "reduced graphene oxide supported gold nanoparticles" for selective electrochemical conversion of carbon dioxide to carbon monoxide. The main aim for conversion of CO2 to CO lies in the fact that the latter is an important component of syn gas (a mixture of hydrogen and carbon monoxide), which is then converted into liquid fuel via well-known industrial process called Fischer-Tropsch process. In this work, we have synthesized different composites of the gold nanoparticles supported on defective reduced graphene oxide to evaluate the catalytic activity of reduced graphene oxide (RGO)-supported gold nanoparticles and the role of defective RGO support towards the electrochemical reduction of CO2. Electrochemical and impedance measurements demonstrate that higher concentration of gold nanoparticles on the graphene support led to remarkable decrease in the onset potential of 240 mV and increase in the current density for CO2 reduction. Lower impedance and Tafel slope values also clearly support our findings for the better performance of RGOAu than bare Au for CO2 reduction.

  14. Thickening compositions, and related materials and processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Michael Joseph; Perry, Robert James; Enick, Robert Michael

    A silicone polymer is provided, modified with at least one functional group from the class of anthraquinone amide groups; anthraquinone sulfonamide groups; thioxanthone amide groups; or thioxanthone sulfone amide groups. The polymer can be combined with a hydrocarbon solvent or with supercritical carbon dioxide (CO.sub.2), and is very effective for increasing the viscosity of either medium. A process for the recovery of oil from a subterranean, oil-bearing formation is also described, using supercritical carbon dioxide modified with the functionalized silicone polymer. A process for extracting natural gas or oil from a bedrock-shale formation is also described, again using the modifiedmore » silicone polymer.« less

  15. Carbon dioxide transport over complex terrain

    USGS Publications Warehouse

    Sun, Jielun; Burns, Sean P.; Delany, A.C.; Oncley, S.P.; Turnipseed, A.; Stephens, B.; Guenther, A.; Anderson, D.E.; Monson, R.

    2004-01-01

    The nocturnal transport of carbon dioxide over complex terrain was investigated. The high carbon dioxide under very stable conditions flows to local low-ground. The regional drainage flow dominates the carbon dioxide transport at the 6 m above the ground and carbon dioxide was transported to the regional low ground. The results show that the local drainage flow was sensitive to turbulent mixing associated with local wind shear.

  16. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Carbon dioxide and halon fire extinguishing systems. 147... dioxide and halon fire extinguishing systems. (a) Carbon dioxide or halon cylinders forming part of a...) Carbon dioxide or halon cylinders must be rejected for further service when they— (1) Leak; (2) Are...

  17. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Carbon dioxide and halon fire extinguishing systems. 147... dioxide and halon fire extinguishing systems. (a) Carbon dioxide or halon cylinders forming part of a...) Carbon dioxide or halon cylinders must be rejected for further service when they— (1) Leak; (2) Are...

  18. Impregnating Coal With Calcium Carbonate

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  19. Carbon Dioxide Insufflation Increases Colonoscopic Adenoma Detection Rate Compared With Air Insufflation.

    PubMed

    Mills, Christopher D; McCamley, Chere; Swan, Michael P

    2018-03-07

    To determine the effect of carbon dioxide insufflation on the most important outcome measure of colonoscopic quality: adenoma detection rate (ADR). Bowel cancer is the second most common cause of cancer deaths in males and females in Australia. Carbon dioxide has in recent times become the insufflation methodology of choice for screening colonoscopy for bowel cancer, as this has been shown to have significant advantages when compared with traditional air insufflation. Endoscopies performed over a period of 9 months immediately before and after the implementation of carbon dioxide insufflation at endoscopy centers were eligible for inclusion. The difference in ADR between the carbon dioxide and air insufflation methods was statistically significant, with an increased ADR in the carbon dioxide group. The superiority of carbon dioxide insufflation was sustained with a logistic regression model, which showed ADR was significantly impacted by insufflation method. Carbon dioxide insufflation is known to reduce abdominal pain, postprocedural duration of abdominal pain, abdominal distension, and analgesic requirements. This study represents for the first time the beneficial effect of carbon dioxide insufflation upon the key quality colonoscopy indicator of ADR.

  20. Synthesis of Fire-Extinguishing Dawsonites

    NASA Technical Reports Server (NTRS)

    Altman, R. L.

    1982-01-01

    Simple nonaqueous process synthesizes sodium or potassium, dawsonites effective against hydrocarbon fuel fires. Fire-extinguishing alkali metal dawsonites are prepared using a finely-pulverized equimolar mixture of hydrogen carbonate, or carbonates and aluminum hydroxide heated for 1 to 6 hours under carbon dioxide pressure.

  1. Carbon dioxide elimination and regeneration of resources in a microwave plasma torch.

    PubMed

    Uhm, Han S; Kwak, Hyoung S; Hong, Yong C

    2016-04-01

    Carbon dioxide gas as a working gas produces a stable plasma-torch by making use of 2.45 GHz microwaves. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a bluish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species where an analytical investigation indicates dissociation of a substantial fraction of carbon dioxide molecules, forming carbon monoxides and oxygen atoms. The emission profiles of the oxygen atoms and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. Various hydrocarbon materials may be introduced into the carbon dioxide torch, regenerating new resources and reducing carbon dioxide concentration in the torch. As an example, coal powders in the carbon dioxide torch are converted into carbon monoxide according to the reaction of CO2 + C → 2CO, reducing a substantial amount of carbon dioxide concentration in the torch. In this regards, the microwave plasma torch may be one of the best ways of converting the carbon dioxides into useful new materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Thermal device and method for production of carbon monoxide and hydrogen by thermal dissociation of hydrocarbon gases

    DOEpatents

    Detering, Brent A.; Kong, Peter C.

    2001-01-01

    Carbon monoxide is produced in a fast quench reactor. The production of carbon monoxide includes injecting carbon dioxide and some air into a reactor chamber having a high temperature at its inlet and a rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Carbon dioxide and other reactants such as methane and other low molecular weight hydrocarbons are injected into the reactor chamber. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  3. The fate of carbon dioxide in water-rich fluids under extreme conditions

    PubMed Central

    Pan, Ding; Galli, Giulia

    2016-01-01

    Investigating the fate of dissolved carbon dioxide under extreme conditions is critical to understanding the deep carbon cycle in Earth, a process that ultimately influences global climate change. We used first-principles molecular dynamics simulations to study carbonates and carbon dioxide dissolved in water at pressures (P) and temperatures (T) approximating the conditions of Earth’s upper mantle. Contrary to popular geochemical models assuming that molecular CO2(aq) is the major carbon species present in water under deep Earth conditions, we found that at 11 GPa and 1000 K, carbon exists almost entirely in the forms of solvated carbonate (CO32−) and bicarbonate (HCO3−) ions and that even carbonic acid [H2CO3(aq)] is more abundant than CO2(aq). Furthermore, our simulations revealed that ion pairing between Na+ and CO32−/HCO3− is greatly affected by P-T conditions, decreasing with increasing pressure at 800 to 1000 K. Our results suggest that in Earth’s upper mantle, water-rich geofluids transport a majority of carbon in the form of rapidly interconverting CO32− and HCO3− ions, not solvated CO2(aq) molecules. PMID:27757424

  4. The fate of carbon dioxide in water-rich fluids under extreme conditions.

    PubMed

    Pan, Ding; Galli, Giulia

    2016-10-01

    Investigating the fate of dissolved carbon dioxide under extreme conditions is critical to understanding the deep carbon cycle in Earth, a process that ultimately influences global climate change. We used first-principles molecular dynamics simulations to study carbonates and carbon dioxide dissolved in water at pressures ( P ) and temperatures ( T ) approximating the conditions of Earth's upper mantle. Contrary to popular geochemical models assuming that molecular CO 2 (aq) is the major carbon species present in water under deep Earth conditions, we found that at 11 GPa and 1000 K, carbon exists almost entirely in the forms of solvated carbonate ([Formula: see text]) and bicarbonate ([Formula: see text]) ions and that even carbonic acid [H 2 CO 3 (aq)] is more abundant than CO 2 (aq). Furthermore, our simulations revealed that ion pairing between Na + and [Formula: see text]/[Formula: see text] is greatly affected by P - T conditions, decreasing with increasing pressure at 800 to 1000 K. Our results suggest that in Earth's upper mantle, water-rich geofluids transport a majority of carbon in the form of rapidly interconverting [Formula: see text] and [Formula: see text] ions, not solvated CO 2 (aq) molecules.

  5. Nonthermal inactivation of Escherichia coli K12 in buffered peptone water using a pilot-plant scale supercritical carbon dioxide system with gas-liquid porous metal contractor

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the effectiveness of a supercritical carbon dioxide (SCCO2) system, with a gas-liquid CO2 contactor, for reducing Escherichia coli K12 in diluted buffered peptone water. 0.1% (w/v) buffered peptone water inoculated with E. coli K12 was processed using the SCCO2 system at CO2 con...

  6. Discussion of Refrigeration Cycle Using Carbon Dioxide as Refrigerant

    NASA Astrophysics Data System (ADS)

    Ji, Amin; Sun, Miming; Li, Jie; Yin, Gang; Cheng, Keyong; Zhen, Bing; Sun, Ying

    Nowadays, the problem of the environment goes worse, it urges people to research and study new energy-saving and environment-friendly refrigerants, such as carbon dioxide, at present, people do research on carbon dioxide at home and abroad. This paper introduces the property of carbon dioxide as a refrigerant, sums up and analyses carbon dioxide refrigeration cycles, and points out the development and research direction in the future.

  7. Carbon dioxide-soluble polymers and swellable polymers for carbon dioxide applications

    DOEpatents

    DeSimone, Joseph M.; Birnbaum, Eva; Carbonell, Ruben G.; Crette, Stephanie; McClain, James B.; McCleskey, T. Mark; Powell, Kimberly R.; Romack, Timothy J.; Tumas, William

    2004-06-08

    A method for carrying out a catalysis reaction in carbon dioxide comprising contacting a fluid mixture with a catalyst bound to a polymer, the fluid mixture comprising at least one reactant and carbon dioxide, wherein the reactant interacts with the catalyst to form a reaction product. A composition of matter comprises carbon dioxide and a polymer and a reactant present in the carbon dioxide. The polymer has bound thereto a catalyst at a plurality of chains along the length of the polymer, and wherein the reactant interacts with the catalyst to form a reaction product.

  8. Do fossil plants signal palaeoatmospheric carbon dioxide concentration in the geological past?

    PubMed Central

    McElwain, J. C.

    1998-01-01

    Fossil, subfossil, and herbarium leaves have been shown to provide a morphological signal of the atmospheric carbon dioxide environment in which they developed by means of their stomatal density and index. An inverse relationship between stomatal density/index and atmospheric carbon dioxide concentration has been documented for all the studies to date concerning fossil and subfossil material. Furthermore, this relationship has been demonstrated experimentally by growing plants under elevated and reducedcarbon dioxide concentrations. To date, the mechanism that controls the stomatal density response to atmospheric carbon dioxide concentration remains unknown. However, stomatal parameters of fossil plants have been successfully used as a proxy indicator of palaeo-carbon dioxide levels. This paper presents new estimates of palaeo-atmospheric carbon dioxide concentrations for the Middle Eocene (Lutetian), based on the stomatal ratios of fossil Lauraceae species from Bournemouth in England. Estimates of atmospheric carbon dioxide concentrations derived from stomatal data from plants of the Early Devonian, Late Carboniferous, Early Permian and Middle Jurassic ages are reviewed in the light of new data. Semi-quantitative palaeo-carbon dioxide estimates based on the stomatal ratio (a ratio of the stomatal index of a fossil plant to that of a selected nearest living equivalent) have in the past relied on the use of a Carboniferous standard. The application of a new standard based on the present-day carbon dioxide level is reported here for comparison. The resultant ranges of palaeo-carbon dioxide estimates made from standardized fossil stomatal ratio data are in good agreement with both carbon isotopic data from terrestrial and marine sources and long-term carbon cycle modelling estimates for all the time periods studied. These data indicate elevated atmospheric carbon dioxide concentrations during the Early Devonian, Middle Jurassic and Middle Eocene, and reduced concentrations during the Late Carboniferous and Early Permian. Such data are important in demonstrating the long-term responses of plants to changing carbon dioxide concentrations and in contributing to the database needed for general circulation model climatic analogues.

  9. 21 CFR 868.2480 - Cutaneous carbon dioxide (PcCO 2) monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cutaneous carbon dioxide (PcCO 2) monitor. 868... dioxide (PcCO 2) monitor. (a) Identification. A cutaneous carbon dioxide (PcCO2) monitor is a noninvasive... relative changes in a hemodynamically stable patient's cutaneous carbon dioxide tension as an adjunct to...

  10. 21 CFR 868.2480 - Cutaneous carbon dioxide (PcCO 2) monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cutaneous carbon dioxide (PcCO 2) monitor. 868... dioxide (PcCO 2) monitor. (a) Identification. A cutaneous carbon dioxide (PcCO2) monitor is a noninvasive... relative changes in a hemodynamically stable patient's cutaneous carbon dioxide tension as an adjunct to...

  11. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I... sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the outlet of the air pollution... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide...

  12. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I... sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the outlet of the air pollution... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide...

  13. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch.

    PubMed

    Kwak, Hyoung S; Uhm, Han S; Hong, Yong C; Choi, Eun H

    2015-12-17

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10(-3), nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10(-7), nO2/nN = 5.39 × 10(-5), where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.

  14. The Development of Models for Carbon Dioxide Reduction Technologies for Spacecraft Air Revitalization

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Anderson, Molly

    2012-01-01

    Through the respiration process, humans consume oxygen (O2) while producing carbon dioxide (CO2) and water (H2O) as byproducts. For long term space exploration, CO2 concentration in the atmosphere must be managed to prevent hypercapnia. Moreover, CO2 can be used as a source of oxygen through chemical reduction serving to minimize the amount of oxygen required at launch. Reduction can be achieved through a number of techniques. NASA is currently exploring the Sabatier reaction, the Bosch reaction, and co- electrolysis of CO2 and H2O for this process. Proof-of-concept experiments and prototype units for all three processes have proven capable of returning useful commodities for space exploration. All three techniques have demonstrated the capacity to reduce CO2 in the laboratory, yet there is interest in understanding how all three techniques would perform at a system level within a spacecraft. Consequently, there is an impetus to develop predictive models for these processes that can be readily rescaled and integrated into larger system models. Such analysis tools provide the ability to evaluate each technique on a comparable basis with respect to processing rates. This manuscript describes the current models for the carbon dioxide reduction processes under parallel developmental efforts. Comparison to experimental data is provided were available for verification purposes.

