Science.gov

Sample records for carbon electrode manufacture

  1. A new type of hydrophilic carbon paste electrodes for biosensor manufacturing: binder paste electrodes.

    PubMed

    Parellada, J; Narváez, A; Domínguez, E; Katakis, I

    1997-01-01

    The effect of two types of carbon pastes and two osmium-based redox mediators on the response of amperometric enzyme electrodes for glucose was examined. A hydrophobic mediator and a hydrophilic cationic mediator were prepared and mixed in a paste that contained either mineral oil as the pasting liquid, or a polycationic electrolyte without oil. It was found that the current densities were increased by a factor of 25 when the oil-based paste was replaced by the hydrophilic one (binder paste, BP) and five- to six-fold when the hydrophilic mediator was used in place of the hydrophobic. The linear range for the glucose oxidase electrodes was extended to concentrations higher than 60 mM. The glucose electrodes were preliminary optimized and their half-life time reached more than 12 h when operated continuously under vigorous stirring when the 'pasting' polyelectrolyte was crosslinked. At a working potential of 400 mV versus the Ag/AgCl saturated electrode, the saturating current densities per geometric surface area were 1.2 mA/cm2 +/- 0.2 (n = 7). These 'binder paste electrodes' are the first reported bulk modified electrodes without hydrophobic pasting liquid or cover membranes, and present an interesting research and application tool.

  2. Improved Manufacturing Performance of Screen Printed Carbon Electrodes through Material Formulation.

    PubMed

    Jewell, Eifion; Philip, Bruce; Greenwood, Peter

    2016-06-27

    Printed carbon graphite materials are the primary common component in the majority of screen printed sensors. Screen printing allows a scalable manufacturing solution, accelerating the means by which novel sensing materials can make the transition from laboratory material to commercial product. A common bottleneck in any thick film printing process is the controlled drying of the carbon paste material. A study has been undertaken which examines the interaction between material solvent, printed film conductivity and process consistency. The study illustrates that it is possible to reduce the solvent boiling point to significantly increase process productivity while maintaining process consistency. The lower boiling point solvent also has a beneficial effect on the conductivity of the film, reducing the sheet resistance. It is proposed that this is a result of greater film stressing increasing charge percolation through greater inter particle contact. Simulations of material performance and drying illustrate that a multi layered printing provides a more time efficient manufacturing method. The findings have implications for the volume manufacturing of the carbon sensor electrodes but also have implications for other applications where conductive carbon is used, such as electrical circuits and photovoltaic devices.

  3. Improved Manufacturing Performance of Screen Printed Carbon Electrodes through Material Formulation

    PubMed Central

    Jewell, Eifion; Philip, Bruce; Greenwood, Peter

    2016-01-01

    Printed carbon graphite materials are the primary common component in the majority of screen printed sensors. Screen printing allows a scalable manufacturing solution, accelerating the means by which novel sensing materials can make the transition from laboratory material to commercial product. A common bottleneck in any thick film printing process is the controlled drying of the carbon paste material. A study has been undertaken which examines the interaction between material solvent, printed film conductivity and process consistency. The study illustrates that it is possible to reduce the solvent boiling point to significantly increase process productivity while maintaining process consistency. The lower boiling point solvent also has a beneficial effect on the conductivity of the film, reducing the sheet resistance. It is proposed that this is a result of greater film stressing increasing charge percolation through greater inter particle contact. Simulations of material performance and drying illustrate that a multi layered printing provides a more time efficient manufacturing method. The findings have implications for the volume manufacturing of the carbon sensor electrodes but also have implications for other applications where conductive carbon is used, such as electrical circuits and photovoltaic devices. PMID:27355967

  4. Manufacturing carbon nanofiber electrodes with embedded metallic nanoparticles using block copolymers templates

    NASA Astrophysics Data System (ADS)

    Ghazinejad, Maziar; Holmberg, Sunshine; Madou, Marc

    2016-09-01

    Owing to its superb thermal and electrical attributes, as well as electrochemical stability, carbon is emerging as an attractive material for fabrication of many bioelectrochemical devices such as biosensors and biofuel cells. However, carbon's inert nature makes it difficult to functionalize with biocatalysts; often requiring harsh chemical treatment, such as nitric acid oxidation, to attach reactive amines and carboxylic acids to its surface. Recent studies, however, points toward a self-assembly approach for fabricating well organized layers of carbon loaded with arrays of metallic nanoparticles patterned by block-copolymers (BCP) templates. Herein, we demonstrate an effective method for developing carbon nanofibers meshes embedded with metal nanoparticles, by incorporating a BCP self-assembly approach into our C-MEMS fabrication technique. The main phase of this hybrid method includes electrospinning metal salt-loaded BCP into nanofiber meshes, and subsequently reducing the metal salts into metal nanoparticles prior to pyrolysis. This cost-effective process will pave the way for fabricating scalable advanced 3-D carbon electrodes that can be applied to biosensors and biofuel cells devices.

  5. Anisotropic micro-cloths fabricated from DNA-stabilized carbon nanotubes: one-stop manufacturing with electrode needles.

    PubMed

    Frusawa, Hiroshi; Yoshii, Gen

    2015-01-01

    Among a variety of solution-based approaches to fabricate anisotropic films of aligned carbon nanotubes (CNTs), we focus on the dielectrophoretic assembly method using AC electric fields in DNA-stabilized CNT suspensions. We demonstrate that a one-stop manufacturing system using electrode needles can draw anisotropic DNA-CNT hybrid films of 10 to 100 µm in size (i.e., free-standing DNA-CNT micro-cloths) from the remaining suspension into the atmosphere while maintaining structural order. It has been found that a maximal degree of polarization (ca. 40%) can be achieved by micro-cloths fabricated from a variety of DNA-CNT mixtures. Our results suggest that the one-stop method can impart biocompatibility to the downsized CNT films and that the DNA-stabilized CNT micro-cloths directly connected to an electrode could be useful for biofuel cells in terms of electron transfer and/or enzymatic activity.

  6. Anisotropic micro-cloths fabricated from DNA-stabilized carbon nanotubes: one-stop manufacturing with electrode needles

    NASA Astrophysics Data System (ADS)

    Frusawa, Hiroshi; Yoshii, Gen

    2015-03-01

    Among a variety of solution-based approaches to fabricate anisotropic films of aligned carbon nanotubes (CNTs), we focus on the dielectrophoretic assembly method using AC electric fields in DNA-stabilized CNT suspensions. We demonstrate that a one-stop manufacturing system using electrode needles can draw anisotropic DNA-CNT hybrid films of 10 to 100 µm in size (i.e., free-standing DNA-CNT micro-cloths) from the remaining suspension into the atmosphere while maintaining structural order. It has been found that a maximal degree of polarization (ca. 40%) can be achieved by micro-cloths fabricated from a variety of DNA-CNT mixtures. Our results suggest that the one-stop method can impart biocompatibility to the downsized CNT films and that the DNA-stabilized CNT micro-cloths directly connected to an electrode could be useful for biofuel cells in terms of electron transfer and/or enzymatic activity.

  7. Method for manufacturing magnetohydrodynamic electrodes

    DOEpatents

    Killpatrick, D.H.; Thresh, H.R.

    1980-06-24

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

  8. Composite carbon foam electrode

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  9. Composite carbon foam electrode

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  10. Method for manufacturing magnetohydrodynamic electrodes

    DOEpatents

    Killpatrick, Don H.; Thresh, Henry R.

    1982-01-01

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.

  11. Carbon-On-Carbon Manufacturing

    NASA Technical Reports Server (NTRS)

    Mungas, Gregory S. (Inventor); Buchanan, Larry (Inventor); Banzon, Jr., Jose T. (Inventor)

    2017-01-01

    The presently disclosed technology relates to carbon-on-carbon (C/C) manufacturing techniques and the resulting C/C products. One aspect of the manufacturing techniques disclosed herein utilizes two distinct curing operations that occur at different times and/or using different temperatures. The resulting C/C products are substantially non-porous, even though the curing operation(s) substantially gasify a liquid carbon-entrained filler material that saturates a carbon fabric that makes up the C/C products.

  12. Carbon cloth supported electrode

    DOEpatents

    Lu, Wen-Tong P.; Ammon, Robert L.

    1982-01-01

    A flow-by anode is disclosed made by preparing a liquid suspension of about to about 18% by weight solids, the solids comprising about 3.5 to about 8% of a powdered catalyst of platinum, palladium, palladium oxide, or mixtures thereof; about 60 to about 76% carbon powder (support) having a particle size less than about 20 m.mu.m and about 20 to about 33% of an inert binder having a particle size of less than about 500 m.mu.m. A sufficient amount of the suspension is poured over a carbon cloth to form a layer of solids about 0.01 to about 0.05 cm thick on the carbon cloth when the electrode is completed. A vacuum was applied to the opposite side of the carbon cloth to remove the liquid and the catalyst layer/cloth assembly is dried and compressed at about 10 to about 50 MPa's. The binder is then sintered in an inert atmosphere to complete the electrode. The electrode is used for the oxidation of sulfur dioxide in a sulfur based hybrid cycle for the decomposition of water.

  13. Carbon Cloth Supports Catalytic Electrodes

    NASA Technical Reports Server (NTRS)

    Lu, W. T. P.; Ammon, R. L.

    1983-01-01

    Carbon cloth is starting material for promising new catalytic electrodes. Carbon-cloth electrodes are more efficient than sintered-carbon configuration previously used. Are also chemically stable and require less catalyst--an important economic advantage when catalyst is metal such as platinum.

  14. Electrochemistry of Carbon Dioxide on Carbon Electrodes.

    PubMed

    Yang, Nianjun; Waldvogel, Siegfried R; Jiang, Xin

    2016-01-04

    Carbon electrodes have the advantages of being chemically inert at negative potential ranges in all media and high offset potentials for hydrogen evolution in comparison to metal electrodes, and therefore are the most suitable electrodes for electrochemistry and electrochemical conversion of CO2 into valuable chemicals. Herein we summarize on carbon electrodes the voltammetry, electrochemical and electrocatalytic CO2 reduction, as well as electron synthesis using CO2 and carbon electrodes. The electrocatalytic CO2 reduction using carbocatalyts and the future activities about electrochemical CO2 conversion are highlighted.

  15. Method of manufacturing positive nickel hydroxide electrodes

    DOEpatents

    Gutjahr, M.A.; Schmid, R.; Beccu, K.D.

    1975-12-16

    A method of manufacturing a positive nickel hydroxide electrode is discussed. A highly porous core structure of organic material having a fibrous or reticular texture is uniformly coated with nickel powder and then subjected to a thermal treatment which provides sintering of the powder coating and removal of the organic core material. A consolidated, porous nickel support structure is thus produced which has substantially the same texture and porosity as the initial core structure. To provide the positive electrode including the active mass, nickel hydroxide is deposited in the pores of the nickel support structure.

  16. Manufacture of finely divided carbon

    SciTech Connect

    Walker, D.G.

    1980-01-22

    Finely divided carbon is manufactured by a process producing a gaseous stream containing carbon monoxide by reacting coal and air in a slagging ash gasifier, separating carbon monoxide from the gaseous mixture, and disproportionating the carbon monoxide to produce finely divided carbon and carbon dioxide, the latter of which is recycled to the gasifier.

  17. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2006-12-12

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  18. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  19. Method of manufacturing carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M. (Inventor); Leidecker, Henning W. (Inventor); Frazier, Jeffrey (Inventor)

    2004-01-01

    A process for manufacturing carbon nanotubes, including a step of inducing electrical current through a carbon anode and a carbon cathode under conditions effective to produce the carbon nanotubes, wherein the carbon cathode is larger than the carbon anode. Preferably, a welder is used to induce the electrical current via an arc welding process. Preferably, an exhaust hood is placed on the anode, and the process does not require a closed or pressurized chamber. The process provides high-quality, single-walled carbon nanotubes, while eliminating the need for a metal catalyst.

  20. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  1. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C.J.; Dispennette, J.M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.

  2. Peltier effects in electrode carbon

    NASA Astrophysics Data System (ADS)

    Hansen, Ellen Marie; Egner, Espen; Kjelstrup, Signe

    1998-02-01

    The thermoelectric power of a cell with platinum electrodes and a carbon conductor was determined. The electromotive force (emf) was measured as a function of the temperature difference between the electrodes at temperatures varying from 310 °C to 970 °C. From these measurements, the transported entropy of electric charge in carbon was found to vary from -1.7 to -1.9 J/(K mole) at temperatures around 300 °C, from -2.0 to -2.3 J/(K mole) at temperatures around 550 °C, and from -3.4 to -3.7 J/(K mole) at temperatures around 950 °C. This transported entropy had not before been determined for temperatures above 550 °C. Also, it is shown how the previously neglected surface properties can be taken into account to interpret the measurements. In the Hall-Héroult cell, the anode is made of a similar kind of carbon. Hence, the transported entropy found above can be used to describe the often neglected coupling between transport of heat and electric charge in this electrode. It is shown that the calculated electric potential profile through a coal sample will change significantly if the coupling is neglected, but the calculated temperature profile is independent of whether the coupling is neglected. New equations are also developed that can be used to evaluate the importance of the coupling in other systems.

  3. Carbon nanotube electrodes in organic transistors.

    PubMed

    Valitova, Irina; Amato, Michele; Mahvash, Farzaneh; Cantele, Giovanni; Maffucci, Antonio; Santato, Clara; Martel, Richard; Cicoira, Fabio

    2013-06-07

    The scope of this Minireview is to provide an overview of the recent progress on carbon nanotube electrodes applied to organic thin film transistors. After an introduction on the general aspects of the charge injection processes at various electrode-semiconductor interfaces, we discuss the great potential of carbon nanotube electrodes for organic thin film transistors and the recent achievements in the field.

  4. Desalination with carbon aerogel electrodes

    SciTech Connect

    Farmer, J.C.; Richardson, J.H.; Fix, D.V.

    1996-10-21

    An electrically regenerated electrosorption process known as carbon aerogel CDI was developed for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area and very low resistivity. After polarization, anions and cations are removed from electrolyte by the electric field and electrosorbed onto the carbon aerogel. The solution is thus separated into two streams, brine and water. Based on this, carbon aerogel CDI appears to be an energy-efficient alternative to evaporation, electrodialysis, and reverse osmosis. The energy required by this process is about QV/2, plus losses. Estimated energy requirement for sea water desalination is 18-27 Wh gal{sup -1}, depending on cell voltage and flow rate. The requirement for brackish water desalination is less, 1.2-2.5 Wh gal{sup -1} at 1600 ppM. This is assuming that stored electrical energy is reclaimed during regeneration.

  5. Manufacturing of Monolithic Electrodes from Low-Cost Renewable Resources

    SciTech Connect

    McNutt, Nichiolas William; Rios, Orlando; Johs, Alexander; Tenhaeff, Wyatt E; Chatterjee, Sabornie; Keffer, David

    2014-01-01

    Lignin, a low-cost, biomass derived precursor, was selected as an alternative for carbon based free standing anodes in Li-ion batteries. Industrially scalable melt-spinning and melt-blowing synthesis methods were developed at Oak Ridge National Laboratory that are compatible with industrially viable production. Engineering studies predict that LCFs can be manufactured at $3/lb using these technologies, which compares favorably to $12/lb for battery grade graphite. The physical properties of lignin carbon fibers, specifically the tunable electrochemical and thermal transport, are suitable for energy storage applications as both an active material and current collector. The elimination of inactive components in the slurry-coated electrodes was enabled by LCF processing parameters modifications to produce monolithic mats in which the fibers are electrically interconnected. These mats were several hundreds of micrometers thick, and the fibers functioned as both current collector and active material by virtue of their mixed ionic/electronic conductivities. The LCFs were coated onto copper current collectors with PVDF binder and conductive carbon additive through conventional slurry processing. Galvanostatic cycling of the LCFs against Li revealed reversible capacities greater than 300 mAh/g. The coulombic efficiencies were over 99.8%. The mats were galvanostatically cycled in half cells against Li. Specific capacities as high as 250 mAh/g were achieved approximately 17% lower than the capacities of the same fibers in slurries. However, there were no inactive materials reducing the practical specific capacity of the entire electrode construction. Lithiation and delithiation of the LCFs proceeded with coulombic efficiencies greater than 99.9%, and the capacity retention was greater than 99% over 100 cycles at a rate of 15 mA/g. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for

  6. Carbon aerogel electrodes for direct energy conversion

    DOEpatents

    Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

    1997-02-11

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes is described, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome. 1 fig.

  7. Carbon aerogel electrodes for direct energy conversion

    DOEpatents

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  8. Method of manufacturing lead electrodes for storage cells

    DOEpatents

    Jonville, P.; Stoehr, H.; Beccu, K.D.

    1975-09-23

    A method of manufacturing electrodes for lead storage batteries is described. Molten lead or lead alloy is deposited on a felt of glass fibers by spraying in a molten state to fill the space between the fibers of the felt to form an electrically conductive zone defining electrode contacts. A mass of powdered lead-based material is introduced into the felt by filtration for subsequently producing an active electrode mass by at least one electrochemical transformation. The felt is then cut into individual electrodes. (auth)

  9. Capacitor with a composite carbon foam electrode

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  10. Capacitor with a composite carbon foam electrode

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  11. Fabricating solid carbon porous electrodes from powders

    DOEpatents

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  12. Fabricating solid carbon porous electrodes from powders

    DOEpatents

    Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

    1997-06-10

    Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

  13. Flame-based processing as a practical approach for manufacturing hydrogen evolution electrodes

    NASA Astrophysics Data System (ADS)

    Roller, Justin; Renner, Julie; Yu, Haoran; Capuano, Chris; Kwak, Tony; Wang, Yang; Carter, C. Barry; Ayers, Kathy; Mustain, William E.; Maric, Radenka

    2014-12-01

    Catalyst structure and morphology are inevitably dictated by the synthesis route, which in-turn dictates catalyst activity, stability and utilization in the electrode. Reactive spray deposition technology (RSDT) is a promising synthesis route for electrode manufacturing because of the potential to achieve high-throughput processing under a diverse range of process configurations. This work investigates several unique approaches to Pt catalyst deposition using jet-flame synthesis for water electrolysis electrodes. Direct application of the catalyst film onto Nafion 117 and carbon paper is explored along with approaches to dispersing the Pt onto carbon or TinO2n-1. Operational challenges relating to the harsh conditions of H2 evolution and electrode adhesion are addressed by adding binder and catalyst support to the electrode structure. The RSDT technology produces an electrode, coated directly onto Nafion 117®, with a 20-fold reduction in Pt loading while maintaining high in-cell performance (2.1 V at 2 A cm-2) compared to an industry-level baseline. Durability testing at 1.8 A cm-2, 400 psi differential pressure and a temperature of 50 °C yields a consistent potential of ∼2.2 V for over 1100 h without failure. The same electrode applied directly to carbon paper resulted in a voltage of ∼2.1 V for ∼600 h without failure.

  14. Normal and Enhanced Raman Spectroscopy of Carbon Electrode Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yan

    This thesis discusses the relationship between the microstructure and the electrochemical properties of carbon electrodes. First, a near infrared Raman spectrometer with a diode laser coupled to a charge coupled device was developed to overcome intrinsic limitations in the Raman scattering process. The spectrometer was evaluated in sensitivity, limit of detection, dynamic range, and fluorescence rejection ability. The experimental results indicate that this spectrometer is more sensitive than the existing FT -Raman technique and provides a viable alternative for near infrared region Raman techniques. This system was then applied in a comprehensive Raman study of the vibrational microstructure of several carbon electrodes over a wide incident laser wavelength region. Based on a lattice dynamics model, a wide range of experimental data were used to clarify the controversy of the Raman feature at ca. 1350 cm^{ -1} (D band). It has been attributed to an intrinsic lattice vibration mode which becomes active if the wavevector selection rule breakdowns. Further, the laser wavelength dependent effect of the D band position and relative intensity was investigated. Four vibrational modes were discovered and assigned to lattice vibration modes. The assignment was assisted by their laser wavelength position dependence. Finally, to better understand the relationship between the surface microstructure and the electrochemical properties, a surface enhanced Raman scattering technique was developed and applied. In this technique, the carbon surfaces were studied through electrochemically depositing silver in situ on the carbon electrode surface. The technique was proven to be surface sensitive and applied to the study of many modified carbon electrodes. The experimental results provide strong evidence to link electrochemical activity of carbon electrodes with grain boundaries or defects in the microstructure of the electrodes. With this knowledge a better understanding of carbon

  15. Manufactured caverns in carbonate rock

    DOEpatents

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  16. Electrode for molten carbonate fuel cell

    DOEpatents

    Iacovangelo, Charles D.; Zarnoch, Kenneth P.

    1983-01-01

    A sintered porous electrode useful for a molten carbonate fuel cell is produced which is composed of a plurality of 5 wt. % to 95 wt. % nickel balance copper alloy encapsulated ceramic particles sintered together by the alloy.

  17. Manufacture of SOFC electrodes by wet powder spraying

    SciTech Connect

    Wilkenhoener, R.; Mallener, W.; Buchkremer, H.P.

    1996-12-31

    The reproducible and commercial manufacturing of electrodes with enhanced electrochemical performance is of central importance for a successful technical realization of Solid Oxide Fuel Cell (SOFC) systems. The route of electrode fabrication for the SOFC by Wet Powder Spraying (WPS) is presented. Stabilized suspensions of the powder materials for the electrodes were sprayed onto a substrate by employing a spray gun. After drying of the layers, binder removal and sintering are performed in one step. The major advantage of this process is its applicability for a large variety of materials and its flexibility with regard to layer shape and thickness. Above all, flat or curved substrates of any size can be coated, thus opening up the possibility of {open_quotes}up-scaling{close_quotes} SOFC technology. Electrodes with an enhanced electrochemical performance were developed by gradually optimizing the different process steps. For example an optimized SOFC cathode of the composition La{sub 0.65}Sr{sub 0.3}MnO{sub 3} with 40% 8YSZ showed a mean overpotential of about -50 mV at a current density of -0.8 A/cm{sup 2}, with a standard deviation amounting to 16 mV (950{degrees}C, air). Such optimized electrodes can be manufactured with a high degree of reproducibility, as a result of employing a computer-controlled X-Y system for moving the spray gun. Several hundred sintered composites, comprising the substrate anode and the electrolyte, of 100x 100 mm{sup 2} were coated with the cathode by WPS and used for stack integration. The largest manufactured electrodes were 240x240 mm{sup 2}, and data concerning their thickness homogeneity and electrochemical performance are given.

  18. Metal fiber - carbon electrodes for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Smith, Robert Fendlay

    An investigation was carried out to determine activities for oxygen reduction and current efficiencies to hydrogen peroxide of commercially available nickel fibers, carbon fibers, and carbon powders. The activities and current efficiencies were determined by conducting Rotating Ring Disk Electrode Experiments (RRDE) on porous electrodes that utilize an interlocking network of metal fibers with carbon fibers and/or powders. Experimentation was also done using PTFE - carbon powder and PTFE - nickel fiber paste electrodes to remove any porosity and symbiotic effects of the nickel - carbon electrodes. Results of the traditional flat plate PTFE electrodes were compared to the porous electrodes to verify the proposed mathematical viability of porous electrode RRDE. RRDE experiments showed that the most active carbons for oxygen reduction have a surface area to volume ratio of 1000 m2/g, and current rent efficiency to hydrogen peroxide was increased as the average pore size increased. A mathematical model and half-cell polarization experiments were used to characterize and optimize oxygen reduction in gas diffusion electrodes consisting of carbon fibers and/or powders entrapped in a sinter-locked network of nickel microfibers. Important electrode physical parameters, such as nickel fiber loading (0.005 to 0.01 g/cm2) , nickel fiber diameter (2 to 12 mum), void volume (73 to 96%), distance of the active layer from the gas supply (0 to 0.005 cm), and addition of a peroxide decomposition catalyst (0 to 0.004 g/cm2) were systematically varied to determine their effects on electrode performance. Experimentally determined total currents and current efficiencies to hydrogen peroxide were compared to calculated values for model verification. Other important parameters, including intra-electrode oxygen and hydrogen peroxide concentrations, overpotentials, and reaction rates, were simulated to help optimize the electrode. Fabricated metal fiber-carbon electrodes were compared to a

  19. Carbon Nanofiber Electrode for Neurochemical Monitoring

    PubMed Central

    Zhang, David A.; Rand, Emily; Marsh, Michael; Andrews, Russell J.; Lee, Kendall H.; Meyyappan, M.

    2014-01-01

    The ability to rapidly detect neurotransmitter release has broad implications in the study of a variety of neurodegenerative diseases. Electrochemical detection methods using carbon nanofiber nanoelectrodes integrated into the Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) offer many important advantages including biocompatibility, selectivity, sensitivity, and rapid adsorption kinetics. Carbon nanofiber nanoelectrodes exhibit greater selectivity and sensitivity in the electrochemical detection of neurotransmitters compared to macroelectrodes and are able to resolve a ternary mixture of dopamine (DA), serotonin (5-HT), and ascorbic acid as well as to detect individual neurotransmitters in concentrations as low as 50 nM for DA and 100 nM for 5-HT using differential pulse voltammetry. Adsorption kinetics studies and isopropyl alcohol treatments modeled on previous studies on carbon fiber microelectrodes were conducted to investigate the analogous properties on carbon nanofiber electrodes using fast-scan cyclic voltammetry with WINCS and showed analogous results in carbon nanofiber electrodes compared with carbon fiber microelectrodes. PMID:23975638

  20. Method for making thin carbon foam electrodes

    DOEpatents

    Pekala, R.W.; Mayer, S.T.; Kaschmitter, J.L.; Morrison, R.L.

    1999-08-03

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material is disclosed. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  1. Method for making thin carbon foam electrodes

    DOEpatents

    Pekala, Richard W.; Mayer, Steven T.; Kaschmitter, James L.; Morrison, Robert L.

    1999-01-01

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  2. Elastomeric binders for Li-SOCl2 cell carbon electrodes

    NASA Technical Reports Server (NTRS)

    Carter, B. J.; Jeffries, B.; Yen, S. P. S.

    1987-01-01

    Nonoptimized elastomer bonded carbon electrodes made with 100-percent compressed Gulf Acetylene Black have demonstrated performance comparable to that of optimized Teflon bonded carbon electrodes, made from the same carbon, when tested at 1-10 mA/sq cm, at 24 and -26 C. The enhanced performance of elastomer bonded carbon electrodes appears to be due to the more uniform utilization of the carbon electrode to store insoluble discharge products, as compared to Teflon bonded carbon electrodes. With even minimal optimization of elastomer bonded carbon electrodes, significant improvement in Li-SOCl2 cell performance can be expected.

