Science.gov

Sample records for carbon doped silicon

  1. Suppression of boron-oxygen defects in Czochralski silicon by carbon co-doping

    SciTech Connect

    Wu, Yichao; Yu, Xuegong He, Hang; Chen, Peng; Yang, Deren

    2015-03-09

    We have investigated the influence of carbon co-doping on the formation of boron-oxygen defects in Czochralski silicon. It is found that carbon can effectively suppress the formation of boron-oxygen defects. Based on our experiments and first-principle theoretical calculations, it is believed that this effect is attributed to the formation of more energetically favorable carbon-oxygen complexes. Moreover, the diffusion of oxygen dimers in carbon co-doped silicon also becomes more difficult. All these phenomena should be associated with the tensile stress field induced by carbon doping in silicon.

  2. Structure and stability of a silicon cluster on sequential doping with carbon atoms

    NASA Astrophysics Data System (ADS)

    AzeezullaNazrulla, Mohammed; Joshi, Krati; Israel, S.; Krishnamurty, Sailaja

    2016-02-01

    SiC is a highly stable material in bulk. On the other hand, alloys of silicon and carbon at nanoscale length are interesting from both technological as well fundamental view point and are being currently synthesized by various experimental groups (Truong et. al., 2015 [26]). In the present work, we identify a well-known silicon cluster viz., Si10 and dope it sequentially with carbon atoms. The evolution of electronic structure (spin state and the structural properties) on doping, the charge redistribution and structural properties are analyzed. It is interesting to note that the ground state SiC clusters prefer to be in the lowest spin state. Further, it is seen that carbon atoms are the electron rich centres while silicon atoms are electron deficient in every SiC alloy cluster. The carbon-carbon bond lengths in alloy clusters are equivalent to those seen in fullerene molecules. Interestingly, the carbon atoms tend to aggregate together with silicon atoms surrounding them by donating the charge. As a consequence, very few Si-Si bonds are noted with increasing concentrations of C atoms in a SiC alloy. Physical and chemical stability of doped clusters is studied by carrying out finite temperature behaviour and adsorbing O2 molecule on Si9C and Si8C2 clusters, respectively.

  3. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqiang; Hao, Junying; Xie, Yuntao

    2016-08-01

    Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  4. Silicon-doping in carbon nanotubes: formation energies, electronic structures, and chemical reactivity.

    PubMed

    Bian, Ruixin; Zhao, Jingxiang; Fu, Honggang

    2013-04-01

    By carrying out density functional theory (DFT) calculations, we have studied the effects of silicon (Si)-doping on the geometrical and electronic properties, as well as the chemical reactivity of carbon nanotubes (CNTs). It is found that the formation energies of these nanotubes increase with increasing tube diameters, indicating that the embedding of Si into narrower CNTs is more energetically favorable. For the given diameters, Si-doping in a (n, 0) CNT is slightly easier than that of in (n, n) CNT. Moreover, the doped CNTs with two Si atoms are easier to obtain than those with one Si atom. Due to the introduction of impurity states after Si-doping, the electronic properties of CNTs have been changed in different ways: upon Si-doping into zigzag CNTs, the band gap of nanotube is decreased, while the opening of band gap in armchair CNTs is found. To evaluate the chemical reactivity of Si-doped CNTs, the adsorption of NH3 and H2O on this kind of material is explored. The results show that N-H bond of NH3 and O-H bond of H2O can be easily split on the surface of doped CNTs. Of particular interest, the novel reactivity makes it feasible to use Si-doped CNT as a new type of splitter for NH3 and H2O bond, which is very important in chemical and biological processes. Future experimental studies are greatly desired to probe such interesting processes.

  5. Characterization of nitrogen doped silicon-carbon multi-layer nanostructures obtained by TVA method

    NASA Astrophysics Data System (ADS)

    Ciupina, Victor; Vasile, Eugeniu; Porosnicu, Corneliu; Prodan, Gabriel C.; Lungu, Cristian P.; Vladoiu, Rodica; Jepu, Ionut; Mandes, Aurelia; Dinca, Virginia; Caraiane, Aureliana; Nicolescu, Virginia; Dinca, Paul; Zaharia, Agripina

    2016-09-01

    Ionized nitrogen doped Si-C multi-layer thin films used to increase the oxidation resistance of carbon have been obtained by Thermionic Vacuum Arc (TVA) method. The 100 nm thickness carbon thin films were deposed on silicon or glass substrates and then seven N doped Si-C successively layers on carbon were deposed. To characterize the microstructure, tribological and electrical properties of as prepared N-SiC multi-layer films, Transmission Electron Microscopy (TEM, STEM), Energy Dispersive X-Ray Spectroscopy (EDXS), electrical and tribological techniques were achieved. Samples containing multi-layer N doped Si-C coating on carbon were investigated up to 1000°C. Oxidation protection is based on the reaction between SiC and elemental oxygen, resulting SiO2 and CO2, and also on the reaction involving N, O and Si-C, resulting silicon oxynitride (SiNxOy) with a continuously vary composition, and because nitrogen can acts as a trapping barrier for oxygen. The tribological properties of structures were studied using a tribometer with ball-on-disk configuration from CSM device with sapphire ball. The measurements show that the friction coefficient on the N-SiC is smaller than friction coefficient on uncoated carbon layer. Electrical conductivity at different temperatures was measured in constant current mode. The results confirm the fact that conductivity is greater when nitrogen content is greater. To justify the temperature dependence of conductivity we assume a thermally activated electrical transport mechanism.

  6. Interstitial carbon formation in irradiated copper-doped silicon

    SciTech Connect

    Yarykin, N. A.; Weber, J.

    2015-06-15

    The influence of a copper impurity on the spectrum of defects induced in p-Si crystals containing a low oxygen concentration by irradiation with electrons with an energy of 5 MeV at room temperature is studied by deep-level transient spectroscopy. It is found that interstitial carbon atoms (C{sub i}) which are the dominant defects in irradiated samples free of copper are unobservable immediately after irradiation, if the concentration of mobile interstitial copper atoms (Cu{sub i}) is higher than the concentration of radiation defects. This phenomenon is attributed to the formation of (Cu{sub i}, C{sub i}) complexes, which do not introduce levels into the lower half of the band gap. It is shown that these complexes dissociate upon annealing at temperatures of 300–340 K and, thus, bring about the appearance of interstitial carbon.

  7. Microhardness of carbon-doped (111) p-type Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Danyluk, S.; Lim, D. S.; Kalejs, J.

    1985-01-01

    The effect of carbon on (111) p-type Czochralski silicon is examined. The preparation of the silicon and microhardness test procedures are described, and the equation used to determine microhardness from indentations in the silicon wafers is presented. The results indicate that as the carbon concentration in the silicon increases the microhardness increases. The linear increase in microhardness is the result of carbon hindering dislocation motion, and the effect of temperature on silicon deformation and dislocation mobility is explained. The measured microhardness was compared with an analysis which is based on dislocation pinning by carbon; a good correlation was observed. The Labusch model for the effect of pinning sites on dislocation motion is given.

  8. GaAs microcrystals selectively grown on silicon: Intrinsic carbon doping during chemical beam epitaxy with trimethylgallium

    NASA Astrophysics Data System (ADS)

    Molière, T.; Jaffré, A.; Alvarez, J.; Mencaraglia, D.; Connolly, J. P.; Vincent, L.; Hallais, G.; Mangelinck, D.; Descoins, M.; Bouchier, D.; Renard, C.

    2017-01-01

    The monolithic integration of III-V semiconductors on silicon and particularly of GaAs has aroused great interest since the 1980s. Potential applications are legion, ranging from photovoltaics to high mobility channel transistors. By using a novel integration method, we have shown that it is possible to achieve heteroepitaxial integration of GaAs crystals (typical size 1 μ m) on silicon without any structural defect such as antiphase domains, dislocations, or stress, usually reported for direct GaAs heteroepitaxy on silicon. However, concerning their electronic properties, conventional free carrier characterization methods are impractical due to the micrometric size of GaAs crystals. In order to evaluate the GaAs material quality for optoelectronic applications, a series of indirect analyses such as atom probe tomography, Raman spectroscopy, and micro-photoluminescence as a function of temperature were performed. These revealed a high content of partially electrically active carbon originating from the trimethylgallium used as the Ga precursor. Nevertheless, the very good homogeneity observed by this doping mechanism and the attractive properties of carbon as a dopant once controlled to a sufficient degree are a promising route to device doping.

  9. Highly doped silicon nanowires by monolayer doping.

    PubMed

    Veerbeek, Janneke; Ye, Liang; Vijselaar, Wouter; Kudernac, Tibor; van der Wiel, Wilfred G; Huskens, Jurriaan

    2017-02-23

    Controlling the doping concentration of silicon nanostructures is challenging. Here, we investigated three different monolayer doping techniques to obtain silicon nanowires with a high doping dose. These routes were based on conventional monolayer doping, starting from covalently bound dopant-containing molecules, or on monolayer contact doping, in which a source substrate coated with a monolayer of a carborane silane was the dopant source. As a third route, both techniques were combined to retain the benefits of conformal monolayer formation and the use of an external capping layer. These routes were used for doping fragile porous nanowires fabricated by metal-assisted chemical etching. Differences in porosity were used to tune the total doping dose inside the nanowires, as measured by X-ray photoelectron spectroscopy and secondary ion mass spectrometry measurements. The higher the porosity, the higher was the surface available for dopant-containing molecules, which in turn led to a higher doping dose. Slightly porous nanowires could be doped via all three routes, which resulted in highly doped nanowires with (projected areal) doping doses of 10(14)-10(15) boron atoms per cm(2) compared to 10(12) atoms per cm(2) for a non-porous planar sample. Highly porous nanowires were not compatible with the conventional monolayer doping technique, but monolayer contact doping and the combined route resulted for these highly porous nanowires in tremendously high doping doses up to 10(17) boron atoms per cm(2).

  10. Epitaxial Silicon Doped With Antimony

    NASA Technical Reports Server (NTRS)

    Huffman, James E.; Halleck, Bradley L.

    1996-01-01

    High-purity epitaxial silicon doped with antimony made by chemical vapor deposition, using antimony pentachloride (SbCI5) as source of dopant and SiH4, SiCI2H2, or another conventional source of silicon. High purity achieved in layers of arbitrary thickness. Epitaxial silicon doped with antimony needed to fabricate impurity-band-conduction photodetectors operating at wavelengths from 2.5 to 40 micrometers.

  11. Nitrogen-doped carbon coated silicon derived from a facile strategy with enhanced performance for lithium storage

    NASA Astrophysics Data System (ADS)

    Zeng, Lingxing; Liu, Renpin; Qiu, Heyuan; Chen, Xi; Huang, Xiaoxia; Xiong, Peixun; Qian, Qingrong; Chen, Qinghua; Wei, Mingdeng

    2016-07-01

    Silicon-based nanostructures are receiving intense interest in lithium-ion batteries (LIBs) because they have ultrahigh lithium ion storage ability. However, the fast capacity fading induced by the considerably tremendous volume changes of Si anode during the Li-ion intercalation processes as well as the low intrinsic electric conductivity have hindered its deployment. Herein, we initially developed an effective technique to synthesize the core-shell Si/nitrogen-doped carbon (Si/N-C), composite by combining in situ interfacial polymerization and decorate with melamine, followed by carbonization. When used as anode material for LIBs, the Si/N-C composite delivered a notable reversible capacity (1084 mAh g-1 at 0.2 A g-1 for 50 cycles) and high rate capability (495 mAh g-1 at 1 A g-1).

  12. Carbon nanotube coating silicon doped with Cr as a high capacity anode

    NASA Astrophysics Data System (ADS)

    Ishihara, Tatsumi; Nakasu, Masashi; Yoshio, Masaki; Nishiguchi, Hiroyasu; Takita, Yusaku

    Effects of dopant and coating carbon nanotube on anodic performance of Si were studied for metallic anode Li ion rechargeable battery with large capacity. Although the large Li intercalation capacity higher than 1500 mAh g -1 is exhibited on pure Si, it decreased drastically with increasing cycle number. Increasing the electrical conductivity by doping Cr or B is effective for increasing the initial capacity and the cycle stability of Si for Li intercalation. Coating semiconductive Si with the carbon nanotube by decomposition of hydrocarbon is effective for increasing the cycle stability, though the initial Li intercalation capacity slightly decreased. Conducting binder is also important for increasing the cycle stability and it was found that Li intercalation capacity higher than 1500 mAh g -1 can be sustained by using poly vinyliden fruolide. Consequently, reversible Li intercalation capacity of 1500 mAh g -1 was successfully sustained after 10th cycles of charge and discharge by doping Cr and coating with carbon nanotube.

  13. Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Tali, S. A. Safiabadi; Soleimani-Amiri, S.; Sanaee, Z.; Mohajerzadeh, S.

    2017-02-01

    We report successful deposition of nitrogen-doped amorphous carbon films to realize high-power core-shell supercapacitor electrodes. A catalyst-free method is proposed to deposit large-area stable, highly conformal and highly conductive nitrogen-doped amorphous carbon (a-C:N) films by means of a direct-current plasma enhanced chemical vapor deposition technique (DC-PECVD). This approach exploits C2H2 and N2 gases as the sources of carbon and nitrogen constituents and can be applied to various micro and nanostructures. Although as-deposited a-C:N films have a porous surface, their porosity can be significantly improved through a modification process consisting of Ni-assisted annealing and etching steps. The electrochemical analyses demonstrated the superior performance of the modified a-C:N as a supercapacitor active material, where specific capacitance densities as high as 42 F/g and 8.5 mF/cm2 (45 F/cm3) on silicon microrod arrays were achieved. Furthermore, this supercapacitor electrode showed less than 6% degradation of capacitance over 5000 cycles of a galvanostatic charge-discharge test. It also exhibited a relatively high energy density of 2.3 × 103 Wh/m3 (8.3 × 106 J/m3) and ultra-high power density of 2.6 × 108 W/m3 which is among the highest reported values.

  14. Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes

    PubMed Central

    Tali, S. A. Safiabadi; Soleimani-Amiri, S.; Sanaee, Z.; Mohajerzadeh, S.

    2017-01-01

    We report successful deposition of nitrogen-doped amorphous carbon films to realize high-power core-shell supercapacitor electrodes. A catalyst-free method is proposed to deposit large-area stable, highly conformal and highly conductive nitrogen-doped amorphous carbon (a-C:N) films by means of a direct-current plasma enhanced chemical vapor deposition technique (DC-PECVD). This approach exploits C2H2 and N2 gases as the sources of carbon and nitrogen constituents and can be applied to various micro and nanostructures. Although as-deposited a-C:N films have a porous surface, their porosity can be significantly improved through a modification process consisting of Ni-assisted annealing and etching steps. The electrochemical analyses demonstrated the superior performance of the modified a-C:N as a supercapacitor active material, where specific capacitance densities as high as 42 F/g and 8.5 mF/cm2 (45 F/cm3) on silicon microrod arrays were achieved. Furthermore, this supercapacitor electrode showed less than 6% degradation of capacitance over 5000 cycles of a galvanostatic charge-discharge test. It also exhibited a relatively high energy density of 2.3 × 103 Wh/m3 (8.3 × 106 J/m3) and ultra-high power density of 2.6 × 108 W/m3 which is among the highest reported values. PMID:28186204

  15. Transmutation doping of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  16. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    PubMed

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  17. Pulsed energy synthesis and doping of silicon carbide

    DOEpatents

    Truher, J.B.; Kaschmitter, J.L.; Thompson, J.B.; Sigmon, T.W.

    1995-06-20

    A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate is disclosed, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27--730 C is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including HETEROJUNCTION-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.

  18. Pulsed energy synthesis and doping of silicon carbide

    DOEpatents

    Truher, Joel B.; Kaschmitter, James L.; Thompson, Jesse B.; Sigmon, Thomas W.

    1995-01-01

    A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27.degree.-730.degree. C. is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including hetero-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.

  19. Silicon solar cells improved by lithium doping

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1970-01-01

    Results of conference on characteristics of lithium-doped silicon solar cells and techniques required for fabrication indicate that output of cells has been improved to point where cells exhibit radiation resistance superior to those currently in use, and greater control and reproducibility of cell processing have been achieved.

  20. Aluminum doping improves silicon solar cells

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Aluminum doped silicon solar cells with resistivities in the 10- to 20-ohm centimeter range have broad spectral response, high efficiency and long lifetimes in nuclear radiation environments. Production advantages include low material rejection and increased production yields, and close tolerance control.

  1. Silicon germanium carbon heteroepitaxial growth on silicon

    NASA Astrophysics Data System (ADS)

    Mayer, James W.

    1993-10-01

    This project represents the initiation of band-gap engineering of Si-based devices at Arizona State University by James W. Mayer. While at Cornell, he directed the Microscience and Technology program supported by the Semiconductor Research Corporation. His Work on heteoepitaxy of SiGe on silicon convinced him that heteroepitaxy on Si was a viable technique for forming smaller band gap layers on silicon but the requirement was for larger energy-gap materials. In the fall of 1991, James Mayer visited Tom Picraux of Sandia National Laboratories and Clarence Tracy of Motorola Semiconductor Products to discuss the possibility of a joint program to investigate Silicon Germanium Carbon Heteroepitaxial Growth on Silicon. This represented a new research and development initiate for band gap engineering.

  2. Piezoresistance and hole transport in beryllium-doped silicon.

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Robertson, J. B.

    1972-01-01

    The resistivity and piezoresistance of p-type silicon doped with beryllium have been studied as a function of temperature, crystal orientation, and beryllium doping concentration. It is shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gauge factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, while the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.

  3. Dispersion toughened silicon carbon ceramics

    DOEpatents

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  4. Photocurrent spectrum measurements of doped black silicon

    NASA Astrophysics Data System (ADS)

    Zhang, S. K.; Ahmar, H.; Chen, B.; Wang, W.; Alfano, R.

    2011-03-01

    Photocurrent spectra of doped black silicon (BSi) samples were investigated using metal-semiconductor-metal (MSM) structure. The BSi samples were fabricated through femtosecond-laser doping method. Two pieces of samples were annealed in nitrogen ambient for 30 minutes at different temperatures 350°C and 700°C. One control sample remains without annealing. It was found that the doped black silicon samples have an electron mobility as low as 40~50 cm2/V s but a conductivity as high as 4 ~ 5 Scm-1. The high conductivity allows making electrodes by directly contacting metal stripes onto the black silicon surfaces. For the sample without annealing, its photocurrent spectrum covers a wavelength range from 400 nm to 1200 nm. For the sample annealed at 350°C, no significant improvement was found except disappearance of a defect induced photocurrent peak at 660 nm. Further annealing at 700°C, as observed for the third sample, was found to greatly help enhance photoresponse in the wavelength range from 400 nm to 800 nm. The photocurrent spectra under different biases were also measured. With the increasing of bias from 0 to 0.6 V, the peak photoresponse was enhanced by about 5 times while large dark current brought in substantial noise level as well.

  5. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    2002-01-01

    A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  6. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    1999-01-01

    A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  7. Magnetism and the absence of superconductivity in the praseodymium–silicon system doped with carbon and boron

    SciTech Connect

    de la Venta, J.; Basaran, Ali C.; Grant, T.; Gallardo-Amores, J. M.; Ramirez, J. G.; Alario-Franco, M. A.; Fisk, Z.; Schuller, Ivan K.

    2013-08-01

    We searched for new structural, magnetic and superconductivity phases in the Pr–Si system using high-pressure high-temperature and arc melting syntheses. Both high and low Si concentration areas of the phase diagram were explored. Although a similar approach in the La–Si system produced new stable superconducting phases, in the Pr–Si system we did not find any new superconductors. At low Si concentrations, the arc-melted samples were doped with C or B. It was found that addition of C gave rise to multiple previously unknown ferromagnetic phases. Furthermore, X-ray refinement of the undoped samples confirmed the existence of the so far elusive Pr3Si2 phase.

  8. Recombination Activity of Iron in Boron Doped Silicon

    NASA Astrophysics Data System (ADS)

    Yli-Koski, M.; Palokangas, M.; Sokolov, V.; Storgårds, J.; Väinölä, H.; Holmberg, H.; Sinkkonen, J.

    The charge carrier lifetime in iron contaminated boron doped silicon wafers was determined by surface photovoltage, SPV, and microwave photoconductive decay, µPCD, techniques. Our results show that the charge carrier lifetime in boron doped silicon wafers depends on the boron concentration when the lifetime is limited by iron-boron pairs.

  9. Superlattice doped layers for amorphous silicon photovoltaic cells

    DOEpatents

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  10. Peltier effect in doped silicon microchannel plates

    NASA Astrophysics Data System (ADS)

    Pengliang, Ci; Jing, Shi; Fei, Wang; Shaohui, Xu; Zhenya, Yang; Pingxiong, Yang; Lianwei, Wang; Chen, Gao; Chu, Paul K.

    2011-12-01

    The Seebeck coefficient is determined from silicon microchannel plates (Si MCPs) prepared by photo-assisted electrochemical etching at room temperature (25 °C). The coefficient of the sample with a pore size of 5 × 5 μm2, spacing of 1 μm and thickness of about 150 μm is -852 μV/K along the edge of the square pore. After doping with boron and phosphorus, the Seebeck coefficient diminishes to 256 μV/K and -117 μV/K along the edge of the square pore, whereas the electrical resistivity values are 7.5 × 10-3 Ω·cm and 1.9 × 10-3 Ω·cm, respectively. Our data imply that the Seebeck coefficient of the Si MCPs is related to the electrical resistivity and is consistent with that of bulk silicon. Based on the boron and phosphorus doped samples, a simple device is fabricated to connect the two type Si MCPs to evaluate the Peltier effect. When a proper current passes through the device, the Peltier effect is evidently observed. Based on the experimental data and the theoretical calculation, the estimated intrinsic figure of merit ZT of the unicouple device and thermal conductivity of the Si MCPs are 0.007 and 50 W/(m·K), respectively.

  11. Pyrolytic carbon coated black silicon

    PubMed Central

    Shah, Ali; Stenberg, Petri; Karvonen, Lasse; Ali, Rizwan; Honkanen, Seppo; Lipsanen, Harri; Peyghambarian, N.; Kuittinen, Markku; Svirko, Yuri; Kaplas, Tommi

    2016-01-01

    Carbon is the most well-known black material in the history of man. Throughout the centuries, carbon has been used as a black material for paintings, camouflage, and optics. Although, the techniques to make other black surfaces have evolved and become more sophisticated with time, carbon still remains one of the best black materials. Another well-known black surface is black silicon, reflecting less than 0.5% of incident light in visible spectral range but becomes a highly reflecting surface in wavelengths above 1000 nm. On the other hand, carbon absorbs at those and longer wavelengths. Thus, it is possible to combine black silicon with carbon to create an artificial material with very low reflectivity over a wide spectral range. Here we report our results on coating conformally black silicon substrate with amorphous pyrolytic carbon. We present a superior black surface with reflectance of light less than 0.5% in the spectral range of 350 nm to 2000 nm. PMID:27174890

  12. Photoluminescence in erbium doped amorphous silicon oxycarbide thin films

    NASA Astrophysics Data System (ADS)

    Gallis, Spyros; Huang, Mengbing; Efstathiadis, Harry; Eisenbraun, Eric; Kaloyeros, Alain E.; Nyein, Ei Ei; Hommerich, Uwe

    2005-08-01

    Photoluminescence (PL) in Er-doped amorphous silicon oxycarbide (a-SiCxOy:Er) thin films, synthesized via thermal chemical vapor deposition, was investigated for carbon and oxygen concentrations in the range of 0-1.63. Intense room-temperature PL was observed at 1540 nm, with the PL intensity being dependent on the carbon and oxygen content. The strongest PL intensity was detected for a-SiC0.53O0.99:Er when pumped at 496.5 nm, with ˜20 times intensity enhancement as compared to a-SiO2:Er. Broadband excitation in the visible was observed for a-SiC0.53O0.99:Er. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy analyses suggest that the formation of Si-C-O networks plays an important role in enhancing the Er optical activity in a-SiCxOy:Er films.

  13. Field Evaporation of Grounded Arsenic Doped Silicon Clusters

    NASA Astrophysics Data System (ADS)

    Deng, Zexiang; She, Juncong; Li, Zhibing; Wang, Weiliang; Chen, Qiang

    2015-08-01

    We have investigated the field evaporation of grounded arsenic (As) doped silicon (Si) clusters composed of 52 atoms with density functional theory (DFT) to mimic Si nano structures of hundreds of nanometers long standing on a substrate. Six cluster structures with different As doping concentrations and dopant locations are studied. The critical evaporation electric fields are found to be lower for clusters with higher doping concentrations and doping sites closer to the surface. We attribute the difference to the difference in binding energies corresponding to the different As-doping concentrations and to the doping locations. Our theoretical study could shed light on the stability of nano apexes under high electric field.

  14. Interaction of nucleobases with silicon doped and defective silicon doped graphene and optical properties.

    PubMed

    Mudedla, Sathish Kumar; Balamurugan, Kanagasabai; Kamaraj, Manoharan; Subramanian, Venkatesan

    2016-01-07

    The interaction of nucleobases (NBs) with the surface of silicon doped graphene (SiGr) and defective silicon doped graphene (dSiGr) has been studied using electronic structure methods. A systematic comparison of the calculated interaction energies (adsorption strength) of NBs with the surface of SiGr and dSiGr with those of pristine graphene (Gr) has also been made. The doping of graphene with silicon increases the adsorption strength of NBs. The introduction of defects in SiGr further enhances the strength of interaction with NBs. The appreciable stability of complexes (SiGr-NBs and dSiGr-NBs) arises due to the partial electrostatic and covalent (Si···O(N)) interaction in addition to π-π stacking. The interaction energy increases with the size of graphene models. The strong interaction between dSiGr-NBs and concomitant charge transfer causes significant changes in the electronic structure of dSiGr in contrast to Gr and SiGr. Further, the calculated optical properties of all the model systems using time dependent density functional theory (TD-DFT) reveal that absorption spectra of SiGr and dSiGr undergo appreciable changes after adsorption of NBs. Thus, the significant variations in the HOMO-LUMO gap and absorption spectra of dSiGr after interaction with the NBs can be exploited for possible applications in the sensing of DNA nucleobases.

  15. Guided photoluminescence study of Nd-doped silicon rich silicon oxide and silicon rich silicon nitride waveguides

    NASA Astrophysics Data System (ADS)

    Pirasteh, Parastesh; Charrier, Joël; Dumeige, Yannick; Doualan, Jean-Louis; Camy, Patrice; Debieu, Olivier; Liang, Chuan-hui; Khomenkova, Larysa; Lemaitre, Jonathan; Boucher, Yann G.; Gourbilleau, Fabrice

    2013-07-01

    Planar waveguides made of Nd3+-doped silicon rich silicon oxide (SRSO) and silicon rich silicon nitride (SRSN) have been fabricated by reactive magnetron sputtering and characterized with special emphasis on the comparison of the guided photoluminescence (PL) properties of these two matrices. Guided fluorescence excited by top surface pumping at 488 nm on planar waveguides was measured as a function of the distance between the excitation area and the output of the waveguide, as well as a function of the pump power density. The PL intensity increased linearly with pump power without any saturation even at high power. The linear intensity increase of the Nd3+ guided PL under a non-resonant excitation (488 nm) confirms the efficient coupling between either Si-np and rare-earth ions for SRSO or radiative defects and rare earth ions for SRSN. The guided fluorescences at 945 and 1100 nm were observed until 4 mm and 8 mm of the output of the waveguide for Nd3+ doped SRSO and SRSN waveguides, respectively. The guided fluorescence decays of Nd3+-doped-SRSO and -SRSN planar waveguides have been measured and found equal to 97 μs ±7 and 5 μs ± 2, respectively. These results show notably that the Nd3+-doped silicon rich silicon oxide is a very promising candidate on the way to achieve a laser cavity at 1.06 μm.

  16. Resistless lithography - selective etching of silicon with gallium doping regions

    NASA Astrophysics Data System (ADS)

    Abdullaev, D.; Milovanov, R.; Zubov, D.

    2016-12-01

    This paper presents the results for used of resistless lithography with a further reactive-ion etching (RIE) in various chemistry after local (Ga+) implantation of silicon with different doping dose and different size doped regions. We describe the different etching regimes for pattern transfer of FIB implanted Ga masks in silicon. The paper studied the influence of the implantation dose on the silicon surface, the masking effect and the mask resistance to erosion at dry etching. Based on these results we conclude about the possibility of using this method to create micro-and nanoscale silicon structures.

  17. Research on Silicon, Carbon, and Silicon Carbide Heterostructures

    DTIC Science & Technology

    1990-09-14

    0Innr Jc9&9b 1. TITLE (Include Security Classification) Research on Silicon, Carbon, and Silicon Carbide Heterostructures Z. PERSONAL AUTHOR(S) W. D...and identify by block number) FIELD I GROUP SUB-GROUP PLASMAS. DEPOSITION. THIN FILMS. SILICON CARBIDE . DIAMOND. SURFACES. DESORPTION. CHARACTERIZATION...AND SILICON CARBIDE HETEROSTRUCTURES W. D. Partlow (P.I.), W. J. Choyke, J. T. Yates, Jr., C. C. Cheng, H. Gutleben, L. E. Kline, R. R. Mitchell, J

  18. Heavy doping effects in high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1984-01-01

    Several of the key parameters describing the heavily doped regions of silicon solar cells are examined. The experimentally determined energy gap narrowing and minority carrier diffusivity and mobility are key factors in the investigation.

  19. Doping of graphene induced by boron/silicon substrate.

    PubMed

    Dianat, Arezoo; Liao, Zhongquan; Gall, Martin; Zhang, Tao; Gutierrez, Rafael; Zschech, Ehrenfried; Cuniberti, Gianaurelio

    2017-04-12

    In this work, we show the doping of graphene most likely from heteroatoms induced by the substrate using Raman spectrum, X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX) and ab initio molecular dynamics simulations. The doping of graphene on a highly boron-doped silicon substrate was achieved by an annealing at 400 K for about 3 hours in an oven with air flow. With the same annealing, only the Raman features similar to that from the pristine graphene were observed in the freestanding graphene and the graphene on a typical Si/SiO2 wafer. Ab initio molecular dynamics (MD) simulations were performed for defected graphene on boron-doped silicon substrate at several temperatures. All vacancy sites in the graphene are occupied either with B atoms or Si atoms resulting in the mixed boron-silicon doping of the graphene. The MD simulations validated the experimetal finding of graphene doped behaviour observed by Raman spectrum. The electronic structure analysis indicated the p-type nature of doped graphene. The observed doping by the possible incorporation of heteroatoms into the graphene, simply only using 400 K annealing the boron-doped Si substrate, could provide a new approach to synthesize doped graphene in a more economic way.

  20. Excess carbon in silicon carbide

    NASA Astrophysics Data System (ADS)

    Shen, X.; Oxley, M. P.; Puzyrev, Y.; Tuttle, B. R.; Duscher, G.; Pantelides, S. T.

    2010-12-01

    The application of SiC in electronic devices is currently hindered by low carrier mobility at the SiC/SiO2 interfaces. Recently, it was reported that 4H-SiC/SiO2 interfaces might have a transition layer on the SiC substrate side with C/Si ratio as high as 1.2, suggesting that carbon is injected into the SiC substrate during oxidation or other processing steps. We report finite-temperature quantum molecular dynamics simulations that explore the behavior of excess carbon in SiC. For SiC with 20% excess carbon, we find that, over short time (˜24 ps), carbon atoms bond to each other and form various complexes, while the silicon lattice is largely unperturbed. These results, however, suggest that at macroscopic times scale, C segregation is likely to occur; therefore a transition layer with 20% extra carbon would not be stable. For a dilute distribution of excess carbon, we explore the pairing of carbon interstitials and show that the formation of dicarbon interstitial cluster is kinetically very favorable, which suggests that isolated carbon clusters may exist inside SiC substrate.

  1. Doped and Undoped Zinc Oxide Nanostructures on Silicon Wafers

    NASA Astrophysics Data System (ADS)

    Chubenko, E.; Bondarenko, V.

    2013-05-01

    We present results of hydrothermal deposition of undoped and Al doped ZnO nanocrystals on nanocrystalline silicon. ZnO nanocrystals were deposited in an equimolar zinc nitride and hexamethylenetetramine solution. Aluminum nitride was used as Al precursor. The difference of the morphology of doped and undoped ZnO nanocrystals is discussed. Photoluminescence properties of the obtained nanocrystals are shown.

  2. Growth of silicon-doped Al0.6Ga0.4N with low carbon concentration at high growth rate using high-flow-rate metal organic vapor phase epitaxy reactor

    NASA Astrophysics Data System (ADS)

    Ikenaga, Kazutada; Mishima, Akira; Yano, Yoshiki; Tabuchi, Toshiya; Matsumoto, Koh

    2016-05-01

    The relationship between the carbon concentration and electrical characteristics of silicon-doped AlGaN (Al > 0.5) was investigated using a high-flow-rate metal organic vapor phase epitaxy (MOVPE) reactor. The carbon concentration and electrical properties of AlGaN (Al > 0.5) were measured as a function of the growth rate, V/III ratio, and growth temperature. The growth rate of Al0.6Ga0.4N was linearly controlled up to 7.2 µm/h under a constant ammonia (NH3) flow rate. However, a decrease in V/III ratio resulted in an increase in carbon concentration to 8 × 1017 cm-3. With increased growth temperature, the carbon concentration decreased to less than 2 × 1017 cm-3 without showing any reduction in growth rate. As a result, n-type Al0.6Ga0.4N with a carrier concentration of 5.4 × 1018 cm-3 and a resistivity of 2.2 × 10-2 Ω·cm was obtained.

  3. Oxygen precipitation behavior in heavily arsenic doped silicon crystals

    NASA Astrophysics Data System (ADS)

    Haringer, Stephan; Gambaro, Daniela; Porrini, Maria

    2017-01-01

    Silicon crystals containing different levels of arsenic concentration and oxygen content were grown, and samples were taken at various positions along the crystal, to study the influence of three main factors, i.e. the initial oxygen content, the dopant concentration and the thermal history, on the nucleation of oxygen precipitates during crystal growth and cooling in the puller. The crystal thermal history was reconstructed by means of computer modeling, simulating the temperature distribution in the crystal at several growth stages. The oxygen precipitation was characterized after a thermal cycle of 4 h at 800 °C for nuclei stabilization +16 h at 1000 °C for nuclei growth. Oxygen precipitates were counted under microscope on the cleaved sample surface after preferential etching. Lightly doped silicon samples were also included, as reference. Our results show that even in heavily arsenic doped silicon the oxygen precipitation is a strong function of the initial oxygen concentration, similar to what has been observed for lightly doped silicon. In addition, a precipitation retardation effect is observed in the arsenic doped samples when the dopant concentration is higher than 1.7×1019 cm-3 compared to lightly doped samples with the same initial oxygen content and crystal thermal history. Finally, a long permanence time of the crystal in the temperature range between 450 °C and 750 °C enhances the oxygen precipitation, showing that this is an effective temperature range for oxygen precipitation nucleation in heavily arsenic doped silicon.

  4. Aluminum-doped crystalline silicon and its photovoltaic application

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Yu, Xuegong; Gu, Xin; Feng, Yan; Lu, Jinggang; Yang, Deren

    2016-11-01

    The impact of Al doping with the concentrations in the range of 0.01-0.1 ppmw on the performance of silicon wafers and solar cells is studied. The effective segregation coefficient of impurity keff of Al in Si is obtained as 0.0029, which is calculated as 0.0027, supporting that Al should be totally ionized and occupy the substitutional sites in silicon and serve as the +1 dopant. It is found that the open-circuit voltages (Uoc), short-circuit currents (Isc) and photo-electrical conversion efficiency of the Al-containing solar cells decrease with the increase of Al concentrations because of Al-related deep level recombination centers. The average absolute efficiency of Al-doped silicon solar cells is 0.34% lower than that of Ga-doped-only cells, and the largest difference can be about 0.62%. Moreover, Al doped silicon solar cells show no light induced efficiency degradation, and the average efficiency maintains above 17.78%, which is comparable at the final state to that of normal B-doped silicon solar cells.

  5. High-energy electron-induced damage production at room temperature in aluminum-doped silicon

    NASA Technical Reports Server (NTRS)

    Corbett, J. W.; Cheng, L. J.; Jaworowski, A.; Karins, J. P.; Lee, Y. H.; Lindstroem, L.; Mooney, P. M.; Oehrlen, G.; Wang, K. L.

    1979-01-01

    DLTS and EPR measurements are reported on aluminum-doped silicon that was irradiated at room temperature with high-energy electrons. Comparisons are made to comparable experiments on boron-doped silicon. Many of the same defects observed in boron-doped silicon are also observed in aluminum-doped silicon, but several others were not observed, including the aluminum interstitial and aluminum-associated defects. Damage production modeling, including the dependence on aluminum concentration, is presented.

  6. Deep Trench Doping by Plasma Immersion Ion Implantation in Silicon

    SciTech Connect

    Nizou, S.; Vervisch, V.; Etienne, H.; Torregrosa, F.; Roux, L.; Ziti, M.; Alquier, D.; Roy, M.

    2006-11-13

    The realization of three dimensional (3D) device structures remains a great challenge in microelectronics. One of the main technological breakthroughs for such devices is the ability to control dopant implantation along silicon trench sidewalls. Plasma Immersion Ion Implantation (PIII) has shown its wide efficiency for specific doping processing in semiconductor applications. In this work, we propose to study the capability of PIII method for large scale silicon trench doping. Ultra deep trenches with high aspect ratio were etched on 6'' N type Si wafers. Wafers were then implanted with a PIII Pulsion system using BF3 gas source at various pressures and energies. The obtained results evidence that PIII can be used and are of grateful help to define optimized processing conditions to uniformly dope silicon trench sidewalls through the wafers.

  7. Dependence of resistivity on the doping level of polycrystalline silicon

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.

    1975-01-01

    The electrical resistivity of polycrystalline silicon films has been studied as a function of doping concentration and heat treatment. The films were grown by the chemical vapor decomposition of silane on oxidized silicon wafers. The resistivity of the as-deposited films was widely scattered but independent of dopant atom concentration at the lightly doped levels and was strong function of dopant level in the more heavily doped regions. Postdeposition heat treatments in an oxidizing atmosphere remove scatter in the data. The resultant resistivity for dopant levels less than 10 to the 16th atoms/per cu cm was approximately equal to that of intrinsic silicon. In the next 2 orders of magnitude increase in dopant level, the resistivity dropped 6 orders of magnitude. A model, based on high dopant atom segregation in the grain boundaries, is proposed to explain the results.

  8. Does water dope carbon nanotubes?

    SciTech Connect

    Bell, Robert A.; Payne, Michael C.; Mostofi, Arash A.

    2014-10-28

    We calculate the long-range perturbation to the electronic charge density of carbon nanotubes (CNTs) as a result of the physisorption of a water molecule. We find that the dominant effect is a charge redistribution in the CNT due to polarisation caused by the dipole moment of the water molecule. The charge redistribution is found to occur over a length-scale greater than 30 Å, highlighting the need for large-scale simulations. By comparing our fully first-principles calculations to ones in which the perturbation due to a water molecule is treated using a classical electrostatic model, we estimate that the charge transfer between CNT and water is negligible (no more than 10{sup −4} e per water molecule). We therefore conclude that water does not significantly dope CNTs, a conclusion that is consistent with the poor alignment of the relevant energy levels of the water molecule and CNT. Previous calculations that suggest water n-dopes CNTs are likely due to the misinterpretation of Mulliken charge partitioning in small supercells.

  9. Enhanced in vitro cell activity on silicon-doped vaterite/poly(lactic acid) composites.

    PubMed

    Obata, Akiko; Tokuda, Shingo; Kasuga, Toshihiro

    2009-01-01

    A biodegradable composite with silicon-species releasability was prepared using poly(l-lactic acid) (PLLA) and silicon-doped vaterite (SiV) particles. SiV with particle diameters of approximately 1 mum was prepared using aminopropyltriethoxysilane (APTES) as the silicon species by a carbonation process and then mixed with PLLA in methylene chloride according to a SiV to PLLA weight ratio of 1:2, resulting in the preparation of composite slurry. A composite film was prepared by dipping a cover glass in the slurry. The composite films were incubated in a culture medium for 7 days and the silicon concentration of the medium was measured to estimate the species releasability of the composites. A trace amount of silicon species was continuously released from the composites for 7 days, the amount depending on the content of APTES in SiV. On the composite releasing silicon species, mouse osteoblast-like cells (MC3T3-E1 cells) were significantly stimulated to proliferate and differentiate in comparison with those on a composite containing no silicon species. The proliferation of the cells on the composites releasing larger amounts of silicon species (0.51mgl(-1)day(-1)) was higher than that on the composites releasing smaller amount of the species (0.21mgl(-1)day(-1)). The silicon species in the composites were effective in enhancing the cellular functions. The composites were expected to be useful as a scaffold material for bone tissue engineering.

  10. Carbon doping of GaAs NWs

    NASA Astrophysics Data System (ADS)

    Salehzadeh Einabad, Omid

    Nanowires (NWs) have been proposed and demonstrated as the building blocks for nanoscale electronic and photonic devices such as NW field effect transistors and NW solar cells which rely on doping and trap-free carrier transport. Controlled doping of NWs and a high degree of structure and morphology control are required for device applications. However, doping of III-V nanowires such as GaAs nanowires has not been reported extensively in the literature. Carbon is a well known p-type dopant in planar GaAs due to its low diffusivity and high solubility in bulk GaAs; however its use as an intentional dopant in NW growth has not yet been investigated. In this work we studied the carbon doping of GaAs nanowires using CBr4 as the dopant source. Gold nanoparticles (NP) at the tip ofthe NWs have been used to drive the NW growth. We show that carbon doping suppresses the migration ofthe gold NPs from the tip of the NWs. In addition, we show that the carbon doping of GaAs NWs is accompanied by an increase of the axial growth rate and decrease of the lateral growth rate ofthe NWs. Carbon-doped GaAs NWs, unlike the undoped ones which are highly tapered, are rod-like. The origin of the observed morphological changes is attributed to the carbon adsorbates on the sidewalls ofthe nanowires which suppress the lateral growth of the nanowires and increase the diffusion length of the gallium adatoms on the sidewalls. Stacking fault formation consisting of alternating regIOns of zincblende and wurtzite structures has been commonly observed in NWs grown along the (111) direction. In this work, based on transmission electron microscopy (TEM) analysis, we show that carbon doping ofGaAs NWs eliminates the stacking fault formation. Raman spectroscopy was used to investigate the effects of carbon doping on the vibrational properties of the carbon-doped GaAs nanowires. Carbon doping shows a strong impact on the intrinsic longitudinal and transverse optical (La and TO) modes of the Ga

  11. Heavy doping effects in high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.

    1985-01-01

    The use of a (silicon)/(heavily doped polysilicon)/(metal) structure to replace the conventional high-low junction (or back-surface-field, BSF) structure of silicon solar cells was examined. The results of an experimental study designed to explore both qualitatively and quantitatively the mechanism of the improved current gain in bipolar transistors with polysilicon emitter contact are presented. A reciprocity theorem is presented that relates the short circuit current of a device, induced by a carrier generation source, to the minority carrier Fermi level in the dark. A method for accurate measurement of minority-carrier diffusion coefficients in silicon is described.

  12. Tuning luminescence properties of silicon nanocrystals by lithium doping

    NASA Astrophysics Data System (ADS)

    Klimešová, E.; Kůsová, K.; Vacík, J.; Holý, V.; Pelant, I.

    2012-09-01

    Doping silicon nanocrystals (SiNCs) provides a new way to modify their luminescence properties and tailor them for a particular application. We prepared Li-doped SiNCs and characterized them by neutron depth profiling and x-ray diffraction. Our SiNC samples are doped with around 10-100 Li atoms per one nanocrystal and their lattice slightly expands after lithium insertion. We show that the photoluminescence (PL) properties of Li-doped SiNCs are distinctly modified compared to the undoped case. The PL maximum shifts to shorter wavelengths and the PL decay time decreases, both these features being favorable for applications in photonics. The spectral blue-shift is attributed to the tensile strain in SiNCs induced by doping with lithium.

  13. Infrared luminescence from spark-processed silicon and erbium-doped spark-processed silicon

    NASA Astrophysics Data System (ADS)

    Kim, Kwanghoon

    Spark-processed silicon has substantial potential as an optical material. In the past 15 years, our group has investigated a multitude of properties of this unique material, concentrating mostly on the visible and near UV spectral region. The present study expands our endeavors to infrared photoluminescence (PL) of undoped spark-processed silicon. A broad infrared photoluminescence peak at around 945 nm under Ar ion laser excitation was observed at room temperature when investigating a spark-processed layer on a silicon wafer. This light emission is interpreted to be the result of energy transfers between certain energy levels involving the spark-processed silicon matrix. The infrared PL intensity of spark-processed silicon was found to be proportional to the excitation energy. However, telecommunication requires presently a light emission near 1.54 mum (because fiber-optics "conductors" have a minimum in absorption at this wavelength). This cannot be achieved with pure spark-processed silicon. Therefore spark-processed silicon needs to be doped with a rare-earth element such as erbium to shift the emission to longer wavelengths. It is known that erbium has a light emission from intrashell energy transition, that is, from 4I13/2 →4I15/2. Erbium was deposited on a silicon wafer followed by spark-processing, which enables diffusion of some erbium into the SiOx matrix, thus achieving opto-electronically active spark-processed silicon. Rapid thermal annealing enhances the 1.54 mum wavelength intensity from erbium-doped spark-processed silicon. The processing conditions that result in the most efficient photoluminescence have been established and will be presented in this dissertation. In contrast to erbium-doped crystalline silicon, whose light emission is highly affected by temperature (103 times reduction in intensity when heating from 12 K to 150 K), the intensity of erbium-doped spark-processed silicon decreases by only a factor of 4 when heated from 15 K to room

  14. Heavy doping effects in high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.

    1986-01-01

    The temperature dependence of the emitter saturation current for bipolar devices was studied by varying the surface recombination velocity at the emitter surface. From this dependence, the value was derived for bandgap narrowing that is in better agreement with other determinations that were obtained from the temperature dependence measure on devices with ohmic contacts. Results of the first direct measurement of the minority-carrier transit time in a transparent heavily doped emitter layer were reported. The value was obtained by a high-frequency conductance method recently developed and used for doped Si. Experimental evidence is presented for significantly greater charge storage in highly excited silicon near room temperature than conventional theory would predict. These data are compared with various data for delta E sub G in heavily doped silicon.

  15. Preparation of nitrogen-doped carbon tubes

    SciTech Connect

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  16. Germanium-doped crystalline silicon: Effects of germanium doping on boron-related defects

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaodong; Yu, Xuegong; Yang, Deren

    2014-09-01

    Recently it has been recognized that germanium (Ge) doping can be used for microelectronics and photovoltaic devices. This article reviews the recent results about the effects of Ge doping on boron-related defects in crystalline silicon. Behavior of Ge interacting with the acceptor dopants is also discussed therein. In addition, the article provides a comprehensive review on the effect of Ge doping to the formation of iron-boron pairs and boron-oxygen defects that is responsible for the light induced degradation (LID) of the carrier lifetime. The improvement silicon-based solar cells application from Ge doping is discussed as well, including the increment of cell efficiency and the power output of corresponding modules under sunlight illumination.

  17. Low temperature coefficient of resistance and high gage factor in beryllium-doped silicon

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.; Littlejohn, M. A.

    1974-01-01

    The gage factor and resistivity of p-type silicon doped with beryllium was studied as a function of temperature, crystal orientation, and beryllium doping concentration. It was shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gage factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, whereas the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.

  18. Heteroatom-doped hydrogenated amorphous carbons, a-C:H:X. "Volatile" silicon, sulphur and nitrogen depletion, blue photoluminescence, diffuse interstellar bands and ferro-magnetic carbon grain connections

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    2013-07-01

    Context. Hydrogenated amorphous carbons, a-C:H, can incorporate a variety of heteroatoms, which can lead to interesting effects. Aims: We investigate the doping of interstellar a-C:H grains with, principally, Si, O, N and S atoms within the astrophysical context. Methods: A search of the literature on doped a-C:H reveals a number of interesting phenomena of relevance to astrophysics. Results: X dopants in a-C:H:X materials can affect the sp3/sp2 ratio (X = Si, O and N), lead to blue photoluminescence (undoped or X = N), induce ferromagnetic-like behaviour (X = N and S) or simply be incorporated (depleted) into the structure (X = Si, O, N and S). Si and N atoms could also incorporate into fullerenes, possibly forming colour-centres that could mimic diffuse interstellar bands. Conclusions: Doped a-C:H grains could explain several dust-related conundrums, such as: "volatile" Si in photo-dissociation regions, S and N depletion in molecular clouds, blue luminescence, some diffuse interstellar bands and ferromagnetism in carbonaceous grains.

  19. Transport properties for carbon chain sandwiched between heteroatom-doped carbon nanotubes with different doping sites

    NASA Astrophysics Data System (ADS)

    Liu, Wenjiang; Deng, Xiaoqing; Cai, Shaohong

    2016-07-01

    The First-principles calculation is used to investigate the transport properties of a carbon chain connected with N-and/or B-doped caped carbon nanotube acting as electrodes. The I-V curves of the carbon chain are affected by the N/B doping sites, and rectifying behavior can be obtained distinctly when the carbon chain is just connected onto two doping atom sites (N- chain-B), and a weak rectification occurs when N (B) doping at other sites. Interestingly, the spin-filtering effects exist in the junction when it is doped at other sites, undoped system, or N-terminal carbon chains. However, no this behavior is found in N-chain-B and B-chain-B systems. The analysis on the transmission spectra, PDOS, LDOS, spin density, and the electron transmission pathways give an insight into the observed results for the system.

  20. Laser doping and metallization of wide bandgap materials: silicon carbide, gallium nitride, and aluminum nitride

    NASA Astrophysics Data System (ADS)

    Salama, Islam Abdel Haleem

    A laser direct write and doping (LDWD) system is designed and utilized for direct metallization and selective area doping in different SiC polytypes, GaN and in dielectrics including AlN. Laser direct metallization in 4H- and 6H-SiC generates metal-like conductive phases that are produced as both rectifying and ohmic contacts without metal deposition. Nd:YAG (lambda = 532, 1064 nm) nanosecond pulsed laser irradiation in SiC induces carbon-rich conductive phases by thermal decomposition of SiC while UV excimer (lambda = 193 nm) laser irradiation produces a silicon-rich phase due to selective carbon photoablation. Linear transmission line method (TLM) pattern is directly fabricated in single crystals SiC by pulsed laser irradiation allowing characterization of the laser fabricated metal-like contacts. Activation of a self focusing effect at the frequency doubled Nd:YAG laser irradiation (lambda = 532 nm) allows to fabricate buried metal like contacts in SiC wafers while maintaining their device-ready surface condition. Gas immersion laser doping (GILD) and laser doping from a molten precursor are utilized to dope both GaN and SiC. Trimethylaluminum (TMAl) and nitrogen are the precursors used to produce p-type and n-type doped SiC; respectively. Nd:YAG and excimer laser nitrogen doping in SiC epilayer and single crystal substrates increases the dopant concentration by two orders of magnitude and produces both deep (500--600 nm) and shallow (50 nm) junctions, respectively. Laser assisted effusion/diffusion is introduced and utilized to dope Al in SiC wafers. Using this technique, a150 nm p-type doped junction is fabricated in semi-insulating 6H- and n-type doped 4H-SiC wafers. Laser-induced p-type doping of Mg in single crystal GaN is conducted using Bis-magnesium dihydrate [Mg(TMHD)2]. Mg concentration and penetration depth up to 10 20--1021 cm-3 and 5mum, respectively are achieved using various laser doping techniques. Laser direct writing and doping (LDWD) is a

  1. Comment on ``Electron drift mobility in doped amorphous silicon''

    NASA Astrophysics Data System (ADS)

    Overhof, H.; Silver, M.

    1989-05-01

    Experimental drift-mobility data obtained by different methods in doped amorphous silicon are compared. It is shown that the presence of a long-range random potential will lead to a modification of the drift mobility in one experiment while the corresponding values in other experiments are virtually unaffected. It is shown that this effect accounts for the apparent discrepancy between the results of these experiments rather than the shift of the mobility edge upon doping which was recently proposed by Street, Kakalios, and Hack [Phys. Rev. B 38, 5603 (1988)] in order to understand their data.

  2. Realistic modeling of the electronic properties of doped amorphous silicon

    SciTech Connect

    Hack, M.; Street, R.A.

    1988-09-19

    In this letter we describe a fundamental approach to calculating the electronic properties of doped amorphous silicon which takes into account the thermal history of the material. Above the equilibrium temperature, the material is in a thermodynamically stable state, and this is derived by minimizing the free energy using a simple density of states model. The calculations are based on the defect compensation model of doping, introducing distributions of formation energies for neutral dangling bonds and fourfold dopant atoms while preserving charge neutrality. Our results are in good agreement with experimental data providing a realistic model for use in device simulation programs.

  3. Determination of surface recombination velocity in heavily doped silicon

    NASA Technical Reports Server (NTRS)

    Watanabe, M.; Gatos, H. C.; Actor, G.

    1976-01-01

    A method was developed and successfully tested for the determination of the effective surface recombination velocity of silicon layers doped by diffusion of phosphorus to a level of 10 to the 19th to 10 to the 21st per cu cm. The effective recombination velocity was obtained from the dependence of the electron-beam-induced current on the penetration of the electron beam of a scanning electron microscope. A special silicon diode was constructed which permitted the collection at the p-n junction of the carriers excited by the electron beam. This diode also permitted the study of the effects of surface preparation on the effective surface recombination velocity.

  4. Monolayer Contact Doping from a Silicon Oxide Source Substrate.

    PubMed

    Ye, Liang; González-Campo, Arántzazu; Kudernac, Tibor; Núñez, Rosario; de Jong, Michel; van der Wiel, Wilfred G; Huskens, Jurriaan

    2017-04-03

    Monolayer contact doping (MLCD) is a modification of the monolayer doping (MLD) technique that involves monolayer formation of a dopant-containing adsorbate on a source substrate. This source substrate is subsequently brought into contact with the target substrate, upon which the dopant is driven into the target substrate by thermal annealing. Here, we report a modified MLCD process, in which we replace the commonly used Si source substrate by a thermally oxidized substrate with a 100 nm thick silicon oxide layer, functionalized with a monolayer of a dopant-containing silane. The thermal oxide potentially provides a better capping effect and effectively prevents the dopants from diffusing back into the source substrate. The use of easily accessible and processable silane monolayers provides access to a general and modifiable process for the introduction of dopants on the source substrate. As a proof of concept, a boron-rich carboranyl-alkoxysilane was used here to construct the monolayer that delivers the dopant, to boost the doping level in the target substrate. X-ray photoelectron spectroscopy (XPS) showed a successful grafting of the dopant adsorbate onto the SiO2 surface. The achieved doping levels after thermal annealing were similar to the doping levels acessible by MLD as demonstrated by secondary ion mass spectrometry measurements. The method shows good prospects, e.g. for use in the doping of Si nanostructures.

  5. Identification of photoluminescence P line in indium doped silicon as In{sub Si}-Si{sub i} defect

    SciTech Connect

    Lauer, Kevin Möller, Christian; Schulze, Dirk; Ahrens, Carsten

    2015-01-15

    Indium and carbon co-implanted silicon was investigated by low-temperature photoluminescence spectroscopy. A photoluminescence peak in indium doped silicon (P line) was found to depend on the position of a silicon interstitial rich region, the existence of a SiN{sub x}:H/SiO{sub x} stack and on characteristic illumination and annealing steps. These results led to the conclusion that silicon interstitials are involved in the defect and that hydrogen impacts the defect responsible for the P line. By applying an unique illumination and annealing cycle we were able to link the P line defect with a defect responsible for degradation of charge carrier lifetime in indium as well as boron doped silicon. We deduced a defect model consisting of one acceptor and one silicon interstitial atom denoted by A{sub Si}-Si{sub i}, which is able to explain the experimental data of the P line as well as the light-induced degradation in indium and boron doped silicon. Using this model we identified the defect responsible for the P line as In{sub Si}-Si{sub i} in neutral charge state and C{sub 2v} configuration.

  6. Measurement of minority carrier lifetime, mobility and diffusion length in heavily doped silicon

    NASA Technical Reports Server (NTRS)

    Swirhun, S. E.; Swanson, R. M.

    1986-01-01

    Carrier transport and recombination parameters in heavily doped silicon were examined. Data were presented for carrier diffusivity in both p- and n-type heavily doped silicon covering a broad range of doping concentrations from 10 to the 15th power to 10 to the 20th power atoms/cu cm. One of the highlights of the results showed that minority carrier diffusivities are higher by a factor of 2 in silicon compared to majority carrier diffusivities.

  7. Spark-source mass spectrometric assessment of silicon concentrations in silicon-doped gallium arsenide single crystals.

    PubMed

    Wiedemann, B; Meyer, J D; Jockel, D; Freyhardt, H C; Birkmann, B; Müller, G

    2001-07-01

    The spark-source mass spectrometric assessment of silicon concentrations in silicon-doped vertical-gradient-freeze gallium arsenide is presented. The silicon concentrations determined are compared with the charge-carrier densities measured by means of the Hall effect with van der Pauw symmetry along the axis of a single crystal.

  8. Germanium-doped crystalline silicon: A new substrate for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Yang, Deren; Wang, Peng; Yu, Xuegong; Que, Duanlin

    2013-01-01

    Germanium (Ge)-doped crystalline silicon has attracted much attention in recent years, due to its promising properties for meeting the increasing requirements for photovoltaic applications. This paper has reviewed our recent results on Ge-doped crystalline silicon and corresponding solar cells. It includes that Ge doping improves the fracture strength of crystalline silicon, and suppresses the Boron-Oxygen (B-O) defects responsible for the light induced degradation (LID) of carrier lifetime. Ge doping in crystalline silicon will not only benefit for reduction of breakage during the cell fabrication processes, but also improve the solar cell efficiency and the power output of corresponding modules under sunlight illumination.

  9. Highly n -doped silicon: Deactivating defects of donors

    NASA Astrophysics Data System (ADS)

    Mueller, D. Christoph; Fichtner, Wolfgang

    2004-12-01

    We report insight into the deactivation mechanisms of group V donors in heavily doped silicon. Based on our ab initio calculations, we suggest a three step model for the donor deactivation. In highly n -type Si grown at low temperatures, in the absence of excess native point defects, the intrinsic limit to ne seems to rise in part by means of donor deactivating distortions of the silicon lattice in the proximity of two or more donor atoms that share close sites. Also, donor dimers play an important part in the deactivation at high doping concentrations. While the dimers constitute a stable or metastable inactive donor configuration, the lattice distortions lower the donor levels gradually below the impurity band in degenerate silicon. On the other hand, we find that, in general, none of the earlier proposed deactivating donor pair defects is stable at any position of the Fermi level. The lattice distortions may be viewed as a precursor to Frenkel pair generation and donor-vacancy clustering process (step 2) that account for deactivation at elevated temperature and longer annealing times. Ultimately, and most prominently in the case of the large Sb atoms, precipitation of the donor atoms may set in as the last step of the deactivation process chain.

  10. Characteristic Study of Boron Doped Carbon Nanowalls Films Deposited by Microwave Plasma Enhanced Chemical Vapor Deposition.

    PubMed

    Lu, Chunyuan; Dong, Qi; Tulugan, Kelimu; Park, Yeong Min; More, Mahendra A; Kim, Jaeho; Kim, Tae Gyu

    2016-02-01

    In this research, catalyst-free vertically aligned boron doped carbon nanowalls films were fabricated on silicon (100) substrates by MPECVD using feeding gases CH4, H2 and B2H6 (diluted with H2 to 5% vol) as precursors. The substrates were pre-seeded with nanodiamond colloid. The fabricated CNWs films were characterized by Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The data obtained from SEM confirms that the CNWs films have different density and wall thickness. From Raman spectrum, a G peak around 1588 cm(-1) and a D band peak at 1362 cm(-1) were observed, which indicates a successful fabrication of CNWs films. The EDX spectrum of boron doped CNWs film shows the existence of boron and carbon. Furthermore, field emission properties of boron doped carbon nanowalls films were measured and field enhancement factor was calculated using Fowler-Nordheim plot. The result indicates that boron doped CNWs films could be potential electron emitting materials.