  15. Image analysis and mathematical modelling for the supervision of the dough fermentation process

    NASA Astrophysics Data System (ADS)

    Zettel, Viktoria; Paquet-Durand, Olivier; Hecker, Florian; Hitzmann, Bernd

    2016-10-01

    The fermentation (proof) process of dough is one of the quality-determining steps in the production of baking goods. Beside the fluffiness, whose fundaments are built during fermentation, the flavour of the final product is influenced very much during this production stage. However, until now no on-line measurement system is available, which can supervise this important process step. In this investigation the potential of an image analysis system is evaluated, that enables the determination of the volume of fermented dough pieces. The camera is moving around the fermenting pieces and collects images from the objects by means of different angles (360° range). Using image analysis algorithms the volume increase of individual dough pieces is determined. Based on a detailed mathematical description of the volume increase, which based on the Bernoulli equation, carbon dioxide production rate of yeast cells and the diffusion processes of carbon dioxide, the fermentation process is supervised. Important process parameters, like the carbon dioxide production rate of the yeast cells and the dough viscosity can be estimated just after 300 s of proofing. The mean percentage error for forecasting the further evolution of the relative volume of the dough pieces is just 2.3 %. Therefore, a forecast of the further evolution can be performed and used for fault detection.

  16. Projected effects of vegetation and organic matter on soil carbon dynamics after rainfall in a model basalt landscape.

    NASA Astrophysics Data System (ADS)

    Van Haren, J. L. M.; Sanchez-Canete, E. P.; Juarez, S.; Howard, E. L.; Dontsova, K.; Le Galliard, J. F.; Barron-Gafford, G.; Volkmann, T.; Troch, P. A.

    2017-12-01

    Basalt is one of the most important rock types in controlling atmospheric carbon dioxide concentrations on a geologic scale. At the University of Arizona's Biosphere 2 facility, we have built the world's largest geological model system - the Landscape Evolution Observatory (LEO) - to determine the hydrological and biogeochemical changes before and after the addition of plants. LEO consists of three 30x11 m and 1-m deep hillslope landscapes of basaltic tephra ground to homogenous loamy sand inside an environmentally controlled facility. Each landscape contains a sensor network capable of capturing water, carbon, and energy cycling processes at 15-min resolution and sub-meter to whole-landscape scales. At LEO, we measured the soil carbon dynamics in bare soil, with only minimal biological activity, after multiple rainfall events. These measurements consistently showed that rainfall, soil moisture, and soil gas diffusion are strong drivers of carbon uptake in a porous basalt matrix. Our expectation is that the addition of plants will dramatically change the carbon dynamics following rainfall events and produce Birch-effect-like pulses of carbon dioxide following rainfall events. We tested this prediction in smaller-scale and shorter-term experiments done at the CEREEP-ECOTRON lab in Ile de France, France, where we experimented with three different plant species grown in the same LEO soil. Soil carbon responses were similar to the LEO slope irrespective of whether plants were grown in the soil: initial wetting leads to a strong drawdown of carbon dioxide in the soil. However, due to plant activity, the soil carbon dioxide concentration recovered faster in the basalt soil when plants were present. Only in small scale incubations with a mixture of LEO soil with an organic-rich (6.5% carbon) prairie soil did we see the expected pulse of carbon dioxide following the addition of water. The smaller-scale experiments suggest that the occurrence of carbon dioxide fluxes generated by rainfall events will not occur after the addition of plants, but will depend on the development of an organic horizon within the LEO soil.

  17. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, J. K. R.; Alderman, O. L. G.; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439

    2016-07-15

    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment wasmore » integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less

  18. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    DOE PAGES

    Weber, J. K. R.; Tamalonis, A.; Benmore, C. J.; ...

    2016-07-01

    We integrated an aerodynamic levitator with carbon dioxide laser beam heating with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. Furthermore, the chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The samplemore » environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. Our system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less

  19. Carbon Dioxide Removal via Passive Thermal Approaches

    NASA Technical Reports Server (NTRS)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  20. CO 2-scrubbing and methanation as purification system for PEFC

    NASA Astrophysics Data System (ADS)

    Ledjeff-Hey, K.; Roes, J.; Wolters, R.

    Hydrogen is usually produced by steam reforming of natural gas in large-scale processes. The reformate consists of hydrogen, carbon dioxide, carbon monoxide, and residues of hydrocarbons. Since the anode catalyst of a polymer electrolyte membrane fuel cell (PEFC) is usually based on platinum, which is easily poisoned by carbon monoxide, the conditioned feed gas should contain less than 100 ppmv CO, and preferably, less than 10 ppmv. Depending on the design and operating conditions of the hydrogen production process, the CO content of a typical reformate gas, even after the CO shift reactor may be in the range of 0.2-1.0 vol.%; this is far higher than a PEFC can tolerate. A CO management system is required to lower the CO concentration to acceptable levels. In many cases, the CO purification system consists of a combination of physical or chemical processes to achieve the necessary reduction in CO content. A promising alternative for hydrogen purification is a combined process consisting of a carbon dioxide scrubber with subsequent methanation to reduce the carbon monoxide content to an acceptable level of less than 10 ppmv.

  1. Study of process variables in supercritical carbon dioxide extraction of soybeans.

    PubMed

    Wilkinson, Nikolas; Hilton, Ramsey; Hendry, Doug; Venkitasamy, Chandrasekar; Jacoby, William

    2014-01-01

    Soybean flakes were extracted using supercritical carbon dioxide at 48.3 MPa and 80 °C, which is a higher temperature than previously reported. Several operational parameters were explored to determine their effect on extractions. Flakes, as typically used in this industry, provided the best extraction performance. Particle size distributions were created through grinding. Reducing average particle diameters smaller than 0.069 mm had no appreciable effect on increasing extraction efficiencies. Exploration of flow rate indicated that a residence time of less than 60 s for the supercritical carbon dioxide would be sufficient for complete extractions. A solvent mass to load mass ratio of 10:1 was found to be sufficient for extraction of oils from soybean flakes. Increasing moisture in the soybeans led to decreasing extraction efficiency of oils. Finally, soybean hulls had no effect on extraction efficiency. Thus, the de-hulling procedure can be removed from the extraction process without decreasing extraction efficiency.

  2. Triple-Pulse Integrated Path Differential Absorption Lidar for Carbon Dioxide Measurement - Novel Lidar Technologies and Techniques with Path to Space

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  3. KSC-2014-2993

    NASA Image and Video Library

    2014-06-16

    VANDENBERG AIR FORCE BASE, Calif. – Technicians in the Astrotech Payload Processing Facility on Vandenberg Air Force Base in California make final preparations to transport NASA's Orbiting Carbon Observatory-2, or OCO-2, to Space Launch Complex 2 for enclosure in the Delta II payload fairing. Launch aboard a United Launch Alliance Delta II rocket is scheduled for 5:56 a.m. EDT on July 1. OCO-2 is NASA’s first mission dedicated to studying atmospheric carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 will provide a new tool for understanding the human and natural sources of carbon dioxide emissions and the natural "sinks" that absorb carbon dioxide and help control its buildup. The observatory will measure the global geographic distribution of these sources and sinks and study their changes over time. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/30th Space Wing, U.S. Air Force

  4. KSC-2014-2990

    NASA Image and Video Library

    2014-06-16

    VANDENBERG AIR FORCE BASE, Calif. – Final preparations are underway in the Astrotech Payload Processing Facility on Vandenberg Air Force Base in California to transport NASA's Orbiting Carbon Observatory-2, or OCO-2, to Space Launch Complex 2 for encapsulation in the Delta II payload fairing. Launch aboard a United Launch Alliance Delta II rocket is scheduled for 5:56 a.m. EDT on July 1. OCO-2 is NASA’s first mission dedicated to studying atmospheric carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 will provide a new tool for understanding the human and natural sources of carbon dioxide emissions and the natural "sinks" that absorb carbon dioxide and help control its buildup. The observatory will measure the global geographic distribution of these sources and sinks and study their changes over time. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/30th Space Wing, U.S. Air Force

  5. Flotation/ultrasound-assisted microextraction followed by HPLC for determination of fat-soluble vitamins in multivitamin pharmaceutical preparations.

    PubMed

    Shahdousti, Parvin; Aghamohammadi, Mohammad

    2018-04-01

    Dissolved carbon dioxide flotation-emulsification microextraction technique coupled with high-performance liquid chromatography was developed for separation and determination of fat-soluble vitamins (A, D 3 , E, and K 3 ) in multivitamin pharmaceutical preparations. Dissolved carbon dioxide flotation was used to break up the emulsion of extraction solvent in water and to collect the extraction solvent on the surface of aqueous sample in narrowed capillary part of extraction cell. Carbon dioxide bubbles were generated in situ through the addition of 300 μL of concentrated hydrochloric acid into the alkaline sample solution at pH = 11.5 (1% w/v sodium carbonate), which was sonicated to intensify the carbon dioxide bubble generation. Several factors affecting the extraction process were optimized. Under the optimal conditions, the limits of detection were 0.11, 0.47, 0.20 and 0.35 μg/L for A, E, D 3 , and K 3 vitamins in water samples, respectively. The inter-day and intra-day precision of the proposed method were evaluated in terms of the relative standard deviation and were <10.5%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Capacitance‐Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation

    PubMed Central

    Lamb, Katie J.; Dowsett, Mark R.; Chatzipanagis, Konstantinos; Scullion, Zhan Wei; Kröger, Roland; Lee, James D.

    2017-01-01

    Abstract An electrochemical cell comprising a novel dual‐component graphite and Earth‐crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbonate. Simultaneous oxidation of the anodic metal generated cations, which reacted with the hydrogen carbonate to give mineralised carbon dioxide. Whilst conventional electrochemical carbon dioxide reduction requires hydrogen, this cell generates hydrogen at the cathode. Carbon capture can be achieved in a highly sustainable manner using scrap metal within the anode, seawater as the electrolyte, an industrially relevant gas stream and a solar panel as an effective zero‐carbon energy source. PMID:29171724

  7. Calcifying Cyanobacteria - The potential of biomineralization for Carbon Capture and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, Christer G; Northen, Trent

    2010-03-26

    Employment of cyanobacteria in biomineralization of carbon dioxide by calcium carbonate precipitation offers novel and self-sustaining strategies for point-source carbon capture and sequestration. Although details of this process remain to be elucidated, a carbon-concentrating mechanism, and chemical reactions in exopolysaccharide or proteinaceous surface layers are assumed to be of crucial importance. Cyanobacteria can utilize solar energy through photosynthesis to convert carbon dioxide to recalcitrant calcium carbonate. Calcium can be derived from sources such as gypsum or industrial brine. A better understanding of the biochemical and genetic mechanisms that carry out and regulate cynaobacterial biomineralization should put us in a positionmore » where we can further optimize these steps by exploiting the powerful techniques of genetic engineering, directed evolution, and biomimetics.« less

  8. Comparison of the Anti-Inflammatory Activities of Supercritical Carbon Dioxide versus Ethanol Extracts from Leaves of Perilla frutescens Britt. Radiation Mutant.

    PubMed

    Jin, Chang Hyun; Park, Han Chul; So, Yangkang; Nam, Bomi; Han, Sung Nim; Kim, Jin-Baek

    2017-02-17

    In this study, we aimed to compare supercritical carbon dioxide extraction and ethanol extraction for isoegomaketone (IK) content in perilla leaf extracts and to identify the optimal method. We measured the IK concentration using HPLC and inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells from the extracts. The IK concentration was 10-fold higher in perilla leaf extracts by supercritical carbon dioxide extraction (SFE) compared with that in perilla leaf extracts by ethanol extraction (EE). When the extracts were treated in LPS-induced RAW 264.7 cells at 25 μg/mL, the SFE inhibited the expression of inflammatory mediators such as nitric oxide (NO), monocyte chemoattractant protein-1 (MCP-1), interleutkin-6 (IL-6), interferon-β (IFN-β), and inducible nitric oxide synthase (iNOS) to a much greater extent compared with EE. Taken together, supercritical carbon dioxide extraction is considered the optimal process for obtaining high IK content and anti-inflammatory activities in leaf extracts from the P. frutescens Britt. radiation mutant.

  9. Technique for Simultaneous Determination of [35S]Sulfide and [14C]Carbon Dioxide in Anaerobic Aqueous Samples †

    PubMed Central

    Taylor, Craig D.; Ljungdahl, Per O.; Molongoski, John J.

    1981-01-01

    A technique for the simultaneous determination of [35S]sulfide and [14C]carbon dioxide produced in anaerobic aqueous samples dual-labeled with [35S]sulfate and a 14C-organic substrate is described. The method involves the passive distillation of sulfide and carbon dioxide from an acidified water sample and their subsequent separation by selective chemical absorption. The recovery of sulfide was 93% for amounts ranging from 0.35 to 50 μmol; recovery of carbon dioxide was 99% in amounts up to 20 μmol. Within these delineated ranges of total sulfide and carbon dioxide, 1 nmol of [35S]sulfide and 7.5 nmol of [14C]carbon dioxide were separated and quantified. Correction factors were formulated for low levels of radioisotopic cross-contamination by sulfide, carbon dioxide, and volatile organic acids. The overall standard error of the method was ±4% for sulfide and ±6% for carbon dioxide. PMID:16345742

  10. Natural deep eutectic solvents (NADES) as green solvents for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Putri, Sylvania; Krisanti, Elsa; Nasruddin

    2017-03-01

    This study was conducted to determine the effectiveness of Natural Deep Eutectic Solvent (NADES), consisting of choline chloride and a hydrogen bonding donor (HBD) compound, in terms of carbon dioxide absorption. Solubility of carbon dioxide in NADES was found to be influenced HBD compound used and choline chloride to HBD ratio, carbon dioxide pressure, and contact time. HBD and choline/HBD ratios used were 1,2-propanediol (1:2), glycerol (1:2), and malic acid (1:1). The carbon dioxide absorption measurement was conducted using an apparatus that utilizes the volumetric method. Absorption curves were obtained up to pressures of 30 bar, showing a linear relationship between the amount absorbed and the final pressure of carbon dioxide. The choline and 1,2-propanediol eutectic mixture absorbs the highest amount of carbon dioxide, approaching 0.1 mole-fraction at 3.0 MPa and 50°C. We found that NADES ability to absorb carbon dioxide correlates with its polarity as tested using Nile Red as a solvatochromic probe.

  11. Interactions between CO2, minerals, and toxic ions: Implications for CO2 leakage from deep geological storage (Invited)

    NASA Astrophysics Data System (ADS)

    Renard, F.; Montes-Hernandez, G.