  3. Imprinted zeolite modified carbon paste electrode as a potentiometric sensor for uric acid

    NASA Astrophysics Data System (ADS)

    Khasanah, Miratul; Widati, Alfa Akustia; Fitri, Sarita Aulia

    2016-03-01

    Imprinted zeolite modified carbon paste electrode (carbon paste-IZ) has been developed and applied to determine uric acid by potentiometry. The imprinted zeolite (IZ) was synthesized by the mole ratio of uric acid/Si of 0.0306. The modified electrode was manufactured by mass ratio of carbon, IZ and solid paraffin was 40:25:35. The modified electrode had shown the measurement range of 10-5 M to 10-2 M with Nernst factor of 28.6 mV/decade, the detection limit of 5.86 × 10-6 M and the accuracy of 95.3 - 105.0%. Response time of the electrode for uric acid 10-5 M - 10-2 M was 25 - 44 s. The developed electrode showed the high selectivity toward uric acid in the urea matrix. Life time of the carbon paste-IZ electrode was 10 weeks.

  4. Carbon film electrodes for super capacitor applications

    DOEpatents

    Tan, Ming X.

    1999-01-01

    A microporous carbon film for use as electrodes in energy strorage devices is disclosed, which is made by the process comprising the steps of: (1) heating a polymer film material consisting essentially of a copolymer of polyvinylidene chloride and polyvinyl chloride in an inert atmosphere to form a carbon film; and (2) activating said carbon film to form said microporous carbon film having a density between about 0.7 g/cm.sup.2 and 1 g/cm.sup.2 and a gravimetric capacitance of about between 120 F/g and 315 F/g.

  5. Carbon film electrodes for super capacitor applications

    SciTech Connect

    Tan, M.X.

    1999-11-30

    A microporous carbon film for use as electrodes in energy storage devices is disclosed, which is made by the process comprising the steps of: (1) heating a polymer film material consisting essentially of a copolymer of polyvinylidene chloride and polyvinyl chloride in an inert atmosphere to form a carbon film; and (2) activating said carbon film to form said microporous carbon film having a density between about 0.7 g/cm{sup 2} and 1 g/cm{sup 2} and a gravimetric capacitance of about between 120 F/g and 315 F/g.

  6. Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    SciTech Connect

    Ahmad, Iftikhar; Zhang, Pu

    2016-11-30

    electrode materials. For the existing electrode materials, the material analysis and cell characterization data from ADP dried electrodes showed equivalent (or slightly better) performance. However, for high loading and thicker electrode materials (for high energy densities) the ADP advantages are more prominent. There was less binder migration, the resistance was lower hence the current capacities and retention of the battery cells were higher. The success of the project has enabled credible communications with commercial end users as well as battery coating line integrators. Goal is to scale ADP up for high volume manufacturing of Li-ion battery electrodes. The implementation of ADP in high volume manufacturing will reduce a high cost production step to bring the overall price of Li-ion batteries down. This will ultimately have a positive impact on the public by making electric and hybrid vehicles more affordable.

  7. Carbon Nanotube Based Electrochemical Supercapacitor Electrodes

    DTIC Science & Technology

    2009-05-30

    solution properties and electrospinning conditions, one can produce particles or fibers with controlled morphology for specific applications...Poly( acrylonitrile) (PAN) based nanofibers were electrospun with controlled diameter . A sacrificial polymer, poly(styrene-co-acrylonitrile) (SAN...has been used to control porosity. Carbon nanotubes (CNT) have been used to increase electrode conductivity and hence power density. The diameter of

  8. Carbon fiber manufacturing via plasma technology

    DOEpatents

    Paulauskas, Felix L.; Yarborough, Kenneth D.; Meek, Thomas T.

    2002-01-01

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  9. Chemical Modification of Carbon Electrodes.

    DTIC Science & Technology

    1983-01-31

    tetraphenylporphyrin, electrocatalysis ,• ’-l " X-ray photoelectron spectroscopy, plasma polymerization, diffusion, -4 3 AB STR ACT (Continue on... electrocatalysis in various forms. The project began on the theme of covalent bond attachments to carbon surfaces by a variety of strategies to achieve...molecules with the organosilane as a bridge, in submonolaye. to multimolecular layer amounts. ** Amino porphyrins and ferrocenes were attached via both

  10. All-solid-state carbonate-selective electrode based on screen-printed carbon paste electrode

    NASA Astrophysics Data System (ADS)

    Li, Guang; Lyu, Xiaofeng; Wang, Zhan; Rong, Yuanzhen; Hu, Ruifen; Luo, Zhiyuan; Wang, You

    2017-02-01

    A novel disposable all-solid-state carbonate-selective electrode based on a screen-printed carbon paste electrode using poly(3-octylthiophene-2,5-diyl) (POT) as an ion-to-electron transducer has been developed. The POT was dropped onto the reaction area of the carbon paste electrode covered by the poly(vinyl chloride) (PVC) membrane, which contains N,N-Dioctyl-3α,12α-bis(4-trifluoroacetylbenzoyloxy)-5β-cholan-24-amide as a carbonate ionophore. The electrode showed a near-Nernstian slope of  -27.5 mV/decade with a detection limit of 3.6 * 10-5 mol l-1. Generally, the detection time was 30 s. Because these electrodes are fast, convenient and low in cost, they have the potential to be mass produced and used in on-site testing as disposable sensors. Furthermore, the repeatability, reproducibility and stability have been studied to evaluate the properties of the electrodes. Measurement of the carbonate was also conducted in a human blood solution and achieved good performance.

  11. Supercapacitor Electrodes from Activated Carbon Monoliths and Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Dolah, B. N. M.; Othman, M. A. R.; Deraman, M.; Basri, N. H.; Farma, R.; Talib, I. A.; Ishak, M. M.

    2013-04-01

    Binderless monoliths of supercapacitor electrodes were prepared by the carbonization (N2) and activation (CO2) of green monoliths (GMs). GMs were made from mixtures of self-adhesive carbon grains (SACG) of fibers from oil palm empty fruit bunches and a combination of 5 & 6% KOH and 0, 5 & 6% carbon nanotubes (CNTs) by weight. The electrodes from GMs containing CNTs were found to have lower specific BET surface area (SBET). The electrochemical behavior of the supercapacitor fabricated using the prepared electrodes were investigated by electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). In general an addition of CNTs into the GMs reduces the equivalent series resistance (ESR) value of the cells. A cell fabricated using electrodes from GM with 5% CNT and 5% KOH was found to have the largest reduction of ESR value than that from the others GMs containing CNT. The cell has steeper Warburg's slope than that from its respective non-CNT GM, which reflect the smaller resistance for electrolyte ions to move into pores of electrodes despite these electrodes having largest reduction in specific BET surface area. The cell also has the smallest reduction of specific capacitance (Csp) and maintains the specific power range despite a reduction in the specific energy range due to the CNT addition.

  12. Oxygen electrode in molten carbonate fuel cells

    SciTech Connect

    Dave, B.; Adanuvor, P.K.; White, R.E.; Enayetullah, M.A.; Srinivasan, S.; Appleby, A.J.

    1988-01-01

    Electrode kinetics of oxygen reduction on gold in molten lithium carbonate was investigated. Steady state cyclic voltammograms were obtained for the peroxide reduction at the gold electrode in Li{sub 2}CO{sub 3} melt, results were found to be in good agreement with the data in the literature. Impedance measurements were made as a function of frequency to evaluate the kinetics and mass transfer related parameters. Impedance data were analyzed using a Complex Nonlinear Least Square (CNLS) parameter estimation program and a graphical procedure based upon the Randles-Ershler equivalent circuit. Parameters estimated by both the methods are in good agreement. One of the proposed micro electrodes is a micro ring, which involves a gold film positioned tightly between two alumina roots. As an initial study, the stability of gold films, sputter-deposited on alumina substrates, in the Li{sub 2}CO{sub 3} melt was determined.

  13. Carbon fiber electrode for redox flow battery

    SciTech Connect

    Inoue, M.; Tsuzuki, Y.; Iizuka, Y.; Shimada, M.

    1987-03-01

    Advanced secondary batteries have been developed as electrical energy storage systems for use in electrical utility load-levelling and stand-alone photovoltaic installations. Among them, the redox flow system based on aqueous iron and chromium redox couple is one of the most advanced. An important key to its feasibility is electrode fabrication. Woven and non-woven fabrics of carbon fibers have been used as thin but three dimensional electrodes of the redox flow system in view of their electric conductivity, chemical stability, and economy. One of the electrochemical problems of iron-chromium redox battery related to the electrode is the slow reaction rate of reduction and oxidation of chromium complex ion. As the electron transfer rate of chromium complex ion is lower than that of iron ion, the voltaic efficiency of the battery tends to decrease.

  14. Electrospun carbon nanofibers for electrochemical capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Tong

    The objective of this work is to electrospin poly(acrylonitrile) (PAN) based nanofibers with controlled diameter and to stabilize and carbonize them for developing meso-porous carbon for application as electrochemical capacitor electrodes. A sacrificial polymer, poly(styrene-co-acrylonitrile) (SAN) has been used to control porosity. Carbon nanotubes (CNT) have been used to increase electrode conductivity and hence power density. The study has been divided into two parts. In part I, electrospinning behavior of PAN and PAN/CNT has been studied. The diameter of electrospun PAN fibers was monitored as a function of polymer molecular weight, solution concentration, solution flow rate, distance between the spinneret and the target, and the applied voltage. Bead free PAN fibers of 60 nm diameter have been electrospun. Various electrospun fibers have been characterized by wide angle X-ray diffraction and by Raman spectroscopy. Electrospinning process has been observed by high speed photography. In part II, the electrospun PAN, PAN/SAN, and PAN/SAN/CNT fiber mats were stabilized, carbonized, and processed into electrochemical capacitor electrodes. The performance of the electrochemical capacitors was tested by the constant current charge/discharge and cyclic voltammetry in 6 molar potassium hydroxide aqueous solution. The surface area and pore size distribution of the electrodes were measured using N2 adsorption and desorption. The effect of surface area and pore size distribution on the capacitance performance has been studied. The capacitance performance of various carbonized electrospun fibers mats have been compared to those of the PAN/SAN/CNT film, carbon nanotube bucky paper, and activated carbon pellet. The capacitance of PAN/SAN/CNT fiber mat over 200 F/g (at a current density of 1 A/g) and the power density approaching 1 kW/kg have been observed. Addition of 1 wt% carbon nanotubes in PAN/SAN, improves the power density by a factor of four. For comparison, the

  15. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources

    NASA Astrophysics Data System (ADS)

    Mohanty, D.; Hockaday, E.; Li, J.; Hensley, D. K.; Daniel, C.; Wood, D. L.

    2016-04-01

    During LIB electrode manufacturing, it is difficult to avoid the certain defects that diminish LIB performance and shorten the life span of the batteries. This study provides a systematic investigation correlating the different plausible defects (agglomeration/blisters, pinholes/divots, metal particle contamination, and non-uniform coating) in a LiNi0.5Mn0.3Co0.2O2 positive electrode with its electrochemical performance. In addition, an infrared thermography technique was demonstrated as a nondestructive tool to detect these defects. The findings show that cathode agglomerates aggravated cycle efficiency, and resulted in faster capacity fading at high current density. Electrode pinholes showed substantially lower discharge capacities at higher current densities than baseline NMC 532electrodes. Metal particle contaminants have an extremely negative effect on performance, at higher C-rates. The electrodes with more coated and uncoated interfaces (non-uniform coatings) showed poor cycle life compared with electrodes with fewer coated and uncoated interfaces. Further, microstructural investigation provided evidence of presence of carbon-rich region in the agglomerated region and uneven electrode coating thickness in the coated and uncoated interfacial regions that may lead to the inferior electrochemical performance. This study provides the importance of monitoring and early detection of the electrode defects during LIB manufacturing processes to minimize the cell rejection rate after fabrication and testing.

  16. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources

    SciTech Connect

    Mohanty, D.; Hockaday, E.; Li, J.; Hensley, D. K.; Daniel, C.; Wood, D. L.

    2016-02-21

    During LIB electrode manufacturing, it is difficult to avoid the certain defects that diminish LIB performance and shorten the life span of the batteries. This study provides a systematic investigation correlating the different plausible defects (agglomeration/blisters, pinholes/divots, metal particle contamination, and non-uniform coating) in a LiNi0.5Mn0.3Co0.2O2 positive electrode with its electrochemical performance. Additionally, an infrared thermography technique was demonstrated as a nondestructive tool to detect these defects. The findings show that cathode agglomerates aggravated cycle efficiency, and resulted in faster capacity fading at high current density. Electrode pinholes showed substantially lower discharge capacities at higher current densities than baseline NMC 532 electrodes. Metal particle contaminants have an extremely negative effect on performance, at higher C-rates. The electrodes with more coated and uncoated interfaces (non-uniform coatings) showed poor cycle life compared with electrodes with fewer coated and uncoated interfaces. Further, microstructural investigation provided evidence of presence of carbon-rich region in the agglomerated region and uneven electrode coating thickness in the coated and uncoated interfacial regions that may lead to the inferior electrochemical performance. In conclusion, this study provides the importance of monitoring and early detection of the electrode defects during LIB manufacturing processes to minimize the cell rejection rate after fabrication and testing.

  17. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources

    DOE PAGES

    Mohanty, D.; Hockaday, E.; Li, J.; ...

    2016-02-21

    During LIB electrode manufacturing, it is difficult to avoid the certain defects that diminish LIB performance and shorten the life span of the batteries. This study provides a systematic investigation correlating the different plausible defects (agglomeration/blisters, pinholes/divots, metal particle contamination, and non-uniform coating) in a LiNi0.5Mn0.3Co0.2O2 positive electrode with its electrochemical performance. Additionally, an infrared thermography technique was demonstrated as a nondestructive tool to detect these defects. The findings show that cathode agglomerates aggravated cycle efficiency, and resulted in faster capacity fading at high current density. Electrode pinholes showed substantially lower discharge capacities at higher current densities than baseline NMCmore » 532 electrodes. Metal particle contaminants have an extremely negative effect on performance, at higher C-rates. The electrodes with more coated and uncoated interfaces (non-uniform coatings) showed poor cycle life compared with electrodes with fewer coated and uncoated interfaces. Further, microstructural investigation provided evidence of presence of carbon-rich region in the agglomerated region and uneven electrode coating thickness in the coated and uncoated interfacial regions that may lead to the inferior electrochemical performance. In conclusion, this study provides the importance of monitoring and early detection of the electrode defects during LIB manufacturing processes to minimize the cell rejection rate after fabrication and testing.« less

  18. Carbon Film Electrodes For Super Capacitor Applications

    DOEpatents

    Tan, Ming X.

    1999-07-20

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  19. Desalination with carbon aerogel electrodes. Revision 1

    SciTech Connect

    Farmer, J.C.; Richardson, J.H.; Fix, D.V.; Thomson, S.L.; May, S.C.

    1996-12-04

    Electrically regenerated electrosorption process (carbon aerogel CDI) was developed by LLNL for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by numerous pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area (2-5.4x10{sup 6}ft{sup 2}lb{sup -1} or 400-1100 m{sup 2}g{sup -1}) and very low electrical resistivity ({le}40 m{Omega}). Ions are removed from the electrolyte by the electric field and electrosorbed onto the carbon aerogel. It is concluded that carbon aerogel CDI may be an energy-efficient alternative to electrodialysis and reverse osmosis for desalination of brackish water ({le}5000 ppM). The intrinsic energy required by this process is about QV/2, where Q is the stored electrical charge and V is the voltage between the electrodes, plus losses. Estimated requirement for desalination of a 2000 ppM feed is -0.53-2.5 Wh/gal{sup -1} (0.5-2.4 kJ L{sup -1}), depending on voltage, flow rate, cell dimensions, aerogel density, recovery ratio, etc. This assumes that 50-70% of the stored electrical energy is reclaimed during regeneration (electrical discharge). Though the energy requirement for desalination of sea water is also low, this application will be much more difficult. Additional work will be required for desalination of streams that contain more than 5000 ppM total dissolved solids (2000 ppM will require electrochemical cells with extremely tight, demanding tolerances). At this present time, the process is best suited for streams with dilute impurities, as recently demonstrated during a field test at LLNL Treatment Facility C.

  20. Carbon additives for electrical double layer capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Weingarth, D.; Cericola, D.; Mornaghini, F. C. F.; Hucke, T.; Kötz, R.

    2014-11-01

    Electrochemical double layer capacitors (EDLCs) are inherently high power devices when compared to rechargeable batteries. While capacitance and energy storage ability are mainly increased by optimizing the electrode active material or the electrolyte, the power capability could be improved by including conductive additives in the electrode formulations. This publication deals with the use of four different carbon additives - two carbon blacks and two graphites - in standard activated carbon based EDLC electrodes. The investigations include: (i) physical characterization of carbon powder mixtures such as surface area, press density, and electrical resistivity measurements, and (ii), electrochemical characterization via impedance spectroscopy and cyclic voltammetry of full cells made with electrodes containing 5 wt.% of carbon additive and compared to cells made with pure activated carbon electrodes in organic electrolyte. Improved cell performance was observed in both impedance and cyclic voltammetry responses. The results are discussed considering the main characteristics of the different carbon additives, and important considerations about electrode structure and processability are drawn.

  1. Double layer capacitance of carbon foam electrodes

    SciTech Connect

    Delnick, F.M.; Ingersoll, D.; Firsich, D.

    1993-11-01

    We have evaluated a wide variety of microcellular carbon foams prepared by the controlled pyrolysis and carbonization of several polymers including: polyacrylonitrile (PAN), polymethacrylonitrile (PMAN), resorcinol/formaldehyde (RF), divinylbenzene/methacrylonitrile (DVB), phenolics (furfuryl/alcohol), and cellulose polymers such as Rayon. The porosity may be established by several processes including: Gelation (1-5), phase separation (1-3,5-8), emulsion (1,9,10), aerogel/xerogel formation (1,11,12,13), replication (14) and activation. In this report we present the complex impedance analysis and double layer charging characteristics of electrodes prepared from one of these materials for double layer capacitor applications, namely activated cellulose derived microcellular carbon foam.

  2. Double layer capacitance of carbon foam electrodes

    NASA Astrophysics Data System (ADS)

    Delnick, F. M.; Ingersoll, D.; Firsich, D.

    We have evaluated a wide variety of microcellular carbon foams prepared by the controlled pyrolysis and carbonization of several polymers including: polyacrylonitrile (PAN), polymethacrylonitrile (PMAN), resorcinol/formaldehyde (RF), divinylbenzene/methacrylonitrile (DVB), phenolics (furfuryl/alcohol), and cellulose polymers such as Rayon. The porosity may be established by several processes including: gelation (1-5), phase separation (1-3,5-8), emulsion (1,9,10), aerogel/xerogel formation (1,11,12,13), replication (14), and activation. In this report we present the complex impedance analysis and double layer charging characteristics of electrodes prepared from one of these materials for double layer capacitor applications, namely activated cellulose derived microcellular carbon foam.

  3. ac impedance of the carbon monofluoride electrode

    NASA Astrophysics Data System (ADS)

    Suchanski, M. R.

    1985-09-01

    The ac impedance of carbon monofluoride (CF) half-cells and Li/CF batteries that contain 1M LiBF4/4-butyrolactone electrolyte was measured as a function of state of charge. The nonfaradaic components of the CF half-cell impedance were resolved with the aid of a one-dimensional macroscopic treatment of a porous electrode. The values of the nonfaradaic components and their variation with charge withdrawn provide information concerning the nature of cathode discharge products, the degree of tortuosity in the cathode and separator matrices, and the cathode failure mechanism. The CF electrode capacitance, as measured by the low frequency quadrature impedance, can serve as a semiquantitative measure of battery state of charge under certain conditions.

  4. Wastewater pretreatment of a welding electrode manufacturing plant before nanofiltration.

    PubMed

    Golestani, H A; Borghei, M; Mousavi, M

    2010-07-01

    This paper finds out appropriate methods of wastewater pretreatment of a welding electrode manufacturing plant before use of nanofiltration. Based on some preliminary experimentation, it was concluded that the coagulation-flocculation and centrifuge processes in the separation of colloid particles were more effective. At first step, the effect of different concentrations of a mixture of alum (Al2 (SO4)3 x 18H2O) and ferric chloride (FeCl3) on turbidity reduction, clarified wastewater percentage, and the rate of sedimentation were closely studied. The results show that a mixture of 2.5 g/L comprising 25% alum and 75% ferric chloride is an optimum dose and more economic. In the next step, the effect of various RPMs and different time periods on the turbidity reduction by the centrifugal method was studied. The centrifuge experiment results show that the colloidal particles are easily converted to dense granular form. Wastewater turbidity can be reduced up to 98% for 4000 RPM and 30 minutes duration. Time operations more than 30 minutes and above 3000 RPMs did not have a significant effect on the turbidity reduction. Regarding the operation costs and energy consumption, it can be concluded that 30 minutes time operation and 3000 RPM were optimal. As the centrifugal method is free from chemicals and wastewater recovery with this method is high, this method appears to be advantageous.

  5. Carbon nanotube macrofilm-based nanocomposite electrodes for energy applications

    NASA Astrophysics Data System (ADS)

    Cao, Zeyuan

    Finding new electrode materials for energy conversion and storage devices have been the focus of recent research in the fields of science and engineering. Suffering from poor electronic conductivity, chemical and mechanical stability, active electrode materials are usually coupled with different carbon nanostructured materials to form nanocomposite electrodes, showing promising electrochemical performance. Among the carbon nanostructured materials, carbon nanotube (CNT) macrofilms draw great attention owing to their extraordinary properties, such as a large specific surface area, exceptionally high conductivity, porous structure, flexibility, mechanical robustness, and adhesion. They could effectively enhance the electrochemical performance of the incorporated active materials in the nanocomposites. In this dissertation, CNT macrofilm-based nanocomposites are investigated for rechargeable lithium-ion batteries, supercapacitors, and electrocatalysts of fuel cells. The progressive research developed various nanocomposites from cathode materials to anode materials followed by a general nanocomposite solution due to the unique adhesive property of the fragmented CNT macrofilms. The in-situ synthesis strategy are explored to in-situ deposit unlithiated cathode materials V2O5 and lithiated cathode materials LiMn2O4 nanocrystals in the matrix of the CNT macrofilms as nanocomposites to be paired with metallic lithium in half cells. The presence of oxygen-containing functional groups on the surface of the CNT macrofilms after purification can enhance the association with the active materials to enable the facilitated transport of solvated ions to the electrolyte/electrode interfaces and increase the diffusion kinetics, consequently enhancing the battery performance in terms of high specific capacity, rate capability, and cycling stability. It is also significant to demonstrate a reliable, low-cost, and effective route to synthesize the family of metal oxides (MxOy (M=Fe, Co

  6. High power and high energy electrodes using carbon nanotubes

    DOEpatents

    Martini, Fabrizio; Brambilla, Nicolo Michele; Signorelli, Riccardo

    2015-04-07

    An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.

  7. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1995-08-22

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  8. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  9. The Importance of Carbon Fiber to Polymer Additive Manufacturing

    SciTech Connect

    Love, Lonnie J; Kunc, Vlastimil; Rios, Orlando; Duty, Chad E; Post, Brian K; Blue, Craig A

    2014-01-01

    Additive manufacturing holds tremendous promise in terms of revolutionizing manufacturing. However, fundamental hurdles limit mass adoption of the technology. First, production rates are extremely low. Second, the physical size of parts is generally small, less than a cubic foot. Third, while there is much excitement about metal additive manufacturing, the major growth area is in polymer additive manufacturing systems. Unfortunately, the mechanical properties of the polymer parts are poor, limiting the potential for direct part replacement. To address this issue, we describe three benefits of blending carbon fiber with polymer additive manufacturing. First, development of carbon fiber reinforced polymers for additive manufacturing achieves specific strengths approaching aerospace quality aluminum. Second, carbon fiber radically changes the behavior of the material during deposition, enabling large scale, out-of-the-oven, high deposition rate manufacturing. Finally, carbon fiber technology and additive manufacturing complement each other. Merging the two manufacturing processes enables the construction of complex components that would not be possible otherwise.

  10. Carbon nanotube nanocomposite-modified paper electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Korivi, Naga S.; Vangari, Manisha; Jiang, Li

    2017-02-01

    This paper describes the evaluation of carbon paper electrodes for supercapacitor applications. The electrodes are based on carbon micro-fiber paper modified with active material consisting of layers of silver nano-particulate ink and a nanocomposite of multi-walled carbon nanotubes and silver nano-particulate ink. The electrodes were characterized microscopically and electrically. Current-voltage studies revealed a consistent Ohmic behavior of the electrode when modified with different nanostructured active material. Among the active materials incorporated into the electrode, a nanocomposite of carbon nanotubes and silver nano-particulate ink significantly improved capacitance. The paper electrodes can be used for lightweight and ultrathin supercapacitors and other portable energy applications.

  11. Silver-functionalized carbon nanofiber composite electrodes for ibuprofen detection

    NASA Astrophysics Data System (ADS)

    Manea, Florica; Motoc, Sorina; Pop, Aniela; Remes, Adriana; Schoonman, Joop

    2012-06-01

    The aim of this study is to prepare and characterize two types of silver-functionalized carbon nanofiber (CNF) composite electrodes, i.e., silver-decorated CNF-epoxy and silver-modified natural zeolite-CNF-epoxy composite electrodes suitable for ibuprofen detection in aqueous solution. Ag carbon nanotube composite electrode exhibited the best electroanalytical parameters through applying preconcentration/differential-pulsed voltammetry scheme.

  12. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes.

    PubMed

    Liu, Dianyi; Zhao, Mingyan; Li, Yan; Bian, Zuqiang; Zhang, Luhui; Shang, Yuanyuan; Xia, Xinyuan; Zhang, Sen; Yun, Daqin; Liu, Zhiwei; Cao, Anyuan; Huang, Chunhui

    2012-12-21

    Most previous fiber-shaped solar cells were based on photoelectrochemical systems involving liquid electrolytes, which had issues such as device encapsulation and stability. Here, we deposited classical semiconducting polymer-based bulk heterojunction layers onto stainless steel wires to form primary electrodes and adopted carbon nanotube thin films or densified yarns to replace conventional metal counter electrodes. The polymer-based fiber cells with nanotube film or yarn electrodes showed power conversion efficiencies in the range 1.4% to 2.3%, with stable performance upon rotation and large-angle bending and during long-time storage without further encapsulation. Our fiber solar cells consisting of a polymeric active layer sandwiched between steel and carbon electrodes have potential in the manufacturing of low-cost, liquid-free, and flexible fiber-based photovoltaics.

  13. Spraying Techniques for Large Scale Manufacturing of PEM-FC Electrodes

    NASA Astrophysics Data System (ADS)

    Hoffman, Casey J.