  11. Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks

    NASA Astrophysics Data System (ADS)

    Kramer, Nicolaas Johannes

    atmospheric pressures necessitates high plasma densities to reach temperatures required for crystallization of nanoparticles. Using experimentally determined plasma properties from the literature, the model estimates the nanoparticle temperature that is achieved during synthesis at atmospheric pressures. It was found that temperatures well above those required for crystallization can be achieved. Now that the synthesis of nanocrystals is understood, the second half of this thesis will focus on doping of the nanocrystals. The doping of semiconductor nanocrystals, which is vital for the optimization of nanocrystal-based devices, remains a challenge. Gas phase plasma approaches have been very successful in incorporating dopant atoms into nanocrystals by simply adding a dopant precursor during synthesis. However, little is known about the electronic activation of these dopants. This was investigated with field-effect transistor measurements using doped silicon nanocrystal films. It was found that, analogous to bulk silicon, boron and phosphorous electronically dope silicon nanocrystals. However, the dopant activation efficiency remains low as a result of self-purification of the dopants to the nanocrystal surface. Next the plasmonic properties of heavily doped silicon nanocrystals was explored. While the synthesis method was identical, the plasmonic behavior of phosphorus-doped and boron-doped nanocrystals was found the be significantly different. Phosphorus-doped nanocrystals exhibit a plasmon resonance immediately after synthesis, while boron-doped nanocrystals require a post-synthesis annealing or oxidation treatment. This is a result of the difference in dopant location. Phosphorus is more likely to be incorporated into the core of the nanocrystal, while the majority of boron is placed on the surface of the nanocrystal. The oxidized boron-doped particles exhibit stable plasmonic properties, and therefore this allows for the production of air-stable silicon-based plasmonic

  12. Effects of high doping levels on silicon solar cell performance

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Brandhorst, H. W., Jr.; Baraona, C. R.

    1975-01-01

    Open-circuit voltages measured in silicon solar cells made from 0.01 ohm-cm material are 150 mV lower than voltages calculated from simple diffusion theory and cannot be explained by poor diffusion lengths or surface leakage currents. An analytical study was made to determine whether high doping effects, which increase the intrinsic carrier concentration, could account for the low observed voltages and to determine the limits on voltage and efficiency imposed by high doping effects. The results indicate that the observed variation of voltage with base resistivity is predicted by these effects. A maximum efficiency of 19% (AMO) and a voltage of 0.7 volts were calculated for 0.1 ohm-cm cells assuming an optimum diffused layer impurity profile.

  13. Optical absorption and emission of nitrogen-doped silicon nanocrystals.

    PubMed

    Pi, Xiaodong; Chen, Xiaobo; Ma, Yeshi; Yang, Deren

    2011-11-01

    Silicon nanocrystals (Si NCs) may be both unintentionally and intentionally doped with nitrogen (N) during their synthesis and processing. Since the importance of Si NCs largely originates from their remarkable optical properties, it is critical to understand the effect of N doping on the optical behavior of Si NCs. On the basis of theoretical calculations, we show that the doping of Si NCs with N most likely leads to the formation of paired interstitial N at the NC surface, which causes both the optical absorption and emission of Si NCs to redshift. But these redshifts are smaller than those induced by doubly bonded O at the NC surface. It is found that high radiative recombination rates can be reliably obtained for Si NCs with paired interstitial N at the NC surface. The current results not only help to understand the optical behavior of Si NCs synthesized and processed in N-containing environments, but also inspire intentional N doping as an additional means to control the optical properties of Si NCs.

  14. Multifunctional electroactive heteroatom-doped carbon aerogels.

    PubMed

    You, Bo; Yin, Peiqun; An, Linna

    2014-11-12

    The design and synthesis of highly active, durable, and cheap nanomaterials for various renewable energy storage and conversion applications is extremely desirable but remains challenging. Here, a green and efficient strategy to produce CoOx nanoparticles and surface N-co-doped carbon aerogels (Co-N-CAs) is reported by multicomponent surface self-assembly of commercially melamine sponge (CMS). In the methodology, the CMS simultaneously function as green N precursor for surface N doping and 3D support. The resulting Co-N-CAs exhibit 3D hierarchical, interconnected macro- and bimodal meso-porosity (6.3 nm and <4 nm), high surface area (1383 m(2) g(-1)), and highly dispersed, semi-exposured CoOx nanoparticles (diameter of 12.5 nm). The surface doping of N, semi-exposured configuration of CoOx nanoparticles and the penetrated complementary pores (<4 nm) in the carbon walls provide highly accessibility between electroactive components and electrolytes to improve reactivity. With their tailored architecture, the Co-N-CAs show superior electrocatalytic oxygen reduction (ORR) activities comparable to the commercially Pt/C catalysts, high specific capacitance (433 F g(-1)), excellent lithium storage (938 mAh g(-1)), and outstanding durability, making them very promising for advanced energy conversion and storage. In addition, the presented strategy can be extended to fabricate other metal oxide- and N-co-doped carbon aerogels for diverse energy-related applications.

  15. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers

    PubMed Central

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-01-01

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10−15 cm2 s−1, 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value. PMID:26227342

  16. A DLTS study of hydrogen doped czochralski-grown silicon

    NASA Astrophysics Data System (ADS)

    Jelinek, M.; Laven, J. G.; Kirnstoetter, S.; Schustereder, W.; Schulze, H.-J.; Rommel, M.; Frey, L.

    2015-12-01

    In this study we examine proton implanted and subsequently annealed commercially available CZ wafers with the DLTS method. Depth-resolved spreading resistance measurements are shown, indicating an additional peak in the induced doping profile, not seen in the impurity-lean FZ reference samples. The additional peak lies about 10-15 μm deeper than the main peak near the projected range of the protons. A DLTS characterization in the depth of the additional peak indicates that it is most likely not caused by classical hydrogen-related donors known also from FZ silicon but by an additional donor complex whose formation is assisted by the presence of silicon self-interstitials.

  17. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-07-01

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10-15 cm2 s-1, 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value.

  18. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers.

    PubMed

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-07-31

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10(-15) cm(2) s(-1), 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value.

  19. Delta-Doping at Wafer Level for High Throughput, High Yield Fabrication of Silicon Imaging Arrays

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor); Nikzad, Shoulch (Inventor); Jones, Todd J. (Inventor); Greer, Frank (Inventor); Carver, Alexander G. (Inventor)

    2014-01-01

    Systems and methods for producing high quantum efficiency silicon devices. A silicon MBE has a preparation chamber that provides for cleaning silicon surfaces using an oxygen plasma to remove impurities and a gaseous (dry) NH3 + NF3 room temperature oxide removal process that leaves the silicon surface hydrogen terminated. Silicon wafers up to 8 inches in diameter have devices that can be fabricated using the cleaning procedures and MBE processing, including delta doping.

  20. Phase transitions in ferroelectric silicon doped hafnium oxide

    NASA Astrophysics Data System (ADS)

    Böscke, T. S.; Teichert, St.; Bräuhaus, D.; Müller, J.; Schröder, U.; Böttger, U.; Mikolajick, T.

    2011-09-01

    We investigated phase transitions in ferroelectric silicon doped hafnium oxide (FE-Si:HfO2) by temperature dependent polarization and x-ray diffraction measurements. If heated under mechanical confinement, the orthorhombic ferroelectric phase reversibly transforms into a phase with antiferroelectric behavior. Without confinement, a transformation into a monoclinic/tetragonal phase mixture is observed during cooling. These results suggest the existence of a common higher symmetry parent phase to the orthorhombic and monoclinic phases, while transformation between these phases appears to be inhibited by an energy barrier.

  1. Effects of high doping levels silicon solar cell performance

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Brandhorst, H. W., Jr.; Baraona, C. R.

    1975-01-01

    The significance of the heavy doping effects (HDE) on the open-circuit voltage of silicon solar cells is assessed. Voltage calculations based on diffusion theory are modified to include the first order features of the HDE. Comparisions of the open-circuit voltage measured for cells of various base resistivities are made with those calculated using the diffusion model with and without the HDE. Results indicate that the observed variation of voltage with base resistivity is predicted by these effects. A maximum efficiency of 19% (AM0) and a voltage of 0.7 volts are calculated for 0.1 omega-cm cells assuming an optimum diffused layer impurity profile.

  2. The observation of damage regions produced by neutron irradiation in lithium-doped silicon solar cells.

    NASA Technical Reports Server (NTRS)

    Ghosh, S.; Sargent, G. A.

    1972-01-01

    Study regions of lattice disorder produced in lithium-doped float-zone melted n/p-type silicon solar cells by irradiation with monoenergetic neutrons at doses between 10 to the 10th and 10 to the 13th per cu cm. The defect regions were revealed by chemically etching the surface of the solar cells and by observing carbon replicas in an electron microscope. It was found that the defect density increased with increasing irradiation dose and increased lithium content, whereas the average defect diameter was found to decrease. From thermal annealing experiments it was found that in the lithium-doped material the defect structure was stable at temperatures between 300 and 1200 K. This was found to be in contrast to the undoped material where at the lowest doses considerable annealing was observed to occur. These results are discussed in terms of the theoretical predictions and models of defect clusters proposed by Gossick (1959) and Crawford and Cleland (1959).

  3. Characterisation of active dopants in boron-doped self-assembled silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Puthen Veettil, Binesh; Zhang, Tian; Chin, Robert Lee; Jia, Xuguang; Nomoto, Keita; Yang, Terry Chien-Jen; Lin, Ziyun; Wu, Lingfeng; Rexiati, Reyifate; Gutsch, Sebastian; Conibeer, Gavin; Perez-Würfl, Ivan

    2016-10-01

    Doping of silicon nanocrystals has become an important topic due to its potential to enable the fabrication of environmentally friendly and cost-effective optoelectronic and photovoltaic devices. However, doping of silicon nanocrystals has been proven difficult and most of the structural and electronic properties are still not well understood. In this work, the intrinsic and boron-doped self-assembled silicon nanocrystals were prepared and mainly characterised by the transient current method to study the behaviour of charge carriers in these materials. Our experiments quantified the amount of electrically active boron dopants that contributed to charge transport. From this, the boron doping efficiency in the nanocrystal superlattice was estimated.

  4. Ion-implantation and analysis for doped silicon slot waveguides

    NASA Astrophysics Data System (ADS)

    Deam, L.; Stavrias, N.; Lee, K. K.; McCallum, J. C.

    2012-10-01

    We have utilised ion implantation to fabricate silicon nanocrystal sensitised erbium-doped slot waveguide structures in a Si/SiO2/Si layered configuration and photoluminescence (PL) and Rutherford backscattering spectrometry (RBS) to analyse these structures. Slot waveguide structures in which light is confined to a nanometre-scale low-index region between two high-index regions potentially offer significant advantages for realisation of electrically-pumped Si devices with optical gain and possibly quantum optical devices. We are currently investigating an alternative pathway in which high quality thermal oxides are grown on silicon and ion implantation is used to introduce the Er and Si-ncs into the SiO2 layer. This approach provides considerable control over the Er and Si-nc concentrations and depth profiles which is important for exploring the available parameter space and developing optimised structures. RBS is well-suited to compositional analysis of these layered structures. To improve the depth sensitivity we have used a 1 MeV α beam and results indicate that a layered silicon-Er:SiO2/silicon structure has been fabricated as desired. In this paper structural results will be compared to Er photoluminescence profiles for samples processed under a range of conditions.

  5. Oxygen and carbon impurities and related defects in silicon

    NASA Technical Reports Server (NTRS)

    Pearce, C. W.

    1985-01-01

    Oxygen and carbon are the predominant impurities in Czochralski-grown silicon. The incorporation of oxygen and carbon during crystal growth is reviewed and device effects are discussed. Methods for controlling oxygen and carbon incorporation during crystal growth are discussed and results supporting a segregation coefficient of k=0.5 for oxygen are presented. The nucleation and precipitation behavior of oxygen is complex. Temperature and doping level effects which add insight into the role of point defects in the nucleation process are highlighted. In general, precipitation is found to be retarded in N+ and P+ silicon. The types and quantities of defects resulting from the oxygen precipitates is of interest as they are technologically useful in the process called intrinsic gettering. A comparison is made between the available defect sites and the quantities of metallic impurities present in a typical wafer which need to be gettered. Finally, a discussion of the denuded-zone, intrinsic-gettered (DZ-IG) structure on device properties is presented.

  6. Carbon/Silicon Heterojunction Solar Cells: State of the Art and Prospects.

    PubMed

    Li, Xinming; Lv, Zheng; Zhu, Hongwei

    2015-11-01

    In the last few decades, advances and breakthroughs of carbon materials have been witnessed in both scientific fundamentals and potential applications. The combination of carbon materials with traditional silicon semiconductors to fabricate solar cells has been a promising field of carbon science. The power conversion efficiency has reached 15-17% with an astonishing speed, and the diversity of systems stimulates interest in further research. Here, the historical development and state-of-the-art carbon/silicon heterojunction solar cells are covered. Firstly, the basic concept and mechanism of carbon/silicon solar cells are introduced with a specific focus on solar cells assembled with carbon nanotubes and graphene due to their unique structures and properties. Then, several key technologies with special electrical and optical designs are introduced to improve the cell performance, such as chemical doping, interface passivation, anti-reflection coatings, and textured surfaces. Finally, potential pathways and opportunities based on the carbon/silicon heterojunction are envisaged. The aspects discussed here may enable researchers to better understand the photovoltaic effect of carbon/silicon heterojunctions and to optimize the design of graphene-based photodevices for a wide range of applications.

  7. Near-infrared free carrier absorption in heavily doped silicon

    SciTech Connect

    Baker-Finch, Simeon C.; McIntosh, Keith R.; Yan, Di; Fong, Kean Chern; Kho, Teng C.

    2014-08-14

    Free carrier absorption in heavily doped silicon can have a significant impact on devices operating in the infrared. In the near infrared, the free carrier absorption process can compete with band to band absorption processes, thereby reducing the number of available photons to optoelectronic devices such as solar cells. In this work, we fabricate 18 heavily doped regions by phosphorus and boron diffusion into planar polished silicon wafers; the simple sample structure facilitates accurate and precise measurement of the free carrier absorptance. We measure and model reflectance and transmittance dispersion to arrive at a parameterisation for the free carrier absorption coefficient that applies in the wavelength range between 1000 and 1500 nm, and the range of dopant densities between ∼10{sup 18} and 3 × 10{sup 20} cm{sup −3}. Our measurements indicate that previously published parameterisations underestimate the free carrier absorptance in phosphorus diffusions. On the other hand, published parameterisations are generally consistent with our measurements and model for boron diffusions. Our new model is the first to be assigned uncertainty and is well-suited to routine device analysis.

  8. Crystallization and doping of amorphous silicon on low temperature plastic

    DOEpatents

    Kaschmitter, James L.; Truher, Joel B.; Weiner, Kurt H.; Sigmon, Thomas W.

    1994-01-01

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900.degree. C.), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180.degree. C. for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180.degree. C.) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide.

  9. Crystallization and doping of amorphous silicon on low temperature plastic

    DOEpatents

    Kaschmitter, J.L.; Truher, J.B.; Weiner, K.H.; Sigmon, T.W.

    1994-09-13

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate is disclosed. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900 C), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180 C for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180 C) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide. 5 figs.

  10. Properties of boron-doped thin films of polycrystalline silicon

    SciTech Connect

    Merabet, Souad

    2013-12-16

    The properties of polycrystalline-silicon films deposited by low pressure chemical vapor deposition and doped heavily in situ boron-doped with concentration level of around 2×10{sup 20}cm{sup −3} has been studied. Their properties are analyzed using electrical and structural characterization means by four points probe resistivity measurements and X-ray diffraction spectra. The thermal-oxidation process are performed on sub-micron layers of 200nm/c-Si and 200nm/SiO{sub 2} deposited at temperatures T{sub d} ranged between 520°C and 605°C and thermally-oxidized in dry oxygen ambient at 945°C. Compared to the as-grown resistivity with silicon wafers is known to be in the following sequence <ρ{sub 200nm/c−Si}> < <ρ{sub 200nm/SiO2}> and <ρ{sub 520}> < <ρ{sub 605}>. The measure X-ray spectra is shown, that the Bragg peaks are marked according to the crystal orientation in the film deposited on bare substrates (poly/c-Si), for the second series of films deposited on bare oxidized substrates (poly/SiO{sub 2}) are clearly different.

  11. Converting a carbon preform object to a silicon carbide object

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1990-01-01

    A process for converting in depth a carbon or graphite preform object to a silicon carbide object, silicon carbide/silicon object, silicon carbide/carbon-core object, or a silicon carbide/silicon/carbon-core object, by contacting it with silicon liquid and vapor over various lengths of contact time in a reaction chamber. In the process, a stream comprised of a silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a coreactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into the reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. Thus, the precursor gas is decomposed directly to silicon in the reaction chamber. Any stream of decomposition gas and any unreacted precursor gas from the reaction chamber is removed. A carbon or graphite preform object placed in the reaction chamber is contacted with the silicon. The carbon or graphite preform object is recovered from the reactor chamber after it has been converted to a desired silicon carbide, silicon and carbon composition.

  12. Silicon/Carbon Nanotube Photocathode for Splitting Water

    NASA Technical Reports Server (NTRS)

    Amashukeli, Xenia; Manohara, Harish; Greer, Harold F.; Hall, Lee J.; Gray, Harry B.; Subbert, Bryan

    2013-01-01

    A proof-of-concept device is being developed for hydrogen gas production based on water-splitting redox reactions facilitated by cobalt tetra-aryl porphyrins (Co[TArP]) catalysts stacked on carbon nanotubes (CNTs) that are grown on n-doped silicon substrates. The operational principle of the proposed device is based on conversion of photoelectron energy from sunlight into chemical energy, which at a later point, can be turned into electrical and mechanical power. The proposed device will consist of a degenerately n-doped silicon substrate with Si posts covering the surface of a 4-in. (approximately equal to 10cm) wafer. The substrate will absorb radiation, and electrons will move radially out of Si to CNT. Si posts are designed such that the diameters are small enough to allow considerable numbers of electrons to transport across to the CNT layer. CNTs will be grown on top of Si using conformal catalyst (Fe/Ni) deposition over a thin alumina barrier layer. Both metallic and semiconducting CNT will be used in this investigation, thus allowing for additional charge generation from CNT in the IR region. Si post top surfaces will be masked from catalyst deposition so as to prevent CNT growth on the top surface. A typical unit cell will then consist of a Si post covered with CNT, providing enhanced surface area for the catalyst. The device will then be dipped into a solution of Co[TArP] to enable coating of CNT with Co(P). The Si/CNT/Co [TArP] assembly then will provide electrons for water splitting and hydrogen gas production. A potential of 1.23 V is needed to split water, and near ideal band gap is approximately 1.4 eV. The combination of doped Si/CNT/Co [TArP] will enable this redox reaction to be more efficient.

  13. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  14. Boron- and phosphorus-doped polycrystalline silicon thin films prepared by silver-induced layer exchange

    SciTech Connect

    Antesberger, T.; Wassner, T. A.; Jaeger, C.; Algasinger, M.; Kashani, M.; Scholz, M.; Matich, S.; Stutzmann, M.

    2013-05-27

    Intentional boron and phosphorus doping of polycrystalline silicon thin films on glass prepared by the silver-induced layer exchange is presented. A silver/(titanium) oxide/amorphous silicon stack is annealed at temperatures below the eutectic temperature of the Ag/Si system, leading to a complete layer exchange and simultaneous crystallization of the amorphous silicon. Intentional doping of the amorphous silicon prior to the exchange process results in boron- or phosphorus-doped polycrystalline silicon. Hall effect measurements show carrier concentrations between 2 Multiplication-Sign 10{sup 17} cm{sup -3} and 3 Multiplication-Sign 10{sup 20} cm{sup -3} for phosphorus and 4 Multiplication-Sign 10{sup 18} cm{sup -3} to 3 Multiplication-Sign 10{sup 19} cm{sup -3} for boron-doped layers, with carrier mobilities up to 90 cm{sup 2}/V s.

  15. First Principles Atomistic Model for Carbon-Doped Boron Suboxide

    DTIC Science & Technology

    2014-09-01

    First Principles Atomistic Model for Carbon-Doped Boron Suboxide by Amol B Rahane, Jennifer S Dunn, and Vijay Kumar ARL-TR-7106...2014 First Principles Atomistic Model for Carbon-Doped Boron Suboxide Amol B Rahane Dr Vijay Kumar Foundation 1969 Sector 4 Gurgaon...Final 3. DATES COVERED (From - To) October 2013–July 2014 4. TITLE AND SUBTITLE First Principles Atomistic Model for Carbon-Doped Boron Suboxide

  16. Studies on the reactive melt infiltration of silicon and silicon-molybdenum alloys in porous carbon

    NASA Technical Reports Server (NTRS)

    Singh, M.; Behrendt, D. R.

    1992-01-01

    Investigations on the reactive melt infiltration of silicon and silicon-1.7 and 3.2 at percent molybdenum alloys into porous carbon preforms have been carried out by process modeling, differential thermal analysis (DTA) and melt infiltration experiments. These results indicate that the initial pore volume fraction of the porous carbon preform is a critical parameter in determining the final composition of the raction-formed silicon carbide and other residual phases. The pore size of the carbon preform is very detrimental to the exotherm temperatures due to liquid silicon-carbon reactions encountered during the reactive melt infiltration process. A possible mechanism for the liquid silicon-porous (glassy) carbon reaction has been proposed. The composition and microstructure of the reaction-formed silicon carbide has been discussed in terms of carbon preform microstructures, infiltration materials, and temperatures.

  17. Controlled in situ boron doping of short silicon nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Das Kanungo, Pratyush; Zakharov, Nikolai; Bauer, Jan; Breitenstein, Otwin; Werner, Peter; Goesele, Ulrich

    2008-06-01

    Epitaxial silicon nanowires (NWs) of short heights (˜280nm) on Si ⟨111⟩ substrate were grown and doped in situ with boron on a concentration range of 1015-1019cm-3 by coevaporation of atomic Si and B by molecular beam epitaxy. Transmission electron microscopy revealed a single-crystalline structure of the NWs. Electrical measurements of the individual NWs confirmed the doping. However, the low doped (1015cm-3) and medium doped (3×1016 and 1×1017cm-3) NWs were heavily depleted by the surface states while the high doped (1018 and 1019cm-3) ones showed volume conductivities expected for the corresponding intended doping levels.

  18. Dynamics of iron-acceptor-pair formation in co-doped silicon

    SciTech Connect

    Bartel, T.; Gibaja, F.; Graf, O.; Gross, D.; Kaes, M.; Heuer, M.; Kirscht, F.; Möller, C.; Lauer, K.

    2013-11-11

    The pairing dynamics of interstitial iron and dopants in silicon co-doped with phosphorous and several acceptor types are presented. The classical picture of iron-acceptor pairing dynamics is expanded to include the thermalization of iron between different dopants. The thermalization is quantitatively described using Boltzmann statistics and different iron-acceptor binding energies. The proper understanding of the pairing dynamics of iron in co-doped silicon will provide additional information on the electronic properties of iron-acceptor pairs and may become an analytical method to quantify and differentiate acceptors in co-doped silicon.

  19. Control of carbon balance in a silicon smelting furnace

    DOEpatents

    Dosaj, Vishu D.; Haines, Cathryn M.; May, James B.; Oleson, John D.

    1992-12-29

    The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

  20. Carbon nanotube-amorphous silicon hybrid solar cell with improved conversion efficiency.

    PubMed

    Funde, Adinath M; Nasibulin, Albert G; Syed, Hashmi Gufran; Anisimov, Anton S; Tsapenko, Alexey; Lund, Peter; Santos, J D; Torres, I; Gandía, J J; Cárabe, J; Rozenberg, A D; Levitsky, Igor A

    2016-05-06

    We report a hybrid solar cell based on single walled carbon nanotubes (SWNTs) interfaced with amorphous silicon (a-Si). The high quality carbon nanotube network was dry transferred onto intrinsic a-Si forming Schottky junction for metallic SWNT bundles and heterojunctions for semiconducting SWNT bundles. The nanotube chemical doping and a-Si surface treatment minimized the hysteresis effect in current-voltage characteristics allowing an increase in the conversion efficiency to 1.5% under an air mass 1.5 solar spectrum simulator. We demonstrated that the thin SWNT film is able to replace a simultaneously p-doped a-Si layer and transparent conductive electrode in conventional amorphous silicon thin film photovoltaics.

  1. Crystal growth of MCZ silicon with ultralow carbon concentration

    NASA Astrophysics Data System (ADS)

    Nagai, Y.; Nakagawa, S.; Kashima, K.

    2014-09-01

    In this study, we investigated the evaporation of carbon monoxide (CO) from silicon melt during crystal growth by evaluating the carbon concentrations in the crystals using photoluminescence (PL) spectroscopy. In order to achieve greater carrier lifetimes in magnetic-field-induced Czochralski (MCZ) silicon for high-power insulated-gate bipolar transistor (IGBT) devices, we focused on the reduction of carbon impurities in MCZ silicon, that act as heterogeneous nucleation sites for oxygen precipitates. To obtain MCZ silicon with a carbon concentration lower than that of floating-zone (FZ) silicon, it is necessary to prevent the back-diffusion of CO from the hot graphite components into the melt and promote CO evaporation from the melt. By promoting CO evaporation, we managed to grow 6-in. CZ silicon crystals with a carbon concentration lower than 1.0×1014 atoms/cm3 at a solidified fraction of 80%.

  2. Investigation of the properties of carbon-base nanostructures doped YBa2Cu3O7-δ high temperature superconductor

    NASA Astrophysics Data System (ADS)

    Dadras, Sedigheh; Ghavamipour, Mahshid

    2016-03-01

    In this research, we have investigated the effects of three samples of carbon-base nanostructures (carbon nanoparticles, carbon nanotubes and silicon carbide nanoparticles) doping on the properties of Y1Ba2Cu3O7-δ (YBCO) high temperature superconductor. The pure and doped YBCO samples were synthesized by sol-gel method and characterized by resistivity versus temperature (ρ-T), current versus voltage (I-V), through X-ray diffraction (XRD) and scanning electron microscope (SEM) analysis. The results confirmed that for all the samples, the orthorhombic phase of YBCO compound is formed. We found that the pinning energy and critical current density of samples increase by adding carbon nanostructures to YBCO compound. Also critical temperature is improved by adding carbon nanotubes to YBCO compound, while it does not change much for carbon and silicon carbide nanoparticles doped compounds. Furthermore, the samples were characterized by UV-vis spectroscopy in 300 K and the band gap of the samples was determined. We found that the carbon nanotubes doping decreases YBCO band gap in normal state from 1.90 eV to 1.68 eV, while carbon and SiC nanoparticles doping increases it to 2.20 and 3.37 eV respectively.

  3. Monolayer contact doping of silicon surfaces and nanowires using organophosphorus compounds.

    PubMed

    Hazut, Ori; Agarwala, Arunava; Subramani, Thangavel; Waichman, Sharon; Yerushalmi, Roie

    2013-12-02

    Monolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures(1). MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms. In this article a detailed procedure for surface doping of silicon substrate as well as silicon nanowires is demonstrated. Phosphorus dopant source was formed using tetraethyl methylenediphosphonate monolayer on a silicon substrate. This monolayer containing substrate was brought to contact with a pristine intrinsic silicon target substrate and annealed while in contact. Sheet resistance of the target substrate was measured using 4 point probe. Intrinsic silicon nanowires were synthesized by chemical vapor deposition (CVD) process using a vapor-liquid-solid (VLS) mechanism; gold nanoparticles were used as catalyst for nanowire growth. The nanowires were suspended in ethanol by mild sonication. This suspension was used to dropcast the nanowires on silicon substrate with a silicon nitride dielectric top layer. These nanowires were doped with phosphorus in similar manner as used for the intrinsic silicon wafer. Standard photolithography process was used to fabricate metal electrodes for the formation of nanowire based field effect transistor (NW-FET). The electrical properties of a representative nanowire device were measured by a semiconductor device analyzer and a probe station.

  4. Monolayer Contact Doping of Silicon Surfaces and Nanowires Using Organophosphorus Compounds

    PubMed Central

    Hazut, Ori; Agarwala, Arunava; Subramani, Thangavel; Waichman, Sharon; Yerushalmi, Roie

    2013-01-01

    Monolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures1. MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms. In this article a detailed procedure for surface doping of silicon substrate as well as silicon nanowires is demonstrated. Phosphorus dopant source was formed using tetraethyl methylenediphosphonate monolayer on a silicon substrate. This monolayer containing substrate was brought to contact with a pristine intrinsic silicon target substrate and annealed while in contact. Sheet resistance of the target substrate was measured using 4 point probe. Intrinsic silicon nanowires were synthesized by chemical vapor deposition (CVD) process using a vapor-liquid-solid (VLS) mechanism; gold nanoparticles were used as catalyst for nanowire growth. The nanowires were suspended in ethanol by mild sonication. This suspension was used to dropcast the nanowires on silicon substrate with a silicon nitride dielectric top layer. These nanowires were doped with phosphorus in similar manner as used for the intrinsic silicon wafer. Standard photolithography process was used to fabricate metal electrodes for the formation of nanowire based field effect transistor (NW-FET). The electrical properties of a representative nanowire device were measured by a semiconductor device analyzer and a probe station. PMID:24326774

  5. Impact of isovalent doping on radiation defects in silicon

    NASA Astrophysics Data System (ADS)

    Londos, C. A.; Sgourou, E. N.; Timerkaeva, D.; Chroneos, A.; Pochet, P.; Emtsev, V. V.

    2013-09-01

    Isovalent doping is an important process for the control of point defects in Si. Here, by means of infrared spectroscopy, we investigated the properties of the two main radiation-induced defects in Czochralski-Si (Cz-Si) the oxygen-vacancy (VO) and the carbon-oxygen (CiOi) centres. In particular, we investigated the effect of isovalent doping on the production, the thermal evolution, and the thermal stability of the VO and the CiOi defects. Additionally, we studied the reactions that participate upon annealing and the defects formed as a result of these reactions. Upon annealing VO is converted to VO2 defect although part of the CiOi is converted to CsO2i complexes. Thus, we studied the conversion ratios [VO2]/[VO] and [CsO2i]/[CiOi] with respect to the isovalent dopant. Additionally, the role of carbon in the above processes was discussed. A delay between the temperature characterizing the onset of the VO decay and the temperature characterizing the VO2 growth as well the further growth of VO2 after the complete disappearance of VO indicate that the VO to VO2 conversion is a complex phenomenon with many reaction processes involved. Differences exhibited between the effects of the various dopants on the properties of the two defects were highlighted. The results are discussed in view of density functional theory calculations involving the interaction of isovalent dopants with intrinsic defects, the oxygen and carbon impurities in Si.

  6. Energetics of Boron Doping of Carbon Pores

    NASA Astrophysics Data System (ADS)

    Wexler, Carlos; St. John, Alexander; Connolly, Matthew

    2014-03-01

    Carbon-based materials show promise, given their light weight, large surface areas and low cost for storage of hydrogen and other gases, e.g., for energy applications. Alas, the interaction of H2 and carbon, 4-5kJ/mol, is insufficient for room-temperature operation. Boron doping of carbon materials could raise the binding energy of H2 to 12-15kJ/mol. The nature of the incorporation of boron into a carbon structure has not been studied so far. In this talk we will address the energetics of boron incorporation into a carbon matrix via adsorption and decomposition of decaborane by first principles calculations. These demonstrate: (a) A strong adsorption of decaborane to carbon (70-80kJ/mol) resulting in easy incorporation of decaborane, sufficient for up to 10-20% B:C at low decaborane vapour pressures. (b) Identification that boron acts as an electron acceptor when incorporated substitutionally into a graphene-like material, as expected due to its valence. (c) The electrostatic field near the molecule is responsible for ca. 2/3 of the enhancement of the H2-adsorbent interaction in aromatic compounds such as pyrene, coronene and ovalene. Supported by DOE DE-FG36-08GO18142, ACS-PRF 52696-ND5, and NSF 1069091.

  7. Enhanced diffusion of oxygen depending on Fermi level position in heavily boron-doped silicon

    SciTech Connect

    Torigoe, Kazuhisa Fujise, Jun; Ono, Toshiaki; Nakamura, Kozo

    2014-11-21

    The enhanced diffusivity of oxygen in heavily boron doped silicon was obtained by analyzing oxygen out-diffusion profile changes found at the interface between a lightly boron-doped silicon epitaxial layer and a heavily boron-doped silicon substrate by secondary ion mass spectrometry. It was found that the diffusivity is proportional to the square root of boron concentration in the range of 10{sup 18 }cm{sup −3}–10{sup 19 }cm{sup −3} at temperatures from 750 °C to 950 °C. The model based on the diffusion of oxygen dimers in double positive charge state could explain the enhanced diffusion. We have concluded that oxygen diffusion enhanced in heavily boron-doped silicon is attributed to oxygen dimers ionized depending on Fermi level position.

  8. Controlling the dopant dose in silicon by mixed-monolayer doping.

    PubMed

    Ye, Liang; Pujari, Sidharam P; Zuilhof, Han; Kudernac, Tibor; de Jong, Michel P; van der Wiel, Wilfred G; Huskens, Jurriaan

    2015-02-11

    Molecular monolayer doping (MLD) presents an alternative to achieve doping of silicon in a nondestructive way and holds potential for realizing ultrashallow junctions and doping of nonplanar surfaces. Here, we report the mixing of dopant-containing alkenes with alkenes that lack this functionality at various ratios to control the dopant concentration in the resulting monolayer and concomitantly the dopant dose in the silicon substrate. The mixed monolayers were grafted onto hydrogen-terminated silicon using well-established hydrosilylation chemistry. Contact angle measurements, X-ray photon spectroscopy (XPS) on the boron-containing monolayers, and Auger electron spectroscopy on the phosphorus-containing monolayers show clear trends as a function of the dopant-containing alkene concentration. Dynamic secondary-ion mass spectroscopy (D-SIMS) and Van der Pauw resistance measurements on the in-diffused samples show an effective tuning of the doping concentration in silicon.

  9. Photosensitivity of Te-doped silicon photodiodes fabricated using femtosecond laser irradiation.

    PubMed

    Li, Rui; Du, Lingyan; Tang, Fei; Jiang, Yadong; Wu, Zhiming

    2016-12-20

    Microstructured Te-doped silicon is prepared via a femtosecond laser irradiating Si coated with Si-Te bilayer films, and photodiodes are successfully fabricated from this material. The samples are thermally annealed at 773 K for three different time durations. The effects of annealing time on microstructures, infrared absorptance, and photosensitivity of Te-doped silicon are investigated. From the scanning electronic microscope images and the optical absorptance spectra, the results show that the infrared absorptance decreases with the increase of annealing time durations, while the infrared photoresponse follows an opposite tendency. At 1064 nm, the responsivity achieves 2.4836 A/W at -10  V reverse bias for the Te-doped silicon photodiode annealed at 775 K for 2 h, which is higher than that of usual commercial Si photodiodes. These results are important for the fabrication of Te-doped silicon and facilitate its application in infrared detectors.

  10. Magnetic resonance investigation of gold-doped and gold-hydrogen-doped silicon

    NASA Astrophysics Data System (ADS)

    Huy, P. T.; Ammerlaan, C. A.

    2002-10-01

    Three paramagnetic centers related to gold have been observed in gold-doped and gold-doped hydrogenated silicon by magnetic resonance. One spectrum, labeled Si-NL62, corresponding to a center with monoclinic-I symmetry, presents fourfold splitting due to the hyperfine interaction with one gold atom and further hyperfine interaction with two silicon nearest-neighbor atoms. After being diffused with hydrogen in a wet atmosphere of water vapor at 1300 °C for about 30 min, a second electron paramagnetic resonance spectrum, labeled Si-NL63, is detected, also of the monoclinic-I symmetry. The spectrum of the center is characterized by a complex hyperfine structure, in which, depending on magnetic field orientation, a sevenfold splitting with the intensities 1:2:3:4:3:2:1, a fourfold splitting 4:4:4:4, and other more arbitrary structures are observed. Extra small splitting is observed in the sample diffused with deuterium, indicating hydrogen involvement in the microscopic structure of the Si-NL63 center. Under band gap illumination the third center of a one-gold-two-hydrogen complex is observed. The center, labeled Si-NL64, has low triclinic symmetry and features the hyperfine interactions with one gold and two nearly equivalent hydrogen atoms. This results in a (1:2:1):(1:2:1):(1:2:1):(1:2:1) structure of each group of spectral lines. Spin-Hamiltonian parameters for the three spectra are determined and microscopic models are discussed.

  11. Fabrication of graphene-silicon layered heterostructures by carbon penetration of silicon film.

    PubMed

    Meng, Lei; Wang, Yeliang; Li, Linfei; Gao, H-J

    2017-02-24

    A new, easy, in situ technique for fabricating a two-dimensional graphene-silicon layered heterostructure has been developed to meet the demand for integration between graphene and silicon-based microelectronic technology. First, carbon atoms are stored in bulk iridium, and then silicon atoms are deposited onto the Ir(111) surface and annealed. With longer annealing times, the carbon atoms penetrate from the bulk iridium to the top of the silicon and eventually coalesce there into graphene islands. Atomically resolved scanning tunneling microscopy images, high-pass fast Fourier transform treatment and Raman spectroscopy demonstrate that the top graphene layer is intact and continuous, and beneath it is the silicon layer.

  12. Fabrication of graphene–silicon layered heterostructures by carbon penetration of silicon film

    NASA Astrophysics Data System (ADS)

    Meng, Lei; Wang, Yeliang; Li, Linfei; Gao, H.-J.

    2017-02-01

    A new, easy, in situ technique for fabricating a two-dimensional graphene–silicon layered heterostructure has been developed to meet the demand for integration between graphene and silicon-based microelectronic technology. First, carbon atoms are stored in bulk iridium, and then silicon atoms are deposited onto the Ir(111) surface and annealed. With longer annealing times, the carbon atoms penetrate from the bulk iridium to the top of the silicon and eventually coalesce there into graphene islands. Atomically resolved scanning tunneling microscopy images, high-pass fast Fourier transform treatment and Raman spectroscopy demonstrate that the top graphene layer is intact and continuous, and beneath it is the silicon layer.

  13. Influence of the doping element on the electron mobility in n-silicon

    NASA Astrophysics Data System (ADS)

    Kaiblinger-Grujin, G.; Kosina, H.; Selberherr, S.

    1998-03-01

    We present a theoretical approach to study the dependence of the electron mobility on the dopant species in n-doped silicon under low electric fields. The electron charge distribution of the impurities is calculated by the Thomas-Fermi theory using the energy functional formulation. Ionized impurity scattering has been treated within the Born approximation. Our model accounts for degenerate statistics, dispersive screening and pair scattering, which become important in heavily doped semiconductors. The dielectric function is accurately approximated by a rational function. A new expression for the second Born amplitude of a Yukawa-like charge distribution is derived, which now depends on the atomic and electron numbers of the impurity ion. Monte Carlo simulations including all important scattering mechanism have been performed in the doping concentration range from 1015 to 1021cm-3. The agreement with experimental data is excellent. The results confirm the lower electron mobility in As-doped silicon in comparison to P-doped silicon.

  14. Behaviour of Silicon-Doped CFC Limiter under High Heat Load in TEXTOR-94

    NASA Astrophysics Data System (ADS)

    Huber, A.; Philipps, V.; Hirai, T.; Kirschner, A.; Lehnen, M.; Pospieszczyk, A.; Schweer, B.; Sergienko, G.

    In order to study the impurity production, recycling and power deposition a Si doped CFC test limiter (NS31) was used in TEXTOR-94. The release of impurities (C, Si, O, Cr, CD radicals) was measured spectroscopically. A reduced methane production was found in the Si doped graphite when compared to a pure graphite limiter. A smaller decrease of the carbon fluxes could also be observed. The limiter contained about 1%-1.5% of Si, but a relative Si flux (Si/D) from the Si doped CFC surface between 0.12% and 0.4% has been measured. A chemical erosion of Si due to formation of SiDx has not been observed. Silicon evaporated from the surface at temperatures above 1500°C. This led to an increase of Si concentration and total radiation losses from the plasma. Surface analysis shows the formation of microcracks and holes on the plasma exposed limiter surface. The released Si was deposited in the vicinity of the tangency point of the limiter. Whereas a Si depletion was observed in the area of highest power loading with values reaching in and in-between fibres values of 0.03% and 0.02% respectively.

  15. Process for fabricating device structures for real-time process control of silicon doping

    DOEpatents

    Weiner, Kurt H.

    2001-01-01

    Silicon device structures designed to allow measurement of important doping process parameters immediately after the doping step has occurred. The test structures are processed through contact formation using standard semiconductor fabrication techniques. After the contacts have been formed, the structures are covered by an oxide layer and an aluminum layer. The aluminum layer is then patterned to expose the contact pads and selected regions of the silicon to be doped. Doping is then performed, and the whole structure is annealed with a pulsed excimer laser. But laser annealing, unlike standard annealing techniques, does not effect the aluminum contacts because the laser light is reflected by the aluminum. Once the annealing process is complete, the structures can be probed, using standard techniques, to ascertain data about the doping step. Analysis of the data can be used to determine probable yield reductions due to improper execution of the doping step and thus provide real-time feedback during integrated circuit fabrication.

  16. Measurement of minority carrier transport parameters in heavily doped n-type silicon

    NASA Technical Reports Server (NTRS)

    Delalamo, J.; Swanson, R. M.

    1985-01-01

    Measurement of minority transport parameters in heavily doped silicon is covered. The basic transport equations were used to define two independent parameters. Use of special vertical and lateral transistor test devices permitted the measurement of both parameters. Prior studies were normalized to show excellent agreement over the heavy doping region.

  17. Magnetism of single-walled silicon carbide nanotubes doped by boron, nitrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Maghnaoui, Ahmed; Boufelfel, Ahmed

    2012-09-01

    We calculated, using spin polarized density functional theory, the electronic properties of zigzag (10,0) and armchair (6,6) semiconductor silicon carbide nanotubes (SiCNTs) doped once at the time with boron, nitrogen, and oxygen. We have looked at the two possible scenarios where the guest atom X (B, N, O), replaces the silicon XSi, or the carbon atom XC, in the unit cell. We found that in the case of one atom B @ SiCNT replacing a carbon atom position annotated by BC exhibits a magnetic moment of 1 μB/cell in both zigzag and armchair nanotubes. Also, B replacing Si, (BSi), induce a magnetic moment of 0.46 μB/cell in the zigzag (10,0) but no magnetic moment in armchair (6,6). For N substitution; (NC) and (NSi) each case induce a magnetic moment of 1 μB/cell in armchair (6,6), while NSi give rise to 0.75 μB/cell in zigzag (10,0) and no magnetic moment for NC. In contrast the case of OC and OSi did not produce any net magnetic moment in both zigzag and armchair geometries.

  18. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOEpatents

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  19. Method of enhanced lithiation of doped silicon carbide via high temperature annealing in an inert atmosphere

    DOEpatents

    Hersam, Mark C.; Lipson, Albert L.; Bandyopadhyay, Sudeshna; Karmel, Hunter J; Bedzyk, Michael J

    2014-05-27

    A method for enhancing the lithium-ion capacity of a doped silicon carbide is disclosed. The method utilizes heat treating the silicon carbide in an inert atmosphere. Also disclosed are anodes for lithium-ion batteries prepared by the method.

  20. Cat-doping: Novel method for phosphorus and boron shallow doping in crystalline silicon at 80 °C

    NASA Astrophysics Data System (ADS)

    Matsumura, Hideki; Hayakawa, Taro; Ohta, Tatsunori; Nakashima, Yuki; Miyamoto, Motoharu; Thi, Trinh Cham; Koyama, Koichi; Ohdaira, Keisuke

    2014-09-01

    Phosphorus (P) or boron (B) atoms can be doped at temperatures as low as 80 to 350 °C, when crystalline silicon (c-Si) is exposed only for a few minutes to species generated by catalytic cracking reaction of phosphine (PH3) or diborane (B2H6) with heated tungsten (W) catalyzer. This paper is to investigate systematically this novel doping method, "Cat-doping", in detail. The electrical properties of P or B doped layers are studied by the Van der Pauw method based on the Hall effects measurement. The profiles of P or B atoms in c-Si are observed by secondary ion mass spectrometry mainly from back side of samples to eliminate knock-on effects. It is confirmed that the surface of p-type c-Si is converted to n-type by P Cat-doping at 80 °C, and similarly, that of n-type c-Si is to p-type by B Cat-doping. The doping depth is as shallow as 5 nm or less and the electrically activated doping concentration is 1018 to 1019 cm-3 for both P and B doping. It is also found that the surface potential of c-Si is controlled by the shallow Cat-doping and that the surface recombination velocity of minority carriers in c-Si can be enormously lowered by this potential control.

  1. Photoconductivity of organic polymer films doped with porous silicon nanoparticles and ionic polymethine dyes

    SciTech Connect

    Davidenko, N. A. Skrichevsky, V. A.; Ishchenko, A. A.; Karlash, A. Yu.; Mokrinskaya, E. V.

    2009-05-15

    Features of electrical conductivity and photoconductivity of polyvinylbutyral films containing porous silicon nanoparticles and similar films doped with cationic and anionic polymethine dyes are studied. Sensitization of the photoelectric effect by dyes with different ionicities in films is explained by the possible photogeneration of holes and electrons from dye molecules and the intrinsic bipolar conductivity of porous silicon nanoparticles. It is assumed that the electronic conductivity in porous silicon nanoparticles is higher in comparison with p-type conductivity.

  2. Strong adsorption of Al-doped carbon nanotubes toward cisplatin

    NASA Astrophysics Data System (ADS)

    Li, Wei; Li, Guo-Qing; Lu, Xiao-Min; Ma, Juan-Juan; Zeng, Peng-Yu; He, Qin-Yu; Wang, Yin-Zhen

    2016-08-01

    The adsorption of cisplatin molecule on Al-doped CNTs is investigated using density functional theory. The obtained results indicate that Al-doped carbon nanotubes can strongly absorb cisplatin. After absorbing cisplatin, the symmetry of CNTs has some changes. We innovatively defined a parameter of symmetry variation which relates to the adsorption. By analyzing the electronic structure, it can be concluded that under the circumstance that cisplatin was absorbed by Al-doped CNTs through aluminum atom of Al-doped CNTs. In conclusion, Al-doped CNTs is a kind of potential delivery carrier with high quality for anticancer drug cisplatin.

  3. One-step preparation of multiwall carbon nanotube/silicon hybrids for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Lobiak, Egor V.; Bychanok, Dzmitry S.; Shlyakhova, Elena V.; Kuzhir, Polina P.; Maksimenko, Sergey A.; Bulusheva, Lyubov G.; Okotrub, Alexander V.

    2016-03-01

    The hybrid material consisting of a thin layer of multiwall carbon nanotubes (MWCNTs) on an n-doped silicon wafer was obtained in one step using an aerosol-assisted catalytic chemical vapor deposition. The MWCNTs were grown from a mixture of acetone and ethanol with ˜0.2 wt.% of iron polyoxomolybdate nanocluster of the keplerate-type structure. The samples produced at 800°C and 1050°C were tested as a solar energy converter. It was shown that photoresponse of the hybrid material significantly depends on the presence of structural defects in MWCNTs, being much higher in the case of more defective nanotubes. This is because defects lead to p-doping of nanotubes, whereas the p-n heterojunction between MWCNTs and silicon provides a high efficiency of the solar cell.

  4. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  5. Highly doped polycrystalline silicon microelectrodes reduce noise in neuronal recordings in vivo.

    PubMed

    Saha, Rajarshi; Jackson, Nathan; Patel, Chetan; Muthuswamy, Jit

    2010-10-01

    The aims of this study are to 1) experimentally validate for the first time the nonlinear current-potential characteristics of bulk doped polycrystalline silicon in the small amplitude voltage regimes (0-200 μV) and 2) test if noise amplitudes ( 0-15 μV ) from single neuronal electrical recordings get selectively attenuated in doped polycrystalline silicon microelectrodes due to the above property. In highly doped polycrystalline silicon, bulk resistances of several hundred kilo-ohms were experimentally measured for voltages typical of noise amplitudes and 9-10 kΩ for voltages typical of neural signal amplitudes ( > 150-200 μV). Acute multiunit measurements and noise measurements were made in n=6 and n=8 anesthetized adult rats, respectively, using polycrystalline silicon and tungsten microelectrodes. There was no significant difference in the peak-to-peak amplitudes of action potentials recorded from either microelectrode (p > 0.10). However, noise power in the recordings from tungsten microelectrodes (26.36 ±10.13 pW) was significantly higher than the corresponding value in polycrystalline silicon microelectrodes (7.49 ±2.66 pW). We conclude that polycrystalline silicon microelectrodes result in selective attenuation of noise power in electrical recordings compared to tungsten microelectrodes. This reduction in noise compared to tungsten microelectrodes is likely due to the exponentially higher bulk resistances offered by highly doped bulk polycrystalline silicon in the range of voltages corresponding to noise in multiunit measurements.

  6. Cat-doping: Novel method for phosphorus and boron shallow doping in crystalline silicon at 80 °C

    SciTech Connect

    Matsumura, Hideki; Hayakawa, Taro; Ohta, Tatsunori; Nakashima, Yuki; Miyamoto, Motoharu; Thi, Trinh Cham; Koyama, Koichi; Ohdaira, Keisuke

    2014-09-21

    Phosphorus (P) or boron (B) atoms can be doped at temperatures as low as 80 to 350 °C, when crystalline silicon (c-Si) is exposed only for a few minutes to species generated by catalytic cracking reaction of phosphine (PH₃) or diborane (B₂H₆) with heated tungsten (W) catalyzer. This paper is to investigate systematically this novel doping method, “Cat-doping”, in detail. The electrical properties of P or B doped layers are studied by the Van der Pauw method based on the Hall effects measurement. The profiles of P or B atoms in c-Si are observed by secondary ion mass spectrometry mainly from back side of samples to eliminate knock-on effects. It is confirmed that the surface of p-type c-Si is converted to n-type by P Cat-doping at 80 °C, and similarly, that of n-type c-Si is to p-type by B Cat-doping. The doping depth is as shallow as 5 nm or less and the electrically activated doping concentration is 10¹⁸ to 10¹⁹cm⁻³ for both P and B doping. It is also found that the surface potential of c-Si is controlled by the shallow Cat-doping and that the surface recombination velocity of minority carriers in c-Si can be enormously lowered by this potential control.

  7. Silicon Composite Anode Materials for Lithium Ion Batteries Based on Carbon Cryogels and Carbon Paper

    NASA Technical Reports Server (NTRS)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nanofoams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  8. Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  9. High surface area silicon carbide-coated carbon aerogel

    DOEpatents

    Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

    2014-01-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.

  10. Preparation and characterization of Ni-doped carbon aerogel for supercapacitor

    NASA Astrophysics Data System (ADS)

    Wang, Shasha; Yan, Meifang; Liu, Haihua; Xu, Yuelong; Zhang, Lihui; Liu, Zhenfa

    2017-01-01

    Ni-doped carbon aerogel was prepared by impregnation methods, physical structure, and electrochemical properties were investigated. Electrochemical properties of prepared Ni-doped carbon aerogel and carbon aerogel electrodes were measured by galvanostatic charge/discharge measurements. The results show Ni-doped carbon aerogels maintain the elementary structure of carbon aerogel, but they exhibited higher specific capacitance than carbon aerogel.

  11. Doping of germanium and silicon crystals with non-hydrogenic acceptors for far infrared lasers

    DOEpatents

    Haller, Eugene E.; Brundermann, Erik

    2000-01-01

    A method for doping semiconductors used for far infrared lasers with non-hydrogenic acceptors having binding energies larger than the energy of the laser photons. Doping of germanium or silicon crystals with beryllium, zinc or copper. A far infrared laser comprising germanium crystals doped with double or triple acceptor dopants permitting the doped laser to be tuned continuously from 1 to 4 terahertz and to operate in continuous mode. A method for operating semiconductor hole population inversion lasers with a closed cycle refrigerator.

  12. New hetero silicon-carbon nanostructure formation mechanism.

    PubMed

    Song, S P; Crimp, M A; Ayres, V M; Collard, C J; Holloway, J P; Brake, M L

    2004-09-01

    We report the formation of silicon and carbon hetero-nanostructures in an inductively coupled plasma system by a simultaneous growth/etching mechanism. Multi-walled carbon nanotubes were grown during one, three and five hour depositions, while tapered silicon nanowires were progressively etched. The carbon and silicon nanostructures and the interfaces between them were studied by electron microscopies and micro Raman spectroscopies. The potential of this method for large-scale controlled production of nano heterostructures without the requirement of a common catalyst is explored.

  13. Scanning Tunneling Microscopy and Spectroscopy of Silicon and Carbon Surfaces

    NASA Astrophysics Data System (ADS)

    Baker, Shenda Mary

    1992-01-01

    Scanning Tunneling Microscopy (STM) investigations and additional surface analyses were performed on carbon and silicon surfaces. A number of anomalies have been observed on highly oriented pyrolytic graphite (HOPG), including large corrugations, distorted images, large range of tip motion and the absence of defects. A mechanism involving direct contact between tip and sample or contact through a contamination layer to provide an additional conducting pathway is proposed. This model of point-contact imaging provides an explanation for added stability of the STM system, a mechanism for producing multiple tips or sliding graphite planes and an explanation for the observed anomalies. These observations indicate that the use of HOPG for testing and calibration of STM instrumentation may be misleading. Designs for the atmospheric STM used in this study are also presented. The conditions necessary for preparing a clean silicon(111) (7x7) surface are discussed. The design and analysis of heaters necessary to prepare the silicon reconstructed surface at ultrahigh vacuum (UHV) are described. Results from both radiatively and resistively heated samples are shown in addition to a comparison of topographic and barrier height images of the boron (surd 3 times surd 3) reconstructed surfaces. A spectroscopic distinction between sites of boron, silicon or contaminants is demonstrated. A synthetic boron-doped diamond was examined by a number of analytical techniques in order to determine its composition and surface morphology. Current-voltage spectroscopy taken with the STM indicates that the diamond Fermi level can be pinned in atmospheric conditions. In ultrahigh vacuum, band bending is observed, but the strength of the electric field experienced by the diamond semiconductor is less than expected; introduction of surface charges is shown to account for the field screening. Presentation of an STM study of a protein-antibody complex on a gold surface illustrates the requirements

  14. Reactive Melt Infiltration Of Silicon Into Porous Carbon

    NASA Technical Reports Server (NTRS)

    Behrendt, Donald R.; Singh, Mrityunjay

    1994-01-01

    Report describes study of synthesis of silicon carbide and related ceramics by reactive melt infiltration of silicon and silicon/molybdenum alloys into porous carbon preforms. Reactive melt infiltration has potential for making components in nearly net shape, performed in less time and at lower temperature. Object of study to determine effect of initial pore volume fraction, pore size, and infiltration material on quality of resultant product.

  15. N-Type delta Doping of High-Purity Silicon Imaging Arrays

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana; Hoenk, Michael; Nikzad, Shouleh

    2005-01-01

    A process for n-type (electron-donor) delta doping has shown promise as a means of modifying back-illuminated image detectors made from n-doped high-purity silicon to enable them to detect high-energy photons (ultraviolet and x-rays) and low-energy charged particles (electrons and ions). This process is applicable to imaging detectors of several types, including charge-coupled devices, hybrid devices, and complementary metal oxide/semiconductor detector arrays. Delta doping is so named because its density-vs.-depth characteristic is reminiscent of the Dirac delta function (impulse function): the dopant is highly concentrated in a very thin layer. Preferably, the dopant is concentrated in one or at most two atomic layers in a crystal plane and, therefore, delta doping is also known as atomic-plane doping. The use of doping to enable detection of high-energy photons and low-energy particles was reported in several prior NASA Tech Briefs articles. As described in more detail in those articles, the main benefit afforded by delta doping of a back-illuminated silicon detector is to eliminate a "dead" layer at the back surface of the silicon wherein high-energy photons and low-energy particles are absorbed without detection. An additional benefit is that the delta-doped layer can serve as a back-side electrical contact. Delta doping of p-type silicon detectors is well established. The development of the present process addresses concerns specific to the delta doping of high-purity silicon detectors, which are typically n-type. The present process involves relatively low temperatures, is fully compatible with other processes used to fabricate the detectors, and does not entail interruption of those processes. Indeed, this process can be the last stage in the fabrication of an imaging detector that has, in all other respects, already been fully processed, including metallized. This process includes molecular-beam epitaxy (MBE) for deposition of three layers, including

  16. Polycrystalline silicon semiconducting material by nuclear transmutation doping

    DOEpatents

    Cleland, John W.; Westbrook, Russell D.; Wood, Richard F.; Young, Rosa T.

    1978-01-01

    A NTD semiconductor material comprising polycrystalline silicon having a mean grain size less than 1000 microns and containing phosphorus dispersed uniformly throughout the silicon rather than at the grain boundaries.

  17. Method of synthesizing metal doped diamond-like carbon films

    NASA Technical Reports Server (NTRS)

    Ueno, Mayumi (Inventor); Sunkara, Mahendra Kumar (Inventor)

    2003-01-01

    A method of synthesizing metal doped carbon films by placing a substrate in a chamber with a selected amount of a metalorganic compound. An electron cyclotron resonance is applied to the chamber in order to vaporize the metalorganic compound. The resonance is applied to the chamber until a metal doped carbon film is formed. The metalorganic compound is preferably selected from the group consisting of an organic salt of ruthenium, palladium, gold or platinum.

  18. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  19. Controlled in situ boron doping of short silicon nanowires grown by molecular beam epitaxy

    SciTech Connect

    Das Kanungo, Pratyush; Zakharov, Nikolai; Bauer, Jan; Breitenstein, Otwin; Werner, Peter; Goesele, Ulrich

    2008-06-30

    Epitaxial silicon nanowires (NWs) of short heights ({approx}280 nm) on Si <111> substrate were grown and doped in situ with boron on a concentration range of 10{sup 15}-10{sup 19} cm{sup -3} by coevaporation of atomic Si and B by molecular beam epitaxy. Transmission electron microscopy revealed a single-crystalline structure of the NWs. Electrical measurements of the individual NWs confirmed the doping. However, the low doped (10{sup 15} cm{sup -3}) and medium doped (3x10{sup 16} and 1x10{sup 17} cm{sup -3}) NWs were heavily depleted by the surface states while the high doped (10{sup 18} and 10{sup 19} cm{sup -3}) ones showed volume conductivities expected for the corresponding intended doping levels.

  20. Method for making defect-free zone by laser-annealing of doped silicon

    DOEpatents

    Narayan, Jagdish; White, Clark W.; Young, Rosa T.

    1980-01-01

    This invention is a method for improving the electrical properties of silicon semiconductor material. The method comprises irradiating a selected surface layer of the semiconductor material with high-power laser pulses characterized by a special combination of wavelength, energy level, and duration. The combination effects melting of the layer without degrading electrical properties, such as minority-carrier diffusion length. The method is applicable to improving the electrical properties of n- and p-type silicon which is to be doped to form an electrical junction therein. Another important application of the method is the virtually complete removal of doping-induced defects from ion-implanted or diffusion-doped silicon substrates.

  1. Multiple doping of silicon-germanium alloys for thermoelectric applications

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Vining, Cronin B.; Borshchevsky, Alex

    1989-01-01

    It is shown that heavy doping of n-type Si/Ge alloys with phosphorus and arsenic (V-V doping interaction) by diffusion leads to a significant enhancement of their carrier concentration and possible improvement of the thermoelectric figure of merit. High carrier concentrations were achieved by arsenic doping alone, but for a same doping level higher carrier mobilities and lower resistivities are obtained through phosphorus doping. By combining the two dopants with the proper diffusion treatments, it was possible to optimize the different properties, obtaining high carrier concentration, good carrier mobility and low electrical resistivity. Similar experiments, using the III-V doping interaction, were conducted on boron-doped p-type samples and showed the possibility of overcompensating the samples by diffusing arsenic, in order to get n-type behavior.

  2. Controlled doping of silicon nanocrystals investigated by solution-processed field effect transistors.

    PubMed

    Gresback, Ryan; Kramer, Nicolaas J; Ding, Yi; Chen, Ting; Kortshagen, Uwe R; Nozaki, Tomohiro

    2014-06-24

    The doping of semiconductor nanocrystals (NCs), which is vital for the optimization of NC-based devices, remains a significant challenge. While gas-phase plasma approaches have been successful in incorporating dopant atoms into NCs, little is known about their electronic activation. Here, we investigate the electronic properties of doped silicon NC thin films cast from solution by field effect transistor analysis. We find that, analogous to bulk silicon, boron and phosphorus electronically dope Si NC thin films; however, the dopant activation efficiency is only ∼10(-2)-10(-4). We also show that surface doping of Si NCs is an effective way to alter the carrier concentrations in Si NC films.

  3. Investigation of the sulfur doping profile in femtosecond-laser processed silicon

    NASA Astrophysics Data System (ADS)

    Guenther, Kay-Michael; Gimpel, Thomas; Kontermann, Stefan; Schade, Wolfgang

    2013-05-01

    In this letter, we demonstrate that silicon can be doped with electrically active sulfur donors beyond the solubility limit of 3 × 1016 cm-3. We investigate the sulfur doping profile at the surface of femtosecond-laser processed silicon with secondary ion mass spectroscopy (SIMS) and capacitance-voltage measurements. SIMS confirms previous observations that the fs-laser process can lead to a sulfur hyperdoping of 5×1019 cm-3 at the surface. Nevertheless, the electrical measurements show that less than 1% of the sulfur is electrically active as a donor.

  4. Carbon related defects in irradiated silicon revisited

    PubMed Central

    Wang, H.; Chroneos, A.; Londos, C. A.; Sgourou, E. N.; Schwingenschlögl, U.