    2013-12-01

    The long-term injection of carbon dioxide into geological underground reservoirs may lead to leakage events that will enhance fluid-rock interactions and question the safety of these repositories. If injection of carbon dioxide into natural reservoirs has been shown to mobilize some species into the pore fluid, including heavy metals and other toxic ions, the detailed interactions remain still debated because two main processes could interact and modify fluid composition: on the one hand dissolution/precipitation reactions may release/incorporate trace elements, and on the other hand adsorption/desorption reactions on existing mineral surfaces may also mobilize or trap these elements. We analyze here, through laboratory experiments, a scenario of a carbon dioxide reservoir that leaks into a fresh water aquifer through a localized leakage zone such as a permeable fault zone localized in the caprock and enhance toxic ions mobilization. Our main goal is to evaluate the potential risks on potable water quality. In a series of experiments, we have injected carbon dioxide into a fresh water aquifer-like medium that contained carbonate and/or iron oxide particles, pure water, and various concentrations of trace elements (copper, arsenic, cadmium, and selenium, in various states of oxidation). This analogue and simplified medium has been chosen because it contains two minerals (calcite, goethite) widespread found in freshwater aquifers. The surface charge of these minerals may vary with pH and therefore control how trace elements are adsorbed or desorbed, depending on fluid composition. Our experiments show that these minerals could successfully prevent the remobilization of adsorbed Cu(II), Cd(II), Se(IV), and As(V) if carbon dioxide is intruded into a drinking water aquifer. Furthermore, a decrease in pH resulting from carbon dioxide intrusion could reactivate the adsorption of Se(IV) and As(V) if goethite and calcite are sufficiently available in the aquifer. Our results also suggest that adsorption of cadmium and copper could be promoted by calcite dissolution. These ions adsorbed on calcite are not remobilized when carbon dioxide is intruded into the system, even if calcite dissolution is intensified. On the other hand, arsenite As(III), significantly adsorbed on goethite, is partially remobilized by carbon dioxide intrusion. These results show that carbon dioxide may, in some case remobilize some toxic ions in the pore fluid, but the pH effect may also enhance adsorption of other toxic ione on calcite and goethite particles.

  12. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    NASA Astrophysics Data System (ADS)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  13. Alkali injection system with controlled CO.sub.2 /O.sub.2 ratios for combustion of coal

    DOEpatents

    Berry, Gregory F.

    1988-01-01

    A high temperature combustion process for an organic fuel containing sulfur n which the nitrogen of air is replaced by carbon dioxide for combination with oxygen with the ratio of CO.sub.2 /O.sub.2 being controlled to generate combustion temperatures above 2000 K. for a gas-gas reaction with SO.sub.2 and an alkali metal compound to produce a sulfate and in which a portion of the carbon-dioxide rich gas is recycled for mixing with oxygen and/or for injection as a cooling gas upstream from heating exchangers to limit fouling of the exchangers, with the remaining carbon-dioxide rich gas being available as a source of CO.sub.2 for oil recovery and other purposes.

  14. Homogeneous nucleation in supersaturated vapors of methane, ethane, and carbon dioxide predicted by brute force molecular dynamics.

    PubMed

    Horsch, Martin; Vrabec, Jadran; Bernreuther, Martin; Grottel, Sebastian; Reina, Guido; Wix, Andrea; Schaber, Karlheinz; Hasse, Hans

    2008-04-28

    Molecular dynamics (MD) simulation is applied to the condensation process of supersaturated vapors of methane, ethane, and carbon dioxide. Simulations of systems with up to a 10(6) particles were conducted with a massively parallel MD program. This leads to reliable statistics and makes nucleation rates down to the order of 10(30) m(-3) s(-1) accessible to the direct simulation approach. Simulation results are compared to the classical nucleation theory (CNT) as well as the modification of Laaksonen, Ford, and Kulmala (LFK) which introduces a size dependence of the specific surface energy. CNT describes the nucleation of ethane and carbon dioxide excellently over the entire studied temperature range, whereas LFK provides a better approach to methane at low temperatures.

  15. Plant growth modeling at the JSC variable pressure growth chamber - An application of experimental design

    NASA Technical Reports Server (NTRS)

    Miller, Adam M.; Edeen, Marybeth; Sirko, Robert J.

    1992-01-01

    This paper describes the approach and results of an effort to characterize plant growth under various environmental conditions at the Johnson Space Center variable pressure growth chamber. Using a field of applied mathematics and statistics known as design of experiments (DOE), we developed a test plan for varying environmental parameters during a lettuce growth experiment. The test plan was developed using a Box-Behnken approach to DOE. As a result of the experimental runs, we have developed empirical models of both the transpiration process and carbon dioxide assimilation for Waldman's Green lettuce over specified ranges of environmental parameters including carbon dioxide concentration, light intensity, dew-point temperature, and air velocity. This model also predicts transpiration and carbon dioxide assimilation for different ages of the plant canopy.

  16. The Mauna Loa carbon dioxide record: lessons for long-term Earth observations

    USGS Publications Warehouse

    Sundquist, Eric T.; Keeling, Ralph F.

    2009-01-01

    The Mauna Loa carbon dioxide record is an iconic symbol of the human capacity to alter the planet. Yet this record would not have been possible without the remarkable work of one man, Charles David Keeling. We describe three emergent themes that characterized his work: (1) his desire to study and understand the processes that control atmospheric CO2 and the global carbon cycle, (2) his campaign to identify and minimize systematic measurement error, and (3) his tenacious efforts to maintain continuous funding despite changing government priorities and institutions. In many ways, the story of the Mauna Loa record demonstrates that distinctions between research and “routine” measurements are not very useful in long-term monitoring of Earth properties and processes.

  17. Uranium dioxide electrolysis

    DOEpatents

    Willit, James L [Batavia, IL; Ackerman, John P [Prescott, AZ; Williamson, Mark A [Naperville, IL

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  18. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...

  19. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...

  20. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...

  1. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.

    PubMed

    Moreira, Diana; Pires, José C M

    2016-09-01

    Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Optimization of an Atmospheric Carbon Source for Extremophile Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Beaubien, Courtney

    This thesis examines the use of the moisture swing resin materials employed at the Center for Negative Carbon Emissions (CNCE) in order to provide carbon dioxide from ambient air to photobioreactors containing extremophile cyanobacteria cultured at the Arizona Center for Algae Technology and Innovation (AzCATI). For this purpose, a carbon dioxide feeding device was designed, built, and tested. The results indicate how much resin should be used with a given volume of algae medium: approximately 500 grams of resin can feed 1% CO2 at about three liters per minute to a ten liter medium of the Galdieria sulphuraria 5587.1 strain for one hour (equivalent to about 0.1 grams of carbon dioxide per hour per seven grams of algae). Using the resin device, the algae grew within their normal growth range: 0.096 grams of ash-free dry weight per liter over a six hour period. Future applications in which the resin-to-algae process can be utilized are discussed.

  3. Evaluating the UK's carbon budget using a dense network of tall-tower observations

    NASA Astrophysics Data System (ADS)

    White, E.; Rigby, M. L.; Manning, A.; Lunt, M. F.; Ganesan, A.; O'Doherty, S.; Stavert, A.; Stanley, K. M.; Williams, M. D.; Smallman, T. L.; Comyn-Platt, E.; Levy, P. E.

    2017-12-01

    The UK has committed to reducing greenhouse gas (GHG) emissions to 80% of 1990 levels by 2050. Evaluating the UK's GHG emissions, and in particular those of carbon dioxide, is imperative to the UK's ability to track progress towards these goals. Making top-down estimates of regional carbon dioxide emissions is challenging due to the rapid temporal variability in the biogenic flux, and the co-location of anthropogenic and biogenic sources and sinks. We present a hierarchical Bayesian inverse modelling framework, which is able to estimate a yearly total (anthropogenic and biogenic) carbon dioxide budget for the UK. Using observations from a high-density GHG monitoring network, combined with high temporal resolution prior information and a Lagrangian atmospheric transport model (NAME, developed by the UK Met Office), we derive a net positive flux for the UK of 0.39 Pg/yr in 2014. We will compare the outcome of inversions that used prior information from two different biosphere models, CARDAMOM and JULES. This comparison helps to understand more about the biogenic processes contributing to the UK's carbon dioxide budget, limitations with different modelling approaches and the sensitivity of the inversion framework to the choice of prior. A better understanding of how the biogenic flux changes throughout the year can, in turn, help to improve the UK's anthropogenic carbon dioxide inventory by identifying times in the year when the anthropogenic signal may be possible to detect.

  4. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of an...

  5. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of an...

  6. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of an...

  7. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...

  8. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...

  9. Influence of Oxygenated Compounds on Reaction Products in a Microwave Plasma Methane Pyrolysis Assembly for Post-Processing of Sabatier Methane

    NASA Technical Reports Server (NTRS)

    Mansell, J. Matthew; Abney, Morgan B.; Miller, Lee A.

    2011-01-01

    The state-of-the-art Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS) in April 2010. The system is designed to accept carbon dioxide from the Carbon Dioxide Removal Assembly and hydrogen from the Oxygen Generation Assembly. The two gases are reacted in the CRA in a Sabatier reactor to produce water and methane. Venting of methane results in an oxygen resupply requirement of about 378 lbs per crew member per year. If the oxygen is supplied as water, the total weight for resupply is about 476 lb per crew member per year. For long-term missions beyond low Earth orbit, during which resupply capabilities will be further limited, recovery of hydrogen from methane is highly desirable. For this purpose, NASA is pursuing development of a Plasma Pyrolysis Assembly (PPA) capable of recovering hydrogen from methane. Under certain conditions, water vapor and carbon dioxide (nominally intended to be separated from the CRA outlet stream) may be present in the PPA feed stream. Thus, testing was conducted in 2010 to determine the effect of these "oxygenated" compounds on PPA performance, particularly the effect of inlet carbon dioxide and water variations on the PPA product stream. This paper discusses the test set-up, analysis, and results of this testing

  10. Influence of Oxygenated Compounds on Reaction Products in a Microwave Plasma Methane Pyrolysis Assembly for Post-Processing of Sabatier Methane

    NASA Technical Reports Server (NTRS)

    Mansell, J. Matthew; Abney, Morgan B.

    2012-01-01

    The state-of-the-art Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS) in April 2010. The system is designed to accept carbon dioxide from the Carbon Dioxide Removal Assembly and hydrogen from the Oxygen Generation Assembly. The two gases are reacted in the CRA in a Sabatier reactor to produce water and methane. Venting of methane results in an oxygen resupply requirement of about 378 lbs per crew member per year. If the oxygen is supplied as water, the total weight for resupply is about 476 lb per crew member per year. For long-term missions beyond low Earth orbit, during which resupply capabilities will be further limited, recovery of hydrogen from methane is highly desirable. For this purpose, NASA is pursuing development of a Plasma Pyrolysis Assembly (PPA) capable of recovering hydrogen from methane. Under certain conditions, water vapor and carbon dioxide (nominally intended to be separated from the CRA outlet stream) may be present in the PPA feed stream. Thus, testing was conducted in 2010 to determine the effect of these oxygenated compounds on PPA performance, particularly the effect of inlet carbon dioxide and water variations on the PPA product stream. This paper discusses the test set-up, analysis, and results of this testing.

  11. Investigation of the microbial metabolism of carbon dioxide and hydrogen in the kangaroo foregut by stable isotope probing

    PubMed Central

    Godwin, Scott; Kang, Alicia; Gulino, Lisa-Maree; Manefield, Mike; Gutierrez-Zamora, Maria-Luisa; Kienzle, Marco; Ouwerkerk, Diane; Dawson, Kerri; Klieve, Athol V

    2014-01-01

    Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. PMID:24621520

  12. Investigation of the microbial metabolism of carbon dioxide and hydrogen in the kangaroo foregut by stable isotope probing.

    PubMed

    Godwin, Scott; Kang, Alicia; Gulino, Lisa-Maree; Manefield, Mike; Gutierrez-Zamora, Maria-Luisa; Kienzle, Marco; Ouwerkerk, Diane; Dawson, Kerri; Klieve, Athol V

    2014-09-01

    Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach.

  13. U.S. Energy-Related Carbon Dioxide Emissions

    EIA Publications

    2017-01-01

    U.S. Energy Information Administration releases its online analysis of 2016 energy-related carbon dioxide emissions today. It indicates U.S. carbon dioxide emissions from the consumption of fossil fuels were 5,170 million metric tons carbon dioxide in 2016, a decrease of 1.7 percent from the 2015 level. Energy-related carbon dioxide emissions have declined in six of the last ten years. This analysis is based on data contained in the August 2017 Monthly Energy Review.

  14. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    PubMed Central

    Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.

    2015-01-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10−3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10−7, nO2/nN = 5.39 × 10−5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. PMID:26674957

  15. Synthesis of oxazolidine-2,4-diones by a tandem phosphorus-mediated carboxylative condensation-cyclization reaction using atmospheric carbon dioxide.

    PubMed

    Zhang, Wen-Zhen; Xia, Tian; Yang, Xu-Tong; Lu, Xiao-Bing

    2015-04-11

    The oxazolidine-2,4-dione motif is found frequently in biologically important compounds. A tandem phosphorus-mediated carboxylative condensation of primary amines and α-ketoesters/base-catalyzed cyclization reaction have been developed. These processes provide a novel and convenient access to various oxazolidine-2,4-diones in a one-pot fashion using atmospheric carbon dioxide and readily available substrates under very mild and transition-metal-free conditions.

  16. New study on the correlation between carbon dioxide concentration in the environment and radon monitor devices.

    PubMed

    Shahrokhi, A; Burghele, B D; Fábián, F; Kovács, T

    2015-12-01

    The influence of high geogenic carbon dioxide concentrations on monitoring devices might present a significant challenge to the measurement of radon concentrations in environments with a high level of carbon dioxide concentration such as volcano sites, mofettes, caves, etc. In this study, the influence of carbon dioxide concentration on several different types of radon monitor devices - including Alpha Spectrometry (Sarad RTM 2200, EQF 3220, RAD7), Ionizing Chamber (AlphaGUARD PQ2000 PRO) and Active Cell (Active scintillation cell, Pylon 300A) - was examined to represent new aspects of radon measuring in environments with carbon dioxide. In light of the results, all measuring devices were exposed to variable conditions affected by carbon dioxide concentration, except for the AlphaGUARD, which was kept in a steady state throughout the experiment. It was observed that alpha spectroscopy devices were affected by carbon dioxide, since measured radon concentrations decreased in the presence of 70% and 90% carbon dioxide concentrations by 26.5 ± 2% and 14.5 ± 2.5% for EQF 3220, and 32 ± 2% and 35.5 ± 2% for RTM 2200. However, the ionizing chamber instrument was unaffected by changes in carbon dioxide concentration. It was determined that the RAD7 performed relatively inefficiently in the presence of carbon dioxide concentrations higher than 67% by an overall efficiency factor of approximately 0.52, confirming that it is not an admissible radon monitor instrument in environments with high carbon dioxide concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Utilizing Diffusion Theory to predict carbon dioxide concentration in an indoor environment

    NASA Astrophysics Data System (ADS)

    Kramer, Andrew R.