    Fuel cells are highly efficient energy conversion devices that represent one part of the solution to the world's current energy crisis in the midst of global climate change. When supplied with the necessary reactant gasses, fuel cells produce only electricity, heat, and water. The fuel used, namely hydrogen, is available from many sources including natural gas and the electrolysis of water. If the electricity for electrolysis is generated by renewable energy (e.g., solar and wind power), fuel cells represent a completely 'green' method of producing electricity. The thought of being able to produce electricity to power homes, vehicles, and other portable or stationary equipment with essentially zero environmentally harmful emissions has been driving academic and industrial fuel cell research and development with the goal of successfully commercializing this technology. Unfortunately, fuel cells cannot achieve any appreciable market penetration at their current costs. The author's hypothesis is that: the development of automated, non-contact deposition methods for electrode manufacturing will improve performance and process flexibility, thereby helping to accelerate the commercialization of PEMFC technology. The overarching motivation for this research was to lower the cost of manufacturing fuel cell electrodes and bring the technology one step closer to commercial viability. The author has proven this hypothesis through a detailed study of two non-contact spraying methods. These scalable deposition systems were incorporated into an automated electrode manufacturing system that was designed and built by the author for this research. The electrode manufacturing techniques developed by the author have been shown to produce electrodes that outperform a common lab-scale contact method that was studied as a baseline, as well as several commercially available electrodes. In addition, these scalable, large scale electrode manufacturing processes developed by the author are

  14. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    DOEpatents

    Doddapaneni, N.; Wang, J.C.F.; Crocker, R.W.; Ingersoll, D.; Firsich, D.W.

    1999-03-16

    A method is described for producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of {approx_equal} 80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere. 4 figs.

  15. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    DOEpatents

    Doddapaneni, Narayan; Wang, James C. F.; Crocker, Robert W.; Ingersoll, David; Firsich, David W.

    1999-01-01

    A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

  16. Antibacterial validation of electrogenerated hypochlorite using carbon-based electrodes.

    PubMed

    Locker, J; Fitzgerald, P; Sharp, D

    2014-12-01

    This proof-of-concept study explores the novel use of carbon-based electrodes for the electrochemical generation of hypochlorite and compares the antimicrobial efficacy against commercial hypochlorite solution. Antimicrobial concentrations of hypochlorite were generated using pad-printed carbon and carbon fibre electrodes, yielding up to 0·027% hypochlorite in 60 min and 0·1% hypochlorite in 15 min, respectively, in a nondivided assembly. The minimum inhibitory concentration (MIC) of the electrogenerated hypochlorite produced using carbon fibre electrodes was established for four medically important bacteria (Pseudomonas aeruginosa and Staphylococcus aureus approx. 0·025%, Escherichia coli and Enterococcus faecalis approx. 0·012%) and found to be in agreement with those determined using commercial hypochlorite solution. Therefore, carbon-based electrodes, particularly carbon fibre, have proven effective for the generation of antimicrobial concentrations of hypochlorite. The similarity of the MIC values to commercial hypochlorite solutions suggests that the antimicrobial efficacy is derived from the quantified hypochlorite generated and not due to marked cogeneration of reactive oxygen species, as identified for other assemblies. As such, the application of carbon electrodes may be suitable for the local production of hypochlorite for healthcare antisepsis. Carbon fibre electrodes can rapidly generate antimicrobial concentrations of hypochlorite; as such, these cheap and commercially available electrodes are proposed for the local production of hypochlorite for healthcare antisepsis. Importantly, the antimicrobial properties of the electrochemically generated hypochlorite mirror those of commercial hypochlorite, suggesting this is not enhanced by the cogeneration of reactive oxygen species. This illustrates the potential use of disposable carbon electrodes for localized small-volume production of hypochlorite for surface and skin cleansing, and opens a broader

  17. Flexible, transparent electrodes using carbon nanotubes

    PubMed Central

    2012-01-01

    We prepare thin single-walled carbon nanotube networks on a transparent and flexible substrate with different densities, using a very simple spray method. We measure the electric impedance at different frequencies Z(f) in the frequency range of 40 Hz to 20 GHz using two different methods: a two-probe method in the range up to 110 MHz and a coaxial (Corbino) method in the range of 10 MHz to 20 GHz. We measure the optical absorption and electrical conductivity in order to optimize the conditions for obtaining optimum performance films with both high electrical conductivity and transparency. We observe a square resistance of 1 to 8.5 kΩ for samples showing 65% to 85% optical transmittance, respectively. For some applications, we need flexibility and not transparency: for this purpose, we deposit a thick film of single-walled carbon nanotubes on a flexible silicone substrate by spray method from an aqueous suspension of carbon nanotubes in a surfactant (sodium dodecyl sulphate), thereby obtaining a flexible conducting electrode showing an electrical resistance as low as 200 Ω/sq. When stretching up to 10% and 20%, the electrical resistance increases slightly, recovering the initial value for small elongations up to 10%. We analyze the stretched and unstretched samples by Raman spectroscopy and observe that the breathing mode on the Raman spectra is highly sensitive to stretching. The high-energy Raman modes do not change, which indicates that no defects are introduced when stretching. Using this method, flexible conducting films that may be transparent are obtained just by employing a very simple spray method and can be deposited on any type or shape of surface. PMID:23074999

  18. Thin micropatterned multi-walled carbon nanotube films for electrodes

    NASA Astrophysics Data System (ADS)

    Halonen, Niina; Mäklin, Jani; Rautio, Anne-Riikka; Kukkola, Jarmo; Uusimäki, Antti; Toth, Geza; Reddy, Leela Mohana; Vajtai, Robert; Ajayan, Pulickel M.; Kordas, Krisztian

    2013-09-01

    Micropatterned electrodes based on thin multi-walled carbon nanotube films are grown by catalytic chemical vapour deposition on lithographically defined quartz and Inconel alloy substrates. The electrical contact at the interface between the root of the nanotube arrays and the thin Ti hardmask layer on the quartz surface is found to be poor disabling proper capacitive characteristics. On the other hand, nanotube-Inconel electrodes show low series resistance and good electric double layer capacitor operation close to that of ideal devices. Patterning of the electrodes enhances both specific capacitance and power in reference to non-patterned bulk carbon nanotube film electrodes.

  19. Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Tan, Seng; Zhou, Jian-guo

    2013-01-01

    Pitch-based nanocomposite carbon fibers were prepared with various percentages of carbon nanofibers (CNFs), and the fibers were used for manufacturing composite structures. Experimental results show that these nanocomposite carbon fibers exhibit improved structural and electrical conductivity properties as compared to unreinforced carbon fibers. Composite panels fabricated from these nanocomposite carbon fibers and an epoxy system also show the same properties transformed from the fibers. Single-fiber testing per ASTM C1557 standard indicates that the nanocomposite carbon fiber has a tensile modulus of 110% higher, and a tensile strength 17.7% times higher, than the conventional carbon fiber manufactured from pitch. Also, the electrical resistance of the carbon fiber carbonized at 900 C was reduced from 4.8 to 2.2 ohm/cm. The manufacturing of the nanocomposite carbon fiber was based on an extrusion, non-solvent process. The precursor fibers were then carbonized and graphitized. The resultant fibers are continuous.

  20. Ionic polymer metal composites with nanoporous carbon electrodes

    NASA Astrophysics Data System (ADS)

    Palmre, Viljar; Brandell, Daniel; Mäeorg, Uno; Torop, Janno; Volobujeva, Olga; Punning, Andres; Johanson, Urmas; Aabloo, Alvo

    2010-04-01

    Ionic Polymer Metal Composites (IPMCs) are soft electroactive polymer materials that bend in response to the voltage stimulus (1 - 4 V). They can be used as actuators or sensors. In this paper, we introduce two new highly-porous carbon materials for assembling high specific area electrodes for IPMC actuators and compare their electromechanical performance with recently reported IPMCs based on RuO2 electrodes. We synthesize ionic liquid (Emi-Tf) actuators with either Carbide-Derived Carbon (CDC) (derived from TiC) or coconut shell based activated carbon electrodes. The carbon electrodes are applied onto ionic liquid-swollen Nafion membranes using the direct assembly process. Our results show that actuators assembled with CDC electrodes have the greatest peak-to-peak strain output, reaching up to 20.4 mɛ (equivalent to >2%) at a 2 V actuation signal, exceeding that of the RuO2 electrodes by more than 100%. The electrodes synthesized from TiC-derived carbon also revealed significantly higher maximum strain rate. The differences between the materials are discussed in terms of molecular interactions and mechanisms upon actuation in the different electrodes.

  1. Carbon nanotube electrodes for effective interfacing with retinal tissue.

    PubMed

    Shoval, Asaf; Adams, Christopher; David-Pur, Moshe; Shein, Mark; Hanein, Yael; Sernagor, Evelyne

    2009-01-01

    We have investigated the use of carbon nanotube coated microelectrodes as an interface material for retinal recording and stimulation applications. Test devices were micro-fabricated and consisted of 60, 30 mum diameter electrodes at spacing of 200 mum. These electrodes were coated via chemical vapor deposition of carbon nanotubes, resulting in conducting, three dimensional surfaces with a high interfacial area. These attributes are important both for the quality of the cell-surface coupling as well as for electro-chemical interfacing efficiency. The entire chip was packaged to fit a commercial multielectrode recording and stimulation system. Electrical recordings of spontaneous spikes from whole-mount neonatal mouse retinas were consistently obtained minutes after retinas were placed over the electrodes, exhibiting typical bursting and propagating waves. Most importantly, the signals obtained with carbon nanotube electrodes have exceptionally high signal to noise ratio, reaching values as high as 75. Moreover, spikes are marked by a conspicuous gradual increase in amplitude recorded over a period of minutes to hours, suggesting improvement in cell-electrode coupling. This phenomenon is not observed in conventional commercial electrodes. Electrical stimulation using carbon nanotube electrodes was also achieved. We attribute the superior performances of the carbon nanotube electrodes to their three dimensional nature and the strong neuro-carbon nanotube affinity. The results presented here show the great potential of carbon nanotube electrodes for retinal interfacing applications. Specifically, our results demonstrate a route to achieve a reduction of the electrode down to few micrometers in order to achieve high efficacy local stimulation needed in retinal prosthetic devices.

  2. Inkjet printing of carbon black electrodes for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Schlatter, Samuel; Rosset, Samuel; Shea, Herbert

    2017-04-01

    Inkjet printing is an appealing technique to print electrodes for Dielectric Elastomer Actuators (DEAs). Here we present the preparation and ink-jet printing of a carbon black electrode mixture and characterise its properties. Carbon black has been used extensively in the past because it is very compliant; however, it has a high resistance and can be very dirty to work with. In this paper we show that carbon black remains an appropriate electrode material, and when inkjet printed can be used to fabricate devices meeting today's demanding requirements. DEAs are becoming thinner to decrease actuation voltages and are shrinking in size to match the scale of the devices in the biomedical field, tuneable optics, and microfluidics. Inkjet printing addresses both of these problems. Firstly, Inkjet printing is a non-contact technique and can print on very thin freestanding membranes. Secondly, the high precision of inkjet printers makes it possible to print complex electrode geometries in the millimetre scale. We demonstrate the advantages of inkjet printing and carbon black electrodes by conducting a full characterisation of the printed electrodes. The printed carbon black electrodes have resistances as low as 13kΩ/□, an elastic modulus of approximately 1MPa, and a cyclic resistance swing which increases by 7% over 1500 cycles at 50% stretch. We also demonstrate a DEA with printed carbon black electrodes with a diametral stretch of 8.8% at an electric field of approximately 94V/μm. Finally a qualitative test is conducted to show that the printed carbon black electrode is extremely hardwearing.

  3. Low Impedance Carbon Adhesive Electrodes with Long Shelf Life.

    PubMed

    Posada-Quintero, Hugo F; Reyes, Bersaín A; Burnham, Ken; Pennace, John; Chon, Ki H

    2015-10-01

    A novel electrocardiogram (ECG) electrode film is developed by mixing carbon black powder and a quaternary salt with a visco-elastic polymeric adhesive. Unlike traditional wet gel-based electrodes, carbon/salt/adhesive (CSA) electrodes should theoretically have an infinite shelf life as they do not dehydrate even after a prolonged period of storage. The CSA electrodes are electrically activated for use through the process of electrophoresis. Specifically, the activation procedure involves sending a high voltage and current through the electrode, which results in significant reduction of impedance so that high fidelity ECG signals can be obtained. Using the activation procedure, the ideal concentration of carbon black powder in the mixture with the adhesive was examined. It was determined that the optimum concentration of carbon black which minimized post-activation impedance was 10%. Once the optimal carbon black powder concentration was determined, extensive signal analysis was performed to compare the performance of the CSA electrodes to the standard silver-silver chloride (Ag/AgCl) electrodes. As a part of data analysis, electrode-skin contact impedance of the CSA was measured and compared to the standard Ag/AgCl electrodes; we found consistently lower impedance for CSA electrodes. For quantitative data analysis, we simultaneously collected ECG data with CSA and Ag/AgCl electrodes from 17 healthy subjects. Heart rate variability (HRV) indices and ECG morphological waveforms were calculated to compare CSA and Ag/AgCl electrodes. Non-significant differences for most of the HRV indices between CSA and Ag/AgCl electrodes were found. Of the morphological waveform metrics consisting of R-wave peak amplitude, ST-segment elevation and QT interval, only the first index was found to be significantly different between the two media. The response of CSA electrodes to motion artifacts was also tested, and we found in general no difference in the quality of the ECG signal

  4. Capacitive, deionization with carbon aerogel electrodes: Carbonate, sulfate, and phosphate

    SciTech Connect

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1995-07-24

    A process for the capacitive deionization (CDI) of water with a stack of carbon aerogel electrodes has been developed by Lawrence Livermore National Laboratory. Unlike ion exchange, one of the more conventional deionization processes, no chemicals are required for regeneration of the system. Electricity is used instead. Water with various anions and cations is pumped through the electrochemical cell. After polarization, ions are electrostatically removed from the water and held in the electric double layers formed at the surfaces of electrodes. The water leaving the cell is purified, as desired. The effects of cell voltage on the electrosorption capacities for Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4}, and Na{sub 2}CO{sub 3} have been investigated and are reported here. Results for NaCl and NaNO{sub 3} have been reported previously. Possible applications for CDI are as a replacement for ion exchange processes which remove heavy metals and radioisotopes from process and waste water in various industries, as well as to remove inorganic ions from feedwater for fossil and nuclear power plants.

  5. The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Bockholt, Henrike; Indrikova, Maira; Netz, Andreas; Golks, Frederik; Kwade, Arno

    2016-09-01

    The individual steps in the electrode manufacturing process, e.g., conductive additives addition, mixing, and calendering, strongly affect the electrochemical and mechanical properties of the electrodes. LiNi1/3Co1/3Mn1/3O2 (NCM) cathode electrodes with conductive additive variations are fabricated using a reference and an intensive mixing process, and are subsequently calendered to different porosities. It is found that graphite reduces the pore size of NCM electrodes, in contrast to the carbon black that establishes additional nanoscale pores. Electrodes manufactured with reference mixing result in a porous carbon black network with good overall electric pathways, whereas those manufactured with intensive processing result in a dense carbon black network, leading to good short-range contacts, but a lack of long-range contacts. In this case, the addition of graphite as a conductive additive is identified to establish important additional long-range contacts. Due to the structural differences achieved by the compared processing routes, the calendering process can have a positive or negative impact on battery performance.

  6. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization

    DOE PAGES

    Hatzell, Kelsey B.; Hatzell, Marta C.; Cook, Kevin M.; ...

    2015-01-29

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. We examine chemical oxidation of granular activated carbon (AC) here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (~21 Pa s)more » to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g–1) without sacrificing flowability (viscosity). The electrical energy required to remove ~18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (~60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. Finally, it is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.« less

  7. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.

    PubMed

    Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury

    2015-03-03

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.

  8. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization

    SciTech Connect

    Hatzell, Kelsey B.; Hatzell, Marta C.; Cook, Kevin M.; Boota, Muhammad; Housel, Gabrielle M.; Mcbride, Alexander; Kumbur, E. Caglan; Gogotsi, Yury

    2015-01-29

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. We examine chemical oxidation of granular activated carbon (AC) here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (~21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g–1) without sacrificing flowability (viscosity). The electrical energy required to remove ~18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (~60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. Finally, it is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.

  9. Development and optimization of porous carbon papers suitable for gas diffusion electrodes. Final report, December 2000

    SciTech Connect

    Fleming, Gerald J.; Fleming, Patrick J.

    2001-01-16

    This final report details results from the program to optimize porous carbon gas diffusion electrodes for use in fuel cells. Efforts focused on isolating discrete paper properties through a custom-made matrix, then fuel cell testing each variant to correlate properties to performance. Resulting reduced cost material was manufactured on production equipment and made available to DOE industry partners. The resulting product is suitable for continuous production, which will be evaluated in future work.

  10. A novel method of fabricating carbon nanotubes-polydimethylsiloxane composite electrodes for electrocardiography.

    PubMed

    Liu, Benyan; Chen, Yingmin; Luo, Zhangyuan; Zhang, Wenzan; Tu, Quan; Jin, Xun

    2015-01-01

    Polymer-based flexible electrodes are receiving much attention in medical applications due to their good wearing comfort. The current fabrication methods of such electrodes are not widely applied. In this study, polydimethylsiloxane (PDMS) and conductive additives of carbon nanotubes (CNTs) were employed to fabricate composite electrodes for electrocardiography (ECG). A three-step dispersion process consisting of ultrasonication, stirring, and in situ polymerization was developed to yield homogenous CNTs-PDMS mixtures. The CNTs-PDMS mixtures were used to fabricate CNTs-PDMS composite electrodes by replica technology. The influence of ultrasonication time and CNT concentration on polymer electrode performance was evaluated by impedance and ECG measurements. The signal amplitude of the electrodes prepared using an ultrasonication time of 12 h and CNT content of 5 wt% was comparable to that of commercial Ag/AgCl electrodes. The polymer electrodes were easily fabricated by conventional manufacturing techniques, indicating a potential advantage of reduced cost for mass production.

  11. Conducting polymer transistors making use of activated carbon gate electrodes.

    PubMed

    Tang, Hao; Kumar, Prajwal; Zhang, Shiming; Yi, Zhihui; Crescenzo, Gregory De; Santato, Clara; Soavi, Francesca; Cicoira, Fabio

    2015-01-14

    The characteristics of the gate electrode have significant effects on the behavior of organic electrochemical transistors (OECTs), which are intensively investigated for applications in the booming field of organic bioelectronics. In this work, high specific surface area activated carbon (AC) was used as gate electrode material in OECTs based on the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS). We found that the high specific capacitance of the AC gate electrodes leads to high drain-source current modulation in OECTs, while their intrinsic quasi-reference characteristics make unnecessary the presence of an additional reference electrode to monitor the OECT channel potential.

  12. Redox electrodes comprised of polymer-modified carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Roberts, Mark; Emmett, Robert; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Physics Team; Clemson Chemical Engineering Team

    2013-03-01

    A shift in how we generate and use electricity requires new energy storage materials and systems compatible with hybrid electric transportation and the integration of renewable energy sources. Supercapacitors provide a solution to these needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Our research brings together nanotechnology and materials chemistry to address the limitations of electrode materials. Paper electrodes fabricated with various forms of carbon nanomaterials, such as nanotubes, are modified with redox-polymers to increase the electrode's energy density while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity, nanoscale and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes.

  13. Lead acid battery performance and cycle life increased through addition of discrete carbon nanotubes to both electrodes

    NASA Astrophysics Data System (ADS)

    Sugumaran, Nanjan; Everill, Paul; Swogger, Steven W.; Dubey, D. P.

    2015-04-01

    Contemporary applications are changing the failure mechanisms of lead acid batteries. Sulfation at the negative electrode, acid stratification, and dendrite formation now precede positive electrode failures such as grid corrosion and active material shedding. To attenuate these failures, carbon has been explored as a negative electrode additive to increase charge acceptance, eliminate sulfation, and extend cycle life. Frequently, however, carbon incorporation decreases paste density and hinders manufacturability. Discrete carbon nanotubes (dCNT), also known as Molecular Rebar®, are lead acid battery additives which can be stably incorporated into either electrode to increase charge acceptance and cycle life with no change to paste density and without impeding the manufacturing process. Here, full-scale automotive batteries containing dCNT in the negative electrode or both negative and positive electrodes are compared to control batteries. dCNT batteries show little change to Reserve Capacity, improved Cold Cranking, increased charge acceptance, and enhanced overall system efficiency. Life cycle tests show >60% increases when dCNT are incorporated into the negative electrode (HRPSoC/SBA) and up to 500% when incorporated into both electrodes (SBA), with water loss per cycle reduced >20%. Failure modes of cycled batteries are discussed and a hypothesis of dCNT action is introduced: the dCNT/Had Overcharge Reaction Mechanism.

  14. Coaxial fiber supercapacitor using all-carbon material electrodes.

    PubMed

    Le, Viet Thong; Kim, Heetae; Ghosh, Arunabha; Kim, Jaesu; Chang, Jian; Vu, Quoc An; Pham, Duy Tho; Lee, Ju-Hyuck; Kim, Sang-Woo; Lee, Young Hee

    2013-07-23

    We report a coaxial fiber supercapacitor, which consists of carbon microfiber bundles coated with multiwalled carbon nanotubes as a core electrode and carbon nanofiber paper as an outer electrode. The ratio of electrode volumes was determined by a half-cell test of each electrode. The capacitance reached 6.3 mF cm(-1) (86.8 mF cm(-2)) at a core electrode diameter of 230 μm and the measured energy density was 0.7 μWh cm(-1) (9.8 μWh cm(-2)) at a power density of 13.7 μW cm(-1) (189.4 μW cm(-2)), which were much higher than the previous reports. The change in the cyclic voltammetry characteristics was negligible at 180° bending, with excellent cycling performance. The high capacitance, high energy density, and power density of the coaxial fiber supercapacitor are attributed to not only high effective surface area due to its coaxial structure and bundle of the core electrode, but also all-carbon materials electrodes which have high conductivity. Our coaxial fiber supercapacitor can promote the development of textile electronics in near future.

  15. Thermal conductivity and temperature profiles in carbon electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Burheim, Odne S.; Aslan, Mesut; Atchison, Jennifer S.; Presser, Volker

    2014-01-01

    The thermal conductivity of supercapacitor film electrodes composed of activated carbon (AC), AC with 15 mass% multi-walled carbon nanotubes (MWCNTs), AC with 15 mass% onion-like carbon (OLC), and only OLC, all mixed with polymer binder (polytetrafluoroethylene), has been measured. This was done for dry electrodes and after the electrodes have been saturated with an organic electrolyte (1 M tetraethylammonium-tetrafluoroborate in acetonitrile, TEA-BF4). The thermal conductivity data was implemented in a simple model of generation and transport of heat in a cylindrical cell supercapacitor systems. Dry electrodes showed a thermal conductivity in the range of 0.09-0.19 W K-1 m-1 and the electrodes soaked with an organic electrolyte yielded values for the thermal conductivity between 0.42 and 0.47 W K-1 m-1. It was seen that the values related strongly to the porosity of the carbon electrode materials. Modeling of the internal temperature profiles of a supercapacitor under conditions corresponding to extreme cycling demonstrated that only a moderate temperature gradient of several degrees Celsius can be expected and which depends on the ohmic resistance of the cell as well as the wetting of the electrode materials.

  16. Varied morphology carbon nanotubes and method for their manufacture

    DOEpatents

    Li, Wenzhi; Wen, Jian Guo; Ren, Zhi Feng

    2007-01-02

    The present invention describes the preparation of carbon nanotubes of varied morphology, catalyst materials for their synthesis. The present invention also describes reactor apparatus and methods of optimizing and controlling process parameters for the manufacture carbon nanotubes with pre-determined morphologies in relatively high purity and in high yields. In particular, the present invention provides methods for the preparation of non-aligned carbon nanotubes with controllable morphologies, catalyst materials and methods for their manufacture.

  17. Carbon nanotube yarns for deep brain stimulation electrode.

    PubMed

    Jiang, Changqing; Li, Luming; Hao, Hongwei

    2011-12-01

    A new form of deep brain stimulation (DBS) electrode was proposed that was made of carbon nanotube yarns (CNTYs). Electrode interface properties were examined using cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). The CNTY electrode interface exhibited large charge storage capacity (CSC) of 12.3 mC/cm(2) which increased to 98.6 mC/cm(2) after acid treatment, compared with 5.0 mC/cm(2) of Pt-Ir. Impedance spectrum of both untreated and treated CNTY electrodes showed that finite diffusion process occurred at the interface due to their porous structure and charge was delivered through capacitive mechanism. To evaluate stability electrical stimulus was exerted for up to 72 h and CV and EIS results of CNTY electrodes revealed little alteration. Therefore CNTY could make a good electrode material for DBS.

  18. Processing of carbon composite paper as electrode for fuel cell

    NASA Astrophysics Data System (ADS)

    Mathur, R. B.; Maheshwari, Priyanka H.; Dhami, T. L.; Sharma, R. K.; Sharma, C. P.

    The porous carbon electrode in a fuel cell not only acts as an electrolyte and a catalyst support, but also allows the diffusion of hydrogen fuel through its fine porosity and serves as a current-carrying conductor. A suitable carbon paper electrode is developed and possesses the characteristics of high porosity, permeability and strength along with low electrical resistivity so that it can be effectively used in proton-exchange membrane and phosphoric acid fuel cells. The electrode is prepared through a combination of two important techniques, viz., paper-making technology by first forming a porous chopped carbon fibre preform, and composite technology using a thermosetting resin matrix. The study reveals an interdependence of one parameter on another and how judicious choice of the processing conditions are necessary to achieve the desired characteristics. The current-voltage performance of the electrode in a unit fuel cell matches that of a commercially-available material.

  19. Hydrophilic Electrode For An Alkaline Electrochemical Cell, And Method Of Manufacture

    DOEpatents

    Senyarich, Stephane; Cocciantelli, Jean-Michel

    2000-03-07

    A negative electrode for an alkaline electrochemical cell. The electrode comprises an active material and a hydrophilic agent constituted by small cylindrical rods of polyolefin provided with hydrophilic groups. The mean length of the rods is less than 50 microns and the mean diameter thereof is less than 20 microns. A method of manufacturing a negative electrode in which hydrophilic rods are made by fragmenting long polyolefin fibers having a mean diameter of less than 20 microns by oxidizing them, with the rods being mixed with the active material and the mixture being applied to a current conductor.

  20. Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Ludwig, Brandon; Zheng, Zhangfeng; Shou, Wan; Wang, Yan; Pan, Heng

    2016-03-01

    Lithium ion battery electrodes were manufactured using a new, completely dry powder painting process. The solvents used for conventional slurry-cast electrodes have been completely removed. Thermal activation time has been greatly reduced due to the time and resource demanding solvent evaporation process needed with slurry-cast electrode manufacturing being replaced by a hot rolling process. It has been found that thermal activation time to induce mechanical bonding of the thermoplastic polymer to the remaining active electrode particles is only a few seconds. Removing the solvent and drying process allows large-scale Li-ion battery production to be more economically viable in markets such as automotive energy storage systems. By understanding the surface energies of various powders which govern the powder mixing and binder distribution, bonding tests of the dry-deposited particles onto the current collector show that the bonding strength is greater than slurry-cast electrodes, 148.8 kPa as compared to 84.3 kPa. Electrochemical tests show that the new electrodes outperform conventional slurry processed electrodes, which is due to different binder distribution.

  1. Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries.