    2014-01-01

    Electronic structure calculations employing hybrid functionals are used to gain insight into the interaction of carbon (C) atoms, oxygen (O) interstitials, and self-interstitials in silicon (Si). We calculate the formation energies of the C related defects Ci(SiI), CiOi, CiCs, and CiOi(SiI) with respect to the Fermi energy for all possible charge states. The Ci(SiI)2+ state dominates in almost the whole Fermi energy range. The unpaired electron in the CiOi+ state is mainly localized on the C interstitial so that spin polarization is able to lower the total energy. The three known atomic configurations of the CiCs pair are reproduced and it is demonstrated that hybrid functionals yield an improved energetic order for both the A and B-types as compared to previous theoretical studies. Different structures of the CiOi(SiI) cluster result for positive charge states in dramatically distinct electronic states around the Fermi energy and formation energies. PMID:24809804

  5. A study of improvements in silicon solar cell efficiency due to various geometrical and doping modifications

    NASA Technical Reports Server (NTRS)

    Dunbar, P. M.; Hauser, J. R.

    1976-01-01

    This paper presents the results of continued studies of silicon solar cell operation and limitations. The objective of this paper is to report on geometrical and doping changes in silicon solar cells which result in predictions of high efficiencies. Efficiencies as high as 20 per cent (uncorrected for metal coverage and ohmic sheet resistance) have been calculated for optimized cells. The conditions required to achieve these efficiency values are discussed.

  6. Growth of Er-doped silicon using metalorganics by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Andry, P. S.; Varhue, W. J.; Ladipo, F.; Ahmed, K.; Adams, E.; Lavoie, M.; Klein, P. B.; Hengehold, R.; Hunter, J.

    1996-07-01

    Epitaxial growth of Er-doped silicon films has been performed by plasma-enhanced chemical vapor deposition at low temperature (430 °C) using an electron cyclotron resonance source. The goal was to incorporate an optically active center, erbium surrounded by nitrogen, through the use of the metalorganic compound tris (bis trimethyl silyl amido) erbium. Films were analyzed by Rutherford backscattering spectrometry, secondary ion mass spectroscopy, and high resolution x-ray diffraction. The characteristic 1.54 μm emission was observed by photoluminescence spectroscopy. Previous attempts to incorporate the complex (ErO6) using tris (2,2,6,6-tetramethyl- 3,5-heptanedionato) erbium (III) indicated that excessive carbon contamination lowered epitaxial quality and reduced photoluminescent intensity. In this study, chemical analysis of the films also revealed a large carbon concentration, however, the effect on epitaxial quality was much less destructive. A factorial design experiment was performed whose analysis identified the key processing parameters leading to high quality luminescent films. Hydrogen was found to be a major cause of crystal quality degradation in our metalorganic plasma-enhanced process.

  7. Heteroatom-Doped Carbon Materials for Electrocatalysis.

    PubMed

    Asefa, Tewodros Teddy; Huang, Xiaoxi

    2017-04-11

    Fuel cells, water electrolyzers, and metal-air batteries are important energy systems that have started to play some roles in our renewable energy landscapes. However, despite much research works carried out on them, they have not yet found large-scale applications, mainly due to the unavailability of sustainable catalysts that can catalyze the reactions employed in them. Currently, noble metal-based materials are the ones that are commonly used as catalysts in most commercial fuel cells, electrolyzers, and metal-air batteries. Hence, there has been considerable research efforts worldwide to find alternative noble metal-free and metal-free catalysts composed of inexpensive, earth-abundant elements for use in the catalytic reactions employed in these energy systems. In this concept paper, catalysis in renewable energy systems, followed by the recent efforts to develop sustainable, heteroatom-doped carbon and non-noble metal-based electrocatalysts, the challenges to unravel their structure-catalytic activity relationships, and the authors' perspectives on these topics and materials, are discussed.

  8. Modulation of electronic properties of silicon carbide nanotubes via sulphur-doping: An ab initio study

    NASA Astrophysics Data System (ADS)

    Singh, Ram Sevak; Solanki, Ankit

    2016-03-01

    Silicon carbide nanotubes (SiCNTs) have received a great deal of scientific and commercial interest due to their intriguing properties that include high temperature stability and electronic properties. For their efficient and widespread applications, tuning of electronic properties of SiCNTs is an attractive study. In this article, electronic properties of sulphur doped (S-doped) zigzag (9 , 0) SiCNT is investigated by ab initio calculations based on density functional theory (DFT). Energy band structures and density of states of fully optimized undoped and doped structures with varying dopant concentration are calculated. S-doped on C-site of the nanotube exhibits a monotonic reduction of energy gap with increase in dopant concentration, and the nanotube transforms from semiconductor to metal at high dopant concentration. In case of S-doped on Si-site doping has less influence on modulating electronic structures, which results in reduction of energy gap up to a moderate doping concentration. Importantly, S preferential substitutes of Si-sites and the nanotube with S-doped on Si-site are energetically more stable as compared to the nanotube with S-doped on C-site. The study of tunable electronic properties in S-doped SiCNT may have potential in fabricating nanoelectronic devices, hydrogen storage and gas sensing applications.

  9. Influence of oxygen on defect production in electron-irradiated, boron-doped silicon

    NASA Technical Reports Server (NTRS)

    Deangelis, H. M.; Drevinsky, P. J.

    1984-01-01

    Deep level transient spectroscopy (DLTS) measurements were made on float-zone and crucible-grown, boron-doped silicon irradiated with 1-MeV electrons. The minority carrier trap attributed to a boron-related state, was not seen in low-resistivity, float-zone silicon. However, a new majority carrier trap was observed in these samples. In the case of more lightly doped material the minority carrier trap was present, and its introduction rate was lower in float-zone than in crucible-grown silicon. For 1- and 10-ohm-cm float-zone material that was oxidized during processing, the introduction rates for this trap were comparable to those for crucible-grown silicon. This behavior indicates that the minority carrier trap involves oxygen and that it may be due to a boron-oxygen complex. The majority carrier trap seen in heavily doped, float-zone silicon may also involve boron but not oxygen. Observed trap concentrations suggest that oxygen content in the regions examined by DLTS is affected by processing techniques. Other differences were observed in defect production and annealing behavior of electron-irradiated, float-zone and crucible-grown silicon.

  10. Oxygen defect processes in silicon and silicon germanium

    SciTech Connect

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlögl, U.

    2015-06-15

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  11. Thermally stimulated current spectroscopy on silicon planar-doped GaAs samples

    NASA Astrophysics Data System (ADS)

    Rubinger, R. M.; Bezerra, J. C.; Chagas, E. F.; González, J. C.; Rodrigues, W. N.; Ribeiro, G. M.; Moreira, M. V. B.; de Oliveira, A. G.

    1998-10-01

    Using thermally stimulated current (TSC) spectroscopy we have identified the presence of several deep traps in low temperature grown (LTG) nonintentionally doped bulk molecular beam epitaxy (MBE)-GaAs and silicon planar-doped MBE-GaAs samples. The experiments of TSC spectroscopy were carried out on a LTG MBE-GaAs epilayer grown at 300 °C and the planar-doped layer with a nominal silicon concentration of 3.4×1012cm-2. The LTG nonintentionally doped bulk MBE-GaAs sample shows three peaks in the TSC spectra but the planar-doped MBE-GaAs sample shows spectra similar to those of bulk samples grown by the liquid-encapsulated Czochralski and vertical gradient freeze methods. The main achievement is the experimental evidence that the potential well present in the planar-doped sample is effective in detecting the presence of different deep traps previously not seen in LTG bulk MBE-GaAs epilayers due to a shorter carrier lifetime (about 10-12 s) in the conduction band which occurs due to EL2-like deep traps recombination. This fact is evidenced by a strong hopping conduction in LTG bulk MBE-GaAs samples at temperatures lower than 300 K, but not in planar-doped MBE-GaAs samples because the two-dimensional electron gas has a higher mobility than lateral LTG bulk MBE-GaAs epilayers.

  12. Conformal doping of topographic silicon structures using a radial line slot antenna plasma source

    NASA Astrophysics Data System (ADS)

    Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Horigome, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro; Nozawa, Toshihisa; Kawakami, Satoru

    2014-06-01

    Fin extension doping for 10 nm front end of line technology requires ultra-shallow high dose conformal doping. In this paper, we demonstrate a new radial line slot antenna plasma source based doping process that meets these requirements. Critical to reaching true conformality while maintaining fin integrity is that the ion energy be low and controllable, while the dose absorption is self-limited. The saturated dopant later is rendered conformal by concurrent amorphization and dopant containing capping layer deposition followed by stabilization anneal. Dopant segregation assists in driving dopants from the capping layer into the sub silicon surface. Very high resolution transmission electron microscopy-Energy Dispersive X-ray spectroscopy, used to prove true conformality, was achieved. We demonstrate these results using an n-type arsenic based plasma doping process on 10 to 40 nm high aspect ratio fins structures. The results are discussed in terms of the different types of clusters that form during the plasma doping process.

  13. Doping of carbon foams for use in energy storage devices

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Morrison, Robert L.; Kaschmitter, James L.

    1994-01-01

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  14. Doping of carbon foams for use in energy storage devices

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

    1994-10-25

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

  15. Highly Doped Polycrystalline Silicon Microelectrodes Reduce Noise in Neuronal Recordings In Vivo

    PubMed Central

    Saha, Rajarshi; Jackson, Nathan; Patel, Chetan; Muthuswamy, Jit

    2013-01-01

    The aims of this study are to 1) experimentally validate for the first time the nonlinear current-potential characteristics of bulk doped polycrystalline silicon in the small amplitude voltage regimes (0–200 μV) and 2) test if noise amplitudes (0–15 μV) from single neuronal electrical recordings get selectively attenuated in doped polycrystalline silicon microelectrodes due to the above property. In highly doped polycrystalline silicon, bulk resistances of several hundred kilo-ohms were experimentally measured for voltages typical of noise amplitudes and 9–10 kΩ for voltages typical of neural signal amplitudes (>150–200 μV). Acute multiunit measurements and noise measurements were made in n = 6 and n = 8 anesthetized adult rats, respectively, using polycrystalline silicon and tungsten microelectrodes. There was no significant difference in the peak-to-peak amplitudes of action potentials recorded from either microelectrode (p > 0.10). However, noise power in the recordings from tungsten microelectrodes (26.36 ± 10.13 pW) was significantly higher (p < 0.001) than the corresponding value in polycrystalline silicon microelectrodes (7.49 ± 2.66 pW). We conclude that polycrystalline silicon microelectrodes result in selective attenuation of noise power in electrical recordings compared to tungsten microelectrodes. This reduction in noise compared to tungsten microelectrodes is likely due to the exponentially higher bulk resistances offered by highly doped bulk polycrystalline silicon in the range of voltages corresponding to noise in multiunit measurements. PMID:20667815

  16. Porous doped silicon nanowires for lithium ion battery anode with long cycle life.

    PubMed

    Ge, Mingyuan; Rong, Jiepeng; Fang, Xin; Zhou, Chongwu

    2012-05-09

    Porous silicon nanowires have been well studied for various applications; however, there are only very limited reports on porous silicon nanowires used for energy storage. Here, we report both experimental and theoretical studies of porous doped silicon nanowires synthesized by direct etching of boron-doped silicon wafers. When using alginate as a binder, porous silicon nanowires exhibited superior electrochemical performance and long cycle life as anode material in a lithium ion battery. Even after 250 cycles, the capacity remains stable above 2000, 1600, and 1100 mAh/g at current rates of 2, 4, and 18 A/g, respectively, demonstrating high structure stability due to the high porosity and electron conductivity of the porous silicon nanowires. A mathematic model coupling the lithium ion diffusion and the strain induced by lithium intercalation was employed to study the effect of porosity and pore size on the structure stability. Simulation shows silicon with high porosity and large pore size help to stabilize the structure during charge/discharge cycles.

  17. Spin-on doping of germanium-on-insulator wafers for monolithic light sources on silicon

    NASA Astrophysics Data System (ADS)

    Al-Attili, Abdelrahman Z.; Kako, Satoshi; Husain, Muhammad K.; Gardes, Frederic Y.; Arimoto, Hideo; Higashitarumizu, Naoki; Iwamoto, Satoshi; Arakawa, Yasuhiko; Ishikawa, Yasuhiko; Saito, Shinichi

    2015-05-01

    High electron doping of germanium (Ge) is considered to be an important process to convert Ge into an optical gain material and realize a monolithic light source integrated on a silicon chip. Spin-on doping is a method that offers the potential to achieve high doping concentrations without affecting crystalline qualities over other methods such as ion implantation and in-situ doping during material growth. However, a standard spin-on doping recipe satisfying these requirements is not yet available. In this paper we examine spin-on doping of Ge-on-insulator (GOI) wafers. Several issues were identified during the spin-on doping process and specifically the adhesion between Ge and the oxide, surface oxidation during activation, and the stress created in the layers due to annealing. In order to mitigate these problems, Ge disks were first patterned by dry etching followed by spin-on doping. Even by using this method to reduce the stress, local peeling of Ge could still be identified by optical microscope imaging. Nevertheless, most of the Ge disks remained after the removal of the glass. According to the Raman data, we could not identify broadening of the lineshape which shows a good crystalline quality, while the stress is slightly relaxed. We also determined the linear increase of the photoluminescence intensity by increasing the optical pumping power for the doped sample, which implies a direct population and recombination at the gamma valley.

  18. Structural Elements of Shallow Thermal Donors Formed in Nitrogen-Gas-Doped Silicon Crystals

    NASA Astrophysics Data System (ADS)

    Hara, Akito

    2007-02-01

    It has been reported that shallow thermal donors (STDs) are formed in oxygen-rich silicon (Si) crystals preannealed in nitrogen gas (N-gas-doped) and also in hydrogen-doped (H-doped) oxygen-rich Si crystals. The STDs formed in these crystals exhibit very similar electronic structures. Experiments using far-infrared optical absorption showed that several hydrogen-like STDs were formed at the same time and their energy levels in both the above-mentioned crystals were very similar. It has also been reported that the g-values of the STDs formed in both the crystals were identical. On the basis of electron-nucleus double resonance results, it has been strongly suggested that a hydrogen impurity is incorporated as a structural element of the STDs formed in the H-doped Si crystals. However, the origin of the STDs that are formed in N-gas-doped Si crystals is still unclear. To clarify this point, hydrogen detection in N-gas-doped Si was conducted and the annealing behaviors of STDs in N-gas-doped Si and H-doped Si were compared by electron spin resonance and far-infrared optical absorption measurement. It was concluded that the origin of the STDs formed in N-gas-doped Si crystals is not related to the hydrogen impurity.

  19. Electrical Transport in Thin Films of Doped Silicon Nanocrystals

    NASA Astrophysics Data System (ADS)

    Chen, Ting

    Colloidal semiconductor nanocrystals (NCs) have shown great potential for thin-film optoelectronics, such as solar cells and light emitting diodes (LEDs), due to their size-tunable electronic properties and solution processability. Significant progress has been made in developing synthetic methods to prepare high quality NCs, achieving controllable doping, and integrating NCs into high performance electronic devices. Most electronic applications rely on the electrical conduction through NC films, therefore, fundamental understanding of the carrier transport in NC films is required to further improve device performance and provide guide for future device design. My research is inspired by the successful achievement of a highly efficient LED with hydrosilylated Si NCs as the emissive layer. To better understand the electrical conduction in the Si NC system, a systematic study of the temperature and electric-field dependence of the film conductivity is performed. It shows that the conductivity of the Si NC film is limited by the ionization of rare NCs containing donor impurities and the carrier transport follows nearest neighbor hopping. The Si NCs are inherently doped with a very small concentration of impurities, about 1 donor per 1000 NCs. This is also the first study of carrier transport in a lightly doped NC system, and results obtained in this work can apply to other NC materials as well. The organic ligands used to passivate NC surface are necessary to achieve strong photoluminescence, however, they inhibit the carrier transport due to the resulting large tunneling barrier between neighboring NCs. The localization length estimated from the temperature data in the high electric field regime is about 1 nm. In addition, the activation energy required for conduction also depends on the surrounding medium of NCs, the electrical conduction can be improved by reducing the activation energy through engineering of the matrix of NC arrays. Doping is critical to enable

  20. Electron and photon degradation in aluminum, gallium and boron doped float zone silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rahilly, W. P.; Scott-Monck, J.; Anspaugh, B.; Locker, D.

    1976-01-01

    Solar cells fabricated from Al, Ga and B doped Lopex silicon over a range of resistivities were tested under varying conditions of 1 MeV electron fluence, light exposures and thermal cycling. Results indicate that Al and Ga can replace B as a P type dopant to yield improved solar cell performance.

  1. Contact doping of silicon wafers and nanostructures with phosphine oxide monolayers.

    PubMed

    Hazut, Ori; Agarwala, Arunava; Amit, Iddo; Subramani, Thangavel; Zaidiner, Seva; Rosenwaks, Yossi; Yerushalmi, Roie

    2012-11-27

    Contact doping method for the controlled surface doping of silicon wafers and nanometer scale structures is presented. The method, monolayer contact doping (MLCD), utilizes the formation of a dopant-containing monolayer on a donor substrate that is brought to contact and annealed with the interface or structure intended for doping. A unique feature of the MLCD method is that the monolayer used for doping is formed on a separate substrate (termed donor substrate), which is distinct from the interface intended for doping (termed acceptor substrate). The doping process is controlled by anneal conditions, details of the interface, and molecular precursor used for the formation of the dopant-containing monolayer. The MLCD process does not involve formation and removal of SiO(2) capping layer, allowing utilization of surface chemistry details for tuning and simplifying the doping process. Surface contact doping of intrinsic Si wafers (i-Si) and intrinsic silicon nanowires (i-SiNWs) is demonstrated and characterized. Nanowire devices were formed using the i-SiNW channel and contact doped using the MLCD process, yielding highly doped SiNWs. Kelvin probe force microscopy (KPFM) was used to measure the longitudinal dopant distribution of the SiNWs and demonstrated highly uniform distribution in comparison with in situ doped wires. The MLCD process was studied for i-Si substrates with native oxide and H-terminated surface for three types of phosphorus-containing molecules. Sheet resistance measurements reveal the dependency of the doping process on the details of the surface chemistry used and relation to the different chemical environments of the P═O group. Characterization of the thermal decomposition of several monolayer types formed on SiO(2) nanoparticles (NPs) using TGA and XPS provides insight regarding the role of phosphorus surface chemistry at the SiO(2) interface in the overall MLCD process. The new MLCD process presented here for controlled surface doping

  2. Carbon Doping of Compound Semiconductor Epitaxial Layers Grown by Metalorganic Chemical Vapor Deposition Using Carbon Tetrachloride.

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian Thomas

    1990-01-01

    A dilute mixture of CCl_4 in high purity H_2 has been used as a carbon dopant source for rm Al_ {x}Ga_{1-x}As grown by low pressure metalorganic chemical vapor deposition (MOCVD). To understand the mechanism for carbon incorporation from CCl_4 doping and to provide experimental parameters for the growth of carbon doped device structures, the effects of various crystal growth parameters on CCl _4 doping have been studied, including growth temperature, growth rate, V/III ratio, Al composition, and CCl_4 flow rate. Although CCl _4 is an effective p-type dopant for MOCVD rm Al_{x}Ga_ {1-x}As, injection of CCl_4 into the reactor during growth of InP resulted in no change in the carrier concentration or carbon concentration. Abrupt, heavy carbon doping spikes in GaAs have been obtained using CCl_4 without a dopant memory effect. By annealing samples with carbon doping spikes grown within undoped, n-type, and p-type GaAs, the carbon diffusion coefficient in GaAs at 825 ^circC has been estimated and has been found to depend strongly on the GaAs background doping. Heavily carbon doped rm Al_{x}Ga _{1-x}As/GaAs superlattices have been found to be more stable against impurity induced layer disordering (IILD) than Mg or Zn doped superlattices, indicating that the low carbon diffusion coefficient limits the IILD process. Carbon doping has been used in the base region on an Npn AlGaAs/GaAs heterojunction bipolar transistor (HBT). Transistors with 3 x 10 μm self-aligned emitter fingers have been fabricated which exhibit a current gain cutoff frequency of f_ {rm t} = 26 GHz.

  3. Doped carbon nanostructure field emitter arrays for infrared imaging

    DOEpatents

    Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN

    2009-10-27

    An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

  4. Large area and broadband ultra-black absorber using microstructured aluminum doped silicon films

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Liu, Hai; Wang, Xiaoyi; Yang, Haigui; Gao, Jinsong

    2017-02-01

    A large area and broadband ultra-black absorber based on microstructured aluminum (Al) doped silicon (Si) films prepared by a low-cost but very effective approach is presented. The average absorption of the absorber is greater than 99% within the wide range from 350 nm to 2000 nm, and its size reaches to 6 inches. We investigate the fabrication mechanism of the absorber and find that the Al atom doped in silicon improves the formation of the nanocone-like microstructures on the film surface, resulting in a significant decrease in the reflection of incident light. The absorption mechanism is further discussed by experiments and simulated calculations in detail. The results show that the doped Al atoms and Mie resonance formed in the microstructures contribute the broadband super-high absorption.

  5. Large area and broadband ultra-black absorber using microstructured aluminum doped silicon films

    PubMed Central

    Liu, Zhen; Liu, Hai; Wang, Xiaoyi; Yang, Haigui; Gao, Jinsong

    2017-01-01

    A large area and broadband ultra-black absorber based on microstructured aluminum (Al) doped silicon (Si) films prepared by a low-cost but very effective approach is presented. The average absorption of the absorber is greater than 99% within the wide range from 350 nm to 2000 nm, and its size reaches to 6 inches. We investigate the fabrication mechanism of the absorber and find that the Al atom doped in silicon improves the formation of the nanocone-like microstructures on the film surface, resulting in a significant decrease in the reflection of incident light. The absorption mechanism is further discussed by experiments and simulated calculations in detail. The results show that the doped Al atoms and Mie resonance formed in the microstructures contribute the broadband super-high absorption. PMID:28202899

  6. Growth mechanism of silicon carbide films on silicon substrates using C 60 carbonization

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Workman, Richard; Sarid, Dror

    1995-12-01

    Silicon carbide films were grown on silicon substrates using C 60 molecules as a carbon source. The grown films were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and infrared spectroscopy (IRS). Also, using SiO 2 as a mask on the Si substrate, a patterned SiC film was grown. Growth and defect mechanisms are discussed and compared with conventional CVD carbidizing methods.

  7. Synthesis of silicon carbide at room temperature from colloidal suspensions of silicon dioxide and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhukalin, D. A.; Tuchin, A. V.; Kulikova, T. V.; Bityutskaya, L. A.

    2015-11-01

    Experimental and theoretical approaches were used for the investigation of mechanisms and conditions of self-organized nanostructures formation in the drying drop of the mixture of colloidal suspensions of nanoscale amorphous silicon dioxide and carbon nanotubes. The formation of rodlike structures with diameter 250-300nm and length ∼4pm was revealed. The diffraction analysis of the obtained nanostructures showed the formation of the silicon carbide phase at room temperature.

  8. Measurement of carrier transport and recombination parameter in heavily doped silicon

    NASA Technical Reports Server (NTRS)

    Swanson, Richard M.

    1986-01-01

    The minority carrier transport and recombination parameters in heavily doped bulk silicon were measured. Both Si:P and Si:B with bulk dopings from 10 to the 17th and 10 to the 20th power/cu cm were studied. It is shown that three parameters characterize transport in bulk heavily doped Si: the minority carrier lifetime tau, the minority carrier mobility mu, and the equilibrium minority carrier density of n sub 0 and p sub 0 (in p-type and n-type Si respectively.) However, dc current-voltage measurements can never measure all three of these parameters, and some ac or time-transient experiment is required to obtain the values of these parameters as a function of dopant density. Using both dc electrical measurements on bipolar transitors with heavily doped base regions and transients optical measurements on heavily doped bulk and epitaxially grown samples, lifetime, mobility, and bandgap narrowing were measured as a function of both p and n type dopant densities. Best fits of minority carrier mobility, bandgap narrowing and lifetime as a function of doping density (in the heavily doped range) were constructed to allow accurate modeling of minority carrier transport in heavily doped Si.

  9. Characterization of boron doped diamond-like carbon film by HRTEM

    NASA Astrophysics Data System (ADS)

    Li, X. J.; He, L. L.; Li, Y. S.; Yang, Q.; Hirose, A.

    2015-12-01

    Boron doped diamond-like carbon (B-DLC) film was synthesized on silicon (1 0 0) wafer by biased target ion beam deposition. High-resolution transmission electron microscopy (HRTEM) is employed to investigate the microstructure of the B-DLC thin film in cross-sectional observation. Many crystalline nanoparticles randomly dispersed and embedded in the amorphous matrix film are observed. Through chemical compositional analysis of the B-DLC film, some amount of O element is confirmed to be contained. And also, some nanoparticles with near zone axes are indexed, which are accordance with B2O phase. Therefore, the contained O element causing the B element oxidized is proposed, resulting in the formation of the nanoparticles. Our work indicates that in the B-DLC film a significant amount of the doped B element exists as boron suboxide nanoparticles.

  10. Observation of a photoinduced, resonant tunneling effect in a carbon nanotube–silicon heterojunction

    PubMed Central

    Ambrosio, Antonio; Boscardin, Maurizio; Castrucci, Paola; Crivellari, Michele; Cilmo, Marco; De Crescenzi, Maurizio; De Nicola, Francesco; Fiandrini, Emanuele; Grossi, Valentina; Maddalena, Pasqualino; Passacantando, Maurizio; Santucci, Sandro; Scarselli, Manuela; Valentini, Antonio

    2015-01-01

    Summary A significant resonant tunneling effect has been observed under the 2.4 V junction threshold in a large area, carbon nanotube–silicon (CNT–Si) heterojunction obtained by growing a continuous layer of multiwall carbon nanotubes on an n-doped silicon substrate. The multiwall carbon nanostructures were grown by a chemical vapor deposition (CVD) technique on a 60 nm thick, silicon nitride layer, deposited on an n-type Si substrate. The heterojunction characteristics were intensively studied on different substrates, resulting in high photoresponsivity with a large reverse photocurrent plateau. In this paper, we report on the photoresponsivity characteristics of the device, the heterojunction threshold and the tunnel-like effect observed as a function of applied voltage and excitation wavelength. The experiments are performed in the near-ultraviolet to near-infrared wavelength range. The high conversion efficiency of light radiation into photoelectrons observed with the presented layout allows the device to be used as a large area photodetector with very low, intrinsic dark current and noise. PMID:25821710

  11. Reactive Infiltration of Silicon Melt Through Microporous Amorphous Carbon Preforms

    NASA Technical Reports Server (NTRS)

    Sangsuwan, P.; Tewari, S. N.; Gatica, J. E.; Singh, M.; Dickerson, R.

    1999-01-01

    The kinetics of unidirectional capillary infiltration of silicon melt into microporous carbon preforms have been investigated as a function of the pore morphology and melt temperature. The infiltrated specimens showed alternating bands of dark and bright regions, which corresponded to the unreacted free carbon and free silicon regions, respectively. The decrease in the infiltration front velocity for increasing infiltration distances, is in qualitative agreement with the closed-form solution of capillarity driven fluid flow through constant cross section cylindrical pores. However, drastic changes in the thermal response and infiltration front morphologies were observed for minute differences in the preforms microstructure. This suggests the need for a dynamic percolation model that would account for the exothermic nature of the silicon-carbon chemical reaction and the associated pore closing phenomenon.

  12. Investigation of silicon complexes in Si-doped calcium phosphate bioceramics

    NASA Astrophysics Data System (ADS)

    Gillespie, P.; Stott, M. J.; Sayer, M.; Wu, G.

    2007-03-01

    Silicon doped calcium phosphate materials have drawn great interest as bioceramics for bone repair due to their enhanced bioactivity. However, the low level of doping in these materials, generally ˜1 wt.%, makes it difficult to determine the effects the silicon has on the structure of these materials. In this study, silicon substituted hydroxyapatite (Si-HA), silicon stabilized alpha tricalcium phosphate (Si-TCP), and a multi-phase mixture consisting of approximately 75% Si-TCP with the remainder being mainly Si-HA have been synthesized using isotopically enriched silica containing ^29Si. ^29Si magic-angle spinning nuclear magnetic resonance spectroscopy (MAS-NMR) has been used to examine the silicon complexes within these materials resulting from the substitution of SiO4^4- for PO4^3- and the required charge compensation mechanism needed to achieve this. Previous ab initio studies on these materials have investigated charge compensation mechanisms to suggest possible silicon complexes and these serve as a basis for interpreting the NMR results.

  13. Thermodynamics of a phase transition of silicon nanoparticles at the annealing and carbonization of porous silicon

    SciTech Connect

    Nagornov, Yu. S.

    2015-12-15

    The formation of SiC nanocrystals of the cubic modification in the process of high-temperature carbonization of porous silicon has been analyzed. A thermodynamic model has been proposed to describe the experimental data obtained by atomic-force microscopy, Raman scattering, spectral analysis, Auger spectroscopy, and X-ray diffraction spectroscopy. It has been shown that the surface energy of silicon nanoparticles and quantum filaments is released in the process of annealing and carbonization. The Monte Carlo simulation has shown that the released energy makes it possible to overcome the nucleation barrier and to form SiC nanocrystals. The processes of laser annealing and electron irradiation of carbonized porous silicon have been analyzed.

  14. Effects of silicon nanostructure evolution on Er{sup 3+} luminescence in silicon-rich silicon oxide/Er-doped silica multilayers

    SciTech Connect

    Chang, Jee Soo; Jhe, Ji-Hong; Yang, Moon-Seung; Shin, Jung H.; Kim, Kyung Joong; Moon, Dae Won

    2006-10-30

    The effect of silicon nanostructure evolution on Er{sup 3+} luminescence is investigated by using multilayers of 2.5 nm thin SiO{sub x} (x<2) and 10 nm thin Er-doped silica (SiO{sub 2}:Er). By separating excess Si and Er atoms into separate, nanometer-thin layers, the effect of silicon nanostructure evolution on np-Si sensitized Er{sup 3+} luminescence could be investigated while keeping the microscopic Er{sup 3+} environment the same. The authors find that while the presence of np-Si is necessary for efficient sensitization, the overall quality of np-Si layer has little effect on the Er{sup 3+} luminescence. On the other hand, intrusion of np-Si into Er-doped silica layers leads to deactivation of np-Si/Er{sup 3+} interaction, suggesting that there is a limit to excess Si and Er contents that can be used.

  15. Carbon--silicon coating alloys for improved irradiation stability

    DOEpatents

    Bokros, J.C.

    1973-10-01

    For ceramic nuclear fuel particles, a fission product-retaining carbon-- silicon alloy coating is described that exhibits low shrinkage after exposure to fast neutron fluences of 1.4 to 4.8 x 10/sup 21/ n/cm/sup 2/ (E = 0.18 MeV) at irradiation temperatures from 950 to 1250 deg C. Isotropic pyrolytic carbon containing from 18 to 34 wt% silicon is co-deposited from a gaseous mixiure of propane, helium, and silane at a temperature of 1350 to 1450 deg C. (Official Gazette)

  16. NH3 molecular doping of silicon nanowires grown along the [112], [110], [001], and [111] orientations

    PubMed Central

    2012-01-01

    The possibility that an adsorbed molecule could provide shallow electronic states that could be thermally excited has received less attention than substitutional impurities and could potentially have a high impact in the doping of silicon nanowires (SiNWs). We show that molecular-based ex-situ doping, where NH3 is adsorbed at the sidewall of the SiNW, can be an alternative path to n-type doping. By means of first-principle electronic structure calculations, we show that NH3 is a shallow donor regardless of the growth orientation of the SiNWs. Also, we discuss quantum confinement and its relation with the depth of the NH3 doping state, showing that the widening of the bandgap makes the molecular donor level deeper, thus more difficult to activate. PMID:22709657

  17. Nanoscale Etching and Indentation of Silicon Surfaces with Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Dzegilenko, Fedor N.; Srivastava, Deepak; Saini, Subhash

    1998-01-01

    The possibility of nanolithography of silicon and germanium surfaces with bare carbon nanotube tips of scanning probe microscopy devices is considered with large scale classical molecular dynamics (MD) simulations employing Tersoff's reactive many-body potential for heteroatomic C/Si/Ge system. Lithography plays a key role in semiconductor manufacturing, and it is expected that future molecular and quantum electronic devices will be fabricated with nanolithographic and nanodeposition techniques. Carbon nanotubes, rolled up sheets of graphene made of carbon, are excellent candidates for use in nanolithography because they are extremely strong along axial direction and yet extremely elastic along radial direction. In the simulations, the interaction of a carbon nanotube tip with silicon surfaces is explored in two regimes. In the first scenario, the nanotubes barely touch the surface, while in the second they are pushed into the surface to make "nano holes". The first - gentle scenario mimics the nanotube-surface chemical reaction induced by the vertical mechanical manipulation of the nanotube. The second -digging - scenario intends to study the indentation profiles. The following results are reported in the two cases. In the first regime, depending on the surface impact site, two major outcomes outcomes are the selective removal of either a single surface atom or a surface dimer off the silicon surface. In the second regime, the indentation of a silicon substrate by the nanotube is observed. Upon the nanotube withdrawal, several surface silicon atoms are adsorbed at the tip of the nanotube causing significant rearrangements of atoms comprising the surface layer of the silicon substrate. The results are explained in terms of relative strength of C-C, C-Si, and Si-Si bonds. The proposed method is very robust and does not require applied voltage between the nanotube tips and the surface. The implications of the reported controllable etching and hole-creating for

  18. Efficient oxygen reduction catalysts formed of cobalt phosphide nanoparticle decorated heteroatom-doped mesoporous carbon nanotubes.

    PubMed

    Chen, Kuiyong; Huang, Xiaobin; Wan, Chaoying; Liu, Hong

    2015-05-07

    Oxygen reduction catalysts based on heteroatom-doped mesoporous carbon nanotubes loaded with Co2P nanoparticles were skilfully fabricated. The electronic interaction between the embedded Co2P nanoparticles and the heteroatom-doped carbon structures could strongly promote the ORR catalytic performance of the heteroatom-doped carbon nanotubes.

  19. Radiation tolerance of boron doped dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.

    1980-01-01

    The potential of dendritic web silicon for giving radiation hard solar cells is compared with the float zone silicon material. Solar cells with n(+)-p-P(+) structure and approximately 15% (AMl) efficiency were subjected to 1 MeV electron irradiation. Radiation tolerance of web cell efficiency was found to be at least as good as that of the float zone silicon cell. A study of the annealing behavior of radiation-induced defects via deep level transient spectroscopy revealed that E sub v + 0.31 eV defect, attributed to boron-oxygen-vacancy complex, is responsible for the reverse annealing of the irradiated cells in the temperature range of 150 to 350 C.

  20. Urbach absorption edge in epitaxial erbium-doped silicon

    SciTech Connect

    Shmagin, V. B. Kudryavtsev, K. E.; Shengurov, D. V.; Krasilnik, Z. F.

    2015-02-07

    We investigate the dependencies of the photocurrent in Si:Er p-n junctions on the energy of the incident photons. The exponential absorption edge (Urbach edge) just below fundamental edge of silicon was observed in the absorption spectra of epitaxial Si:Er layers grown at 400–600 C. It is shown that the introduction of erbium significantly enhances the structural disorder in the silicon crystal which was estimated from the slope of the Urbach edge. We discuss the possible nature of the structural disorder in Si:Er and a new mechanism of erbium excitation, which does not require the presence of deep levels in the band gap of silicon.

  1. Silicon Whisker and Carbon Nanofiber Composite Anode

    NASA Technical Reports Server (NTRS)

    Ma, Junqing (Inventor); Newman, Aron (Inventor); Lennhoff, John (Inventor)

    2015-01-01

    A carbon nanofiber can have a surface and include at least one crystalline whisker extending from the surface of the carbon nanofiber. A battery anode composition can be formed from a plurality of carbon nanofibers each including a plurality of crystalline whiskers.

  2. Heavy doping effects in high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.; Landsberg, P. T.; San, C. T.

    1984-01-01

    A model for bandgap shrinkage in semiconductors is developed and applied to silicon. A survey of earlier experiments, and of new ones, give an agreement between the model and experiments on n- and p-type silicon which is good as far as transport measurements in the 300 K range. The discrepancies between theory and experiment are no worse than the discrepancies between the experimental results of various authors. It also gives a good account of recent, optical determinations of band gap shrinkage at 5 K.

  3. Erbium-doped silicon-oxycarbide materials for advanced optical waveguide amplifiers

    NASA Astrophysics Data System (ADS)

    Gallis, Spyros

    As a novel silicon based material, amorphous silicon oxycarbide (a-SiC xOyHz) has found many important applications (e.g. as a low-k material for interconnects) in Si microelectronics. This Ph.D. thesis work has explored another potential application of amorphous silicon oxycarbide: as a silicon-based host material for planar erbium-doped waveguide amplifiers (EDWAs) that operate at the telecommunications wavelength of 1540 nm. Such EDWAs are an important component of planar photonic integrated circuits being developed for implementation of the fiber-to-the-home (FTTH) technology. Furthermore, these Si-based EDWAs could be combined with other Si photonic devices (e.g. light sources, detectors, modulators) for achieving opto-electronic integration on Si chips, or silicon micro/nanophotonics. This thesis will start with basics about Er-doped systems and material challenges in the design of EDWAs. A detailed study of the structural and optical properties of a-SiCxOyHz materials under various deposition and processing conditions, concerning several aspects, such as thin film composition, chemical bonding, refractive index and optical gap, will be presented and discussed. Lastly, this work will focus on the photoluminescence (PL) properties of erbium-doped amorphous silicon oxycarbides (a-SiCxOyHz:Er). Results of both Er-related (near infrared ˜1540 nm) and matrix-related (visible) luminescence properties will be presented, and mechanisms leading to efficient excitation of Er ions in the materials will be discussed. This work indicates that a-SiC xOyHz:Er can be a promising matrix for realizing high-performance EDWAs using inexpensive broadband light sources.

  4. Influence of Grain Structure and Doping on the Deformation and Fracture of Polycrystalline Silicon for MEMS/NEMS

    DTIC Science & Technology

    2012-08-01

    Champaign Influence of Grain Structure and Doping on the Deformation and Fracture of Polycrystalline Silicon for MEMS /NEMS AFOSR Grant # FA9550-09-1...thin films for MEMS and mechanical properties under open and short circuit conditions: They were the first data of their kind and have drawn interest by industry too. ...Structure and Doping on the Deformation and Fracture of Polycrystalline Silicon for MEMS /NEMS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  5. [Study on the absorption spectrum properties of flexible black silicon doped with sulfur and fluorine based on first-principles].

    PubMed

    Wei, Wei; Zhu, Yong; Lin, Cheng; Tian, Li; Xu, Zu-Wen; Nong, Jin-Peng

    2014-04-01

    It is quite urgent to need a flexible photodetector in the ultraviolet-visible-near infrared region for building a miniaturization broadband spectrometer. In the present paper, one kind of flexible black silicon doped with sulfur and fluorine was proposed and the optical absorption spectrum was investigated in broadband region. Firstly, the electronic structure, band structure and the optical absorption properties of the flexible black silicon doped with sulfur and fluoride were calculated using the first-principles pseudo potential calculations based on density-functional theory. Then, the absorption spectrum model of the flexible black silicon was built based on both the first-principles and finite domain time difference method. The results show that the cut-off wavelength has a red shift as the band gap of doped material becomes narrower. The higher the doping concentration is, the higher the optical absorption coefficient is obtained. The absorption coefficient of flexible black silicon doped with 50% sulfur is 8.3 times higher than that of 1.5% sulfur doping sample at the wavelength of 1 500 nm while the ratio turns to be 3 times when doped with 50% and 1.5% fluoride. The black silicon with small-size surface microstructure has the highest absorptance in the near-infrared region at the same doping concentration of 50%. Finally, a sample of flexible black silicon was fabricated by the femtosecond laser auto scanning system. The test results indicate that the absorptance of the sample is higher than 95% both in the ultraviolet and visible region and is fluctuated from 70% to 80% in the near-infrared region. It shows that as a novel light-absorbing material in broadband region the flexible black silicon doped with Sulfur and Fluorine has an potential application in exploring miniaturization broadband spectroscopy.

  6. Infrared Response of Impurity Doped Silicon MOSFET’s (IRFET’S)

    DTIC Science & Technology

    1976-08-01

    in rtverte n j- rf n^r»» MfJ Ard I Jcri-lr BV bio Extrinsic silicon infrared detectors. 20 ABSTRACT td-ntinu* on rfvmf *rJ^ i* n#r...MKf¥ tnJ tJmtifx Operation and characteristics of the impurity doped infrared sensing MOSFET (IRFET) are described. Responsivities of over 3 10...shown that quantum efficiencies in the range 1.0 to 10.0 % can be acheived by using substrates with low boron dopings. The infrared sensing MOSFET

  7. The observation of structural defects in neutron-irradiated lithium-doped silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sargent, G. A.

    1971-01-01

    Electron microscopy has been used to observe the distribution and morphology of lattice defects introduced into lithium-doped silicon solar cells by neutron irradiation. Upon etching the surface of the solar cells after irradiation, crater-like defects are observed that are thought to be associated with the space charge region around vacancy clusters. Thermal annealing experiments showed that the crater defects were stable in the temperature range 300 to 1200 K in all of the lithium-doped samples. Some annealing of the crater defects was observed to occur in the undoped cells which were irradiated at the lowest doses.

  8. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    DOE R&D Accomplishments Database

    Steiner, S. A.; Baumann, T. F.; Kong, J.; Satcher, J. H.; Dresselhaus, M. S.

    2007-02-20

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  9. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    SciTech Connect

    Steiner, S A; Baumann, T F; Kong, J; Satcher, J H; Dresselhaus, M S

    2007-02-15

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  10. Formation mechanism of a silicon carbide coating for a reinforced carbon-carbon composite

    NASA Technical Reports Server (NTRS)

    Rogers, D. C.; Shuford, D. M.; Mueller, J. I.

    1975-01-01

    Results are presented for a study to determine the mechanisms involved in a high-temperature pack cementation process which provides a silicon carbide coating on a carbon-carbon composite. The process and materials used are physically and chemically analyzed. Possible reactions are evaluated using the results of these analytical data. The coating is believed to develop in two stages. The first is a liquid controlled phase process in which silicon carbide is formed due to reactions between molten silicon metal and the carbon. The second stage is a vapor transport controlled reaction in which silicon vapors react with the carbon. There is very little volume change associated with the coating process. The original thickness changes by less than 0.7%. This indicates that the coating process is one of reactive penetration. The coating thickness can be increased or decreased by varying the furnace cycle process time and/or temperature to provide a wide range of coating thicknesses.

  11. SiCO-doped carbon fibers with unique dual superhydrophilicity/superoleophilicity and ductile and capacitance properties.

    PubMed

    Lu, Ping; Huang, Qing; Mukherjee, Amiya; Hsieh, You-Lo

    2010-12-01

    Silicon oxycarbide (SiCO) glass-doped carbon fibers with an average diameter of 163 nm were successfully synthesized by electrospinning polymer mixtures of preceramic precursor polyureasilazane (PUS) and carbon precursor polyacrylonitrile (PAN) into fibers then converting to ceramic/carbon hybrid via cross-linking, stabilization, and pyrolysis at temperatures up to 1000 °C. The transformation of PUS/PAN polymer precursors to SiCO/carbon structures was confirmed by EDS and FTIR. Both carbon and SiCO/carbon fibers were amorphous and slightly oxidized. Doping with SiCO enhanced the thermal stability of carbon fibers and acquired new ductile behavior in the SiCO/carbon fibers with significantly improved flexibility and breaking elongation. Furthermore, the SiCO/carbon fibers exhibited dual superhydrophilicity and superoleophilicity with water and decane absorbing capacities of 873 and 608%, respectively. The cyclic voltammetry also showed that SiCO/carbon composite fibers possess better capacitor properties than carbon fibers.

  12. 3D modeling of doping from the atmosphere in floating zone silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Surovovs, K.; Virbulis, J.

    2017-01-01

    Three-dimensional numerical simulations of the inert gas flow, melt flow and dopant transport in both phases are carried out for silicon single crystal growth using the floating zone method. The mathematical model allows to predict the cooling heat flux density at silicon surfaces and realistically describes the dopant transport in case of doping from the atmosphere. A very good agreement with experiment is obtained for the radial resistivity variation profiles by taking into account the temperature dependence of chemical reaction processes at the free surface.

  13. Orbitronics: the Intrinsic Orbital Hall Effect in p-Doped Silicon

    SciTech Connect

    Bernevig, B.Andrei; Hughes, Taylor L.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    The spin Hall effect depends crucially on the intrinsic spin-orbit coupling of the energy band. Because of the smaller spin-orbit coupling in silicon, the spin Hall effect is expected to be much reduced. We show that the electric field in p-doped silicon can induce a dissipationless orbital current in a fashion reminiscent of the spin Hall effect. The vertex correction due to impurity scattering vanishes and the effect is therefore robust against disorder. The orbital Hall effect can lead to the accumulation of local orbital momentum at the edge of the sample, and can be detected by the Kerr effect.

  14. Lightweight Ceramic Composition of Carbon Silicon Oxygen and Boron

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B. (Inventor); Hsu, Ming-Ta (Inventor); Chen, Timothy S. (Inventor)

    1997-01-01

    Lightweight, monolithic ceramics resistant to oxidation in air at high temperatures are made by impregnating a porous carbon preform with a sol which contains a mixture of tetraethoxysilane, dimethyldiethoxysilane and trimethyl borate. The sol is gelled and dried on the carbon preform to form a ceramic precursor. The precursor is pyrolyzed in an inert atmosphere to form the ceramic which is made of carbon, silicon, oxygen and boron. The carbon of the preform reacts with the dried gel during the pyrolysis to form a component of the resulting ceramic. The ceramic is of the same size, shape and form as the carbon precursor. Thus, using a porous, fibrous carbon precursor, such as a carbon felt, results in a porous, fibrous ceramic. Ceramics of the invention are useful as lightweight tiles for a reentry spacecraft.

  15. Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study

    NASA Astrophysics Data System (ADS)

    Rajkamal, A.; Kumar, E. Mathan; Kathirvel, V.; Park, Noejung; Thapa, Ranjit

    2016-11-01

    First-principles calculations are performed to identify the pristine and Si doped 3D metallic T6 carbon structure (having both sp2 and sp3 type hybridization) as a new carbon based anode material. The π electron of C2 atoms (sp2 bonded) forms an out of plane network that helps to capture the Li atom. The highest Li storage capacity of Si doped T6 structure with conformation Li1.7Si1C5 produces theoretical specific capacity of 632 mAh/g which substantially exceeding than graphite. Also, open-circuit voltage (OCV) with respect to Li metal shows large negative when compared to the pristine T6 structure. This indicates modifications in terms of chemical properties are required in anode materials for practical application. Among various doped (Si, Ge, Sn, B, N) configuration, Si doped T6 structure provides a stable positive OCV for high Li concentrations. Likewise, volume expansion study also shows Si doped T6 structure is more stable with less pulverization and substantial capacity losses in comparison with graphite and silicon as an anode materials. Overall, mixed hybridized (sp2 + sp3) Si doped T6 structure can become a superior anode material than present sp2 hybridized graphite and sp3 hybridized Si structure for modern Lithium ion batteries.

  16. Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study

    PubMed Central

    Rajkamal, A.; Kumar, E. Mathan; Kathirvel, V.; Park, Noejung; Thapa, Ranjit

    2016-01-01

    First-principles calculations are performed to identify the pristine and Si doped 3D metallic T6 carbon structure (having both sp2 and sp3 type hybridization) as a new carbon based anode material. The π electron of C2 atoms (sp2 bonded) forms an out of plane network that helps to capture the Li atom. The highest Li storage capacity of Si doped T6 structure with conformation Li1.7Si1C5 produces theoretical specific capacity of 632 mAh/g which substantially exceeding than graphite. Also, open-circuit voltage (OCV) with respect to Li metal shows large negative when compared to the pristine T6 structure. This indicates modifications in terms of chemical properties are required in anode materials for practical application. Among various doped (Si, Ge, Sn, B, N) configuration, Si doped T6 structure provides a stable positive OCV for high Li concentrations. Likewise, volume expansion study also shows Si doped T6 structure is more stable with less pulverization and substantial capacity losses in comparison with graphite and silicon as an anode materials. Overall, mixed hybridized (sp2 + sp3) Si doped T6 structure can become a superior anode material than present sp2 hybridized graphite and sp3 hybridized Si structure for modern Lithium ion batteries. PMID:27892532

  17. A junctionless SONOS nonvolatile memory device constructed with in situ-doped polycrystalline silicon nanowires

    PubMed Central

    2012-01-01

    In this paper, a silicon-oxide-nitride-silicon nonvolatile memory constructed on an n+-poly-Si nanowire [NW] structure featuring a junctionless [JL] configuration is presented. The JL structure is fulfilled by employing only one in situ heavily phosphorous-doped poly-Si layer to simultaneously serve as source/drain regions and NW channels, thus greatly simplifying the manufacturing process and alleviating the requirement of precise control of the doping profile. Owing to the higher carrier concentration in the channel, the developed JL NW device exhibits significantly enhanced programming speed and larger memory window than its counterpart with conventional undoped-NW-channel. Moreover, it also displays acceptable erase and data retention properties. Hence, the desirable memory characteristics along with the much simplified fabrication process make the JL NW memory structure a promising candidate for future system-on-panel and three-dimensional ultrahigh density memory applications. PMID:22373446

  18. Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals

    PubMed Central

    Wheeler, Lance M.; Neale, Nathan R.; Chen, Ting; Kortshagen, Uwe R.

    2013-01-01

    Colloidal semiconductor nanocrystals have attracted attention for cost-effective, solution-based deposition of quantum-confined thin films for optoelectronics. However, two significant challenges must be addressed before practical nanocrystal-based devices can be realized. The first is coping with the ligands that terminate the nanocrystal surfaces. Though ligands provide the colloidal stability needed to cast thin films from solution, these ligands dramatically hinder charge carrier transport in the resulting film. Second, after a conductive film is achieved, doping has proven difficult for further control of the optoelectronic properties of the film. Here we report the ability to confront both of these challenges by exploiting the ability of silicon to engage in hypervalent interactions with hard donor molecules. For the first time, we demonstrate the significant potential of applying the interaction to the nanocrystal surface. In this study, hypervalent interactions are shown to provide colloidal stability as well as doping of silicon nanocrystals. PMID:23893292

  19. Growth of delta-doped layers on silicon CCD/S for enhanced ultraviolet response

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor); Terhune, Robert W. (Inventor); Hecht, Michael H. (Inventor)

    1994-01-01

    The backside surface potential well of a backside-illuminated CCD is confined to within about half a nanometer of the surface by using molecular beam epitaxy (MBE) to grow a delta-doped silicon layer on the back surface. Delta-doping in an MBE process is achieved by temporarily interrupting the evaporated silicon source during MBE growth without interrupting the evaporated p+ dopant source (e.g., boron). This produces an extremely sharp dopant profile in which the dopant is confined to only a few atomic layers, creating an electric field high enough to confine the backside surface potential well to within half a nanometer of the surface. Because the probability of UV-generated electrons being trapped by such a narrow potential well is low, the internal quantum efficiency of the CCD is nearly 100% throughout the UV wavelength range. Furthermore, the quantum efficiency is quite stable.

  20. DLTS and PL studies of proton radiation defects in tin-doped FZ silicon

    NASA Astrophysics Data System (ADS)

    Simoen, E.; Claeys, C.; Privitera, V.; Coffa, S.; Kokkoris, M.; Kossionides, E.; Fanourakis, G.; Nylandsted Larsen, A.; Clauws, P.

    2002-01-01

    In this paper, deep level transient spectroscopy (DLTS) is applied to study the deep levels in tin-doped and high-energy proton irradiated n-type float-zone (FZ) silicon. The results will be compared with irradiated tin-free FZ reference material, in order to evaluate the hardening potential. It will be shown that in Sn-doped silicon (FZ:Sn), a number of additional deep levels can be observed, two of which have been identified as acceptors associated with Sn-V. Furthermore, optically active recombination centres have been probed by photoluminescence (PL) spectroscopy. The PL results confirm the reduction of electrically active radiation-defect formation in FZ:Sn. At the same time, no Sn-related optically active centres have been found so far.

  1. A junctionless SONOS nonvolatile memory device constructed with in situ-doped polycrystalline silicon nanowires.

    PubMed

    Su, Chun-Jung; Su, Tuan-Kai; Tsai, Tzu-I; Lin, Horng-Chih; Huang, Tiao-Yuan

    2012-02-29

    In this paper, a silicon-oxide-nitride-silicon nonvolatile memory constructed on an n+-poly-Si nanowire [NW] structure featuring a junctionless [JL] configuration is presented. The JL structure is fulfilled by employing only one in situ heavily phosphorous-doped poly-Si layer to simultaneously serve as source/drain regions and NW channels, thus greatly simplifying the manufacturing process and alleviating the requirement of precise control of the doping profile. Owing to the higher carrier concentration in the channel, the developed JL NW device exhibits significantly enhanced programming speed and larger memory window than its counterpart with conventional undoped-NW-channel. Moreover, it also displays acceptable erase and data retention properties. Hence, the desirable memory characteristics along with the much simplified fabrication process make the JL NW memory structure a promising candidate for future system-on-panel and three-dimensional ultrahigh density memory applications.

  2. Gap narrowing in charged and doped silicon nanoclusters

    NASA Astrophysics Data System (ADS)

    Titov, Andrey; Michelini, Fabienne; Raymond, Laurent; Kulatov, Erkin; Uspenskii, Yurii A.

    2010-12-01

    The gap narrowing in charged Si35H36 and n -type doped Si34DH36 ( D=P , As, Sb, S, Se, and Te) clusters is studied within the GW approximation, including energy dependence of the dielectric matrix and local-field effects. It is shown that the density functional theory does not properly describe the gap narrowing in clusters, as it was found earlier in bulk Si. The main mechanisms of this effect in clusters are the same as in bulk Si: (i) the screened exchange interaction between additional electrons and (ii) the extra screening of the Coulomb interaction by additional electrons. At the same time, our calculations show that the carrier-induced gap narrowing has peculiar features in the clusters. A much weaker screening of the electron-electron interaction strongly increases the first and decreases the second mechanism of gap narrowing in Si clusters as compared to bulk Si. We find also that the gap-narrowing effect is more pronounced in doped clusters than in charged ones due to the charge localization near impurity ions. The electronic spectrum of the charged and doped Si clusters with one electron is spin split. The local-density approximation calculation greatly underestimates the value of the spin splitting. A calculation performed with the screened Hartree-Fock method shows that the splitting is large. It considerably narrows the gap and brings important spin effects into cluster properties.

  3. Nitrogen-Doped Carbon Fiber Paper by Active Screen Plasma Nitriding and Its Microwave Heating Properties.

    PubMed

    Zhu, Naishu; Ma, Shining; Sun, Xiaofeng

    2016-12-28

    In this paper, active screen plasma nitriding (ASPN) treatment was performed on polyacrylonitrile carbon fiber papers. Electric resistivity and microwave loss factor of carbon fiber were described to establish the relationship between processing parameters and fiber's ability to absorb microwaves. The surface processing effect of carbon fiber could be characterized by dynamic thermal mechanical analyzer testing on composites made of carbon fiber. When the process temperature was at 175 °C, it was conducive to obtaining good performance of dynamical mechanical properties. The treatment provided a way to change microwave heating properties of carbon fiber paper by performing different treatment conditions, such as temperature and time parameters. Atomic force microscope, scanning electron microscope, and X-ray photoelectron spectroscopy analysis showed that, during the course of ASPN treatment on carbon fiber paper, nitrogen group was introduced and silicon group was removed. The treatment of nitrogen-doped carbon fiber paper represented an alternative promising candidate for microwave curing materials used in repairing and heating technology, furthermore, an efficient dielectric layer material for radar-absorbing structure composite in metamaterial technology.

  4. Free-carrier absorption from Fibonacci sequences of. delta. -doped layers in silicon

    SciTech Connect

    Sernelius, B.E. Department of Physics, University of Tennessee, Knoxville, Tennessee 37996 Department of Physics and Measurement Technology, University of Linkoping, S-58183 Linkoping, Sweden)

    1989-09-15

    Theoretical results are reported for the dynamical resistivity and free-carrier absorption from Fibonacci sequences of {delta}-doped layers in silicon. Distinct peaks develop, with increasing generation number, in the region of plasmon excitations and the spectra show self-similarity properties. Numerical results are presented for sequences with generation numbers 5, 10, and 15, corresponding to a total number of layers approximately equal to 10, 100, and 1000, respectively.

  5. Crystal-originated particles in germanium-doped Czochralski silicon crystal

    NASA Astrophysics Data System (ADS)

    Chen, Jiahe; Yang, Deren; Li, Hong; Ma, Xiangyang; Tian, Daxi; Li, Liben; Que, Duainlin

    2007-08-01

    Grown-in distribution and annealing behavior of crystal-originated particles (COPs) in Czochralski silicon (Cz-Si) wafer with germanium doping have been investigated. It was found that COPs with high density but small sizes were inclined to generate in germanium-doped Cz-Si (GCz-Si) wafer. The increase of boron atoms in Cz-Si crystal with the germanium doping could benefit the formation of COPs while the oxygen interstitials in GCz-Si wafer could enhance the generation of COPs with small sizes. Meanwhile, it was suggested that the germanium doping in Cz-Si would result in the poor thermal stability of COPs. It is proposed that the combination between germanium atom and vacancy could reduce the free vacancy concentration and the onset temperature for void generation, thus forming denser but smaller void. While the stress compensation induced by boron and germanium atoms could increase the vacancy fluxes in heavy-boron doped GCz-Si crystal, the presence of oxygen atom in GCz-Si would incline to benefit the formation of inner oxide walls of void, especially with small sizes. Furthermore, thinner oxide walls within void for GCz-Si crystal are considered to be charged for the easy annihilation by the germanium doping.

  6. Low-temperature photochromic response of phosphorus-doped bismuth silicon oxide

    NASA Astrophysics Data System (ADS)

    McCullough, J. S.; Harmon, Angela; Martin, J. J.; Martin, J. J.; Harris, M. T.; Larkin, J. J.

    1995-08-01

    Phosphorus is one of several dopants that electronically compensate the native deep donor responsible for the yellow coloration observed in bismuth silicon oxide (BSO). Low-temperature optical absorption measurements of a series of Czochralski-grown P-doped BSO crystals show that ˜0.1-0.15 at. % P is needed in the sample to fully remove the yellow coloration. The absorption cutoff in the fully compensated P-doped sample was at 3.2 eV while compensated Al- and Ga-doped samples cutoff at 3.35 eV. Excitation at 10-15 K with near band-edge light produces photochromic absorption bands. In the lightly-doped (partially bleached) samples these bands were identical to those observed in undoped BSO. In the fully bleached sample a new spectrum was observed. Its major contribution was a band centered near 1.8 eV with a weaker absorption in the blue-green. By comparison with the spectra observed in undoped and in Al-doped material before and after photoexcitation it is believed that the 1.8 eV band is due to the [PO4]- center and that the broad 2.45 eV band observed in Al- and Ga-doped BSO is due to the [BiO4]0 center.

  7. Heteroatom-doped highly porous carbon from human urine

    NASA Astrophysics Data System (ADS)

    Chaudhari, Nitin Kaduba; Song, Min Young; Yu, Jong-Sung

    2014-06-01

    Human urine, otherwise potentially polluting waste, is an universal unused resource in organic form disposed by the human body. We present for the first time ``proof of concept'' of a convenient, perhaps economically beneficial, and innovative template-free route to synthesize highly porous carbon containing heteroatoms such as N, S, Si, and P from human urine waste as a single precursor for carbon and multiple heteroatoms. High porosity is created through removal of inherently-present salt particles in as-prepared ``Urine Carbon'' (URC), and multiple heteroatoms are naturally doped into the carbon, making it unnecessary to employ troublesome expensive pore-generating templates as well as extra costly heteroatom-containing organic precursors. Additionally, isolation of rock salts is an extra bonus of present work. The technique is simple, but successful, offering naturally doped conductive hierarchical porous URC, which leads to superior electrocatalytic ORR activity comparable to state of the art Pt/C catalyst along with much improved durability and methanol tolerance, demonstrating that the URC can be a promising alternative to costly Pt-based electrocatalyst for ORR. The ORR activity can be addressed in terms of heteroatom doping, surface properties and electrical conductivity of the carbon framework.