    This research details a new method of relating sources of carbon dioxide to carbon dioxide concentration in a room operating in a reduced ventilation mode by utilizing Diffusion Theory. The theoretical basis of this research involved solving Fick's Second Law of Diffusion in spherical coordinates for a source of carbon dioxide flowing at a constant rate and located in the center of an impermeable spherical boundary. The solution was developed using a Laplace Transformation. A spherical diffusion test chamber was constructed and used to validate and benchmark the developed theory. The method was benchmarked by using Dispersion Coefficients for large carbon dioxide flow rates due to diffusion induced convection. The theoretical model was adapted to model a room operating with restricted ventilation in the presence of a known, constant source of carbon dioxide. The room was modeled as a sphere of volume equal to the room and utilized a Dispersion Coefficient that is consistent with published values. The developed Diffusion Model successfully predicted the spatial concentration of carbon dioxide in a room operating in a reduced ventilation mode in the presence of a source of carbon dioxide. The flow rates of carbon dioxide that were used in the room are comparable to the average flow rate of carbon dioxide from a person during quiet breathing, also known as the Tidal Breathing. This indicates the Diffusion Model developed from this research has the potential to correlate carbon dioxide concentration with static occupancy levels which can lead to energy savings through a reduction in air exchange rates when low occupancy is detected.

  18. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Technical Reports Server (NTRS)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  19. Capacitance-Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation.

    PubMed

    Lamb, Katie J; Dowsett, Mark R; Chatzipanagis, Konstantinos; Scullion, Zhan Wei; Kröger, Roland; Lee, James D; Aguiar, Pedro M; North, Michael; Parkin, Alison

    2018-01-10

    An electrochemical cell comprising a novel dual-component graphite and Earth-crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbonate. Simultaneous oxidation of the anodic metal generated cations, which reacted with the hydrogen carbonate to give mineralised carbon dioxide. Whilst conventional electrochemical carbon dioxide reduction requires hydrogen, this cell generates hydrogen at the cathode. Carbon capture can be achieved in a highly sustainable manner using scrap metal within the anode, seawater as the electrolyte, an industrially relevant gas stream and a solar panel as an effective zero-carbon energy source. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally...

  1. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Complete Heavy-Duty Vehicles; Test Procedures § 86.124-78 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter the NDIR carbon dioxide analyzer shall be calibrated: (a...

  2. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon dioxide...

  3. 21 CFR 884.1300 - Uterotubal carbon dioxide insufflator and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Uterotubal carbon dioxide insufflator and... Gynecological Diagnostic Devices § 884.1300 Uterotubal carbon dioxide insufflator and accessories. (a) Identification. A uterotubal carbon dioxide insufflator and accessories is a device used to test the patency...

  4. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted to...

  5. 46 CFR 95.15-60 - Odorizing units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-60 Odorizing units. Each carbon dioxide... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may migrate. “Altered...

  6. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally...

  7. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally...

  8. 46 CFR 76.15-60 - Odorizing units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Carbon Dioxide Extinguishing Systems, Details § 76.15-60 Odorizing units. Each carbon dioxide... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may migrate. “Altered...

  9. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted to...

  10. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted to...

  11. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted to...

  12. 46 CFR 193.15-17 - Odorizing units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-17 Odorizing units. Each carbon dioxide extinguishing system installed or altered after July 9, 2013, must have an approved... carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may...

  13. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Carbon dioxide analyzer calibration... Complete Heavy-Duty Vehicles; Test Procedures § 86.124-78 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter the NDIR carbon dioxide analyzer shall be calibrated: (a...

  14. 46 CFR 193.15-17 - Odorizing units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-17 Odorizing units. Each carbon dioxide extinguishing system installed or altered after July 9, 2013, must have an approved... carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may...

  15. 46 CFR 76.15-60 - Odorizing units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Carbon Dioxide Extinguishing Systems, Details § 76.15-60 Odorizing units. Each carbon dioxide... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may migrate. “Altered...

  16. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally...

  17. 21 CFR 884.1300 - Uterotubal carbon dioxide insufflator and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Uterotubal carbon dioxide insufflator and... Gynecological Diagnostic Devices § 884.1300 Uterotubal carbon dioxide insufflator and accessories. (a) Identification. A uterotubal carbon dioxide insufflator and accessories is a device used to test the patency...

  18. 46 CFR 76.15-60 - Odorizing units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Carbon Dioxide Extinguishing Systems, Details § 76.15-60 Odorizing units. Each carbon dioxide... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may migrate. “Altered...

  19. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration... Complete Heavy-Duty Vehicles; Test Procedures § 86.124-78 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter the NDIR carbon dioxide analyzer shall be calibrated: (a...

  20. 21 CFR 884.1300 - Uterotubal carbon dioxide insufflator and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Uterotubal carbon dioxide insufflator and... Gynecological Diagnostic Devices § 884.1300 Uterotubal carbon dioxide insufflator and accessories. (a) Identification. A uterotubal carbon dioxide insufflator and accessories is a device used to test the patency...

  1. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted to... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Carbon dioxide record. 24...

  2. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS...

  3. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as...

  4. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a...

  5. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as...

  6. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a...

  7. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as...

  8. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a...

  9. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as...

  10. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite

    PubMed Central

    Chang, Betty Yea Sze; Huang, Nay Ming; An’amt, Mohd Nor; Marlinda, Abdul Rahman; Norazriena, Yusoff; Muhamad, Muhamad Rasat; Harrison, Ian; Lim, Hong Ngee; Chia, Chin Hua

    2012-01-01

    A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte. PMID:22848166

  11. Catalytic processes in the atmospheres of earth and Venus

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Yung, Y. L.

    1982-01-01

    Photochemical processes in planetary atmospheres are strongly influenced by catalytic effects of minor constituents. Catalytic cycles in the atmospheres of Earth and Venus are closely related. For example, chlorine oxides (ClOx) act as catalysts in the two atmospheres. On earth, they serve to convert odd oxygen (atomic oxygen and ozone) to molecular oxygen. On Venus they have a similar effect, but in addition they accelerate the reactions of atomic and molecular oxygen with carbon monoxide. The latter process occurs by a unique combination of ClOx catalysis and sulful dioxide photosensitization. The mechanism provides an explanation for the very low extent of carbon dioxide decomposition by sunlight in the Venus atmosphere.

  12. Transition Organometallic Heterobimettalic Microns-Carbon Dioxide and Microns-Format Complexes in Homogeneous Carbon Dioxide Fixation

    DTIC Science & Technology

    1992-08-12

    AD-A254 538 OFFICE OF NAVAL RESEARCH FINAL REPORT FCR Contract N00014-87-K-0465 R&T Code 413j006 "Transition Organometallic Heterobimetallic ix...ransition Organometallic Heterobimetallic P-Carbon Dioxide and p-FormateComplexes in Homogeneous Carbon Dioxide Fixation 12. PERSONAL AUTHOR(S) Alan R...J. L. Shibley, and A. R. Cutler, J. Organomet. Chem. 1989,378, 421.* "Characterization of the Heterobimetallic ±(r011-C: T12 -O,O’) Carbon Dioxide

  13. Effect of dissolved carbon dioxide on penicillin fermentations: mycelial growth and penicillin production. [Penicillium chrysogenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, C.S.; Smith, M.D.

    The effect of dissolved carbon dioxide on the specific growth rate and the penicillin production rate of Penicillium chrysogenum was examined experimentally. The dissolved carbon dioxide was found to inhibit the specific growth rate and the penicillin production rate when the aerated submerged penicillin fermentation was exposed to influent gases of 12.6 and 20% carbon dioxide, respectively. Upon exposure to influent gases of 3 and 5% carbon dioxide, no pronounced metabolic inhibition was noted.

  14. Carbonation of Clay Minerals Exposed to scCO2/Water at 200 degrees and 250 degrees C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, T.; Ecker, L.; Gill, S.

    2010-11-01

    To clarify the mechanisms of carbonation of clay minerals, such as bentonite, kaolinite, and soft clay, we exposed them to supercritical carbon dioxide (scCO2)/water at temperatures of 200 and 250 C and pressures of 1500 and 2000 psi for 72- and 107-hours. Bentonite, comprising three crystalline phases, montmorillonite (MMT), anorthoclase-type albite, and quartz was susceptible to reactions with ionic carbonic acid yielded by the interactions between scCO2 and water, particularly MMT and anorthoclase-type albite phases. For MMT, the cation-exchangeable ions, such as Na+ and Ca2+, present in its basal interplanar space, were replaced by proton, H+, from ionic carbonic acid;more » thereafter, the cations leaching from MMT directly reacted with CO32- as a counter ion of H+ to form carbonate compounds. Such in-situ carbonation process in basal space caused the shrinkage and breakage of the spacing structure within MMT. In contrast, the wet carbonation of anorthoclase-type albite, categorized as rock minerals, entailed the formation of three amorphous by-products, such as carbonates, kaolinite-like compounds, and silicon dioxide. Together, these two different carbonations caused the disintegration and corruption of bentonite. Kaolinite clay containing the amorphous carbonates and silicon dioxide was inert to wet carbonation. We noted only a gain in weight due to its water uptake, suggesting that kaolinite-like by-products generated by the wet carbonation of rock minerals might remain unchanged even during extended exposure. Soft clay consisting of two crystalline phases, dolomite and silicon dioxide, also was unaltered by wet carbonation, despite the uptake of water.« less

  15. Carbon dioxide stripping in aquaculture. part 1: terminology and reporting

    USGS Publications Warehouse

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The removal of carbon dioxide gas in aquacultural systems is much more complex than for oxygen or nitrogen gas because of liquid reactions of carbon dioxide and their kinetics. Almost all published carbon dioxide removal information for aquaculture is based on the apparent removal value after the CO2(aq) + HOH ⇔ H2CO3 reaction has reached equilibrium. The true carbon dioxide removal is larger than the apparent value, especially for high alkalinities and seawater. For low alkalinity freshwaters (<2000 μeq/kg), the difference between the true and apparent removal is small and can be ignored for many applications. Analytical and reporting standards are recommended to improve our understanding of carbon dioxide removal.

  16. Organocatalyzed Domino [3+2] Cycloaddition/Payne-Type Rearrangement using Carbon Dioxide and Epoxy Alcohols.

    PubMed

    Kleij, Arjan Willem; Sopeña, Sergio; Cozzolino, Mariachiara; Escudero-Adán, Eduardo C; Martínez Belmonte, Marta; Maquilón, Cristina

    2018-05-09

    An unprecedented organocatalytic approach towards highly substituted cyclic carbonates from tri- and tetra-substituted oxiranes and carbon dioxide has been developed. The protocol involves the use of a simple and cheap superbase under mild, additive- and metal-free conditions towards the initial formation of a less substituted carbonate product that equilibrates to a tri- or even tetra-substituted cyclic carbonate under thermodynamic control. The latter are conveniently trapped in situ providing overall a new domino process for synthetically elusive heterocyclic scaffolds. Control experiments provide a rationale for the observed cascade reactions, which demonstrate high similarity with the well-known Payne rearrangement of epoxy alcohols. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management.

    PubMed

    Tseng, Shih-Chang; Hung, Shiu-Wan

    2014-01-15

    Incorporating sustainability into supply chain management has become a critical issue driven by pressures from governments, customers, and various stakeholder groups over the past decade. This study proposes a strategic decision-making model considering both the operational costs and social costs caused by the carbon dioxide emissions from operating such a supply chain network for sustainable supply chain management. This model was used to evaluate carbon dioxide emissions and operational costs under different scenarios in an apparel manufacturing supply chain network. The results showed that the higher the social cost rate of carbon dioxide emissions, the lower the amount of the emission of carbon dioxide. The results also suggested that a legislation that forces the enterprises to bear the social costs of carbon dioxide emissions resulting from their economic activities is an effective approach to reducing carbon dioxide emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, A.G.; Ho, C.S.

    Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase ofmore » 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur.« less

  19. The Formation of Ethane from Carbon Dioxide under Cold Plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-ling; Zhang, Lin; Dai, Bin; Gong, Wei-min; Liu, Chang-hou

    2001-04-01

    Pulsed-corona plasma has been used as a new method for ethane dehydrogenation at low temperature and normal pressure using carbon dioxide as an oxidant in this paper. The effect of carbon dioxide content in the feed, power input, and flow rate of the reactants on the ethane dehydrogenation has been investigated. The experimental results show that the conversion of ethane increases with the increase in the amount of carbon dioxide in the feed. The yield of ethylene and acetylene decreases with the increase in the yield of carbon monoxide, indicating that the increased carbon dioxide leads to the part of ethylene and acetylene being oxidized to carbon monoxide. Power input is primarily an electrical parameter in pulsed-corona plasma, which plays an important role in reactant conversion and product formation. When the power input reaches 16 W, ethane conversion is 41.0% and carbon dioxide conversion is 26.3%. The total yield of ethylene and acetylene is 15.6%. The reduced flow rate of feed improves the conversion of ethane, carbon dioxide and the yield of acetylene, and induces carbon deposit as well.

  20. 21 CFR 868.2480 - Cutaneous carbon dioxide (PcCO2) monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cutaneous carbon dioxide (PcCO2) monitor. 868.2480... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2480 Cutaneous carbon dioxide (PcCO2) monitor. (a) Identification. A cutaneous carbon dioxide (PcCO2) monitor is a noninvasive heated...

  1. 40 CFR 180.1049 - Carbon dioxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Carbon dioxide; exemption from the... Exemptions From Tolerances § 180.1049 Carbon dioxide; exemption from the requirement of a tolerance. The insecticide carbon dioxide is exempted from the requirement of a tolerance when used after harvest in modified...

  2. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in a...

  3. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in a...

  4. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use are...

  5. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine...

  6. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine...

  7. 40 CFR 180.1049 - Carbon dioxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Carbon dioxide; exemption from the... Exemptions From Tolerances § 180.1049 Carbon dioxide; exemption from the requirement of a tolerance. The insecticide carbon dioxide is exempted from the requirement of a tolerance when used after harvest in modified...

  8. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use are...

  9. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in a...

  10. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine...

  11. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  12. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  13. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  14. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  15. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a devic...

  16. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide...

  17. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a)...

  18. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide...

  19. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a)...

  20. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868.1400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer...

  1. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a) Except as provided in...

  2. 46 CFR 108.627 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM...

  3. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a)...

  4. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a)...

  5. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide...

  6. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorbent. 868.5300 Section 868.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a...

  7. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorbent. 868.5300 Section 868.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a...

  8. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a devic...

  9. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine...

  10. Effect of Carbon Dioxide on Testing of Susceptibilities of Respiratory Tract Pathogens to Macrolide and Azalide Antimicrobial Agents

    PubMed Central

    Johnson, M. M.; Hill, S. L.; Piddock, Laura J. V.