    PubMed

    Ludwig, Brandon; Zheng, Zhangfeng; Shou, Wan; Wang, Yan; Pan, Heng

    2016-03-17

    Lithium ion battery electrodes were manufactured using a new, completely dry powder painting process. The solvents used for conventional slurry-cast electrodes have been completely removed. Thermal activation time has been greatly reduced due to the time and resource demanding solvent evaporation process needed with slurry-cast electrode manufacturing being replaced by a hot rolling process. It has been found that thermal activation time to induce mechanical bonding of the thermoplastic polymer to the remaining active electrode particles is only a few seconds. Removing the solvent and drying process allows large-scale Li-ion battery production to be more economically viable in markets such as automotive energy storage systems. By understanding the surface energies of various powders which govern the powder mixing and binder distribution, bonding tests of the dry-deposited particles onto the current collector show that the bonding strength is greater than slurry-cast electrodes, 148.8 kPa as compared to 84.3 kPa. Electrochemical tests show that the new electrodes outperform conventional slurry processed electrodes, which is due to different binder distribution.

  2. Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries

    PubMed Central

    Ludwig, Brandon; Zheng, Zhangfeng; Shou, Wan; Wang, Yan; Pan, Heng

    2016-01-01

    Lithium ion battery electrodes were manufactured using a new, completely dry powder painting process. The solvents used for conventional slurry-cast electrodes have been completely removed. Thermal activation time has been greatly reduced due to the time and resource demanding solvent evaporation process needed with slurry-cast electrode manufacturing being replaced by a hot rolling process. It has been found that thermal activation time to induce mechanical bonding of the thermoplastic polymer to the remaining active electrode particles is only a few seconds. Removing the solvent and drying process allows large-scale Li-ion battery production to be more economically viable in markets such as automotive energy storage systems. By understanding the surface energies of various powders which govern the powder mixing and binder distribution, bonding tests of the dry-deposited particles onto the current collector show that the bonding strength is greater than slurry-cast electrodes, 148.8 kPa as compared to 84.3 kPa. Electrochemical tests show that the new electrodes outperform conventional slurry processed electrodes, which is due to different binder distribution. PMID:26984488

  3. Impedances of Ni electrodes and Ni/H2 cells from different manufacturers

    NASA Technical Reports Server (NTRS)

    Reid, Margaret A.

    1990-01-01

    The consistency of impedance measurements within each group of flightweigth Ni/H2 cells being tested for Space Station Freedom confirms that impedance measurements are reproducible provided that the same conditions of cycling and storage are maintained. However, electrodes and cells from different manufacturers vary widely, even with the same cycling and storage conditions. Measurements on cells from two manufacturers that have been cycled for 500-800 cycles show that there are not only major changes upon cycling, but there are substantial differences in the behavior of cells from different manufacturers with cycling.

  4. Method for manufacturing high quality carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M. (Inventor)

    2006-01-01

    A non-catalytic process for the production of carbon nanotubes includes supplying an electric current to a carbon anode and a carbon cathode which have been securely positioned in the open atmosphere with a gap between them. The electric current creates an electric arc between the carbon anode and the carbon cathode, which causes carbon to be vaporized from the carbon anode and a carbonaceous residue to be deposited on the carbon cathode. Inert gas is pumped into the gap to flush out oxygen, thereby preventing interference with the vaporization of carbon from the anode and preventing oxidation of the carbonaceous residue being deposited on the cathode. The anode and cathode are cooled while electric current is being supplied thereto. When the supply of electric current is terminated, the carbonaceous residue is removed from the cathode and is purified to yield carbon nanotubes.

  5. Oxygen electrode in molten carbonate fuel cells

    SciTech Connect

    Dave, B.B.; White, R.E. . Dept. of Chemical Engineering); Srinivasan, S; Appleby, A.J. . Center for Electrochemical Systems and Hydrogen Research)

    1990-01-01

    During this quarter, impedance data were analyzed for oxygen reduction process in molten carbonate electrolyte and a manuscript, Impedance Analysis for Oxygen Reduction in a Lithium Carbonate Melt: Effects of Partial Pressure of Carbon Dioxide and Temperature,'' was prepared which will be submitted to Journal of the Electrochemical Society for publication. 31 refs., 10 figs., 5 tabs.

  6. Carbon nanotube electrodes for hot-wire electrochemistry.

    PubMed

    Gründler, Peter; Frank, Otakar; Kavan, Ladislav; Dunsch, Lothar

    2009-02-23

    The use and preparation of single-walled carbon nanotubes (SWCNTs) at thin metallic wire electrodes for hot-wire electrochemical studies is described. The nanotubes were deposited on metal substrates such as gold by electrophoresis from a dispersion containing sodium dodecyl sulphate as an anionic surfactant. The formation of a layer of pure SWCNTs is achieved by thermal treatment at 350 degrees C. When heated in situ by a strong ac current, the electrodes can be used for electrochemical studies of nanotubes at increased temperatures. The state and functionality of the electrodes were characterized by Raman spectroscopy, scanning electron microscopy, and cyclic voltammetry with both anionic and cationic redox systems (dopamine, ferrocene carboxylic acid). First time experiments at the heated SWCNT electrodes demonstrated an excellent suitability of these as-prepared electrodes for thermoelectrochemical studies.

  7. Porous boron-doped diamond/carbon nanotube electrodes.

    PubMed

    Zanin, H; May, P W; Fermin, D J; Plana, D; Vieira, S M C; Milne, W I; Corat, E J

    2014-01-22

    Nanostructuring boron-doped diamond (BDD) films increases their sensitivity and performance when used as electrodes in electrochemical environments. We have developed a method to produce such nanostructured, porous electrodes by depositing BDD thin film onto a densely packed "forest" of vertically aligned multiwalled carbon nanotubes (CNTs). The CNTs had previously been exposed to a suspension of nanodiamond in methanol causing them to clump together into "teepee" or "honeycomb" structures. These nanostructured CNT/BDD composite electrodes have been extensively characterized by scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Not only do these electrodes possess the excellent, well-known characteristics associated with BDD (large potential window, chemical inertness, low background levels), but also they have electroactive areas and double-layer capacitance values ∼450 times greater than those for the equivalent flat BDD electrodes.

  8. Method for making carbon super capacitor electrode materials

    DOEpatents

    Firsich, D.W.; Ingersoll, D.; Delnick, F.M.

    1998-07-07

    A method is described for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200--250 C, followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300 C, follows carbonization. 1 fig.

  9. Method for making carbon super capacitor electrode materials

    DOEpatents

    Firsich, David W.; Ingersoll, David; Delnick, Frank M.

    1998-01-01

    A method for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200.degree.-250.degree. C., followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300.degree. C., follows carbonization.

  10. Diffusion-free mediator based miniature biofuel cell anode fabricated on a carbon-MEMS electrode.

    PubMed

    Bisht, Gobind S; Holmberg, Sunny; Kulinsky, Lawrence; Madou, Marc

    2012-10-02

    We report on the functionalization of a micropatterned carbon electrode fabricated using the carbon-MEMS process for its use as a miniature diffusion-free glucose oxidase anode. Carbon-MEMS based electrodes offer precise manufacturing control on both the micro- and nanoscale and possess higher electron conductivity than redox hydrogels. However, the process involves pyrolysis in a reducing environment that renders the electrode surface less reactive and introduction of a high density of functional groups becomes challenging. Our functionalization strategy involves the electrochemical oxidation of amine linkers onto the electrode. This strategy works well with both aliphatic and aryl linkers and uses stable compounds. The anode is designed to operate through mediated electron transfer between 2,5-dihydroxybenzaldehyde (DHB) based redox mediator and glucose oxidase enzyme. The electrode was first functionalized with ethylene diamine (EDA) to serve as a linker for the redox mediator. The redox mediator was then grafted through reductive amination, and attachment was confirmed through cyclic voltammetry. The enzyme immobilization was carried out through either adsorption or attachment, and their efficiency was compared. For enzyme attachment, the DHB attached electrode was functionalized again through electro-oxidation of aminobenzoic acid (ABA) linker. The ABA functionalization resulted in reduction of the DHB redox current, perhaps due to increased steric hindrance on the electrode surface, but the mediator function was preserved. Enzyme attachment was then carried out through a coupling reaction between the free carboxyl group on the ABA linker and the amine side chains on the enzyme. The enzyme incubation for both adsorption and attachment was done either through a dry spotting method or wet spotting method. The dry spotting method calls for the evaporation of enzyme droplet to form a thin film before sealing the electrode environment, to increase the effective

  11. Clean Energy Manufacturing Analysis Center. 2015 Research Highlights -- Carbon Fiber

    SciTech Connect

    Das, Sujit

    2016-03-01

    CEMAC has conducted four major studies on the manufacturing of clean energy technologies. Three of these focused on the end product: solar photovoltaic modules, wind turbines, and automotive lithium-ion batteries. The fourth area focused on a key material for manufacturing clean energy technologies, carbon fiber.

  12. Carbon electrode for desalination purpose in capacitive deionization

    SciTech Connect

    Endarko, Fadilah, Nurul; Anggoro, Diky

    2016-03-11

    Carbon electrodes for desalination purpose have been successfully synthesized using activated carbon powder (BET surface area=700 – 1400 m{sup 2}/g), carbon black and polyvinyl alcohol (PVA) binder by cross-linking method with glutaric acid (GA) at 120 °C. The electrochemical properties of the carbon electrodes were analyzed using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) whilst the physical properties were observed with scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). In order to assess the desalting performance, salt removal experiments were performed by constructing a capacitive deionization unit cell with five pairs of carbon electrodes. For each pair consisted of two parallel carbon electrodes separated by a spacer. Desalination and regeneration processes were also observed in the salt-removal experiments. The salt-removal experiments were carried out in single-pass mode using a solution with 0.1 M NaCl at a flow rate of 10 mL/min. A voltage of 3 V was applied to the cell for 60 minutes for both processes in desalination and regeneration. The result showed that the percentage value of the salt-removal was achieved at 20%.

  13. Carbon Nanotube Electrode Arrays For Enhanced Chemical and Biological Sensing

    NASA Technical Reports Server (NTRS)

    Han, Jie

    2003-01-01

    Applications of carbon nanotubes for ultra-sensitive electrical sensing of chemical and biological species have been a major focus in NASA Ames Center for Nanotechnology. Great progress has been made toward controlled growth and chemical functionalization of vertically aligned carbon nanotube arrays and integration into micro-fabricated chip devices. Carbon nanotube electrode arrays devices have been used for sub-attomole detection of DNA molecules. Interdigitated carbon nanotubes arrays devices have been applied to sub ppb (part per billion) level chemical sensing for many molecules at room temperature. Stability and reliability have also been addressed in our device development. These results show order of magnitude improvement in device performance, size and power consumption as compared to micro devices, promising applications of carbon nanotube electrode arrays for clinical molecular diagnostics, personal medical testing and monitoring, and environmental monitoring.

  14. Carbon Nanotube Electrode Arrays For Enhanced Chemical and Biological Sensing

    NASA Technical Reports Server (NTRS)

    Han, Jie

    2003-01-01

    Applications of carbon nanotubes for ultra-sensitive electrical sensing of chemical and biological species have been a major focus in NASA Ames Center for Nanotechnology. Great progress has been made toward controlled growth and chemical functionalization of vertically aligned carbon nanotube arrays and integration into micro-fabricated chip devices. Carbon nanotube electrode arrays devices have been used for sub-attomole detection of DNA molecules. Interdigitated carbon nanotubes arrays devices have been applied to sub ppb (part per billion) level chemical sensing for many molecules at room temperature. Stability and reliability have also been addressed in our device development. These results show order of magnitude improvement in device performance, size and power consumption as compared to micro devices, promising applications of carbon nanotube electrode arrays for clinical molecular diagnostics, personal medical testing and monitoring, and environmental monitoring.

  15. Disposable planar reference electrode based on carbon nanotubes and polyacrylate membrane.

    PubMed

    Rius-Ruiz, F Xavier; Bejarano-Nosas, Diego; Blondeau, Pascal; Riu, Jordi; Rius, F Xavier

    2011-07-15

    In this technical note, we report a new all-solid-state planar reference electrode based on single-walled carbon nanotubes and photocured poly(n-butylacrylate) (poly(nBA)) membrane containing the Ag/AgCl/Cl(-) ion system. Single-walled carbon nanotubes functionalized with octadecylamide (SWCNT-ODA) and deposited by drop-casting onto a disposable screen-printed electrode are an excellent all-solid-state transducer. The novel potentiometric planar reference electrode shows low potential variability (calibration slopes inferior to 2 mV/dec) for a wide range of chemical species (i.e., ions, small molecules, proteins) in a wide calibration range, redox pairs, changes in pH, and changes in ambient light. Potentiometric medium-term signal stability (-0.9 ± 0.2 mV/h) and electrochemical impedance characterization confirm the correct solid contact between the SWCNT-ODA layer and photocured poly(nBA) membrane. Overall, the materials used and the simple fabrication by screen-printing and drop-casting enable a high throughput and highly parallel and cost-effective mass manufacture of the new disposable reference electrode. Moreover, the reference electrode has a long shelf life, a characteristic that can be of special interest in decentralized and multiplexing potentiometric analysis.

  16. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Hao, Pin; Zhao, Zhenhuan; Tian, Jian; Li, Haidong; Sang, Yuanhua; Yu, Guangwei; Cai, Huaqiang; Liu, Hong; Wong, C. P.; Umar, Ahmad

    2014-09-01

    Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon aerogels by using bagasse as a raw material. Macro and mesoporous carbon was first prepared by carbonizing the freeze-dried bagasse aerogel; consequently, microporous structure was created on the walls of the mesoporous carbon by chemical activation. Interestingly, it was observed that the specific surface area, the pore size and distribution of the hierarchical porous carbon were affected by the activation temperature. In order to evaluate the ability of the hierarchical porous carbon towards the supercapacitor electrode performance, solid state symmetric supercapacitors were assembled, and a comparable high specific capacitance of 142.1 F g-1 at a discharge current density of 0.5 A g-1 was demonstrated. The fabricated solid state supercapacitor displayed excellent capacitance retention of 93.9% over 5000 cycles. The high energy storage ability of the hierarchical porous carbon was attributed to the specially designed pore structures, i.e., co-existence of the micropores and mesopores. This research has demonstrated that utilization of sustainable biopolymers as the raw materials for high performance supercapacitor electrode materials is an effective way to fabricate low-cost energy storage devices.Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon

  17. Method for uniformly distributing carbon flakes in a positive electrode, the electrode made thereby and compositions

    DOEpatents

    Mrazek, Franklin C.; Smaga, John A.; Battles, James E.

    1983-01-01

    A positive electrode for a secondary electrochemical cell wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.

  18. Fabrication and Characterization of Carbon MEMS Fractal Electrodes

    NASA Astrophysics Data System (ADS)

    Lala, Varun Deepak

    Micro-Electro-Mechanical Systems (MEMS) is a technology that can be defined as microfabricated mechanical and electro-mechanical elements (i.e., devices and structures). Over the past several decades MEMS researchers and developers have demonstrated an extremely large number of applications such as Microsensors, Microactuators, Accelerometers, Micromirrors etc. Silicon is by-far the most preferred material of choice to build MEMS. However, Silicon does fall short in applications that involve harsh environments and areas such as biological, chemical MEMS sensing etc. This is where Carbon scores over Silicon because of its advantageous properties like better polymerization, wide electrochemical stability window, biocompatibility etc. The present work starts by introducing the basic techniques used to fabricate Carbon-MEMS. Processes are then explained to produce different types C-MEMS electrodes which can be further developed into novel biosensors, microbattery etc. The main aim of this study was to compare the different types of C-MEMS electrodes and conclude which type would be the best to further develop applications from. Application such as a micro-battery requires electrodes to have high surface area as more the surface area, more is the charge stored. For an application such as biosensors, surface area of the electrode affects the sensitivity and accurateness of the sensor. Thus an electrode with high surface area is always desirable. In this work, different C-MEMS electrodes having fractal structures were fabricated and compared for their surface area. The C-MEMS electrodes were characterized using Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Brunauer-Emmett-Teller (BET) technique. It was found that the sample Carbonized RF gel with Long carbon fibers had the largest surface area out of all the different types.

  19. Performance of electro-spun carbon nanofiber electrodes with conductive poly(3,4-ethylenedioxythiophene) coatings in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Guzman, Juan J. L.; Pehlivaner Kara, Meryem O.; Frey, Margaret W.; Angenent, Largus T.

    2017-07-01

    Bioelectrochemical systems (BESs) employ extracellular electron transfer from bacteria that grow at electrodes. Due to biofilm and electrode limitations, industrial-scale applications require large electrode areas, and thus inexpensive electrode materials. Here, electro-spun polyacrylonitrile (PAN) and carbon nanofiber (CNF) were manufactured. In addition, the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was applied as a coating to these materials and to carbon cloth (CC). We tested these materials as electrodes by using physicochemical measurements, cyclic voltammetry, and bioelectrochemical growth-studies with Geobacter sulfurreducens. PAN is a nonconductive material without capacitance, but with PEDOT coating the conductivity and capacitance became sufficient to support electric current production in our BES. CNF outperformed CC in capacitance, but behaved similarly in our BES when normalized to projected surface area. With the PEDOT coating, CNF increased electric current production by 38% in our BES, while this was 64% for CC. When applied to a gold microfluidic electrode, electric current with G. sulfurreducens increased almost three-fold. PEDOT added considerable specific surface area to electrodes possessing a low surface area, but not with a high surface area such as CNF. This work demonstrates that electro-spun electrodes and PEDOT coating are a promising electrode alternative that can be readily implemented into existing BESs.

  20. Vertically Aligned Carbon Nanotube Electrodes for Lithium-Ion Batteries

    DTIC Science & Technology

    2011-01-01

    includes, but is not limited to, cobalt oxide [8] and phospho-olivine [9] nanoparticles, cobalt oxide [10] and silicon ∗ Corresponding author. Tel.: +1 937...wpafb.af.mil (M.F. Durstock). [11] nanowires , and iron oxide/copper [12] and tin/copper [13] nanorods. Carbon nanotubes (CNTs) have also been examined as...MWNTs (without any polymeric binders or conduc- tive carbon additives) as the electrodes. A porous polypropylene film infiltrated with a solution of

  1. Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer

    DOEpatents

    Adzic, Radoslav; Harris, Alexander

    2014-04-15

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by a surface preparation process involving immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing a suitable quantity of non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means. The nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. The process can be controlled and repeated to obtain a desired film coverage. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  2. Modified carbon surfaces as "organic electrodes" that exhibit conductance switching.

    PubMed

    Solak, Ali Osman; Eichorst, Laura R; Clark, William J; McCreery, Richard L

    2003-01-15

    Glassy carbon (GC) surfaces modified with monolayers of biphenyl and nitrobiphenyl molecules were examined as voltammetric electrodes for ferrocene, benzoquinone, and tetracyanoquinodimethane electrochemistry in acetonitrile. The modified electrodes exhibited slower electron transfer than unmodified GC, by factors that varied with the monolayer and redox system. However, after a negative potential excursion to approximately -2.0 V versus Ag+/Ag, the modified electrodes exhibited much faster electron-transfer kinetics, approaching those observed on unmodified GC. The effect is attributed to an apparently irreversible structural change in the biphenyl or nitrobiphenyl monolayer, which increases the rate of electron tunneling. The transition to the "ON" state is associated with electron injection into the monolayer similar to that observed in previous spectroscopic investigations and causes a significant decrease in the calculated HOMO-LUMO gap for the monolayer molecule. Once the monolayer is switched ON, it supports rapid electron exchange with outer-sphere redox systems, but not with dopamine, which requires adsorption to the GC surface. The increase in electron-transfer rate with electron injection is consistent with an increase in electron tunneling rate through the monolayer, caused by a significant decrease in tunneling barrier height. The ON electrode can reduce biphenyl- or nitrobiphenyldiazonium reagent in solution to permit formation of a second modification layer of biphenyl or nitrobiphenyl molecules. This "double derivatization" procedure was used to prepare tetraphenyl- and nitrotetraphenyl-modified electrodes, which exhibit significantly slower electron transfer than their biphenyl and nitrobiphenyl counterparts. A "switching" electrode may have useful properties for electroanalytical applications and possibly in electrocatalysis. In addition, the ON state represents an "organic electrode" in which electron transfer occurs at an interface between an

  3. Electron field emission from composite electrodes of carbon nanotubes-boron-doped diamond and carbon felts

    NASA Astrophysics Data System (ADS)

    Rosolen, J. Mauricio; Tronto, Simone; Marchesin, Marcel S.; Almeida, Erica C.; Ferreira, Neidenei G.; Patrick Poá, C. H.; Silva, S. Ravi P.

    2006-02-01

    The electron field emission of carbon nanotube (CNT)/boron-doped diamond (BDD)/carbon felt electrodes (CNT/BDD/felt) have been investigated. The composite electrode was initially prepared with the growth of BDD on carbon felt and the subsequent growth of CNT by chemical decomposition of methanol. The composite electrodes were characterised using scanning electron microscopy and transmission electron microscopy. For the CNT/BDD/felt samples, the electron field emission was observed at macroscopic fields as low as 1.1Vμm-1. The emission current versus time plot shows significant potential for future field emission applications.

  4. Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells.

    PubMed

    Ramuz, Marc P; Vosgueritchian, Michael; Wei, Peng; Wang, Chenggong; Gao, Yongli; Wu, Yingpeng; Chen, Yongsheng; Bao, Zhenan

    2012-11-27

    Carbon allotropes possess unique and interesting physical, chemical, and electronic properties that make them attractive for next-generation electronic devices and solar cells. In this report, we describe our efforts into the fabrication of the first reported all-carbon solar cell in which all components (the anode, active layer, and cathode) are carbon based. First, we evaluate the active layer, on standard electrodes, which is composed of a bilayer of polymer sorted semiconducting single-walled carbon nanotubes and C(60). This carbon-based active layer with a standard indium tin oxide anode and metallic cathode has a maximum power conversion efficiency of 0.46% under AM1.5 Sun illumination. Next, we describe our efforts in replacing the electrodes with carbon-based electrodes, to demonstrate the first all-carbon solar cell, and discuss the remaining challenges associated with this process.

  5. Oxygen electrode reaction in molten carbonate fuel cells

    SciTech Connect

    Appleby, A.J.; White, R.E.

    1992-07-07

    Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D{sub O}{sup 1/2}C{sub O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

  6. Electrodes of carbonized MWCNT-cellulose paper for supercapacitor

    NASA Astrophysics Data System (ADS)

    Sun, Xiaogang; Cai, Manyuan; Chen, Long; Qiu, Zhiwen; Liu, Zhenghong

    2017-07-01

    A flexible composite paper of multi-walled carbon nanotube (MWCNT) and cellulose fiber (CF) were fabricated by traditional paper-making method. Then, the MWCNT/CF papers were carbonized at high temperature in vacuum to remove organic component. The carbonized MWCNT/CF (MWCNT/CCF) papers are consisted of MWCNT and carbon fiber. The papers were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and four-point probe resistance meter. The electrochemical performances of the supercapacitors were tested by cyclic voltammetry and galvanostatic charge/discharge >with 1 moL/L LiPF6 as electrolyte. The MWCNT/CCF electrode yielded a specific capacitance of 156F/g at a current density of 50 mA/g by galvanostatic charge/discharge measurement, which is 1.29 times higher than MWCNT/CF electrode of 68F/g. The MWCNT/CCF electrodes also displayed an excellent specific capacitance retention of 84% after 2000 continuous charge/discharge cycles at a current density of 400 mA/g. The increase of specific capacitance can be attributed to enhanced electrical conductivity of MWCNT/CCF papers and improved contact interface between electrolyte and electrodes.

  7. Gas Diffusion Electrodes Manufactured by Casting Evaluation as Air Cathodes for Microbial Fuel Cells (MFC)

    PubMed Central

    Srikanth, Sandipam; Pant, Deepak; Dominguez-Benetton, Xochitl; Genné, Inge; Vanbroekhoven, Karolien; Vermeiren, Philippe; Alvarez-Gallego, Yolanda

    2016-01-01

    One of the most intriguing renewable energy production methods being explored currently is electrical power generation by microbial fuel cells (MFCs). However, to make MFC technology economically feasible, cost efficient electrode manufacturing processes need to be proposed and demonstrated. In this context, VITO has developed an innovative electrode manufacturing process based on film casting and phase inversion. The screening and selection process of electrode compositions was done based on physicochemical properties of the active layer, which in turn maintained a close relation with their composition A dual hydrophilic-hydrophobic character in the active layer was achieved with values of εhydrophilic up to 10% while εTOTAL remained in the range 65 wt % to 75 wt %. Eventually, selected electrodes were tested as air cathodes for MFC in half cell and full cell modes. Reduction currents, up to −0.14 mA·cm2− at −100 mV (vs. Ag/AgCl) were reached in long term experiments in the cathode half-cell. In full MFC, a maximum power density of 380 mW·m−2 was observed at 100 Ω external load. PMID:28773723

  8. Gas Diffusion Electrodes Manufactured by Casting Evaluation as Air Cathodes for Microbial Fuel Cells (MFC).

    PubMed

    Srikanth, Sandipam; Pant, Deepak; Dominguez-Benetton, Xochitl; Genné, Inge; Vanbroekhoven, Karolien; Vermeiren, Philippe; Alvarez-Gallego, Yolanda

    2016-07-21

    One of the most intriguing renewable energy production methods being explored currently is electrical power generation by microbial fuel cells (MFCs). However, to make MFC technology economically feasible, cost efficient electrode manufacturing processes need to be proposed and demonstrated. In this context, VITO has developed an innovative electrode manufacturing process based on film casting and phase inversion. The screening and selection process of electrode compositions was done based on physicochemical properties of the active layer, which in turn maintained a close relation with their composition A dual hydrophilic-hydrophobic character in the active layer was achieved with values of εhydrophilic up to 10% while εTOTAL remained in the range 65 wt % to 75 wt %. Eventually, selected electrodes were tested as air cathodes for MFC in half cell and full cell modes. Reduction currents, up to -0.14 mA·cm(2-) at -100 mV (vs. Ag/AgCl) were reached in long term experiments in the cathode half-cell. In full MFC, a maximum power density of 380 mW·m(-2) was observed at 100 Ω external load.

  9. Manufacturing High-Quality Carbon Nanotubes at Lower Cost

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M.; Lidecker, Henning

    2004-01-01

    A modified electric-arc welding process has been developed for manufacturing high-quality batches of carbon nanotubes at relatively low cost. Unlike in some other processes for making carbon nanotubes, metal catalysts are not used and, consequently, it is not necessary to perform extensive cleaning and purification. Also, unlike some other processes, this process is carried out at atmospheric pressure under a hood instead of in a closed, pressurized chamber; as a result, the present process can be implemented more easily. Although the present welding-based process includes an electric arc, it differs from a prior electric-arc nanotube-production process. The welding equipment used in this process includes an AC/DC welding power source with an integral helium-gas delivery system and circulating water for cooling an assembly that holds one of the welding electrodes (in this case, the anode). The cathode is a hollow carbon (optionally, graphite) rod having an outside diameter of 2 in. (approximately equal to 5.1 cm) and an inside diameter of 5/8 in. (approximately equal to 1.6 cm). The cathode is partly immersed in a water bath, such that it protrudes about 2 in. (about 5.1 cm) above the surface of the water. The bottom end of the cathode is held underwater by a clamp, to which is connected the grounding cable of the welding power source. The anode is a carbon rod 1/8 in. (approximately equal to 0.3 cm) in diameter. The assembly that holds the anode includes a thumbknob- driven mechanism for controlling the height of the anode. A small hood is placed over the anode to direct a flow of helium downward from the anode to the cathode during the welding process. A bell-shaped exhaust hood collects the helium and other gases from the process. During the process, as the anode is consumed, the height of the anode is adjusted to maintain an anode-to-cathode gap of 1 mm. The arc-welding process is continued until the upper end of the anode has been lowered to a specified height

  10. Novel Carbons as Electrodes for Electrical Energy Storage

    NASA Astrophysics Data System (ADS)

    Ruoff, Rodney S.