  8. Heteroatom-doped highly porous carbon from human urine.

    PubMed

    Chaudhari, Nitin Kaduba; Song, Min Young; Yu, Jong-Sung

    2014-06-09

    Human urine, otherwise potentially polluting waste, is an universal unused resource in organic form disposed by the human body. We present for the first time "proof of concept" of a convenient, perhaps economically beneficial, and innovative template-free route to synthesize highly porous carbon containing heteroatoms such as N, S, Si, and P from human urine waste as a single precursor for carbon and multiple heteroatoms. High porosity is created through removal of inherently-present salt particles in as-prepared "Urine Carbon" (URC), and multiple heteroatoms are naturally doped into the carbon, making it unnecessary to employ troublesome expensive pore-generating templates as well as extra costly heteroatom-containing organic precursors. Additionally, isolation of rock salts is an extra bonus of present work. The technique is simple, but successful, offering naturally doped conductive hierarchical porous URC, which leads to superior electrocatalytic ORR activity comparable to state of the art Pt/C catalyst along with much improved durability and methanol tolerance, demonstrating that the URC can be a promising alternative to costly Pt-based electrocatalyst for ORR. The ORR activity can be addressed in terms of heteroatom doping, surface properties and electrical conductivity of the carbon framework.

  9. Temperature dependence of nonlinear optical properties in Li doped nano-carbon bowl material

    NASA Astrophysics Data System (ADS)

    Li, Wei-qi; Zhou, Xin; Chang, Ying; Quan Tian, Wei; Sun, Xiu-Dong

    2013-04-01

    The mechanism for change of nonlinear optical (NLO) properties with temperature is proposed for a nonlinear optical material, Li doped curved nano-carbon bowl. Four stable conformations of Li doped corannulene were located and their electronic properties were investigated in detail. The NLO response of those Li doped conformations varies with relative position of doping agent on the curved carbon surface of corannulene. Conversion among those Li doped conformations, which could be controlled by temperature, changes the NLO response of bulk material. Thus, conformation change of alkali metal doped carbon nano-material with temperature rationalizes the variation of NLO properties of those materials.

  10. Internal modification of intrinsic and doped silicon using infrared nanosecond laser

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoming; Wang, Xinya; Chanal, Margaux; Trallero-Herrero, Carlos A.; Grojo, David; Lei, Shuting

    2016-12-01

    We report experimental results of three-dimensional (3D) modification inside intrinsic and doped silicon wafers using laser pulses with 1.55 µm wavelength and 3.5 ns pulse duration. Permanent modification in the form of lines is generated inside silicon by tightly focusing and continuously scanning the laser beam inside samples, without introducing surface damage. Cross sections of these lines are observed after cleaving the samples and are further analyzed after mechanical polishing followed by chemical etching. With the objective lens corrected for spherical aberration, tight focusing inside silicon is achieved and the optimal focal depth is identified. The laser-induced modification has triangular shape and appears in regions prior to the geometrical focus, indicating significant absorption in those regions. Experiments with doped samples show similar modification for doping concentrations (and corresponding initial free carrier densities) in the range of 1013-1016 cm-3. At carrier densities of 1018 cm-3, linear absorption of light becomes significant and the modification is reduced in size.

  11. Electron transport in HBr adsorbed boron doped carbon nanotube

    NASA Astrophysics Data System (ADS)

    Srivastava, Reena; Shahzad Khan, Md.; Shrivastava, Sadhna; Srivastava, Anurag

    2017-01-01

    A 10,0 pristine as well as boron doped zigzag single walled carbon nanotube has been analyzed as possible HBr sensor using DFT based ab-initio approach. The variation in band structures, Mulliken charge, NBO charge, binding energy and conductance variation has been analyzed. The CNT observes a lowering of bandgap in presence of HBr molecule near its surface and reduces the metallicity of Boron doped CNT. The B-CNT shows semiconducting to metallic transition and on introducing the HBr molecule near the surface, changes its conductance drastically. Strong physisorption is observed for HBr over B-CNT surface as a consequence of electrostatic interaction.

  12. Surface recombination velocity and diffusion length of minority carriers in heavily doped silicon layers

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Watanabe, M.; Actor, G.

    1977-01-01

    Quantitative analysis of the electron beam-induced current and the dependence of the effective diffusion length of the minority carriers on the penetration depth of the electron beam were employed for the analysis of the carrier recombination characteristics in heavily doped silicon layers. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two dimensional mapping of the surface recombination velocity of P-diffused Si layers will be presented together with a three dimensional mapping of minority carrier lifetime in ion implanted Si. Layers heavily doped with As exhibit improved recombination characteristics as compared to those of the layers doped with P.

  13. Diameter Controlled of Carbon Nanotubes Synthesized on Nanoporous Silicon Support

    NASA Astrophysics Data System (ADS)

    Asli, N. A.; Shamsudin, M. S.; Maryam, M.; Yusop, S. F. M.; Suriani, A. B.; Rusop, M.; Abdullah, S.

    2013-06-01

    Carbon nanotubes (CNTs) have been successfully synthesized on nanoporous silicon template (NPSiT) using botanical source, camphor oil. Diameter of CNTs synthesized was controlled by pore size of NPSiT prepared by photo-electrochemical anodization method. The diameter of CNTs grown on different NPSiT corresponded to the pore diameter of NPSiT. FESEM images showed self-organized bundles of fiber-like structures of CNTs with diameter of around 20nm which were successfully grown directly on nanoporous silicon while raman spectra obtained ratio of ID/IG at 0.67.

  14. Synthesis and Microstructure Evolution of Nano-Titania Doped Silicon Coatings

    NASA Astrophysics Data System (ADS)

    Moroz, N. A.; Umapathy, H.; Mohanty, P.

    2010-01-01

    The Anatase phase of Titania (TiO2) in nanocrystalline form is a well known photocatalyst. Photocatalysts are commercially used to accelerate photoreactions and increase photovoltaic efficiency such as in solar cells. This study investigates the in-flight synthesis of Titania and its doping into a Silicon matrix resulting in a catalyst-dispersed coating. A liquid precursor of Titanium Isopropoxide and ethanol was coaxially fed into the plasma gun to form Titania nanoparticles, while Silicon powder was externally injected downstream. Coatings of 75-150 μm thick were deposited onto flat coupons. Further, Silicon powder was alloyed with aluminum to promote crystallization and reduce the amorphous phase in the Silicon matrix. Dense coatings containing nano-Titania particles were observed under electron microscope. X-ray diffraction showed that both the Rutile and Anatase phases of the Titania exist. The influence of process parameters and aluminum alloying on the microstructure evolution of the doped coatings is analyzed and presented.

  15. Ultra-Low-Temperature Homoepitaxial Growth of Sb-Doped Silicon

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana; Hoenk, Michael E.; Nikzad, Shouleh

    2005-01-01

    An ultra-low-temperature process for homoepitaxial growth of high-quality, surface-confined, Sb-doped silicon layers is presented. Non-equilibrium growth by molecular beam epitaxy (MBE) is used to achieve dopant incorporation in excess of 2x10(exp 14) per sq cm in a thin, surface-confined layer. Sb surface segregation larger than expected from theoretical models was observed, in agreement with other experimental works. Furthermore, this work details an entirely low-temperature process (less than 450 degree C) that can be applied to fully processed and aluminum-metallized silicon devices. One application of this process is the formation of a back-surface electrode for back-illuminated high-purity silicon imaging arrays.

  16. Sulfur-doped microstructures formed in silicon using a modulated continuous wave laser

    NASA Astrophysics Data System (ADS)

    Ayachitula, R.; Brandt, L.; Chilton, M.; Knize, R. J.; Patterson, B. M.

    2013-05-01

    We demonstrate the enhanced optical properties of silicon microstructures formed by irradiation of a silicon surface by a modulated continuous wave (CW) laser beam in the presence of SF6. The microstructures are doped with about 0.6% sulfur, which extends the absorption well below the 1.1 μm bandgap of crystalline silicon and results in a 60% increase in the absorption of infrared radiation. This enhanced absorption as a result of these microstructures has been studied over the past decade in an effort to create high responsivity detectors and night vision goggles and improve the efficiency of solar cells. The enhanced optical absorption data we demonstrate are comparable to observations made in previous studies which were performed using more expensive and complicated laser systems such as regeneratively-amplified femtosecond pulsed laser systems and nanosecond and picosecond pulsed excimer lasers.

  17. Enhanced solar energy conversion in Au-doped, single-wall carbon nanotube-Si heterojunction cells

    PubMed Central

    2013-01-01

    The power conversion efficiency (PCE) of single-wall carbon nanotube (SCNT)/n-type crystalline silicon heterojunction photovoltaic devices is significantly improved by Au doping. It is found that the overall PCE was significantly increased to threefold. The efficiency enhancement of photovoltaic devices is mainly the improved electrical conductivity of SCNT by increasing the carrier concentration and the enhancing the absorbance of active layers by Au nanoparticles. The Au doping can lead to an increase of the open circuit voltage through adjusting the Fermi level of SCNT and then enhancing the built-in potential in the SCNT/n-Si junction. This fabrication is easy, cost-effective, and easily scaled up, which demonstrates that such Au-doped SCNT/Si cells possess promising potential in energy harvesting application. PMID:23663755

  18. Solution phase synthesis of aluminum-doped silicon nanoparticles via room-temperature, solvent based chemical reduction of silicon tetrachloride

    NASA Astrophysics Data System (ADS)

    Mowbray, Andrew James

    We present a method of wet chemical synthesis of aluminum-doped silicon nanoparticles (Al-doped Si NPs), encompassing the solution-phase co-reduction of silicon tetrachloride (SiCl4) and aluminum chloride (AlCl 3) by sodium naphthalide (Na[NAP]) in 1,2-dimethoxyethane (DME). The development of this method was inspired by the work of Baldwin et al. at the University of California, Davis, and was adapted for our research through some noteworthy procedural modifications. Centrifugation and solvent-based extraction techniques were used throughout various stages of the synthesis procedure to achieve efficient and well-controlled separation of the Si NP product from the reaction media. In addition, the development of a non-aqueous, formamide-based wash solution facilitated simultaneous removal of the NaCl byproduct and Si NP surface passivation via attachment of 1-octanol to the particle surface. As synthesized, the Si NPs were typically 3-15 nm in diameter, and were mainly amorphous, as opposed to crystalline, as concluded from SAED and XRD diffraction pattern analysis. Aluminum doping at various concentrations was accomplished via the inclusion of aluminum chloride (AlCl3); which was in small quantities dissolved into the synthesis solution to be reduced alongside the SiCl4 precursor. The introduction of Al into the chemically-reduced Si NP precipitate was not found to adversely affect the formation of the Si NPs, but was found to influence aspects such as particle stability and dispersibility throughout various stages of the procedure. Analytical techniques including transmission electron microscopy (TEM), FTIR spectroscopy, and ICP-optical emission spectroscopy were used to comprehensively characterize the product NPs. These methods confirm both the presence of Al and surface-bound 1-octanol in the newly formed Si NPs.

  19. Stable doping of carbon nanotubes via molecular self assembly

    SciTech Connect

    Lee, B.; Chen, Y.; Podzorov, V.; Cook, A.; Zakhidov, A.

    2014-10-14

    We report a novel method for stable doping of carbon nanotubes (CNT) based on methods of molecular self assembly. A conformal growth of a self-assembled monolayer of fluoroalkyl trichloro-silane (FTS) at CNT surfaces results in a strong increase of the sheet conductivity of CNT electrodes by 60–300%, depending on the CNT chirality and composition. The charge carrier mobility of undoped partially aligned CNT films was independently estimated in a field-effect transistor geometry (~100 cm²V⁻¹s⁻¹). The hole density induced by the FTS monolayer in CNT sheets is estimated to be ~1.8 ×10¹⁴cm⁻². We also show that FTS doping of CNT anodes greatly improves the performance of organic solar cells. This large and stable doping effect, easily achieved in large-area samples, makes this approach very attractive for applications of CNTs in transparent and flexible electronics.

  20. Electronically transparent graphene barriers against unwanted doping of silicon.

    PubMed

    Wong, Calvin Pei Yu; Koek, Terence Jun Hui; Liu, Yanpeng; Loh, Kian Ping; Goh, Kuan Eng Johnson; Troadec, Cedric; Nijhuis, Christian A

    2014-11-26

    Diffusion barriers prevent materials from intermixing (e.g., undesired doping) in electronic devices. Most diffusion barrier materials are often very specific for a certain combination of materials and/or change the energetics of the interface because they are insulating or add to the contact resistances. This paper presents graphene (Gr) as an electronically transparent, without adding significant resistance to the interface, diffusion barrier in metal/semiconductor devices, where Gr prevents Au and Cu from diffusion into the Si, and unintentionally dope the Si. We studied the electronic properties of the n-Si(111)/Gr/M Schottky barriers (with and without Gr and M=Au or Cu) by I(V) measurements and at the nanoscale by ballistic electron emission spectroscopy (BEEM). The layer of Gr does not change the Schottky barrier of these junctions. The Gr barrier was stable at 300 °C for 1 h and prevented the diffusion of Cu into n-Si(111) and the formation of Cu3Si. Thus, we conclude that the Gr is mechanically and chemically stable enough to withstand the harsh fabrication methods typically encountered in clean room processes (e.g., deposition of metals in high vacuum conditions at high temperatures), it is electronically transparent (it does not change the energetics of the Si/Au or Si/Cu Schottky barriers), and effectively prevented diffusion of the Cu or Au into the Si at elevated temperatures and vice versa.

  1. Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-04-02

    A silicon PIN microcrystalline/amorphous silicon semiconductor device is constructed by the sputtering of N, and P layers of silicon from silicon doped targets and the I layer from an undoped target, and at least one semi-transparent ohmic electrode.

  2. Heteroatom-doped highly porous carbon from human urine

    PubMed Central

    Chaudhari, Nitin Kaduba; Song, Min Young; Yu, Jong-Sung

    2014-01-01

    Human urine, otherwise potentially polluting waste, is an universal unused resource in organic form disposed by the human body. We present for the first time “proof of concept” of a convenient, perhaps economically beneficial, and innovative template-free route to synthesize highly porous carbon containing heteroatoms such as N, S, Si, and P from human urine waste as a single precursor for carbon and multiple heteroatoms. High porosity is created through removal of inherently-present salt particles in as-prepared “Urine Carbon” (URC), and multiple heteroatoms are naturally doped into the carbon, making it unnecessary to employ troublesome expensive pore-generating templates as well as extra costly heteroatom-containing organic precursors. Additionally, isolation of rock salts is an extra bonus of present work. The technique is simple, but successful, offering naturally doped conductive hierarchical porous URC, which leads to superior electrocatalytic ORR activity comparable to state of the art Pt/C catalyst along with much improved durability and methanol tolerance, demonstrating that the URC can be a promising alternative to costly Pt-based electrocatalyst for ORR. The ORR activity can be addressed in terms of heteroatom doping, surface properties and electrical conductivity of the carbon framework. PMID:24909133

  3. Carbon elimination from silicon kerf: Thermogravimetric analysis and mechanistic considerations

    PubMed Central

    Vazquez-Pufleau, Miguel; Chadha, Tandeep S.; Yablonsky, Gregory; Biswas, Pratim

    2017-01-01

    40% of ultrapure silicon is lost as kerf during slicing to produce wafers. Kerf is currently not being recycled due to engineering challenges and costs associated with removing its abundant impurities. Carbon left behind from the lubricant remains as one of the most difficult contaminants to remove in kerf without significant silicon oxidation. The present work enables to better understand the mechanism of carbon elimination in kerf which can aid the design of better processes for kef recycling and low cost photovoltaics. In this paper, we studied the kinetics of carbon elimination from silicon kerf in two atmospheres: air and N2, under a regime of no-diffusion-limitation. We report the apparent activation energy in both atmospheres using three methods: Kissinger, and two isoconversional approaches. In both atmospheres, a bimodal apparent activation energy is observed, suggesting a two stage process. A reaction mechanism is proposed in which (a) C-C and C-O bond cleavage reactions occur in parallel with polymer formation; (b) at higher temperatures, this polymer fully degrades in air but leaves a tarry residue in N2 that accounts for about 12% of the initial total carbon. PMID:28098187

  4. Carbon elimination from silicon kerf: Thermogravimetric analysis and mechanistic considerations

    DOE PAGES

    Vazquez-Pufleau, Miguel; Chadha, Tandeep S.; Yablonsky, Gregory; ...

    2017-01-18

    40% of ultrapure silicon is lost as kerf during slicing to produce wafers. Currently, kerf is not recycled due to engineering challenges and costs associated with removing its abundant impurities. Carbon left behind from the lubricant remains as one of the most difficult contaminants to remove in kerf without significant silicon oxidation. The present work enables to better understand the mechanism of carbon elimination in kerf which can aid the design of better processes for kef recycling and low cost photovoltaics. In this paper, we studied the kinetics of carbon elimination from silicon kerf in two atmospheres: air and N2,more » under a regime of no-diffusion-limitation. Here, we report the apparent activation energy in both atmospheres using three methods: Kissinger, and two isoconversional approaches. In both atmospheres, a bimodal apparent activation energy is observed, suggesting a two stage process. Furthermore, a reaction mechanism is proposed in which (a) C-C and C-O bond cleavage reactions occur in parallel with polymer formation; (b) at higher temperatures, this polymer fully degrades in air but leaves a tarry residue in N2 that accounts for about 12% of the initial total carbon.« less

  5. Carbon elimination from silicon kerf: Thermogravimetric analysis and mechanistic considerations

    NASA Astrophysics Data System (ADS)

    Vazquez-Pufleau, Miguel; Chadha, Tandeep S.; Yablonsky, Gregory; Biswas, Pratim

    2017-01-01

    40% of ultrapure silicon is lost as kerf during slicing to produce wafers. Kerf is currently not being recycled due to engineering challenges and costs associated with removing its abundant impurities. Carbon left behind from the lubricant remains as one of the most difficult contaminants to remove in kerf without significant silicon oxidation. The present work enables to better understand the mechanism of carbon elimination in kerf which can aid the design of better processes for kef recycling and low cost photovoltaics. In this paper, we studied the kinetics of carbon elimination from silicon kerf in two atmospheres: air and N2, under a regime of no-diffusion-limitation. We report the apparent activation energy in both atmospheres using three methods: Kissinger, and two isoconversional approaches. In both atmospheres, a bimodal apparent activation energy is observed, suggesting a two stage process. A reaction mechanism is proposed in which (a) C-C and C-O bond cleavage reactions occur in parallel with polymer formation; (b) at higher temperatures, this polymer fully degrades in air but leaves a tarry residue in N2 that accounts for about 12% of the initial total carbon.

  6. Distribution patterns of different carbon nanostructures in silicon nitride composites.

    PubMed

    Tapasztó, Orsolya; Markó, Márton; Balázsi, Csaba

    2012-11-01

    The dispersion properties of single- and multi-walled carbon nanotubes as well as mechanically exfoliated few layer graphene flakes within the silicon nitride ceramic matrix have been investigated. Small angle neutron scattering experiments have been employed to gain information on the dispersion of the nano-scale carbon fillers throughout the entire volume of the samples. The neutron scattering data combined with scanning electron microscopy revealed strikingly different distribution patterns for different types of carbon nanostructures. The scattering intensities for single wall carbon nanotubes (SWCNTs) reveal a decay exponent characteristic to surface fractals, which indicate that the predominant part of nanotubes can be found in loose networks wrapping the grains of the polycrystalline matrix. By contrast, multi wall carbon nanotubes (MWCNTs) were found to be present mainly in the form of bulk aggregate structures, while few-layer graphene (FLG) flakes have been individually dispersed within the host matrix, under the very same preparation and processing conditions.

  7. Amorphization of Silicon Carbide by Carbon Displacement

    SciTech Connect

    Devanathan, Ram; Gao, Fei; Weber, William J.

    2004-05-10

    We have used molecular dynamics simulations to examine the possibility of amorphizing silicon carbide (SiC) by exclusively displacing C atoms. At a defect generation corresponding to 0.2 displacements per atom, the enthalpy surpasses the level of melt-quenched SiC, the density decreases by about 15%, and the radial distribution function shows a lack of long-range order. Prior to amorphization, the surviving defects are mainly C Frenkel pairs (67%), but Si Frenkel pairs (18%) and anti-site defects (15%) are also present. The results indicate that SiC can be amorphized by C sublattice displacements. Chemical short-range disorder, arising mainly from interstitial production, plays a significant role in the amorphization.

  8. Role of silicon excess in Er-doped silicon-rich nitride light emitting devices at 1.54 μm

    SciTech Connect

    Ramírez, J. M. Berencén, Y.; Garrido, B.; Cueff, S.; Labbé, C.

    2014-08-28

    Erbium-doped silicon-rich nitride electroluminescent thin-films emitting at 1.54 μm have been fabricated and integrated within a metal-oxide-semiconductor structure. By gradually varying the stoichiometry of the silicon nitride, we uncover the role of silicon excess on the optoelectronic properties of devices. While the electrical transport is mainly enabled in all cases by Poole-Frenkel conduction, power efficiency and conductivity are strongly altered by the silicon excess content. Specifically, the increase in silicon excess remarkably enhances the conductivity and decreases the charge trapping; however, it also reduces the power efficiency. The main excitation mechanism of Er{sup 3+} ions embedded in silicon-rich nitrides is discussed. The optimum Si excess that balances power efficiency, conductivity, and charge trapping density is found to be close to 16%.

  9. Carbon p electron ferromagnetism in silicon carbide

    DOE PAGES

    Wang, Yutian; Liu, Yu; Wang, Gang; ...

    2015-03-11

    Ferromagnetism can occur in wide-band gap semiconductors as well as in carbon-based materials when specific defects are introduced. It is thus desirable to establish a direct relation between the defects and the resulting ferromagnetism. Here, we contribute to revealing the origin of defect-induced ferromagnetism using SiC as a prototypical example. We show that the long-range ferromagnetic coupling can be attributed to the p electrons of the nearest-neighbor carbon atoms around the VSiVC divacancies. Thus, the ferromagnetism is traced down to its microscopic electronic origin.

  10. Carbon p electron ferromagnetism in silicon carbide

    SciTech Connect

    Wang, Yutian; Liu, Yu; Wang, Gang; Anwand, Wolfgang; Jenkins, Catherine A.; Arenholz, Elke; Munnik, Frans; Gordan, Ovidiu D.; Salvan, Georgeta; Zahn, Dietrich R. T.; Chen, Xiaolong; Gemming, Sibylle; Helm, Manfred; Zhou, Shengqiang

    2015-03-11

    Ferromagnetism can occur in wide-band gap semiconductors as well as in carbon-based materials when specific defects are introduced. It is thus desirable to establish a direct relation between the defects and the resulting ferromagnetism. Here, we contribute to revealing the origin of defect-induced ferromagnetism using SiC as a prototypical example. We show that the long-range ferromagnetic coupling can be attributed to the p electrons of the nearest-neighbor carbon atoms around the VSiVC divacancies. Thus, the ferromagnetism is traced down to its microscopic electronic origin.

  11. Thermal Fatigue Behavior of Silicon-Carbide-Doped Silver Microflake Sinter Joints for Die Attachment in Silicon/Silicon Carbide Power Devices

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Chuantong; Nagao, Shijo; Suganuma, Katsuaki

    2017-02-01

    We studied the thermal fatigue behavior of submicron silicon carbide particle (SiCp)-doped silver (Ag) microflake sinter joints for die attachment in next-generation power devices. Si dummy chips and direct bonded copper substrates with various metallization schemes were bonded using SiCp-doped Ag microflakes under mild conditions (250°C, 30 min, 0.4 MPa). The SiCp was distributed homogeneously in the porous Ag network and inhibited morphological evolution during thermal cycling tests. The shear strength of as-sintered pure Ag and SiCp-added joints was ˜50 MPa and 35 MPa, respectively. Thermal cycling tests from -40°C to 250°C were conducted for up to 1000 cycles (hours) to characterize the thermostability of the bonded joints. After 1000 cycles, joints with and without SiCp experienced bonding degradation, with shear strength of ˜25 MPa and 20 MPa, respectively. Thus, after 1000 cycles, the shear strength of pure Ag and SiCp-doped joints decreased by 58% and 42%, respectively, compared with their maximum value. Coarsening of porous Ag occurred in pure Ag joints. SiCp addition inhibited morphological evolution of SiCp-doped joints during thermal cycling. However, vertical cracks generated by thermal stress were observed in joints both with and without SiCp, which may limit long-term reliability.

  12. Silicon carbide nanowires and composites obtained from carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Yuejian

    In this dissertation a simple route has been developed to synthesize Silicon Carbide (beta-SiC) nanothreads and C-SiC coaxial nanotubes by solid/liquid-state reaction between multiwall carbon nanotubes and silicon conducted at 1473 K and 1723 K, respectively. Through the kinetics study of SiC formation from carbon nanotubes and Si, our results demonstrated that carbon nanotubes may have higher chemical reactivity than other forms of elemental Carbon. Based on the above investigation, CNT/SiC and diamond/CNT/SiC were manufactured. Key factors influencing the mechanical properties of final products, such as phase composition, grain size, stress-strain, sintering time, and sintering temperature were thoroughly studied with Raman spectroscopy, x-ray diffraction, SEM and TEM techniques. Taking advantage of high elasticity of Carbon nanotube and its ability to block the microcrack propagation and dislocation movement, both composites showed enhanced fracture toughness. Carbon nanotubes composites trigger a new field in fundamental science and manifest potential application in multiple industries.

  13. An investigation of the gettering properties of silicon-germanium and silicon-carbon compounds

    SciTech Connect

    Barbero, C.J.

    1993-01-01

    Work concerning silicon-germanium (SiGe) and silicon-carbon (SiC) compounds is presented in this dissertation. Extended Hueckel (EHT) parameters for the band structure of group IV semiconductors and semiconductor compounds are put forth using established parameters. It will be demonstrated that EHT theory can accurately predict the band structure for the pure group IV semiconductors, however provides notably unusual results for alloy systems. Relativistic Extended Hueckel (REX) Theory is employed to understand the outcome of transition metals in SiGe and SiC compounds. The gettering effect and efficiency of germanium and carbon is demonstrated by using a 54 atom cluster. SiGe and SiC samples were prepared using keV ion implantation. It was found that annealing germanium implanted samples constrains germanium in a substitutional position. The consequences of different doses and different energies for germanium implanted silicon is also explored. It is established that increasing energy as well as increasing dose has the effect of creating amorphous layers and can cause alloying. Some of the germanium implanted silicon samples were used to study the gettering of copper, which was evaporated on the backside of the samples. Further studies include keV ion implantation of transition metals (iron and nickel) into silicon substrates that were implanted with MeV germanium and carbon prior to keV (iron and nickel) implantation. The effects of transition metals (i.e., iron, nickel and copper) evaporated on ultrahigh vacuum-chemical vapor deposition (UHV-CVD) prepared SiGe compounds was also investigated. Techniques such as Rutherford Backscattering (RBS), Ion Channeling, Secondary Ion Mass Spectrometry (SIMS), Capacitance-Voltage (C-V) and Deep Level Transient Spectroscopy (DLTS) were used to study the effects of implantation energy, implantation dose and annealing temperature as well as the different results produced by introduction of several transition metals.

  14. Formation and evolution of oxygen-vacancy clusters in lead and tin doped silicon

    NASA Astrophysics Data System (ADS)

    Londos, C. A.; Aliprantis, D.; Sgourou, E. N.; Chroneos, A.; Pochet, P.

    2012-06-01

    Infrared spectroscopy (IR) measurements were used to investigate the effect of lead (Pb), tin (Sn), and (Pb, Sn) codoping on electron radiation-induced defects in silicon (Si). The study was mainly focused on oxygen-vacancy (VOn) clusters and in particular their formation and evolution upon annealing. It was determined that Pb causes a larger reduction in the production of the VO defect than Sn. In (Pb, Sn) co-doped Si isochronal anneals revealed that the evolution of VO increases substantially at ˜170 °C. This is attributed to the release of V from the SnV pair. Interestingly, in the corresponding evolution curves of VO in the Sn- and the Pb-doped samples, this inverse annealing stage is also present for the former while it is not present for the latter. This is attributed to the formation of PbV pairs that do not dissociate below 280 °C. The partial capture of V by Sn in co-doped samples is rationalized through the higher compressive local strain around Pb atoms that leads to a retardation of vacancy diffusion. The conversion of VO to the VO2 defect is substantially reduced in the Pb-doped sample. The evolution curves of VO and VO2 clusters in the isovalent doped Si samples hint the production of VO2 from other mechanisms (i.e., besides VO + Oi → VO2). For larger VOn clusters (n = 3,4), the signals are very weak in the Pb-doped sample, whereas for n ≥ 5, they are not present in the spectra. Conversely, bands related with the VO5 and VOnCs defects are present in the spectra of the Sn-doped and (Pb, Sn) codoped Si.

  15. Ultrathin polytyramine films by electropolymerisation on highly doped p-type silicon electrodes

    NASA Astrophysics Data System (ADS)

    Losic, Dusan; Cole, Martin; Thissen, Helmut; Voelcker, Nicolas H.

    2005-06-01

    In recent years, silicon-based materials have been used extensively in device fabrication for sensors, microfluidic and biomaterial applications. In order to enhance the performance of the material, a number of surface functionalisations are employed. However, until now, silicon has not been used as an electrode material for electrodeposition of functional polymers. Here, highly doped p-type silicon was used as an electrode facilitating the electropolymerisation of ultrathin polytyramine (PT) films by cyclic voltammetry. The influence of resistivity, pre-treatment of the silicon surface and electrochemical conditions on the electropolymerisation process was studied. The results show that ultrathin PT films with a controlled thickness from 2 to 15 nm exhibit good electrochemical stability in buffer solution (pH 6.8) over a large potential window (-1.5 V to 1.5 V) and passivating properties towards a redox probe. In terms of the film morphology, a pinhole-free smooth surface with a roughness below 0.5 nm and with dominantly globular features of 40-60 nm diameter was observed by AFM. XPS characterisation showed that PT films display amine functional groups at the coating surface. UV induced silicon oxidation was used to prepare patterned PT films.

  16. Boron/Carbon/Silicon/Nitrogen Ceramics And Precursors

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore; Hsu, Ming TA; Chen, Timothy S.

    1996-01-01

    Ceramics containing various amounts of boron, carbon, silicon, and nitrogen made from variety of polymeric precursors. Synthesized in high yield from readily available and relatively inexpensive starting materials. Stable at room temperature; when polymerized, converted to ceramics in high yield. Ceramics resist oxidation and other forms of degradation at high temperatures; used in bulk to form objects or to infiltrate other ceramics to obtain composites having greater resistance to oxidation and high temperatures.

  17. Fabrication and characterization of carbon doped molybdenum oxide nanostructures.

    PubMed

    Wisitsoraat, A; Tuantranont, A; Patthanasettakul, V; Lomas, T

    2009-02-01

    Molybdenum oxide (MoOx) nanostructure has gained considerable attention because of its low-cost fabrication by low-temperature evaporation/condensation technique and its promising properties for applications in the field of catalysts and chemical sensors. However, MoOx has some inferior properties including very high electrical resistivity and instability at elevated temperature. These properties may be improved by means of foreign atom addition into its nanostructure. In this work, we develop a simple mean for doping of MoOx nanostructures by introduction of gas source dopant during evaporation. Carbon doped MoOx nanostructures have been synthesized by MoOx powder evaporation in Argon/Acetylene mixture with varying process parameters. Depending on growth conditions, various nanostructures including, nanorod, nanoplate, nanodots, can be formed with different dimensions and doping concentrations. Structural characterization by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) indicate that the MoOx based nanostructures are highly crystalline and carbon dopant is successfully incorporated in the structure with controllable concentration. Electrical characterization shows that the electrical conductivity of molybdenum oxide nanostructures can be increased by several orders of magnitude with carbon incorporation.

  18. Nitrogen-doped carbon dots as multifunctional fluorescent probes

    NASA Astrophysics Data System (ADS)

    Du, Fengyi; Jin, Xin; Chen, Junhui; Hua, Ye; Cao, Mulan; Zhang, Lirong; Li, Jianan; Zhang, Li; Jin, Jie; Wu, Chaoyang; Gong, Aihua; Xu, Wenrong; Shao, Qixiang; Zhang, Miaomiao

    2014-11-01

    Highly fluorescent nitrogen-doped carbon dots (NCDs) were prepared through the hydrothermal carbonization of citric acid and ammonium acetate. The resulting NCDs were quasi-spherical particles with an average diameter of approximately 2.1 nm. They exhibited excellent photoluminescent properties and had favorable solubility in water. Furthermore, the NCDs had low cytotoxicity and were readily integrated with cytoplasm. This makes them particularly suitable for multicolor bioimaging. Most importantly, NCDs internalized by cancer cells can be detected at four channels simultaneously with flow cytometry, which further demonstrates that the NCDs can be used as multifunctional fluorescent probes for biomedical applications.

  19. Effect of W and WC on the oxidation resistance of yttria-doped silicon nitride

    NASA Technical Reports Server (NTRS)

    Schuon, S.

    1980-01-01

    The effect of tungsten and tungsten carbide contamination on the oxidation and cracking in air of yttria-doped silicon nitride ceramics is investigated. Silicon nitride powder containing 8 wt % Y2O3 was doped with 2 wt % W, 4 wt % W, 2 wt % WC or left undoped, and sintered in order to simulate contamination during milling, and specimens were exposed in air to 500, 750 and 1350 C for various lengths of time. Scanning electron and optical microscopy and X-ray diffraction of the specimens in the as-sintered state reveals that the addition of W or WC does not affect the phase relationships in the system, composed of alpha and beta Si3N4, melilite and an amorphous phase. Catastrophic oxidation is observed at 750 C in specimens containing 2 and 4 wt % W, accompanied by the disappearance of alpha Si3N4 and melilite from the structure. At 1350 C, the formation of a protective glassy oxide layer was observed on all specimens without catastrophic oxidation, and it is found that pre-oxidation at 1350 C also improved the oxidation resistance at 750 C of bars doped with 4 wt % W. It is suggested that tungsten contamination from WC grinding balls may be the major cause of the intermediate-temperature cracking and instability frequently observed in Si3N4-8Y2O3.

  20. Curie Temperature of Silicon Doped Cobalt Ferrite for Use as a Stress Sensor

    NASA Astrophysics Data System (ADS)

    Lo, C. C. H.; Paulsen, J. A.; Ring, A. P.; Snyder, J. E.; Jiles, D. C.

    2003-03-01

    The development of new magnetoelastic materials for use in magnetic stress sensors is of both scientific and technological interest. In previous studies, metal bonded cobalt ferrite composites have been shown to be excellent candidates for this type of sensor. The magnetomechanical hysteresis was found to decrease with temperature, becoming negligible at 60^oC and above. The objective of this study is to try to decrease the magnetomechanical hysterysis at room temperature by lowering the Curie temperature of the sensing material. This was done by altering the chemical composition and sintering temperatures. A series of silicon doped samples with compositions of Co_1+xSi_xFe_2-2xO4 (where x is 0 to 0.6) were prepared. The Curie temperatures of these new materials were measured using a VSM with a high-temperature furnace. The results showed that the Curie temperature decreases with increasing amount of silicon in the cobalt ferrite. It was also found that the final sintering temperature of the silicon doped cobalt ferrite had an effect on the Curie temperature.

  1. Self- and dopant diffusion in extrinsic boron doped isotopically controlled silicon multilayer structures

    SciTech Connect

    Sharp, Ian D.; Bracht, Hartmut A.; Silvestri, Hughes H.; Nicols, Samuel P.; Beeman, Jeffrey W.; Hansen, John L.; Nylandsted Larsen, Arne; Haller, Eugene E.

    2002-04-01

    Isotopically controlled silicon multilayer structures were used to measure the enhancement of self- and dopant diffusion in extrinsic boron doped silicon. {sup 30}Si was used as a tracer through a multilayer structure of alternating natural Si and enriched {sup 28}Si layers. Low energy, high resolution secondary ion mass spectrometry (SIMS) allowed for simultaneous measurement of self- and dopant diffusion profiles of samples annealed at temperatures between 850 C and 1100 C. A specially designed ion- implanted amorphous Si surface layer was used as a dopant source to suppress excess defects in the multilayer structure, thereby eliminating transient enhanced diffusion (TED) behavior. Self- and dopant diffusion coefficients, diffusion mechanisms, and native defect charge states were determined from computer-aided modeling, based on differential equations describing the diffusion processes. We present a quantitative description of B diffusion enhanced self-diffusion in silicon and conclude that the diffusion of both B and Si is mainly mediated by neutral and singly positively charged self-interstitials under p-type doping. No significant contribution of vacancies to either B or Si diffusion is observed.

  2. Development of Iron Doped Silicon Nanoparticles as Bimodal Imaging Agents

    PubMed Central

    Singh, Mani P.; Atkins, Tonya M.; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y.; Kauzlarich, Susan M.

    2012-01-01

    We demonstrate the synthesis of water-soluble allylamine terminated Fe doped Si (SixFe) nanoparticles as bimodal agents for optical and magnetic imaging. The preparation involves the synthesis of a single source iron containing precursor, Na4Si4 with x% Fe (x = 1, 5, 10), and its subsequent reaction with NH4Br to produce hydrogen terminated SixFe nanoparticles. The hydrogen-capped nanoparticles are further terminated with allylamine via thermal hydrosilylation. Transmission electron microscopy (TEM) indicates that the average particle diameter is ~3.0±1.0 nm. The Si5Fe nanoparticles show strong photoluminescence quantum yield in water (~ 10 %) with significant T2 contrast (r2/r1value of 4.31). Electron paramagnetic resonance (EPR) and Mössbauer spectroscopies indicate that iron in the nanoparticles is in the +3 oxidation state. Analysis of cytotoxicity using the resazurin assay on HepG2 liver cells indicates that the particles have minimal toxicity. PMID:22616623

  3. The thermal conductivity of carbon coated silicon carbide fibers embedded in a silicon carbide matrix

    SciTech Connect

    Beecher, S.C.; Dinwiddie, R.B.; Lowden, R.A.

    1993-12-31

    The room temperature thermal conductivity has been measured for a series of composite materials composed of carbon coated silicon carbide (SiC) fibers embedded in a SiC matrix. The composite samples consisted of 0/30{degree} bi-directional plain weave Nicalon fibers coated with varying thicknesses of pyrolitic carbon and infiltrated with SiC by the forced flow chemical vapor infiltration process to form the matrix. The fiber volume fraction was held constant at 0.423 {plus_minus} 0.012 and the from 0.03 {mu}m to 0.983 {mu}m, with the fibers of one sample left uncoated. Results transverse to fiber direction show significant differences with the introduction and subsequent increase in the carbon coating thickness. The thermal conductivity decreased for all the coated samples compared to the uncoated sample coating thickness compared to the sample with the thinnest carbon coating.

  4. Structural and emission properties of Tb3+-doped nitrogen-rich silicon oxynitride films

    NASA Astrophysics Data System (ADS)

    Labbé, C.; An, Y.-T.; Zatryb, G.; Portier, X.; Podhorodecki, A.; Marie, P.; Frilay, C.; Cardin, J.; Gourbilleau, F.

    2017-03-01

    Terbium doped silicon oxynitride host matrix is suitable for various applications such as light emitters compatible with CMOS technology or frequency converter systems for photovoltaic cells. In this study, amorphous Tb3+ ion doped nitrogen-rich silicon oxynitride (NRSON) thin films were fabricated using a reactive magnetron co-sputtering method, with various N2 flows and annealing conditions, in order to study their structural and emission properties. Rutherford backscattering (RBS) measurements and refractive index values confirmed the silicon oxynitride nature of the films. An electron microscopy analysis conducted for different annealing temperatures (T A) was also performed up to 1200 °C. Transmission electron microscopy (TEM) images revealed two different sublayers. The top layer showed porosities coming from a degassing of oxygen during deposition and annealing, while in the region close to the substrate, a multilayer-like structure of SiO2 and Si3N4 phases appeared, involving a spinodal decomposition. Upon a 1200 °C annealing treatment, a significant density of Tb clusters was detected, indicating a higher thermal threshold of rare earth (RE) clusterization in comparison to the silicon oxide matrix. With an opposite variation of the N2 flow during the deposition, the nitrogen excess parameter (Nex) estimated by RBS measurements was introduced to investigate the Fourier transform infrared (FTIR) spectrum behavior and emission properties. Different vibration modes of the Si–N and Si–O bonds have been carefully identified from the FTIR spectra characterizing such host matrices, especially the ‘out-of-phase’ stretching vibration mode of the Si–O bond. The highest Tb3+ photoluminescence (PL) intensity was obtained by optimizing the N incorporation and the annealing conditions. In addition, according to these conditions, the integrated PL intensity variation confirmed that the silicon nitride-based host matrix had a higher thermal threshold of rare

  5. Structural and emission properties of Tb(3+)-doped nitrogen-rich silicon oxynitride films.

    PubMed

    Labbé, C; An, Y-T; Zatryb, G; Portier, X; Podhorodecki, A; Marie, P; Frilay, C; Cardin, J; Gourbilleau, F

    2017-03-17

    Terbium doped silicon oxynitride host matrix is suitable for various applications such as light emitters compatible with CMOS technology or frequency converter systems for photovoltaic cells. In this study, amorphous Tb(3+) ion doped nitrogen-rich silicon oxynitride (NRSON) thin films were fabricated using a reactive magnetron co-sputtering method, with various N2 flows and annealing conditions, in order to study their structural and emission properties. Rutherford backscattering (RBS) measurements and refractive index values confirmed the silicon oxynitride nature of the films. An electron microscopy analysis conducted for different annealing temperatures (T A) was also performed up to 1200 °C. Transmission electron microscopy (TEM) images revealed two different sublayers. The top layer showed porosities coming from a degassing of oxygen during deposition and annealing, while in the region close to the substrate, a multilayer-like structure of SiO2 and Si3N4 phases appeared, involving a spinodal decomposition. Upon a 1200 °C annealing treatment, a significant density of Tb clusters was detected, indicating a higher thermal threshold of rare earth (RE) clusterization in comparison to the silicon oxide matrix. With an opposite variation of the N2 flow during the deposition, the nitrogen excess parameter (Nex) estimated by RBS measurements was introduced to investigate the Fourier transform infrared (FTIR) spectrum behavior and emission properties. Different vibration modes of the Si-N and Si-O bonds have been carefully identified from the FTIR spectra characterizing such host matrices, especially the 'out-of-phase' stretching vibration mode of the Si-O bond. The highest Tb(3+) photoluminescence (PL) intensity was obtained by optimizing the N incorporation and the annealing conditions. In addition, according to these conditions, the integrated PL intensity variation confirmed that the silicon nitride-based host matrix had a higher thermal threshold of rare earth

  6. Ag doped silicon nitride nanocomposites for embedded plasmonics

    NASA Astrophysics Data System (ADS)

    Bayle, M.; Bonafos, C.; Benzo, P.; Benassayag, G.; Pécassou, B.; Khomenkova, L.; Gourbilleau, F.; Carles, R.

    2015-09-01

    The localized surface plasmon-polariton resonance (LSPR) of noble metal nanoparticles (NPs) is widely exploited for enhanced optical spectroscopies of molecules, nonlinear optics, photothermal therapy, photovoltaics, or more recently in plasmoelectronics and photocatalysis. The LSPR frequency depends not only of the noble metal NP material, shape, and size but also of its environment, i.e., of the embedding matrix. In this paper, Ag-NPs have been fabricated by low energy ion beam synthesis in silicon nitride (SiNx) matrices. By coupling the high refractive index of SiNx to the relevant choice of dielectric thickness in a SiNx/Si bilayer for an optimum antireflective effect, a very sharp plasmonic optical interference is obtained in mid-range of the visible spectrum (2.6 eV). The diffusion barrier property of the host SiNx matrix allows for the introduction of a high amount of Ag and the formation of a high density of Ag-NPs that nucleate during the implantation process. Under specific implantation conditions, in-plane self-organization effects are obtained in this matrix that could be the result of a metastable coarsening regime.

  7. Ag doped silicon nitride nanocomposites for embedded plasmonics

    SciTech Connect

    Bayle, M.; Bonafos, C. Benzo, P.; Benassayag, G.; Pécassou, B.; Carles, R.; Khomenkova, L.; Gourbilleau, F.

    2015-09-07

    The localized surface plasmon-polariton resonance (LSPR) of noble metal nanoparticles (NPs) is widely exploited for enhanced optical spectroscopies of molecules, nonlinear optics, photothermal therapy, photovoltaics, or more recently in plasmoelectronics and photocatalysis. The LSPR frequency depends not only of the noble metal NP material, shape, and size but also of its environment, i.e., of the embedding matrix. In this paper, Ag-NPs have been fabricated by low energy ion beam synthesis in silicon nitride (SiN{sub x}) matrices. By coupling the high refractive index of SiN{sub x} to the relevant choice of dielectric thickness in a SiN{sub x}/Si bilayer for an optimum antireflective effect, a very sharp plasmonic optical interference is obtained in mid-range of the visible spectrum (2.6 eV). The diffusion barrier property of the host SiN{sub x} matrix allows for the introduction of a high amount of Ag and the formation of a high density of Ag-NPs that nucleate during the implantation process. Under specific implantation conditions, in-plane self-organization effects are obtained in this matrix that could be the result of a metastable coarsening regime.

  8. TiO2-Coated Carbon Nanotube-Silicon Solar Cells with Efficiency of 15%

    PubMed Central

    Shi, Enzheng; Zhang, Luhui; Li, Zhen; Li, Peixu; Shang, Yuanyuan; Jia, Yi; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai; Zhang, Sen; Cao, Anyuan

    2012-01-01

    Combining carbon nanotubes (CNTs), graphene or conducting polymers with conventional silicon wafers leads to promising solar cell architectures with rapidly improved power conversion efficiency until recently. Here, we report CNT-Si junction solar cells with efficiencies reaching 15% by coating a TiO2 antireflection layer and doping CNTs with oxidative chemicals, under air mass (AM 1.5) illumination at a calibrated intensity of 100 mW/cm2 and an active device area of 15 mm2. The TiO2 layer significantly inhibits light reflectance from the Si surface, resulting in much enhanced short-circuit current (by 30%) and external quantum efficiency. Our method is simple, well-controlled, and very effective in boosting the performance of CNT-Si solar cells. PMID:23181192

  9. Ablation of carbon-doped liquid propellant in laser plasma propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Y.; Liang, T.; Zhang, S. Q.; Gao, L.; Gao, H.; Zhang, Z. L.

    2016-04-01

    Carbon-doped liquid glycerol ablated by nanosecond pulse laser is investigated in laser plasma propulsion. It is found that the propulsion is much more correlated with the carbon content. The doped carbon can change the laser intensity and laser focal position so as to reduce the splashing quantity of the glycerol. Less consumption of the liquid volume results in a high specific impulse.

  10. Fluorine doping into diamond-like carbon coatings inhibits protein adsorption and platelet activation.

    PubMed

    Hasebe, Terumitsu; Yohena, Satoshi; Kamijo, Aki; Okazaki, Yuko; Hotta, Atsushi; Takahashi, Koki; Suzuki, Tetsuya

    2007-12-15

    The first major event when a medical device comes in contact with blood is the adsorption of plasma proteins. Protein adsorption on the material surface leads to the activation of the blood coagulation cascade and the inflammatory process, which impair the lifetime of the material. Various efforts have been made to minimize protein adsorption and platelet adhesion. Recently, diamond-like carbon (DLC) has received much attention because of their antithrombogenicity. We recently reported that coating silicon substrates with fluorine-doped diamond-like carbon (F-DLC) drastically suppresses platelet adhesion and activation. Here, we evaluated the protein adsorption on the material surfaces and clarified the relationship between protein adsorption and platelet behaviors, using polycarbonate and DLC- or F-DLC-coated polycarbonate. The adsorption of albumin and fibrinogen were assessed using a colorimetric protein assay, and platelet adhesion and activation were examined using a differential interference contrast microscope. A higher ratio of albumin to fibrinogen adsorption was observed on F-DLC than on DLC and polycarbonate films, indicating that the F-DLC film should prevent thrombus formation. Platelet adhesion and activation on the F-DLC films were more strongly suppressed as the amount of fluorine doping was increased. These results show that the F-DLC coating may be useful for blood-contacting devices.

  11. Effect of Nitrogen Post-Doping on a Commercial Platinum-Ruthenium/Carbon Anode Catalyst

    DTIC Science & Technology

    2014-02-15

    is unlimited. Effect of nitrogen post-doping on a commercial platinum– ruthenium /carbon anode catalyst The views, opinions and/or findings contained in...ABSTRACT Effect of nitrogen post-doping on a commercial platinum– ruthenium /carbon anode catalyst Report Title This work investigates the effects of...performance of available best-in-class commercial catalysts. Effect of nitrogen post-doping on a commercial platinum– ruthenium /carbon anode catalyst Approved

  12. Silicon Carbide Derived Carbons: Experiments and Modeling

    SciTech Connect

    Kertesz, Miklos

    2011-02-28

    The main results of the computational modeling was: 1. Development of a new genealogical algorithm to generate vacancy clusters in diamond starting from monovacancies combined with energy criteria based on TBDFT energetics. The method revealed that for smaller vacancy clusters the energetically optimal shapes are compact but for larger sizes they tend to show graphitized regions. In fact smaller clusters of the size as small as 12 already show signatures of this graphitization. The modeling gives firm basis for the slit-pore modeling of porous carbon materials and explains some of their properties. 2. We discovered small vacancy clusters and their physical characteristics that can be used to spectroscopically identify them. 3. We found low barrier pathways for vacancy migration in diamond-like materials by obtaining for the first time optimized reaction pathways.

  13. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  14. Large-scale atomistic density functional theory calculations of phosphorus-doped silicon quantum bits

    NASA Astrophysics Data System (ADS)

    Greenman, Loren; Whitley, Heather D.; Whaley, K. Birgitta

    2013-10-01

    We present density functional theory calculations of phosphorus dopants in bulk silicon and of several properties relating to their use as spin qubits for quantum computation. Rather than a mixed pseudopotential or a Heitler-London approach, we have used an explicit treatment for the phosphorus donor and examined the detailed electronic structure of the system as a function of the isotropic doping fraction, including lattice relaxation due to the presence of the impurity. Doping electron densities (ρdoped-ρbulk) and spin densities (ρ↑-ρ↓) are examined in order to study the properties of the dopant electron as a function of the isotropic doping fraction. Doping potentials (Vdoped-Vbulk) are also calculated for use in calculations of the scattering cross sections of the phosphorus dopants, which are important in the understanding of electrically detected magnetic resonance experiments. We find that the electron density around the dopant leads to nonspherical features in the doping potentials, such as trigonal lobes in the (001) plane at energy scales of +12 eV near the nucleus and of -700 meV extending away from the dopants. These features are generally neglected in effective mass theory and will affect the coupling between the donor electron and the phosphorus nucleus. Our density functional calculations reveal detail in the densities and potentials of the dopants which are not evident in calculations that do not include explicit treatment of the phosphorus donor atom and relaxation of the crystal lattice. These details can also be used to parametrize tight-binding models for simulation of large-scale devices.

  15. Carbon Nanotube Charge Collectors in Doped Hybrid Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Olds, Zane; Haroldson, Ross; Mielczarek, Kamil; Zakhidov, Anvar

    2015-03-01

    Hybrid organo-metallic solar cells based on perovskite crystals have had steadily improved power conversion efficiencies over the past two years, and within this period have achieved efficiencies over 19%. We show that additions of Metal-Halide dopants, such as Cobalt (II) Iodide or Indium and Bismuth materials, can cause substitutional doping at the Lead atom. This may result in structural distortions (as in isovalent Co-doping) within the lattice causing change in the spatial distribution of charge carriers. We show that Co-doping results in an increased open circuit voltage upon light soaking due to possible higher charge accumulation. We also have investigated effects of p-doping the hole transport layer. We also incorporate composite sheets of MW carbon nanotubes and silver nanowires as charge collectors. These sheets provide a transparent and flexible electrode with lower sheet resistance due to integration of Ag nanowires. This has an effect on the work function of the sheet, making it more versatile as an electrode for use in a variety of device structures. This allows us a semi-transparent perovskite device, where incident light can be absorbed from either side of the device. This is beneficial towards achieving multi-junction perovskite solar cells. Undergraduate Research Assistant

  16. Simultaneous measurement of doping concentration and carrier lifetime in silicon using terahertz time-domain transmission

    NASA Astrophysics Data System (ADS)

    Lenz, M.; Matheisen, C.; Nagel, M.; Knoch, J.

    2017-02-01

    In this work, we present a measurement approach enabling the simultaneous determination of sheet resistance and carrier lifetime in semiconductor samples. It is based on a classic Terahertz (THz) time-domain transmission spectroscopy scheme extended by quasi-steady state optical excitation. The carrier lifetime is determined by contactless THz probing of the increase in sheet conductance associated with quasi-steady-state excitation. Combining a successive etch-back of the surface with repeated THz measurements yields a depth profile of the doping concentration and the carrier lifetime, which is important for the optimization of the emitter of solar cells, for instance. The viability of our approach is demonstrated by investigating a phosphorous doped emitter of a silicon solar cell with the THz approach and comparing the results with electrochemical capacitance voltage measurements.

  17. Highly end-doped silicon nanowires for field-effect transistors on flexible substrates

    NASA Astrophysics Data System (ADS)

    Celle, Caroline; Carella, Alexandre; Mariolle, Denis; Chevalier, Nicolas; Rouvière, Emmanuelle; Simonato, Jean-Pierre

    2010-05-01

    We report on the VLS (vapour-liquid-solid) fabrication and characterization of in situ axially doped silicon nanowires (SiNWs) at both ends, and on their integration into a bottom gate-top contact geometry on both rigid and flexible substrates to realize field-effect transistors (FETs). To improve contact resistance between SiNWs and source/drain electrodes, we axially tuned the level of doping at both ends of the SiNWs by sequential in situ addition of PH3. Characterisation of SiNWs by scanning spreading resistance microscopy in the device configuration allowed us to determine precisely the different sections of the SiNWs. The transfer to flexible substrates still allowed for workable FET structures. Transistors with electron mobilities exceeding 120 cm2 V-1 s-1, Ion/Ioff ratios greater than 107 and ambipolar behaviour were achieved.

  18. Fundamental limitations imposed by high doping on the performance of pn junction silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Li, S. S.; Sah, C. T.

    1975-01-01

    Fundamental limitations imposed on the performance of silicon junction solar cells by physical mechanisms accompanying high doping are described. The one-dimensional mechanisms divide into two broad categories: those associated with band-gap shrinkage and those associated with interband transition rates. By extending the traditional method of analysis and comparing with measurement, it is shown that the latter kind of mechanism dominates in determining the open-circuit voltage in a one-dimensional model of a 0.1 ohm-cm cell at 300 K. As an alternative dominant mechanism, a three-dimensional model involving thermodynamically stable clusters of impurities in the highly-doped diffused layer is suggested.

  19. Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants.

    PubMed

    Zhao, Xijiang; Wang, Tao; Qian, Shi; Liu, Xuanyong; Sun, Junying; Li, Bin

    2016-02-26

    While titanium (Ti) implants have been extensively used in orthopaedic and dental applications, the intrinsic bioinertness of untreated Ti surface usually results in insufficient osseointegration irrespective of the excellent biocompatibility and mechanical properties of it. In this study, we prepared surface modified Ti substrates in which silicon (Si) was doped into the titanium dioxide (TiO₂) nanotubes on Ti surface using plasma immersion ion implantation (PIII) technology. Compared to TiO₂ nanotubes and Ti alone, Si-doped TiO₂ nanotubes significantly enhanced the expression of genes related to osteogenic differentiation, including Col-I, ALP, Runx2, OCN, and OPN, in mouse pre-osteoblastic MC3T3-E1 cells and deposition of mineral matrix. In vivo, the pull-out mechanical tests after two weeks of implantation in rat femur showed that Si-doped TiO₂ nanotubes improved implant fixation strength by 18% and 54% compared to TiO₂-NT and Ti implants, respectively. Together, findings from this study indicate that Si-doped TiO₂ nanotubes promoted the osteogenic differentiation of osteoblastic cells and improved bone-Ti integration. Therefore, they may have considerable potential for the bioactive surface modification of Ti implants.

  20. Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants

    PubMed Central

    Zhao, Xijiang; Wang, Tao; Qian, Shi; Liu, Xuanyong; Sun, Junying; Li, Bin

    2016-01-01

    While titanium (Ti) implants have been extensively used in orthopaedic and dental applications, the intrinsic bioinertness of untreated Ti surface usually results in insufficient osseointegration irrespective of the excellent biocompatibility and mechanical properties of it. In this study, we prepared surface modified Ti substrates in which silicon (Si) was doped into the titanium dioxide (TiO2) nanotubes on Ti surface using plasma immersion ion implantation (PIII) technology. Compared to TiO2 nanotubes and Ti alone, Si-doped TiO2 nanotubes significantly enhanced the expression of genes related to osteogenic differentiation, including Col-I, ALP, Runx2, OCN, and OPN, in mouse pre-osteoblastic MC3T3-E1 cells and deposition of mineral matrix. In vivo, the pull-out mechanical tests after two weeks of implantation in rat femur showed that Si-doped TiO2 nanotubes improved implant fixation strength by 18% and 54% compared to TiO2-NT and Ti implants, respectively. Together, findings from this study indicate that Si-doped TiO2 nanotubes promoted the osteogenic differentiation of osteoblastic cells and improved bone-Ti integration. Therefore, they may have considerable potential for the bioactive surface modification of Ti implants. PMID:26927080

  1. Mechanical and tribological behavior of silicon nitride and silicon carbon nitride coatings for total joint replacements.

    PubMed

    Pettersson, M; Tkachenko, S; Schmidt, S; Berlind, T; Jacobson, S; Hultman, L; Engqvist, H; Persson, C

    2013-09-01

    Total joint replacements currently have relatively high success rates at 10-15 years; however, increasing ageing and an active population places higher demands on the longevity of the implants. A wear resistant configuration with wear particles that resorb in vivo can potentially increase the lifetime of an implant. In this study, silicon nitride (SixNy) and silicon carbon nitride (SixCyNz) coatings were produced for this purpose using reactive high power impulse magnetron sputtering (HiPIMS). The coatings are intended for hard bearing surfaces on implants. Hardness and elastic modulus of the coatings were evaluated by nanoindentation, cohesive, and adhesive properties were assessed by micro-scratching and the tribological performance was investigated in a ball-on-disc setup run in a serum solution. The majority of the SixNy coatings showed a hardness close to that of sintered silicon nitride (~18 GPa), and an elastic modulus close to that of cobalt chromium (~200 GPa). Furthermore, all except one of the SixNy coatings offered a wear resistance similar to that of bulk silicon nitride and significantly higher than that of cobalt chromium. In contrast, the SixCyNz coatings did not show as high level of wear resistance.

  2. Electrical transport in transverse direction through silicon carbon alloy multilayers containing regular size silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Mandal, Aparajita; Kole, Arindam; Dasgupta, Arup; Chaudhuri, Partha

    2016-11-01

    Electrical transport in the transverse direction has been studied through a series of hydrogenated silicon carbon alloy multilayers (SiC-MLs) deposited by plasma enhanced chemical vapor deposition method. Each SiC-ML consists of 30 cycles of the alternating layers of a nearly amorphous silicon carbide (a-SiC:H) and a microcrystalline silicon carbide (μc-SiC:H) that contains high density of silicon quantum dots (Si-QDs). A detailed investigation by cross sectional TEM reveals preferential growth of densely packed Si-QDs of regular sizes ∼4.8 nm in diameter in a vertically aligned columnar structure within the SiC-ML. More than six orders of magnitude increase in transverse current through the SiC-ML structure were observed for decrease in the a-SiC:H layer thickness from 13 nm to 2 nm. The electrical transport mechanism was established to be a combination of grain boundary or band tail hopping and Frenkel-Poole (F-P) type conduction depending on the temperature and externally applied voltage ranges. Evaluation of trap concentration within the multilayer structures from the fitted room temperature current voltage characteristics by F-P function shows reduction up-to two orders of magnitude indicating an improvement in the short range order in the a-SiC:H matrix for decrease in the thickness of a-SiC:H layer.

  3. Manufacture of silicon-based devices having disordered sulfur-doped surface layers

    DOEpatents

    Carey, III, James Edward; Mazur, Eric

    2008-04-08

    The present invention provides methods of fabricating a radiation-absorbing semiconductor wafer by irradiating at least one surface location of a silicon substrate, e.g., an n-doped crystalline silicon, by a plurality of temporally short laser pulses, e.g., femtosecond pulses, while exposing that location to a substance, e.g., SF.sub.6, having an electron-donating constituent so as to generate a substantially disordered surface layer (i.e., a microstructured layer) that incorporates a concentration of that electron-donating constituent, e.g., sulfur. The substrate is also annealed at an elevated temperature and for a duration selected to enhance the charge carrier density in the surface layer. For example, the substrate can be annealed at a temperature in a range of about 700 K to about 900 K.

  4. Structure and luminescence evolution of annealed Europium-doped silicon oxides films.

    PubMed

    Li, Dongsheng; Zhang, Xuwu; Jin, Lu; Yang, Deren

    2010-12-20

    Europium (Eu)-doped silicon oxide films with Eu concentrations from 2.1 to 4.7 at. % were deposited by electron beam evaporation. The Eu related luminescence from the films was found to be sensitive to the evolution of film microstructures at different annealing temperatures. Luminescence centers in the films changed from defects of silicon oxides to 4f(6)5d-4f(7)(8S(7/2)) transition of Eu2+ after the films annealed in N2 at temperature higher than 800 °C. The evolution of luminescence centers was attributed to the formation of europium silicate (EuSiO3), which was confirmed by x-ray photoelectron spectroscopy, x-ray diffraction, time resolved photoluminescence, and transmission electron microscopy.