    1999-01-01

    The in vitro activities of erythromycin, azithromycin, and clarithromycin against 178 clinical isolates from the lower respiratory tract of patients with chronic obstructive pulmonary disease were determined by an agar dilution method. The plates were incubated in air alone or in 5% carbon dioxide. The MICs measured in air alone were lower for most isolates than those measured in 5% carbon dioxide, illustrating the “pH effect” of incubation in carbon dioxide. Testing of isolates in 5% carbon dioxide on pH-adjusted medium (pH 8.4) resulted in MICs of one or two doubling dilutions lower than those obtained on agar with a neutral pH. A bioassay of the three agents incubated in air and in 5% carbon dioxide resulted in a significant loss of activity of all three agents in the carbon dioxide-enriched atmosphere. However, this loss-of-activity effect was significantly reduced when the bioassay medium was adjusted to pH 8.4 prior to incubation in 5% carbon dioxide. PMID:10428903

  11. Acoustic and Hydrodynamic Cavitations for Nano CaCO3 Synthesis

    NASA Astrophysics Data System (ADS)

    Sonawane, Shirish H.; Kulkarni, Ravindra D.

    Calcium carbonate is a common inorganic compound known as limestone. Calcium carbonate has many applications in industries such as medicine, agriculture, paint plastic and surface coatings etc. The vast majority of calcium carbonate used in industry is extracted by mining process. Pure calcium carbonate (e.g. for food or pharmaceutical use), is synthesized by passing carbon dioxide into a solution of calcium hydroxide slurry. In this process calcium carbonate precipitates out, and this grade of product is referred to as precipitate calcium carbonate (abbreviated as PCC).

  12. Elevated atmospheric carbon dioxide concentration affects interactions between Spodoptera exigua (Lepidoptera: Noctuidae) larvae and two host plant species outdoors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caulfield, F.; Bunce, J.A.

    1994-08-01

    Beet armyworm, Spodoptera exigua (Huebner), larvae were placed on sugarbeet (Beta vulgaris L.) and pigweed (Amaranthus hybridus L.) plants in outdoor chambers in which the plants were growing at either the ambient ([approximately] 350 [mu]l liter[sup [minus]1]) or ambient plus 350 [mu]l liter[sup [minus]1] ([approximately] 700 [mu]l liter[sup [minus]1]) carbon dioxide concentration. A series of experiments was performed to determine if larvae reduced plant growth differently at the two carbon dioxide concentrations in either species and if the insect growth or survival differed with carbon dioxide concentration. Leaf nitrogen, water, starch, and soluble carbohydrate contents were measured to assess carbonmore » dioxide concentration effects on leaf quality. Insect feeding significantly reduced plant growth in sugarbeet plants at 350 [mu]l liter[sup [minus]1] but not at 700 [mu]l liter[sup [minus]1] nor in pigweed at either carbon dioxide concentration. Larval survival was greater on sugarbeet plants at the elevated carbon dioxide concentration. Increased survival occurred only if the insects were at the elevated carbon dioxide concentration and consumed leaf material grown at the elevated concentration. Leaf quality was only marginally affected by growth at elevated carbon dioxide concentration in these experiments. The results indicate that in designing experiments to predict effects of elevated atmospheric carbon dioxide concentrations on plant-insect interactions, both plants and insects should be exposed to the experimental carbon dioxide concentrations, as well as to as realistic environmental conditions as possible.« less

  13. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon monoxide and carbon dioxide... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon...

  14. Mechanistic modelling of Middle Eocene atmospheric carbon dioxide using fossil plant material

    NASA Astrophysics Data System (ADS)

    Grein, Michaela; Roth-Nebelsick, Anita; Wilde, Volker; Konrad, Wilfried; Utescher, Torsten

    2010-05-01

    Various proxies (such as pedogenic carbonates, boron isotopes or phytoplankton) and geochemical models were applied in order to reconstruct palaeoatmospheric carbon dioxide, partially providing conflicting results. Another promising proxy is the frequency of stomata (pores on the leaf surface used for gaseous exchange). In this project, fossil plant material from the Messel Pit (Hesse, Germany) is used to reconstruct atmospheric carbon dioxide concentration in the Middle Eocene by analyzing stomatal density. We applied the novel mechanistic-theoretical approach of Konrad et al. (2008) which provides a quantitative derivation of the stomatal density response (number of stomata per leaf area) to varying atmospheric carbon dioxide concentration. The model couples 1) C3-photosynthesis, 2) the process of diffusion and 3) an optimisation principle providing maximum photosynthesis (via carbon dioxide uptake) and minimum water loss (via stomatal transpiration). These three sub-models also include data of the palaeoenvironment (temperature, water availability, wind velocity, atmospheric humidity, precipitation) and anatomy of leaf and stoma (depth, length and width of stomatal porus, thickness of assimilation tissue, leaf length). In order to calculate curves of stomatal density as a function of atmospheric carbon dioxide concentration, various biochemical parameters have to be borrowed from extant representatives. The necessary palaeoclimate data are reconstructed from the whole Messel flora using Leaf Margin Analysis (LMA) and the Coexistence Approach (CA). In order to obtain a significant result, we selected three species from which a large number of well-preserved leaves is available (at least 20 leaves per species). Palaeoclimate calculations for the Middle Eocene Messel Pit indicate a warm and humid climate with mean annual temperature of approximately 22°C, up to 2540 mm mean annual precipitation and the absence of extended periods of drought. Mean relative air humidity was probably rather high, up to 77%. The combined results of the three selected plant taxa indicate values for atmospheric carbon dioxide concentration between 700 and 1100 ppm (probably about 900 ppm). Reference: Konrad, W., Roth-Nebelsick, A., Grein, M. (2008). Modelling of stomatal density response to atmospheric CO2. Journal of Theoretical Biology 253(4): 638-658.

  15. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    PubMed Central

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-01-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290

  16. Lignin-based microporous materials as selective adsorbents for carbon dioxide separation.

    PubMed

    Meng, Qing Bo; Weber, Jens

    2014-12-01

    Suitable solid adsorbents are demanded for carbon capture and storage (CCS) processes. In this work, a novel microporous polymer is developed by hypercrosslinking of organosolv lignin, which is a renewable resource. Reaction with formaldehyde dimethyl acetal (FDA) via Friedel-Crafts reaction gives microporous networks, with moderate capacity of carbon dioxide but excellent selectivity towards CO2 /N2 mixture as predicted on the basis of ideal adsorption-solution theory (IAST). Pyrolysis of pure organosolv lignin results in microporous carbon powders, while pyrolysis of hypercrosslinked organosolv lignin yields shape-persistent materials with increased CO2 capacity while maintaining very good selectivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Study on Al2O3 extraction from activated coal gangue under different calcination atmospheres

    NASA Astrophysics Data System (ADS)

    Dong, Ling; Liang, Xinxing; Song, Qiang; Gao, Gewu; Song, Lihua; Shu, Yuanfeng; Shu, Xinqian

    2017-12-01

    Coal gangue was calcinated under air, nitrogen, carbon dioxide, air-hydrogen, and hydrogen atmospheres. The effects of different calcination temperatures and atmospheres on the mineral composition of activated coal gangue were investigated by X-ray diffraction. Moreover, the acid leaching kinetics of aluminum oxide from coal gangue was investigated with sulfuric acid. It showed that the air atmosphere promoted kaolinite decomposition during coal gangue calcination. The hydrogen atmosphere promoted the activation and decomposition of kaolinite at reaction temperatures exceeding 650°C. The carbon dioxide atmosphere eliminated the influence of residual carbon on coal gangue. When the ratio of acid/coal gangue was 1.5 and reaction temperature was 650°C, the sulfuric acid leaching rate under air, air-hydrogen, carbon dioxide, hydrogen and nitrogen atmospheres were 93.66%, 90.90%, 84.06%, 81.91% and 77.54% respectively. The acid leaching reaction process conformed to unreacted shrinking core model of particle unchanged, and was controlled by the interfacial chemical reaction. The reaction kinetic equation for the leaching process was 1-(1-x)1/3=kt with an apparent activation energy of 48.97 kJ/mol.

  18. High Temperature Raman Spectroscopy Study of the Conversion of Formate into Oxalate: Search for the Elusive CO 2 2 - Intermediate

    NASA Astrophysics Data System (ADS)

    Ryan, Charles; Mead, Anna; Lakkaraju, Prasad; Kaczur, Jerry; Bennett, Christopher; Dobbins, Tabbetha

    Research on conversion of carbon dioxide into chemicals and fuels has the potential to address three problems of global relevance. (a) By removing carbon dioxide from the atmosphere, we are able to reduce the amount of greenhouse gases in the atmosphere, (b) by converting carbon dioxide into fuels, we are providing pathways for renewable energy sources, (c) by converting carbon dioxide into C2 and higher order compounds, and we are able to generate valuable precursors for organic synthesis. Formate salts are formed by the electrochemical reduction of carbon dioxide in aqueous media. However, in order to increase the utilization of carbon dioxide, methods need to be developed for the conversion of formate into compounds containing two carbon atoms such as oxalate or oxalic acid. Recently, we examined the thermal conversion of sodium formate into sodium oxalate utilizing a hydride ion catalyst. The proposed mechanism for this reaction involves the carbon dioxide dianion. Currently at NASA Goddard Space Flight Center.

  19. Oxygen and Carbon Dioxide Fluxes from Barley Shoots Depend on Nitrate Assimilation 1

    PubMed Central

    Bloom, Arnold J.; Caldwell, Richard M.; Finazzo, John; Warner, Robert L.; Weissbart, Joseph

    1989-01-01

    A custom oxygen analyzer in conjunction with an infrared carbon dioxide analyzer and humidity sensors permitted simultaneous measurements of oxygen, carbon dioxide, and water vapor fluxes from the shoots of intact barley plants (Hordeum vulgare L. cv Steptoe). The oxygen analyzer is based on a calciazirconium sensor and can resolve concentration differences to within 2 microliters per liter against the normal background of 210,000 microliters per liter. In wild-type plants receiving ammonium as their sole nitrogen source or in nitrate reductase-deficient mutants, photosynthetic and respiratory fluxes of oxygen equaled those of carbon dioxide. By contrast, wild-type plants exposed to nitrate had unequal oxygen and carbon dioxide fluxes: oxygen evolution at high light exceeded carbon dioxide consumption by 26% and carbon dioxide evolution in the dark exceeded oxygen consumption by 25%. These results indicate that a substantial portion of photosynthetic electron transport or respiration generates reductant for nitrate assimilation rather than for carbon fixation or mitochondrial electron transport. PMID:16667024

  20. The influence of deep-seabed CO2 sequestration on small metazoan (meiofaunal) viability and community structure: final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thistle, D

    2008-09-30

    Since the industrial revolution, the burning of fossil fuel has produced carbon dioxide at an increasing rate. Present atmospheric concentration is about ~1.5 times the preindustrial level and is rising. Because carbon dioxide is a greenhouse gas, its increased concentration in the atmosphere is thought to be a cause of global warming. If so, the rate of global warming could be slowed if industrial carbon dioxide were not released into the atmosphere. One suggestion has been to sequester it in the deep ocean, but theory predicts that deep-sea species will be intolerant of the increased concentrations of carbon dioxide andmore » the increased acidity it would cause. The aim of our research was to test for consequences of carbon dioxide sequestration on deep-sea, sediment-dwelling meiofauna. Recent technical advances allowed us to test for effects in situ at depths proposed for sequestration. The basic experimental unit was an open-topped container into which we pumped ~20 L of liquid carbon dioxide. The liquid carbon dioxide mixed with near-bottom sea water, which produced carbon dioxide-rich sea water that flowed out over the near-by seabed. We did 30-day experiments at several locations and with different numbers of carbon dioxide-filled containers. Harpacticoid copepods (Crustacea) were our test taxon. In an experiment we did during a previous grant period, we found that large numbers of individuals exposed to carbon dioxide-rich sea water had been killed (Thistle et al. 2004). During the present grant period, we analyzed the species-level data in greater detail and discovered that, although individuals of many species had been killed by exposure to carbon dioxide-rich sea water, individuals of some species had not (Thistle et al. 2005). This result suggests that seabed sequestration of carbon dioxide will not just reduce the abundance of the meiofauna but will change the composition of the community. In another experiment, we found that some harpacticoid species swim away from an advancing front of carbon dioxide-rich sea water (Thistle et al. 2007). This result demonstrates a second way that deep-sea meiofauna react negatively to carbon dioxide-rich sea water. In summary, we used in situ experiments to show that carbon dioxide-rich sea water triggers an escape response in some harpacticoid species. It kills most individuals of most harpacticoid species that do not flee, but a few species seem to be unaffected. Proposals to reduce global warming by sequestering industrial carbon dioxide in the deep ocean should take note of these environmental consequences when pros and cons are weighed.« less

  1. Empirical Modeling of Nanoscale Dynamics using Solution Mapping

    DTIC Science & Technology

    2010-02-27

    high performance liquid chromatography (HPLC). Journal of Supercritical Fluids , 44(2):139–147, 2008. 14 30 40 50 60 70 80 90 100 110 120 0 0.5 1 1.5...dioxide. Journal of Supercritical Fluids , 41(2):179–186, 2007. [3] O. Aschenbrenner, N. Dahmen, K. Schaber, and E. Dinjus. Adsorption of dimethyl(1,5...carbon nanotubes in a supercritical carbon dioxide process. The goal is to predict the time-evolution of the nanoparticle size distribution, as well

  2. Techniques for the conversion to carbon dioxide of oxygen from dissolved sulfate in thermal waters

    USGS Publications Warehouse

    Nehring, N.L.; Bowen, P.A.; Truesdell, A.H.

    1977-01-01

    The fractionation of oxygen isotopes between dissolved sulfate ions and water provides a useful geothermometer for geothermal waters. The oxygen isotope composition of dissolved sulfate may also be used to indicate the source of the sulfate and processes of formation. The methods described here for separation, purification and reduction of sulfate to prepare carbon dioxide for mass spectrometric analysis are modifications of methods by Rafter (1967), Mizutani (1971), Sakai and Krouse (1971), and Mizutani and Rafter (1969). ?? 1976.

  3. Some recent developments in spacecraft environmental control/life support subsystems

    NASA Technical Reports Server (NTRS)

    Gillen, R. J.; Olcott, T. M.

    1974-01-01

    The subsystems considered include a flash evaporator for heat rejection, a regenerable carbon dioxide and humidity control subsystem, an iodinating subsystem for potable water, a cabin contaminant control subsystem, and a wet oxidation subsystem for processing spacecraft wastes. The flash evaporator discussed is a simple unit which efficiently controls life support system temperatures over a wide range of heat loads. For certain advanced spacecraft applications the control of cabin carbon dioxide and humidity can be successfully achieved by a regenerable solid amine subsystem.