    2014-03-01

    In this talk I will speculate about directions for carbon materials as the electrode(s) in EES systems such as ultracapacitors and Li ion batteries. Perhaps the penultimate electrode material for ultracapacitors (based on charge storage by electrical double layer capacitance, EDLC) would be a ``negative curvature carbon'' (NCC, akin to the Schwartzite structures) with atom thick walls, and possibly substitutionally doped with, e.g., N atoms in case the all-carbon structure were limited by quantum (i.e., intrinsic) capacitance. Such an NCC would have a distribution of pore sizes that would likely (for optimal performance) span ``mesoscale'' and ``microscale'' pores, which in the parlance of porous materials means pores ``above 2-3 nanometers'' and pores ``below about 2 nanometers,'' respectively. Making such materials offers exciting challenges for materials chemists/synthetic chemists, and to date only the ``basic'' Schwarzite structures (ideal crystals studied by DFT with periodic boundary conditions and relatively simple unit cells) have been modeled in terms of properties such as their electronic states and in some cases, potential as all carbon ferromagnets. I identified the NCCs as candidates for EES for ultracapacitors, in a paper published in Science in 2011 with coauthors. We made an aperiodic carbon that had atom thick walls and surface areas as high as 3200 m2/g, along with ``good'' powder electrical conductivity, high carbon content, and apparently close to 100% trivalently bonded carbon in the walls of this very porous carbon. We have learned in one set of experiments, as published in Energy and Environmental Science, that doping with N atoms can increase the EDLC, which we suggest could be a consequence of limiting quantum capacitance in the all-carbon analogue.

  11. Nucleation and electrolytic deposition of lead on model carbon electrodes

    NASA Astrophysics Data System (ADS)

    Cericola, D.; Spahr, M.

    2016-08-01

    There is a general consensus in the lead acid battery industry for the use of carbon additives as a functional component in the negative paste to boost the battery performance with regards to charge acceptance and cycle life especially for upcoming automotive and energy storage applications. Several mechanisms are discussed in the scientific literature and the affinity of the carbon surfaces to lead species seems to play a key role. With a set of experiments on model carbon electrodes we gave evidence to the fact that some carbon materials promote spontaneous nucleation of lead crystals. We propose a mechanism such that the carbon, as soon as in a lead containing environment, immobilizes some lead on its surface. Such immobilized lead acts as nucleation seed for the deposition of lead when a current is passed through the material. It is therefore possible to differentiate and select the carbon materials based on their ability to form nucleation seeds.

  12. Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: promising electrodes for enzymatic biofuel cells

    NASA Astrophysics Data System (ADS)

    Both Engel, A.; Cherifi, A.; Tingry, S.; Cornu, D.; Peigney, A.; Laurent, Ch

    2013-06-01

    New nanostructured electrodes, promising for the production of clean and renewable energy in biofuel cells, were developed with success. For this purpose, carbon nanofibers were produced by the electrospinning of polyacrylonitrile solution followed by convenient thermal treatments (stabilization followed by carbonization at 1000, 1200 and 1400° C), and carbon nanotubes were adsorbed on the surfaces of the fibers by a dipping method. The morphology of the developed electrodes was characterized by several techniques (SEM, Raman spectroscopy, electrical conductivity measurement). The electrochemical properties were evaluated through cyclic voltammetry, where the influence of the carbonization temperature of the fibers and the beneficial contribution of the carbon nanotubes were observed through the reversibility and size of the redox peaks of K3Fe(CN)6 versus Ag/AgCl. Subsequently, redox enzymes were immobilized on the electrodes and the electroreduction of oxygen to water was realized as a test of their efficiency as biocathodes. Due to the fibrous and porous structure of these new electrodes, and to the fact that carbon nanotubes may have the ability to promote electron transfer reactions of redox biomolecules, the new electrodes developed were capable of producing higher current densities than an electrode composed only of electrospun carbon fibers.

  13. Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: promising electrodes for enzymatic biofuel cells.

    PubMed

    Engel, A Both; Cherifi, A; Tingry, S; Cornu, D; Peigney, A; Laurent, Ch

    2013-06-21

    New nanostructured electrodes, promising for the production of clean and renewable energy in biofuel cells, were developed with success. For this purpose, carbon nanofibers were produced by the electrospinning of polyacrylonitrile solution followed by convenient thermal treatments (stabilization followed by carbonization at 1000, 1200 and 1400° C), and carbon nanotubes were adsorbed on the surfaces of the fibers by a dipping method. The morphology of the developed electrodes was characterized by several techniques (SEM, Raman spectroscopy, electrical conductivity measurement). The electrochemical properties were evaluated through cyclic voltammetry, where the influence of the carbonization temperature of the fibers and the beneficial contribution of the carbon nanotubes were observed through the reversibility and size of the redox peaks of K3Fe(CN)6 versus Ag/AgCl. Subsequently, redox enzymes were immobilized on the electrodes and the electroreduction of oxygen to water was realized as a test of their efficiency as biocathodes. Due to the fibrous and porous structure of these new electrodes, and to the fact that carbon nanotubes may have the ability to promote electron transfer reactions of redox biomolecules, the new electrodes developed were capable of producing higher current densities than an electrode composed only of electrospun carbon fibers.

  14. [Study on electrochemical degradation of ceftazidime by carbon nanotubes electrode].

    PubMed

    Zhu, Hong; Hu, Xiang; Li, Jun-Feng

    2013-08-01

    A self-made multi-walled carbon nanotubes electrode was characterized by SEM, FITR, CV and Tafel, and applied to study the electrochemical reduction degradation of refractory organics, using ceftazidime as model pollutant, and the mass concentration after the reduction was measured by the HPLC. The results indicate that the electrode has perfect stability, good resistance to corrosion, and perfect performance. According to the CV, a larger oxidation peak was obtained at about 800 mV, with a peak value of -0.2 mA, and the degradation of ceftazidime on the electrode was irreversible. The optimum conditions of the the electrochemical reduction degradation of ceftazidime on carbon nanotubes electrode were: electrode spacing of 1 cm, a voltage of 15 V, an initial concentration of 1 mg x L(-1), ionic strength of 1 g x L(-1), and a pH value of 6.0. Under such conditions, the removal efficiency of ceftazidime reached up to 90% when the reaction time was 60 min, and the degradation process conforms to the second-order kinetics.

  15. Electrochemical impedance measurement of a carbon nanotube probe electrode

    NASA Astrophysics Data System (ADS)

    Inaba, Akira; Takei, Yusuke; Kan, Tetsuo; Matsumoto, Kiyoshi; Shimoyama, Isao

    2012-12-01

    We measured and analyzed the electrochemical impedance of carbon nanotube (CNT) probe electrodes fabricated through the physical separation of insulated CNT bridges. The fabricated CNT electrodes were free-standing CNTs that were completely covered with an insulator, except for their tips. Typical dimensions of the nanoelectrodes were 1-10 nm in CNT diameter, 80-300 nm in insulator diameter, 0.5-4 μm in exposed CNT length and 1-10 μm in probe length. The electrochemical impedance at frequencies ranging from 40 Hz to 1 MHz was measured in physiological saline. The measured impedance of the CNT electrode was constant at 32 MΩ at frequencies below 1 kHz and was inversely proportional to frequency at frequencies above 10 kHz. By means of comparison with the parasitic capacitive impedance of the insulator membrane, we confirmed that the electrode was sufficiently insulated such that the measured constant impedance was given by the exposed CNT tip. Consequently, we can use the CNT electrode for highly localized electrochemical impedance measurements below 1 kHz. Considering an equivalent circuit and the nanoscopic dimensions of the CNT electrode, we demonstrated that the constant impedance was governed by diffusion impedance, whereas the solution resistance, charge-transfer resistance and double-layer capacitance were negligible.

  16. Preparation, applications, and digital simulation of carbon interdigitated array electrodes.

    PubMed

    Liu, Fei; Kolesov, Grigory; Parkinson, B A

    2014-08-05

    Carbon interdigitated array (IDA) electrodes with features sizes down to 1.2 μm were fabricated by controlled pyrolysis of patterned photoresist. Cyclic voltammetry of reversible redox species produced the expected steady-state currents. The collection efficiency depends on the IDA electrode spacing, which ranged from around 2.7 to 16.5 μm, with the smaller dimensions achieving higher collection efficiencies of up to 98%. The signal amplification because of redox cycling makes it possible to detect species at relatively low concentrations (10(-5) molar) and the small spacing allows detection of transient electrogenerated species with much shorter lifetimes (submillisecond). Digital simulation software that accounts for both the width and height of electrode elements as well as the electrode spacing was developed to model the IDA electrode response. The simulations are in quantitative agreement with experimental data for both a simple fast one electron redox reaction and an electron transfer with a following chemical reaction at the IDAs with larger gaps whereas currents measured for the smallest IDA electrodes, that were larger than the simulated currents, are attributed to convection from induced charge electrokinetic flow.

  17. Preparation, Applications, and Digital Simulation of Carbon Interdigitated Array Electrodes

    SciTech Connect

    Liu, Fei; Kolesov, Grigory; Parkinson, Bruce A.

    2014-12-16

    Carbon interdigitated array (IDA) electrodes with features sizes down to 1.2 μm were fabricated by controlled pyrolysis of patterned photoresist. Cyclic voltam-metry of reversible redox species produced the expected steady-state currents. The collection efficiency depends on the IDA electrode spacing, which ranged from around 2.7 to 16.5 μm, with the smaller dimensions achieving higher collection efficiencies of up to 98%. The signal amplification because of redox cycling makes it possible to detect species at relatively low concentrations (10–5 molar) and the small spacing allows detection of transient electrogenerated species with much shorter lifetimes (submillisecond). Digital simulation software that accounts for both the width and height of electrode elements as well as the electrode spacing was developed to model the IDA electrode response. The simulations are in quantitative agreement with experimental data for both a simple fast one electron redox reaction and an electron transfer with a following chemical reaction at the IDAs with larger gaps whereas currents measured for the smallest IDA electrodes, that were larger than the simulated currents, are attributed to convection from induced charge electrokinetic flow. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science Office of Basic Energy Sciences.

  18. Citric acid cycle biomimic on a carbon electrode.

    PubMed

    Sokic-Lazic, Daria; Minteer, Shelley D

    2008-12-01

    The citric acid cycle is one of the main metabolic pathways living cells utilize to completely oxidize biofuels to carbon dioxide and water. The overall goal of this research is to mimic the citric acid cycle at the carbon surface of an electrode in order to achieve complete oxidation of ethanol at a bioanode to increase biofuel cell energy density. In order to mimic this process, dehydrogenase enzymes (known to be the electron or energy producing enzymes of the citric acid cycle) are immobilized in cascades at an electrode surface along with non-energy producing enzymes necessary for the cycle to progress. Six enzymatic schemes were investigated each containing an additional dehydrogenase enzyme involved in the complete oxidation of ethanol. An increase in current density is observed along with an increase in power density with each additional dehydrogenase immobilized on an electrode, reflecting increased electron production at the bioanode with deeper oxidation of the ethanol biofuel. By mimicking the complete citric acid cycle on a carbon electrode, power density was increased 8.71-fold compared to a single enzyme (alcohol dehydrogenase)-based ethanol/air biofuel cell.

  19. Density controlled carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng F [Newton, MA; Tu, Yi [Belmont, MA

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  20. Fabrication of catalytic electrodes for molten carbonate fuel cells

    DOEpatents

    Smith, James L.

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  1. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C. J.; Dispennette, J. M.; Blank, E.; Kolb, A. C.

    1999-05-25

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH[sub 3]CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals. 32 figs.

  2. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    1999-01-19

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  3. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C Joseph [San Diego, CA; Dispennette, John M [Oceanside, CA; Blank, Edward [San Diego, CA; Kolb, Alan C [Rancho Santa Fe, CA

    1999-05-25

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  4. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C.J.; Dispennette, J.M.; Blank, E.; Kolb, A.C.

    1999-01-19

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH{sub 3}CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals. 32 figs.

  5. In-line manufacture of carbon nanotubes

    DOEpatents

    Brambilla, Nicol Michele; Signorelli, Riccardo; Martini, Fabrizio; Corripio Luna, Oscar Enrique

    2015-04-28

    Mass production of carbon nanotubes (CNT) are facilitated by methods and apparatus disclosed herein. Advantageously, the methods and apparatus make use of a single production unit, and therefore provide for uninterrupted progress in a fabrication process. Embodiments of control systems for a variety of CNT production apparatus are included.

  6. High capacitance of coarse-grained carbide derived carbon electrodes

    DOE PAGES

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; ...

    2016-01-01

    Here, we report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. We synthesized 70–250 μm sized particles with high surface area and a narrow pore size distribution, using a titanium carbide (TiC) precursor. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. Moreover, the material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250–1000 micron thick dense CDC films withmore » up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.« less

  7. High capacitance of coarse-grained carbide derived carbon electrodes

    SciTech Connect

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-01-01

    Here, we report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. We synthesized 70–250 μm sized particles with high surface area and a narrow pore size distribution, using a titanium carbide (TiC) precursor. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. Moreover, the material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250–1000 micron thick dense CDC films with up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.

  8. High capacitance of coarse-grained carbide derived carbon electrodes

    NASA Astrophysics Data System (ADS)

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-02-01

    We report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. Using a titanium carbide (TiC) precursor, we synthesized 70-250 μm sized particles with high surface area and a narrow pore size distribution. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. The material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250-1000 micron thick dense CDC films with up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.

  9. Vertically aligned carbon nanofiber electrode arrays for nucleic acid detection

    NASA Astrophysics Data System (ADS)

    Arumugam, Prabhu U.; Yu, Edmond; Riviere, Roger; Meyyappan, M.

    2010-10-01

    We present electrochemical detection of DNA targets that corresponds to Escherichia coli O157:H7 16S rRNA gene using a nanoelectrode array consisting of vertically aligned carbon nanofiber (VACNF) electrodes. Parylene C is used as gap filling 'matrix' material to avoid high temperature processing in electrode construction. This easy to deposit film of several micron heights provides a conformal coating between the high aspect ratio VACNFs with negligible pin-holes. The low background currents show the potential of this approach for ultra-sensitive detection. Consistent and reproducible electrochemical-signals are achieved using a simple electrode preparation. This simple, reliable and low-cost approach is a forward step in developing practical sensors for applications like pathogen detection, early cancer diagnosis and environmental monitoring.

  10. Cathodic decomposition of propylene carbonate at graphite electrodes

    SciTech Connect

    Piao, T.; Doh, C.H.; Moon, S.I.; Park, S.M.

    1997-12-01

    The decomposition reaction of propylene carbonate has been studied at graphite electrode in 1.0 M LiClO{sub 4} employing a variety of transient electrochemical techniques. Results show that the PC decomposition reaction takes place through an EC{prime} (electron transfer followed by catalytic reduction) reaction path. The pseudo first order rate constants of the chemical decomposition step has been determined. The formation of passive films on the electrode surface has been confirmed. The diffusion coefficients at the fresh and the film covered graphite electrodes have been determined to be 8.2 {times} 10{sup {minus}9} cm{sup 2}/s and 7.1 {times} 10{sup {minus}9} cm{sup 2}/s, respectively.

  11. Electrode coke production from pitch by retarded carbonization

    SciTech Connect

    Pityulin, I.N.; Krysin, V.P.; Stepanenko, M.A.; Akhtyrchenko, A.M.; Balabai, V.M.; Slutskaya, S.M.

    1981-01-01

    Pitch coke is a key constituent of the anode used in aluminum smelting. Hitherto, pitch coke has been produced by an oven carbonization process in which hard pitch is heated to 950 to 970/sup 0/C in silica-brick coke ovens. The main advantage of the process is that it can produce a carbon material with a low volatile matter index. On the other hand, the oven carbonization process involves a number of problems which cannot easily be overcome, relating to limited labor productivity and oven life and atmospheric pollution with toxic discharges. Retarded carbonization is a superior method of making electrode coke from pitch, since the costs are lower, the working conditions are less arduous and atmospheric pollution is greatly reduced. Following laboratory and pilot plant investigations, a flowsheet has been developed and optimum conditions have been worked out for the production of finished electrode coke. The raw material is coal tar; it is dewatered in the stage I evaporator and then distilled to make a soft pitch as the carbonization feedstock. Thus the dewatered tar is heated in the stage II tube still and separated in the stage II evaporator into distillate and pitch. The pitch from the column base is heated to a higher temperature and transferred to the column in which it is prepared for carbonization (by mass exchange with carbonization gases and vapors). The bottom section of the column yields the secondary carbonization feedstock, which is heated in a stage II tube still and transferred to one of the carbonization vessels. The temperature setting is determined by the quality of the original soft pitch. Table 1 records the properties of the coal tar, the soft pitch and the secondary carbonization feedstock.

  12. Vertically aligned carbon nanofiber nanoelectrode arrays: electrochemical etching and electrode reusability

    PubMed Central

    Gupta, Rakesh K.; Meyyappan, M.; Koehne, Jessica E.

    2014-01-01

    Vertically aligned carbon nanofibers in the form of nanoelectrode arrays were grown on nine individual electrodes, arranged in a 3 × 3 array geometry, in a 2.5 cm2 chip. Electrochemical etching of the carbon nanofibers was employed for electrode activation and enhancing the electrode kinetics. Here, we report the effects of electrochemical etching on the fiber height and electrochemical properties. Electrode regeneration by amide hydrolysis and electrochemical etching is also investigated for electrode reusability. PMID:25089188

  13. Direct proteins electrochemistry based on ionic liquid mediated carbon nanotube modified glassy carbon electrode.

    PubMed

    Zhao, Qiang; Zhan, Dongping; Ma, Hongyang; Zhang, Meiqin; Zhao, Yifang; Jing, Ping; Zhu, Zhiwei; Wan, Xinhua; Shao, Yuanhua; Zhuang, Qiankun

    2005-01-01

    A novel glassy carbon electrode modified by a gel containing multi-walled carbon nanotubes (MWNTs) and ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) is reported. The gel is formed by grinding of MWNTs and BMIPF6. Such gel is then coated on the surface of a glassy carbon electrode. We have employed scanning electron microscopy, Fourier transform infrared spectrometry (FTIR) and cyclic voltammetry to characterize the modified electrode. The direct electron transfers of hemoglobin and catalase on the modified electrode have been observed and studied in detail electrochemically. Hemoglobin is verified to be adsorbed on the modified electrode with the retention of conformation, which has been proved by microscopic FTIR. The electrochemical response of the adsorbed hemoglobin on the modified electrode is very stable, and shows repeated changes in the different pH solutions. It also has shown electrocatalysis to the reduction of oxygen and trichloroacetic acid. Catalase adsorbed on the gel modified electrode still keep activity to hydrogen peroxide. This work provides a simple and easy approach to construct biosensors based on the carbon nanotubes and ionic liquids.

  14. Advanced carbon manufacturing for energy and biological applications

    NASA Astrophysics Data System (ADS)

    Turon Teixidor, Genis

    The science of miniaturization has experienced revolutionary advances during the last decades, witnessing the development of the Integrated Circuit and the emergence of MEMS and Nanotechnology. Particularly, MEMS technology has pioneered the use of non-traditional materials in microfabrication by including polymers, ceramics and composites to the well known list of metals and semiconductors. One of the latest additions to this set of materials is carbon, which represents a very important inclusion given its significance in electrochemical energy conversion systems and in applications where it is used as sensor probe material. For these applications, carbon is optimal in several counts: It has a wide electrochemical stability window, good electrical and thermal conductivity, high corrosion resistance and mechanical stability, and is available in high purity at a low cost. Furthermore carbon is biocompatible. This thesis presents several microfabricated devices that take advantage of these properties. The thesis has two clearly differentiated parts. In the first one, applications of micromachined carbon in the field of energy conversion and energy storage are presented. These applications include lithium ion micro batteries and the development of new carbon electrodes with fractal geometries. In the second part, the focus shifts to biological applications. First, the study of the interaction of living cells with micromachined carbon is presented, followed by the description of a sensor based on interdigitated nano-electrode arrays, and finally the development of the new instrumentation needed to address arrays of carbon electrodes, a multiplexed potentiostat. The underlying theme that connects all these seemingly different topics is the use of carbon microfabrication techniques in electrochemical systems.

  15. Amorphous titania/carbon composite electrode materials

    DOEpatents

    Vaughey, John T.; Jansen, Andrew; Joyce, Christopher D.

    2017-05-09

    An isolated salt comprising a compound of formula (H.sub.2X)(TiO(Y).sub.2) or a hydrate thereof, wherein X is 1,4-diazabicyclo[2.2.2]octane (DABCO), and Y is oxalate anion (C.sub.2O.sub.4.sup.-2), when heated in an oxygen-containing atmosphere at a temperature in the range of at least about 275.degree. C. to less than about 400.degree. C., decomposes to form an amorphous titania/carbon composite material comprising about 40 to about 50 percent by weight titania and about 50 to about 60 percent by weight of a carbonaceous material coating the titania. Heating the composite material at a temperature of about 400 to 500.degree. C. crystallizes the titania component to anatase. The titania materials of the invention are useful as components of the cathode or anode of a lithium or lithium ion electrochemical cell.

  16. A solution processed top emission OLED with transparent carbon nanotube electrodes.

    PubMed

    Chien, Yu-Mo; Lefevre, Florent; Shih, Ishiang; Izquierdo, Ricardo

    2010-04-02

    Top emission organic light emitting diodes (OLEDs) with carbon nanotubes (CNTs) as top electrodes were fabricated and characterized. Devices were fabricated on glass substrates with evaporated bottom Al/LiF cathodes, a spin coated organic emissive layer and a PEDOT-PSS hole injection layer. Transparent thin CNT films were deposited on top of the emission layer to form the anode by micro-contact printing with a polydimethylsiloxane stamp. A very good device performance was obtained, with a peak luminance of 3588 cd m(-2) and a maximum current efficiency of 1.24 cd A(-1). This work shows the possibility of using CNTs as transparent electrodes to replace ITO in organic semiconductor devices. Furthermore, the top emission nature of such devices offers a broader range of applications of CNTs on any type of substrate. By combining with solution processed organic materials, it is anticipated that lower cost fabrication will be possible through roll-to-roll manufacture.

  17. A solution processed top emission OLED with transparent carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Chien, Yu-Mo; Lefevre, Florent; Shih, Ishiang; Izquierdo, Ricardo

    2010-04-01

    Top emission organic light emitting diodes (OLEDs) with carbon nanotubes (CNTs) as top electrodes were fabricated and characterized. Devices were fabricated on glass substrates with evaporated bottom Al/LiF cathodes, a spin coated organic emissive layer and a PEDOT-PSS hole injection layer. Transparent thin CNT films were deposited on top of the emission layer to form the anode by micro-contact printing with a polydimethylsiloxane stamp. A very good device performance was obtained, with a peak luminance of 3588 cd m - 2 and a maximum current efficiency of 1.24 cd A - 1. This work shows the possibility of using CNTs as transparent electrodes to replace ITO in organic semiconductor devices. Furthermore, the top emission nature of such devices offers a broader range of applications of CNTs on any type of substrate. By combining with solution processed organic materials, it is anticipated that lower cost fabrication will be possible through roll-to-roll manufacture.

  18. Method of Manufacturing Carbon Fiber Reinforced Carbon Composite Valves

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1998-01-01

    A method for forming a carbon composite valve for internal combustion engines is discussed. The process includes the steps of braiding carbon fiber into a rope thereby forming a cylindrically shaped valve stem portion and continuing to braid said fiber while introducing into the braiding carbon fiber rope a carbon matrix plug having an outer surface in a net shape of a valve head thereby forming a valve head portion. The said carbon matrix plug acting as a mandrel over which said carbon fiber rope is braided, said carbon fiber rope and carbon matrix plug forming a valve head portion suitable for mating with a valve seat; cutting said braided carbon valve stem portion at one end to form a valve tip and cutting said braided carbon fiber after said valve head portion to form a valve face and thus provide a composite valve preform; and densifying said preform by embedding the braided carbon in a matrix of carbon to convert said valve stem portion to a valve stem and said valve head portion to a valve head thereby providing said composite valve.

  19. Carbon Fiber/Epoxy Composite Ring-disk Electrode: Fabrication, Characterization and Application to Electrochemical Detection in Capillary High Performance Liquid Chromatography

    PubMed Central

    Xu, Xiaomi

    2009-01-01

    Carbon fiber/epoxy composite materials, which are manufactured using the pultrusion process, are commercially available in various shapes and sizes at very low cost. Here we demonstrate the application of such a material as an electrochemical detector in a flow system. Cyclic voltammetry shows that the material's electrochemical behavior resembles that of glassy carbon. Using tube and rod composites, we successfully fabricated a ring-disk electrode with a 20 μm gap between the ring and the disk. The narrow gap is favorable for mass transfer in the generator-collector experiment. This composite ring-disk electrode is assembled in a thin-layer radial-flow cell and used as an electrochemical detector. The disk electrode, placed directly opposite to the flow inlet, is operated as a generator electrode with the ring electrode being a collector. The high collection efficiency on the ring electrode (0.8 for a chemically reversible species) enhances the detection selectivity. PMID:20160941

  20. Carbon Nanotube Assemblies for Transparent Conducting Electrodes

    SciTech Connect

    Garrett, Matthew P; Gerhardt, Rosario

    2012-01-01

    . We will review recent literature on TCCs composed of carbon nanotubes of different types in terms of the FOM.

  1. Multifunctional oxides for integrated manufacturing of efficient graphene electrodes for organic electronics

    SciTech Connect

    Kidambi, Piran R.; Robertson, John; Hofmann, Stephan; Weijtens, Christ; Meyer, Jens

    2015-02-09

    Using multi-functional oxide films, we report on the development of an integration strategy for scalable manufacturing of graphene-based transparent conducting electrodes (TCEs) for organic electronics. A number of fundamental and process challenges exists for efficient graphene-based TCEs, in particular, environmentally and thermally stable doping, interfacial band engineering for efficient charge injection/extraction, effective wetting, and process compatibility including masking and patterning. Here, we show that all of these challenges can be effectively addressed at once by coating graphene with a thin (>10 nm) metal oxide (MoO{sub 3} or WO{sub 3}) layer. We demonstrate graphene electrode patterning without the need for conventional lithography and thereby achieve organic light emitting diodes with efficiencies exceeding those of standard indium tin oxide reference devices.