  5. Insight into the mechanisms of chemical doping of graphene on silicon carbide.

    PubMed

    Giannazzo, Filippo

    2016-02-19

    Graphene (Gr) is currently the object of intense research investigations, owing to its rich physics and wide potential for applications. In particular, epitaxial Gr on silicon carbide (SiC) holds great promise for the development of new device concepts based on the vertical current transport at Gr/SiC heterointerface. Precise tailoring of Gr workfunction (WF) represents a key requirement for these device structures. In this context, Günes et al (2015 Nanotechnology 26 445702) recently reported a straightforward approach for WF modulation in epitaxial Gr on silicon carbide by using nitric acid solutions at different dilutions. This paper provides a deep insight on the peculiar mechanisms of chemical doping of epitaxial Gr on 4H-SiC(0001), using several characterization techniques (Raman, UPS, AFM) and density functional theory calculations. The relevance of these findings and their perspective applications in emerging device concepts based on monolithic integration of Gr and SiC will be discussed.

  6. Stable and wavelength-tunable silicon-micro-ring-resonator based erbium-doped fiber laser.

    PubMed

    Yang, L G; Yeh, C H; Wong, C Y; Chow, C W; Tseng, F G; Tsang, H K

    2013-02-11

    In this work, we propose and demonstrate a stable and wavelength-tunable erbium-doped fiber (EDF) ring laser. Here, a silicon-on-insulator (SOI)-based silicon-micro-ring-resonator (SMRR) is used as the wavelength selective element inside the fiber ring cavity. A uniform period grating coupler (GC) is used to couple between the SMRR and single mode fiber (SMF) and serves also as a polarization dependent element in the cavity. The output lasing wavelength of the proposed fiber laser can be tuned at a tuning step of 2 nm (defined by the free spectral range (FSR) of the SMRR) in a bandwidth of 35.2 nm (1532.00 to 1567.20 nm), which is defined by the gain of the EDF. The optical-signal-to-noise-ratio (OSNR) of each lasing wavelength is larger than 42.0 dB. In addition, the output stabilities of power and wavelength are also discussed.

  7. Extraction of the surface recombination velocity of passivated phosphorus-doped silicon emitters

    SciTech Connect

    Cuevas, A.; Giroult-Matlakowski, G.; DuBols, C.; Basore, P.A.; King, R.R.

    1995-01-01

    An analytical procedure to extract the surface recombination velocity of the SiO{sub 2}/n type silicon interface, S{sub p}, from PCD measurements of emitter recombination currents is described. The analysis shows that the extracted values of S{sub p} are significantly affected by the assumed material parameters for highly doped silicon, t{sub p}, {mu}{sub p} and {Delta}E{sub g}{sup app}. Updated values for these parameters are used to obtain the dependence of S{sub p} on the phosphorus concentration, N{sub D}, using both previous and new experimental data. The new evidence supports the finding that S{sub p} increases strongly with N{sub D}.

  8. Insights into electrical characteristics of silicon doped hafnium oxide ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Zhou, Dayu; Müller, J.; Xu, Jin; Knebel, S.; Bräuhaus, D.; Schröder, U.

    2012-02-01

    Silicon doped hafnium oxide thin films were recently discovered to exhibit ferroelectricity. In the present study, metal-ferroelectric-metal capacitors with Si:HfO2 thin films as ferroelectric material and TiN as electrodes have been characterized with respect to capacitance and current density as functions of temperature and applied voltage. Polarity asymmetry of the frequency dependent coercive field was explained by interfacial effects. No ferroelectric-paraelectric phase transition was observed at temperatures up to 478 K. Clear distinctions between current evolutions with or without polarization switching were correlated to the time competition between the measurement and the response of relaxation mechanisms.

  9. Observation of transparency of Erbium-doped silicon nitride in photonic crystal nanobeam cavities.

    PubMed

    Gong, Yiyang; Makarova, Maria; Yerci, Selcuk; Li, Rui; Stevens, Martin J; Baek, Burm; Nam, Sae Woo; Dal Negro, Luca; Vuckovic, Jelena

    2010-06-21

    One dimensional nanobeam photonic crystal cavities are fabricated in an Er-doped amorphous silicon nitride layer. Photoluminescence from the cavities around 1.54 microm is studied at cryogenic and room temperatures at different optical pump powers. The resonators demonstrate Purcell enhanced absorption and emission rates, also confirmed by time resolved measurements. Resonances exhibit linewidth narrowing with pump power, signifying absorption bleaching and the onset of stimulated emission in the material at both 5.5 K and room temperature. We estimate from the cavity linewidths that Er has been pumped to transparency at the cavity resonance wavelength.

  10. Comparison of beryllium oxide and pyrolytic graphite crucibles for boron doped silicon epitaxy

    SciTech Connect

    Ali, Dyan; Richardson, Christopher J. K.

    2012-11-15

    This article reports on the comparison of beryllium oxide and pyrolytic graphite as crucible liners in a high-temperature effusion cell used for boron doping in silicon grown by molecular beam epitaxy. Secondary ion mass spectroscopy analysis indicates decomposition of the beryllium oxide liner, leading to significant incorporation of beryllium and oxygen in the grown films. The resulting films are of poor crystal quality with rough surfaces and broad x-ray diffraction peaks. Alternatively, the use of pyrolytic graphite crucible liners results in higher quality films.

  11. Ab initio calculations of the electronic structure of silicon nanocrystals doped with shallow donors (Li, P)

    SciTech Connect

    Kurova, N. V. Burdov, V. A.

    2013-12-15

    The results of ab initio calculations of the electronic structure of Si nanocrystals doped with shallow donors (Li, P) are reported. It is shown that phosphorus introduces much more significant distortions into the electronic structure of the nanocrystal than lithium, which is due to the stronger central cell potential of the phosphorus ion. It is found that the Li-induced splitting of the ground state in the conduction band of the nanocrystal into the singlet, doublet, and triplet retains its inverse structure typical for bulk silicon.

  12. Physically sound parameterization of incomplete ionization in aluminum-doped silicon

    NASA Astrophysics Data System (ADS)

    Steinkemper, Heiko; Altermatt, Pietro P.; Hermle, Martin

    2016-12-01

    Incomplete ionization is an important issue when modeling silicon devices featuring aluminum-doped p+ (Al-p+) regions. Aluminum has a rather deep state in the band gap compared to boron or phosphorus, causing strong incomplete ionization. In this paper, we considerably improve our recent parameterization [Steinkemper et al., J. Appl. Phys. 117, 074504 (2015)]. On the one hand, we found a fundamental criterion to further reduce the number of free parameters in our fitting procedure. And on the other hand, we address a mistake in the original publication of the incomplete ionization formalism in Altermatt et al., J. Appl. Phys. 100, 113715 (2006).

  13. Phonon characteristics and photoluminescence of bamboo structured silicon-doped boron nitride multiwall nanotubes

    NASA Astrophysics Data System (ADS)

    Xu, Shifeng; Fan, Yi; Luo, Jingsong; Zhang, Ligong; Wang, Wenquan; Yao, Bin; An, Linan

    2007-01-01

    Bamboo structured silicon-doped boron nitride multiwall nanotubes are synthesized via catalyst-assisted pyrolysis of a boron-containing polymeric precursor. The nanotubes are characterized using transmission electron microscopy, x-ray diffraction, Raman, and Fourier-transformed infrared spectroscope. The results suggest that the Si dopants cause significant changes in the structure and phonon characteristics of the nanotubes as compared to pure boron nitride nanotubes. A broad photoluminescence band ranging between 500 and 800nm is observed from the nanotubes, which is attributed to Si dopants. Study on temperature dependence of emission intensity suggests that the thermal activation energy of the nonradiative recombination process is 35meV.

  14. Fracture of yttria-doped, sintered reaction-bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Govila, R. K.; Mangels, J. A.; Baer, J. R.

    1985-01-01

    Flexural strength of an yttria-doped, slip-cast, sintered reaction-bonded silicon nitride was evaluated as a function of temperature (20 to 1400 C in air), applied stress, and time. Static oxidation at 700 to 1400 C was investigated in detail; in tests at 1000 C in air, the material showed anomalous weight gain. Flexural stress-rupture testing at 800 to 1200 C in air indicated that the material is susceptible to stress-enhanced oxidation and early failure. Fractographic evidence for time-dependent and -independent failures is presented.

  15. Electrical noise characteristics of a doped silicon microcantilever heater-thermometer

    NASA Astrophysics Data System (ADS)

    Corbin, Elise A.; King, William P.

    2011-12-01

    We measure the electrical noise characteristics of doped silicon microcantilevers during cantilever self-heating over the temperature range 296-781 K. The dominant noise source is 1/f below about 10 kHz, while at higher frequency, the dominant noise source is Johnson noise. The 1/f noise matches the Hooge model. The noise floor is about 10 nV/Hz1/2 and depends upon temperature, matching the theoretical Johnson noise. The Johnson noise-limited temperature resolution is about 1 μK/Hz1/2.

  16. Hydrogen passivation of interstitial iron in boron-doped multicrystalline silicon during annealing

    SciTech Connect

    Liu, AnYao; Sun, Chang; Macdonald, Daniel

    2014-11-21

    Effective hydrogenation of interstitial iron in boron-doped multicrystalline silicon wafers is reported. The multicrystalline silicon wafers were annealed with plasma-enhanced chemical vapour deposited silicon nitride films, at temperatures of 400 °C – 900 °C and for times from minutes to hours. At low temperatures where a combined effect of hydrogenation and precipitation of dissolved Fe is expected, results show that the hydrogenation process dominates the effect of precipitation. The concentrations of dissolved interstitial iron reduce by more than 90% after a 30-min anneal at temperatures between 600 and 900 °C. The most effective reduction occurs at 700 °C, where 99% of the initial dissolved iron is hydrogenated after 30 min. The results show that the observed reductions in interstitial Fe concentrations are not caused by the internal gettering of Fe at structural defects or by an enhanced diffusivity of Fe due to the presence of hydrogen. The hydrogenation process is conjectured to be the pairing of positively charged iron with negatively charged hydrogen, forming less recombination active Fe-H complexes in silicon.

  17. Theoretical investigation of GaN carbon doped

    NASA Astrophysics Data System (ADS)

    Espitia Rico, M. J.; Moreno Armenta, M. G.; Rodríguez, J. A.; Takeuchi, N.

    2016-02-01

    In this work we used first principles calculations in the frame of density functional theory (DFT) in order to study the structural and electronic properties of GaN doped with carbon. The computational calculations were carried out by a method based on plane waves pseudopotentials, as implemented in the Quantum Espresso code. In the wurtzite type GaN supercell the nitrogen atoms were replaced by carbon atoms (C by N) and then also the gallium atoms by carbon atoms (C by Ga). The carbon concentrations in the GaN volume was set as x=25, 50 y 75%. For each concentration x of carbon the formation energy was calculated for the substitutions C by N and CxGa. We found that it is more energetically favourable that the carbon atoms occupy the positions of the nitrogen atoms (C by N), because in all the x concentrations of carbon the formation energies were lower than that in the substitutions (C by Ga). It was found that the new compounds CxGaN1-x have higher bulk moduli. So they are very rigid. This property makes them good candidates for applications in hard coatings or devices for high power and temperatures. Analysis of the density of states show that the new CxGaN1-x ternary compound have metallic behaviour that comes essentially from the hybridization states N-p and C-p cross the Fermi level.

  18. Carbon nanotube growth activated by quantum-confined silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Mariotti, D.; Švrček, V.; Mathur, A.; Dickinson, C.; Matsubara, K.; Kondo, M.

    2013-03-01

    We report on the use of silicon nanocrystals (Si-ncs) to activate nucleation and growth of carbon nanotubes (CNTs) without using any metal catalyst. Si-ncs with different surface characteristics have been exposed to the same CH4 low-pressure plasma treatment producing quite different results. Specifically, Si-ncs prepared by laser ablation in water have contributed to the formation of micrometre-sized silicon spherical particles. On the other hand, Si-ncs prepared by electrochemical etching did not induce any specific growth while the third type of Si-ncs, prepared by electrochemical etching and treated by a laser fragmentation process, induced the growth of multi-walled CNTs. The different outcomes of the same plasma process are attributed to the diverse surface features presented by the Si-ncs.

  19. Proton and deuteron nuclear magnetic resonance studies of amorphous hydrogenated silicon, carbon, and carbon alloys

    NASA Astrophysics Data System (ADS)

    Kernan, Mary Jane Wurth

    Despite the profound influence of semiconductors and the changes they have produced, many fundamental questions remain unanswered. We have used proton and deuteron nuclear magnetic resonance (NMR) to explore the role of hydrogens in amorphous silicon and amorphous carbon and carbon alloy films. In the carbon films, dipolar filtering techniques reveal a two-component shifted lineshape in the proton NMR spectra and deuteron magnetic resonance (DMR) data demonstrate a feedstock gas dependence in the film deposition process. In these measurements, DMR is used to examine the effect of hydrogen on the photovoltaic properties of amorphous silicon thin films. We have measured the effects of photoillumination on amorphous silicon, particularly with respect to the process of metastable defect formation (the Staebler-Wronski effect). The creation and passivation of dangling silicon bonds is observed and quantified. We report large-scale light-induced atomic rearrangements which produce shifts and broadenings of the DMR lineshapes. The deuterium NMR lineshape component most affected by atomic rearrangements is a broad central feature which is shown to be molecular in origin. This spectral feature includes hydrogens trapped and immobile on surfaces created by strains and dislocations in the material. Narrowing of the lineshape at elevated temperatures indicates motion with a small activation energy. The substantial population represented by this feature is shown to account for at least 15% of the total hydrogens in high-quality amorphous silicon samples.

  20. Very high carbon delta -doping concentration in AlxGa1 - xAs grown by metalorganic vapor phase epitaxy using trimethylaluminum as a doping precursor

    NASA Astrophysics Data System (ADS)

    Li, G.; Petravić, M.; Jagadish, C.

    1996-04-01

    Using trimethylaluminum (TMAl) or trimethylgallium (TMGa) as a doping precursor, carbon δ-doped AlxGa1-xAs has been grown in metalorganic vapor phase epitaxy. Compared to TMGa, TMAl exhibits very high carbon δ-doping efficiency. The best hole profile of carbon δ-doped Al0.3Ga0.7As grown at 580 °C using TMAl as a doping precursor has a peak hole density of 1.6×1019 cm-3 for a full width at half-maximum of 85 Å with most of the incorporated carbon atoms being electrically active. When TMGa is used as the doping precursor, the hole density of carbon δ-doped AlxGa1-xAs significantly increases with an increase of the Al mole fraction. By comparison, the use of TMAl almost induces independence of the hole density on the Al mole fraction. The hole density of carbon δ-doped Al0.3Ga0.7As weakly increases when reducing the δ-doping temperature regardless of the doping precursors. The hole density of carbon δ-doped Al0.3Ga0.7As grown at 580 °C is proportionally associated with the moles of TMGa or TMAl totally input during a δ-doping step. Using heavily carbon δ-doped layers in Al0.3Ga0.7As, a carbon δ-doped pipi doping superlattice possessing a bulk-doped-like hole profile with an average hole density of 1.1×1019 cm-3 is therefore demonstrated as an alternative with unique advantages over other conventional carbon bulk-doping approaches.

  1. Influence of the doping level on the porosity of silicon nanowires prepared by metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Geyer, Nadine; Wollschläger, Nicole; Fuhrmann, Bodo; Tonkikh, Alexander; Berger, Andreas; Werner, Peter; Jungmann, Marco; Krause-Rehberg, Reinhard; Leipner, Hartmut S.

    2015-06-01

    A systematic method to control the porosity of silicon nanowires is presented. This method is based on metal-assisted chemical etching (MACE) and takes advantage of an HF/H2O2 etching solution and a silver catalyst in the form of a thin patterned film deposited on a doped silicon wafer. It is found that the porosity of the etched nanowires can be controlled by the doping level of the wafer. For low doping concentrations, the wires are primarily crystalline and surrounded by only a very thin layer of porous silicon (pSi) layer, while for highly doped silicon, they are porous in their entire volume. We performed a series of controlled experiments to conclude that there exists a well-defined critical doping concentration separating the crystalline and porous regimes. Furthermore, transmission electron microscopy investigations showed that the pSi has also a crystalline morphology on a length scale smaller than the pore size, determined from positron annihilation lifetime spectroscopy to be mesoscopic. Based on the experimental evidence, we devise a theoretical model of the pSi formation during MACE and apply it for better control of the nanowire morphology.

  2. Influence of the doping level on the porosity of silicon nanowires prepared by metal-assisted chemical etching.

    PubMed

    Geyer, Nadine; Wollschläger, Nicole; Fuhrmann, Bodo; Tonkikh, Alexander; Berger, Andreas; Werner, Peter; Jungmann, Marco; Krause-Rehberg, Reinhard; Leipner, Hartmut S

    2015-06-19

    A systematic method to control the porosity of silicon nanowires is presented. This method is based on metal-assisted chemical etching (MACE) and takes advantage of an HF/H2O2 etching solution and a silver catalyst in the form of a thin patterned film deposited on a doped silicon wafer. It is found that the porosity of the etched nanowires can be controlled by the doping level of the wafer. For low doping concentrations, the wires are primarily crystalline and surrounded by only a very thin layer of porous silicon (pSi) layer, while for highly doped silicon, they are porous in their entire volume. We performed a series of controlled experiments to conclude that there exists a well-defined critical doping concentration separating the crystalline and porous regimes. Furthermore, transmission electron microscopy investigations showed that the pSi has also a crystalline morphology on a length scale smaller than the pore size, determined from positron annihilation lifetime spectroscopy to be mesoscopic. Based on the experimental evidence, we devise a theoretical model of the pSi formation during MACE and apply it for better control of the nanowire morphology.

  3. Properties of nitrogen-doped amorphous hydrogenated carbon films

    SciTech Connect

    Amir, O.; Kalish, R. )

    1991-11-01

    Nitrogen-containing hydrogenated amorphous carbon (a-C:H(N)) films are grown from a dc plasma of a N{sub 2}+C{sub 6}H{sub 6} gas mixture. By varying the N{sub 2} fraction in this mixture films with different amounts of N are produced. The actual amount of nitrogen in the {ital a}-C:H(N) films is determined by nuclear reaction analysis and by Auger electron spectroscopy profiling. The nitrogen concentration in the films grows exponentially with nitrogen content in the gas mixture reaching concentrations as high as 10 at.% for the films grown from a N{sub 2}-rich gas mixture (N{sub 2}/(N{sub 2}+C{sub 6}H{sub 6})=0.75). The electrical and structural properties of the N{sub 2}-doped films are studied by performing electrical conductivity, thermopower (TP), optical absorption, and electron-paramagnetic resonance measurements. Films with low ({lt}1 at.%) nitrogen content exhibit fairly high resistivities, have an optical gap of 1 eV, are rich with dangling bonds (5{times}10{sup 20} cm{sup {minus}3}) and their thermopower is positive and in the mV/K regime, indicating conductivity in the valence band tail. However, with increased N doping, the resistivity decreases and the optical band gap shrinks and reached zero for the highest doped film. The TPs for films containing more than 1 at.% are in the {mu}V/K range, indicating hopping conductivity around the Fermi level. The results of all measurements are consistent with the model of Robertson for the electrical structure of amorphous hydrogenated carbon and for the proposed doping mechanism in this material.

  4. Low-energy tetrahedral polymorphs of carbon, silicon, and germanium

    NASA Astrophysics Data System (ADS)

    Mujica, Andrés; Pickard, Chris J.; Needs, Richard J.

    2015-06-01

    Searches for low-energy tetrahedral polymorphs of carbon and silicon have been performed using density functional theory computations and the ab initio random structure searching approach. Several of the hypothetical phases obtained in our searches have enthalpies that are lower or comparable to those of other polymorphs of group 14 elements that have either been experimentally synthesized or recently proposed as the structure of unknown phases obtained in experiments, and should thus be considered as particularly interesting candidates. A structure of P b a m symmetry with 24 atoms in the unit cell was found to be a low-energy, low-density metastable polymorph in carbon, silicon, and germanium. In silicon, P b a m is found to have a direct band gap at the zone center with an estimated value of 1.4 eV, which suggests applications as a photovoltaic material. We have also found a low-energy chiral framework structure of P 41212 symmetry with 20 atoms per cell containing fivefold spirals of atoms, whose projected topology is that of the so-called Cairo-type two-dimensional pentagonal tiling. We suggest that P 41212 is a likely candidate for the structure of the unknown phase XIII of silicon. We discuss P b a m and P 41212 in detail, contrasting their energetics and structures with those of other group 14 elements, particularly the recently proposed P 42/n c m structure, for which we also provide a detailed interpretation as a network of tilted diamondlike tetrahedra.

  5. Microstructure, toughness and flexural strength of self-reinforced silicon nitride ceramics doped with yttrium oxide and ytterbium oxide.

    PubMed

    Zheng, Y. S.; Knowles, K. M.; Vieira, J. M.; Lopes, A. B.; Oliveira, F. J.

    2001-02-01

    Self-reinforced silicon nitride ceramics with additions of either yttrium oxide or ytterbium oxide have been investigated at room temperature after various processing heat treatments. Devitrification of the intergranular phase in these materials is very sensitive to the heat treatment used during processing and does not necessarily improve their strength and toughness. Hot-pressed ceramics without a subsequent devitrification heat treatment were the strongest. The ytterbium oxide-doped silicon nitride ceramics were consistently tougher, but less strong, than the yttrium oxide-doped silicon nitride ceramics. In all the ceramics examined, the fracture toughness showed evidence for R-curve behaviour. This was most significant in pressureless sintered ytterbium oxide-doped silicon nitride ceramics. A number of toughening mechanisms, including crack deflection, bridging, and fibre-like grain pull-out, were observed during microstructural analysis of the ceramics. In common with other silicon nitride-based ceramics, thin amorphous films were found at the grain boundaries in each of the ceramics examined. Arrays of dislocations left in the elongated silicon nitride grains after processing were found to belong to the {101;0}<0001> primary slip system.

  6. Synthesis of nitrogen-doped carbon nanostructures from polyurethane sponge for bioimaging and catalysis.

    PubMed

    Yang, Yong; Zhang, Jingchao; Zhuang, Jing; Wang, Xun

    2015-08-07

    A facile and environmentally friendly method was developed for the fabrication of N-doped carbon nanomaterials by hydrothermal treatment using polyurethane (PU) sponge as a carbon source. We have demonstrated that the hydrothermal decomposition of PU sponge involves top-down hydrolysis and bottom-up polymerization processes for the synthesis of N-doped carbon dots (N-CDs). Fluorescence spectroscopy and cytotoxicity studies indicated that these highly-soluble N-CDs show excellent photoluminescence properties and low cytotoxicity, and can be used as good probes for cellular imaging. Additionally, the N-doped hollow carbon nanostructures can be designed using a simple template method. The prepared N-doped double-shelled hollow carbon nanotubes exhibited excellent ORR electrocatalytic activity and superior durability. Indeed, our method described here can provide an efficient way to synthesize N-doped carbon-based materials for a broad range of applications.

  7. The Oxidation of CVD Silicon Carbide in Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Nguyen, QuynchGiao N.

    1997-01-01

    Chemically-vapor-deposited silicon carbide (CVD SiC) was oxidized in carbon dioxide (CO2) at temperatures of 1200-1400 C for times between 100 and 500 hours at several gas flow rates. Oxidation weight gains were monitored by thermogravimetric analysis (TGA) and were found to be very small and independent of temperature. Possible rate limiting kinetic laws are discussed. Oxidation of SiC by CO2 is negligible compared to the rates measured for other oxidants typically found in combustion environments: oxygen and water vapor.

  8. Green emission in carbon doped ZnO films

    SciTech Connect

    Tseng, L. T.; Yi, J. B. Zhang, X. Y.; Xing, G. Z.; Luo, X.; Li, S.; Fan, H. M.; Herng, T. S.; Ding, J.; Ionescu, M.

    2014-06-15

    The emission behavior of C-doped ZnO films, which were prepared by implantation of carbon into ZnO films, is investigated. Orange/red emission is observed for the films with the thickness of 60–100 nm. However, the film with thickness of 200 nm shows strong green emission. Further investigations by annealing bulk ZnO single crystals under different environments, i.e. Ar, Zn or C vapor, indicated that the complex defects based on Zn interstitials are responsible for the strong green emission. The existence of complex defects was confirmed by electron spin resonance (ESR) and low temperature photoluminescence (PL) measurement.

  9. Gas Sensors Based on Coated and Doped Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Li, Jing; Meyyappan, Meyya

    2008-01-01

    Efforts are underway to develop inexpensive, low-power electronic sensors, based on single-walled carbon nanotubes (SWCNTs), for measuring part-per-million and part-per-billion of selected gases (small molecules) at room temperature. Chemically unmodified SWCNTs are mostly unresponsive to typical gases that one might wish to detect. However, the electrical resistances of SWCNTs can be made to vary with concentrations of gases of interest by coating or doping the SWCNTs with suitable materials. Accordingly, the basic idea of the present development efforts is to incorporate thus-treated SWCNTs into electronic devices that measure their electrical resistances.

  10. Sub-ambient carbon dioxide adsorption properties of nitrogen doped graphene

    SciTech Connect

    Tamilarasan, P.; Ramaprabhu, Sundara

    2015-04-14

    Carbon dioxide adsorption on carbon surface can be enhanced by doping the surface with heterogeneous atoms, which can increase local surface affinity. This study presents the carbon dioxide adsorption properties of nitrogen doped graphene at low pressures (<100 kPa). Graphene was exposed to nitrogen plasma, which dopes nitrogen atoms into carbon hexagonal lattice, mainly in pyridinic and pyrrolic forms. It is found that nitrogen doping significantly improves the CO{sub 2} adsorption capacity at all temperatures, due to the enrichment of local Lewis basic sites. In general, isotherm and thermodynamic parameters suggest that doped nitrogen sites have nearly same adsorption energy of surface defects and residual functional groups. The isosteric heat of adsorption remains in physisorption range, which falls with surface coverage, suggesting the distribution of magnitude of adsorption energy. The absolute values of isosteric heat and entropy of adsorption are slightly increased upon nitrogen doping.

  11. Theory of nitrogen doping of carbon nanoribbons: Edge effects

    DOE PAGES

    Jiang, Jie; Turnbull, Joseph; Lu, Wenchang; ...

    2012-01-01

    Nitrogen doping of a carbon nanoribbon is profoundly affected by its one-dimensional character, symmetry, and interaction with edge states. Using state-of-the-art ab initio calculations, including hybrid exact-exchange density functional theory, we find that, for N-doped zigzag ribbons, the electronic properties are strongly dependent upon sublattice effects due to the non-equivalence of the two sublattices. For armchair ribbons, N-doping effects are different depending upon the ribbon family: for families 2 and 0, the N-induced levels are in the conduction band, while for family 1 the N levels are in the gap. In zigzag nanoribbons, nitrogen close to the edge is amore » deep center, while in armchair nanoribbons its behavior is close to an effective-mass-like donor with the ionization energy dependent on the value of the band gap. In chiral nanoribbons, we find strong dependence of the impurity level and formation energy upon the edge position of the dopant, while such site-specificity is not manifested in the magnitude of the magnetization.« less

  12. Delta-Doped High Purity Silicon UV-NIR CCDs with High QE and Low Dark Current

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael; Blacksberg, Jordana; Nikzad, Shouleh; Elliott, S. Tom; Holland, Steve; Bebek, Chris; Scowen, Paul; Veach, Todd

    2006-01-01

    Delta doping process was developed on p-channel CCDs for MIDEX-Orion and JDEM/SNAP and was applied to large format (2k x4k) CCDs. Delta doping is applied to fully-fabricated CCDs (complete with Al metallization). High QE and low dark current is demonstrated with delta doped p-channel CCDs. In-house AR coating is demonstrated. Advantages include: Delta doping enables high QE and stability across the entire spectral range attainable with silicon. Delta doping is a low temperature process and is compatible with fully-fabricated detector arrays. Same base device for Orion two channels. High radiation tolerance and no thinning requirements of high purity p-channel. CCDs are additional advantages.

  13. Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides.

    PubMed

    Zhu, Shiyang; Fang, Q; Yu, M B; Lo, G Q; Kwong, D L

    2009-11-09

    Polycrystalline silicon (polySi) wire waveguides with width ranging from 200 to 500 nm are fabricated by solid-phase crystallization (SPC) of deposited amorphous silicon (a-Si) on SiO(2) at a maximum temperature of 1000 degrees C. The propagation loss at 1550 nm decreases from 13.0 to 9.8 dB/cm with the waveguide width shrinking from 500 to 300 nm while the 200-nm-wide waveguides exhibit quite large loss (>70 dB/cm) mainly due to the relatively rough sidewall of waveguides induced by the polySi dry etch. By modifying the process sequence, i.e., first patterning the a-Si layer into waveguides by dry etch and then SPC, the sidewall roughness is significantly improved but the polySi crystallinity is degraded, leading to 13.9 dB/cm loss in the 200-nm-wide waveguides while larger losses in the wider waveguides. Phosphorus implantation causes an additional loss in the polySi waveguides. The doping-induced optical loss increases relatively slowly with the phosphorus concentration increasing up to 1 x 10(18) cm(-3), whereas the 5 x 10(18) cm(-3) doped waveguides exhibit large loss due to the dominant free carrier absorption. For all undoped polySi waveguides, further 1-2 dB/cm loss reduction is obtained by a standard forming gas (10%H(2) + 90%N(2)) annealing owing to the hydrogen passivation of Si dangling bonds present in polySi waveguides, achieving the lowest loss of 7.9 dB/cm in the 300-nm-wide polySi waveguides. However, for the phosphorus doped polySi waveguides, the propagation loss is slightly increased by the forming gas annealing.

  14. A novel ultra steep dynamically reconfigurable electrostatically doped silicon nanowire Schottky Barrier FET

    NASA Astrophysics Data System (ADS)

    Singh, Sangeeta; Sinha, Ruchir; Kondekar, P. N.

    2016-05-01

    In this paper, an ultra steep, symmetric and dynamically configurable, electrostatically doped silicon nanowire Schottky FET (E-SiNW-SB-FET) based on dopant-free technology is investigated. It achieves the ultra steep sub-threshold slope (SS) due to the cumulative effect of weak impact-ionization induced positive feedback and electrostatic modulation of Schottky barrier heights at both source and drain terminals. It consists of axial nanowire heterostructure (silicide-intrinsic silicon-silicide) with three independent all-around gates, two gates are polarity control gates for dynamically reconfiguring the device polarity by modulating the effective Schottky barrier heights and a control gate switches the device ON and OFF. The most interesting features of the proposed structure are simplified fabrication process as the state-of-the-art for ion implantation and high thermal budget no more required for annealing. It is highly immune to process variations, doping control issues and random dopant fluctuations (RDF) and there are no mobility degradation issues related to high doping. A calibrated 3-D TCAD simulation results exhibit the SS of 2 mV/dec for n-type E-SiNW-SB-FET and 9 mV/dec for p-type E-SiNW-SB-FET for about five decades of current. Further, it resolves all the reliability related issues of IMOS as hot electron effects are no more limiting our device performance. It offers significant drive current of the order of 10-5-10-4 A and magnificently high ION/IOFF ratio of ∼108 along with the inherent advantages of symmetric device structure for its circuit realization.

  15. Silicon Oxycarbide/Carbon Nanohybrids with Tiny Silicon Oxycarbide Particles Embedded in Free Carbon Matrix Based on Photoactive Dental Methacrylates.

    PubMed

    Wang, Meimei; Xia, Yonggao; Wang, Xiaoyan; Xiao, Ying; Liu, Rui; Wu, Qiang; Qiu, Bao; Metwalli, Ezzeldin; Xia, Senlin; Yao, Yuan; Chen, Guoxin; Liu, Yan; Liu, Zhaoping; Meng, Jian-Qiang; Yang, Zhaohui; Sun, Ling-Dong; Yan, Chun-Hua; Müller-Buschbaum, Peter; Pan, Jing; Cheng, Ya-Jun

    2016-06-08

    A new facile scalable method has been developed to synthesize silicon oxycarbide (SiOC)/carbon nanohybrids using difunctional dental methacrylate monomers as solvent and carbon source and the silane coupling agent as the precursor for SiOC. The content (from 100% to 40% by mass) and structure (ratio of disordered carbon over ordered carbon) of the free carbon matrix have been systematically tuned by varying the mass ratio of methacryloxypropyltrimethoxysilane (MPTMS) over the total mass of the resin monomers from 0.0 to 6.0. Compared to the bare carbon anode, the introduction of MPTMS significantly improves the electrochemical performance as a lithium-ion battery anode. The initial and cycled discharge/charge capacities of the SiOC/C nanohybrid anodes reach maximum with the MPTMS ratio of 0.50, which displays very good rate performance as well. Detailed structures and electrochemical performance as lithium-ion battery anodes have been systematically investigated. The structure-property correlation and corresponding mechanism have been discussed.

  16. Metal-doped single-walled carbon nanotubes and production thereof

    DOEpatents

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  17. Preparation and characterization of silicone rubber/functionalized carbon nanotubes composites via in situ polymerization.

    PubMed

    Kim, Hun-Sik; Kwon, Soon-Min; Lee, Kwang Hee; Yoon, Jin-San; Jin, Hyoung-Joon

    2008-10-01

    The dispersion of the nanometer-sized multiwalled carbon nanotubes (MWCNTs) in a silicone matrix leads to a marked improvement in the properties of the silicone based composite. In this study, silicone rubber/MWCNTs nanocomposite was successfully prepared by functionalizing MWCNTs with silane compound. This allowed a homogeneous dispersion of functionalized MWCNTs in the silicone matrix. The morphology of functionalized MWCNTs was observed using transmission electron microscopy and scanning electron microscopy with energy dispersive spectrometer. The silicone rubber/functionalized MWCNTs (1 wt%) composites showed that the tensile strength and modulus of the composites improved dramatically by about 50% and 28%, respectively, compared with silicone rubber.

  18. Significant thermal conductivity reduction of silicon nanowire forests through discrete surface doping of germanium

    SciTech Connect

    Pan, Ying; Hong, Guo; Raja, Shyamprasad N.; Zimmermann, Severin; Poulikakos, Dimos; Tiwari, Manish K.

    2015-03-02

    Silicon nanowires (SiNWs) are promising materials for the realization of highly-efficient and cost effective thermoelectric devices. Reduction of the thermal conductivity of such materials is a necessary and viable pathway to achieve sufficiently high thermoelectric efficiencies, which are inversely proportional to the thermal conductivity. In this article, vertically aligned forests of SiNW and germanium (Ge)-doped SiNW with diameters around 100 nm have been fabricated, and their thermal conductivity has been measured. The results show that discrete surface doping of Ge on SiNW arrays can lead to 23% reduction in thermal conductivity at room temperature compared to uncoated SiNWs. Such reduction can be further enhanced to 44% following a thermal annealing step. By analyzing the binding energy changes of Ge-3d and Si-2p using X-ray photoelectron spectroscopy, we demonstrate that surface doped Ge interacts strongly with Si, enhancing phonon scattering at the Si-Ge interface as has also been shown in non-equilibrium molecular dynamics studies of single nanowires. Overall, our results suggest a viable pathway to improve the energy conversion efficiency of nanowire-forest thermoelectric nanomaterials.

  19. Bare and boron-doped cubic silicon carbide nanowires for electrochemical detection of nitrite sensitively

    PubMed Central

    Yang, Tao; Zhang, Liqin; Hou, Xinmei; Chen, Junhong; Chou, Kuo-Chih

    2016-01-01

    Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) were used to characterize SiC and boron-doped SiC NWs. As for the electrochemical behavior of both SiC NWs electrode, the cyclic voltammetric results show that both SiC electrodes exhibit wide potential window and excellent electrocatalytic activity toward nitrite oxidation. Differential pulse voltammetry (DPV) determination reveals that there exists a good linear relationship between the oxidation peak current and the concentration in the range of 50–15000 μmoL L−1 (cubic SiC NWs) and 5–8000 μmoL L−1 (B-doped cubic SiC NWs) with the detection limitation of 5 and 0.5 μmoL L−1 respectively. Compared with previously reported results, both as-prepared nitrite sensors exhibit wider linear response range with comparable high sensitivity, high stability and reproducibility. PMID:27109361

  20. Bare and boron-doped cubic silicon carbide nanowires for electrochemical detection of nitrite sensitively.

    PubMed

    Yang, Tao; Zhang, Liqin; Hou, Xinmei; Chen, Junhong; Chou, Kuo-Chih

    2016-04-25

    Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) were used to characterize SiC and boron-doped SiC NWs. As for the electrochemical behavior of both SiC NWs electrode, the cyclic voltammetric results show that both SiC electrodes exhibit wide potential window and excellent electrocatalytic activity toward nitrite oxidation. Differential pulse voltammetry (DPV) determination reveals that there exists a good linear relationship between the oxidation peak current and the concentration in the range of 50-15000 μmoL L(-1) (cubic SiC NWs) and 5-8000 μmoL L(-1) (B-doped cubic SiC NWs) with the detection limitation of 5 and 0.5 μmoL L(-1) respectively. Compared with previously reported results, both as-prepared nitrite sensors exhibit wider linear response range with comparable high sensitivity, high stability and reproducibility.

  1. Bare and boron-doped cubic silicon carbide nanowires for electrochemical detection of nitrite sensitively

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Zhang, Liqin; Hou, Xinmei; Chen, Junhong; Chou, Kuo-Chih

    2016-04-01

    Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) were used to characterize SiC and boron-doped SiC NWs. As for the electrochemical behavior of both SiC NWs electrode, the cyclic voltammetric results show that both SiC electrodes exhibit wide potential window and excellent electrocatalytic activity toward nitrite oxidation. Differential pulse voltammetry (DPV) determination reveals that there exists a good linear relationship between the oxidation peak current and the concentration in the range of 50-15000 μmoL L-1 (cubic SiC NWs) and 5-8000 μmoL L-1 (B-doped cubic SiC NWs) with the detection limitation of 5 and 0.5 μmoL L-1 respectively. Compared with previously reported results, both as-prepared nitrite sensors exhibit wider linear response range with comparable high sensitivity, high stability and reproducibility.

  2. Doped carbon-sulfur species nanocomposite cathode for Li--S batteries

    DOEpatents

    Wang, Donghai; Xu, Tianren; Song, Jiangxuan

    2015-12-29

    We report a heteroatom-doped carbon framework that acts both as conductive network and polysulfide immobilizer for lithium-sulfur cathodes. The doped carbon forms chemical bonding with elemental sulfur and/or sulfur compound. This can significantly inhibit the diffusion of lithium polysulfides in the electrolyte, leading to high capacity retention and high coulombic efficiency.

  3. Effect of silicon on the spheroidization of cementite in hypereutectoid high carbon chromium bearing steels

    NASA Astrophysics Data System (ADS)

    Kim, Kwan-Ho; Lee, Jae-Seung; Lee, Duk-Lak

    2010-12-01

    The effect of silicon on the spheroidization of cementite in hypereutectoid high carbon chromium bearing steels has been investigated on the basis of microstructural analysis and thermodynamic calculations. The results showed that an increase of silicon content in high carbon chromium bearing steels retards the spheoridization of cementite. The thermodynamic calculations revealed that the shrinkage of the austenite phase field in bearing steels with increasing silicon content gave rise to an increase of volume fraction of cementite at an annealing temperature, possibly resulting in incomplete spheroidization. Furthermore, due to the low solubility of silicon in cementite, an increase of silicon content can raise the activity or chemical potential of carbon atoms in austenite at the austenite/cementite interfaces. Consequently, the difference in chemical potential of carbon atoms at the interfaces would be reduced with increasing silicon content, causing a decrease of the driving force for their diffusion from cementite to austenite.

  4. DEVELOPMENT OF DOPED NANOPOROUS CARBONS FOR HYDROGEN STORAGE

    SciTech Connect

    Lueking, Angela D.; Li, Qixiu; Badding, John V.; Fonseca, Dania; Gutierrez, Humerto; Sakti, Apurba; Adu, Kofi; Schimmel, Michael

    2010-03-31

    Hydrogen storage materials based on the hydrogen spillover mechanism onto metal-doped nanoporous carbons are studied, in an effort to develop materials that store appreciable hydrogen at ambient temperatures and moderate pressures. We demonstrate that oxidation of the carbon surface can significantly increase the hydrogen uptake of these materials, primarily at low pressure. Trace water present in the system plays a role in the development of active sites, and may further be used as a strategy to increase uptake. Increased surface density of oxygen groups led to a significant enhancement of hydrogen spillover at pressures less than 100 milibar. At 300K, the hydrogen uptake was up to 1.1 wt. % at 100 mbar and increased to 1.4 wt. % at 20 bar. However, only 0.4 wt% of this was desorbable via a pressure reduction at room temperature, and the high lowpressure hydrogen uptake was found only when trace water was present during pretreatment. Although far from DOE hydrogen storage targets, storage at ambient temperature has significant practical advantages oner cryogenic physical adsorbents. The role of trace water in surface modification has significant implications for reproducibility in the field. High-pressure in situ characterization of ideal carbon surfaces in hydrogen suggests re-hybridization is not likely under conditions of practical interest. Advanced characterization is used to probe carbon-hydrogen-metal interactions in a number of systems and new carbon materials have been developed.

  5. Silicon clathrates and carbon analogs: high pressure synthesis, structure, and superconductivity.

    PubMed

    Yamanaka, Shoji

    2010-02-28

    Compounds with cage-like structures of elemental silicon and carbon are comparatively reviewed. Barium containing silicon clathrate compounds isomorphous with type I gas hydrates were prepared using high pressure and high temperature (HPHT) conditions, and found to become superconductors. The application of HPHT conditions to Zintl binary silicides have produced a number of silicon-rich cage-like structures including new clathrate structures; most of them are superconductors. Carbon analogs of silicon clathrates can be prepared by 3D polymerization of C(60) under HPHT conditions, which are new allotropes of carbon with expanded framework structures. The crystal chemistry and characteristic properties of some related compounds are also reviewed.

  6. The 11 micron Silicon Carbide Feature in Carbon Star Shells

    NASA Technical Reports Server (NTRS)

    Speck, A. K.; Barlow, M. J.; Skinner, C. J.

    1996-01-01

    Silicon carbide (SiC) is known to form in circumstellar shells around carbon stars. SiC can come in two basic types - hexagonal alpha-SiC or cubic beta-SiC. Laboratory studies have shown that both types of SiC exhibit an emission feature in the 11-11.5 micron region, the size and shape of the feature varying with type, size and shape of the SiC grains. Such a feature can be seen in the spectra of carbon stars. Silicon carbide grains have also been found in meteorites. The aim of the current work is to identity the type(s) of SiC found in circumstellar shells and how they might relate to meteoritic SiC samples. We have used the CGS3 spectrometer at the 3.8 m UKIRT to obtain 7.5-13.5 micron spectra of 31 definite or proposed carbon stars. After flux-calibration, each spectrum was fitted using a chi(exp 2)-minimisation routine equipped with the published laboratory optical constants of six different samples of small SiC particles, together with the ability to fit the underlying continuum using a range of grain emissivity laws. It was found that the majority of observed SiC emission features could only be fitted by alpha-SiC grains. The lack of beta-SiC is surprising, as this is the form most commonly found in meteorites. Included in the sample were four sources, all of which have been proposed to be carbon stars, that appear to show the SiC feature in absorption.

  7. Analysis and calculation of electronic properties and light absorption of defective sulfur-doped silicon and theoretical photoelectric conversion efficiency.

    PubMed

    Jiang, He; Chen, Changshui

    2015-04-23

    Most material properties can be traced to electronic structures. Black silicon produced from SF6 or sulfur powder via irradiation with femtosecond laser pulses displays decreased infrared absorption after annealing, with almost no corresponding change in visible light absorption. The high-intensity laser pulses destroy the original crystal structure, and the doping element changes the material performance. In this work, the structural and electronic properties of several sulfur-doped silicon systems are investigated using first principle calculations. Depending on the sulfur concentration (level of doping) and the behavior of the sulfur atoms in the silicon lattice, different states or an absence of states are exhibited, compared with the undoped system. Moreover, the visible-infrared light absorption intensities are structure specific. The results of our theoretical calculations show that the conversion efficiency of sulfur-doped silicon solar cells depends on the sulfur concentrations. Additionally, two types of defect configurations exhibit light absorption characteristics that differ from the other configurations. These two structures produce a rapid increase in the theoretical photoelectric conversion efficiency in the range of the specific chemical potential studied. By controlling the positions of the atomic sulfur and the sulfur concentration in the preparation process, an efficient photovoltaic (PV) material may be obtainable.

  8. Controlled release of alendronate from nitrogen-doped mesoporous carbon

    SciTech Connect

    Saha, Dipendu; Spurri, Amanda; Chen, Jihua; Hensley, Dale K.

    2016-04-13

    With this study, we have synthesized a nitrogen doped mesoporous carbon with the BET surface area of 1066 m2/g, total pore volume 0.6 cm3/g and nitrogen content of 0.5%. Total alendronate adsorption in this carbon was ~5%. The release experiments were designed in four different media with sequential pH values of 1.2, 4.5, 6.8 and 7.4 for 3, 1, 3 and 5 h, respectively and at 37 °C to imitate the physiological conditions of stomach, duodenum, small intestine and colon, respectively. Release of the drug demonstrated a controlled fashion; only 20% of the drug was released in the media with pH = 1.2, whereas 64% of the drug was released in pH = 7.4. This is in contrary to pure alendronate that was completely dissolved within 30 min in the first release media (pH = 1.2) only. The relatively larger uptake of alendronate in this carbon and its sustained fashion of release can be attributed to the hydrogen bonding between the drug and the nitrogen functionalities on carbon surface. Based on this result, it can be inferred that this formulation may lower the side effects of oral delivery of alendronate.

  9. Controlled release of alendronate from nitrogen-doped mesoporous carbon

    DOE PAGES

    Saha, Dipendu; Spurri, Amanda; Chen, Jihua; ...

    2016-04-13

    With this study, we have synthesized a nitrogen doped mesoporous carbon with the BET surface area of 1066 m2/g, total pore volume 0.6 cm3/g and nitrogen content of 0.5%. Total alendronate adsorption in this carbon was ~5%. The release experiments were designed in four different media with sequential pH values of 1.2, 4.5, 6.8 and 7.4 for 3, 1, 3 and 5 h, respectively and at 37 °C to imitate the physiological conditions of stomach, duodenum, small intestine and colon, respectively. Release of the drug demonstrated a controlled fashion; only 20% of the drug was released in the media withmore » pH = 1.2, whereas 64% of the drug was released in pH = 7.4. This is in contrary to pure alendronate that was completely dissolved within 30 min in the first release media (pH = 1.2) only. The relatively larger uptake of alendronate in this carbon and its sustained fashion of release can be attributed to the hydrogen bonding between the drug and the nitrogen functionalities on carbon surface. Based on this result, it can be inferred that this formulation may lower the side effects of oral delivery of alendronate.« less

  10. Empirical determination of the energy band gap narrowing in p{sup +} silicon heavily doped with boron

    SciTech Connect

    Yan, Di Cuevas, Andres

    2014-11-21

    In the analysis of highly doped silicon, energy band gap narrowing (BGN) and degeneracy effects may be accounted for separately, as a net BGN in conjunction with Fermi-Dirac statistics, or lumped together in an apparent BGN used with Boltzmann statistics. This paper presents an experimental study of silicon highly doped with boron, with the aim of evaluating the applicability of previously reported BGN models. Different boron diffusions covering a broad range of dopant densities were prepared, and their characteristic recombination current parameters J{sub 0} were measured using a contactless photoconductance technique. The BGN was subsequently extracted by matching theoretical simulations of carrier transport and recombination in each of the boron diffused regions and the measured J{sub 0} values. An evaluation of two different minority carrier mobility models indicates that their impact on the extraction of the BGN is relatively small. After considering possible uncertainties, it can be concluded that the BGN is slightly larger in p{sup +} silicon than in n{sup +} silicon, in qualitative agreement with theoretical predictions by Schenk. Nevertheless, in quantitative terms that theoretical model is found to slightly underestimate the BGN in p{sup +} silicon. With the two different parameterizations derived in this paper for the BGN in p{sup +} silicon, both statistical approaches, Boltzmann and Fermi-Dirac, provide a good agreement with the experimental data.

  11. The composite capacitive behaviors of the N and S dual doped ordered mesoporous carbon with ultrahigh doping level

    NASA Astrophysics Data System (ADS)

    Zhang, Deyi; Lei, Longyan; Shang, Yonghua; Wang, Kunjie; Wang, Yi

    2016-01-01

    Heteroatoms doping provides a promising strategy for improving the energy density of supercapacitors based on the carbon electrodes. In this paper, we present a N and S dual doped ordered mesoporous carbon with ultrahigh doping level using dimethylglyoxime as pristine precursor. The N doping content of the reported materials varies from 6.6 to 15.6 at.% dependent on the carbonization temperature, and the S doping content varies from 0.46 to 1.01 at.%. Due to the ultrahigh heteroatoms doping content, the reported materials exhibit pronounced pseudo-capacitance. Meanwhile, the reported materials exhibit high surface areas (640⿿869 m2 g⿿1), large pore volume (0.71⿿1.08 cm2 g⿿1) and ordered pore structure. The outstanding textual properties endow the reported materials excellent electrical double-layer capacitance (EDLC). By effectively combining the pseudo-capacitance with EDLC, the reported materials exhibit a surprising energy storage/relax capacity with the highest specific capacitance of 565 F g⿿1, which value is 3.3 times higher than that of pristine CMK-3, and can compete against some conventional pseudo-capacitance materials.

  12. Tunable Band Gaps and Excitons in Doped Semiconducting Carbon Nanotubes Made Possible by Acoustic Plasmons

    NASA Astrophysics Data System (ADS)

    Spataru, Catalin D.; Léonard, François

    2010-04-01

    Doping of semiconductors is essential in modern electronic and photonic devices. While doping is well understood in bulk semiconductors, the advent of carbon nanotubes and nanowires for nanoelectronic and nanophotonic applications raises some key questions about the role and impact of doping at low dimensionality. Here we show that for semiconducting carbon nanotubes, band gaps and exciton binding energies can be dramatically reduced upon experimentally relevant doping, and can be tuned gradually over a broad range of energies in contrast with higher dimensional systems. The latter feature is made possible by a novel mechanism involving strong dynamical screening effects mediated by acoustic plasmons.

  13. Zero infrared reflectance anomaly in doped silicon lamellar gratings. I. From antireflection to total absorption

    NASA Astrophysics Data System (ADS)

    Auslender, M.; Hava, S.

    1995-12-01

    Zero-reflectance phenomenon for a binary lamellar grating on n-Si substrate irradiated by normally incident TE polarized plane electromagnetic wave of wavelength 10.6 μm is studied. The treatment is performed in the strong diffraction regime, where the structural dimensions and the wavelength are of the same order of magnitude, using data on the IR dielectric function of bulk doped silicon and a version of rigorous coupled-wave analysis. The evolution of normal reflectance zeros with increasing electron concentration from dielecric to metallic-like n-Si is traced. It is shown that the groove height undergoes sharp increase and the period shrinks when plasma wavelength becomes equal to the radiation wavelength. This marks the transition from the antireflection to the total absorption regime where most of incident power is absorbed in the grating region. The cavity-resonance origin of total absorption and satellite peaks in the spectral response are discussed.

  14. Erbium-doped spiral amplifiers with 20 dB of net gain on silicon.

    PubMed

    Vázquez-Córdova, Sergio A; Dijkstra, Meindert; Bernhardi, Edward H; Ay, Feridun; Wörhoff, Kerstin; Herek, Jennifer L; García-Blanco, Sonia M; Pollnau, Markus

    2014-10-20

    Spiral-waveguide amplifiers in erbium-doped aluminum oxide on a silicon wafer are fabricated and characterized. Spirals of several lengths and four different erbium concentrations are studied experimentally and theoretically. A maximum internal net gain of 20 dB in the small-signal-gain regime is measured at the peak emission wavelength of 1532 nm for two sample configurations with waveguide lengths of 12.9 cm and 24.4 cm and concentrations of 1.92 × 10(20) cm(-3) and 0.95 × 10(20) cm(-3), respectively. The noise figures of these samples are reported. Gain saturation as a result of increasing signal power and the temperature dependence of gain are studied.

  15. Spin relaxation through lateral spin transport in heavily doped n -type silicon

    NASA Astrophysics Data System (ADS)

    Ishikawa, M.; Oka, T.; Fujita, Y.; Sugiyama, H.; Saito, Y.; Hamaya, K.

    2017-03-01

    We experimentally study temperature-dependent spin relaxation including lateral spin diffusion in heavily doped n -type silicon (n+-Si ) layers by measuring nonlocal magnetoresistance in small-sized CoFe/MgO/Si lateral spin-valve (LSV) devices. Even at room temperature, we observe large spin signals, 50-fold the magnitude of those in previous works on n+-Si . By measuring spin signals in LSVs with various center-to-center distances between contacts, we reliably evaluate the temperature-dependent spin diffusion length (λSi) and spin lifetime (τSi). We find that the temperature dependence of τSi is affected by that of the diffusion constant in the n+-Si layers, meaning that it is important to understand the temperature dependence of the channel mobility. A possible origin of the temperature dependence of τSi is discussed in terms of the recent theories by Dery and co-workers.

  16. The formation of light emitting cerium silicates in cerium-doped silicon oxides

    SciTech Connect

    Li Jing; Zalloum, Othman; Roschuk, Tyler; Heng Chenglin; Wojcik, Jacek; Mascher, Peter

    2009-01-05

    Cerium-doped silicon oxides with cerium concentrations of up to 0.9 at. % were deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition. Bright cerium related photoluminescence, easily seen even under room lighting conditions, was observed from the films and found to be sensitive to film composition and annealing temperature. The film containing 0.9 at. % Ce subjected to anneal in N{sub 2} at 1200 deg. C for 3 h showed the most intense cerium-related emission, easily visible under bright room lighting conditions. This is attributed to the formation of cerium silicate [Ce{sub 2}Si{sub 2}O{sub 7} or Ce{sub 4.667} (SiO{sub 4}){sub 3}O], the presence of which was confirmed by high resolution transmission electron microscopy.

  17. Spin-on-doping for output power improvement of silicon nanowire array based thermoelectric power generators

    SciTech Connect

    Xu, B. Fobelets, K.

    2014-06-07

    The output power of a silicon nanowire array (NWA)-bulk thermoelectric power generator (TEG) with Cu contacts is improved by spin-on-doping (SOD). The Si NWAs used in this work are fabricated via metal assisted chemical etching (MACE) of 0.01–0.02 Ω cm resistivity n- and p-type bulk, converting ~4% of the bulk thickness into NWs. The MACE process is adapted to ensure crystalline NWs. Current-voltage and Seebeck voltage-temperature measurements show that while SOD mainly influences the contact resistance in bulk, it influences both contact resistance and power factor in NWA-bulk based TEGs. According to our experiments, using Si NWAs in combination with SOD increases the output power by an order of 3 under the same heating power due to an increased power factor, decreased thermal conductivity of the NWA and reduced Si-Cu contact resistance.

  18. A hybrid density functional study of silicon and phosphorus doped hexagonal boron nitride monolayer

    NASA Astrophysics Data System (ADS)

    Mapasha, R. E.; Igumbor, E.; Chetty, N.

    2016-10-01

    We present a hybrid density functional study of silicon (Si) and phosphorus (P) doped hexagonal boron nitride (h-BN). The local geometry, electronic structure and thermodynamic stability of Si B , Si N , P B and P N are examined using hybrid Heyd-Scuseria- Ernzerhof (HSE) functional. The defect induced buckling and the local bond distances around the defect are sensitive to charge state modulation q = -2, -1, 0, +1 and +2. The +1 charge state is found to be the most energetically stable state and significantly reduces the buckling. Based on the charge state thermodynamic transition levels, we noted that the Si N , Si N and P B defects are too deep to be ionized, and can alter the optical properties of h-BN material.

  19. Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries

    PubMed Central

    Gao, Jianzhi; He, Deyan

    2017-01-01

    Heavy-phosphorus-doped silicon anodes were fabricated on CuO nanorods for application in high power lithium-ion batteries. Since the conductivity of lithiated CuO is significantly better than that of CuO, after the first discharge, the voltage cut-off window was then set to the range covering only the discharge–charge range of Si. Thus, the CuO core was in situ lithiated and acts merely as the electronic conductor in the following cycles. The Si anode presented herein exhibited a capacity of 990 mAh/g at the rate of 9 A/g after 100 cycles. The anode also presented a stable rate performance even at a current density as high as 20 A/g. PMID:28243560

  20. Modeling and simulation of boron-doped nanocrystalline silicon carbide thin film by a field theory.

    PubMed

    Xiong, Liming; Chen, Youping; Lee, James D

    2009-02-01

    This paper presents the application of a multiscale field theory in modeling and simulation of boron-doped nanocrystalline silicon carbide (B-SiC). The multiscale field theory was briefly introduced. Based on the field theory, numerical simulations show that intergranular glassy amorphous films (IGFs) and nano-sized pores exist in triple junctions of the grains for nanocrystalline B-SiC. Residual tensile stress in the SiC grains and compressive stress on the grain boundaries (GBs) were observed. Under tensile loading, it has been found that mechanical response of 5 wt% boron-SiC exhibits five characteristic regimes. Deformation mechanism at atomic scale has been revealed. Tensile strength and Young's modulus of nanocrystalline SiC were accurately reproduced.

  1. Electronic and magnetic properties of yttrium-doped silicon carbide nanotubes: Density functional theory investigations

    SciTech Connect

    Khaira, Jobanpreet S.; Jain, Richa N.; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2015-06-24

    The electronic structure of yttrium-doped Silicon Carbide Nanotubes has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom is bonded strongly on the surface of the nanotube with a binding energy of 2.37 eV and prefers to stay on the hollow site at a distance of around 2.25 Å from the tube. The semi-conducting nanotube with chirality (4, 4) becomes half mettalic with a magnetic moment of 1.0 µ{sub B} due to influence of Y atom on the surface. There is strong hybridization between d orbital of Y with p orbital of Si and C causing a charge transfer from d orbital of the Y atom to the tube. The Fermi level is shifted towards higher energy with finite Density of States for only upspin channel making the system half metallic and magnetic which may have application in spintronic devices.

  2. Nano-structured composite of Si/(S-doped-carbon nanowire network) as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shao, Dan; Tang, Daoping; Yang, Jianwen; Li, Yanwei; Zhang, Lingzhi

    2015-11-01

    Novel nanostructured silicon composites, Si/Poly(3,4-ethylenedioxythiophene) nanowire network (Si/PNW) and Si/(S-doped-carbon nanowire network) (Si/S-CNW), are prepared by a soft-template polymerization of 3,4-ethylenedioxythiophene (EDOT) using sodium dodecyl sulfate (SDS) as surfactant with the presence of Si nanoparticles and a subsequent carbonization of Si/PNW, respectively. The presence of Si nanoparticles in the soft-template polymerization of EDOT plays a critical role in the formation of PEDOT nanowire network instead of 1D nanowire. After the carbonization of PEDOT, the S-doped-carbon nanowire network matrix shows higher electrical conductivity than PNW counterpart, which facilitates to construct robust conductive bridges between Si nanoparticles and provide large electrode/electrolyte interfaces for rapid charge transfer reactions. Thus, Si/S-CNW composite exhibits excellent cycling stability and rate capability as anode material, retaining a specific capacity of 820 mAh g-1 after 400 cycles with a very small capacity fade of 0.09% per cycle.

  3. Improvement in passivation quality and open-circuit voltage in silicon heterojunction solar cells by the catalytic doping of phosphorus atoms

    NASA Astrophysics Data System (ADS)

    Tsuzaki, Shogo; Ohdaira, Keisuke; Oikawa, Takafumi; Koyama, Koichi; Matsumura, Hideki

    2015-07-01

    We apply phosphorus (P) doping to amorphous silicon (a-Si)/crystalline silicon (c-Si) heterojunction solar cells realized by exposing c-Si to P-related radicals generated by the catalytic cracking of PH3 molecules (Cat-doping). An ultrathin n+-layer formed by P Cat-doping acts to improve the effective minority carrier lifetime (τeff) and implied open-circuit voltage (implied Voc) owing to its field effect by which minority holes are sent back from an a-Si/c-Si interface. An a-Si/c-Si heterojunction solar cell with a P Cat-doped layer shows better solar cell performance, particularly in Voc, than the cell without P Cat-doping. This result demonstrates the feasibility of applying Cat-doping to a-Si/c-Si heterojunction solar cells, owing to the advantage of the low-temperature (<200 °C) process of Cat-doping.