  4. Manufacturing Methods and Technology (MM&T) program. 10.6 micrometer carbon dioxide TEA (Transverely Excited Atmospheric) lasers

    NASA Astrophysics Data System (ADS)

    Luck, C. F.

    1983-06-01

    This report documents the efforts of Raytheon Company to conduct a manufacturing methods and technology (MM&T) program for 10.6 micrometer carbon dioxide TEA lasers. A set of laser parameters is given and a conforming tube design is described. Results of thermal and mechanical stress analyses are detailed along with a procedure for assembling and testing the laser tube. Also provided are purchase specifications for optics and process specifications for some of the essential operations.

  5. Laboratory study of adsorption and deliquescence on the surface of Mars

    NASA Astrophysics Data System (ADS)

    Nikolakakos, George; Whiteway, James A.

    2018-07-01

    A sample of the zeolitic mineral chabazite was subjected to a range of water vapor pressures and temperatures found on present day Mars. Laser Raman scattering was applied to detect the relative amounts of water and carbon dioxide adsorbed by the sample. Results show that zeolites are capable of adsorbing water from the atmosphere on diurnal time scales and that Raman scattering spectroscopy provides a promising method for detecting this process during a landed mission. When the water vapor pressure and temperature were sufficiently low, the zeolite sample also adsorbed carbon dioxide, resulting in the simultaneous adsorption of water and carbon dioxide on the surface mineral grains. Additional experiments were carried out using a mixture of magnesium perchlorate and chabazite. The sample of mixed surface material remained visually unchanged during water adsorption, but was found to darken during deliquescence.

  6. Method for carbon dioxide sequestration

    DOEpatents

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  7. Multiphase flow of carbon dioxide and brine in dual porosity carbonates

    NASA Astrophysics Data System (ADS)

    Pentland, Christopher; Oedai, Sjaam; Ott, Holger

    2014-05-01

    The storage of carbon dioxide in subsurface formations presents a challenge in terms of multiphase flow characterisation. Project planning requires an understanding of multiphase flow characteristics such as the relationship between relative permeability and saturation. At present there are only a limited number of relative permeability relations for carbon dioxide-brine fluid systems, most of which are measured on sandstone rocks. In this study coreflood experiments are performed to investigate the relative permeability of carbon dioxide and brine in two dual porosity carbonate systems. Carbon dioxide is injected into the brine saturated rocks in a primary drainage process. The rock fluid system is pre-equilibrated to avoid chemical reactions and physical mass transfer between phases. The pressure drop across the samples, the amount of brine displaced and the saturation distribution within the rocks are measured. The experiments are repeated on the same rocks for the decane-brine fluid system. The experimental data is interpreted by simulating the experiments with a continuum scale Darcy solver. Selected functional representations of relative permeability are investigated, the parameters of which are chosen such that a least squares objective function is minimised (i.e. the difference between experimental observations and simulated response). The match between simulation and measurement is dependent upon the form of the functional representations. The best agreement is achieved with the Corey [Brooks and Corey, 1964] or modified Corey [Masalmeh et al., 2007] functions which best represent the relative permeability of brine at low brine saturations. The relative permeability of carbon dioxide is shown to be lower than the relative permeability of decane over the saturation ranges investigated. The relative permeability of the brine phase is comparable for the two fluid systems. These observations are consistent with the rocks being water-wet. During the experiment only a portion of the full saturation range is investigated, corresponding to carbon dioxide entering the macro pores of the dual porosity systems. Within this pore space the relative permeability behaviour is comparable to that measured in Berea sandstone. Brooks, R. H., and A. T. Corey (1964), Hydraulic properties of porous media, Hydrology Papers 3, Civil Engineering Dept., Colorado State Univ., Fort Collins, CO. Masalmeh, S., I. Abu-Shiekah, and X. Jing (2007), Improved Characterization and Modeling of Capillary Transition Zones in Carbonate Reservoirs, SPE Reserv. Eval. Eng., 10(2), doi:10.2118/109094-PA.

  8. Low density microcellular foams

    DOEpatents

    LeMay, James D.

    1992-01-01

    Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  9. Low density microcellular foams

    DOEpatents

    LeMay, J.D.

    1991-11-19

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 [mu]m is produced. Also disclosed are the foams produced by the process. 8 figures.

  10. Low density microcellular foams

    DOEpatents

    LeMay, James D.

    1991-01-01

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  11. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b...

  12. 46 CFR 35.40-7 - Carbon dioxide alarm-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Carbon dioxide alarm-T/ALL. 35.40-7 Section 35.40-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL. § 35.40-7 Carbon dioxide alarm—T/ALL. Adjacent to all carbon dioxide fire extinguishing...

  13. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b...

  14. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b...

  15. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b...

  16. 27 CFR 27.42a - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...

  17. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than 0.009 grams per 100 milliliters to the maximum limitation of carbon dioxide in still wine will be allowed where the amount of carbon dioxide in excess of 0.392 grams per 100 milliliters is due to...

  18. 27 CFR 27.42a - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...

  19. 27 CFR 27.42a - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...

  20. 27 CFR 27.42a - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...

  1. 27 CFR 27.42a - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...

  2. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than 0.009 grams per 100 milliliters to the maximum limitation of carbon dioxide in still wine will be allowed where the amount of carbon dioxide in excess of 0.392 grams per 100 milliliters is due to...

  3. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Carbon dioxide and certain other gases. 201.161 Section 201.161 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene,...

  4. 46 CFR 108.627 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 108.627 Section 108.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide and clean agent alarms. Each carbon dioxide alarm must be...

  5. 46 CFR 169.732 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 169.732 Section 169.732 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide and clean agent alarms. (a) Each carbon dioxide o...

  6. 46 CFR 169.732 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 169.732 Section 169.732 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide and clean agent alarms. (a) Each carbon dioxide o...

  7. 46 CFR 108.627 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 108.627 Section 108.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide and clean agent alarms. Each carbon dioxide alarm must be...

  8. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN...

  9. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a) Except as provided in paragraph (b) of this...

  10. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM...

  11. 46 CFR 169.732 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 169.732 Section 169.732 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide and clean agent alarms. (a) Each carbon dioxide o...

  12. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a) Except as provided in paragraph (b) of this...

  13. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Carbon dioxide and certain other gases. 201.161 Section 201.161 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene,...

  14. 46 CFR 131.815 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 131.815 Section 131.815 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.815 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...

  15. 46 CFR 131.815 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 131.815 Section 131.815 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.815 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...

  16. 46 CFR 131.815 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 131.815 Section 131.815 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.815 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...

  17. 46 CFR 108.627 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 108.627 Section 108.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide and clean agent alarms. Each carbon dioxide alarm must be...

  18. Novel Technique and Technologies for Active Optical Remote Sensing of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  19. 78 FR 22425 - Designation of Areas for Air Quality Planning Purposes; State of Nevada; Total Suspended Particulate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... carbon monoxide, hydrocarbons, nitrogen dioxide, photochemical oxidant, sulfur dioxide, and particulate... rely on local dust ordinances, completion of local road paving projects, and regulation of emissions from industrial processing activities. Among the local dust ordinances referred to in these four plans...

  20. The Development of Models for Carbon Dioxide Reduction Technologies for Spacecraft Air Revitalization

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Anderson, Molly

    2011-01-01

    Through the respiration process, humans consume oxygen (O2) while producing carbon dioxide (CO2) and water (H2O) as byproducts. For long term space exploration, CO2 concentration in the atmosphere must be managed to prevent hypercapnia. Moreover, CO2 can be used as a source of oxygen through chemical reduction serving to minimize the amount of oxygen required at launch. Reduction can be achieved through a number of techniques. The National Aeronautics and Space Administration (NASA) is currently exploring the Sabatier reaction, the Bosch reaction, and co-electrolysis of CO2 and H2O for this process. Proof-of-concept experiments and prototype units for all three processes have proven capable of returning useful commodities for space exploration. While all three techniques have demonstrated the capacity to reduce CO2 in the laboratory, there is interest in understanding how all three techniques would perform at a system-level within a spacecraft. Consequently, there is an impetus to develop predictive models for these processes that can be readily re-scaled and integrated into larger system models. Such analysis tools provide the ability to evaluate each technique on a comparable basis with respect to processing rates. This manuscript describes the current models for the carbon dioxide reduction processes under parallel developmental e orts. Comparison to experimental data is provided were available for veri cation purposes.

  1. Carbon sequestration in depleted oil shale deposits

    DOEpatents

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  2. Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA.

    PubMed

    Zhao, Xin; Han, Meng; Ding, Lili; Calin, Adrian Cantemir

    2018-01-01

    The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon dioxide emissions. Such analysis uses mixed frequency data to study the effects of quarterly economic growth on annual carbon dioxide emissions. The forecasting ability of MIDAS-BP is remarkably better than MIDAS, ordinary least square (OLS), polynomial distributed lags (PDL), autoregressive distributed lags (ADL), and auto-regressive moving average (ARMA) models. The MIDAS-BP model is suitable for forecasting carbon dioxide emissions for both the short and longer term. This research is expected to influence the methodology for forecasting carbon dioxide emissions by improving the forecast accuracy. Empirical results show that economic growth has both negative and positive effects on carbon dioxide emissions that last 15 quarters. Carbon dioxide emissions are also affected by their own change within 3 years. Therefore, there is a need for policy makers to explore an alternative way to develop the economy, especially applying new energy policies to establish a low carbon society.

  3. Carbon-14 analyses reveal fine structure of the urban carbon dioxide dome in the Salt Lake Valley, Utah, USA

    NASA Astrophysics Data System (ADS)

    Ehleringer, J. R.; Hopkins, F. M.; Xu, X.; Barnette, J.; Randerson, J. T.; Bush, S.; Lai, C.

    2013-12-01

    Carbon-14 analyses of mature deciduous tree leaves (aspen and cottonwood) were used to measure the increases in atmospheric carbon dioxide within the expansive urbanizing Salt Lake Valley, Utah, USA associated with fossil fuel combustion. Our objectives were twofold: to understand the fine scale spatial structure of elevated carbon dioxide levels in this urban environment and to relate these observations to actual carbon dioxide observations collected using both long-term monitoring sites and a mobile measurement vehicle. Paired observations of aspen and cottonwood at sites across the valley showed that there was no significant difference in carbon-14 values, allowing spatial pattern evaluations at sites where one but not the other species was present. Statistically significant patterns were observed over a two-year measurement period, with elevated carbon dioxide levels associated with carbon-14 depleted leaves, particularly in regions with higher vehicle travel. Carbon-14 content of leaves was significantly lower on 4-lane roads than on nearby 2-lane roads in both residential and commercial zones, consistent with atmospheric carbon dioxide observations. The analysis of spatial patterns in the carbon-14 in leaves was then used to evaluate how well these observations compared to instantaneous and long-term observations of carbon dioxide using traditional infrared gas analyzer approaches.

  4. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  5. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  6. Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream

    Treesearch

    Daniel H. Doctor; Carol Kendall; Stephen D. Sebestyen; James B. Shanley; Nobuhito Ohte; Elizabeth W. Boyer

    2008-01-01

    The stable isotopic composition of dissolved inorganic carbon (δ13C-DIC) was investigated as a potential tracer of streamflow generation processes at the Sleepers River Research Watershed, Vermont, USA. Downstream sampling showed δ13C-DIC increased between 3-5% from the stream source to the outlet weir...

  7. 77 FR 26496 - Certain Activated Carbon From the People's Republic of China: Preliminary Results of the Fourth...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... also use carbon dioxide gas (CO 2 ) in place of steam in this process. The vast majority of the... DEPARTMENT OF COMMERCE International Trade Administration [A-570-904] Certain Activated Carbon... administrative review of the antidumping duty order on certain activated carbon from the People's Republic of...

  8. Improving Drinking Water Quality by Remineralisation.

    PubMed

    Luptáková, Anna; Derco, Ján

    2015-01-01

    The reason of low mineral content in source water is its origin in poorly soluble mineral geological structures. There are many areas with very soft low-mineralised water around the world. All people involved in drinking water treatment as well as some public health experts and producers of chemicals used for water treatment may be interested in the study. Enrichment of drinking water by minerals including calcium and magnesium is very important particularly in regions where drinking water is prepared by desalination. The aim of this work was to study and intensify the recarbonization process. Half-calcined dolomite in combination with carbon dioxide constitutes the chemistry of the applied method. Advantages of using a fluidised bed reactor contributed also significantly to the process efficiency enhancement. Continuous input of carbon dioxide into the fluidised bed recarbonization reactor resulted in an increase in the recarbonization rate by about one order of magnitude compared with the process in without carbon dioxide addition. Very good fit of experimental data for hydrodynamic characteristics of fluidised bed was obtained using simple model based on the Richardson and Zaki expansion equation. The first order model describes kinetic data from the recarbonization process with a good accuracy. Higher recarbonization rates were observed with smaller particles of half-calcined dolomite.

  9. Process development for production of coal/sorbent agglomerates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, D.M.

    1991-01-01

    The goal of this work was to develop a process flow diagram to economically produce a clean-burning fuel from fine Illinois coal. To accomplish this, the process of pelletizing fine coal with calcium hydroxide, a sulfur capturing sorbent, was investigated. Carbonation, which is the reaction of calcium hydroxide with carbon dioxide (in the presence of moisture) to produce a bonding matrix of calcium carbonate, was investigated as a method for improving pellet quality and reducing binder costs. Proper moisture level is critical to allow the reaction to occur. If too much moisture is present in a pellet, the pore spacesmore » are filled and carbon dioxide must diffuse through the water to reach the calcium hydroxide and react. This severely slows or stops the reaction. The ideal situation is when there is just enough moisture to coat the calcium hydroxide allowing for the reaction to proceed. The process has been successfully demonstrated on a pilot-scale as a method of hardening iron ore pellets (Imperato, 1966). Two potential combustion options are being considered for the coal/calcium hydroxide pellets: fluidized bed combustors and industrial stoker boilers.« less

  10. Preparation and characterization of Polyacrylonitrile/ Manganese Dioxides- based Carbon Nanofibers via electrospinning process

    NASA Astrophysics Data System (ADS)

    Che Othman, F. E.; Yusof, N.; Jaafar, J.; Ismail, A. F.; Hasbullah, H.; Abdullah, N.; Ismail, M. S.