  2. Process for the manufacture of carbon or graphite fibers

    NASA Technical Reports Server (NTRS)

    Overhoff, D.; Winkler, E.; Mueller, D.

    1979-01-01

    Carbon or graphite fibers are manufactured by heating polyacrylonitrile fiber materials in various solutions and gases. They are characterized in that the materials are heated to temperatures from 150 to 300 C in a solution containing one or more acids from the group of carbonic acids, sulfonic acids, and/or phenols. The original molecular orientation of the fibers is preserved by the cyclization that occurs before interlacing, which gives very strong and stiff carbon or graphite fibers without additional high temperature stretching treatments.

  3. Electroreduction of carbon dioxide in aqueous solutions at metal electrodes

    SciTech Connect

    Augustynski, J.; Jermann, B.; Kedzierzawski, P.

    1996-12-31

    The quantities of carbon stored in the form of atmospheric carbon dioxide, CO{sub 2} in the hydrosphere and carbonates in the terrestrial environment substantially exceed those of fossil fuels. In spite of this the industrial use of carbon dioxide as a source of chemical carbon is presently limited to preparation of urea and certain carboxylic acids as well as organic carbonates and polycarbonates. However, the situation is expected to change in the future, if effective catalytic systems allowing to activate carbon dioxide will become available. In this connection, the electrochemical reduction of CO{sub 2}, requiring only an additional input of water and electrical energy, appears as an attractive possibility. For more than 100 years formic acid and formates of alkali metals were considered as the only significant products of the electroreduction of carbon dioxide in aqueous solutions. The highest current efficiencies, exceeding 90 %, were obtained either with mercury or with amalgam electrodes. The only comprehensive study regarding kinetics of CO{sub 2} reduction in aqueous solution has been performed by Eyring et al. using a mercury cathode. This paper describes electrolysis studies.

  4. Carbon-Nanotube-Based Electrodes for Biomedical Applications

    NASA Technical Reports Server (NTRS)

    Li, Jun; Meyyappan, M.

    2008-01-01

    A nanotube array based on vertically aligned nanotubes or carbon nanofibers has been invented for use in localized electrical stimulation and recording of electrical responses in selected regions of an animal body, especially including the brain. There are numerous established, emerging, and potential applications for localized electrical stimulation and/or recording, including treatment of Parkinson s disease, Tourette s syndrome, and chronic pain, and research on electrochemical effects involved in neurotransmission. Carbon-nanotube-based electrodes offer potential advantages over metal macroelectrodes (having diameters of the order of a millimeter) and microelectrodes (having various diameters ranging down to tens of microns) heretofore used in such applications. These advantages include the following: a) Stimuli and responses could be localized at finer scales of spatial and temporal resolution, which is at subcellular level, with fewer disturbances to, and less interference from, adjacent regions. b) There would be less risk of hemorrhage on implantation because nano-electrode-based probe tips could be configured to be less traumatic. c) Being more biocompatible than are metal electrodes, carbon-nanotube-based electrodes and arrays would be more suitable for long-term or permanent implantation. d) Unlike macro- and microelectrodes, a nano-electrode could penetrate a cell membrane with minimal disruption. Thus, for example, a nanoelectrode could be used to generate an action potential inside a neuron or in proximity of an active neuron zone. Such stimulation may be much more effective than is extra- or intracellular stimulation via a macro- or microelectrode. e) The large surface area of an array at a micron-scale footprint of non-insulated nanoelectrodes coated with a suitable electrochemically active material containing redox ingredients would make it possible to obtain a pseudocapacitance large enough to dissipate a relatively large amount of electric charge

  5. Utilization of UV Curing Technology to Significantly Reduce the Manufacturing Cost of LIB Electrodes

    SciTech Connect

    Voelker, Gary; Arnold, John

    2015-11-30

    Previously identified novel binders and associated UV curing technology have been shown to reduce the time required to apply and finish electrode coatings from tens of minutes to less than one second. This revolutionary approach can result in dramatic increases in process speeds, significantly reduced capital (a factor of 10 to 20) and operating costs, reduced energy requirements, and reduced environmental concerns and costs due to the virtual elimination of harmful volatile organic solvents and associated solvent dryers and recovery systems. The accumulated advantages of higher speed, lower capital and operating costs, reduced footprint, lack of VOC recovery, and reduced energy cost is a reduction of 90% in the manufacturing cost of cathodes. When commercialized, the resulting cost reduction in Lithium batteries will allow storage device manufacturers to expand their sales in the market and thereby accrue the energy savings of broader utilization of HEVs, PHEVs and EVs in the U.S., and a broad technology export market is also envisioned.

  6. Amperometric biosensor based on glassy carbon electrode modified with long-length carbon nanotube and enzyme

    NASA Astrophysics Data System (ADS)

    Furutaka, Hajime; Nemoto, Kentaro; Inoue, Yuki; Hidaka, Hiroki; Muguruma, Hitoshi; Inoue, Hitoshi; Ohsawa, Tatsuya

    2016-05-01

    An amperometric biosensor based on a glassy carbon electrode modified with long-length multiwalled carbon nanotubes (MWCNTs) and enzyme nicotinamide-adenine-dinucleotide-dependent glucose dehydrogenase (GDH) is presented. We demonstrate the effect of the MWCNT length on the amperometric response of the enzyme biosensor. The long length of MWCNT is 200 µm (average), whereas the normal length of MWCNT is 1 µm (average). The response of the long MWCNT-GDH electrode is 2 times more sensitive than that of the normal-length MWCNT-GDH electrode in the concentration range from 0.25-35 mM. The result of electrochemical impedance spectroscopy measurements suggest that the long-length MWCNT-GDH electrode formed a better electron transfer network than the normal-length one.

  7. Electroadsorption desalination with carbon nanotube/PAN-based carbon fiber felt composites as electrodes.

    PubMed

    Liu, Yang; Zhou, Junbo

    2014-01-01

    The chemical vapor deposition method is used to prepare CNT (carbon nanotube)/PCF (PAN-based carbon fiber felt) composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption desalination performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF electrodes, CNT/PCF can allow for a higher adsorption and desorption rate but lower energy consumption; meanwhile, under the condition of the same voltage change, the CNT/PCF electrodes are provided with a better desalination effect. The study also found that the higher the original concentration of the solution, the greater the adsorption capacity and the lower the adsorption rate. At the same time, the higher the solution's pH, the better the desalting; the smaller the ions' radius, the greater the amount of adsorption.

  8. Polyethylenimine Carbon Nanotube Fiber Electrodes for Enhanced Detection of Neurotransmitters

    PubMed Central

    2015-01-01

    Carbon nanotube (CNT)-based microelectrodes have been investigated as alternatives to carbon-fiber microelectrodes for the detection of neurotransmitters because they are sensitive, exhibit fast electron transfer kinetics, and are more resistant to surface fouling. Wet spinning CNTs into fibers using a coagulating polymer produces a thin, uniform fiber that can be fabricated into an electrode. CNT fibers formed in poly(vinyl alcohol) (PVA) have been used as microelectrodes to detect dopamine, serotonin, and hydrogen peroxide. In this study, we characterize microelectrodes with CNT fibers made in polyethylenimine (PEI), which have much higher conductivity than PVA-CNT fibers. PEI-CNT fibers have lower overpotentials and higher sensitivities than PVA-CNT fiber microelectrodes, with a limit of detection of 5 nM for dopamine. The currents for dopamine were adsorption controlled at PEI-CNT fiber microelectrodes, independent of scan repetition frequency, and stable for over 10 h. PEI-CNT fiber microelectrodes were resistant to surface fouling by serotonin and the metabolite interferant 5-hydroxyindoleacetic acid (5-HIAA). No change in sensitivity was observed for detection of serotonin after 30 flow injection experiments or after 2 h in 5-HIAA for PEI-CNT electrodes. The antifouling properties were maintained in brain slices when serotonin was exogenously applied multiple times or after bathing the slice in 5-HIAA. Thus, PEI-CNT fiber electrodes could be useful for the in vivo monitoring of neurochemicals. PMID:25117550

  9. New generation of hybrid carbon/Ni(OH)2 electrochemical capacitor using functionalized carbon electrode

    NASA Astrophysics Data System (ADS)

    Le Comte, Annaïg; Brousse, Thierry; Bélanger, Daniel

    2016-09-01

    Tailoring carbon based negative electrode by grafting electroactive 9,10-phenanthrenequinone molecules on porous carbon drastically improves the performance of a carbon/Ni(OH)2 hybrid electrochemical capacitor. The grafted-quinone moieties add a Faradaic contribution to the double layer capacitance of carbon leading to a significant increase of the charge stored by the full devices. Good cyclability is ensured due to the strong bond between 9,10-phenanthrenequinone molecules and the carbon surface. More importantly, by increasing the total capacity, the grafting improves the energy density of the full hybrid device while maintaining fast charge/discharge kinetics and thus without affecting the power density.

  10. Electrical breakdown gas detector featuring carbon nanotube array electrodes.

    PubMed

    Kim, Seongyul; Pal, Sunil; Ajayan, Pulickel M; Borca-Tasciuc, Theodorian; Koratkar, Nikhil

    2008-01-01

    We demonstrate here detection of dichloro-difluoro-methane and oxygen in mixtures with helium using a carbon nanotube electrical breakdown sensor device. The sensor is comprised of an aligned array of multiwalled carbon nanotubes deposited on a nickel based super-alloy (Inconel 600) as the anode; the counter electrode is a planar nickel sheet. By monitoring the electrical breakdown characteristics of oxygen and dichloro-difluoro-methane in a background of helium, we find that the detection limit for dichloro-difluoro-methane is approximately 0.1% and the corresponding limit for oxygen is approximately 1%. A phenomenologigal model is proposed to describe the trends observed in detection of the two mixtures. These results indicate that carbon nanotube based electrical breakdown sensors show potential as end detectors in gas-chromatography devices.

  11. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  12. Application of Carbon Nanotubes As Electrodes in Gas Discharge Tubes

    NASA Astrophysics Data System (ADS)

    Rosen, Rachel; Simendinger, William; Debbault, Chris; Shimoda, Hideo; Fleming, Les; Stoner, Brian; Zhou, Otto

    2000-03-01

    Gas-tube protector units are used in telecom network interface device boxes and central office switching gears to provide protection from lightning and AC power cross facults on the telecom network. Current gas discharge tube (GDT) protector units are unreliable from the standpoint of mean turn-on voltage and run-to-run variability. Molybdenum electrodes with various interlayer materials were coated with single-walled carbon nanotubes and analyzed for both electron field emission and discharge properties. A mean DC breakdown voltage of 448.5V and a standard deviation of 4.8V over 100 surges were observed in nanotube-based GDTs with 1mm gap spacing between the electrodes. The breakdown reliability is a factor of 4-20 better and the breakdown voltage is 30% lower the commercial products measured. The enhanced performance shows that nanotube-based GDTs are attractive overvoltage protection units in advanced telecom networks.

  13. Application of carbon nanotubes as electrodes in gas discharge tubes

    NASA Astrophysics Data System (ADS)

    Rosen, R.; Simendinger, W.; Debbault, C.; Shimoda, H.; Fleming, L.; Stoner, B.; Zhou, O.

    2000-03-01

    Gas-tube protector units are used in telecom network interface device boxes and central office switching gears to provide protection from lightning and alternating current power cross faults on the telecom network. Current gas discharge tube (GDT) protector units are unreliable from the standpoint of mean turn-on voltage and run-to-run variability. Molybdenum electrodes with various interlayer materials were coated with single-walled carbon nanotubes and analyzed for both electron field emission and discharge properties. A mean direct current breakdown voltage of 448.5 V and a standard deviation of 4.8 V over 100 surges were observed in nanotube-based GDTs with 1 mm gap spacing between the electrodes. The breakdown reliability is a factor of 4-20 better and the breakdown voltage is ˜30% lower than the two commercial products measured. The enhanced performance shows that nanotube-based GDTs are attractive overvoltage protection units in advanced telecom networks.

  14. Electrochemical Determination of Albendazole at Glassy Carbon Electrode.

    PubMed

    Gowda, Jayant I; Kantikar, Rahul B; Harakuni, Devaraddi G; Jadhav, Kirankumar Y; Chanagoudar, Vinay C; Nandibewoor, Sharanappa T

    2016-11-01

    In this article, the electrochemical behavior on a glassy carbon electrode (GCE) was investigated and the electrochemical parameters of albendazole (ALB) were calculated. ALB effectively accumulated on the GCE surface and caused a pair of redox peaks at around 1.095 V and 1.028 V and an oxidation peak at 0.844 V (versus saturated calomel electrode) in 0.2 M phosphate buffer solution (pH 3.0). Under optimized conditions, the anodic peak current was linear to the ALB concentration the range of 1.5 × 10(-7) M to 4.0 × 10(-5) M. The regression equation was: Ipa (10(-6) A) = 0.79 [ALB] (μM) + 0.84 (R2 = 0.982). The detection limit 6.08 × 10(-8) M was obtained. The proposed method was successfully used to determine ALB content in tablet samples, with satisfactory results.

  15. Carbon nanotube mat as mediator-less glucose sensor electrode.

    PubMed

    Ryu, Jongeun; Kim, Hansang; Lee, Sangeui; Hahn, H Thomas; Lashmore, David

    2010-02-01

    In this paper, the direct electron transfer of glucose oxidase (GOx) on carbon nanotube (CNT) mat electrode is demonstrated. Because of the electrical conductivity and mechanical strength of CNT mat, it can be used as an electrode as well as a catalyst support. Therefore, the preparation process for the CNT mat based sensor electrode is simpler than that of the conventional CNT dispersed sensor electrodes. GOx was covalently immobilized on the oxidized CNT mat, which is connected to a wire by using silver paste and epoxy glue. Attenuated Total Reflectance Fourier Transform-Infrared (ATR-FTIR) result shows transmittance peaks at 1637 cm(-1) and 1525 cm(-1) which are corresponding to the band I and II of amide. Cyclic voltammetric shows a pair of well-defined redox peaks with the average formal potential of -0.425 V (vs. Ag/AgCl reference electrode) in the phosphate buffered saline solution (1 x PBS, pH 7.4). Calculated electron transfer rate constant and the surface density of GOx were 1.71 s(-1) and (3.27 +/- 0.20) x 10(-13) mol/cm2, respectively. Cyclic voltammograms of GOx-CNT mat in glucose solution show that the immobilized GOx retains its catalytic activity to glucose. The amperometric sensor response showed a linear dependence on the glucose concentration in the range of 0.2 mM to 2.18 mM with a detection sensitivity of 4.05 microA mM(-1) cm(-2). The Michaelis-Menten constant of the immobilized GOx was calculated to be 2.18 mM.

  16. Effects of impurity on tunnel magnetoresistance in a ferromagnetic electrode/carbon nanotube/ferromagnetic electrode junction

    NASA Astrophysics Data System (ADS)

    Ahmadi Fouladi, A.; Javad Vahedi; Soleymani Moghaddam, M.

    2015-04-01

    Effects of impurity on the spin-dependent transport in a single wall carbon nanotube spin-valve, as ferromagnetic electrode/carbon nanotube/ferromagnetic electrode model junction is numerically investigated. Using a generalized Green's function method and the Landauer-Büttiker formalism, the impurity conditions are determined by randomly substitution of carbon atoms in the honeycomb carbon nanotube lattice by nitrogen and boron atoms. We have found that transport characteristics, including the spin-dependent current and tunnel magnetoresistance are strongly influenced by the impurity effects. We think that the results of the present report could be useful for designing the future spintronic devices.

  17. Modeling of carbon segregation and accompanying processes during HTSC manufacture

    NASA Astrophysics Data System (ADS)

    Parinov, I. A.; Parinova, L. I.; Rozhkov, E. V.

    2002-08-01

    The formation of microstructure defects and weak links, which have considerable influence on the structure-sensitive properties of high-temperature superconductors (HTSC) is discussed, taking into account the carbon segregation, which embrittles intergranular boundaries and constructs the weak links. The carbon segregation processes are associated with slow, fast and steady states of the dislocation-screened crack growth. The solutions obtained can be applied to the finite element formulations and other numerical codes by which the stress-strain states, distributions, kinetics and parameters of intergranular defects during manufacture of the HTSC systems can be predicted.

  18. Carbon nanofiber electrode array for electrochemical detection of dopamine using fast scan cyclic voltammetry

    PubMed Central

    Koehne, Jessica E.; Marsh, Michael; Boakye, Adwoa; Douglas, Brandon; Kim, In Yong; Chang, Su-Youne; Jang, Dong-Pyo; Bennet, Kevin E.; Kimble, Christopher; Andrews, Russell; Meyyappan, M.; Lee, Kendall H.

    2012-01-01

    A carbon nanofiber (CNF) electrode array was integrated with the Wireless Instantaneous Neurotransmitter Sensor System (WINCS) for detection of dopamine using fast scan cyclic voltammetry (FSCV). Dopamine detection performance by CNF arrays was comparable to that of traditional carbon fiber microelectrodes (CFMs), demonstrating that CNF arrays can be utilized as an alternative carbon electrodes for neurochemical monitoring. PMID:21387028

  19. ELECTROCHEMICAL DETERMINATION OF HYDROGEN SULFIDE AT CARBON NANOTUBE MODIFIED ELECTRODES. (R830900)

    EPA Science Inventory

    Carbon nanotube (CNT) modified glassy carbon electrodes exhibiting a strong and stable electrocatalytic response towards sulfide are described. A substantial (400 mV) decrease in the overvoltage of the sulfide oxidation reaction (compared to ordinary carbon electrodes) is...

  20. ELECTROCHEMICAL DETERMINATION OF HYDROGEN SULFIDE AT CARBON NANOTUBE MODIFIED ELECTRODES. (R830900)

    EPA Science Inventory

    Carbon nanotube (CNT) modified glassy carbon electrodes exhibiting a strong and stable electrocatalytic response towards sulfide are described. A substantial (400 mV) decrease in the overvoltage of the sulfide oxidation reaction (compared to ordinary carbon electrodes) is...

  1. The Use of Carbon Aerogel Electrodes for Environmental Cleanup.

    DTIC Science & Technology

    1996-01-01

    electrodes, deionization of water, heavy metal removal from water, SERDP 16. PRICE CODE N/A 17. SECURITY CLASSIFICATION 18. SECURITY 19. SECURITY...electrophoresis, respectively. The carbon aeorgel cell has been used for the separation of copper, zinc, cadmium, and lead from 0.1 M KNO3 solutions, as...from a fixed, 500 ml volume of a 0.1 M KNO3 solution (Fig. 2). The electrolyte was circulated through the electrochemical cell at a rate of 50 ml/min

  2. Perspectives of carbon paste electrodes in stripping potentiometry.

    PubMed

    Svancara, Ivan; Ogorevc, Bozidar; Hocevar, Samo B; Vytras, Karel

    2002-03-01

    The testing of various types of carbon paste electrodes (CPEs) for their use in stripping potentiometry was carried out by means of specially proposed procedures and by using various model analyte systems. CPEs containing three different pasting liquids (paraffin oil, silicone oil, tricresyl phosphate) were tested as supports for mercury- and gold films, and as substrates for electrolytic, adsorptive, ion-pair forming, and extractive accumulation. Test measurements in organic solvent-containing media and studies of some irreversible electrochemical reactions were performed as well. Individual examples to be studied allowed one to formulate and outline some perspectives of CPEs in potentiometric stripping analysis and related constant current stripping analysis.

  3. Nanoporous carbon for electric double layer supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Garcia, Betzaida Batalla

    The subject of this study is the synthesis, characterization, chemical composition, and tuning of the porous structure of organic and carbon cryogels for electrochemical applications, particularly supercapacitors. Alternate methods such as an improved synthesis using a reactive catalyst, surface chemical modifications and an electrochemical characterization that takes into account the pore morphology are discussed. Impedance spectroscopy, complex capacitance and power were used to identify key energy losses in the capacitor; an optimal pore size of ca. 2 nm and other features were found. Also, synthesis modification and surface chemistry were used to improve the chemistry and structure of the electrodes reducing metal impurities and removing detrimental functional groups. First, carbon cryogels produced without metal ion impurities were synthesized using hexamine (an amine base catalyst), resorcinol, furaldehyde and solvent mixtures. These metal ion free amine-catalyzed gels also produced strong cryogels that can be machined. The carbon cryogels produced using the amine catalyst have cycle stability performances that exceed that of commercial samples. Carbon cryogels were also doped using ammonia borane to promote boron and nitrogen esters and improved the capacitance up to 30% due to faradaic reactions. Furthermore, nitrogen esters were also introduced into the carbon (via pyrolysis of hexamine) with yields of up to 14 at%. These new esters have low content of oxygen and increased the capacitance up to 50%.

  4. Cyclic voltammetric study of bendrofluazide at a carbon paste electrode.

    PubMed

    Ali, S A; Sami, M A

    2000-07-01

    Electrochemical oxidation of bendrofluazide was performed using cyclic voltammetry at a silicon oil impregnated carbon paste electrode (CPE) vs. Ag|AgCl reference electrode. Various qualitative parameters such as Ep, ip, betanb, and D were determined in aqueous KCl, NaCl, NH4Cl, KOH, NaOH, NH4OH, HCl, CH3COOH and H2SO4 systems. Bendrofluazide showed an irreversible electron transfer process with a CPE at 25, 35, and 45 degrees C. The heterogeneous rate constant KE was calculated to be 1.3x10(-6) at 25 degrees C. The shape of the CV wave was also drawn using simulation method. This obtained profiles similar to that of the experimental CV curves at different scan rates Investigation through diagnostic tests confirmed the absence of adsorption (either weak or strong) or analyte on the surface of the test electrode. The present method provides quantification of analyte in the dilution range 10(-4) to 10(-5) M.

  5. The Flexible Carbon Activated Electrodes made from Coconut Shell Waste for Supercapacitor Application

    NASA Astrophysics Data System (ADS)

    Taer, E.; Mustika, W. S.; Agustino; Fajarini; Hidayu, N.; Taslim, R.

    2017-03-01

    The flexible carbon activated electrode supercapacitor application has successfully prepared from coconut shell based carbon materials that produced by local farmers. The Increasing physical and electrochemical properties of coconut shell carbon has been done by chemical activation using KOH and microwave radiation assisted. A Flexible carbon activated electrodes was produced by by spraying method. Physical and electrochemical properties were tested are the specific surface area and specific capacitance. Extensive surface and optimum capacitance were obtained from a flexible carbon electrodes made from coconut shell based carbon is 194.429 m2/g and 10.55 F/g, respectively.

  6. Catalase-Modified Carbon Electrodes: Persuading Oxygen To Accept Four Electrons Rather Than Two.

    PubMed

    Sepunaru, Lior; Laborda, Eduardo; Compton, Richard G

    2016-04-18

    We successfully exploited the natural highly efficient activity of an enzyme (catalase) together with carbon electrodes to produce a hybrid electrode for oxygen reduction, very appropriate for energy transformation. Carbon electrodes, in principle, are cheap but poor oxygen reduction materials, because only two-electron reduction of oxygen occurs at low potentials, whereas four-electron reduction is key for energy-transformation technology. With the immobilization of catalase on the surface, the hydrogen peroxide produced electrochemically is decomposed back to oxygen by the enzyme; the enzyme natural activity on the surface regenerates oxygen, which is further reduced by the carbon electrode with no direct electron transfer between the enzyme and the electrode. Near full four-electron reduction of oxygen is realised on a carbon electrode, which is modified with ease by a commercially available enzyme. The value of such enzyme-modified electrode for energy-transformation devices is evident.

  7. Manufacturing of industry-relevant silicon negative composite electrodes for lithium ion-cells

    NASA Astrophysics Data System (ADS)

    Nguyen, B. P. N.; Chazelle, S.; Cerbelaud, M.; Porcher, W.; Lestriez, B.

    2014-09-01

    In this paper, Poly (acrylic-co-maleic) acid (PAMA) is used as a dispersant to improve the stability of electrodes slurries for large scale processing of Silicon based negative composite electrode. The stability and homogeneity of the slurries are characterized using different techniques. Sedimentation test, electrical measurement, SEM-EDX observations as well as rheological measurements show that a more homogeneous distribution of carbon black (CB) inside the stack of Si particles is reached with presence of PAMA. However, the amount of PAMA is limited due to the competition in the adsorption of PAMA and Carboxylmethyl cellulose (CMC) at the surface of the CB particles. Upon cycling with capacity limitation, the optimized electrode formulation at lab scale could achieve more than 400 cycles with surface capacity ∼2.5-3.3 mAh cm-2. At the pilot scale, the improvement of adhesion of the tape to the current collector by using Styrene-co-Butadiene rubber copolymer latex (SB) helps to maintain long cycle life while calendaring is detrimental to electrochemical properties.

  8. Performance of polyacrylonitrile-carbon nanotubes composite on carbon cloth as electrode material for microbial fuel cells.

    PubMed

    Kim, Sun-Il; Lee, Jae-Wook; Roh, Sung-Hee

    2011-02-01

    The performance of carbon nanotubes composite-modified carbon cloth electrodes in two-chambered microbial fuel cell (MFC) was investigated. The electrode modified with polyacrylonitrile-carbon nanotubes (PAN-CNTs) composite showed better electrochemical performance than that of plain carbon cloth. The MFC with the composite-modified anode containing 5 mg/cm2 PAN-CNTs exhibited a maximum power density of 480 mW/m2.

  9. Breakdown characteristics and conditioning of carbon and refractory metal electrodes

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.

    2004-01-01

    High voltage carbon and refractory metal electrodes employed in devices used in space, such as ion thrusters and traveling wave tubes, can be easily damaged by electrical breakdown and arcing events. Modification of the electrode surfaces due to these events can impact the voltage hold off capability of the surfaces, which could lead to additional arcing, further damage, and the potential for device failure. On the cathode-potential surface, the arc energy is deposited by all of the processes at the surface ultimately responsible for net electron emission, such as melting, vapor and particulate formation, sputtering, ion bombardment, etc. On the anode-potential surface, the energy is deposited from the plasma or electron stream that crosses the gap, which causes surface damage by local heating. In spite of this energy dependence on the damage, many systems that use arc discharges characterize the amount of material removed from the surfaces and the lifetime of the device for voltage hold-off by the amount of current that passes through the arc, or the 'Coulomb-rating'. The results of a series of tests that were preformed on the boltage hold off capability and damage to carbon-carbon composite surfaces and molybdenum surfaces due to induced arcing will be presented and discussed. Damage to the surfaces was characterized by the field emission performance after the arc initiation and SEM photographs for the different energy and coulomb-transfer arc conditions. Both conditioning and damage to the surfaces were observed, and will be related to the characteristics of the electrical breakdown.

  10. Breakdown characteristics and conditioning of carbon and refractory metal electrodes

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.