  4. Mechanical Properties of Silicone Rubber Acoustic Lens Material Doped with Fine Zinc Oxide Powders for Ultrasonic Medical Probe

    NASA Astrophysics Data System (ADS)

    Yamamoto, Noriko; Yohachi; Yamashita; Itsumi, Kazuhiro

    2009-07-01

    The mechanical properties of high-temperature-vulcanization silicone (Q) rubber doped with zinc oxide (ZnO) fine powders have been investigated to develop an acoustic lens material with high reliability. The ZnO-doped Q rubber with an acoustic impedance (Z) of 1.46×106 kg·m-2·s-1 showed a tear strength of 43 N/mm and an elongation of 560%. These mechanical property values were about 3 times higher than those of conventional acoustic Q lens materials. The ZnO-doped Q rubbers also showed a lower abrasion loss. These superior characteristics are attributable to the microstructure with fewer origins of breaks; few pores and spherical fine ZnO powder. The high mechanical properties of ZnO-doped Q rubber acoustic lenses enable higher performance during long-life and safe operation during diagnosis using medical array probe applications.

  5. Temperature- and doping-concentration-dependent characteristics of junctionless gate-all-around polycrystalline-silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tso, Chia-Tsung; Liu, Tung-Yu; Pan, Fu-Ming; Sheu, Jeng-Tzong

    2017-04-01

    The temperature effects of both gate-all-around polycrystalline silicon nanowire (GAA poly-Si NW) junctionless (JL) and inversion mode (IM) transistor devices at various temperatures (77–410 K) were investigated. The electrical characteristics of these devices, such as subthreshold swing (SS), threshold voltage (V th), and drain-induced barrier lowering (DIBL), were also characterized and compared in this study. Moreover, JL devices with different doping concentrations at various temperatures were also discussed. Both V th and I on showed significant doping concentration dependences for JL devices with doping concentrations of 1 × 1019 and 5 × 1019 cm‑3. However, the electrical characteristics of JL devices showed less thermal sensitivity when the doping concentration reached 1020 cm‑3.

  6. Reactive melt infiltration of silicon-molybdenum alloys into microporous carbon preforms

    NASA Technical Reports Server (NTRS)

    Singh, M.; Behrendt, D. R.

    1995-01-01

    Investigations on the reactive melt infiltration of silicon-1.7 and 3.2 at.% molybdenum alloys into microporous carbon preforms have been carried out by modeling, differential thermal analysis (DTA), and melt infiltration experiments. These results indicate that the pore volume fraction of the carbon preform is a very important parameter in determining the final composition of the reaction-formed silicon carbide and the secondary phases. Various undesirable melt infiltration results, e.g. choking-off, specimen cracking, silicon veins, and lake formation, and their correlation with inadequate preform properties are presented. The liquid silicon-carbon reaction exotherm temperatures are influenced by the pore and carbon particle size of the preform and the compositions of infiltrants. Room temperature flexural strength and fracture toughness of materials made by the silicon-3.2 at.% molybdenum alloy infiltration of medium pore size preforms are also discussed.

  7. Laser induced crystallization of hydrogenated amorphous silicon-carbon alloys

    NASA Astrophysics Data System (ADS)

    Summonte, C.; Rizzoli, R.; Servidori, M.; Milita, S.; Nicoletti, S.; Bianconi, M.; Desalvo, A.; Iencinella, D.

    2004-10-01

    Laser induced crystallization of hydrogenated amorphous silicon carbon alloy (a-Si1-xCx:H) films has been investigated by means of synchrotron x-ray diffraction. The a-Si1-xCx:H films were deposited on (100) silicon wafers by very high frequency plasma enhanced chemical vapor deposition at 100MHz in hydrogen diluted silane-methane gas mixtures. The substrate was kept at 250°C or 350°C and the stoichiometry was changed from x =0.20 to 0.63. The structural characterization of the as-grown films has been carried out by Rutherford backscattering (hydrogen concentration) and infrared spectroscopy (film ordering). The films were irradiated by a KrF excimer laser (248nm ) with varying energy density and number of pulses. After irradiation, the formation of SiC crystallites has been revealed by synchrotron x-ray diffraction. Besides SiC nanocrystals, the formation of crystalline Si and graphite is observed for under- (x <0.50) and over-stoichiometric (x>0.50) samples, respectively. The essential role played by hydrogen concentration and hydrogen bonding configuration in determining the melting threshold and the consequent SiC grain formation is highlighted.

  8. Oxidation Behavior of Carbon Fiber Reinforced Silicon Carbide Composites

    NASA Technical Reports Server (NTRS)

    Valentin, Victor M.

    1995-01-01

    Carbon fiber reinforced Silicon Carbide (C-SiC) composites offer high strength at high temperatures and good oxidation resistance. However, these composites present some matrix microcracks which allow the path of oxygen to the fiber. The aim of this research was to study the effectiveness of a new Silicon Carbide (SiC) coating developed by DUPONT-LANXIDE to enhance the oxidation resistance of C-SiC composites. A thermogravimetric analysis was used to determine the oxidation rate of the samples at different temperatures and pressures. The Dupont coat proved to be a good protection for the SiC matrix at temperatures lower than 1240 C at low and high pressures. On the other hand, at temperatures above 1340 C the Dupont coat did not seem to give good protection to the composite fiber and matrix. Even though some results of the tests have been discussed, because of time restraints, only a small portion of the desired tests could be completed. Therefore, no major conclusions or results about the effectiveness of the coat are available at this time.

  9. Opacity spectra of silicon and carbon in ICF plasmas

    NASA Astrophysics Data System (ADS)

    Benredjem, D.; Calisti, A.; Ferri, S.; Gilleron, F.; Mondet, G.; Pain, J.-C.

    2017-03-01

    The knowledge of opacity is very important when one investigates the radiative properties of ICF and astrophysical plasmas. Germanium and silicon are good candidates as dopants in the ablator of some ICF schemes (LMJ in France, NIF at Livermore). In this work we calculate the opacity spectra of silicon and carbon mixtures. Two competitive methods were used. The first one is based on a detailed line calculation in which the atomic database is provided by the MCDF code. A lineshape code based on a fast algorithm was then adapted to the calculation of opacity profiles. All major line broadening mechanisms, including Zeeman splitting and Stark effect, are taken into account. This approach provides accurate opacity spectra but becomes rapidly prohibitive when the number of lines is large. To account for systems involving many ionic stages and thousands of lines, a second approach combines detailed line calculations and statistical calculations. This approach necessitates much smaller calculation times than the first one and is then more appropriate for extensive calculations. The monochromatic opacity and the Rosseland and Planck mean opacities are calculated for relevant densities and temperatures.

  10. Negative Magnetoresistance in Silicon Doped AlAs-GaAs Short Period Superlattices

    NASA Astrophysics Data System (ADS)

    Gougam, A. B.; Sicart, J.; Robert, J. L.

    1997-01-01

    We report the negative magnetoresistance effect observed in GaAs-AlAs short period superlattices doped selectively in GaAs or in AlAs or doped uniformly. This doping technique introduces deep donor states with different thermal activation energies. Consequently, the low temperature electron concentration is different in samples doped at the same silicon concentration. We find the magnetic correction to the conductivity increasing with the free carrier density. The low magnetic field data are interpreted in the framework of a weak localization model derived from the Kawabata theory in 3D anisotropic systems. The theory of effective mass in superlattices is applied and we find that the inelastic scattering time does not depend on the doping modulation. Nous présentons des résultats de magnétorésistance négative obtenus avec des superréseaux à courte période de GaAs-AlAs dopés au silicium sélectivement dans GaAs ou AlAs et uniformément dopés. Ce type de dopage permet d'introduire des niveaux donneurs d'énergie d'activation thermique différents. Ceci permet d'obtenir à basse température des concentrations d'électrons différentes à partir d'une concentration initiale de dopant identique pour tous les échantillons. Nous mettons ainsi en évidence une correction magnétique à la conductivité qui augmente avec la densité de porteurs libres. Les mesures à faible champ sont interprétées en termes de faible localisation à partir du modèle de Kawabata 3D dans lequel l'anisotropie de masse effective du superréseau est introduite. Nous trouvons que le temps de diffusion inélastique ne dépend pas de la modulation de dopage.

  11. Methods of Attaching or Grafting Carbon Nanotubes to Silicon Surfaces and Composite Structures Derived Therefrom

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Chen, Bo (Inventor); Flatt, Austen K. (Inventor); Stewart, Michael P. (Inventor); Dyke, Christopher A. (Inventor); Maya, Francisco (Inventor)

    2012-01-01

    The present invention is directed toward methods of attaching or grafting carbon nanotubes (CNTs) to silicon surfaces. In some embodiments, such attaching or grafting occurs via functional groups on either or both of the CNTs and silicon surface. In some embodiments, the methods of the present invention include: (1) reacting a silicon surface with a functionalizing agent (such as oligo(phenylene ethynylene)) to form a functionalized silicon surface; (2) dispersing a quantity of CNTs in a solvent to form dispersed CNTs; and (3) reacting the functionalized silicon surface with the dispersed CNTs. The present invention is also directed to the novel compositions produced by such methods.

  12. Oxidative unzipping of stacked nitrogen-doped carbon nanotube cups.

    PubMed

    Dong, Haifeng; Zhao, Yong; Tang, Yifan; Burkert, Seth C; Star, Alexander

    2015-05-27

    We demonstrate a facile synthesis of different nanostructures by oxidative unzipping of stacked nitrogen-doped carbon nanotube cups (NCNCs). Depending on the initial number of stacked-cup segments, this method can yield graphene nanosheets (GNSs) or hybrid nanostructures comprised of graphene nanoribbons partially unzipped from a central nanotube core. Due to the stacked-cup structure of as-synthesized NCNCs, preventing complete exposure of graphitic planes, the unzipping mechanism is hindered, resulting in incomplete unzipping; however, individual, separated NCNCs are completely unzipped, yielding individual nitrogen-doped GNSs. Graphene-based materials have been employed as electrocatalysts for many important chemical reactions, and it has been proposed that increasing the reactive edges results in more efficient electrocatalysis. In this paper, we apply these graphene conjugates as electrocatalysts for the oxygen reduction reaction (ORR) to determine how the increase in reactive edges affects the electrocatalytic activity. This investigation introduces a new method for the improvement of ORR electrocatalysts by using nitrogen dopants more effectively, allowing for enhanced ORR performance with lower overall nitrogen content. Additionally, the GNSs were functionalized with gold nanoparticles (GNPs), resulting in a GNS/GNP hybrid, which shows efficient surface-enhanced Raman scattering and expands the scope of its application in advanced device fabrication and biosensing.

  13. Silicone dielectric elastomers filled with carbon nanotubes and actuator

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Liu, Liwu; Deng, Gang; Sun, Shouhua; Liu, Yanju; Leng, Jinsong

    2009-03-01

    Dielectric elastomers (DEs) are one particular type of electroactive polymers. The excellent features of merit possessed by dielectric elastomers make them the most performing materials which can be applied in many domains: biomimetics, aerospace, mechanics, medicals, etc. In order to maximize actuator performance, the dielectric elastomer actuators should have a high dielectric constant and high dielectric breakdown strength. In this paper, multi-walled carbon nanotube (MWNT) is used to develop a particulate composite based on silicone elastomer matrix, with dielectric permittivity improved. And the composite is designed to a new configuration of dielectric elastomer actuator to show electrically activated linear contractions. Prototype samples of this folded actuator, along with the fabrication and analysis is discussed here.

  14. Carbon nanostructures on silicon substrates suitable for nanolithography

    SciTech Connect

    Abdi, Y.; Mohajerzadeh, S.; Hoseinzadegan, H.; Koohsorkhi, J.

    2006-01-30

    We report the application of vertically grown carbon nanotubes (CNTs) for submicron and nanolithography. The growth of CNTs is performed on silicon substrates using a nickel-seeded plasma-enhanced chemical vapor deposition method at a temperature of 650 deg. C and with a mixture of C{sub 2}H{sub 2} and H{sub 2}. The grown CNTs are encapsulated by a titanium-dioxide film and then mechanically polished to expose the buried nanotubes, and a plasma ashing step finalizes the process. The emission of electrons from the encapsulated nanotubes is used to write patterns on a resist-coated substrate placed opposite to the main CNT holding one. Scanning electron microscope has been used to investigate the nanotubes and the formation of nano-metric lines. Also a novel approach is presented to create isolated nanotubes from a previously patterned cluster growth.

  15. Fabrication and Doping Methods for Silicon Nano- and Micropillar Arrays for Solar-Cell Applications: A Review.

    PubMed

    Elbersen, Rick; Vijselaar, Wouter; Tiggelaar, Roald M; Gardeniers, Han; Huskens, Jurriaan

    2015-11-18

    Silicon is one of the main components of commercial solar cells and is used in many other solar-light-harvesting devices. The overall efficiency of these devices can be increased by the use of structured surfaces that contain nanometer- to micrometer-sized pillars with radial p/n junctions. High densities of such structures greatly enhance the light-absorbing properties of the device, whereas the 3D p/n junction geometry shortens the diffusion length of minority carriers and diminishes recombination. Due to the vast silicon nano- and microfabrication toolbox that exists nowadays, many versatile methods for the preparation of such highly structured samples are available. Furthermore, the formation of p/n junctions on structured surfaces is possible by a variety of doping techniques, in large part transferred from microelectronic circuit technology. The right choice of doping method, to achieve good control of junction depth and doping level, can contribute to an improvement of the overall efficiency that can be obtained in devices for energy applications. A review of the state-of-the-art of the fabrication and doping of silicon micro and nanopillars is presented here, as well as of the analysis of the properties and geometry of thus-formed 3D-structured p/n junctions.

  16. Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires.

    PubMed

    Balasundaram, Karthik; Sadhu, Jyothi S; Shin, Jae Cheol; Azeredo, Bruno; Chanda, Debashis; Malik, Mohammad; Hsu, Keng; Rogers, John A; Ferreira, Placid; Sinha, Sanjiv; Li, Xiuling

    2012-08-03

    We report the fabrication of degenerately doped silicon (Si) nanowires of different aspect ratios using a simple, low-cost and effective technique that involves metal-assisted chemical etching (MacEtch) combined with soft lithography or thermal dewetting metal patterning. We demonstrate sub-micron diameter Si nanowire arrays with aspect ratios as high as 180:1, and present the challenges in producing solid nanowires using MacEtch as the doping level increases in both p- and n-type Si. We report a systematic reduction in the porosity of these nanowires by adjusting the etching solution composition and temperature. We found that the porosity decreases from top to bottom along the axial direction and increases with etching time. With a MacEtch solution that has a high [HF]:[H(2)O(2)] ratio and low temperature, it is possible to form completely solid nanowires with aspect ratios of less than approximately 10:1. However, further etching to produce longer wires renders the top portion of the nanowires porous.

  17. Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires

    NASA Astrophysics Data System (ADS)

    Balasundaram, Karthik; Sadhu, Jyothi S.; Shin, Jae Cheol; Azeredo, Bruno; Chanda, Debashis; Malik, Mohammad; Hsu, Keng; Rogers, John A.; Ferreira, Placid; Sinha, Sanjiv; Li, Xiuling

    2012-08-01

    We report the fabrication of degenerately doped silicon (Si) nanowires of different aspect ratios using a simple, low-cost and effective technique that involves metal-assisted chemical etching (MacEtch) combined with soft lithography or thermal dewetting metal patterning. We demonstrate sub-micron diameter Si nanowire arrays with aspect ratios as high as 180:1, and present the challenges in producing solid nanowires using MacEtch as the doping level increases in both p- and n-type Si. We report a systematic reduction in the porosity of these nanowires by adjusting the etching solution composition and temperature. We found that the porosity decreases from top to bottom along the axial direction and increases with etching time. With a MacEtch solution that has a high [HF]:[H2O2] ratio and low temperature, it is possible to form completely solid nanowires with aspect ratios of less than approximately 10:1. However, further etching to produce longer wires renders the top portion of the nanowires porous.

  18. Enhanced Crystallization Behaviors of Silicon-Doped Sb2Te Films: Optical Evidences

    PubMed Central

    Guo, Shuang; Xu, Liping; Zhang, Jinzhong; Hu, Zhigao; Li, Tao; Wu, Liangcai; Song, Zhitang; Chu, Junhao

    2016-01-01

    The optical properties and structural variations of silicon (Si) doped Sb2Te (SST) films as functions of temperature (210–620 K) and Si concentration (0–33%) have been investigated by the means of temperature dependent Raman scattering and spectroscopic ellipsometry experiments. Based upon the changes in Raman phonon modes and dielectric functions, it can be concluded that the temperature ranges for intermediates and transition states are estimated to 150, 120, 90, and 0 K, corresponding to ST, SST25%, SST28%, and SST33% films, respectively. The phenomenon also can be summarized by the thermal evolutions of interband electronic transition energies (En) and partial spectral weight integral (I). The disappearance of intermediate (INT) state for SST33% film between amorphous (AM) and hexagonal (HEX) phases can be attributed to the acceleratory crystallization of HEX phase by Si introduction. It illustrates that the risk of phase separation (Sb and Te) during the cyclic phase-change processes decreases with the increasing Si concentration. The enhanced crystallization behaviors can optimize the data retention ability and the long term stability of ST by Si doping, which are important indicators for phase change materials. The performance improvement has been analyzed qualitatively from the optical perspective. PMID:27640336

  19. The enhanced efficiency of graphene-silicon solar cells by electric field doping.

    PubMed

    Yu, Xuegong; Yang, Lifei; Lv, Qingmin; Xu, Mingsheng; Chen, Hongzheng; Yang, Deren

    2015-04-28

    The graphene-silicon (Gr-Si) Schottky junction solar cell has been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the low Gr-Si Schottky barrier height largely limits the power conversion efficiency of Gr-Si solar cells. Here, we demonstrate that electric field doping can be used to tune the work function of a Gr film and therefore improve the photovoltaic performance of the Gr-Si solar cell effectively. The electric field doping effects can be achieved either by connecting the Gr-Si solar cell to an external power supply or by polarizing a ferroelectric polymer layer integrated in the Gr-Si solar cell. Exploration of both of the device architecture designs showed that the power conversion efficiency of Gr-Si solar cells is more than twice of the control Gr-Si solar cells. Our study opens a new avenue for improving the performance of Gr-Si solar cells.

  20. Electronic properties of embedded graphene: doped amorphous silicon/CVD graphene heterostructures

    NASA Astrophysics Data System (ADS)

    Arezki, Hakim; Boutchich, Mohamed; Alamarguy, David; Madouri, Ali; Alvarez, José; Cabarrocas, Pere Roca i.; Kleider, Jean-Paul; Yao, Fei; Lee, Young Hee

    2016-10-01

    Large-area graphene film is of great interest for a wide spectrum of electronic applications, such as field effect devices, displays, and solar cells, among many others. Here, we fabricated heterostructures composed of graphene (Gr) grown by chemical vapor deposition (CVD) on copper substrate and transferred to SiO2/Si substrates, capped by n- or p-type doped amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition. Using Raman scattering we show that despite the mechanical strain induced by the a-Si:H deposition, the structural integrity of the graphene is preserved. Moreover, Hall effect measurements directly on the embedded graphene show that the electronic properties of CVD graphene can be modulated according to the doping type of the a-Si:H as well as its phase i.e. amorphous or nanocrystalline. The sheet resistance varies from 360 Ω sq-1 to 1260 Ω sq-1 for the (p)-a-Si:H/Gr (n)-a-Si:H/Gr, respectively. We observed a temperature independent hole mobility of up to 1400 cm2 V-1 s-1 indicating that charge impurity is the principal mechanism limiting the transport in this heterostructure. We have demonstrated that embedding CVD graphene under a-Si:H is a viable route for large scale graphene based solar cells or display applications.

  1. Ex situ n and p doping of vertical epitaxial short silicon nanowires by ion implantation

    NASA Astrophysics Data System (ADS)

    Kanungo, Pratyush Das; Kögler, Reinhard; Nguyen-Duc, Kien; Zakharov, Nikolai; Werner, Peter; Gösele, Ulrich

    2009-04-01

    Vertical epitaxial short (200-300 nm long) silicon nanowires (Si NWs) grown by molecular beam epitaxy on Si(111) substrates were separately doped p- and n-type ex situ by implanting with B, P and As ions respectively at room temperature. Multi-energy implantations were used for each case, with fluences of the order of 1013-1014 cm-2, and the NWs were subsequently annealed by rapid thermal annealing (RTA). Transmission electron microscopy showed no residual defect in the volume of the NWs. Electrical measurements of single NWs with a Pt/Ir tip inside a scanning electron microscope (SEM) showed significant increase of electrical conductivity of the implanted NWs compared to that of a nominally undoped NW. The p-type, i.e. B-implanted, NWs showed the conductivity expected from the intended doping level. However, the n-type NWs, i.e. P- and As-implanted ones, showed one to two orders of magnitude lower conductivity. We think that a stronger surface depletion is mainly responsible for this behavior of the n-type NWs.

  2. Role of aluminum in silver paste contact to boron-doped silicon emitters

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Roelofs, Katherine E.; Subramoney, Shekhar; Lloyd, Kathryn; Zhang, Lei

    2017-01-01

    The addition of aluminum to silver metallization pastes has been found to lower the contact resistivity of a silver metallization on boron-doped silicon emitters for n-type Si solar cells. However, the addition of Al also induces more surface recombination and increases the Ag pattern's line resistivity, both of which ultimately limit the cell efficiency. There is a need to develop a fundamental understanding of the role that Al plays in reducing the contact resistivity and to explore alternative additives. A fritless silver paste is used to allow direct analysis of the impact of Al on the Ag-Si interfacial microstructure and isolate the influence of Al on the electrical contact from the complicated Ag-Si interfacial glass layer. Electrical analysis shows that in a simplified system, Al decreases the contact resistivity by about three orders of magnitude. Detailed microstructural studies show that in the presence of Al, microscale metallic spikes of Al-Ag alloy and nanoscale metallic spikes of Ag-Si alloy penetrate the surface of the boron-doped Si emitters. These results demonstrate the role of Al in reducing the contact resistivity through the formation of micro- and nano-scale metallic spikes, allowing the direct contact to the emitters.

  3. Electronic properties of embedded graphene: doped amorphous silicon/CVD graphene heterostructures.

    PubMed

    Arezki, Hakim; Boutchich, Mohamed; Alamarguy, David; Madouri, Ali; Alvarez, José; Cabarrocas, Pere Roca I; Kleider, Jean-Paul; Yao, Fei; Hee Lee, Young

    2016-10-12

    Large-area graphene film is of great interest for a wide spectrum of electronic applications, such as field effect devices, displays, and solar cells, among many others. Here, we fabricated heterostructures composed of graphene (Gr) grown by chemical vapor deposition (CVD) on copper substrate and transferred to SiO2/Si substrates, capped by n‑ or p-type doped amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition. Using Raman scattering we show that despite the mechanical strain induced by the a-Si:H deposition, the structural integrity of the graphene is preserved. Moreover, Hall effect measurements directly on the embedded graphene show that the electronic properties of CVD graphene can be modulated according to the doping type of the a-Si:H as well as its phase i.e. amorphous or nanocrystalline. The sheet resistance varies from 360 Ω sq(-1) to 1260 Ω sq(-1) for the (p)-a-Si:H/Gr (n)-a-Si:H/Gr, respectively. We observed a temperature independent hole mobility of up to 1400 cm(2) V(-1) s(-1) indicating that charge impurity is the principal mechanism limiting the transport in this heterostructure. We have demonstrated that embedding CVD graphene under a-Si:H is a viable route for large scale graphene based solar cells or display applications.

  4. Photo-carrier and Electronic Studies of Silicon-Doped GaAs Grown by MBE Using PCR

    NASA Astrophysics Data System (ADS)

    Villada, J. A.; Jiménez-Sandoval, S.; López-López, M.; Mendoza, J.; Espinosa-Arbeláez, D. G.; Rodríguez-García, M. E.

    2010-05-01

    Photo-carrier radiometry (PCR) has been used to study the distribution of impurities and the lattice damage in silicon-doped gallium arsenide in a noncontact way. The results from the PCR study are correlated with Hall effect measurements. Samples for this study were grown by molecular beam epitaxy. Of all possible parameters that can be manipulated, the silicon effusion cell temperature was the only one that was varied, in order to obtain samples with different silicon concentrations. The distribution of impurities was obtained by scanning the surface of each sample. The PCR amplitude and phase images were obtained as a function of the x- y position. According to the PCR images, it is evident that the impurities are not uniformly distributed across the sample. From these images, the average value of the amplitude and phase data across the surface was obtained for each sample in order to study the PCR signal behavior as a function of the silicon effusion cell temperature.

  5. First-principles calculations of carbon clathrates: Comparison to silicon and germanium clathrates

    NASA Astrophysics Data System (ADS)

    Connétable, Damien

    2010-08-01

    We employ state-of-the-art first-principles calculations based on density-functional theory and density-functional perturbation theory to investigate relevant physical properties and phase diagram of the free guest type-I (X-46) and type-II (X-34) carbon clathrates. Their properties and those of silicon and germanium diamonds, and clathrates have been computed and compared within the same approach. We briefly present and discuss their structural, cohesive, and electronic properties. In particular, we present different results about electronic properties of carbon clathrates. From the symmetry analysis of electronic states around the band gap, we deduce their optical properties, and we forecast the effects of hypothetical-doped elements on their electronic band gap. We then report first-principles calculations of vibrational, thermodynamical, and elastic properties. Whereas vibrational properties of Si and Ge systems can be linked through their atomic weight ratio, we show that the vibrational properties of carbon structures differ strongly. Raman and infrared spectra of all clathrates are also calculated and compared. The effects of pressure and temperature on thermodynamical properties (heat capacity, entropy, thermal expansion, etc.) within static and quasiharmonic approximations are investigated. It is shown that thermodynamical properties of carbon clathrates and diamond present a similar evolution up to high pressures (100 GPa) and over a large range of temperatures ([0, 1500] K). Then we deduce the equilibrium phase diagram (P,T) of C-2/C-34/C-46. We conclude the paper with a presentation of elastic properties computed from acoustic slopes.

  6. Plasmon-enhanced phonon and ionized impurity scattering in doped silicon

    SciTech Connect

    Chen, Ming-Jer Hsieh, Shang-Hsun; Chen, Chuan-Li

    2015-07-28

    Historically, two microscopic electron scattering calculation methods have been used to fit macroscopic electron mobility data in n-type silicon. The first method was performed using a static system that included long-range electron-plasmon scattering; however, the well-known Born approximation fails in this case when dealing with electron-impurity scattering. In the second method, sophisticated numerical simulations were developed around plasmon-excited potential fluctuations and successfully reproduced the mobility data at room temperature. In this paper, we propose a third method as an alternative to the first method. First, using a fluctuating system, which was characterized on the basis of our recently experimentally extracted plasmon-excited potential fluctuations, the microscopic calculations reveal enhanced short-range scattering of electrons by phonons and ionized impurities due to increased electron temperature and increased screening length, respectively. The increased hot electron population makes the Born approximation hold, which eases the overall calculation task substantially. Then, we return to the static system while incorporating plasmon-enhanced impurity scattering. The resulting macroscopic electron mobility shows fairly good agreement with data over wide ranges of temperatures (200–400 K) and doping concentrations (10{sup 15}–10{sup 20 }cm{sup −3}). Application of the proposed method to strained silicon is also demonstrated.

  7. New insight into the microstructure and doping of unintentionally n-type microcrystalline silicon carbide

    NASA Astrophysics Data System (ADS)

    Pomaska, Manuel; Köhler, Florian; Zastrow, Uwe; Mock, Jan; Pennartz, Frank; Muthmann, Stefan; Astakhov, Oleksandr; Carius, Reinhard; Finger, Friedhelm; Ding, Kaining

    2016-05-01

    Microcrystalline silicon carbide (μc-SiC:H) deposited by hot wire chemical vapor deposition (HWCVD) and plasma-enhanced chemical vapor deposition (PECVD) provide advantageous opto-electronic properties, making it attractive as a window layer material in silicon thin-film and silicon heterojunction solar cells. However, it is still not clear which electrical transport mechanisms yield dark conductivities up to 10-3 S/cm without the active use of any doping gas and how the transport mechanisms are related to the morphology of μc-SiC:H. To investigate these open questions systematically, we investigated HWCVD and PECVD grown layers that provide a very extensive range of dark conductivity values from 10-12 S/cm to 10-3 S/cm. We found out by secondary ion mass spectrometry measurements that no direct correlation exists between oxygen or nitrogen concentrations and high dark conductivity σd, high charge carrier density n, and low activation energy Ea. Higher σd seems to rise from lower hydrogen concentrations or/and larger coherent domain sizes LSiC. On the one hand, the decrease of σd with increasing hydrogen concentration might be due to the inactivation of donors by hydrogen passivation that gives rise to decreased n. On the other hand, qualitatively consistent with the Seto model, the lower σd and lower n might be caused by smaller LSiC, since the fraction of depleted grain boundaries with higher Ea increases accordingly.

  8. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation.

    PubMed

    Luo, Wei; Wang, Bao; Heron, Christopher G; Allen, Marshall J; Morre, Jeff; Maier, Claudia S; Stickle, William F; Ji, Xiulei

    2014-01-01

    Here, we present a simple one-step fabrication methodology for nitrogen-doped (N-doped) nanoporous carbon membranes via annealing cellulose filter paper under NH3. We found that nitrogen doping (up to 10.3 at %) occurs during cellulose pyrolysis under NH3 at as low as 550 °C. At 700 °C or above, N-doped carbon further reacts with NH3, resulting in a large surface area (up to 1973.3 m(2)/g). We discovered that the doped nitrogen, in fact, plays an important role in the reaction, leading to carbon gasification. CH4 was experimentally detected by mass spectrometry as a product in the reaction between N-doped carbon and NH3. When compared to conventional activated carbon (1533.6 m(2)/g), the N-doped nanoporous carbon (1326.5 m(2)/g) exhibits more than double the unit area capacitance (90 vs 41 mF/m(2)).

  9. The solvation study of carbon, silicon and their mixed nanotubes in water solution.

    PubMed

    Hashemi Haeri, Haleh; Ketabi, Sepideh; Hashemianzadeh, Seyed Majid

    2012-07-01

    Nanotubes are believed to open the road toward different modern fields, either technological or biological. However, the applications of nanotubes have been badly impeded for the poor solubility in water which is especially essential for studies in the presence of living cells. Therefore, water soluble samples are in demand. Herein, the outcomes of Monte Carlo simulations of different sets of multiwall nanotubes immersed in water are reported. A number of multi wall nanotube samples, comprised of pure carbon, pure silicon and several mixtures of carbon and silicon are the subjects of study. The simulations are carried out in an (N,V,T) ensemble. The purpose of this report is to look at the effects of nanotube size (diameter) and nanotube type (pure carbon, pure silicon or a mixture of carbon and silicon) variation on solubility of multiwall nanotubes in terms of number of water molecules in shell volume. It is found that the solubility of the multi wall carbon nanotube samples is size independent, whereas multi wall silicon nanotube samples solubility varies with diameter of the inner tube. The higher solubility of samples containing silicon can be attributed to the larger atomic size of silicon atom which provides more direct contact with the water molecules. The other affecting factor is the bigger inter space (the space between inner and outer tube) in the case of silicon samples. Carbon type multi wall nanotubes appeared as better candidates for transporting water molecules through a multi wall nanotube structure, while in the case of water adsorption problems it is better to use multi wall silicon nanotubes or a mixture of multi wall carbon/ silicon nanotubes.

  10. Preparation of Ni-doped carbon nanospheres with different surface chemistry and controlled pore structure

    NASA Astrophysics Data System (ADS)

    Zubizarreta, L.; Arenillas, A.; Pis, J. J.

    2008-04-01

    In classic carbon supports is very difficult to control pore size, pore size distribution, and surface chemical properties at the same time. In this work microporous carbons derived from furfuryl alcohol are used as support to prepare Ni-doped carbon materials. The N 2 flow rate used during the carbonisation process of the precursor influences on the size of the nanospheres obtained but not in their textural properties. Microporous carbon nanospheres have been synthesised with a narrow pore size distribution centred in 5.5 Å. The surface chemistry of these materials can be easily modified by different treatments without detriment of the pore structure of the doped carbon nanospheres.

  11. Study of silicon carbide formation by liquid silicon infiltration of porous carbon structures

    NASA Astrophysics Data System (ADS)

    Margiotta, Jesse C.

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making fully dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure followed by conversion of this carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low reactivity and porosity, and cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose:resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800°C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm-3 (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process were studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Such knowledge can be used to further refine the LSI technique. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal

  12. Microstructural and compositional analysis of strontium-doped lead zirconate titanate thin films on gold-coated silicon substrates.

    PubMed

    Sriram, S; Bhaskaran, M; Mitchell, D R G; Short, K T; Holland, A S; Mitchell, A

    2009-02-01

    This article discusses the results of transmission electron microscopy (TEM)-based characterization of strontium-doped lead zirconate titanate (PSZT) thin films. The thin films were deposited by radio frequency magnetron sputtering at 300 degrees C on gold-coated silicon substrates, which used a 15 nm titanium adhesion layer between the 150 nm thick gold film and (100) silicon. The TEM analysis was carried out using a combination of high-resolution imaging, energy filtered imaging, energy dispersive X-ray (EDX) analysis, and hollow cone illumination. At the interface between the PSZT films and gold, an amorphous silicon-rich layer (about 4 nm thick) was observed, with the film composition remaining uniform otherwise. The films were found to be polycrystalline with a columnar structure perpendicular to the substrate. Interdiffusion between the bottom metal layers and silicon was observed and was confirmed using secondary ion mass spectrometry. This occurs due to the temperature of deposition (300 degrees C) being close to the eutectic point of gold and silicon (363 degrees C). The diffused regions in silicon were composed primarily of gold (analyzed by EDX) and were bounded by (111) silicon planes, highlighted by the triangular diffused regions observed in the two-dimensional TEM image.

  13. Investigations of segregation phenomena in highly strained Mn-doped Ge wetting layers and Ge quantum dots embedded in silicon

    SciTech Connect

    Prestat, E. Porret, C.; Favre-Nicolin, V.; Tainoff, D.; Boukhari, M.; Bayle-Guillemaud, P.; Jamet, M.; Barski, A.

    2014-03-10

    In this Letter, we investigate manganese diffusion and the formation of Mn precipitates in highly strained, few monolayer thick, Mn-doped Ge wetting layers and nanometric size Ge quantum dot heterostructures embedded in silicon. We show that in this Ge(Mn)/Si system manganese always precipitates and that the size and the position of Mn clusters (precipitates) depend on the growth temperature. At high growth temperature, manganese strongly diffuses from germanium to silicon, whereas decreasing the growth temperature reduces the manganese diffusion. In the germanium quantum dots layers, Mn precipitates are detected, not only in partially relaxed quantum dots but also in fully strained germanium wetting layers between the dots.

  14. Nitrogen-doped mesoporous carbons for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Liu, Qiming

    2016-08-01

    The mesoporous carbons have been synthesized by using α-D(+)-Glucose, D-Glucosamine hydrochloride or their mixture as carbon precursors and mesoporous silicas (SBA-15 or MCF) as hard templates. The as-prepared products show a large pore volume (0.59-0.97 cm3 g-1), high surface areas (352.72-1152.67 m2 g-1) and rational nitrogen content (ca. 2.5-3.9 wt.%). The results of electrochemical tests demonstrate that both heteroatom doping and suitable pore structure play a decisive role in the performance of supercapacitors. The representative sample of SBA-15 replica obtained using D-Glucosamine hydrochloride only exhibits high specific capacitance (212.8 F g-1 at 0.5 A g-1) and good cycle durability (86.1% of the initial capacitance after 2000 cycles) in 6 M KOH aqueous electrolyte, which is attributed to the contribution of double layer capacitance and pseudo-capacitance. The excellent electrochemical performance makes it a promising electrode material for supercapacitors.

  15. Green light emission from terbium doped silicon rich silicon oxide films obtained by plasma enhanced chemical vapor deposition.

    PubMed

    Podhorodecki, A; Zatryb, G; Misiewicz, J; Wojcik, J; Wilson, P R J; Mascher, P

    2012-11-30

    The effect of silicon concentration and annealing temperature on terbium luminescence was investigated for thin silicon rich silicon oxide films. The structures were deposited by means of plasma enhanced chemical vapor deposition. The structural properties of these films were investigated by Rutherford backscattering spectrometry, transmission electron microscopy and Raman scattering. The optical properties were investigated by means of photoluminescence and photoluminescence decay spectroscopy. It was found that both the silicon concentration in the film and the annealing temperature have a strong impact on the terbium emission intensity. In this paper, we present a detailed discussion of these issues and determine the optimal silicon concentration and annealing temperature.

  16. Green light emission from terbium doped silicon rich silicon oxide films obtained by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Podhorodecki, A.; Zatryb, G.; Misiewicz, J.; Wojcik, J.; Wilson, P. R. J.; Mascher, P.

    2012-11-01

    The effect of silicon concentration and annealing temperature on terbium luminescence was investigated for thin silicon rich silicon oxide films. The structures were deposited by means of plasma enhanced chemical vapor deposition. The structural properties of these films were investigated by Rutherford backscattering spectrometry, transmission electron microscopy and Raman scattering. The optical properties were investigated by means of photoluminescence and photoluminescence decay spectroscopy. It was found that both the silicon concentration in the film and the annealing temperature have a strong impact on the terbium emission intensity. In this paper, we present a detailed discussion of these issues and determine the optimal silicon concentration and annealing temperature.

  17. Enhancing the Li storage capacity and initial coulombic efficiency for porous carbons by sulfur doping.

    PubMed

    Ning, Guoqing; Ma, Xinlong; Zhu, Xiao; Cao, Yanming; Sun, Yuzhen; Qi, Chuanlei; Fan, Zhuangjun; Li, Yongfeng; Zhang, Xin; Lan, Xingying; Gao, Jinsen

    2014-09-24

    Here, we report a new approach to synthesizing S-doped porous carbons and achieving both a high capacity and a high Coulombic efficiency in the first cycle for carbon nanostructures as anodes for Li ion batteries. S-doped porous carbons (S-PCs) were synthesized by carbonization of pitch using magnesium sulfate whiskers as both templates and S source, and a S doping up to 10.1 atom % (corresponding to 22.5 wt %) was obtained via a S doping reaction. Removal of functional groups or highly active C atoms during the S doping has led to formation of much thinner solid-electrolyte interface layer and hence significantly enhanced the Coulombic efficiency in the first cycle from 39.6% (for the undoped porous carbon) to 81.0%. The Li storage capacity of the S-PCs is up to 1781 mA h g(-1) at the current density of 50 mA g(-1), more than doubling that of the undoped porous carbon. Due to the enhanced conductivity, the hierarchically porous structure and the excellent stability, the S-PC anodes exhibit excellent rate capability and reliable cycling stability. Our results indicate that S doping can efficiently promote the Li storage capacity and reduce the irreversible Li combination for carbon nanostructures.

  18. Solar cells on low-resistivity boron-doped Czochralski-grown silicon with stabilized efficiencies of 20%

    NASA Astrophysics Data System (ADS)

    Lim, Bianca; Hermann, Sonja; Bothe, Karsten; Schmidt, Jan; Brendel, Rolf

    2008-10-01

    Recently, it was shown that the boron-oxygen complex responsible for the light-induced lifetime degradation in oxygen-rich boron-doped silicon can be permanently deactivated by illumination at elevated temperatures. Since the degradation is particularly harmful in low-resistivity Czochralski silicon (Cz-Si), we apply the deactivation procedure to a high-efficiency rear interdigitated single evaporation emitter wrap-through solar cell made on 1.4Ωcm B-doped Cz-Si. The energy conversion efficiency is thereby increased by more than 1% absolute compared to the degraded state to 20.3% on a designated area of 92cm2 and is furthermore shown to be stable under illumination at room temperature.

  19. Light-induced degradation in p-type gallium co-doped solar grade multicrystalline silicon wafers and solar cells

    NASA Astrophysics Data System (ADS)

    Ren, Xianpei; Cai, Lihan; Fan, Baodian; Cheng, Haoran; Zheng, Songsheng; Chen, Chao

    2013-12-01

    This letter focuses on the evolution under illumination of the minority carrier lifetime and conversion efficiency of p-type gallium (Ga) co-doped solar grade multicrystalline silicon wafers and solar cells. We present experimental data regarding the concentration of boron-oxygen (B-O) defects in this silicon when subjected to illumination, and the concentration was found to depend on [B]-[P] rather than [B] or the net doping p0([B] + [Ga] - [P]). This result implies that the compensated B is unable to form the B-O defect. Minority carrier lifetime and EQE measurements at different degradation states indicate that the B-O defect and Fe-acceptor pairs are the two key centers contributed to LID in this material.

  20. Enhanced quantum efficiency of high-purity silicon imaging detectors by ultralow temperature surface modification using Sb doping

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana; Hoenk, Michael E.; Elliott, S. Tom; Holland, Stephen E.; Nikzad, Shouleh

    2005-01-01

    A low temperature process for Sb doping of silicon has been developed as a backsurface treatment for high-purity n-type imaging detectors. Molecular beam epitaxy (MBE) is used to achieve very high dopant incorporation in a thin, surface-confined layer. The growth temperature is kept below 450 (deg)C for compatibility with Al-metallized devices. Imaging with MBE-modified 1kx1k charge coupled devices (CCDs) operated in full depletion has been demonstrated. Dark current is comparable to the state-of-the-art process, which requires a high temperature step. Quantum efficiency is improved, especially in the UV, for thin doped layers placed closer to the backsurface. Near 100% internal quantum efficiency has been demonstrated in the ultraviolet for a CCD with a 1.5 nm silicon cap layer.

  1. Some major results of the Fourth Annual Conference on Effects of Lithium Doping on Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1971-01-01

    Lithium doped silicon solar cells having dimensions as large as 12 sq cm are now possible, due to significantly improved boron-diffusion techniques. A large increase was observed in the short circuit current measured in tungsten light for cells that were fabricated using the improved diffusion techniques as compared with previous cells, indicating a preservation of minority carrier diffusion length in the base region of the former cells. Sintering of the contacts of lithium doped cells fabricated from Lopex silicon resulted in large increases in maximum power, mostly due to an open circuit voltage improvement, over non-sintered cells. Efficiencies as high as 12.8% were observed, with the average efficiency being about 11.9%.

  2. Structural, electronic and magnetic properties of carbon doped boron nitride nanowire: Ab initio study

    NASA Astrophysics Data System (ADS)

    Jalilian, Jaafar; Kanjouri, Faramarz

    2016-11-01

    Using spin-polarized density functional theory calculations, we demonstrated that carbon doped boron nitride nanowire (C-doped BNNW) has diverse electronic and magnetic properties depending on position of carbon atoms and their percentages. Our results show that only when one carbon atom is situated on the edge of the nanowire, C-doped BNNW is transformed into half-metal. The calculated electronic structure of the C-doped BNNW suggests that doping carbon can induce localized edge states around the Fermi level, and the interaction among localized edge states leads to semiconductor to half-metal transition. Overall, the bond reconstruction causes of appearance of different electronic behavior such as semiconducting, half-metallicity, nonmagnetic metallic, and ferromagnetic metallic characters. The formation energy of the system shows that when a C atom is doped on surface boron site, system is more stable than the other positions of carbon impurity. Our calculations show that C-doped BNNW may offer unique opportunities for developing nanoscale spintronic materials.

  3. Enhancement of ORR catalytic activity by multiple heteroatom-doped carbon materials.

    PubMed

    Kim, Dae-wook; Li, Oi Lun; Saito, Nagahiro

    2015-01-07

    Heteroatom-doped carbon matrices have been attracting significant attention due to their superior electrochemical stability, light weight and low cost. Hence, in this study, various types of heteroatom, including single dopants of N, B and P and multiple dopants of B-N and P-N with a carbon matrix were synthesized by an innovative method named the solution plasma process. The heteroatom was doped into the carbon matrix during the discharge process by continuous dissociation and recombination of precursors. The chemical bonding structure, ORR activity and electrochemical performance were compared in detail for each single dopant and multiple dopants. According to the Raman spectra, the carbon structures were deformed by the doped heteroatoms in the carbon matrix. In comparison with N-doped structures (NCNS), the ORR potential of PN-doped structures (PNCNS) was positively shifted from -0.27 V to -0.24 V. It was observed that doping with N decreased the bonding between P and C in the matrix. The multiple doping induced additional active sites for ORR which further enhanced ORR activity and stability. Therefore, PNCNS is a promising metal-free catalyst for ORR at the cathode in a fuel cell.

  4. Interior phase transformations and mass-radius relationships of silicon-carbon planets

    SciTech Connect

    Wilson, Hugh F.; Militzer, Burkhard

    2014-09-20

    Planets such as 55 Cancri e orbiting stars with a high carbon-to-oxygen ratio may consist primarily of silicon and carbon, with successive layers of carbon, silicon carbide, and iron. The behavior of silicon-carbon materials at the extreme pressures prevalent in planetary interiors, however, has not yet been sufficiently understood. In this work, we use simulations based on density functional theory to determine high-pressure phase transitions in the silicon-carbon system, including the prediction of new stable compounds with Si{sub 2}C and SiC{sub 2} stoichiometry at high pressures. We compute equations of state for these silicon-carbon compounds as a function of pressure, and hence derive interior structural models and mass-radius relationships for planets composed of silicon and carbon. Notably, we predict a substantially smaller radius for SiC planets than in previous models, and find that mass radius relationships for SiC planets are indistinguishable from those of silicate planets. We also compute a new equation of state for iron. We rederive interior models for 55 Cancri e and are able to place more stringent restrictions on its composition.

  5. Powder containing 2H-type silicon carbide produced by reacting silicon dioxide and carbon powder in nitrogen atmosphere in the presence of aluminum

    NASA Technical Reports Server (NTRS)

    Kuramoto, N.; Takiguchi, H.

    1984-01-01

    The production of powder which contains silicon carbide consisting of 40% of 2H-type silicon carbide, beta type silicon carbide and less than 3% of nitrogen is discussed. The reaction temperature to produce the powder containing 40% of 2H-type silicon carbide is set at above 1550 degrees C in an atmosphere of aluminum or aluminum compounds and nitrogen gas or an antioxidation atmosphere containing nitrogen gas. The mixture ratio of silicon dioxide and carbon powder is 0.55 - 1:2.0 and the contents of aluminum or aluminum compounds within silicon dioxide is less than 3% in weight.

  6. Annealing group III-V compound doped silicon-germanium alloy for improved thermo-electric conversion efficiency

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W. (Inventor); Wood, Charles (Inventor); Draper, Susan L. (Inventor)

    1989-01-01

    The thermoelectric conversion efficiency of a GaP doped SiGe alloy is improved about 30 percent by annealing the alloy at a temperature above the melting point of the alloy, preferably stepwise from 1200 C to 1275 C in air to form large grains having a size over 50 microns and to form a GeGaP rich phase and a silicon rich phase containing SiP and SiO2 particles.

  7. Single-walled carbon nanotube/polyaniline/n-silicon solar cells: fabrication, characterization, and performance measurements.

    PubMed

    Tune, Daniel D; Flavel, Benjamin S; Quinton, Jamie S; Ellis, Amanda V; Shapter, Joseph G

    2013-02-01

    Carbon nanotube-silicon solar cells are a recently investigated photovoltaic architecture with demonstrated high efficiencies. Silicon solar-cell devices fabricated with a thin film of conductive polymer (polyaniline) have been reported, but these devices can suffer from poor performance due to the limited lateral current-carrying capacity of thin polymer films. Herein, hybrid solar-cell devices of a thin film of polyaniline deposited on silicon and covered by a single-walled carbon nanotube film are fabricated and characterized. These hybrid devices combine the conformal coverage given by the polymer and the excellent electrical properties of single-walled carbon nanotube films and significantly outperform either of their component counterparts. Treatment of the silicon base and carbon nanotubes with hydrofluoric acid and a strong oxidizer (thionyl chloride) leads to a significant improvement in performance.

  8. Substitutional doping of carbon nanotubes with heteroatoms and their chemical applications.

    PubMed

    Zhang, Yexin; Zhang, Jian; Su, Dang Sheng

    2014-05-01

    The electronic properties of carbon nanotubes (CNTs) can be tuned by substitutional doping with heteroatoms (mainly B and N) to expand the applications of CNTs. Based on the comprehensive understanding of the substitutional doping of CNTs, it should be possible to deliberately design doped CNTs for specific purposes. Thus, relevant experimental and theoretical works are reviewed herein in an attempt to correlate the synthetic methods, electronic properties, and applications of heteroatom-doped CNTs. The distribution and arrangement of heteroatoms in the graphitic lattice of CNTs can be modulated through the choice of synthetic conditions, which would further lead to different electronic properties of CNTs for their chemical applications.

  9. Photocatalytic activity of Cr-doped TiO2 nanoparticles deposited on porous multicrystalline silicon films

    PubMed Central

    2014-01-01

    This work deals with the deposition of Cr-doped TiO2 thin films on porous silicon (PS) prepared from electrochemical anodization of multicrystalline (mc-Si) Si wafers. The effect of Cr doping on the properties of the TiO2-Cr/PS/Si samples has been investigated by means of X-ray diffraction (XRD), atomic force microcopy (AFM), photoluminescence, lifetime, and laser beam-induced current (LBIC) measurements. The photocatalytic activity is carried out on TiO2-Cr/PS/Si samples. It was found that the TiO2-Cr/PS/mc-Si type structure degrades an organic pollutant (amido black) under ultraviolet (UV) light. A noticeable degradation of the pollutant is obtained for a Cr doping of 2 at. %. This result is discussed in light of LBIC and photoluminescence measurements. PMID:25313302

  10. Photocatalytic activity of Cr-doped TiO2 nanoparticles deposited on porous multicrystalline silicon films.

    PubMed

    Hajjaji, Anouar; Trabelsi, Khaled; Atyaoui, Atef; Gaidi, Mounir; Bousselmi, Latifa; Bessais, Brahim; El Khakani, My Ali

    2014-01-01

    This work deals with the deposition of Cr-doped TiO2 thin films on porous silicon (PS) prepared from electrochemical anodization of multicrystalline (mc-Si) Si wafers. The effect of Cr doping on the properties of the TiO2-Cr/PS/Si samples has been investigated by means of X-ray diffraction (XRD), atomic force microcopy (AFM), photoluminescence, lifetime, and laser beam-induced current (LBIC) measurements. The photocatalytic activity is carried out on TiO2-Cr/PS/Si samples. It was found that the TiO2-Cr/PS/mc-Si type structure degrades an organic pollutant (amido black) under ultraviolet (UV) light. A noticeable degradation of the pollutant is obtained for a Cr doping of 2 at. %. This result is discussed in light of LBIC and photoluminescence measurements.

  11. Study on the impact of silicon doping level on the trench profile using metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Cao, Zhe; Huang, Qiyu; Zhao, Chuanrui; Zhang, Qing

    2016-10-01

    Metal-assisted chemical etching (MACE) has been used as a promising alternative method to fabricate micro/nano-structures on silicon substrates inexpensively. In this paper, profiles of deep trenches on silicon substrates, with different doping levels, fabricated by MACE were studied. A layer of interconnected gold islands was first deposited onto the silicon substrate as catalyst. Electrochemical etching was then performed in a hydrofluoric acid (HF) and hydrogen peroxide (H2O2) mixture solution with different HF-to-H2O2 ratio ρ (ρ = [HF]/([HF] + [H2O2])). Vertical deep trenches were fabricated successfully by using this method. It was observed that even under identical experimental condition, sidewalls with various tilting angles and different morphology could still form on silicon substrates with different resistivity. This possibly because with different resistivity silicon substrate, the gradient of holes in it greatly changed, and so did the final morphology. As a result, the tilting angle of etched trench sidewall can be tuned from 6° to 96° using silicon substrates with different resistivity and etchants with different ρ. By applying the angle-tuning technique revealed in this study, high aspect ratio patterns with vertical sidewalls could be fabricated and three-dimensional complex structures could be designed and realized in the future. [Figure not available: see fulltext.

  12. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes.

    PubMed

    Maldonado, Stephen; Stevenson, Keith J

    2005-03-17

    Nondoped and nitrogen-doped (N-doped) carbon nanofiber (CNF) electrodes were prepared via a floating catalyst chemical vapor deposition (CVD) method using precursors consisting of ferrocene and either xylene or pyridine to control the nitrogen content. Structural and compositional differences between the nondoped and N-doped varieties were assessed using TEM, BET, Raman, TGA, and XPS. Electrochemical methods were used to study the influence of nitrogen doping on the oxygen reduction reaction (ORR). The N-doped CNF electrodes demonstrate significant catalytic activity toward oxygen reduction in aqueous KNO(3) solutions at neutral to basic pH. Electrochemical data are presented which indicate that the ORR proceeds by the peroxide pathway via two successive two-electron reductions. However, for N-doped CNF electrodes, the reduction process can be treated as a catalytic regenerative process where the intermediate hydroperoxide (HO(2)(-)) is chemically decomposed to regenerate oxygen, 2HO(2)(-) <==> O(2) + 2OH(-). The proposed electrocatalysis mechanisms for ORR at both nondoped and N-doped varieties are supported by electrochemical simulations and by measured difference in hydroperoxide decomposition rate constants. Remarkably, approximately 100 fold enhancement for hydroperoxide decomposition is observed for N-doped CNFs, with rates comparable to the best known peroxide decomposition catalysts. Collectively the data indicate that exposed edge plane defects and nitrogen doping are important factors for influencing adsorption of reactive intermediates (i.e., superoxide, hydroperoxide) and for enhancing electrocatalysis for the ORR at nanostructured carbon electrodes.

  13. Pressure-induced superconductivity in thin films of boron-doped carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Haruyama, Junji; Nakamura, Jin; Reppert, Jason; Rao, Apparao; Sano, Hirotaka; Iye, Yasuhiro

    2010-03-01

    We have reported that thin films of slightly boron-doped single-walled carbon nanotubes (B-SWNTs) can be superconductor at Tc of 12K [1]. Here, based on this, we show creation of paperlike thin film (Buckypaper) consisting of pseudo-two-dimensional network of B-SWNTs within weakly intertube van der Waals coupling (IVDWC) state. It was formed by sufficiently dissolving as-grown ropes of B-SWNTs and densely assembling them on silicon substrate. We find that superconducting transition temperature Tc of 8 K under absent pressure can be induced up to 19 K by applying a small pressure to the film and that a frequency in the radial breathing phonon drastically increases with applying pressure [2]. Discussion about IVDWC and distribution of B-SWNTs diameter imply the strong correlation. References [1] N. Murata, J. Haruyama, J. Reppert, A. M. Rao, T. Koretsune, S. Saito, Phys. Rev. Lett. 101, 027002 (2008) [2] J. Nakamura, J. Haruyama, M. Tachibana, J. Reppert,A. Rao, H. Sano, Y. Iye et al., Appl.Phys.Lett. 95, 142503 (2009)

  14. Ab initio study of pristine and Si-doped capped carbon nanotubes interacting with nimesulide molecules

    NASA Astrophysics Data System (ADS)

    Zanella, Ivana; Fagan, Solange B.; Mota, R.; Fazzio, A.

    2007-05-01

    The interaction of the nimesulide molecule with pristine and Si-doped capped carbon nanotubes is studied by first-principle calculations. The nimesulide molecules, which are basic components of an anti-inflammatory drug, combined with carbon nanostructures, could result in novel drug delivery systems. In this Letter, the nimesulide interaction with pristine capped nanotubes is shown as occuring in a physisorption regime and it is demonstrated that this interaction can be much more intense when the capped nanotube is substitutionaly doped with an Si atom. Then, the Si-doped capped nanotube can constitute a feasible novel nimesulide molecule delivery system.

  15. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    SciTech Connect

    Wang, Hao; Wang, Yun; Dai, Xiao; Zou, Guifu E-mail: zouguifu@suda.edu.cn; Gao, Peng; Zhang, Ke-Qin E-mail: zouguifu@suda.edu.cn; Du, Dezhuang; Guo, Jun

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  16. Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance.

    PubMed

    Zhai, Yunbo; Xu, Bibo; Zhu, Yun; Qing, Renpeng; Peng, Chuan; Wang, Tengfei; Li, Caiting; Zeng, Guangming

    2016-04-01

    Nitrogen doped porous activated carbon was prepared by annealing treatment of Camellia oleifera shell activated carbon under NH3. We found that nitrogen content of activated carbon up to 10.43 at.% when annealed in NH3 at 800 °C. At 600 °C or above, the N-doped carbon further reacts with NH3, leads to a low surface area down to 458 m(2)/g and low graphitization degree. X-ray photoelectron spectroscope (XPS) analysis indicated that the nitrogen functional groups on the nitrogen-doped activated carbons (NACs) were mostly in the form of pyridinic nitrogen. We discovered that the oxygen groups and carbon atoms at the defect and edge sites of graphene play an important role in the reaction, leading to nitrogen atoms incorporated into the lattice of carbon. When temperatures were lower than 600 °C the nitrogen atoms displaced oxygen groups and formed nitrogen function groups, and when temperatures were higher than 600 °C and ~4 at.% carbon atoms and part of oxygen function groups reacted with NH3. When compared to pure activated carbon, the nitrogen doped activated carbon shows nearly four times the capacitance (191 vs 51 F/g).

  17. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells.

    PubMed

    Zhang, S J; Lin, S S; Li, X Q; Liu, X Y; Wu, H A; Xu, W L; Wang, P; Wu, Z Q; Zhong, H K; Xu, Z J

    2016-01-07

    Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications.

  18. Discharge light and carbonization distribution characteristics at XLPE-silicon rubber interface with silicon-grease in tracking failure test

    NASA Astrophysics Data System (ADS)

    Gu, Liang; Liu, W.; Lei, S. L.; Wang, S. B.; Deng, Y. Y.

    2011-06-01

    Imaging processing method was adopted to investigate the effect of silicon grease on tracking failure of the XLPEsilicon rubber interface by analyzing the distribution characteristics of discharge light and carbonization at the interface. Three interfaces were set up by pressing together a slice of XLPE and a slice of transparent silicon rubber. One filled silicon grease and the other partly filled the grease. As comparison, the third one filled on grease. High voltage (AC 50 Hz) was applied on a pair of flat-round electrodes sandwiched at the interface with their insulation distance of 5 mm. When the test voltage was raised to a certain value, discharge occurred and discharge light appeared and carbonization accumulated at the interface. The discharge light from discharge to the failure and the carbonization after the failure was recorded with a digital video recorder and then the images were analyzed with image processing method. Obtained results show that silicon grease at the interface weakens the transportation of charge and enhances the interfacial breakdown strength. However, interfacial discharge and tracking failure easily occur once discharge appears. Image processing method is helpful to understand the tracking failure process and mechanism of XLPE cable joint.

  19. Doping profile measurements in silicon using terahertz time domain spectroscopy (THz-TDS) via electrochemical anodic oxidation

    NASA Astrophysics Data System (ADS)

    Tulsyan, Gaurav

    Doping profiles are engineered to manipulate device properties and to determine electrical performances of microelectronic devices frequently. To support engineering studies afterward, essential information is usually required from physically characterized doping profiles. Secondary Ion Mass Spectrometry (SIMS), Spreading Resistance Profiling (SRP) and Electrochemical Capacitance Voltage (ECV) profiling are standard techniques for now to map profile. SIMS yields a chemical doping profile via ion sputtering process and owns a better resolution, whereas ECV and SRP produce an electrical doping profile detecting free carriers in microelectronic devices. The major difference between electrical and chemical doping profiles is at heavily doped regions greater than 1020 atoms/cm3. At the profile region over the solubility limit, inactive dopants induce a flat plateau and detected by electrical measurements only. Destructive techniques are usually designed as stand-alone systems to study impurities. For an in-situ process control purpose, non-contact methods, such as ellipsometry and non-contact capacitance voltage (CV) techniques are current under development. In this theses work, terahertz time domain spectroscopy (THz-TDS) is utilized to achieve electrical doping profile in both destructive and non-contact manners. In recent years the Terahertz group at Rochester Institute Technology developed several techniques that use terahertz pulses to non-destructively map doping profiles. In this thesis, we study a destructive but potentially higher resolution version of the terahertz based approach to map the profile of activated dopants and augment the non-destructive approaches already developed. The basic idea of the profile mapping approach developed in this MS thesis is to anodize, and thus oxidize to silicon dioxide, thin layers (down to below 10 nm) of the wafer with the doping profile to be mapped. Since the dopants atoms and any free carriers in the silicon oxide thin

  20. Impact of doping and MOCVD conditions on minority carrier lifetime of zinc- and carbon-doped InGaAs and its applications to zinc- and carbon-doped InP/InGaAs heterostructure bipolar transistors

    NASA Astrophysics Data System (ADS)

    Cui, Delong; Hubbard, Seth M.; Pavlidis, Dimitris; Eisenbach, Andreas; Chelli, Cyril

    2002-06-01

    The impact of doping and metalorganic chemical vapour deposition growth conditions on the minority carrier lifetime of zinc- and carbon-doped InGaAs is reported. Room temperature photoluminescence measurements have been employed to obtain direct information on the non-radiative lifetime of the materials. Low growth temperature and low V/III ratio lead to the lower carrier lifetime of the carbon-doped InGaAs samples. InP/InGaAs heterostructure bipolar transistors were grown and fabricated using both zinc- and carbon-doped InGaAs layers as the base regions. The current gain values measured for these devices agree well with the values calculated from the carrier lifetime and mobility/diffusion coefficient measurements.