    2016-06-01

    This research reports the production of precursor polyacrylonitrile (PAN)/ manganese dioxide (MnO2) nanofibers (NFs) via electrospinning method followed by stabilization and carbonization processes. Nowadays, electrospinning has become a suitable method in manufacturing continuous NFs, thus it is employed to fabricate NFs in this study. The microstructural properties and adsorption competencies of the produced NFs were also studied. The NFs were prepared by electrospinning the polymer solution of Polyacrylonitrile (PAN) and Manganese Dioxide (MnO2) in, N, N-Dimethylformamide (DMF) solvent. The factors considered in this study were various polymer PAN/MnO2 concentrations which will significantly affect the specific surface area, fiber morphology and the diameter of the NFs prepared. Subsequently, heat treatment is applied by setting up the stabilization temperature at 275 °C and carbonization temperature at 800 °C with constant dwelling time (30 min). Nitrogen gas at constant rate 0.2 L/min was used for stabilization and carbonization with the stabilization rate (2 °C/min) and carbonization rate (5 °C/min). The carbon nanofibers (CNFs) produced were characterized using Scanning Electron Microscopy (SEM), Brunauer Emmett and Teller (BET) surface area and Fourier Transmission Infrared Spectroscopy (FTIR). It was found that the PAN/MnO2 CNFs were successfully produced with the carbonization temperature of 800 °C. The prepared PAN/MnO2 CNFs prepared showed an enhanced in specific surface area about two times compared to it precursor NFs.

  11. Hydrodynamic Controls on Carbon Dioxide Efflux from Inland Waters

    NASA Astrophysics Data System (ADS)

    Long, H. E.; Waldron, S.; Hoey, T.; Newton, J.; Quemin, S.

    2013-12-01

    Intensive research has been undertaken on carbon dioxide efflux from lakes, estuaries and oceans, but much less attention has been given to rivers and streams, especially lower order streams. River systems are often over-saturated with carbon dioxide and so tend to act as sources of carbon dioxide to the atmosphere. It has been thought that rivers act as pipes carrying this terrestrial carbon to the oceans. However, recent studies have shown that a significant amount of the carbon is reprocessed within the system in a series of transformations and losses. Fluvial evasion of carbon dioxide is now recognised to be a significant component of carbon cycles, however the factors controlling carbon dioxide efflux and its magnitude remain poorly understood and quantified. This research aims to quantify, and better understand the controls on, freshwater carbon dioxide evasion. Data are presented here from field measurements that commenced in Sept 2013 in two contrasting Scottish rivers: the River Kelvin which has a large (335 km.sq) part-urban catchment with predominantly non-peat soils and Drumtee Water, a small (9.6 km.sq) rural catchment of peat soils and agricultural land. Using a floating chamber with the headspace connected to an infrared gas analyser to measure changes in carbon dioxide concentration, efflux rates from 0.22 - 47.4 μmol CO2/m.sq/sec were measured, these close to the middle of the range of previously reported values. At one site on the River Kelvin in May 2013 an influx of -0.61 - -3.53 μmol CO2/m.sq/sec was recorded. Whereas previous research finds carbon dioxide efflux to increase with decreasing river size and a more organic-rich soil catchment, here the controls on carbon dioxide evasion are similar across the contrasting catchments. Carbon dioxide evasion shows seasonality, with maximum fluxes in the summer months being up to twice as high as the winter maxima. Linear regression demonstrates that evasion increases with increased flow velocity, water surface disturbance indicated by Froude number, and turbulent mixing indicated by Reynolds number. Similar relationships with season, flow velocity and turbulence have been reported previously, but there is little known about the mechanisms involved. When comparing spot carbon dioxide efflux measurements to river stage time series data, carbon dioxide efflux is more sensitive to an increase in stage at more turbulent measurement points. Further investigation of the mechanisms will be obtained by measurement of DIC concentration and isotopic composition to assess the controls of carbon source versus degassing, and the analysis of the interactions between hydraulic and seasonal controls and carbon dioxide fluxes extended.

  12. Influence of Wind Pressure on the Carbonation of Concrete

    PubMed Central

    Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun

    2015-01-01

    Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth. PMID:28793462

  13. Influence of Wind Pressure on the Carbonation of Concrete.

    PubMed

    Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun

    2015-07-24

    Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth.

  14. Solubility of Carbon Dioxide in Water.

    ERIC Educational Resources Information Center

    Bush, Pat; And Others

    1992-01-01

    Describes an activity measuring the amount of dissolved carbon dioxide in carbonated water at different temperatures. The amount of carbon dioxide is measured by the amount of dilute ammonia solution needed to produce a pH indicator color change. (PR)

  15. Numerically Simulating Carbonate Mineralization of Basalt with Injection of Carbon Dioxide into Deep Saline Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Mark D.; McGrail, B. Peter; Schaef, Herbert T.

    2006-07-08

    The principal mechanisms for the geologic sequestration of carbon dioxide in deep saline formations include geological structural trapping, hydrological entrapment of nonwetting fluids, aqueous phase dissolution and ionization, and geochemical sorption and mineralization. In sedimentary saline formations the dominant mechanisms are structural and dissolution trapping, with moderate to weak contributions from hydrological and geochemical trapping; where, hydrological trapping occurs during the imbibition of aqueous solution into pore spaces occupied by gaseous carbon dioxide, and geochemical trapping is controlled by generally slow reaction kinetics. In addition to being globally abundant and vast, deep basaltic lava formations offer mineralization kinetics that makemore » geochemical trapping a dominate mechanism for trapping carbon dioxide in these formations. For several decades the United States Department of Energy has been investigating Columbia River basalt in the Pacific Northwest as part of its environmental programs and options for natural gas storage. Recently this nonpotable and extensively characterized basalt formation is being reconsidered as a potential reservoir for geologic sequestration of carbon dioxide. The reservoir has an estimated storage capacity of 100 giga tonnes of carbon dioxide and comprises layered basalt flows with sublayering that generally alternates between low permeability massive and high permeability breccia. Chemical analysis of the formation shows 10 wt% Fe, primarily in the +2 valence. The mineralization reaction that makes basalt formations attractive for carbon dioxide sequestration is that of calcium, magnesium, and iron silicates reacting with dissolved carbon dioxide, producing carbonate minerals and amorphous quartz. Preliminary estimates of the kinetics of the silicate-to-carbonate reactions have been determined experimentally and this research is continuing to determine effects of temperature, pressure, rock composition and mineral assemblages on the reaction rates. This study numerically investigates the injection, migration and sequestration of supercritical carbon dioxide in deep Columbia River basalt formations using the multifluid subsurface flow and reactive transport simulator STOMP-CO2 with its ECKEChem module. Simulations are executed on high resolution multiple stochastic realizations of the layered basalt systems and demonstrate the migration behavior through layered basalt formations and the mineralization of dissolved carbon dioxide. Reported results include images of the migration behavior, distribution of carbonate formation, quantities of injected and sequestered carbon dioxide, and percentages of the carbon dioxide sequestered by different mechanisms over time.« less

  16. Carbon dioxide emissions, GDP, energy use, and population growth: a multivariate and causality analysis for Ghana, 1971-2013.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2016-07-01

    In this study, the relationship between carbon dioxide emissions, GDP, energy use, and population growth in Ghana was investigated from 1971 to 2013 by comparing the vector error correction model (VECM) and the autoregressive distributed lag (ARDL). Prior to testing for Granger causality based on VECM, the study tested for unit roots, Johansen's multivariate co-integration and performed a variance decomposition analysis using Cholesky's technique. Evidence from the variance decomposition shows that 21 % of future shocks in carbon dioxide emissions are due to fluctuations in energy use, 8 % of future shocks are due to fluctuations in GDP, and 6 % of future shocks are due to fluctuations in population. There was evidence of bidirectional causality running from energy use to GDP and a unidirectional causality running from carbon dioxide emissions to energy use, carbon dioxide emissions to GDP, carbon dioxide emissions to population, and population to energy use. Evidence from the long-run elasticities shows that a 1 % increase in population in Ghana will increase carbon dioxide emissions by 1.72 %. There was evidence of short-run equilibrium relationship running from energy use to carbon dioxide emissions and GDP to carbon dioxide emissions. As a policy implication, the addition of renewable energy and clean energy technologies into Ghana's energy mix can help mitigate climate change and its impact in the future.

  17. 46 CFR 35.40-10 - Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Steam, foam, carbon dioxide, or clean agent fire... TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-10 Steam, foam, carbon dioxide, or clean agent fire smothering apparatus—TB/ALL. Each steam, foam, carbon dioxide, or clean agent...

  18. 46 CFR 35.40-10 - Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Steam, foam, carbon dioxide, or clean agent fire... TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-10 Steam, foam, carbon dioxide, or clean agent fire smothering apparatus—TB/ALL. Each steam, foam, carbon dioxide, or clean agent...

  19. 46 CFR 97.37-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 97.37-9 Section 97.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent...

  20. 46 CFR 78.47-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 78.47-9 Section 78.47-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...

  1. 46 CFR 78.47-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 78.47-9 Section 78.47-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...

  2. TES/Aura L2 Carbon Dioxide (CO2) Nadir V6 (TL2CO2N)

    Atmospheric Science Data Center

    2018-01-18

    TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2N) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Carbon Dioxide Spatial Coverage:  5.2 x 8.5 km nadir ... Contact User Services Parameters:  Carbon Dioxide Legacy:  Retired data product , click here ...

  3. 46 CFR 97.37-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 97.37-9 Section 97.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent...

  4. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b) of this section, the cylinders...

  5. 46 CFR 97.37-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 97.37-9 Section 97.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent...

  6. 46 CFR 78.47-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 78.47-9 Section 78.47-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...

  7. TES/Aura L2 Carbon Dioxide (CO2) Nadir V6 (TL2CO2NS)

    Atmospheric Science Data Center

    2018-01-22

    TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2NS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Carbon Dioxide Spatial Coverage:  5.3 x 8.5 km nadir ... Contact ASDC User Services Parameters:  Carbon Dioxide Legacy:  Retired data product , click here ...

  8. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission monitoring...

  9. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission monitoring...

  10. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission monitoring...

  11. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission monitoring...

  12. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission monitoring...

  13. The impact of energy, agriculture, macroeconomic and human-induced indicators on environmental pollution: evidence from Ghana.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2017-03-01

    In this study, the impact of energy, agriculture, macroeconomic and human-induced indicators on environmental pollution from 1971 to 2011 is investigated using the statistically inspired modification of partial least squares (SIMPLS) regression model. There was evidence of a linear relationship between energy, agriculture, macroeconomic and human-induced indicators and carbon dioxide emissions. Evidence from the SIMPLS regression shows that a 1% increase in crop production index will reduce carbon dioxide emissions by 0.71%. Economic growth increased by 1% will reduce carbon dioxide emissions by 0.46%, which means that an increase in Ghana's economic growth may lead to a reduction in environmental pollution. The increase in electricity production from hydroelectric sources by 1% will reduce carbon dioxide emissions by 0.30%; thus, increasing renewable energy sources in Ghana's energy portfolio will help mitigate carbon dioxide emissions. Increasing enteric emissions by 1% will increase carbon dioxide emissions by 4.22%, and a 1% increase in the nitrogen content of manure management will increase carbon dioxide emissions by 6.69%. The SIMPLS regression forecasting exhibited a 5% MAPE from the prediction of carbon dioxide emissions.

  14. A Process to Reduce DC Ingot Butt Curl and Swell

    NASA Astrophysics Data System (ADS)

    Yu, Ho

    1980-11-01

    A simple and effective process to reduce DC ingot butt curl and swell has been developed in the Ingot Casting Division of Alcoa Technical Center.1 In the process, carbon dioxide gas is dissolved under high pressure into the ingot cooling water upstream of the mold during the first several inches of the ingot cast. As the cooling water exits from the mold, the dissolved gas evolves as micron-size bubbles, forming a temporary effective insulation layer on the ingot surface. This reduces thermal stress in the ingot butt. An insulation pad covering about 60% of the bottom block is used in conjunction with the carbon dioxide injection when maximum butt swell reduction is desired. The process, implemented in four Alcoa ingot plants, has proven extremely successful.

  15. Carbon dioxide sensor

    DOEpatents

    Dutta, Prabir K [Worthington, OH; Lee, Inhee [Columbus, OH; Akbar, Sheikh A [Hilliard, OH

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  16. Carbon dioxide makes heat therapy work

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, H.

    1987-01-01

    Scientists can now propagate healthy blueberry and raspberry plants from virus-infected stock by treating it with heat and carbon dioxide. Plants are grown at 100/sup 0/F, which makes them develop faster than the virus can spread. Then cuttings are taken of the new growth - less than an inch long - and grown into full-sized, virus-free plants. But in this race to outdistance the virus, some plant species are not able to take the heat. Some even die. Chemical reactions double for every 14/sup 0/F rise in temperature. So, if you try to grow a plant at 100/sup 0/F thatmore » was originally growing at 86/sup 0/F, it will double its respiration rate. Adding carbon dioxide increases the rate of photosynthesis in plants, which increases the plant's food reserves. What carbon dioxide does to allow some plants to grow at temperatures at which they would otherwise not survive and it allows other plants to grow for longer periods at 100/sup 0/F. One problem with the process, says Converse, is that the longer plants are exposed to heat the greater the mutation rate. So, resulting clones should be closely examined for trueness to horticultural type.« less

  17. The physics, biology, and environmental ethics of making mars habitable.

    PubMed

    McKay, C P; Marinova, M M

    2001-01-01

    The considerable evidence that Mars once had a wetter, more clement, environment motivates the search for past or present life on that planet. This evidence also suggests the possibility of restoring habitable conditions on Mars. While the total amounts of the key molecules--carbon dioxide, water, and nitrogen--needed for creating a biosphere on Mars are unknown, estimates suggest that there may be enough in the subsurface. Super greenhouse gases, in particular, perfluorocarbons, are currently the most effective and practical way to warm Mars and thicken its atmosphere so that liquid water is stable on the surface. This process could take approximately 100 years. If enough carbon dioxide is frozen in the South Polar Cap and absorbed in the regolith, the resulting thick and warm carbon dioxide atmosphere could support many types of microorganisms, plants, and invertebrates. If a planet-wide martian biosphere converted carbon dioxide into oxygen with an average efficiency equal to that for Earth's biosphere, it would take > 100,000 years to create Earth-like oxygen levels. Ethical issues associated with bringing life to Mars center on the possibility of indigenous martian life and the relative value of a planet with or without a global biosphere.

  18. The physics, biology, and environmental ethics of making mars habitable

    NASA Technical Reports Server (NTRS)

    McKay, C. P.; Marinova, M. M.

    2001-01-01

    The considerable evidence that Mars once had a wetter, more clement, environment motivates the search for past or present life on that planet. This evidence also suggests the possibility of restoring habitable conditions on Mars. While the total amounts of the key molecules--carbon dioxide, water, and nitrogen--needed for creating a biosphere on Mars are unknown, estimates suggest that there may be enough in the subsurface. Super greenhouse gases, in particular, perfluorocarbons, are currently the most effective and practical way to warm Mars and thicken its atmosphere so that liquid water is stable on the surface. This process could take approximately 100 years. If enough carbon dioxide is frozen in the South Polar Cap and absorbed in the regolith, the resulting thick and warm carbon dioxide atmosphere could support many types of microorganisms, plants, and invertebrates. If a planet-wide martian biosphere converted carbon dioxide into oxygen with an average efficiency equal to that for Earth's biosphere, it would take > 100,000 years to create Earth-like oxygen levels. Ethical issues associated with bringing life to Mars center on the possibility of indigenous martian life and the relative value of a planet with or without a global biosphere.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldhoff, Stephanie T.; Anthoff, David; Rose, Steven K.