    2004-01-01

    High voltage carbon and refractory metal electrodes employed in devices used in space, such as ion thrusters and traveling wave tubes, can be easily damaged by electrical breakdown and arcing events. Modification of the electrode surfaces due to these events can impact the voltage hold off capability of the surfaces, which could lead to additional arcing, further damage, and the potential for device failure. On the cathode-potential surface, the arc energy is deposited by all of the processes at the surface ultimately responsible for net electron emission, such as melting, vapor and particulate formation, sputtering, ion bombardment, etc. On the anode-potential surface, the energy is deposited from the plasma or electron stream that crosses the gap, which causes surface damage by local heating. In spite of this energy dependence on the damage, many systems that use arc discharges characterize the amount of material removed from the surfaces and the lifetime of the device for voltage hold-off by the amount of current that passes through the arc, or the 'Coulomb-rating'. The results of a series of tests that were preformed on the boltage hold off capability and damage to carbon-carbon composite surfaces and molybdenum surfaces due to induced arcing will be presented and discussed. Damage to the surfaces was characterized by the field emission performance after the arc initiation and SEM photographs for the different energy and coulomb-transfer arc conditions. Both conditioning and damage to the surfaces were observed, and will be related to the characteristics of the electrical breakdown.

  11. Strain-engineered manufacturing of freeform carbon nanotube microstructures.

    PubMed

    De Volder, M; Park, S; Tawfick, S; Hart, A J

    2014-07-29

    The skins of many plants and animals have intricate microscale surface features that give rise to properties such as directed water repellency and adhesion, camouflage, and resistance to fouling. However, engineered mimicry of these designs has been restrained by the limited capabilities of top-down fabrication processes. Here we demonstrate a new technique for scalable manufacturing of freeform microstructures via strain-engineered growth of aligned carbon nanotubes (CNTs). Offset patterning of the CNT growth catalyst is used to locally modulate the CNT growth rate. This causes the CNTs to collectively bend during growth, with exceptional uniformity over large areas. The final shape of the curved CNT microstructures can be designed via finite element modeling, and compound catalyst shapes produce microstructures with multidirectional curvature and unusual self-organized patterns. Conformal coating of the CNTs enables tuning of the mechanical properties independently from the microstructure geometry, representing a versatile principle for design and manufacturing of complex microstructured surfaces.

  12. Polymer-assisted direct deposition of uniform carbon nanotube bundle networks for high performance transparent electrodes.

    PubMed

    Hellstrom, Sondra L; Lee, Hang Woo; Bao, Zhenan

    2009-06-23

    Flexible transparent electrodes are crucial for touch screen, flat panel display, and solar cell technologies. While carbon nanotube network electrodes show promise, characteristically poor dispersion properties have limited their practicality. We report that addition of small amounts of conjugated polymer to nanotube dispersions enables straightforward fabrication of uniform network electrodes by spin-coating and simultaneous tuning of parameters such as bundle size and density. After treatment in thionyl chloride, electrodes have sheet resistances competitive with other reported carbon nanotube based transparent electrodes to date.

  13. Comparison of unusual carbon-based working electrodes for electrochemiluminescence sensors.

    PubMed

    Noman, Muhammad; Sanginario, Alessandro; Jagadale, Pravin; Demarchi, Danilo; Tagliaferro, Alberto

    2017-06-01

    In this work, unconventional carbon-based materials were investigated for use in electrochemiluminescence (ECL) working electrodes. Precursors such as bamboo, pistachio shells, kevlar(®) fibers and camphor were differently treated and used as working electrodes in ECL experiments. After a proper process they were assembled as electrodes and tested in an electrochemical cell. Comparison among them and with a commercial glassy carbon electrode (GCE) shows a very good response for all of them thus demonstrating their potential use as disposable low-cost electrodes for early detection electrochemical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Bio-lnspired dielectric elastomer actuator with AgNWs coated on carbon black electrode.

    PubMed

    Jun, K W; Lee, J M; Lee, J Y; Ohl, I K

    2014-10-01

    Bio-inspired dielectric elastomer actuators with AgNW-coated carbon black electrodes were developed in this study. The novel elastomer actuators show large in-plane deformations by electrical stimulation through the both electrodes. When a certain input voltage is applied to the elastomer electrode, the electrostatic force between cathode and anode electrodes compress the dielectric elastomer film, resulting large in in-plane direction deformation. The expanded area of the circular actuation device under 70 mV/m electric field was measured up to 50% due to a synergistic effect of highly conductive AgNW network and ultrahigh capacitance of carbon black electrodes.

  15. Carbon Nanotube Chopped Fiber for Enhanced Properties in Additive Manufacturing

    SciTech Connect

    Menchhofer, Paul A.; Johnson, Joseph E.; Lindahl, John M.

    2016-06-06

    Nanocomp Technologies, Inc. is working with Oak Ridge National Laboratory to develop carbon nanotube (CNT) composite materials and evaluate their use in additive manufacturing (3D printing). The first phase demonstrated feasibility and improvements for carbon nanotube (CNT)- acrylonitrile butadiene styrene (ABS) composite filaments use in additive manufacturing, with potential future work centering on further improvements. By focusing the initial phase on standard processing methods (developed mainly for the incorporation of carbon fibers in ABS) and characterization techniques, a basis of knowledge for the incorporation of CNTs in ABS was learned. The ability to understand the various processing variables is critical to the successful development of these composites. From the degradation effects on ABS (caused by excessive temperatures), to the length of time the ABS is in the melt state, to the order of addition of constituents, and also to the many possible mixing approaches, a workable flow sequence that addresses each processing step is critical to the final material properties. Although this initial phase could not deal with each of these variables in-depth, a future study is recommended that will build on the lessons learned for this effort.

  16. Carbon composite micro- and nano-tubes-based electrodes for detection of nucleic acids

    PubMed Central

    2011-01-01

    The first aim of this study was to fabricate vertically aligned multiwalled carbon nanotubes (MWCNTs). MWCNTs were successfully prepared by using plasma enhanced chemical vapour deposition. Further, three carbon composite electrodes with different content of carbon particles with various shapes and sizes were prepared and tested on measuring of nucleic acids. The dependences of adenine peak height on the concentration of nucleic acid sample were measured. Carbon composite electrode prepared from a mixture of glassy and spherical carbon powder and MWCNTs had the highest sensitivity to nucleic acids. Other interesting result is the fact that we were able to distinguish signals for all bases using this electrode. PMID:21711910

  17. First long term in vivo study on subdurally implanted micro-ECoG electrodes, manufactured with a novel laser technology.

    PubMed

    Henle, C; Raab, M; Cordeiro, J G; Doostkam, S; Schulze-Bonhage, A; Stieglitz, T; Rickert, J

    2011-02-01

    A novel computer aided manufacturing (CAM) method for electrocorticography (ECoG) microelectrodes was developed to be able to manufacture small, high density microelectrode arrays based on laser-structuring medical grade silicone rubber and high purity platinum. With this manufacturing process, we plan to target clinical applications, such as presurgical epilepsy monitoring, functional imaging during cerebral tumor resections and brain-computer interface control in paralysed patients, in the near future. This paper describes the manufacturing, implantation and long-term behaviour of such an electrode array. In detail, we implanted 8-channel electrode arrays subdurally over rat cerebral cortex over a period of up to 25 weeks. Our primary objective was to ascertain the electrode's stability over time, and to analyse the host response in vivo. For this purpose, impedance measurements were carried out at regular intervals over the first 18 weeks of the implantation period. The impedances changed between day 4 and day 7 after implantation, and then remained stable until the end of the implantation period, in accordance with typical behaviour of chronically implanted microelectrodes. A post-mortem histological examination was made to assess the tissue reaction due to the implantation. A mild, chronically granulated inflammation was found in the area of the implant, which was essentially restricted to the leptomeninges. Overall, these findings suggest that the concept of the presented ECoG-electrodes is promising for use in long-term implantations.

  18. XPS analysis of carbon-supported platinum electrodes and characterization of CO oxidation on PEM fuel cell anodes by electrochemical half cell methods

    NASA Astrophysics Data System (ADS)

    Rheaume, J. M.; Müller, B.; Schulze, M.

    An analysis using X-ray induced photoelectron spectroscopy (XPS) on an as received, 20 weight percent (wt.%) Pt/C electrode (E-TEK) indicates the presence of a nanometer thin layer of polytetrafluorethylene (PTFE) on the surface which degrades during potentiodynamic cycling from 0 to 1.5 V RHE. Half cell measurements verify this observation by exhibiting an increase in the transferred charge and thus active surface area. An electrode manufactured by a rolling process containing 20 wt.% Pt/C on a carbon cloth (catalysts powders and cloth from E-TEK) did not have such a layer according to XPS analysis or exhibit such behavior during electrochemical, potentiodynamic cycling. In addition, cyclic voltammetry in a half cell was used to characterize CO oxidation on these two electrodes in addition to one consisting of 20 wt.% Pt-Ru/C catalyst on a carbon backing also produced by the rolling process. Measurements in 0.5 M H 2SO 4 electrolyte of rotating disk electrodes (RDEs) show recognizable CO oxidation during stripping experiments at potentials comparable to those shown by smooth electrodes, although peak definition for supported electrodes is highly inferior. The labyrinth nature of the pore systems of supported electrodes complicated stripping measurements and called into question the benefit of using RDEs for porous electrodes due to undefinable mass transport conditions within the electrode.

  19. A Nanoporous Carbon/Exfoliated Graphite Composite For Supercapacitor Electrodes

    NASA Astrophysics Data System (ADS)

    Rosi, Memoria; Ekaputra, Muhamad P.; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal

    2010-12-01

    Nanoporous carbon was prepared from coconut shells using a simple heating method. The nanoporous carbon is subjected to different treatments: without activation, activation with polyethylene glycol (PEG), and activation with sodium hydroxide (NaOH)-PEG. The exfoliated graphite was synthesized from graphite powder oxidized with zinc acetate (ZnAc) and intercalated with polyvinyl alcohol (PVA) and NaOH. A composite was made by mixing the nanoporous carbon with NaOH-PEG activation, the exfoliated graphite and a binder of PVA solution, grinding the mixture, and annealing it using ultrasonic bath for 1 hour. All of as-synthesized materials were characterized by employing a scanning electron microscope (SEM), a MATLAB's image processing toolbox, and an x-ray diffractometer (XRD). It was confirmed that the composite is crystalline with (002) and (004) orientations. In addition, it was also found that the composite has a high surface area, a high distribution of pore sizes less than 40 nm, and a high porosity (67%). Noting that the pore sizes less than 20 nm are significant for ionic species storage and those in the range of 20 to 40 nm are very accessible for ionic clusters mobility across the pores, the composite is a promising material for the application as supercapacitor electrodes.

  20. Copper-decorated carbon nanotubes-based composite electrodes for nonenzymatic detection of glucose

    PubMed Central

    2012-01-01

    The aim of this study was to prepare three types of multiwall carbon nanotubes (CNT)-based composite electrodes and to modify their surface by copper electrodeposition for nonenzymatic oxidation and determination of glucose from aqueous solution. Copper-decorated multiwall carbon nanotubes composite electrode (Cu/CNT-epoxy) exhibited the highest sensitivity to glucose determination. PMID:22616801

  1. Surface and Electrical Characterization of Ag/AgCl Pseudo-Reference Electrodes Manufactured with Commercially Available PCB Technologies

    PubMed Central

    Moschou, Despina; Trantidou, Tatiana; Regoutz, Anna; Carta, Daniela; Morgan, Hywel; Prodromakis, Themistoklis

    2015-01-01

    Lab-on-Chip is a technology that could potentially revolutionize medical Point-of-Care diagnostics. Considerable research effort is focused towards innovating production technologies that will make commercial upscaling financially viable. Printed circuit board manufacturing techniques offer several prospects in this field. Here, we present a novel approach to manufacturing Printed Circuit Board (PCB)-based Ag/AgCl reference electrodes, an essential component of biosensors. Our prototypes were characterized both structurally and electrically. Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS) were employed to evaluate the electrode surface characteristics. Electrical characterization was performed to determine stability and pH dependency. Finally, we demonstrate utilization along with PCB pH sensors, as a step towards a fully integrated PCB platform, comparing performance with discrete commercial reference electrodes. PMID:26213940

  2. Novel Conductive Carbon Black and Polydimethlysiloxane ECG Electrode: A Comparison with Commercial Electrodes in Fresh, Chlorinated, and Salt Water.

    PubMed

    Noh, Yeonsik; Bales, Justin R; Reyes, Bersain A; Molignano, Jennifer; Clement, Amanda L; Pins, George D; Florian, John P; Chon, Ki H

    2016-08-01

    In this study, we evaluated the performance of two novel conductive carbon black (CB) and polydimethlysiloxane (PDMS) bio-potential electrodes, with and without an integrated flexible copper mesh, against commercially available electrodes (Polar(®) textile, Silver-coated textile, and carbon rubber). The electrodes were tested in three types of water (fresh/unfiltered, chlorinated, and salt water). Our testing revealed that our CB/PDMS electrode with integrated copper mesh provided a high-fidelity ECG signal morphologies without any amplitude degradation in all of the types of water tested (N = 10). The non-meshed CB/PDMS electrodes were also subjected to a long-term durability test by the US Navy SCUBA divers during which the electrodes maintained ECG signal quality for a 6 h period of continuous use. The results of a material degradation analysis revealed the CB/PDMS composite material does not exhibit significant changes in physical integrity after prolonged exposure to the test conditions. The newly developed meshed CB/PDMS electrodes have the potential to be used in a wide variety of both dry and wet environments including the challenge of obtaining ECG signals in salt water environments.

  3. Electrochemical Behavior of Carbon Nanostructured Electrodes: Graphene, Carbon Nanotubes, and Nanocrystalline Diamond

    NASA Astrophysics Data System (ADS)

    Raut, Akshay Sanjay

    The primary goals of this research were to investigate the electrochemical behavior of carbon nanostructures of varying morphology, identify morphological characteristics that improve electrochemical capacitance for applications in energy storage and neural stimulation, and engineer and characterize a boron-­doped diamond (BDD) electrode based electrochemical system for disinfection of human liquid waste. Carbon nanostructures; ranging from vertically aligned multiwalled carbon nanotubes (MWCNTs), graphenated carbon nanotubes (g-­CNTs) to carbon nanosheets (CNS); were synthesized using a MPECVD system. The nanostructures were characterized by using scanning electron microscopy (SEM) and Raman spectroscopy. In addition to employing commonly used electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), a new technique was developed to evaluate the energy and power density of individual electrodes. This facilitated comparison of a variety of electrode materials without having to first develop complex device packaging schemes. It was found that smaller pore size and higher density of carbon foliates on a three-dimensional scaffold of carbon nanotubes increased specific capacitance. A design of experiments (DOE) study was conducted to explore the parametric space of the MWCNT system. A range of carbon nanostructures of varying morphology were obtained. It was observed that the capacitance was dependent on defect density. Capacitance increased with defect density. A BDD electrode was characterized for use in a module designed to disinfect human liquid waste as a part of a new advanced energy neutral, water and additive-free toilet designed for treating waste at the point of source. The electrode was utilized in a batch process system that generated mixed oxidants from ions present in simulated urine and inactivated E. Coli bacteria. Among the mixed oxidants, the concentration of chlorine species was measured and was

  4. Enhancement of the carbon electrode capacitance by brominated hydroquinones

    NASA Astrophysics Data System (ADS)

    Gastol, Dominika; Walkowiak, Jedrzej; Fic, Krzysztof; Frackowiak, Elzbieta

    2016-09-01

    This paper presents supercapacitors utilizing new redox-active electrolytes with bromine species. Two sources of Br specimen were investigated, i.e. dibromodihydroxybenzene dissolved in KOH and potassium bromide dissolved in KOH with hydroxybenzene additive. KOH-activated carbon, exhibiting a well-developed porosity, was incorporated as an electrode material. The tested systems revealed a capacitance enhancement explained by Br- and partial BrO3- redox activity. The optimisation of the electrolyte concentration resulted in a capacitance value of 314 F g-1 achieved at 1.1 V voltage range. Good cyclability performance (11% capacitance loss) combined with a high capacitance value (244 F g-1) were obtained for the system operating in 0.2 mol L- 1 C6H4Br2O2 in 2 mol L-1 KOH electrolytic solution.

  5. Determination of gold using clay modified carbon paste electrode.

    PubMed

    Navrátilová, Z; Kula, P

    2000-06-01

    Sorption of gold(III) chlorocomplexes was studied by means of a carbon paste electrode modified with montmorillonite. Anionic exchange behavior was found in chloride media with low ionic strength. Anionic sorption of [AuCl4]- can be used as a preconcentration step to the determination of Au(III). Linear calibration dependences were found in the concentration range 4.06 x 10(-6) - 1.22 x 10(-5) mol/L Au(III) after 5 min of sorption and in the range 8.12 x 10(-7) - 6. 1 x 10(-6) mol/L after 10 min of sorption. Interferences of several anions and cations were studied. Model samples of table water were analyzed.

  6. Sensitive Electrochemical Detection of Enzymatically-generated Thiocholine at Carbon Nanotube Modified Glassy Carbon Electrode

    SciTech Connect

    Liu, Guodong; Riechers, Shawn L.; Mellen, Maria C.; Lin, Yuehe

    2005-11-01

    A carbon nanotube modified glassy-carbon (CNT/GC) electrode was used for enhancing the sensitivity of electrochemical measurements of enzymatically-generated thiocholine. Cyclic voltammetric and amperometric characteristics of thiocholine at CNT/GC, glassy carbon, carbon paste, and gold electrodes were compared. The CNT layer leads to a greatly improved anodic detection of enzymatically generated thiocholine product including lower oxidation overpotential (0.15 V) and higher sensitivity because of its electrocatalytic activity, fast electron transfer and large surface area. The sensor performance was optimized with respect to the operating conditions. Under the optimal batch conditions, a detection limit of 5 ?10 -6 mol/L was obtained with good precision (RSD = 5.2%, n=10). Furthermore, the attractive response of thiocholine on a CNT/GC electrode has allowed it to be used for constant-potential flow injection analysis. The detection limit was greatly improved to 0.3 ?10-6 mol/L. The high sensitivity electrochemical detection of enzymatically generated thiocholine with a CNT sensing platform holds great promise to prepare an acetylcholinesterase biosensor for monitoring organophosphate pesticides and nerve agents.

  7. Electrochemical adsorptive behavior of some fluoroquinolones at carbon paste electrode.

    PubMed

    El Ries, M A; Wassel, A A; Abdel Ghani, N T; El-Shall, M A

    2005-10-01

    Cyclic voltammetry and differential pulse voltammetry were used to explore the adsorption behavior of three antibacterial agents at a carbon paste electrode. The drugs were accumulated on a carbon paste electrode, and a well-defined oxidation peak was obtained in acetate buffer (pH 5.0). The adsorptive stripping response was evaluated as a function of some variables such as the scan rate, pH and accumulation time. A simple, precise, inexpensive and sensitive voltammetric method has been developed for the determination of the cited drugs (Lomefloxacin (LFX), Sparfloxacin hydrochloride (SFX), and Gatifloxacin (GFX)). A linear calibration was obtained from 2 x 10(-7) M to 4 x 10(-5) M for LFX, 2 x 10(-7) M to 6 x 10(-5) M for SFX, and GFX. The limits of detection (LOD) were 4.2 x 10(-7), 7 x 10(-7) and 6.6 x 10(-7) M, while the limits of quantification (LOQ) were 1.4 x 10(-6), 2.3 x 10(-6) and 2.2 x 10(-6) M for LFX, SFX, and GFX, respectively. The R. S. D. of five measurements at the 1 x 10(-6) M level were 0.4, 0.5 and 0.3 for LFX, SFX and GFX, respectively. The method was applied to the determination of LFX, SFX and GFX in dilute urine samples and dosage forms, and compared with the HPLC method.

  8. Electron Cyclotron Resonance-Sputtered Nanocarbon Film Electrode Compared with Diamond-Like Carbon and Glassy Carbon Electrodes as Regards Electrochemical Properties and Biomolecule Adsorption

    NASA Astrophysics Data System (ADS)

    Xue, Qiang; Kato, Dai; Kamata, Tomoyuki; Umemura, Shigeru; Hirono, Shigeru; Niwa, Osamu

    2012-09-01

    The electrochemical properties and biocompatible characteristics at an electron cyclotron resonance (ECR)-sputtered nanocarbon film electrode, a diamond-like carbon (DLC) electrode and a glassy carbon (GC) electrode have been studied. The three carbon electrodes show significant current reductions with increased peak separations as a result of protein fouling before oxygen plasma treatment, but the current reductions of the ECR-sputtered nanocarbon and DLC film electrodes are smaller than that of the GC electrode due to their superior surface flatness. The oxygen plasma pretreated ECR-sputtered nanocarbon film electrode exhibits a significant improvement in anti-fouling performance with an improved electron transfer. This is because the pretreated ECR-sputtered nanocarbon film enabled the surface to introduce surface oxygen functionalities that not only improve the interaction between the analytes and the electrode surface but also make the film surface more hydrophilic, which is important for the suppression of biomolecule adsorption. At the same time, the pretreated ECR-sputtered nanocarbon film also retained an ultraflat surface even after pretreatment as a result of the low background current. This excellent performance can only be achieved with our ECR-sputtered nanocarbon film, indicating that our film is promising for application to electrochemical detectors for various biomolecular analytes.

  9. Carbon felt and carbon fiber - A techno-economic assessment of felt electrodes for redox flow battery applications

    NASA Astrophysics Data System (ADS)

    Minke, Christine; Kunz, Ulrich; Turek, Thomas

    2017-02-01

    Carbon felt electrodes belong to the key components of redox flow batteries. The purpose of this techno-economic assessment is to uncover the production costs of PAN- and rayon-based carbon felt electrodes. Raw material costs, energy demand and the impact of processability of fiber and felt are considered. This innovative, interdisciplinary approach combines deep insights into technical, ecologic and economic aspects of carbon felt and carbon fiber production. Main results of the calculation model are mass balances, cumulative energy demands (CED) and the production costs of conventional and biogenic carbon felts supplemented by market assessments considering textile and carbon fibers.

  10. The Effect of Anodic Surface Treatment on the Oxidation of Catechols at Ultrasmall Carbon Ring Electrodes

    DTIC Science & Technology

    1991-07-09

    selectivity. A model of the surface formed following anodic oxidation is consistent with previous models involving both surface cleanliness and carbon...involving both surface cleanliness and carbon structure orientation. 2 INTRODUCTION Because of the vast electroanalytical utility of carbon electrodes...of the electron transfer rate following treatment are a function of the surface cleanliness and the orientation of the carbon structure

  11. Electroadsorption Desalination with Carbon Nanotube/PAN-Based Carbon Fiber Felt Composites as Electrodes

    PubMed Central

    Liu, Yang; Zhou, Junbo

    2014-01-01

    The chemical vapor deposition method is used to prepare CNT (carbon nanotube)/PCF (PAN-based carbon fiber felt) composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption desalination performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF electrodes, CNT/PCF can allow for a higher adsorption and desorption rate but lower energy consumption; meanwhile, under the condition of the same voltage change, the CNT/PCF electrodes are provided with a better desalination effect. The study also found that the higher the original concentration of the solution, the greater the adsorption capacity and the lower the adsorption rate. At the same time, the higher the solution's pH, the better the desalting; the smaller the ions' radius, the greater the amount of adsorption. PMID:24963504

  12. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    PubMed Central

    Wang, Huiying; Liu, Mingyue; Hu, Xinxi; Li, Mei; Xiong, Xingyao

    2013-01-01

    A versatile strategy for electrochemical determination of glycoalkaloids (GAs) was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA) modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors. PMID:24287539

  13. Electrochemical determination of glycoalkaloids using a carbon nanotubes-phenylboronic acid modified glassy carbon electrode.

    PubMed

    Wang, Huiying; Liu, Mingyue; Hu, Xinxi; Li, Mei; Xiong, Xingyao

    2013-11-27

    A versatile strategy for electrochemical determination of glycoalkaloids (GAs) was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA) modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors.

  14. Direct electrochemistry and electrocatalysis of hemoglobin in nafion/carbon nanochip film on glassy carbon electrode.

    PubMed

    George, Sini; Lee, Hian Kee

    2009-11-26

    The use of heat treated carbon nanofibers, known as carbon nanochips (CNCs) for the studies of the direct electrochemistry and electrocatalytic properties of heme proteins, is demonstrated. A glassy carbon electrode (GCE) was modified with CNCs, and hemoglobin (Hb) was immobilized on the modified electrode surface by casting a film of Hb. Nafion was employed to fix the CNCs and Hb tightly on the surface of the GCE. The modified electrode was characterized by scanning electron microscopy. Ultraviolet-visible and Fourier transform infrared spectroscopy showed that Hb immobilized in the CNC film remained in its native structure. Electrochemical impedance spectroscopy and cyclic voltammetry (CV) were employed for electrochemical studies. The results showed that the presence of CNCs in the film can greatly enhance the electrochemical response of Hb. A pair of well-defined reversible CV peaks was observed, and the formal potential of the heme Fe(III)/Fe(II) redox couple was found to be -253 mV [vs Ag/AgCl (saturated KCl)]. The apparent heterogeneous electron-transfer rate constant (k(s)) was estimated as 2.54 s(-1). The modified electrode showed excellent electrocatalytic behavior to hydrogen peroxide (H(2)O(2)), trichloroacetic acid, and sodium nitrite. H(2)O(2) had a linear current response from 0.5 to 30 microM (R(2) = 0.9997; n = 5) with a detection limit of 0.05 microM when the signal-to-noise ratio was 3 and the apparent Michaelis-Menten constant (K(m)(app)) was 21.55 microM. These values suggest that CNCs are the best matrix described so far for the development of biosensors, far superior to untreated carbon nanofibers. The direct immobilization of proteins onto the surface of CNCs is shown to be a highly efficient method for the development of a new class of very sensitive, stable, and reproducible electrochemical biosensors.

  15. Characterization of the SEI on a carbon film electrode by combinedEQCM and spectroscopic ellipsometry

    SciTech Connect

    evans@socrates.berkeley.edu

    2002-01-01

    The electrochemical quartz crystal microbalance (EQCM) andcyclic voltammetry have been applied simultaneously to characterizeelectron-beam deposited carbon film electrodes in LiClO4 orLiPF6-containing mixed electrolytes of ethylene carbonate (EC) anddimethyl carbonate (DMC). The structure of the carbon electrode was foundto be amorphous/disordered using Raman spectroscopy. Cyclic voltammetryin LiClO4 / EC+DMC demonstrated features typical of Liintercalation/deintercalation into/from the disordered carbon electrode,and EQCM showed a corresponding mass increase/decrease. Contrary to thecase of LiClO4 / EC+DMC electrolyte, LiPF6/EC+DMC electrolyte showed noLi deintercalation out of the thin-film carbon electrode. Combined EQCMand spectroscopic ellipsometry data were compared, and the solidelectrolyte interphase density after the first cycle in LiClO4 /EC+DMCwas estimated to be 1.3 g/cm3.