  1. The pathway to intelligent implants: osteoblast response to nano silicon-doped hydroxyapatite patterning

    PubMed Central

    Munir, G.; Koller, G.; Di Silvio, L.; Edirisinghe, M. J.; Bonfield, W.; Huang, J.

    2011-01-01

    Bioactive hydroxyapatite (HA) with addition of silicon (Si) in the crystal structure (silicon-doped hydroxyapatite (SiHA)) has become a highly attractive alternative to conventional HA in bone replacement owing to the significant improvement in the in vivo bioactivity and osteoconductivity. Nanometre-scaled SiHA (nanoSiHA), which closely resembles the size of bone mineral, has been synthesized in this study. Thus, the silicon addition provides an extra chemical cue to stimulate and enhance bone formation for new generation coatings, and the next stage in metallic implantation design is to further improve cellular adhesion and proliferation by control of cell alignment. Topography has been found to provide a powerful set of signals for cells and form contact guidance. Using the recently developed novel technique of template-assisted electrohydrodynamic atomization (TAEA), patterns of pillars and tracks of various dimensions of nanoSiHA were achieved. Modifying the parameters of TAEA, the resolution of pattern structures was controlled, enabling the topography of a substrate to be modified accordingly. Spray time, flow rate and distance between the needle and substrate were varied to improve the pattern formation of pillars and tracks. The 15 min deposition time provided the most consistent patterned topography with a distance of 50 mm and flow rate of 4 µl min−1. A titanium substrate was patterned with pillars and tracks of varying widths, line lengths and distances under the optimized TAEA processing condition. A fast bone-like apatite formation rate was found on nanoSiHA after immersion in simulated body fluid, thus demonstrating its high in vitro bioactivity. Primary human osteoblast (HOB) cells responded to SiHA patterns by stretching of the filopodia between track and pillar, attaching to the apex of the pillar pattern and stretching between two. HOB cells responded to the track pattern by elongating along and between the track, and the length of HOB cells

  2. Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Lijun; Nakano, Satoshi; Kakimoto, Koichi

    2008-04-01

    The content and uniformity of carbon and silicon carbide (SiC) precipitates have an important impact on the efficiency of solar cells made of multicrystalline silicon. We established a dynamic model of SiC particle precipitation in molten silicon based on the Si-C phase diagram. Coupling with a transient global model of heat transfer, computations were carried out to clarify the characteristics of carbon segregation and particle formation in a directional solidification process for producing multicrystalline silicon for solar cells. The effects of impurity level in silicon feedstock and solidification process conditions on the distributions of substitutional carbon and SiC precipitates in solidified silicon ingots were investigated. It was shown that the content of SiC particles precipitated in solidified ingots increases markedly in magnitude as well as in space with increase in carbon concentration in silicon feedstock when it exceeds 1.26×10 17 atoms/cm 3. The distribution of SiC precipitates can be controlled by optimizing the process conditions. SiC precipitates are clustered at the center-upper region in an ingot solidified in a fast-cooling process but at the periphery-upper region for a slow-cooling process.

  3. Chemical sensors using coated or doped carbon nanotube networks

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Meyyappan, Meyya (Inventor)

    2010-01-01

    Methods for using modified single wall carbon nanotubes ("SWCNTs") to detect presence and/or concentration of a gas component, such as a halogen (e.g., Cl.sub.2), hydrogen halides (e.g., HCl), a hydrocarbon (e.g., C.sub.nH.sub.2n+2), an alcohol, an aldehyde or a ketone, to which an unmodified SWCNT is substantially non-reactive. In a first embodiment, a connected network of SWCNTs is coated with a selected polymer, such as chlorosulfonated polyethylene, hydroxypropyl cellulose, polystyrene and/or polyvinylalcohol, and change in an electrical parameter or response value (e.g., conductance, current, voltage difference or resistance) of the coated versus uncoated SWCNT networks is analyzed. In a second embodiment, the network is doped with a transition element, such as Pd, Pt, Rh, Ir, Ru, Os and/or Au, and change in an electrical parameter value is again analyzed. The parameter change value depends monotonically, not necessarily linearly, upon concentration of the gas component. Two general algorithms are presented for estimating concentration value(s), or upper or lower concentration bounds on such values, from measured differences of response values.

  4. IRAC test report. Gallium doped silicon band 2: Read noise and dark current

    NASA Technical Reports Server (NTRS)

    Lamb, Gerald; Shu, Peter; Mather, John; Ewin, Audrey; Bowser, Jeffrey

    1987-01-01

    A direct readout infrared detector array, a candidate for the Space Infrared Telescope Facility (SIRTF) Infrared Array Camera (IRAC), has been tested. The array has a detector surface of gallium doped silicon, bump bonded to a 58x62 pixel MOSFET multiplexer on a separate chip. Although this chip and system do not meet all the SIRTF requirements, the critically important read noise is within a factor of 3 of the requirement. Significant accomplishments of this study include: (1) development of a low noise correlated double sampling readout system with a readout noise of 127 to 164 electrons (based on the detector integrator capacitance of 0.1 pF); (2) measurement of the readout noise of the detector itself, ranging from 123 to 214 electrons with bias only (best to worst pixel), and 256 to 424 electrons with full clocking in normal operation at 5.4 K where dark current is small. Thirty percent smaller read noises are obtained at a temperature of 15K; (3) measurement of the detector response versus integration time, showing significant nonlinear behavior for large signals, well below the saturation level; and (4) development of a custom computer interface and suitable software for collection, analysis and display of data.

  5. Effect of ultraviolet light exposure to boron doped hydrogenated amorphous silicon oxide thin film

    NASA Astrophysics Data System (ADS)

    Baek, Seungsin; Iftiquar, S. M.; Jang, Juyeon; Lee, Sunhwa; Kim, Minbum; Jung, Junhee; Park, Hyeongsik; Park, Jinjoo; Kim, Youngkuk; Shin, Chonghoon; Lee, Youn-Jung; Yi, Junsin

    2012-11-01

    We have investigated the effect of ultraviolet (UV) light exposure to boron doped (p-type) hydrogenated amorphous silicon oxide (p-a-SiO:H) thin semiconductor films by measuring changes in its structural, electrical and optical properties. After a 50 h of UV light soaking (LS) of the films, that have 1.2, 6.9, 15.2, 25.3 at.% oxygen content (C(O)) and optical gap (E04) of 1.897, 2.080, 2.146 and 2.033 eV, show a relative increase in the C(O) by 28.0%, 9.8%, 2.0%, 3.1%, a relative increase in the Urbach energy (Eu) by 42%, 24%, 8%, 0%, decrease in the E04 by 66, 2, 12, 19 meV and the gap state defect density (Nd) show an increase by 6.5%, 3.4%, 0.7%, 0.1%. At higher oxygen content the observed UV light induced degradation (LID) is relatively less than that for films with lower oxygen content, indicating that higher oxides face less changes under the UV light.

  6. Defects Induced by Carbon Contamination in Low-Temperature Epitaxial Silicon Films Grown with Monosilane

    NASA Astrophysics Data System (ADS)

    Sato, Shin'ya; Mizushima, Ichiro; Miyano, Kiyotaka; Sato, Tsutomu; Nakamura, Shin'ichi; Tsunashima, Yoshitaka; Arikado, Tsunetoshi; Uchitomi, Naotaka

    2005-03-01

    The structures of the defects induced by carbon contamination in epitaxial silicon films grown with monosilane (SiH4) on silicon substrates were investigated. A new formation mechanism of defects associated with carbon in silicon epitaxial growth processes is proposed. The carbon contaminants were introduced prior to the growth by chemical vapor deposition (CVD), where the growth chamber was intentionally contaminated with organic materials. The carbon contaminant concentration was changed by adjusting the annealing conditions at temperatures ranging from 900°C to 1100°C. Silicon epitaxial films were grown by CVD at a temperature of 700°C. In this experiment, we found that pits were formed as dominant surface defects under the condition of a relatively low carbon concentration of less than 4.5× 1013 cm-2, while mound defects were formed at a carbon concentration of more than 4.5× 1013 cm-2. These defects can be explained by the formation of silicon carbide (SiC) islands resulting from the carbon contamination.

  7. Electronic and material characterization of silicon-germanium and silicon-germanium-carbon epitaxial layers

    NASA Astrophysics Data System (ADS)

    Peterson, Jeffrey John

    This dissertation presents results of material and electronic characterization of strained SiGe and SiGeC epitaxial layers grown on (100) silicon using Atmospheric Pressure Chemical Vapor Deposition and Reduced Pressure Chemical Vapor Deposition. Fabrication techniques for SiGe and SiGeC are also presented. Materials characterization of epitaxial SiGe and SiGeC was done to characterize crystallinity using visual, microscopic, and Rutherford Backscattering (RBS) characterization. Surface roughness was characterized and found to correspond roughly with epitaxial crystal quality. Spectroscopic ellipsometry was used to study epitaxial layer composition and thickness, requiring development of models for nSiGe and nSiGeC versus composition (the first published for nSiGeC) and generation of ellipsometric nomograms. X-ray diffraction (XRD) measurements of epitaxial strain and relaxation showed Ge composition dominates the stress, although strain compensation due to C was observed. XRD, Raman, and Fourier Transform Infrared (FTIR) characterization were done to characterize substitutional C in SiGeC epitaxial layers, finding that C incorporation into SiGeC saturates for C contents >1%. Fabrication techniques for SiGe and SiGeC were examined. Low thermal budget processing of strained layers were investigated as well as fabrication techniques using advantageous material properties of SiGe and SiGeC. Ti/Al contacts were developed and characterized for electrical contact to SiGe and SiGeC. Schottky contacts of Pt silicide on SiGe and SiGeC was done; formation and resistivity were characterized. Four separate resistivity characterization structures have been fabricated using mesa-etch and Si etch-stop techniques. A NPN Heterojunction Bipolar transistor has been fabricated using successive mesa-etches and SiGe (or SiGeC) etch-stops. Electronic characterization of in-situ doped SiGe and SiGeC epitaxial layers was done to determine resistivity, mobility, and bandgap. Resistivities

  8. Sprout-like growth of carbon nanowires on a carbon-doped Ni(1 1 1) surface

    NASA Astrophysics Data System (ADS)

    Fujita, D.; Kumakura, T.; Onishi, K.; Sagisaka, K.; Ohgi, T.; Harada, M.

    2004-09-01

    Sprout-like growth of carbon nanowires on single-crystal graphite (0 0 0 1) terraces on a carbon-doped Ni(1 1 1) substrate has been observed for the first time using only a heat treatment in ultrahigh vacuum. Nanometer-scale morphology and chemistry have been clarified by low-energy electron diffraction, Auger electron spectroscopy and scanning tunneling microscopy (STM). The growth mechanism is based on a bulk-to-surface precipitation process of internal carbon atoms that were doped in a high-purity Ni(1 1 1) substrate in advance. The observed carbon nanowires are single wires and their bundles, which have a metallic conductivity. The structures have some similarity to those of single-wall and multi-wall carbon nanotubes. Simple manipulation of a single carbon nanowire is demonstrated by STM.

  9. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Yanqing; Fugetsu, Bunshi; Wang, Zhipeng; Gong, Wei; Sakata, Ichiro; Morimoto, Shingo; Hashimoto, Yoshio; Endo, Morinobu; Dresselhaus, Mildred; Terrones, Mauricio

    2017-01-01

    Nitrogen-doped porous activated carbon monoliths (NDP-ACMs) have long been the most desirable materials for supercapacitors. Unique to the conventional template based Lewis acid/base activation methods, herein, we report on a simple yet practicable novel approach to production of the three-dimensional NDP-ACMs (3D-NDP-ACMs). Polyacrylonitrile (PAN) contained carbon nanotubes (CNTs), being pre-dispersed into a tubular level of dispersions, were used as the starting material and the 3D-NDP-ACMs were obtained via a template-free process. First, a continuous mesoporous PAN/CNT based 3D monolith was established by using a template-free temperature-induced phase separation (TTPS). Second, a nitrogen-doped 3D-ACM with a surface area of 613.8 m2/g and a pore volume 0.366 cm3/g was obtained. A typical supercapacitor with our 3D-NDP-ACMs as the functioning electrodes gave a specific capacitance stabilized at 216 F/g even after 3000 cycles, demonstrating the advantageous performance of the PAN/CNT based 3D-NDP-ACMs.

  10. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors

    PubMed Central

    Wang, Yanqing; Fugetsu, Bunshi; Wang, Zhipeng; Gong, Wei; Sakata, Ichiro; Morimoto, Shingo; Hashimoto, Yoshio; Endo, Morinobu; Dresselhaus, Mildred; Terrones, Mauricio

    2017-01-01

    Nitrogen-doped porous activated carbon monoliths (NDP-ACMs) have long been the most desirable materials for supercapacitors. Unique to the conventional template based Lewis acid/base activation methods, herein, we report on a simple yet practicable novel approach to production of the three-dimensional NDP-ACMs (3D-NDP-ACMs). Polyacrylonitrile (PAN) contained carbon nanotubes (CNTs), being pre-dispersed into a tubular level of dispersions, were used as the starting material and the 3D-NDP-ACMs were obtained via a template-free process. First, a continuous mesoporous PAN/CNT based 3D monolith was established by using a template-free temperature-induced phase separation (TTPS). Second, a nitrogen-doped 3D-ACM with a surface area of 613.8 m2/g and a pore volume 0.366 cm3/g was obtained. A typical supercapacitor with our 3D-NDP-ACMs as the functioning electrodes gave a specific capacitance stabilized at 216 F/g even after 3000 cycles, demonstrating the advantageous performance of the PAN/CNT based 3D-NDP-ACMs. PMID:28074847

  11. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors.

    PubMed

    Wang, Yanqing; Fugetsu, Bunshi; Wang, Zhipeng; Gong, Wei; Sakata, Ichiro; Morimoto, Shingo; Hashimoto, Yoshio; Endo, Morinobu; Dresselhaus, Mildred; Terrones, Mauricio

    2017-01-11

    Nitrogen-doped porous activated carbon monoliths (NDP-ACMs) have long been the most desirable materials for supercapacitors. Unique to the conventional template based Lewis acid/base activation methods, herein, we report on a simple yet practicable novel approach to production of the three-dimensional NDP-ACMs (3D-NDP-ACMs). Polyacrylonitrile (PAN) contained carbon nanotubes (CNTs), being pre-dispersed into a tubular level of dispersions, were used as the starting material and the 3D-NDP-ACMs were obtained via a template-free process. First, a continuous mesoporous PAN/CNT based 3D monolith was established by using a template-free temperature-induced phase separation (TTPS). Second, a nitrogen-doped 3D-ACM with a surface area of 613.8 m(2)/g and a pore volume 0.366 cm(3)/g was obtained. A typical supercapacitor with our 3D-NDP-ACMs as the functioning electrodes gave a specific capacitance stabilized at 216 F/g even after 3000 cycles, demonstrating the advantageous performance of the PAN/CNT based 3D-NDP-ACMs.

  12. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    PubMed Central

    Hwang, Jeongwoon; Ihm, Jisoon; Lee, Kwang-Ryeol; Kim, Seungchul

    2015-01-01

    We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV). As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries.

  13. Improved photovoltaic performance of multiple carbon-doped ZnO nanostructures under UV and visible light irradiation.

    PubMed

    Liu, Xianbin; Du, Hejun; Sun, Xiao Wei; Zhan, Zhaoyao; Sun, Gengzhi; Li, Fengji; Zheng, Lianxi; Zhang, Sam

    2014-09-01

    We report synthesis of multiple carbon-doped ZnO nanostructures by using carbon cloth as substrates to obtain multiple hollow ZnO microtube-nanowire structures. X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy analysis clearly show that carbon is doped into ZnO through substitution of carbon for oxygen in the growth and annealing processes. Upon exposure to 633-nm red laser, a distinct photoresponse can be observed, which indicates that carbon doping in ZnO can well extend its light harvesting to visible light region. Furthermore, a prototype of photovoltaic cell was fabricated to demonstrate the photovoltaic performance of multiple carbon-doped ZnO nanostructures under UV and visible light irradiation. This result shows that carbon-doped ZnO can act as effective photoactive materials for photoelectric components.

  14. Solid-like ablation propulsion generation in nanosecond pulsed laser interaction with carbon-doped glycerol

    NASA Astrophysics Data System (ADS)

    Zheng, Zhi-Yuan; Zhang, Si-Qi; Liang, Tian; Qi, Jing; Tang, Wei-Chong; Xiao, Ke; Gao, Lu; Gao, Hua; Zhang, Zi-Li

    2017-03-01

    A solid-like propellant of carbon-doped glycerol ablated by a nanosecond pulsed laser is investigated. The results show that the specific impulse increases with increasing carbon content, and a maximum value of 228 s is obtained. The high specific impulse is attributed to the low ablated mass loss that occurs at high carbon content. More importantly, with increasing carbon content, the properties of the doped glycerol approach to those of a solid. These results indicate that propulsion at the required coupling coefficient and specific impulse can be realized by doping a liquid propellant with an absorber. Project supported by the Fundamental Research Funds for the Central Universities, China (Grant Nos. 53200859165 and 2562010050).

  15. High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries.

    PubMed

    Lin, Yong-Mao; Klavetter, Kyle C; Abel, Paul R; Davy, Nicholas C; Snider, Jonathan L; Heller, Adam; Mullins, C Buddie

    2012-07-25

    Electrodes composed of silicon nanoparticles (SiNP) were prepared by slurry casting and then electrochemically tested in a fluoroethylene carbonate (FEC)-based electrolyte. The capacity retention after cycling was significantly improved compared to electrodes cycled in a traditional ethylene carbonate (EC)-based electrolyte.

  16. Fabrication of carbon-coated silicon nanowires and their application in dye-sensitized solar cells.

    PubMed

    Kim, Junhee; Lim, Jeongmin; Kim, Minsoo; Lee, Hae-Seok; Jun, Yongseok; Kim, Donghwan

    2014-11-12

    We report the fabrication of silicon/carbon core/shell nanowire arrays using a two-step process, involving electroless metal deposition and chemical vapor deposition. In general, foreign shell materials that sheath core materials change the inherent characteristics of the core materials. The carbon coating functionalized the silicon nanowire arrays, which subsequently showed electrocatalytic activities for the reduction of iodide/triiodide. This was verified by cyclic voltammetry and electrochemical impedance spectroscopy. We employed the carbon-coated silicon nanowire arrays in dye-sensitized solar cells as counter electrodes. We optimized the carbon shells to maximize the photovoltaic performance of the resulting devices, and subsequently, a peak power conversion efficiency of 9.22% was achieved.

  17. Highly p-doped regions in silicon solar cells quantitatively analyzed by small angle beveling and micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Becker, M.; Gösele, U.; Hofmann, A.; Christiansen, S.

    2009-10-01

    Highly p-doped regions in multicrystalline silicon solar cells, such as the back surface field region, are analyzed by means of small angle beveling and micro-Raman spectroscopy. Small angle beveling and subsequent Secco etching are used to enhance the lateral resolution of the micro-Raman spectroscopic measurements and to investigate the microstructure of the back surface field region in detail. The position-dependent analysis of the free carrier concentrations within the back surface field region is based on the Raman specific Fano resonances. The Raman spectroscopic measurement results are compared to results obtained from electrochemical capacitance-voltage measurements, which allows a subsequent calibration of the Raman data for the quantitative analysis of the free carrier concentrations within the highly p-doped regions of silicon solar cells and other devices. Our investigations show that the free carrier as well as the dopant concentration profiles within the back surface field region exhibit a nearly step-functional shape instead of the extended gradient shape which the electrochemical capacitance-voltage measurements suggest. Moreover, we show that the shape of the back surface field is often influenced by grain boundaries and other defects that occur in multicrystalline silicon wafers.

  18. Electronic properties and dopant pairing behavior of manganese in boron-doped silicon

    NASA Astrophysics Data System (ADS)

    Roth, T.; Rosenits, P.; Diez, S.; Glunz, S. W.; Macdonald, D.; Beljakowa, S.; Pensl, G.

    2007-11-01

    Boron-doped silicon wafers implanted with low doses of manganese have been analyzed by means of deep-level transient spectroscopy (DLTS), injection-dependent lifetime spectroscopy, and temperature-dependent lifetime spectroscopy. While DLTS measurements allow the defect levels and majority carrier capture cross sections to be determined, the lifetime spectroscopy techniques allow analysis of the dominant recombination levels and the corresponding ratios of the capture cross sections. Interstitial manganese and manganese-boron pairs were found to coexist, and their defect parameters have been investigated. In good agreement with the literature, this study identifies the defect level of manganese-boron pairs to be located in the lower half of the band gap at an energy level of Ev+0.55 eV with a majority carrier capture cross section of σp=3.5×10-13 cm2. The capture cross-section ratio was found to be k=σn/σp=6.0. This implies that the previously unknown minority carrier capture cross section is σn=2.1×1012 cm2. Concerning the defect related to interstitial manganese, this study identifies the most recombination-active level to be located in the upper half of the band gap at EC-0.45 eV with a corresponding ratio of the capture cross sections of k =9.4. In addition, the temperature-dependent association time constant of manganese-boron pairs is determined to be τassoc,Mn=8.3×105 K-1 cm-3(T /Ndop)exp(0.67 eV/kBT) and found to differ from that for iron by a factor of 3 at room temperature, allowing this association time constant to be used as a fingerprint for a possible contamination with manganese. Also, the diffusion coefficient of interstitial manganese in silicon is determined from these experiments in a temperature range from 70 to 120 °C. It can be represented by the expression DMn=6.9×10-4 cm2 s-1 exp(-0.67 eV/kBT).

  19. Palladium nanoparticles supported on titanium doped graphitic carbon nitride for formic acid dehydrogenation.

    PubMed

    Wu, Yongmei; Wen, Meicheng; Navlani-García, Miriam; Kuwahara, Yasutaka; Mori, Kohsuke; Yamashita, Hiromi

    2017-02-28

    Pd nanoparticles (NPs) supported on Ti-doped graphitic carbon nitride (g-C₃N₄) were synthetised by a deposition-precipitation route and a subsequent reduction with NaBH₄. The features of Pd supported Ti-doped g-C₃N₄ were studied by XRD, TEM, FT-IR, XPS, EXAFS and N₂ physisorption measurements. It was found that the NPs had an average size of 2.9 nm and presented a high dispersion on the surface of Ti-doped g-C₃N₄. Compared with Pd loaded on pristine g-C₃N₄, Pd NPs supported Ti-doped g-C₃N₄ catalyst exhibited a high activity in formic acid dehydrogenation in water at room temperature. The enhanced activity can be attributed to the small Pd NPs size as well as the strong interaction between Pd NPs and Ti-doped g-C₃N₄.

  20. Performance dependency on doping level of carbon nanotube for ballistic CNTFETs

    NASA Astrophysics Data System (ADS)

    Shirazi, Shaahin G.; Mirzakuchaki, Sattar

    2013-09-01

    Carbon nanotube (CNT) could be exploited as a channel or source/drain region in field effect transistors (FETs). We theoretically investigate the impact of CNT doping level on a coaxially gated CNTFET's performance in the ballistic regime. The results show that the transconductance and subthreshold swing are independent of the CNT doping value. But threshold voltage and output conductance strongly depend on the channel doping level. It seems that the most important impact of CNT doping is the change in off-state current values resulting in a shift in the transfer characteristics of the device. However, it is possible to choose an optimal value of CNT doping to obtain the highest performance.

  1. Post-synthesis carbon doping of individual multiwalled boron nitride nanotubes via electron-beam irradiation.

    PubMed

    Wei, Xianlong; Wang, Ming-Sheng; Bando, Yoshio; Golberg, Dmitri

    2010-10-06

    We report on post-synthesis carbon doping of individual boron nitride nanotubes (BNNTs) via in situ electron-beam irradiation inside an energy-filtering 300 keV high-resolution transmission electron microscope. The substitution of C for B and N atoms in the honeycomb lattice was demonstrated through electron energy loss spectroscopy, spatially resolved energy-filtered elemental mapping, and in situ electrical measurements. Substitutional C doping transformed BNNTs from electrical insulators to conductors. In comparison with the existing post-synthesis doping methods for nanoscale materials (e.g., ion implantation and diffusion), the discovered electron-beam-induced doping is a well-controlled, little-damaging, room-temperature, and simple strategy that is expected to demonstrate great promise for post-synthesis doping of diverse nanomaterials in the future.

  2. Growth of metal-catalyst-free nitrogen-doped metallic single-wall carbon nanotubes.

    PubMed

    Li, Jin-Cheng; Hou, Peng-Xiang; Zhang, Lili; Liu, Chang; Cheng, Hui-Ming

    2014-10-21

    Nitrogen-doped (N-doped) single-wall carbon nanotubes (SWCNTs) were synthesized by chemical vapor deposition using SiOx nanoparticles as a catalyst and ethylenediamine as the source of both carbon and nitrogen. The N-doped SWCNTs have a mean diameter of 1.1 nm and a narrow diameter range, with 92% of them having diameters from 0.7 to 1.4 nm. Multi-wavelength laser Raman spectra and temperature-dependent electrical resistance indicate that the SWCNT sample is enriched with metallic nanotubes. These N-doped SWCNTs showed excellent electrocatalytic activity for the oxygen reduction reaction and highly selective and sensitive sensing ability for dopamine detection.

  3. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    PubMed

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-08

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles.

  4. Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination

    PubMed Central

    Ji, Hanxu; Zhou, Feng; Gu, Jiangjiang; Shu, Chen; Xi, Kai; Jia, Xudong

    2016-01-01

    Nitrogen-doped carbon dots are introduced as a novel substrate suitable for enzyme immobilization in electrochemical detection metods. Nitrogen-doped carbon dots are easily synthesised from polyacrylamide in just one step. With the help of the amino group on chitosan, glucose oxidase is immobilized on nitrogen-doped carbon dots-modified carbon glassy electrodes by amino-carboxyl reactions. The nitrogen-induced charge delocalization at nitrogen-doped carbon dots can enhance the electrocatalytic activity toward the reduction of O2. The specific amino-carboxyl reaction provides strong and stable immobilization of GOx on electrodes. The developed biosensor responds efficiently to the presence of glucose in serum samples over the concentration range from 1 to 12 mM with a detection limit of 0.25 mM. This novel biosensor has good reproducibility and stability, and is highly selective for glucose determination under physiological conditions. These results indicate that N-doped quantum dots represent a novel candidate material for the construction of electrochemical biosensors. PMID:27153071

  5. Field Emission of Thermally Grown Carbon Nanostructures on Silicon Carbide

    DTIC Science & Technology

    2012-03-22

    process, current CNT field emission issues, and patterning of silicon carbide ( SiC ). 2.2. CNT Background 2.2.1. CNT Structure CNT’s basic...density is obtain when S=3h [46] 2.5. Patterning of SiC 2.5.1. Silicon Carbide Properties As a result of its structure and material, SiC has...Its chemical inertness, however, limits the available techniques needed to pattern a SiC wafer. 2.5.2. Silicon Carbide Etching Because SiC

  6. Growth of metal-catalyst-free nitrogen-doped metallic single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Jin-Cheng; Hou, Peng-Xiang; Zhang, Lili; Liu, Chang; Cheng, Hui-Ming

    2014-09-01

    Nitrogen-doped (N-doped) single-wall carbon nanotubes (SWCNTs) were synthesized by chemical vapor deposition using SiOx nanoparticles as a catalyst and ethylenediamine as the source of both carbon and nitrogen. The N-doped SWCNTs have a mean diameter of 1.1 nm and a narrow diameter range, with 92% of them having diameters from 0.7 to 1.4 nm. Multi-wavelength laser Raman spectra and temperature-dependent electrical resistance indicate that the SWCNT sample is enriched with metallic nanotubes. These N-doped SWCNTs showed excellent electrocatalytic activity for the oxygen reduction reaction and highly selective and sensitive sensing ability for dopamine detection.Nitrogen-doped (N-doped) single-wall carbon nanotubes (SWCNTs) were synthesized by chemical vapor deposition using SiOx nanoparticles as a catalyst and ethylenediamine as the source of both carbon and nitrogen. The N-doped SWCNTs have a mean diameter of 1.1 nm and a narrow diameter range, with 92% of them having diameters from 0.7 to 1.4 nm. Multi-wavelength laser Raman spectra and temperature-dependent electrical resistance indicate that the SWCNT sample is enriched with metallic nanotubes. These N-doped SWCNTs showed excellent electrocatalytic activity for the oxygen reduction reaction and highly selective and sensitive sensing ability for dopamine detection. Electronic supplementary information (ESI) available: Additional information including Raman spectra, ORR polarization curves, CV curves, etc. See DOI: 10.1039/c4nr03172e

  7. Carbon-nanotube electron-beam (C-beam) crystallization technique for silicon TFTs

    NASA Astrophysics Data System (ADS)

    Lee, Su Woong; Kang, Jung Su; Park, Kyu Chang

    2016-02-01

    We introduced a carbon-nanotube (CNT) electron beam (C-beam) for thin film crystallization and thin film transistor (TFT) applications. As a source of electron emission, a CNT emitter which had been grown on a silicon wafer with a resist-assisted patterning (RAP) process was used. By using the C-beam exposure, we successfully crystallized a silicon thin film that had nano-sized crystalline grains. The distribution of crystalline grain size was about 10 ˜ 30 nm. This nanocrystalline silicon thin film definitely had three crystalline directions which are (111), (220) and (311), respectively. The silicon TFTs crystallized by using a C-beam exposure showed a field effect mobility of 20 cm2/Vs and an on/off ratio of more than 107. The C-beam exposure can modify the bonding network of amorphous silicon with its proper energy.

  8. Improvement in cell proliferation on silicone rubber by carbon nanotube coating.

    PubMed

    Matsuoka, Makoto; Akasaka, Tsukasa; Hashimoto, Takeshi; Totsuka, Yasunori; Watari, Fumio

    2009-01-01

    Silicone rubbers are widely used as tissue implants because of their flexibility and chemical stability. However, they have limited cellular adhesiveness and may cause problems in the long term. In this study, a coating of carbon nanotubes (CNTs) was applied to silicone rubber to improve its cellular adhesiveness. Scanning electron micrograph of this coating revealed that CNTs had formed a densely packed meshwork; the Ra values and protein adsorption capacity were enhanced. Although the contact angle did not change after coating, it decreased after immersion into a culture medium. After cultivation for 6 d, while Saos-2 cells were hardly observed on untreated silicone, the cells proliferated on CNT-coated silicone. Thus, CNT coating might be a simple and effective solution to problems associated with silicone implants.

  9. Doping controlled roughness and defined mesoporosity in chemically etched silicon nanowires with tunable conductivity

    NASA Astrophysics Data System (ADS)

    McSweeney, W.; Lotty, O.; Mogili, N. V. V.; Glynn, C.; Geaney, H.; Tanner, D.; Holmes, J. D.; O'Dwyer, C.

    2013-07-01

    By using Si(100) with different dopant type (n++-type (As) or p-type (B)), we show how metal-assisted chemically etched (MACE) nanowires (NWs) can form with rough outer surfaces around a solid NW core for p-type NWs, and a unique, defined mesoporous structure for highly doped n-type NWs. We used high resolution electron microscopy techniques to define the characteristic roughening and mesoporous structure within the NWs and how such structures can form due to a judicious choice of carrier concentration and dopant type. The n-type NWs have a mesoporosity that is defined by equidistant pores in all directions, and the inter-pore distance is correlated to the effective depletion region width at the reduction potential of the catalyst at the silicon surface in a HF electrolyte. Clumping in n-type MACE Si NWs is also shown to be characteristic of mesoporous NWs when etched as high density NW layers, due to low rigidity (high porosity). Electrical transport investigations show that the etched nanowires exhibit tunable conductance changes, where the largest resistance increase is found for highly mesoporous n-type Si NWs, in spite of their very high electronic carrier concentration. This understanding can be adapted to any low-dimensional semiconducting system capable of selective etching through electroless, and possibly electrochemical, means. The process points to a method of multiscale nanostructuring NWs, from surface roughening of NWs with controllable lengths to defined mesoporosity formation, and may be applicable to applications where high surface area, electrical connectivity, tunable surface structure, and internal porosity are required.

  10. Plasmons in doped finite carbon nanotubes and their interactions with fast electrons and quantum emitters

    NASA Astrophysics Data System (ADS)

    de Vega, Sandra; Cox, Joel D.; de Abajo, F. Javier García

    2016-08-01

    We study the potential of highly doped finite carbon nanotubes to serve as plasmonic elements that mediate the interaction between quantum emitters. Similar to graphene, nanotubes support intense plasmons that can be modulated by varying their level of electrical doping. These excitations exhibit large interaction with light and electron beams, as revealed upon examination of the corresponding light extinction cross-section and electron energy-loss spectra. We show that quantum emitters experience record-high Purcell factors, while they undergo strong mutual interaction mediated by their coupling to the tube plasmons. Our results show the potential of doped finite nanotubes as tunable plasmonic materials for quantum optics applications.

  11. Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes.

    PubMed

    Fu, Kun; Yildiz, Ozkan; Bhanushali, Hardik; Wang, Yongxin; Stano, Kelly; Xue, Leigang; Zhang, Xiangwu; Bradford, Philip D

    2013-09-25

    Aligned carbon nanotube sheets provide an engineered scaffold for the deposition of a silicon active material for lithium ion battery anodes. The sheets are low-density, allowing uniform deposition of silicon thin films while the alignment allows unconstrained volumetric expansion of the silicon, facilitating stable cycling performance. The flat sheet morphology is desirable for battery construction.

  12. Modeling carbon and silicon cycling in the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Fujii, Masahiko; Chai, Fei

    2007-03-01

    coccolithophorids and higher NO 3 regulation on coccolithophorid growth, with lower and higher source Si(OH) 4 concentrations, respectively. Surface total alkalinity has its minimum and TCO 2 has its maximum at intermediate source Si(OH) 4 concentrations. The two effects on pCO 2sea result in maximum CO 2 release to the atmosphere and PIC export to the deep water, with nearby standard source Si(OH) 4 concentration of 7.5 (mmol Si m -3). The enhanced changes in biogenic silica export flux than in surface diatom biomass, confirmed by the model sensitivity study, suggest sedimented detritus under the equatorial Pacific upwelling region acts as an amplifier of changes in surface properties. The model results suggest that physical forcing, such as tropical instability waves, Kelvin waves, and La Niña, which is capable of changing Si(OH) 4 and iron concentrations in the euphotic zone, significantly affect both carbon and silicon fluxes in the region.

  13. Carbonate Hydroxyapatite and Silicon-Substituted Carbonate Hydroxyapatite: Synthesis, Mechanical Properties, and Solubility Evaluations

    PubMed Central

    Bang, L. T.; Long, B. D.; Othman, R.

    2014-01-01

    The present study investigates the chemical composition, solubility, and physical and mechanical properties of carbonate hydroxyapatite (CO3Ap) and silicon-substituted carbonate hydroxyapatite (Si-CO3Ap) which have been prepared by a simple precipitation method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF) spectroscopy, and inductively coupled plasma (ICP) techniques were used to characterize the formation of CO3Ap and Si-CO3Ap. The results revealed that the silicate (SiO44−) and carbonate (CO32−) ions competed to occupy the phosphate (PO43−) site and also entered simultaneously into the hydroxyapatite structure. The Si-substituted CO3Ap reduced the powder crystallinity and promoted ion release which resulted in a better solubility compared to that of Si-free CO3Ap. The mean particle size of Si-CO3Ap was much finer than that of CO3Ap. At 750°C heat-treatment temperature, the diametral tensile strengths (DTS) of Si-CO3Ap and CO3Ap were about 10.8 ± 0.3 and 11.8 ± 0.4 MPa, respectively. PMID:24723840

  14. Structural phase states in nickel-titanium surface layers doped with silicon by plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Kashin, Oleg A.; Lotkov, Aleksandr I.; Kudryashov, Andrey N.; Krukovsky, Konstantin V.; Ostapenko, Marina G.; Neiman, Alexey A.; Borisov, Dmitry P.

    2015-10-01

    The paper reports on a study of NiTi-based alloys used for manufacturing self-expanding intravascular stents to elucidate how the technological modes of plasma immersion ion implantation with silicon influence the chemical and phase composition of their surface layers. It is shown that two types of surface structure can be obtained depending on the mode of plasma immersion implantation: quasi-amorphous Si coating and Si-doped surface layer. The Si-doped surface layer contains new phases: a phase structured as the main B2 phase of NiTi but with a lower lattice parameter, R phase, and phase of highly dispersed SiO2 precipitates.

  15. Dehydroxyl effect of Sn-doped silicon oxide resistance random access memory with supercritical CO2 fluid treatment

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Ming; Chang, Kuan-Chang; Chang, Ting-Chang; Syu, Yong-En; Liao, Kuo-Hsiao; Tseng, Bae-Heng; Sze, Simon M.

    2012-09-01

    The tin-doped can supply conduction path to induce resistance switching behavior. However, the defect of tin-doped silicon oxide (Sn:SiOx) increased the extra leakage path lead to power consumption and joule heating degradation. In the study, supercritical CO2 fluids treatment was used to improve resistive switching property. The current conduction of high resistant state in post-treated Sn:SiOx film was transferred to Schottky emission from Frenkel-Poole due to the passivation effect. The molecular reaction model is proposed that the defect was passivated through dehydroxyl effect of supercritical fluid technology, verified by material analyses of x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy.

  16. Laser stimulated piezoelectricity in Er3+ doped GeO2-Bi2O3 glasses containing silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Kassab, Luciana Reyes Pires; Camilo, Mauricio Eiji; da Silva, Diego Silverio; de Assumpção, Thiago Alexandre Alves; Fedorchuk, A. O.; Plucinski, K. J.

    2014-12-01

    We report the first observation of the laser stimulated piezoelectricity in Er3+ doped GeO2-Bi2O3 glasses containing silicon nanocrystals, prepared using the simple well known melt quenching technique. Two split beams originated from the same nanosecond lasers were used for the performance of the bicolor laser treatment. The fundamental (λ = 1064 nm) and the doubled frequency (λ = 532 nm) signal of a pulsed nanosecond Nd:YAG laser, as the fundamental (λ = 1540 nm) and the doubled frequency (λ = 770 nm) signal of an Er:glass laser were used. The ratio of power densities between the fundamental and the doubled frequency beams has been varied from 4:1 to 8:1. This value was chosen to achieve the maximum output photoinduced piezoelectric response. The present photoinduced piezoelectricity effect opens a new road for obtaining optically operated piezoelectric devices in germanate composites doped with rare-earth ions.

  17. A new analytical drain current model of cylindrical gate silicon tunnel FET with source δ-doping

    NASA Astrophysics Data System (ADS)

    Dash, Sidhartha; Jena, Biswajit; Mishra, Guru Prasad

    2016-09-01

    A new δ-doped cylindrical gate silicon tunnel FET (DCG-TFET) analytical model is developed and investigated extensively, with the aim of addressing the challenges of the conventional CG-TFET. The improvement in tunneling probability of charge carriers has been achieved by inserting a δ-doping sheet in the source region which leads to high drain current as compared to CG-TFET. The effect of distance between the δ-doping sheet and source/channel interface on the current performance, sub-threshold swing (SS) and threshold voltage (Vth) has been examined. The instantaneous position of δ-doping region from the tunneling junction is optimized based on the trade-off between current ratio and SS. The present model exhibit maximum switching current ratio (ION/IOFF ≅1012) for an optimum distance of 2 nm without degrading SS (SS∼55 mV/decade) and Vth performance. The electrostatic behavior of the present model is obtained using the solution of Poisson's equation in the cylindrical coordinate system. However the impact of scaling of the gate oxide thickness and cylindrical pillar diameter on drain current performance has been discussed. In future, DCG-TFET can be one of the potential successors for ultra-low-power applications because of its improved drain current and switching ratio.

  18. Mechanistic insights into biomimetic carbonic anhydrase action catalyzed by doped carbon nanotubes and graphene.

    PubMed

    Verma, Manju; Deshpande, Parag A

    2017-03-29

    Electronic structural analyses of hydrogen terminated metal doped carbon nanotube/graphene (M-CNT/Gr, MN3-CNT/Gr, M = Ru/Rh) and ruthenium cluster decorated carbon nanotube/graphene (Ru4-CNT/Gr) were carried out for examining the biomimetic catalytic activity towards CO2 hydration reaction. The carbonic anhydrase action was followed for the reaction of CO2 with H2O resulting in a bicarbonate ion and a proton. All the catalysts were found to be active for CO2 hydration and the mechanism proved them to be biomimetic. Interconversion of CO2 to a HCO3(-) ion took place with five elementary steps viz. OH(-) formation by H2O dissociation, linear CO2 complexation, CO2 bending by nucleophilic attack of an OH(-) ion over CO2, HCO3(-) ion formation by intramolecular proton migration and HCO3(-) ion displacement by H2O addition. Free energy landscapes over the catalysts were developed for CO2 hydration reaction. The activation energies of H2O dissociation and CO2 bending were observed to be substantially smaller over Ru4-CNT when compared to those over the other catalysts. Ru4-CNT was found to be the best catalyst for CO2 hydration with the rate limiting step being HCO3(-) ion formation.

  19. Carbon Nanotube-Silicon Nanowire Heterojunction Solar Cells with Gas-Dependent Photovoltaic Performances and Their Application in Self-Powered NO2 Detecting.

    PubMed

    Jia, Yi; Zhang, Zexia; Xiao, Lin; Lv, Ruitao

    2016-12-01

    A multifunctional device combining photovoltaic conversion and toxic gas sensitivity is reported. In this device, carbon nanotube (CNT) membranes are used to cover onto silicon nanowire (SiNW) arrays to form heterojunction. The porous structure and large specific surface area in the heterojunction structure are both benefits for gas adsorption. In virtue of these merits, gas doping is a feasible method to improve cell's performance and the device can also work as a self-powered gas sensor beyond a solar cell. It shows a significant improvement in cell efficiency (more than 200 times) after NO2 molecules doping (device working as a solar cell) and a fast, reversible response property for NO2 detection (device working as a gas sensor). Such multifunctional CNT-SiNW structure can be expected to open a new avenue for developing self-powered, efficient toxic gas-sensing devices in the future.

  20. Carbon Nanotube-Silicon Nanowire Heterojunction Solar Cells with Gas-Dependent Photovoltaic Performances and Their Application in Self-Powered NO2 Detecting

    NASA Astrophysics Data System (ADS)

    Jia, Yi; Zhang, Zexia; Xiao, Lin; Lv, Ruitao

    2016-06-01

    A multifunctional device combining photovoltaic conversion and toxic gas sensitivity is reported. In this device, carbon nanotube (CNT) membranes are used to cover onto silicon nanowire (SiNW) arrays to form heterojunction. The porous structure and large specific surface area in the heterojunction structure are both benefits for gas adsorption. In virtue of these merits, gas doping is a feasible method to improve cell's performance and the device can also work as a self-powered gas sensor beyond a solar cell. It shows a significant improvement in cell efficiency (more than 200 times) after NO2 molecules doping (device working as a solar cell) and a fast, reversible response property for NO2 detection (device working as a gas sensor). Such multifunctional CNT-SiNW structure can be expected to open a new avenue for developing self-powered, efficient toxic gas-sensing devices in the future.

  1. Carbon dioxide laser-induced combustion of extravasated intraocular silicone oil in the eyelid mimicking xanthelasma.

    PubMed

    Santaella, Ricardo M; Ng, John D; Wilson, David J

    2011-01-01

    A 48-year-old woman with a history of retinal detachment repair with vitrectomy, scleral buckling, and silicone oil with subsequent oil removal was referred for unilateral upper eyelid ptosis with edema and overlying skin changes simulating xanthelasma. During surgical excision, a white flare-like plume was noted when the carbon dioxide (CO2) laser was used to make the incisions. The pathology report confirmed silicone oil intrusion in the conjunctiva and upper eyelid. A postoperative in vitro experiment showed that silicone oil was readily ignited by the CO2 laser.

  2. Coupled fiber taper extraction of 1.53 microm photoluminescence from erbium doped silicon nitride photonic crystal cavities.

    PubMed

    Shambat, Gary; Gong, Yiyang; Lu, Jesse; Yerci, Selçuk; Li, Rui; Dal Negro, Luca; Vucković, Jelena

    2010-03-15

    Optical fiber tapers are used to collect photoluminescence emission at approximately 1.5 microm from photonic crystal cavities fabricated in erbium doped silicon nitride on silicon. In the experiment, photoluminescence collection via one arm of the fiber taper is enhanced 2.5 times relative to free space collection, corresponding to a net collection efficiency of 4%. Theoretically, the collection efficiency into one arm of the fiber-taper with this material system and cavity design can be as high as 12.5%, but the degradation of the experimental coupling efficiency relative to this value mainly comes from scattering loss within the short taper transition regions. By varying the fiber taper offset from the cavity, a broad tuning range of coupling strength and collection efficiency is obtained. This material system combined with fiber taper collection is promising for building on-chip optical amplifiers.

  3. Excess carrier generation in femtosecond-laser processed sulfur doped silicon by means of sub-bandgap illumination

    SciTech Connect

    Guenther, Kay-Michael; Gimpel, Thomas; Ruibys, Augustinas; Kontermann, Stefan; Tomm, Jens W.; Winter, Stefan; Schade, Wolfgang

    2014-01-27

    With Fourier-transform photocurrent spectroscopy and spectral response measurements, we show that silicon doped with sulfur by femtosecond laser irradiation generates excess carriers, when illuminated with infrared light above 1100 nm. Three distinct sub-bandgap photocurrent features are observed. Their onset energies are in good agreement with the known sulfur levels S{sup +}, S{sup 0}, and S{sub 2}{sup 0}. The excess carriers are separated by a pn-junction to form a significant photocurrent. Therefore, this material likely demonstrates the impurity band photovoltaic effect.

  4. Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sourice, Julien; Bordes, Arnaud; Boulineau, Adrien; Alper, John P.; Franger, Sylvain; Quinsac, Axelle; Habert, Aurélie; Leconte, Yann; De Vito, Eric; Porcher, Willy; Reynaud, Cécile; Herlin-Boime, Nathalie; Haon, Cédric

    2016-10-01

    Core-shell silicon-carbon nanoparticles are attractive candidates as active material to increase the capacity of Li-ion batteries while mitigating the detrimental effects of volume expansion upon lithiation. However crystalline silicon suffers from amorphization upon the first charge/discharge cycle and improved stability is expected in starting with amorphous silicon. Here we report the synthesis, in a single-step process, of amorphous silicon nanoparticles coated with a carbon shell (a-Si@C), via a two-stage laser pyrolysis where decomposition of silane and ethylene are conducted in two successive reaction zones. Control of experimental conditions mitigates silicon core crystallization as well as formation of silicon carbide. Auger electron spectroscopy and scanning transmission electron microscopy show a carbon shell about 1 nm in thickness, which prevents detrimental oxidation of the a-Si cores. Cyclic voltammetry demonstrates that the core-shell composite reaches its maximal lithiation during the first sweep, thanks to its amorphous core. After 500 charge/discharge cycles, it retains a capacity of 1250 mAh.g-1 at a C/5 rate and 800 mAh.g-1 at 2C, with an outstanding coulombic efficiency of 99.95%. Moreover, post-mortem observations show an electrode volume expansion of less than 20% and preservation of the nanostructuration.

  5. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor.

    PubMed

    Ma, Guofu; Yang, Qian; Sun, Kanjun; Peng, Hui; Ran, Feitian; Zhao, Xiaolong; Lei, Ziqiang

    2015-12-01

    High capacitance property and low cost are the pivotal requirements for practical application of supercapacitor. In this paper, a low cost and high capacitance property nitrogen-doped porous carbon with high specific capacitance is prepared. The as-prepared nitrogen-doped porous carbon employing potato waste residue (PWR) as the carbon source, zinc chloride (ZnCl2) as the activating agent and melamine as nitrogen doping agent. The morphology and structure of the carbon materials are studied by scanning electron microscopy (SEM), N2 adsorption/desorption, X-ray diffraction (XRD) and Raman spectra. The surface area of the nitrogen-doped carbon which prepared under 700°C is found to be 1052m(2)/g, and the specific capacitance as high as 255Fg(-1) in 2M KOH electrolyte is obtained utilize the carbon as electrode materials. The electrode materials also show excellent cyclability with 93.7% coulombic efficiency at 5Ag(-1) current density of for 5000cycles.

  6. Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wang, Yaling; Feng, Xiaoting; Zhang, Feng; Yang, Yongzhen; Liu, Xuguang

    2016-11-01

    To investigate the effect of reaction temperature and nitrogen doping on the structure and fluorescence properties of carbon dots (CDs), six kinds of nitrogen-doped CDs (NCDs) were synthesized at reaction temperatures of 120, 140, 160, 180, 200 and 220 °C, separately, by using citric acid as carbon source and ammonia solution as nitrogen source. Nitrogen-free CDs (N-free CDs-180) was also prepared at 180 °C by using citric acid as the only carbon source for comparison. Results show that reaction temperature has obvious effect on carbonization degree, quantum yield (QY), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectra but less effect on functional groups, nitrogen doping degree and fluorescence lifetime of NCDs. Compared with N-free CDs-180, NCDs-180 possesses enchanced QY and longer fluorescence lifetime. Doping nitrogen has obvious effect on UV-vis absorption and PL spectra but less effect on particles sizes and carbonization degree. The formation mechanism of NCDs is explored: QY of NCDs depends largely on the number of fluorescent polymer chains (FPC), the competition between FPC formation on the surface of NCDs and carbon core growth leads to the change in number of FPC, and consequently to the NCDs with highest QY at appropriate hydrothermal temperature.

  7. Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament

    NASA Technical Reports Server (NTRS)

    Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.

    1988-01-01

    Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.

  8. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene

    NASA Astrophysics Data System (ADS)

    Li, Xingyun; Pan, Xiulian; Yu, Liang; Ren, Pengju; Wu, Xing; Sun, Litao; Jiao, Feng; Bao, Xinhe

    2014-04-01

    Acetylene hydrochlorination is an important coal-based technology for the industrial production of vinyl chloride, however it is plagued by the toxicity of the mercury chloride catalyst. Therefore extensive efforts have been made to explore alternative catalysts with various metals. Here we report that a nanocomposite of nitrogen-doped carbon derived from silicon carbide activates acetylene directly for hydrochlorination in the absence of additional metal species. The catalyst delivers stable performance during a 150 hour test with acetylene conversion reaching 80% and vinyl chloride selectivity over 98% at 200 °C. Experimental studies and theoretical simulations reveal that the carbon atoms bonded with pyrrolic nitrogen atoms are the active sites. This proof-of-concept study demonstrates that such a nanocomposite is a potential substitute for mercury while further work is still necessary to bring this to the industrial stage. Furthermore, the finding also provides guidance for design of carbon-based catalysts for activation of other alkynes.

  9. Energy band-gap shift with gamma-ray radiation and carbon n-delta-doping in GaAs/AlGaAs QWs structures

    NASA Astrophysics Data System (ADS)

    Daoudi, M.; Hosni, F.; Khalifa, N.; Dhifallah, I.; Farah, K.; Hamzaoui, A. H.; Ouerghi, A.; Chtourou, R.

    2014-05-01

    The aim of this work is to investigate two different delta-doping (silicon and carbon) after gamma irradiation. Delta-doping GaAs/AlGaAs heterojunctions grown by molecular beam epitaxy on (1 0 0) GaAs substrates have been studied by photoluminescence (PL) spectroscopy. A theoretical study was conducted using the resolution of Schrödinger and Poisson equations written within the Hartree approximation. PL measurements as function of the power excitation at 10 K shows a red-shift due to free carriers effect on properties of GaAs/AlGaAs quantum well (QW). Its dependence on the density of the two-dimensional electron gas (2DEG) at the GaAs/AlGaAs interface has been analyzed on the basis of the quantum confined Stark, the band-gap renormalization and Burstein-Moss (BM) effects. It is noted that the gamma radiation has changed the type of the exciton recombination.

  10. Can trans-polyacetylene be formed on single-walled carbon-doped boron nitride nanotubes?

    PubMed

    Chen, Ying; Wang, Hong-xia; Zhao, Jing-xiang; Cai, Qing-hai; Wang, Xiao-guang; Wang, Xuan-zhang

    2012-07-01

    Recently, the grafting of polymer chains onto nanotubes has attracted increasing attention as it can potentially be used to enhance the solubility of nanotubes and in the development of novel nanotube-based devices. In this article, based on density functional theory (DFT) calculations, we report the formation of trans-polyacetylene on single-walled carbon-doped boron nitride nanotubes (BNNTs) through their adsorption of a series of C(2)H(2) molecules. The results show that, rather than through [2 + 2] cycloaddition, an individualmolecule would preferentially attach to a carbon-doped BNNT via "carbon attack" (i.e., a carbon in the C(2)H(2) attacks a site on the BNNT). The adsorption energy gradually decreases with increasing tube diameter. The free radical of the carbon-doped BNNT is almost completely transferred to the carbon atom at the end of the adsorbed C(2)H(2) molecule. When another C(2)H(2) molecule approaches the carbon-doped BNNT, it is most energetically favorable for this C(2)H(2) molecule to be adsorbed at the end of the previously adsorbed C(2)H(2) molecule, and so on with extra C(2)H(2) molecules, leading to the formation of polyacetylene on the nanotube. The spin of the whole system is always localized at the tip of the polyacetylene formed, which initiates the adsorption of the incoming species. The present results imply that carbon-doped BNNT is an effective "metal-free" initiator for the formation of polyacetylene.

  11. Investigation of the silicon concentration effect on Si-doped anatase TiO{sub 2} by first-principles calculation

    SciTech Connect

    Shi Weimei; Chen Qifeng; Xu Yao; Wu Dong; Huo Chunfang

    2011-08-15

    A first-principles calculation based on the density functional theory (DFT) was used to investigate the energetic and electronic properties of Si-doped anatase TiO{sub 2} with various silicon concentrations. The theoretical calculations showed that with Si-doping the valence band and conduction band of TiO{sub 2} became hybrid ones with large dispersion, which could benefit the mobility of the photo-generated carriers. This result is in agreement with the experimental reports. At lower doping levels, the band gap of Si-doped anatase TiO{sub 2} decreases about 0.2 eV. With the increase of silicon concentration, the band gap increases gradually and larger formation energies are required during the synthesis of Si-doped TiO{sub 2}. - Graphical abstract: The total density of states (TDOS) of Ti{sub 1-x}Si{sub x}O{sub 2} with (a) x=0, (b) x=0.03125, (c) x=0.0625, (d) x=0.09375 and (e) x=0.125. Highlights: > The effect of Si content on the electronic structure in Si-doped anatase TiO{sub 2}. > Large dispersion of DOS in VB and CB benefits the mobility of the carriers. > Low Si-doping level reduces the band gap of Si-doped anatase TiO{sub 2} with 0.2 eV.

  12. Nickel embedded in N-doped porous carbon for the hydrogenation of nitrobenzene to p-aminophenol in sulphuric acid.

    PubMed

    Wang, Tao; Dong, Zhen; Fu, Teng; Zhao, Yanchao; Wang, Tian; Wang, Yongzheng; Chen, Yi; Han, Baohang; Ding, Weiping

    2015-12-28

    An acid-resistant catalyst composed of nickel embedded in N-doped porous carbon is developed for the catalytic hydrogenation of nitrobenzene (NB) to p-aminophenol (PAP). The catalyst, due to a special electron donation from nickel to the N-doped porous carbon, shows an excellent catalytic performance and stability in sulphuric acid solution.

  13. Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

    DOE PAGES

    Saini, Viney; Li, Zhongrui; Bourdo, Shawn; ...

    2011-01-13

    A simple and easily processible photovoltaic device has been developed based on borondoped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The single-walled carbon nanotubes (SWNTs) were substitutionally doped with boron atoms by thermal annealing, in the presence of B2O3. The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection and transportation, whilemore » the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques.« less

  14. Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

    SciTech Connect

    Saini, Viney; Li, Zhongrui; Bourdo, Shawn; Kunets, Vasyl P.; Trigwell, Steven; Couraud, Arthur; Rioux, Julien; Boyer, Cyril; Nteziyaremye, Valens; Dervishi, Enkeleda; Biris, Alexandru R.; Salamo, Gregory J.; Viswanathan, Tito; Biris, Alexandru S.

    2011-01-13

    A simple and easily processible photovoltaic device has been developed based on borondoped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The single-walled carbon nanotubes (SWNTs) were substitutionally doped with boron atoms by thermal annealing, in the presence of B2O3. The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection and transportation, while the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques.

  15. A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors.

    PubMed

    Close, Gael F; Yasuda, Shinichi; Paul, Bipul; Fujita, Shinobu; Wong, H-S Philip

    2008-02-01

    Due to their excellent electrical properties, metallic carbon nanotubes are promising materials for interconnect wires in future integrated circuits. Simulations have shown that the use of metallic carbon nanotube interconnects could yield more energy efficient and faster integrated circuits. The next step is to build an experimental prototype integrated circuit using carbon nanotube interconnects operating at high speed. Here, we report the fabrication of the first stand-alone integrated circuit combining silicon transistors and individual carbon nanotube interconnect wires on the same chip operating above 1 GHz. In addition to setting a milestone by operating above 1 GHz, this prototype is also a tool to investigate carbon nanotubes on a silicon-based platform at high frequencies, paving the way for future multi-GHz nanoelectronics.

  16. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, S. J.; Lin, S. S.; Li, X. Q.; Liu, X. Y.; Wu, H. A.; Xu, W. L.; Wang, P.; Wu, Z. Q.; Zhong, H. K.; Xu, Z. J.

    2015-12-01

    Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications.Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron

  17. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity

    SciTech Connect

    Zhang, Ligang; Chen, Xiufang; Guan, Jing; Jiang, Yijun; Hou, Tonggang; Mu, Xindong

    2013-09-01

    Graphical abstract: - Highlights: • P-doped g-C{sub 3}N{sub 4} has been prepared by a one-pot green synthetic approach. • The incorporation of P resulted in favorable textural and electronic properties. • Doping with P enhanced the visible-light photocatalytic activity of g-C{sub 3}N{sub 4}. • A postannealing treatment further enhanced the activity of P-doped g-C{sub 3}N{sub 4}. • Photogenerated holes were the main species responsible for the activity. - Abstract: Phosphorus-doped carbon nitride materials were prepared by a one-pot green synthetic approach using dicyandiamide monomer and a phosphorus containing ionic liquid as precursors. The as-prepared materials were subjected to several characterizations and investigated as metal-free photocatalysts for the degradation of organic pollutants (dyes like Rhodamine B, Methyl orange) in aqueous solution under visible light. Results revealed that phosphorus-doped carbon nitride have a higher photocatalytic activity for decomposing Rhodamine B and Methyl orange in aqueous solution than undoped g-C{sub 3}N{sub 4}, which was attributed to the favorable textural, optical and electronic properties caused by doping with phosphorus heteroatoms into carbon nitride host. A facile postannealing treatment further improved the activity of the photocatalytic system, due to the higher surface area and smaller structural size in the postcalcined catalysts. The phosphorus-doped carbon nitride showed high visible-light photocatalytic activity, making them promising materials for a wide range of potential applications in photochemistry.

  18. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor.

    PubMed

    Tan, Yueming; Xu, Chaofa; Chen, Guangxu; Liu, Zhaohui; Ma, Ming; Xie, Qingji; Zheng, Nanfeng; Yao, Shouzhuo

    2013-03-01

    Synthesis of nitrogen-doped carbons with large surface area, high conductivity, and suitable pore size distribution is highly desirable for high-performance supercapacitor applications. Here, we report a novel protocol for template synthesis of ultrathin nitrogen-doped graphitic carbon nanocages (CNCs) derived from polyaniline (PANI) and their excellent capacitive properties. The synthesis of CNCs involves one-pot hydrothermal synthesis of Mn3O4@PANI core-shell nanoparticles, carbonization to produce carbon coated MnO nanoparticles, and then removal of the MnO cores by acidic treatment. The CNCs prepared at an optimum carbonization temperature of 800 °C (CNCs-800) have regular frameworks, moderate graphitization, high specific surface area, good mesoporosity, and appropriate N doping. The CNCs-800 show high specific capacitance (248 F g(-1) at 1.0 A g(-1)), excellent rate capability (88% and 76% capacitance retention at 10 and 100 A g(-1), respectively), and outstanding cycling stability (~95% capacitance retention after 5000 cycles) in 6 M KOH aqueous solution. The CNCs-800 can also exhibit great pseudocapacitance in 0.5 M H2SO4 aqueous solution besides the large electrochemical double-layer capacitance. The excellent capacitance performance coupled with the facile synthesis of ultrathin nitrogen-doped graphitic CNCs indicates their great application potential in supercapacitors.