    We use FUND 3.8 to estimate the social cost of four greenhouse gases: carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. The damage potential for each gas—the ratio of the social cost of the non-carbon dioxide greenhouse gas to the social cost of carbon dioxide—is also estimated. The damage potentials are compared to several metrics, focusing in particular on the global warming potentials, which are frequently used to measure the trade-off between gases in the form of carbon dioxide equivalents. We find that damage potentials could be significantly higher than global warming potentials. This finding implies that previous papersmore » have underestimated the relative importance of reducing non-carbon dioxide greenhouse gas emissions from an economic damage perspective. We show results for a range of sensitivity analyses: carbon dioxide fertilization on agriculture productivity, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and emissions scenarios. The sensitivity of the results to carbon dioxide fertilization is a primary focus as it is an important element of climate change that has not been considered in much of the previous literature. We estimate that carbon dioxide fertilization has a large positive impact that reduces the social cost of carbon dioxide with a much smaller effect on the other greenhouse gases. As a result, our estimates of the damage potentials of methane and nitrous oxide are much higher compared to estimates that ignore carbon dioxide fertilization. As a result, our base estimates of the damage potential for methane and nitrous oxide that include carbon dioxide fertilization are twice their respective global warming potentials. Our base estimate of the damage potential of sulphur hexafluoride is similar to the one previous estimate, both almost three times the global warming potential.« less

  20. Experimental measurement and thermodynamic modeling of the solubility of carbon dioxide in aqueous blends of monoethanolamine and diethanolamine

    NASA Astrophysics Data System (ADS)

    Suleman, Humbul; Maulud, Abdulhalim Shah; Man, Zakaria

    2017-12-01

    In this study, the solubilities of carbon dioxide in aqueous mixtures of monoethanolamine (MEA) and diethanolamine (DEA) were determined using a high pressure vapor-liquid equilibrium apparatus. The carbon dioxide loadings (mole of CO2/mole of amine mixture) were reported for a wide range of temperature (303.15, 323.15, 343.15 K) and pressure (100 - 4100 kPa). The carbon dioxide solubility shows an increase with increase in pressure and amine concentration and a decrease with increase in temperature in the aqueous blends of MEA and DEA. At carbon dioxide loadings above 1.0, the carbon dioxide solubility becomes a weak function of pressure and follows the general trend of carbon dioxide solubility in aqueous alkanolamines. The new experimental data points determined in this study were correlated by using a recently developed, enhanced Kent-Eisenberg model. An average absolute relative error of 9.4 % was observed between the model results and experimental data, indicating good correlative capability of the thermodynamic model.

  1. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    DOEpatents

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  2. Supercritical separation process for complex organic mixtures

    DOEpatents

    Chum, Helena L.; Filardo, Giuseppe

    1990-01-01

    A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70.degree. C. and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution.

  3. The Impact of Carbon Dioxide on Climate.

    ERIC Educational Resources Information Center

    MacDonald, Gordon J.

    1979-01-01

    Examines the relationship between climatic change and carbon dioxide from the historical perspective; details the contributions of carbon-based fuels to increasing carbon dioxide concentrations; and using global circulation models, discusses the future impact of the heavy reliance of our society on carbon-based fuels on climatic change. (BT)

  4. Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeolitic thiophene-benzimidazolate framework

    EPA Science Inventory

    A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydra...

  5. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle; Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50 because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon is capable of recovering all the oxygen from carbon dioxide, and is the only real alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon and the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  6. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Muscatello, Anthony C.; Meier, Anne J.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon is capable of recovering all the oxygen from carbon dioxide, and is the only real alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon and the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  7. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon, is capable of recovering all the oxygen from carbon dioxide, and it is a promising alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon, and the resulting carbon buildup eventually fouls the catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  8. SWITCHABLE POLARITY SOLVENTS AS DRAW SOLUTES FOR FORWARD OSMOSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick F. Stewart; Mark L. Stone; Aaron D. Wilson

    2013-03-01

    Switchable polarity solvents (SPS), mixtures of carbon dioxide, water, and tertiary amines, are presented as viable forward osmosis (FO) draw solutes allowing a novel SPS FO process. In this study substantial osmotic strengths of SPS are measured with freezing point osmometry and were demonstrated to induce competitive ?uxes at high salt concentrations on a laboratory-scale FO unit utilizing a ?at sheet cellulose triacetate (CTA) membrane. Under the experimental conditions the SPS degrades the CTA membrane; however experiments with polyamide reverse osmosis (RO) membranes display stability towards SPS. Once the draw is diluted the major fraction of the switchable polarity solventmore » can be mechanically separated from the puri?ed water after polar to nonpolar phase shift induced by introduction of 1 atm carbon dioxide to 1 atm of air or nitrogen with mild heating. Trace amounts of SPS can be removed from the separated water with RO in a process that avoids solution concentration polarization. The separated nonpolar phase can be regenerated to a full strength draw and recycled with the re-addition of 1 atm of carbon dioxide.« less

  9. High-pressure carbon dioxide/water pre-treatment of sugarcane bagasse and elephant grass: Assessment of the effect of biomass composition on process efficiency.

    PubMed

    Toscan, Andréia; Morais, Ana Rita C; Paixão, Susana M; Alves, Luís; Andreaus, Jürgen; Camassola, Marli; Dillon, Aldo José Pinheiro; Lukasik, Rafal M

    2017-01-01

    The performance of two lignocellulosic biomasses was studied in high-pressure carbon dioxide/water pre-treatment. Sugarcane bagasse and elephant grass were used to produce C 5 -sugars from hemicellulose and, simultaneously, to promote cellulose digestibility for enzymatic saccharification. Different pre-treatment conditions, with combined severity factor ranging from -1.17 to -0.04, were evaluated and maximal total xylan to xylose yields of 59.2wt.% (34.4wt.% xylooligomers) and 46.4wt.% (34.9wt.% xylooligomers) were attained for sugarcane bagasse and elephant grass, respectively. Furthermore, pre-treated biomasses were highly digestible, with glucan to glucose yields of 77.2mol% and 72.4mol% for sugarcane bagasse and elephant grass, respectively. High-pressure carbon dioxide/water pre-treatment provides high total C 5 -sugars and glucose recovery from both lignocellulosic biomasses; however it is highly influenced by composition and intrinsic features of each biomass. The obtained results confirm this approach as an effective and greener alternative to conventional pre-treatment processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Enzymatic Conversion of CO2 to Bicarbonate in Functionalized Mesoporous Silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yuehua; Chen, Baowei; Qi, Wen N.

    2012-05-01

    We report here that carbonic anhydrase (CA), the fastest enzyme that can covert carbon dioxide to bicarbonate, can be spontaneously entrapped in functionalized mesoporous silica (FMS) with super-high loading density (up to 0.5 mg of protein/mg of FMS) due to the dominant electrostatic interaction. The binding of CA to HOOC-FMS can result in the protein’s conformational change comparing to the enzyme free in solution, but can be overcome with increased protein loading density. The higher the protein loading density, the less conformational change, hence the higher enzymatic activity and the higher enzyme immobilization efficiency. The electrostatically bound CA can bemore » released by changing pH. The released enzyme still displayed the native conformational structure and the same high enzymatic activity as that prior to the enzyme entrapment. This work opens up a new approach converting carbon dioxide to biocarbonate in a biomimetic nanoconfiguration that can be integrated with the other part of biosynthesis process for the assimilation of carbon dioxide.« less

  11. KSC-2014-2994

    NASA Image and Video Library

    2014-06-16

    VANDENBERG AIR FORCE BASE, Calif. – A flurry of activity surrounds NASA's Orbiting Carbon Observatory-2, or OCO-2, as final preparations are made to transport the spacecraft from the Astrotech Payload Processing Facility to Space Launch Complex 2 on Vandenberg Air Force Base in California for launch. Launch aboard a United Launch Alliance Delta II rocket is scheduled for 5:56 a.m. EDT on July 1. OCO-2 is NASA’s first mission dedicated to studying atmospheric carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 will provide a new tool for understanding the human and natural sources of carbon dioxide emissions and the natural "sinks" that absorb carbon dioxide and help control its buildup. The observatory will measure the global geographic distribution of these sources and sinks and study their changes over time. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/30th Space Wing, U.S. Air Force

  12. KSC-2014-2991

    NASA Image and Video Library

    2014-06-16

    VANDENBERG AIR FORCE BASE, Calif. – Technicians clean some of the hardware for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, in the Astrotech Payload Processing Facility on Vandenberg Air Force Base in California. The spacecraft soon will be transported to Space Launch Complex 2 for encapsulation in the Delta II payload fairing. Launch aboard a United Launch Alliance Delta II rocket is scheduled for 5:56 a.m. EDT on July 1. OCO-2 is NASA’s first mission dedicated to studying atmospheric carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 will provide a new tool for understanding the human and natural sources of carbon dioxide emissions and the natural "sinks" that absorb carbon dioxide and help control its buildup. The observatory will measure the global geographic distribution of these sources and sinks and study their changes over time. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/30th Space Wing, U.S. Air Force

  13. KSC-2014-2992

    NASA Image and Video Library

    2014-06-16

    VANDENBERG AIR FORCE BASE, Calif. – Technicians clean some of the hardware for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, in the Astrotech Payload Processing Facility on Vandenberg Air Force Base in California to ensure that the spacecraft is not contaminated prior to its transport to Space Launch Complex 2 for enclosure in the Delta II payload fairing. Launch aboard a United Launch Alliance Delta II rocket is scheduled for 5:56 a.m. EDT on July 1. OCO-2 is NASA’s first mission dedicated to studying atmospheric carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 will provide a new tool for understanding the human and natural sources of carbon dioxide emissions and the natural "sinks" that absorb carbon dioxide and help control its buildup. The observatory will measure the global geographic distribution of these sources and sinks and study their changes over time. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/30th Space Wing, U.S. Air Force

  14. Primary discussion of a carbon sink in the oceans

    NASA Astrophysics Data System (ADS)

    Ma, Caihua; You, Kui; Ji, Dechun; Ma, Weiwei; Li, Fengqi

    2015-04-01

    As a consequence of global warming and rising sea levels, the oceans are becoming a matter of concern for more and more people because these changes will impact the growth of living organisms as well as people's living standards. In particular, it is extremely important that the oceans absorb massive amounts of carbon dioxide. This paper takes a pragmatic approach to analyzing the oceans with respect to the causes of discontinuities in oceanic variables of carbon dioxide sinks. We report on an application of chemical, physical and biological methods to analyze the changes of carbon dioxide in oceans. Based on the relationships among the oceans, land, atmosphere and sediment with respect to carbon dioxide, the foundation of carbon dioxide in shell-building and ocean acidification, the changes in carbon dioxide in the oceans and their impact on climate change, and so on, a vital conclusion can be drawn from this study. Specifically, under the condition that the oceans are not disturbed by external forces, the oceans are a large carbon dioxide sink. The result can also be inferred by the formula: C=A-B and G=E+F when the marine ecosystem can keep a natural balance and the amount of carbon dioxide emission is limited within the carrying capacity of the oceans.

  15. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffman, Gerald

    2012-12-31

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation's urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  16. Membrane Separation Processes at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde

    2002-01-01

    The primary focus of Kennedy Space Center's gas separation activities has been for carbon dioxide, nitrogen, and argon used in oxygen production technologies for Martian in-situ resource utilization (ISRU) projects. Recently, these studies were expanded to include oxygen for regenerative life support systems. Since commercial membrane systems have been developed for separation of carbon dioxide, nitrogen, and oxygen, initially the studies focused on these membrane systems, but at lower operating temperatures and pressures. Current investigations art examining immobilized liquids and solid sorbents that have the potential for higher selectivity and lower operating temperatures. The gas separation studies reported here use hollow fiber membranes to separate carbon dioxide, nitrogen, and argon in the temperature range from 230 to 300 K. Four commercial membrane materials were used to obtain data at low feed and permeate pressures. These data were used with a commercial solution-diffusion modeling tool to design a system to prepare a buffer gas from the byproduct of a process to capture Martian carbon dioxide. The system was designed to operate, at 230 K with a production rate 0.1 sLpm; Feed composition 30% CO2, 44% N2, and 26% Ar; Feed pressure 104 kPa (780); and Permeate pressure 1 kPa (6 torr); Product concentration 600 ppm CO2. This new system was compared with a similar system designed to operate at ambient temperatures (298 K). The systems described above, along with data, test apparatus, and models are presented.

  17. Practical modeling approaches for geological storage of carbon dioxide.

    PubMed

    Celia, Michael A; Nordbotten, Jan M

    2009-01-01

    The relentless increase of anthropogenic carbon dioxide emissions and the associated concerns about climate change have motivated new ideas about carbon-constrained energy production. One technological approach to control carbon dioxide emissions is carbon capture and storage, or CCS. The underlying idea of CCS is to capture the carbon before it emitted to the atmosphere and store it somewhere other than the atmosphere. Currently, the most attractive option for large-scale storage is in deep geological formations, including deep saline aquifers. Many physical and chemical processes can affect the fate of the injected CO2, with the overall mathematical description of the complete system becoming very complex. Our approach to the problem has been to reduce complexity as much as possible, so that we can focus on the few truly important questions about the injected CO2, most of which involve leakage out of the injection formation. Toward this end, we have established a set of simplifying assumptions that allow us to derive simplified models, which can be solved numerically or, for the most simplified cases, analytically. These simplified models allow calculation of solutions to large-scale injection and leakage problems in ways that traditional multicomponent multiphase simulators cannot. Such simplified models provide important tools for system analysis, screening calculations, and overall risk-assessment calculations. We believe this is a practical and important approach to model geological storage of carbon dioxide. It also serves as an example of how complex systems can be simplified while retaining the essential physics of the problem.

  18. Analysis of exergy efficiency of a super-critical compressed carbon dioxide energy-storage system based on the orthogonal method.

    PubMed

    He, Qing; Hao, Yinping; Liu, Hui; Liu, Wenyi

    2018-01-01

    Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system.

  19. Analysis of exergy efficiency of a super-critical compressed carbon dioxide energy-storage system based on the orthogonal method

    PubMed Central

    He, Qing; Liu, Hui; Liu, Wenyi

    2018-01-01

    Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system. PMID:29634742

  20. 46 CFR 76.15-1 - Application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Dioxide Extinguishing Systems, Details § 76.15-1 Application. (a) Where a carbon dioxide extinguishing... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...

Top