  19. Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications

    NASA Astrophysics Data System (ADS)

    Du, Yan; Guo, Shaojun

    2016-01-01

    Doping fluorescent carbon dots (DFCDs) with heteroatoms have recently become of great interest compared to traditional fluorescent materials because it provides a feasible and new way to tune the intrinsic properties of carbon quantum dots (CQDs) and graphene quantum dots (GQDs) to achieve new applications for them in different fields. Since the first report on nitrogen (N) doped GQDs in 2012, more effort is being focused on exploring different procedures for making new types of DFCDs with different heteroatoms. This mini review will summarize recent research progress on DFCDs. It first reviews various doping categories achieved up to now, looking back on the synthesis method and comparing the differences in synthesis approaches between the DFCDs and the undoped ones. Then it focuses on the advances on how the doping affects the optical properties, especially DFCDs doped with N, which have been investigated the most. Finally, different applications of DFCDs involving bio-imaging, sensing, catalysis and photoelectronic devices will be discussed. This review will give new insights into how to use different synthetic methods for tuning the structure of DFCDs, understanding the correlation between the doping and properties, and achieving new applications.

  20. ZIF-Derived Nitrogen-Doped Porous Carbons for Xe Adsorption and Separation

    NASA Astrophysics Data System (ADS)

    Zhong, Shan; Wang, Qian; Cao, Dapeng

    2016-02-01

    Currently, finding high capacity adsorbents with large selectivity to capture Xe is still a great challenge. In this work, nitrogen-doped porous carbons were prepared by programmable temperature carbonization of zeolitic imidazolate framework-8 (ZIF-8) and ZIF-8/xylitol composite precursors and the resultant samples are marked as Carbon-Z and Carbon-ZX, respectively. Further adsorption measurements indicate that ZIF-derived nitrogen-doped Carbon-ZX exhibits extremely high Xe capacity of 4.42 mmol g‑1 at 298 K and 1 bar, which is higher than almost all other pristine MOFs such as CuBTC, Ni/DOBDC, MOF-5 and Al-MIL-53, and even more than three times of the matrix ZIF-8 at similar conditions. Moreover, Carbon-ZX also shows the highest Xe/N2 selectivity about ~120, which is much larger than all other reported MOFs. These remarkable features illustrate that ZIF-derived nitrogen-doped porous carbon is an excellent adsorbent for Xe adsorption and separation at room temperature.

  1. The doping effect of multiwall carbon nanotube on MgB2/Fe superconductor wire

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Yeoh, W. K.; Qin, M. J.; Xu, X.; Dou, S. X.

    2006-07-01

    We evaluated the doping effect of two types of multiwall carbon nanotubes (CNTs) with different aspect ratios on MgB2/Fe monofilament wires. Relationships between microstructure, magnetic critical current density (Jc), critical temperature (Tc), upper critical field (Hc2), and irreversibility field (Hirr) for pure and CNT doped wires were systematically studied for sintering temperature from 650to1000°C. As the sintering temperature increased, Tc for short CNT doped sample slightly decreased, while Tc for long CNT doped sample increased. This indicates better reactivity between MgB2 and short CNT due to its small aspect ratio, and substitution of carbon (C) from short CNT for boron (B) occurs. In addition, short CNT doped samples sintered at high temperatures of 900 and 1000°C exhibited excellent Jc, and this value was approximately 104A /cm2 in fields up to 8T at 5K. This suggests that short CNT is a promising carbon source for MgB2 superconductor with excellent Jc. In particular, inclusion of nanosized MgO particles and substitution of C into the MgB2 lattice could result in strong flux pinning centers.

  2. Heteroatom-Containing Porous Carbons Derived from Ionic Liquid-Doped Alkali Organic Salts for Supercapacitors.

    PubMed

    Zhu, Jingyue; Xu, Dan; Qian, Wenjing; Zhang, Jinyu; Yan, Feng

    2016-04-13

    A simple strategy for the synthesis of heteroatom-doped porous carbon materials (CMs) via using ionic liquid (IL)-doped alkali organic salts as small molecular precursors is developed. Doping of alkali organic salts (such as sodium glutamate, sodium tartrate, and sodium citrate) with heteroatoms containing ILs (including 1-butyl-3-methylimidazolium chlorine and 3-butyl-4-methythiazolebromination) not only incorporates the heteroatoms into the carbon frameworks but also highly improves the carbonization yield, as compared with that of either alkali organic salts or ILs as precursors. The porous structure of CMs can be tuned by adjusting the feed ratio of ILs. The porous CMs derived from 1-butyl-3-methylimidazolium chlorine-doped sodium glutamate exhibit high charge storage capacity with a specific capacitance of 287 F g(-1) and good stability over 5000 cycles in 6 m KOH at a current density of 1 A g(-1) for supercapacitors. This strategy opens a simple and efficient method for the synthesis of heteroatom-doped porous CMs.

  3. Magnetization Study of Sulfur-doped Graphitic Nano-platelets and Single Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Oliveira, L.; Podila, R.; Neeleshwar, S.; Chen, Y. Y.; He, J.; Skove, M.; Rao, A. M.; Department of Physics and Astronomy, Clemson University Collaboration; Institute of Physics, Academia Sinica Collaboration

    2013-03-01

    Recently we investigated the magnetic behavior of as-prepared and sulfur doped chemically exfoliated graphene nano-platelets (GNPs) and single walled carbon nanotubes (SWCNTs). The doping was achieved by annealing desired carbon nanostructures with 0, 1.0, 1.5 and 3 at% sulfur in an evacuated quartz tube at 1000 °C for 1 day, followed by multiple rinsing in alcohol and drying in vacuum to remove excess sulfur. The isothermal M vs. H as well as the temperature-dependent M vs. T measurements were obtained using a vibrating sample magnetometer. We found that sulfur doping drastically changes the magnetic behavior of the as-prepared samples (both SWCNTs and GNPs). The results of zero-field-cooling (ZFC) and field-cooling (FC) in M vs. T measurements indicated the existence of large amount of coupled super-paramagnetic domains, along with antiferromagnetic domains. The saturation magnetization decreased in S doped GNPs, while a contrasting trend was observed in S doped SWCNTs. The role of edge states and structural defects in carbon nanostructures in the observed magnetic properties will be discussed.

  4. Silicon-coated carbon nanofiber hierarchical nanostructures for improved lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Simon, Gerard K.; Maruyama, Benji; Durstock, Michael F.; Burton, David J.; Goswami, Tarun

    Silicon-coated carbon nanofibers (CNFs) are a viable method of exploiting silicon's capacity in a battery anode while ameliorating the complications of silicon expansion as it alloys with lithium. Silicon-coated CNFs were fabricated through chemical vapor deposition and deposited onto a carbon fiber mesh. This novel anode material demonstrated a capacity of 954 mAh g -1 in the first cycle, but faded to 766 mAh g -1 after 20 cycles. Structural characterization of the samples before and after cycling was carried out using field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The results suggest that a portion of the fade may be due to separation of the silicon coating from the CNFs. Enough silicon remains in contact with the conductive network of CNFs to allow a usable reversible capacity that well exceeds that of graphite. An anode of this material can double the capacity of a lithium-ion battery or allow a 14% weight reduction.

  5. Unusually high dispersion of nitrogen-doped carbon nanotubes in DNA solution.

    PubMed

    Kim, Jin Hee; Kataoka, Masakazu; Fujisawa, Kazunori; Tojo, Tomohiro; Muramatsu, Hiroyuki; Vega-Díaz, Sofía M; Tristán-López, F; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Terrones, Mauricio; Dresselhaus, Mildred S

    2011-12-08

    The dispersibility in a DNA solution of bundled multiwalled carbon nanotubes (MWCNTs), having different chemical functional groups on the CNT sidewall, was investigated by optical spectroscopy. We observed that the dispersibility of nitrogen (N)-doped MWCNTs was significantly higher than that of pure MWCNTs and MWCNTs synthesized in the presence of ethanol. This result is supported by the larger amount of adsorbed DNA on N-doped MWCNTs, as well as by the higher binding energy established between nucleobases and the N-doped CNTs. Pure MWCNTs are dispersed in DNA solution via van der Waals and hydrophobic interactions; in contrast, the nitrogenated sites within N-doped MWCNTs provided additional sites for interactions that are important to disperse nanotubes in DNA solutions.

  6. Doping of carbon nanotubes with aluminum atom to improve Pt adsorption

    NASA Astrophysics Data System (ADS)

    Ganji, M. D.; Ahangari, M. Ghorbanzadeh; Khosravi, A.

    2014-01-01

    We implement the ab initio van der Waals (vdW) calculations at the density functional level of theory (vdW-DF) for the investigation of Pt adsorption ability of Al-doped carbon nanotubes (Al-CNTs). We present and discuss the energetically favorable sites for a single Pt atom adsorbed on the surface of Al-CNTs. Our results show significantly increment in the binding energy of Pt on the Al-CNT compared with pristine CNTs. We also find that Pt adsorption ability of Al-CNTs is more stronger than that of B- and N-doped CNTs. This is explained by the negative charges introduced in the neighboring C atoms by dopant atom. Our results verify that Al-doped CNTs seems to be more suitable materials for Pt adsorption than pure and also B- and N-doped CNTs.

  7. Electron transport characteristics of one-dimensional heterojunctions with multi-nitrogen-doped capped carbon nanotubes.

    PubMed

    Lee, Sang Uck; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2010-12-01

    We present a systematic analysis of electron transport characteristics for one-dimensional heterojunctions with two multi-nitrogen-doped (multi-N-doped) capped carbon nanotubes (CNTs) facing one another at different numbers of nitrogen atoms and conformations. Our results show that the modification of the molecular orbitals by the nitrogen dopants generates conducting channels in the designed heterojunctions inducing multi-switching behavior with sequential negative differential resistance (NDR). The NDR behavior significantly depends on the doping site and conformation of doped nitrogen atoms. Furthermore, we provide a clear interpretation for the NDR behavior by a rigid shift model of the HOMO- and LUMO-filtered energy levels in the left and right electrodes under the applied biases. We believe that our results will give an insight into the design and implementation of various electronic logic functions based on CNTs for applications in the field of nanoelectronics.

  8. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.

    PubMed

    Badi, Nacer; Erra, Abhinay Reddy; Hernandez, Francisco C Robles; Okonkwo, Anderson O; Hobosyan, Mkhitar; Martirosyan, Karen S

    2014-01-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for

  9. Comparison of metallic silver and copper doping effects on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kharlamova, M. V.; Niu, J. J.

    2012-10-01

    In this work we performed the filling of single-walled carbon nanotube channels with metallic silver and copper by means of two-step synthesis including imbuing with metal nitrate aqueous solution and further annealing. It has been shown that metal insertion into the nanotube cavities results in the Fermi level upshift and the charge transfer from metal to carbon atoms, thus donor doping of single-walled carbon nanotubes takes place. At the same time, encapsulated silver has a larger donor effect on the carbon nanotubes that has been proved by Raman spectroscopy and X-ray photoelectron spectroscopy.

  10. The structure and charge-storage capacitance of carbonized films based on silicon-polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Zavyalov, S. A.; Kulova, T. L.; Kupriyanov, L. Yu.; Roginskaya, Yu. E.; Skundin, A. M.

    2008-12-01

    New film materials for electrodes of lithium batteries were synthesized and studied. Thin-film silicon-polymer composites were prepared by vacuum cocondensation of silicon and the monomer onto a substrate cooled with liquid nitrogen; the polymerization and formation of the nanostructured composite were performed at room temperature. The films were carbonized by vacuum annealing. The film composition and microstructure were studied by AFM, SEM, Raman spectroscopy, and X-ray spectral microanalysis. It was shown that the polymer matrix became almost fully carbonized because of pyrolysis. The silicon concentration in the films varied from 2 to 5 at %. The concentration of silicon nanoparticles on carbonized film surfaces was ˜106 cm-2. Electrochemical experiments with lithium insertion into the composite films were performed in standard three-electrode cells under galvanostatic conditions. The specific capacitance of the films was measured. It was shown that the samples were capable of long-term cycling; the capacitance decreased by only 6% during the first 200 cycles; after 250 cycles, the capacitance still exceeded 80% of its initial value. The mechanism of lithium insertion into the films was discussed. It was concluded that long-term stability during cycling was caused by the presence of silicon both as nanoparticles and in the atomically dispersed form.

  11. Hollow Nanotubes of N-Doped Carbon on CoS.

    PubMed

    Chen, Yuming; Li, Xiaoyan; Park, Kyusung; Zhou, Limin; Huang, Haitao; Mai, Yiu-Wing; Goodenough, John B

    2016-12-19

    Low-cost, single-step synthesis of hollow nanotubes of N-doped carbon deposited on CoS is enabled by the simultaneous use of three functionalities of polyacrylonitrite (PAN) nanofibers: 1) a substrate for loading active materials, 2) a sacrificial template for creating hollow tubular structures, and 3) a precursor for in situ nitrogen doping. The N-doped carbon in hollow tubes of CoS provides a high-capacity anode of long cycle life for a rechargeable Li-ion or Na-ion battery cell that undergoes the conversion reaction 2 A(+) +2 e(-) +CoS →Co+A2 S with A=Li or Na.

  12. The Effect of Carbon Layer Variations in Carbon/Porous Silicon Composite Rugate Filters for End-of-Service-Life Indicators

    NASA Astrophysics Data System (ADS)

    Gofus, John Stephen, III

    Carbon/porous silicon composite rugate filters, for use as end-of service-life indicators in gas mask filters, are more capable of increased sensitivity to volatile organic chemical vapors than porous silicon sensors alone. Compositional variations of the carbon layer within these composite materials have not been well studied. At low carbon content, the carbonized surface will not effectively mimic the active carbon used in gas mask filters. At high carbon content, there is increased noise and a broader, less intense rugate stop band, reducing the signal to noise level of the sensor response. The focus of this thesis is the optimization of the carbon layer in the carbon/porous silicon composite rugate filters. To accomplish this, porous silicon rugate filters were etched and then carbonized using varying concentrations of the poly(furfuryl alcohol) precursor. Variations in the carbon layer were then analyzed via spectral analysis, elemental analysis, and nitrogen adsorption/desorption isotherms. At concentrations greater than 50% furfuryl alcohol there is minimal difference observed in the carbon layer on the porous silicon surface. Samples were also shown to have a minimal increase in sensitivity at concentrations greater than 50% furfuryl alcohol, and an increased signal-to-noise with increased furfuryl alcohol concentration. It is shown that the optimal carbon layer for volatile organic vapor sensing is achieved by using a furfuryl alcohol concentration of 50% furfuryl alcohol (in ethanol) during carbon layer synthesis.

  13. Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells.

    PubMed

    Yu, Linwei; Fortuna, Franck; O'Donnell, Benedict; Jeon, Taewoo; Foldyna, Martin; Picardi, Gennaro; Roca i Cabarrocas, Pere

    2012-08-08

    Silicon nanowires (SiNWs) are becoming a popular choice to develop a new generation of radial junction solar cells. We here explore a bismuth- (Bi-) catalyzed growth and doping of SiNWs, via vapor-liquid-solid (VLS) mode, to fabricate amorphous Si radial n-i-p junction solar cells in a one-pump-down and low-temperature process in a single chamber plasma deposition system. We provide the first evidence that catalyst doping in the SiNW cores, caused by incorporating Bi catalyst atoms as n-type dopant, can be utilized to fabricate radial junction solar cells, with a record open circuit voltage of V(oc) = 0.76 V and an enhanced light trapping effect that boosts the short circuit current to J(sc) = 11.23 mA/cm(2). More importantly, this bi-catalyzed SiNW growth and doping strategy exempts the use of extremely toxic phosphine gas, leading to significant procedure simplification and cost reduction for building radial junction thin film solar cells.

  14. Continuously tunable photonic fractional Hilbert transformer using a high-contrast germanium-doped silica-on-silicon microring resonator.

    PubMed

    Shahoei, Hiva; Dumais, Patrick; Yao, Jianping

    2014-05-01

    We propose and experimentally demonstrate a continuously tunable fractional Hilbert transformer (FHT) based on a high-contrast germanium-doped silica-on-silicon (SOS) microring resonator (MRR). The propagation loss of a high-contrast germanium-doped SOS waveguide can be very small (0.02 dB/cm) while the lossless bend radius can be less than 1 mm. These characteristics lead to the fabrication of an MRR with a high Q-factor and a large free-spectral range (FSR), which is needed to implement a Hilbert transformer (HT). The SOS MRR is strongly polarization dependent. By changing the polarization direction of the input signal, the phase shift introduced at the center of the resonance spectrum is changed. The tunable phase shift at the resonance wavelength can be used to implement a tunable FHT. A germanium-doped SOS MRR with a high-index contrast of 3.8% is fabricated. The use of the fabricated MRR for the implementation of a tunable FHT with tunable orders at 1, 0.85, 0.95, 1.05, and 1.13 for a Gaussian pulse with the temporal full width at half-maximum of 80 ps is experimentally demonstrated.

  15. Bi-Sn alloy catalyst for simultaneous morphology and doping control of silicon nanowires in radial junction solar cells

    SciTech Connect

    Yu, Zhongwei; Lu, Jiawen; Qian, Shengyi; Xu, Jun; Xu, Ling; Wang, Junzhuan; Shi, Yi; Chen, Kunji; Yu, Linwei E-mail: linwei.yu@polytechnique.edu

    2015-10-19

    Low-melting point metals such as bismuth (Bi) and tin (Sn) are ideal choices for mediating a low temperature growth of silicon nanowires (SiNWs) for radial junction thin film solar cells. The incorporation of Bi catalyst atoms leads to sufficient n-type doping in the SiNWs core that exempts the use of hazardous dopant gases, while an easy morphology control with pure Bi catalyst has never been demonstrated so far. We here propose a Bi-Sn alloy catalyst strategy to achieve both a beneficial catalyst-doping and an ideal SiNW morphology control. In addition to a potential of further growth temperature reduction, we show that the alloy catalyst can remain quite stable during a vapor-liquid-solid growth, while providing still sufficient n-type catalyst-doping to the SiNWs. Radial junction solar cells constructed over the alloy-catalyzed SiNWs have demonstrated a strongly enhanced photocurrent generation, thanks to optimized nanowire morphology, and largely improved performance compared to the reference samples based on the pure Bi or Sn-catalyzed SiNWs.

  16. Development of silicon carbide substrates by carbonization and ion implantation of single-crystalline substrates

    NASA Astrophysics Data System (ADS)

    Morales Sanchez, Francisco Miguel

    Mechanisms of formation involved in both thin films and crystalline precipitates of silicon carbide (SiC) are studied in this Ph. D. thesis. SiC is fabricated starting from single-crystalline silicon (Si) substrates by carbonization or by ion implantation. The characterization of these structures allows to gather data and better physical and chemical understanding of these systems. The main objectives are (i) the fabrication and characterization of SiC and other interesting crystalline phases obtained from Si wafers and (ii) to demonstrate that these products are a viable way for using them as templates, compliant, seed or buffer layers in SiC or III-N overgrowth by epitaxial growth techniques. These approaches let the consecution of a crystalline quality enough to the development of devices. Indeed, their use allow a significant reduction of the high defect density present in III-N or SiC alloys compared to their quality when directly grown on Si. Therefore, long life are foreseen for electronic devices that could use these substrates. This is the limit needed for the beginning of their industrial production and commercialization. Samples studied in this work are framed inside three groups: (1) Silicon Carbide and other phases (Silicon Nitride (Si3N4) and carbon nitride (C3N4)) synthesized by Silicon ion implantation, (2) Silicon Carbide synthesized by Si carbonisation and (3) Silicon Carbide and Gallium Nitride heteroepitaxial growth on carbonized Si. All these structures are fabricated by techniques derived from classic (i) Ion Beam Induced Crystallization (IBIC), (ii) Chemical Vapour Deposition (CVD) or (iii) Molecular Beam Epitaxy (MBE). Structural characterizations are carried out mainly by (i) Scanning Electron Microscopy (SEM), (ii) Transmission Electron Microscopy (TEM), (iii) Fourier Transform Infra Red Spectrometry (FTIR) and other techniques.

  17. An atomistic vision of the Mass Action Law: Prediction of carbon/oxygen defects in silicon

    SciTech Connect

    Brenet, G.; Timerkaeva, D.; Caliste, D.; Pochet, P.; Sgourou, E. N.; Londos, C. A.

    2015-09-28

    We introduce an atomistic description of the kinetic Mass Action Law to predict concentrations of defects and complexes. We demonstrate in this paper that this approach accurately predicts carbon/oxygen related defect concentrations in silicon upon annealing. The model requires binding and migration energies of the impurities and complexes, here obtained from density functional theory (DFT) calculations. Vacancy-oxygen complex kinetics are studied as a model system during both isochronal and isothermal annealing. Results are in good agreement with experimental data, confirming the success of the methodology. More importantly, it gives access to the sequence of chain reactions by which oxygen and carbon related complexes are created in silicon. Beside the case of silicon, the understanding of such intricate reactions is a key to develop point defect engineering strategies to control defects and thus semiconductors properties.

  18. An atomistic vision of the Mass Action Law: Prediction of carbon/oxygen defects in silicon

    NASA Astrophysics Data System (ADS)

    Brenet, G.; Timerkaeva, D.; Sgourou, E. N.; Londos, C. A.; Caliste, D.; Pochet, P.

    2015-09-01

    We introduce an atomistic description of the kinetic Mass Action Law to predict concentrations of defects and complexes. We demonstrate in this paper that this approach accurately predicts carbon/oxygen related defect concentrations in silicon upon annealing. The model requires binding and migration energies of the impurities and complexes, here obtained from density functional theory (DFT) calculations. Vacancy-oxygen complex kinetics are studied as a model system during both isochronal and isothermal annealing. Results are in good agreement with experimental data, confirming the success of the methodology. More importantly, it gives access to the sequence of chain reactions by which oxygen and carbon related complexes are created in silicon. Beside the case of silicon, the understanding of such intricate reactions is a key to develop point defect engineering strategies to control defects and thus semiconductors properties.

  19. Microhardness studies on thin carbon films grown on P-type, (100) silicon

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.

    1982-01-01

    A program to grow thin carbon films and investigate their physical and electrical properties is described. Characteristics of films grown by rf sputtering and vacuum arc deposition on p type, (100) silicon wafers are presented. Microhardness data were obtained from both the films and the silicon via the Vickers diamond indentation technique. These data show that the films are always harder than the silicon, even when the films are thin (of the order of 1000 A). Vacuum arc films were found to contain black carbon inclusions of the order of a few microns in size, and clusters of inclusions of the order of tens of microns. Transmission electron diffraction showed that the films being studied were amorphous in structure.

  20. Metalorganic Chemical Vapor Deposition of Ruthenium-Doped Diamond like Carbon Films

    NASA Technical Reports Server (NTRS)

    Sunkara, M. K.; Ueno, M.; Lian, G.; Dickey, E. C.

    2001-01-01

    We investigated metalorganic precursor deposition using a Microwave Electron Cyclotron Resonance (ECR) plasma for depositing metal-doped diamondlike carbon films. Specifically, the deposition of ruthenium doped diamondlike carbon films was investigated using the decomposition of a novel ruthenium precursor, Bis(ethylcyclopentadienyl)-ruthenium (Ru(C5H4C2H5)2). The ruthenium precursor was introduced close to the substrate stage. The substrate was independently biased using an applied RF power. Films were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Four Point Probe. The conductivity of the films deposited using ruthenium precursor showed strong dependency on the deposition parameters such as pressure. Ruthenium doped sample showed the presence of diamond crystallites with an average size of approx. 3 nm while un-doped diamondlike carbon sample showed the presence of diamond crystallites with an average size of 11 nm. TEM results showed that ruthenium was atomically dispersed within the amorphous carbon network in the films.

  1. Li2S encapsulated by nitrogen-doped carbon for lithium sulfur batteries

    DOE PAGES

    Chen, Lin; Liu, Yuzi; Ashuri, Maziar; ...

    2014-09-26

    Using high-energy ball milling of the Li2S plus carbon black mixture followed by carbonization of pyrrole, we have established a facile approach to synthesize Li2S-plus-C composite particles of average size 400 nm, encapsulated by a nitrogen-doped carbon shell. Such an engineered core–shell structure exhibits an ultrahigh initial discharge specific capacity (1029 mAh/g), reaching 88% of the theoretical capacity (1,166 mAh/g of Li2S) and thus offering the highest utilization of Li2S in the cathode among all of the reported works for the encapsulated Li2S cathodes. This Li2S/C composite core with a nitrogen-doped carbon shell can still retain 652 mAh/g after prolongedmore » 100 cycles. These superior properties are attributed to the nitrogen-doped carbon shell that can improve the conductivity to enhance the utilization of Li2S in the cathode. As a result, fine particle sizes and the presence of carbon black within the Li2S core may also play a role in high utilization of Li2S in the cathode.« less

  2. Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air.

    PubMed

    Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin

    2016-04-08

    Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m²/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection.

  3. Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air

    PubMed Central

    Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin

    2016-01-01

    Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m2/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection. PMID:27070588

  4. Reactive Melt Infiltration of Silicon-Niobium Alloys in Microporous Carbons

    NASA Technical Reports Server (NTRS)

    Singh, M.; Behrendt, D. R.

    1994-01-01

    Studies of the reactive melt infiltration of silicon-niobium alloys in microporous carbon preforms prepared by the pyrolysis of a polymer precursor have been carried out using modeling, Differential Thermal Analysis (DTA), and melt infiltration. Mercury porosimetry results indicate a very narrow pore size distribution with virtually all the porosity within the carbon preforms open to infiltrants. The morphology and amount of the residual phases (niobium disilicide and silicon) in the infiltrated material can be tailored according to requirements by careful control of the properties (pore size and pore volume) of the porous carbon preforms and alloy composition. The average room temperature four-point flexural strength of a reaction-formed silicon carbide material (made by the infiltration of medium pore size carbon preform with Si - 5 at. % Nb alloy) is 290 +/- 40 MPa (42 +/- 6 ksi) and the fracture toughness is 3.7 +/- 0.3 MPa square root of m. The flexural strength decreases at high temperatures due to relaxation of residual thermal stresses and the presence of free silicon in the material.

  5. Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries.

    PubMed

    Bhattacharjya, Dhrubajyoti; Park, Hyean-Yeol; Kim, Min-Sik; Choi, Hyuck-Soo; Inamdar, Shaukatali N; Yu, Jong-Sung

    2014-01-14

    Nitrogen-doped turbostratic carbon nanoparticles (NPs) are prepared using fast single-step flame synthesis by directly burning acetonitrile in air atmosphere and investigated as an anode material for lithium-ion batteries. The as-prepared N-doped carbon NPs show excellent Li-ion stoarage properties with initial discharge capacity of 596 mA h g(-1), which is 17% more than that shown by the corresponding undoped carbon NPs synthesized by identical process with acetone as carbon precursor and also much higher than that of commercial graphite anode. Further analysis shows that the charge-discharge process of N-doped carbon is highly stable and reversible not only at high current density but also over 100 cycles, retaining 71% of initial discharge capacity. Electrochemical impedance spectroscopy also shows that N-doped carbon has better conductivity for charge and ions than that of undoped carbon. The high specific capacity and very stable cyclic performance are attributed to large number of turbostratic defects and N and associated increased O content in the flame-synthesized N-doped carbon. To the best of our knowledge, this is the first report which demonstrates single-step, direct flame synthesis of N-doped turbostratic carbon NPs and their application as a potential anode material with high capacity and superior battery performance. The method is extremely simple, low cost, energy efficient, very effective, and can be easily scaled up for large scale production.

  6. p+-doping analysis of laser fired contacts for silicon solar cells by Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Ebser, J.; Sommer, D.; Fritz, S.; Schiele, Y.; Hahn, G.; Terheiden, B.

    2016-03-01

    Local rear contacts for silicon passivated emitter and rear contact solar cells can be established by point-wise treating an Al layer with laser radiation and thereby establishing an electrical contact between Al and Si bulk through the dielectric passivation layer. In this laser fired contacts (LFC) process, Al can establish a few μm thick p+-doped Si region below the metal/Si interface and forms in this way a local back surface field which reduces carrier recombination at the contacts. In this work, the applicability of Kelvin probe force microscopy (KPFM) to the investigation of LFCs considering the p+-doping distribution is demonstrated. The method is based on atomic force microscopy and enables the evaluation of the lateral 2D Fermi-level characteristics at sub-micrometer resolution. The distribution of the electrical potential and therefore the local hole concentration in and around the laser fired region can be measured. KPFM is performed on mechanically polished cross-sections of p+-doped Si regions formed by the LFC process. The sample preparation is of great importance because the KPFM signal is very surface sensitive. Furthermore, the measurement is responsive to sample illumination and the height of the applied voltage between tip and sample. With other measurement techniques like micro-Raman spectroscopy, electrochemical capacitance-voltage, and energy dispersive X-ray analysis, a high local hole concentration in the range of 1019 cm-3 is demonstrated in the laser fired region. This provides, in combination with the high spatial resolution of the doping distribution measured by KPFM, a promising approach for microscopic understanding and further optimization of the LFC process.

  7. Effect of nitrogen post-doping on a commercial platinum-ruthenium/carbon anode catalyst

    NASA Astrophysics Data System (ADS)

    Corpuz, April R.; Wood, Kevin N.; Pylypenko, Svitlana; Dameron, Arrelaine A.; Joghee, Prabhuram; Olson, Tim S.; Bender, Guido; Dinh, Huyen N.; Gennett, Thomas; Richards, Ryan M.; O'Hayre, Ryan

    2014-02-01

    This work investigates the effects of after-the-fact chemical modification of a state-of-the-art commercial carbon-supported PtRu catalyst for direct methanol fuel cells (DMFCs). A commercial PtRu/C (JM HiSPEC-10000) catalyst is post-doped with nitrogen by ion-implantation, where "post-doped" denotes nitrogen doping after metal is carbon-supported. Composition and performance of the PtRu/C catalyst post-modified with nitrogen at several dosages are evaluated using X-ray photoelectron spectroscopy (XPS), rotating disk electrode (RDE), and membrane electrode assemblies (MEAs) for DMFC. Overall, implantation at high dosage results in 16% higher electrochemical surface area and enhances performance, specifically in the mass transfer region. Rotating disk electrode (RDE) results show that after 5000 cycles of accelerated durability testing to high potential, the modified catalyst retains 34% more electrochemical surface area (ECSA) than the unmodified catalyst. The benefits of nitrogen post-doping are further substantiated by DMFC durability studies (carried out for 425 h), where the MEA with the modified catalyst exhibits higher surface area and performance stability in comparison to the MEA with unmodified catalyst. These results demonstrate that post-doping of nitrogen in a commercial PtRu/C catalyst is an effective approach, capable of improving the performance of available best-in-class commercial catalysts.

  8. Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride

    NASA Astrophysics Data System (ADS)

    Chai, Bo; Yan, Juntao; Wang, Chunlei; Ren, Zhandong; Zhu, Yuchan

    2017-01-01

    Phosphorus doped graphitic carbon nitride (g-C3N4) was easily synthesized using ammonium hexafluorophosphate (NH4PF6) as phosphorus source, and ammonium thiocyanate (NH4SCN) as g-C3N4 precursor, through a direct thermal co-polycondensation procedure. The obtained phosphorus doped g-C3N4 was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FTIR), UV-vis diffuse reflectance absorption spectra (UV-DRS), photoelectrochemical measurement and photoluminescence spectra (PL). The photocatalytic activities of phosphorus doped g-C3N4 samples were evaluated by degradation of Rhodamine B (RhB) solution under visible light irradiation. The results showed that the phosphorus doped g-C3N4 had a superior photocatalytic activity than that of pristine g-C3N4, attributing to the phosphorus atoms substituting carbon atoms of g-C3N4 frameworks to result in light harvesting enhancement and delocalized π-conjugated system of this copolymer, beneficial for the increase of photocatalytic performance. The photoelectrochemical measurements also verified that the charge carrier separation efficiency was promoted by phosphorus doping g-C3N4. Moreover, the tests of radical scavengers demonstrated that the holes (h+) and superoxide radicals (rad O2-) were the main active species for the degradation of RhB.

  9. Carbon doping induced peculiar transport properties of boron nitride nanoribbons p-n junctions

    SciTech Connect

    Liu, N.; Gao, G. Y.; Zhu, S. C.; Ni, Y.; Wang, S. L.; Yao, K. L.; Liu, J. B.

    2014-07-14

    By applying nonequilibrium Green's function combined with density functional theory, we investigate the electronic transport properties of carbon-doped p-n nanojunction based on hexagonal boron nitride armchair nanoribbons. The calculated I-V curves show that both the center and edge doping systems present obvious negative differential resistance (NDR) behavior and excellent rectifying effect. At low positive bias, the edge doping systems possess better NDR performance with larger peak-to-valley ratio (∼10{sup 5}), while at negative bias, the obtained peak-to-valley ratio for both of the edge and center doping systems can reach the order of 10{sup 7}. Meanwhile, center doping systems present better rectifying performance than the edge doping ones, and giant rectification ratio up to 10{sup 6} can be obtained in a wide bias range. These outstanding transport properties are explained by the evolution of the transmission spectra and band structures with applied bias, together with molecular projected self-consistent Hamiltonian eigenvalues and eigenstates.

  10. One-step synthesis of lightly doped porous silicon nanowires in HF/AgNO3/H2O2 solution at room temperature

    NASA Astrophysics Data System (ADS)

    Bai, Fan; Li, Meicheng; Song, Dandan; Yu, Hang; Jiang, Bing; Li, Yingfeng

    2012-12-01

    One-step synthesis of lightly doped porous silicon nanowire arrays was achieved by etching the silicon wafer in HF/AgNO3/H2O2 solution at room temperature. The lightly doped porous silicon nanowires (pNWs) have circular nanopores on the sidewall, which can emit strong green fluorescence. The surface morphologies of these nanowires could be controlled by simply adjusting the concentration of H2O2, which influences the distribution of silver nanoparticles (Ag NPs) along the nanowire axis. A mechanism based on Ag NPs-induced lateral etching of nanowires was proposed to explain the formation of pNWs. The controllable and widely applicable synthesis of pNWs will open their potential application to nanoscale photoluminescence devices.

  11. Iron-boron pairing kinetics in illuminated p-type and in boron/phosphorus co-doped n-type silicon

    SciTech Connect

    Möller, Christian; Bartel, Til; Gibaja, Fabien; Lauer, Kevin

    2014-07-14

    Iron-boron (FeB) pairing is observed in the n-type region of a boron and phosphorus co-doped silicon sample which is unexpected from the FeB pair model of Kimerling and Benton. To explain the experimental data, the existing FeB pair model is extended by taking into account the electronic capture and emission rates at the interstitial iron (Fe{sub i}) trap level as a function of the charge carrier densities. According to this model, the charge state of the Fe{sub i} may be charged in n-type making FeB association possible. Further, FeB pair formation during illumination in p-type silicon is investigated. This permits the determination of the charge carrier density dependent FeB dissociation rate and in consequence allows to determine the acceptor concentration in the co-doped n-type silicon by lifetime measurement.

  12. Iron-boron pairing kinetics in illuminated p-type and in boron/phosphorus co-doped n-type silicon

    NASA Astrophysics Data System (ADS)

    Möller, Christian; Bartel, Til; Gibaja, Fabien; Lauer, Kevin

    2014-07-01

    Iron-boron (FeB) pairing is observed in the n-type region of a boron and phosphorus co-doped silicon sample which is unexpected from the FeB pair model of Kimerling and Benton. To explain the experimental data, the existing FeB pair model is extended by taking into account the electronic capture and emission rates at the interstitial iron (Fei) trap level as a function of the charge carrier densities. According to this model, the charge state of the Fei may be charged in n-type making FeB association possible. Further, FeB pair formation during illumination in p-type silicon is investigated. This permits the determination of the charge carrier density dependent FeB dissociation rate and in consequence allows to determine the acceptor concentration in the co-doped n-type silicon by lifetime measurement.

  13. Growth of a delta-doped silicon layer by molecular beam epitaxy on a charge-coupled device for reflection-limited ultraviolet quantum efficiency

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu

    1992-01-01

    Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.

  14. Nitrogen Doped Multi-Walled Carbon Nanotubes as Counter Electrodes in Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Velten, Josef; Lepro-Chavez, Xavier; Kuanyshbekova, Zharkynay; Bykova, Julia; Zakhidov, Anvar

    2012-02-01

    Dye-sensitized solar cells (DSSC) are an electrochemical solar cell based upon an iodide/triiodide redox couple mediating between a photosensitive electrode of a high bandgap semiconductor material stained with a photosensitive dye and a catalytic counter electrode. The standard counter electrode used in these dye solar cells has a function of reducing the triiodide back to iodide, and is composed of thermally decomposed platinum upon a transparent conductive oxide surface, generally Indium Tin Oxide (ITO) or Fluorinated Tin Oxide (FTO). While the highest performances found for DSSCs all use this platinum counter electrode, it is an undesirable material to use for scale production. The most common substitute materials are all based around carbon based materials. Carbon nanotubes have been applied to the DSSC counter electrode, with good success, where the defect sites of the carbon nanotubes offering sites for reduction of the triiodide. In this work, we investigated the use of nitrogen doped carbon noantubes, where the carbon atoms next to the nitrogen doping atoms have a higher positive charge density counter balancing the electron affinity of the nitrogen act as reduction sites as well, with electrochemical characterization describing the reduction in the charge transfer resistance from this doping scheme.

  15. Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability.

    PubMed

    Hu, Shaozheng; Li, Fayun; Fan, Zhiping; Wang, Fei; Zhao, Yanfeng; Lv, Zhenbo

    2015-01-21

    Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability was prepared using dicyandiamide monomer and potassium hydrate as precursors. X-ray diffraction (XRD), N2 adsorption, UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The CB and VB potentials of graphitic carbon nitride could be tuned from -1.09 and +1.56 eV to -0.31 and +2.21 eV by controlling the K concentration. Besides, the addition of potassium inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area and increased the separation rate for photogenerated electrons and holes. The visible-light-driven Rhodamine B (RhB) photodegradation and mineralization performances were significantly improved after potassium doping. A possible influence mechanism of the potassium concentration on the photocatalytic performance was proposed.

  16. Corking Nitrogen-Doped Carbon Nanotube Cups with Gold Nanoparticles for Biodegradable Drug Delivery Applications.

    PubMed

    Burkert, Seth C; Star, Alexander

    2015-12-02

    Carbon nanomaterials have been proposed as effective drug delivery devices; however their perceived biopersistence and toxicological profile may hinder their applications in medical therapeutics. Nitrogen doping of carbon nanotubes results in a unique "stacked-cup" structure, with cups held together through van der Waals forces. Disrupting these weak interactions yields individual and short-stacked nanocups that can subsequently be corked with gold nanoparticles, resulting in sealed containers for delivery of cargo. Peroxidase-catalyzed reactions can effectively uncork these containers, followed by complete degradation of the graphitic capsule, resulting in effective release of therapeutic cargo while minimizing harmful side effects. The protocols reported herein describe the synthesis of stacked nitrogen-doped carbon nanotube cups followed by effective separation into individual cups and gold nanoparticle cork formation resulting in loaded and sealed containers.

  17. Corking Nitrogen-Doped Carbon Nanotube Cups with Gold Nanoparticles for Biodegradable Drug Delivery Applications

    PubMed Central

    Burkert, Seth C.; Star, Alexander

    2015-01-01

    Carbon nanomaterials have been proposed as effective drug delivery devices; however their perceived biopersistence and toxicological profile may hinder their applications in medical therapeutics. Nitrogen doping of carbon nanotubes results in a unique “stacked-cup” structure, with cups held together through van der Waals forces. Disrupting these weak interactions yields individual and short-stacked nanocups which can be subsequently corked with gold nanoparticles resulting in sealed containers for delivery of cargo. Peroxidase-catalyzed reactions can effectively uncork these containers, followed by complete degradation of the graphitic capsule, resulting in effective release of therapeutic cargo while minimizing harmful side effects. The protocols reported herein describe the synthesis of stacked nitrogen-doped carbon nanotube cups followed by effective separation into individual cups and gold nanoparticle cork formation resulting in loaded and sealed containers. PMID:26629615

  18. Cryogenic abnormal thermal expansion properties of carbon-doped La(Fe,Si)13 compounds.

    PubMed

    Li, Shaopeng; Huang, Rongjin; Zhao, Yuqiang; Wang, Wei; Li, Laifeng

    2015-12-14

    Recently, La(Fe,Si)13-based compounds have attracted much attention due to their isotropic and tunable abnormal thermal expansion (ATE) properties as well as bright prospects for practical applications. In this research, we have prepared cubic NaZn13-type carbon-doped La(Fe,Si)13 compounds by the arc-melting method, and their ATE and magnetic properties were investigated by means of variable-temperature X-ray diffraction, strain gauge and the physical property measurement system (PPMS). The experimental results indicate that both micro and macro negative thermal expansion (NTE) behaviors gradually weaken with the increase of interstitial carbon atoms. Moreover, the temperature region with the most remarkable NTE properties has been broadened and near zero thermal expansion (NZTE) behavior occurs in the bulk carbon-doped La(Fe,Si)13 compounds.

  19. Photovoltaic characteristics of Pd doped amorphous carbon film/SiO{sub 2}/Si

    SciTech Connect

    Ma Ming; Xue Qingzhong; Chen Huijuan; Zhou Xiaoyan; Xia Dan; Lv Cheng; Xie Jie

    2010-08-09

    The Pd doped amorphous carbon (a-C:Pd) films were deposited on n-Si substrates with or without a native SiO{sub 2} layer using magnetron sputtering. The photovoltaic characteristics of the a-C:Pd/SiO{sub 2}/Si and a-C:Pd/Si junctions were studied. It is found that under light illumination of 15 mW/cm{sup 2} at room temperature, the a-C:Pd/SiO{sub 2}/Si solar cell fabricated at 350 deg. C has a high power conversion efficiency of 4.7%, which is much better than the a-C/Si junctions reported before. The enhanced conversion efficiency is ascribed to the Pd doping and the increase in sp{sup 2}-bonded carbon clusters in the carbon film caused by the high temperature deposition.

  20. Heteroatom doped mesoporous carbon/graphene nanosheets as highly efficient electrocatalysts for oxygen reduction.

    PubMed

    Xu, Peimin; Wu, Dongqing; Wan, Li; Hu, Pengfei; Liu, Ruili

    2014-05-01

    The high cost of platinum (Pt) based catalysts for oxygen reduction reaction (ORR) has restricted the widespread commercialization of fuel cells. Heteroatom (N, B, P, S or Se) doped carbon materials have been regarded as the promising metal-free catalysts for replacing Pt based catalysts owing to their high efficiencies, good stability and relative low cost. In this work, we present a cost-effective synthesis approach for heteroatom (N and S) doped mesoporous carbon/graphene (HMCG) nanosheets by using nano-casting technology with mesoporous silica/graphene nanosheets (MSG) as hard templates, and four different amino acids (alanine, serine, arginine and cystine) as heteroatom (N, S) and carbon precursors. The resulting catalysts exhibited excellent electrocatalytic activity for ORR in alkaline media. In particular, HMCGAla with alanine as precursors showed the highest electron transfer numbers and durability. These results indicated the attractive potential of HMCGs as metal-free catalysts in practical fuel cells.

  1. Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Ting; Chang, Ting-Chang; Huang, Jheng-Jie; Tseng, Hsueh-Chih; Yang, Po-Chun; Chu, Ann-Kuo; Yang, Jyun-Bao; Huang, Hui-Chun; Gan, Der-Shin; Tsai, Ming-Jinn; Sze, Simon M.

    2013-01-01

    This report compares Mo-doped and undoped SiO2 thin films of a similar thickness as well as MoOx. The Mo-doped SiO2 film exhibited switching behavior after the forming process, unlike the undoped SiO2 film. Through material analyses, a self-assembled layer is observed in the Mo-doped SiO2 film. Due to the formation of this layer, the thickness required to be broken down is effectively reduced. Subsequently, the occurrence of the switching behavior in the thinner SiO2 film further confirmed the supposition. A comparison of the two switching behaviors shows that SiO2 dominates the switching characteristic of the Mo-doped SiO2.

  2. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries

    SciTech Connect

    Dai, Sheng; Shao, Yuyan; Wang, Xiqing; Engelhard, Mark H; Wang, Congmin; Liu, Jun; YANG, ZHENGUO; Lin, Yuehe

    2010-01-01

    We demonstrate an excellent performance of nitrogen-doped mesoporous carbon (N-MPC) for energy storage in vanadium redox flow batteries. Mesoporous carbon (MPC) is prepared using a soft-template method and doped with nitrogen by heat-treating MPC in NH{sub 3}. N-MPC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of [VO]{sup 2+}/[VO{sub 2}]{sup +} is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple [VO]{sup 2+}/[VO{sub 2}]{sup +} is significantly enhanced on N-MPC electrode compared with MPC and graphite electrodes. The reversibility of the redox couple [VO]{sup 2+}/[VO{sub 2}]{sup +} is greatly improved on N-MPC (0.61 for N-MPC vs. 0.34 for graphite), which is expected to increase the energystorage efficiency of redoxflowbatteries. Nitrogen doping facilitates the electron transfer on electrode/electrolyte interface for both oxidation and reduction processes. N-MPC is a promising material for redoxflowbatteries. This also opens up new and wider applications of nitrogen-doped carbon.

  3. Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Wen; Li, Kui; Yu, Yu-Xiang; Zhang, Wei-De

    2017-01-01

    Cobalt-doped graphitic carbon nitride (Cosbnd CN) was synthesized by one-step thermal polycondensation using cobalt phthalocyanine (CoPc) and melamine as precursors. The π-π interaction between melamine and CoPc promotes cobalt doping into the framework of g-C3N4. The prepared samples were carefully characterized and the results demonstrated that Co-doped graphitic carbon nitride inhibited the crystal growth of graphitic carbon nitride (CN), leading to larger specific surface area (33.1 m2 g-1) and abundant Co-Nx active sites, narrower band gap energy and more efficient separation of photogenerated electrons and holes. 0.46% Cosbnd CN exhibited higher hydrogen evolution rate (28.0 μmol h-1) under visible light irradiation, which is about 3.0 times of that over the pure CN and about 2.2 times of that over cobalt-doped CN using CoCl2 • 6H2O as a cobalt source. This study provides a valuable strategy to modify CN with enhanced photocatalytic performance.

  4. Influence of oxygen on nitrogen-doped carbon nanofiber growth directly on nichrome foil.

    PubMed

    Vishwakarma, Riteshkumar; Shinde, Sachin M; Rosmi, Mohamad Saufi; Takahashi, Chisato; Papon, Remi; Mahyavanshi, Rakesh D; Ishii, Yosuke; Kawasaki, Shinji; Kalita, Golap; Tanemura, Masaki

    2016-09-09

    The synthesis of various nitrogen-doped (N-doped) carbon nanostructures has been significantly explored as an alternative material for energy storage and metal-free catalytic applications. Here, we reveal a direct growth technique of N-doped carbon nanofibers (CNFs) on flexible nichrome (NiCr) foil using melamine as a solid precursor. Highly reactive Cr plays a critical role in the nanofiber growth process on the metal alloy foil in an atmospheric pressure chemical vapor deposition (APCVD) process. Oxidation of Cr occurs in the presence of oxygen impurities, where Ni nanoparticles are formed on the surface and assist the growth of nanofibers. Energy-dispersive x-ray spectroscopy (EDXS) and x-ray photoelectron spectroscopy (XPS) clearly show the transformation process of the NiCr foil surface with annealing in the presence of oxygen impurities. The structural change of NiCr foil assists one-dimensional (1D) CNF growth, rather than the lateral two-dimensional (2D) growth. The incorporation of distinctive graphitic and pyridinic nitrogen in the graphene lattice are observed in the synthesized nanofiber, owing to better nitrogen solubility. Our finding shows an effective approach for the synthesis of highly N-doped carbon nanostructures directly on Cr-based metal alloys for various applications.

  5. Influence of oxygen on nitrogen-doped carbon nanofiber growth directly on nichrome foil

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Riteshkumar; Shinde, Sachin M.; Saufi Rosmi, Mohamad; Takahashi, Chisato; Papon, Remi; Mahyavanshi, Rakesh D.; Ishii, Yosuke; Kawasaki, Shinji; Kalita, Golap; Tanemura, Masaki

    2016-09-01

    The synthesis of various nitrogen-doped (N-doped) carbon nanostructures has been significantly explored as an alternative material for energy storage and metal-free catalytic applications. Here, we reveal a direct growth technique of N-doped carbon nanofibers (CNFs) on flexible nichrome (NiCr) foil using melamine as a solid precursor. Highly reactive Cr plays a critical role in the nanofiber growth process on the metal alloy foil in an atmospheric pressure chemical vapor deposition (APCVD) process. Oxidation of Cr occurs in the presence of oxygen impurities, where Ni nanoparticles are formed on the surface and assist the growth of nanofibers. Energy-dispersive x-ray spectroscopy (EDXS) and x-ray photoelectron spectroscopy (XPS) clearly show the transformation process of the NiCr foil surface with annealing in the presence of oxygen impurities. The structural change of NiCr foil assists one-dimensional (1D) CNF growth, rather than the lateral two-dimensional (2D) growth. The incorporation of distinctive graphitic and pyridinic nitrogen in the graphene lattice are observed in the synthesized nanofiber, owing to better nitrogen solubility. Our finding shows an effective approach for the synthesis of highly N-doped carbon nanostructures directly on Cr-based metal alloys for various applications.

  6. Application of amorphous carbon based materials as antireflective coatings on crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    da Silva, D. S.; Côrtes, A. D. S.; Oliveira, M. H.; Motta, E. F.; Viana, G. A.; Mei, P. R.; Marques, F. C.

    2011-08-01

    We report on the investigation of the potential application of different forms of amorphous carbon (a-C and a-C:H) as an antireflective coating for crystalline silicon solar cells. Polymeric-like carbon (PLC) and hydrogenated diamond-like carbon films were deposited by plasma enhanced chemical vapor deposition. Tetrahedral amorphous carbon (ta-C) was deposited by the filtered cathodic vacuum arc technique. Those three different amorphous carbon structures were individually applied as single antireflective coatings on conventional (polished and texturized) p-n junction crystalline silicon solar cells. Due to their optical properties, good results were also obtained for double-layer antireflective coatings based on PLC or ta-C films combined with different materials. The results are compared with a conventional tin dioxide (SnO2) single-layer antireflective coating and zinc sulfide/magnesium fluoride (ZnS/MgF2) double-layer antireflective coatings. An increase of 23.7% in the short-circuit current density, Jsc, was obtained using PLC as an antireflective coating and 31.7% was achieved using a double-layer of PLC with a layer of magnesium fluoride (MgF2). An additional increase of 10.8% was obtained in texturized silicon, representing a total increase (texturization + double-layer) of about 40% in the short-circuit current density. The potential use of these materials are critically addressed considering their refractive index, optical bandgap, absorption coefficient, hardness, chemical inertness, and mechanical stability.

  7. The utilization of composite carbon-silicon carbide sidewall blocks in cathodes

    SciTech Connect

    Curtis, E.L.; Mascieri, P.D.; Tabereaux, A.T.

    1996-10-01

    A new composite sidewall block SILCARB, consisting of a calcined anthracite carbon glued to a nitride-bonded silicon carbide, has performed well to date in the cathode sidewall lining of five 180 kA prebake reduction cells. The applications of the new sidewall composite material are to resist oxidation and/or erosion in the sidewalls caused by an active metal pad or the oxidation of materials during cell operations. In this instance, the composite material was used as a substitute for the conventional prebake anthracite sidewall block. The goals will be to increase the potlife of cells currently operating with conventional carbon sidewalls, or alternatively offer excellent cost savings while maintaining the desired operational results in cells using full size silicon carbide bricks. Sidewall shell temperature and frozen ledge profiles of cells with SILCARB sidewall blocks are compared with cells having conventional anthracite carbon block sidewall lining.

  8. Synthesis of High-Surface-Area Nitrogen-Doped Porous Carbon Microflowers and Their Efficient Carbon Dioxide Capture Performance.

    PubMed

    Li, Yao; Cao, Minhua

    2015-07-01

    Sustainable carbon materials have received particular attention in CO2 capture and storage owing to their abundant pore structures and controllable pore parameters. Here, we report high-surface-area hierarchically porous N-doped carbon microflowers, which were assembled from porous nanosheets by a three-step route: soft-template-assisted self-assembly, thermal decomposition, and KOH activation. The hydrazine hydrate used in our experiment serves as not only a nitrogen source, but also a structure-directing agent. The activation process was carried out under low (KOH/carbon=2), mild (KOH/carbon=4) and severe (KOH/carbon=6) activation conditions. The mild activated N-doped carbon microflowers (A-NCF-4) have a hierarchically porous structure, high specific surface area (2309 m(2)  g(-1)), desirable micropore size below 1 nm, and importantly large micropore volume (0.95 cm(3)  g(-1)). The remarkably high CO2 adsorption capacities of 6.52 and 19.32 mmol g(-1) were achieved with this sample at 0 °C (273 K) and two pressures, 1 bar and 20 bar, respectively. Furthermore, this sample also exhibits excellent stability during cyclic operations and good separation selectivity for CO2 over N2.

  9. High Power Q-Switched Thulium Doped Fibre Laser using Carbon Nanotube Polymer Composite Saturable Absorber.

    PubMed

    Chernysheva, Maria; Mou, Chengbo; Arif, Raz; AlAraimi, Mohammed; Rümmeli, Mark; Turitsyn, Sergei; Rozhin, Aleksey

    2016-04-11

    We have proposed and demonstrated a Q-switched Thulium doped fibre laser (TDFL) with a 'Yin-Yang' all-fibre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear amplified loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped fibre laser.

  10. Influence of cysteine doping on photoluminescence intensity from semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kurnosov, N. V.; Leontiev, V. S.; Linnik, A. S.; Karachevtsev, V. A.

    2015-03-01

    Photoluminescence (PL) from semiconducting single-walled carbon nanotubes can be applied for detection of cysteine. It is shown that cysteine doping (from 10-8 to 10-3 M) into aqueous suspension of nanotubes with adsorbed DNA leads to increase of PL intensity. The PL intensity was enhanced by 27% at 10-3 M cysteine concentration in suspension. Most likely, the PL intensity increases due to the passivation of p-defects on the nanotube by the cysteine containing reactive thiol group. The effect of doping with other amino acids without this group (methionine, serine, aspartic acid, lysine, proline) on the PL intensity is essentially weaker.

  11. Confinement induced binding in noble gas atoms within a BN-doped carbon nanotube

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2015-02-01

    Confinement induced binding interaction patterns for noble gas atoms (Hen/m, Arn, Krn; n = 2, m = 3) atoms inside pristine and -BN doped (3, 3) single walled carbon nanotube (SWCNT) have been studied through density functional theory calculations. The kinetic stability for He dimer and trimer has been investigated at 100 K and 300 K through an ab initio molecular dynamics simulation. The positive role of doping in SWCNT in enhancing the nature of interaction as well as the kinetic stability of the said systems has been found.

  12. High Power Q-Switched Thulium Doped Fibre Laser using Carbon Nanotube Polymer Composite Saturable Absorber

    PubMed Central

    Chernysheva, Maria; Mou, Chengbo; Arif, Raz; AlAraimi, Mohammed; Rümmeli, Mark; Turitsyn, Sergei; Rozhin, Aleksey

    2016-01-01

    We have proposed and demonstrated a Q-switched Thulium doped fibre laser (TDFL) with a ‘Yin-Yang’ all-fibre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear amplified loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped fibre laser. PMID:27063511

  13. Biocompatibility and Toxicological Effects of Doped, Functionalized and Pure Carbon Nanotubes

    DTIC Science & Technology

    2009-08-25

    nitrogen-doped (CNx) MWNTs, phosphorus- and nitrogen-doped (CNxPy) MWNTs, ethanol -based (carbonyl, carboxyl functionalized) carbon nanotubes...formed and MWNTs grew perpendicular to the inner walls of the quartz tube. The whole process was carried out under an Ar atmosphere (Ar flow of ca. 3.5...used were the same as those of the synthesis of CNxMWNTs. For the production of COxMWNTs, a solution of ferrocene (2.5%wt), 1%wt of ethanol (CTR

  14. High Power Q-Switched Thulium Doped Fibre Laser using Carbon Nanotube Polymer Composite Saturable Absorber

    NASA Astrophysics Data System (ADS)

    Chernysheva, Maria; Mou, Chengbo; Arif, Raz; Alaraimi, Mohammed; Rümmeli, Mark; Turitsyn, Sergei; Rozhin, Aleksey

    2016-04-01

    We have proposed and demonstrated a Q-switched Thulium doped fibre laser (TDFL) with a ‘Yin-Yang’ all-fibre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear amplified loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped fibre laser.

  15. Characterization of laser ablation of carbon-doped glycerol at different laser wavelengths

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Y.; Zhang, S. Q.; Liang, T.; Tang, W. C.; Xiao, K.; Liang, W. F.; Gao, L.; Gao, H.; Xing, J.; Wu, X. W.; Zhang, Z. L.

    2016-12-01

    Laser ablation of carbon-doped glycerol at laser wavelengths of 1064 and 532 nm are characterized in laser plasma propulsion. The coupling coefficient, specific impulse and the plasma luminescence are measured. It is found that the coupling coefficient and the specific impulse are much related to the wavelength and the carbon content. A long wavelength and a high carbon content can enhance the coupling coefficient and specific impulse due to the prolonging coupling time of laser pulse with plasma. However, an optimal propulsion also relates with the un-ionized splashing liquids.

  16. Pore Size Control of Ultra-thin Silicon Membranes by Rapid Thermal Carbonization

    PubMed Central

    Fang, David Z.; Striemer, Christopher C.; Gaborski, Thomas R.; McGrath, James L.; Fauchet, Philippe M.

    2010-01-01

    Rapid thermal carbonization in a dilute acetylene (C2H2) atmosphere has been used to chemically modify and precisely tune the pore size of ultrathin porous nanocrystalline silicon (pnc-Si). The magnitude of size reduction was controlled by varying the process temperature and time. Under certain conditions, the carbon coating displayed atomic ordering indicative of graphene layer formation conformal to the pore walls. Initial experiments show that carbonized membranes follow theoretical predictions for hydraulic permeability and retain the precise separation capabilities of untreated membranes. PMID:20839831

  17. Nitrogen and carbon doped titanium oxide as an alternative and durable electrocatalyst support in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Dhanasekaran, P.; Vinod Selvaganesh, S.; Bhat, Santoshkumar D.

    2016-02-01

    Nitrogen and carbon doped titanium oxide as an alternative and ultra-stable support to platinum catalysts is prepared and its efficiency is determined by polymer electrolyte fuel cell. Nitrogen and carbon doped titanium oxide is prepared by varying the melamine ratio followed by calcination at 900 °C. Platinum nanoparticles are deposited onto doped and undoped titanium oxide by colloidal method. The doping effect, surface morphology, chemical oxidation state and metal/metal oxide interfacial contact are studied by X-ray diffraction, Raman spectroscopy, high resolution transmission electron microscopy and X-ray photo electron spectroscopy. The nitrogen and carbon doping changes both electronic and structural properties of titanium oxide resulting in enhanced oxygen reduction reaction activity. The platinum deposited on optimum level of nitrogen and carbon doped titanium oxide exhibits improved cell performance in relation to platinum on titanium oxide electrocatalysts. The effect of metal loading on cathode electrocatalyst is investigated by steady-state cell polarization. Accelerated durability test over 50,000 cycles for these electrocatalysts suggested the improved interaction between platinum and nitrogen and carbon doped titanium oxide, retaining the electrochemical surface area and oxygen reduction performance as comparable to platinum on carbon support.

  18. Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides.

    PubMed

    Agazzi, Laura; Bradley, Jonathan D B; Dijkstra, Meindert; Ay, Feridun; Roelkens, Gunther; Baets, Roel; Wörhoff, Kerstin; Pollnau, Markus

    2010-12-20

    Monolithic integration of Al2O3:Er3+ amplifier technology with passive silicon-on-insulator waveguides is demonstrated. A signal enhancement of >7 dB at 1533 nm wavelength is obtained. The straightforward wafer-scale fabrication process, which includes reactive co-sputtering and subsequent reactive ion etching, allows for parallel integration of multiple amplifier and laser sections with silicon or other photonic circuits on a chip.

  19. Formation of silicon carbide and diamond nanoparticles in the surface layer of a silicon target during short-pulse carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Remnev, G. E.; Ivanov, Yu. F.; Naiden, E. P.; Saltymakov, M. S.; Stepanov, A. V.; Shtan'ko, V. F.

    2009-04-01

    Synthesis of silicon carbide and diamond nanoparticles is studied during short-pulse implantation of carbon ions and protons into a silicon target. The experiments are carried out using a TEMP source of pulsed powerful ion beams based on a magnetically insulated diode with radial magnetic field B r . The beam parameters are as follows: the ion energy is 300 keV, the pulse duration is 80 ns, the beam consists of carbon ions and protons, and the ion current density is 30 A/cm2. Single-crystal silicon wafers serve as a target. SiC nanoparticles and nanodiamonds form in the surface layer of silicon subjected to more than 100 pulses. The average coherent domain sizes in the SiC particles and nanodiamonds are 12-16 and 8-9 nm, respectively.

  20. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S.; Ahn, Jou-Hyeon

    2016-09-01

    Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g-1 and enhanced capacity retention of 862 mAh g-1 at 0.1 C after 100 cycles.