  16. Electrochemical reduction of nalidixic acid at glassy carbon electrode modified with multi-walled carbon nanotubes.

    PubMed

    Patiño, Yolanda; Pilehvar, Sanaz; Díaz, Eva; Ordóñez, Salvador; De Wael, Karolien

    2017-02-05

    The aqueous phase electrochemical degradation of nalidixic acid (NAL) is studied in this work, using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) as instrumental techniques. The promotional effect of multi-walled carbon nanotubes (MWCNT) on the performance of glassy carbon electrodes is demonstrated, being observed that these materials catalyze the NAL reduction. The effect of surface functional groups on MWCNT -MWCNT-COOH and MWCNT-NH2-was also studied. The modification of glassy carbon electrode (GCE) with MWCNT leads to an improved performance for NAL reduction following the order of MWCNT>MWCNT-NH2>MWCNT-COOH. The best behavior at MWCNT-GCE is mainly due to both the increased electrode active area and the enhanced MWCNT adsorption properties. The NAL degradation was carried out under optimal conditions (pH=5.0, deposition time=20s and volume of MWCNT=10μL) using MWCNT-GCE obtaining an irreversible reduction of NAL to less toxic products. Paramaters as the number of DPV cycles and the volume/area (V/A) ratio were optimized for maximize pollutant degradation. It was observed that after 15 DPV scans and V/A=8, a complete reduction was obtained, obtaining two sub-products identified by liquid chromatography-mass spectrometry (LC-MS).

  17. Method for uniformly distributing carbon flakes in a positive electrode, the electrode made thereby and compositions. [Patent application

    DOEpatents

    Mrazek, F.C.; Smaga, J.A.; Battles, J.E.

    1981-01-19

    A positive electrode for a secondary electrochemical cell is described wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.

  18. Nanoporous carbon-based electrodes for high strain ionomeric bending actuators

    NASA Astrophysics Data System (ADS)

    Palmre, Viljar; Brandell, Daniel; Mäeorg, Uno; Torop, Janno; Volobujeva, Olga; Punning, Andres; Johanson, Urmas; Kruusmaa, Maarja; Aabloo, Alvo

    2009-09-01

    Ionic polymer metal composites (IPMCs) are electroactive material devices that bend at low applied voltage (1-4 V). Inversely, a voltage is generated when the materials are deformed, which makes them useful both as sensors and actuators. In this paper, we propose two new highly porous carbon materials as electrodes for IPMC actuators, generating a high specific area, and compare their electromechanical performance with recently reported RuO2 electrodes and conventional IPMCs. Using a direct assembly process (DAP), we synthesize ionic liquid (Emi-Tf) actuators with either carbide-derived carbon (CDC) or coconut-shell-based activated carbon-based electrodes. The carbon electrodes were applied onto ionic liquid-swollen Nafion membranes using a direct assembly process. The study demonstrates that actuators based on carbon electrodes derived from TiC have the greatest peak-to-peak strain output, reaching up to 20.4 mɛ (equivalent to>2%) at a 2 V actuation signal, exceeding that of the RuO2 electrodes by more than 100%. The electrodes synthesized from TiC-derived carbon also exhibit significantly higher maximum strain rate. The differences between the materials are discussed in terms of molecular interactions and mechanisms upon actuation in the different electrodes.

  19. The Charge and Discharge Behavior of Molybdenum Trioxide Electrodes in Lithium Perchlorate-Propylene Carbonate Electrolyte.

    DTIC Science & Technology

    1980-07-01

    AMM/§ Diet. specialAK f* I, THE CHARGE AND DISCHARGE BEHAVIOR OF MOLYBDENUM TRIOXIDE ELECTRODES IN LITHIUM PERCHLORATE-PROPYLENE CARBONATE ELECTROLYTE...SHE). Thus, the propylene carbonate oxidation potential is +3.145 V versus SHE or since the potential of the reversible lithium electrode in propylene... carbonate is -3.265 V versus the SHE potential, the solvent oxidation potential should be +6.4 V versus lithium . Thus, another anodic process must be

  20. Magnetite nanoparticles-chitosan composite containing carbon paste electrode for glucose biosensor application.

    PubMed

    Kavitha, A L; Prabu, H Gurumallesh; Babu, S Ananda; Suja, S K

    2013-01-01

    This work was aimed to develop reusable magnetite chitosan composite containing carbon paste electrode for biosensor application. Glucose oxidase (GOx) enzyme was used to prepare GOx-magnetite-chitosan nanocomposite containing carbon paste electrode for sensitive detection of glucose. The immobilized enzyme retained its bioactivity, exhibited a surface confined reversible electron transfer reaction, and had good stability. The surface parameters like surface coverage (tau), Diffusion coefficient (D0), and rate constant (kS) were studied. The carbon paste modified electrode virtually eliminated the interference during the detection of glucose. The excellent performance of the biosensor is attributed to large surface-to-volume ratio, high conductivity and good biocompatibility of chitosan, which enhances the enzyme absorption and promotes electron transfer between redox enzymes and the surface of electrode. The shelf life of the developed electrode system is about 12 weeks under refrigerated conditions. We report for the first time in the fabrication of carbon paste bioelectrode containing magnetite-chitosan-GOx.

  1. Soluble functionalized carbon nanotube/poly(vinyl alcohol) nanocomposite as the electrode for glucose sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Nanyan; Xie, Jining; Varadan, Vijay K.

    2006-02-01

    Carbon nanotubes exhibit excellent properties which make them a good candidate as the electrode material for bioapplications. A soluble functionalized carbon nanotube/poly(vinyl alcohol) nanocomposite was synthesized via esterification reactions. The obtained nanocomposite exhibits significantly improved electrical conductivity. Nanocomposite-based electrodes were prepared by a thick film technique and their performances were electrochemically characterized. After enzyme immobilization, they can be used as biosensors for glucose detection. Preliminary results show these nanotube composite-based electrodes exhibit good electrochemical performance for glucose detection. Comparison was also made between graphite and nanocomposite-based electrodes.

  2. Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.

  3. Hybrid electrode based on carbon nanotube and graphene for ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Seo, Tae Hoon; Lee, Gun Hee; Park, Sungchan; Chandramohan, S.; Park, Ah Hyun; Cho, Hyunjin; Park, Min; Jong Kim, Myung; Suh, Eun-Kyung

    2015-10-01

    We report on a transparent current-spreading electrode that combines carbon nanotubes (CNTs) and graphene for UV-LEDs. We compared the device performance and long-term stability of this CNT-graphene hybrid electrode (CGE) with those of the silver nanowire-graphene electrode (SGE) reported previously. Both types of electrode offered excellent UV transmittance and reduced sheet resistance through the bridging effect for grain boundaries and defects in graphene by nanotubes or nanowires. UV-LEDs using such electrodes offered reduced forward voltage and enhanced electroluminescence intensity, but the device with the CGE showed excellent stability whereas the SGE degraded with time.

  4. An impedance study of the adsorption of nucleic acid bases at glassy carbon electrodes.

    PubMed

    Oliveira-Brett, A M; Brett, C M A; Silva, L A

    2002-05-15

    Electrochemical impedance has been used to study the adsorption at glassy carbon electrodes of guanine, its corresponding nucleoside, guanosine, and adenine. Impedance studies at different concentrations and applied potentials show clearly that all three bases are adsorbed on the electrode, blocking the surface. Irradiating the electrode with low-frequency (20 kHz) ultrasound whilst recording the impedance spectra increased transport of molecules to the electrode surface with cavitation cleaning the surface and removing strongly adsorbed molecules of bases. In this way, sonoelectrochemical experiments enabled the electrode processes to be studied in the absence of adsorption.

  5. A comparative study on electrosorption behavior of carbon nanotubes electrodes fabricated via different methods

    NASA Astrophysics Data System (ADS)

    Zhu, Guang; Wang, Hongyan; Zhang, Li

    2016-04-01

    The carbon nanotubes (CNTs) electrodes were fabricated via electrophoretic deposition (EPD), press and screen printing methods, respectively. The electrochemical properties and electrosorption performance of the CNTs electrodes were tested, respectively. Inhere, screen printing, as a conventional method for fabricating supercapacitor electrodes, was used for fabricating the CDI electrodes for the first time. Such a comparison is reasonably envisaged not only to be used to further understanding the influence of fabrication method on the electrode performance, but also to form a fundamental basis for CDI applications.

  6. Study on conventional carbon characteristics as counter electrode for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Noer Fajar, Muhammad; Endarko

    2017-05-01

    Activated carbon (AC), black carbon (BC), and graphite were deposited onto ITO (Indium Tin Oxide) glass for counter electrode application in Dye-Sensitized Solar Cells. SEM-EDX was used to observe and analyse the morphology and composition of electrodes. The results showed that the particle distribution of the graphite electrode observed was approximately 34% with a size of 1 to 2 µm and BC electrode about 20% have a size of 0.5 to 1 µm, while AC electrode has a size of 0 - 0.5 µm observed around 20%. AC electrode has a more porous and uniform particle aggregates compared to BC and graphite electrodes. The efficiency of the counter electrode was measured using the solar simulator. The highest efficiency was at 0.011516% for the counter electrode that was fabricated by AC. Meanwhile, black carbon and graphite electrodes were achieved at 0.008744% and 0.010561%, respectively. The results proved that the porosity and the uniform aggregate of the particles were the most significant factors to improve the performance of DSSC.

  7. Process for the manufacture of carbon fibers and feedstock therefor

    SciTech Connect

    Sawran, W.R.; Turrill, F.H.; Newman, J.W.; Hall, N.W.; Ward, C.

    1987-06-09

    This patent describes a petroleum pitch derived from residuum from the catalytic cracking of petroleum, especially adapted for use in the manufacture of carbon fibers, with reduced stabilization time, the pitch comprising an aromatic enriched petroleum pitch containing about 20 to about 40 mole percent alpha hydrogens, based on the moles of hydrogen present in the pitch, having a softening point of at least about 250/sup 0/C, a xylene insolubles content of about 15% to about 40% by weight, a quinoline insolubles content of about 0% to about 5.0% by weight, a sulfur content of about 0.1 to about 4% by weight, a coking value of 65 to 90 weight % and a mesophase content of 0 to about 5% by weight.

  8. 3D printing with biobased PEF for carbon neutral manufacturing.

    PubMed

    Kucherov, Fedor; Gordeev, Evgeny; Kashin, Alexey; Ananikov, Valentine P

    2017-10-04

    We demonstrate the utility of 100% biomass-derived poly(ethylene-2,5-furandicarboxylate) (PEF) as an efficient material for Fused Deposition Modeling (FDM) 3D printing. A complete cycle from cellulose to printed object has been performed. PEF-printed objects created in the present study demonstrated higher chemical resistance than objects printed with commonly available materials (ABS, PLA, PETG). The studied PEF polymer has shown key advantages for 3D printing: optimal adhesion, thermoplasticity, lack of delamination and low heat shrinkage. The high thermal stability of PEF and relatively low temperature that are necessary for extrusion are optimal for recycling printed objects and minimizing waste. Several successive cycles of 3D-printing and recycling were successfully demonstrated. The suggested approach for extending additive manufacturing to carbon neutral materials opens a new direction in the field of sustainable development. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder

    SciTech Connect

    Osaka, Tetsuya, Liu, X.; Nojima, Masashi; Momma, Toshiyuki

    1999-05-01

    An electric double layer capacitor (EDLC) was prepared with an activated carbon powder electrode with poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based gel electrolyte. Ethylene carbonate (EC) and propylene carbonate (PC) were used as plasticizer and tetraethylammonium tetrafluoroborate (TEABF{sub 4}) was used as the supporting electrolyte. An optimized gel electrolyte of PVdF-HFP/PC/EC/TEABF{sub 4} - 23/31/35/11 mass ratio exhibited high ionic conductivity of 5 {times} 10{sup {minus}3} S/cm, high electrode capacitance, and good mechanical strength. An electrode consisting of activated carbon (AC) with the gel electrolyte as the binder (AC/PVdF-HFP based gel, 7/3 mass ratio) showed a higher specific capacitance and a lower ion diffusion resistance within the electrode than a carbon electrode, prepared with PVdF-HFP binder without plasticizer. This suggests that an electrode mixed with the gel electrolyte has a lower ion diffusion resistance inside the electrode. The highest specific capacitance of 123 F/g was achieved with an electrode containing AC with a specific surface area of 2500 m{sup 2}/g. A coin-type EDLC cell with optimized components showed excellent cycleability exceeding 10{sup 4} cycles with ca. 100% coulombic efficiency achieved when charging and discharging was repeated between 1.0 and 2.5 V at 1.66 mA/cm{sup 2}.

  10. Au nanoparticles and graphene quantum dots co-modified glassy carbon electrode for catechol sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Xuan; He, Dawei; Wang, Yongsheng; Hu, Yin; Fu, Chen

    2016-03-01

    In this letter, the gold nanoparticles and graphene quantum dots were applied to the modification of glassy carbon electrode for the detection of catechol. The synergist cooperation between gold nanoparticles and graphene quantum dots can increase specific surface area and enhance electronic and catalytic properties of glassy carbon electrode. The detection limit of catechol is 0.869 μmol/L, demonstrating the superior detection efficiency of the gold nanoparticles and graphene quantum dots co-modified glassy carbon electrode as a new sensing platform.

  11. Development of an electrohydrodynamic ion-drag micropump using three-dimensional carbon micromesh electrodes

    NASA Astrophysics Data System (ADS)

    Yoon, Dong Hyun; Sato, Hironobu; Nakahara, Asahi; Sekiguchi, Tetsushi; Konishi, Satoshi; Shoji, Shuichi

    2014-09-01

    An electrohydrodynamic (EHD) ion-drag micropump using three-dimensional carbon micromesh electrodes was developed. The carbon micromesh electrodes were created by the pyrolysis of SU-8 structures. The carbon electrodes and microchannel were formed on a quartz substrate, and the microchannel was sealed by an SU-8 slab structure. The pumping behaviors were evaluated using Fluorinert as a non-conductive sample solution. The maximum pressure and volume flow rate were approximately 23 Pa and 400 nL/min, respectively, under an applied voltage of 500 V.

  12. Chemical vapor-deposited carbon nanofibers on carbon fabric for supercapacitor electrode applications

    PubMed Central

    2012-01-01

    Entangled carbon nanofibers (CNFs) were synthesized on a flexible carbon fabric (CF) via water-assisted chemical vapor deposition at 800°C at atmospheric pressure utilizing iron (Fe) nanoparticles as catalysts, ethylene (C2H4) as the precursor gas, and argon (Ar) and hydrogen (H2) as the carrier gases. Scanning electron microscopy, transmission electron microscopy, and electron dispersive spectroscopy were employed to characterize the morphology and structure of the CNFs. It has been found that the catalyst (Fe) thickness affected the morphology of the CNFs on the CF, resulting in different capacitive behaviors of the CNF/CF electrodes. Two different Fe thicknesses (5 and 10 nm) were studied. The capacitance behaviors of the CNF/CF electrodes were evaluated by cyclic voltammetry measurements. The highest specific capacitance, approximately 140 F g−1, has been obtained in the electrode grown with the 5-nm thickness of Fe. Samples with both Fe thicknesses showed good cycling performance over 2,000 cycles. PMID:23181897

  13. A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Zhao, T. S.; Zeng, Y. K.; An, L.; Wei, L.

    2016-10-01

    In this work, a high-performance porous electrode, made of KOH-activated carbon-cloth, is developed for vanadium redox flow batteries (VRFBs). The macro-scale porous structure in the carbon cloth formed by weaving the carbon fibers in an ordered manner offers a low tortuosity (∼1.1) and a broad pore distribution from 5 μm to 100 μm, rendering the electrode a high hydraulic permeability and high effective ionic conductivity, which are beneficial for the electrolyte flow and ion transport through the porous electrode. The use of KOH activation method to create nano-scale pores on the carbon-fiber surfaces leads to a significant increase in the surface area for redox reactions from 2.39 m2 g-1 to 15.4 m2 g-1. The battery assembled with the present electrode delivers an energy efficiency of 80.1% and an electrolyte utilization of 74.6% at a current density of 400 mA cm-2, as opposed to an electrolyte utilization of 61.1% achieved by using a conventional carbon-paper electrode. Such a high performance is mainly attributed to the combination of the excellent mass/ion transport properties and the high surface area rendered by the present electrode. It is suggested that the KOH-activated carbon-cloth electrode is a promising candidate in redox flow batteries.

  14. Physical and electrochemical properties of supercapacitor composite electrodes prepared from biomass carbon and carbon from green petroleum coke

    NASA Astrophysics Data System (ADS)

    Awitdrus, Deraman, M.; Talib, I. A.; Farma, R.; Omar, R.; Ishak, M. M.; Taer, E.; Dolah, B. N. M.; Basri, N. H.; Nor, N. S. M.

    2015-04-01

    The green monoliths (GMs) were prepared from the mixtures of pre-carbonized fibers of oil palm empty fruit bunches (or self-adhesive carbon grains (SACG)) and green petroleum coke (GPC) with the mixing ratio of 0, 10, 30, 50 and 70 % GPC, respectively. The GMs were carbonized in N2 environment at 800°C to produce carbon monoliths (CM00, CM10, CM30, CM50 and CM70). The CMs were CO2 activated at 800°C for 1 hour to produced activated carbon monolith electrodes (ACM00, ACM10, ACM30, ACM50 and ACM70). For each percentage of GPC, three duplicate symmetrical supercapacitor cells were fabricated using these activated carbon monolith electrodes respectively, and the capacitive performance amongst the cells was compared and analyzed in order to observe the relationship between the capacitive performance and the physical properties (microstructure and porosity) of the ACMs electrodes containing varying percentage of GPC.

  15. Resistive random access memory enabled by carbon nanotube crossbar electrodes.

    PubMed

    Tsai, Cheng-Lin; Xiong, Feng; Pop, Eric; Shim, Moonsub

    2013-06-25

    We use single-walled carbon nanotube (CNT) crossbar electrodes to probe sub-5 nm memory domains of thin AlOx films. Both metallic and semiconducting CNTs effectively switch AlOx bits between memory states with high and low resistance. The low-resistance state scales linearly with CNT series resistance down to ∼10 MΩ, at which point the ON-state resistance of the AlOx filament becomes the limiting factor. Dependence of switching behavior on the number of cross-points suggests a single channel to dominate the overall characteristics in multi-crossbar devices. We demonstrate ON/OFF ratios up to 5 × 10(5) and programming currents of 1 to 100 nA with few-volt set/reset voltages. Remarkably low reset currents enable a switching power of 10-100 nW and estimated switching energy as low as 0.1-10 fJ per bit. These results are essential for understanding the ultimate scaling limits of resistive random access memory at single-nanometer bit dimensions.

  16. Redox behavior of biofilm on glassy carbon electrode.

    PubMed

    Sridharan, D; Manoharan, S P; Palaniswamy, N

    2011-10-01

    Marine and freshwater biofilm usually shift the open circuit potential (OCP) of stainless steel towards the electropositive direction by +450 mV vs SCE. The nature of oxide film and bacterial metabolism were also correlated with ennoblement process by various investigators. Glassy carbon electrode (GCE) was used in the present study and a shifting of potential in the positive side (+450 mV) was noticed. It indicates that biofilm contributes to the ennoblement process without any n/p-type semiconducting oxide film. The nature of the cathodic curve for the biofilm covered GCE is compared with the previous literature on the electrochemical behavior of stainless steel. The present study explains the oxidation and reduction peaks of biofilm covered GCE by cyclic voltammetry. Electrochemical impedance result reveals the diffusion process within the manganese biofilm. The present study confirms the previous investigations that the manganese biofilm rules the electrochemical behavior of materials and suggests that oxide film is not necessary to assist the ennoblement process.

  17. Electrochemical degradation of malachite green using nanoporous carbon paste electrode

    NASA Astrophysics Data System (ADS)

    Harsini, Muji; Fitria, Faizatul; Pudjiastuti, Pratiwi

    2016-03-01

    Malachite green is a dye which is often used in the textile industry which potentially generates hazardous compound to the environment. Electrochemical degradation is a method that can decipher malachite green into harmless compounds. In this study, nanoporous carbon paste used as the anode and silver wire as the cathode. A number of the sample solution with a certain concentration containing supporting electrolyte inserted into a electrolysis cell, certain potential and current is passed through the electrode into the solution. During the degradation process, the solution stirred by a magnetic stirrer. The results showed that the optimum state of degradation at 10 volts potential with an electrolyte solution of 0.1 M NaCl, pH does not affect the results of degradation. The optimum time to degrade 50 ppm malachite green is 30 to 40 minutes to produce a harmless compound that can be indicated from the impairment COD that up to 95,05%. Results of UV-Vis spectra showed that malachite green has been degraded completely.

  18. Bulk Mechanical Properties of Single Walled Carbon Nanotube Electrodes

    NASA Astrophysics Data System (ADS)

    Giarra, Matthew; Landi, Brian; Cress, Cory; Raffaelle, Ryne

    2007-03-01

    The unique properties of single walled carbon nanotubes (SWNTs) make them especially well suited for use as electrodes in power devices such as lithium ion batteries, hydrogen fuel cells, solar cells, and supercapacitors. The performances of such devices are expected to be influenced, at least in part, by the mechanical properties of the SWNTs used in composites or in stand alone ``papers.'' Therefore, the elastic moduli and ultimate tensile strengths of SWNT papers were measured as functions of temperature, SWNT purity, SWNT length, and SWNT bundling. The SWNTs used to produce the papers were synthesized in an alexandrite laser vaporization reactor at 1100^oC and purified using conventional acid-reflux conditions. Characterization of the SWNTs was performed using SEM, BET, TGA, and optical and Raman spectroscopy. The purified material was filtered and dried to yield papers of bundled SWNTs which were analyzed using dynamic mechanical analysis (DMA). It was observed that the mechanical properties of acid-refluxed SWNT papers were significantly improved by controlled thermal oxidation and strain-hardening. Elastic moduli of SWNT papers were measured between 3 and 6 GPa. Ultimate (breaking) tensile stresses were measured between 45 and 90 MPa at 1-3% strain. These results and their implications in regard to potential applications in power devices will be discussed.

  19. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tripathi, Bijay P.; Schieda, M.; Shahi, Vinod K.; Nunes, Suzana P.

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm -1 at 30 °C and 16.8 × 10 -2 S cm -1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level.

  20. Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes

    NASA Astrophysics Data System (ADS)

    Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I.; Maruyama, Shigeo; Matsuo, Yutaka

    2016-08-01

    Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via ‘sandwich transfer’, and MoOx thermal doping via ‘bridge transfer’. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%).

  1. Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes.

    PubMed

    Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I; Maruyama, Shigeo; Matsuo, Yutaka

    2016-08-16

    Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via 'sandwich transfer', and MoOx thermal doping via 'bridge transfer'. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%).

  2. Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes

    PubMed Central

    Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I.; Maruyama, Shigeo; Matsuo, Yutaka

    2016-01-01

    Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via ‘sandwich transfer’, and MoOx thermal doping via ‘bridge transfer’. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%). PMID:27527565

  3. High voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material

    NASA Astrophysics Data System (ADS)

    Yamaura, Junichi; Ozaki, Yoshiyuki; Morita, Akiyoshi; Ohta, Akira

    1993-03-01

    Carbon is a good candidate for negative electrodes because it can take the form of lithium intercalation compounds. We discussed the characteristics of typical carbon materials which have been studied as negative electrode materials. We have found that the mesophase pitch-based carbon microbead (MCMB) of high graphitization stage which have been graphitized at a high temperature such as 2800 C gives good characteristics as a negative electrode for rechargeable lithium batteries. The cylindrical 'AA-size' batteries of our trial products using LiCoO2 as the positive electrode and the M CMB graphitized at 2800 C as the negative electrode have been found to provide large capacities of 500 mA h and high voltages of 3.7 V with high energy densities of 240 W h/l, 100 W h/kg.

  4. All-Carbon Electrode Molecular Electronic Devices Based on Langmuir-Blodgett Monolayers.

    PubMed

    Sangiao, Soraya; Martín, Santiago; González-Orive, Alejandro; Magén, César; Low, Paul J; De Teresa, José M; Cea, Pilar

    2017-02-01

    Nascent molecular electronic devices, based on monolayer Langmuir-Blodgett films sandwiched between two carbonaceous electrodes, have been prepared. Tightly packed monolayers of 4-((4-((4-ethynylphenyl)ethynyl)phenyl)ethynyl)benzoic acid are deposited onto a highly oriented pyrolytic graphite electrode. An amorphous carbon top contact electrode is formed on top of the monolayer from a naphthalene precursor using the focused electron beam induced deposition technique. This allows the deposition of a carbon top-contact electrode with well-defined shape, thickness, and precise positioning on the film with nm resolution. These results represent a substantial step toward the realization of integrated molecular electronic devices based on monolayers and carbon electrodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes

    NASA Astrophysics Data System (ADS)

    Hasegawa, George; Kanamori, Kazuyoshi; Kannari, Naokatsu; Ozaki, Jun-ichi; Nakanishi, Kazuki; Abe, Takeshi

    2016-06-01

    Hard carbons emerge as one of the most promising candidate for an anode of Na-ion batteries. This research focuses on the carbon monolith derived from resorcinol-formaldehyde (RF) gels as a model hard carbon electrode. A series of binder-free monolithic carbon electrodes heat-treated at varied temperatures allow the comparative investigation of the correlation between carbon nanotexture and electrochemical Na+-ion storage. The increase in carbonization temperature exerts a favorable influence on electrode performance, especially in the range between 1600 °C and 2500 °C. The comparison between Li+- and Na+-storage behaviors in the carbon electrodes discloses that the Na+-trapping in nanovoids is negligible when the carbonization temperature is higher than 1600 °C. On the other hand, the high-temperature sintering at 2500-3000 °C enlarges the resistance for Na+-insertion into interlayer spacing as well as Na+-filling into nanovoids. In addition, the study on the effect of pore size clearly demonstrates that not the BET surface area but the surface area related to meso- and macropores is a predominant factor for the initial irreversible capacity. The outcomes of this work are expected to become a benchmark for other hard carbon electrodes prepared from various precursors.

  6. Arsenic removal from groundwater using low-cost carbon composite electrodes for capacitive deionization.

    PubMed

    Lee, Ju-Young; Chaimongkalayon, Nantanee; Lim, Jinho; Ha, Heung Yong; Moon, Seung-Hyeon

    2016-01-01

    Affordable carbon composite electrodes were developed to treat low-concentrated groundwater using capacitive deionization (CDI). A carbon slurry prepared using activated carbon powder (ACP), poly(vinylidene fluoride), and N-methyl-2-pyrrolidone was employed as a casting solution to soak in a low-cost porous substrate. The surface morphology of the carbon composite electrodes was investigated using a video microscope and scanning electron microscopy. The capacitance and electrical conductivity of the carbon composite electrodes were then examined using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. According to the CV and EIS measurements, the capacitances and electrical conductivities of the carbon composite electrodes were in the range of 8.35-63.41 F g(-1) and 0.298-0.401 S cm(-1), respectively, depending on ACP contents. A CDI cell was assembled with the carbon composite electrodes instead of with electrodes and current collectors. The arsenate removal test included an investigation of the optimization of several important operating parameters, such as applied voltage and solution pH, and it achieved 98.8% removal efficiency using a 1 mg L(-1) arsenate solution at a voltage of 2 V and under a pH 9 condition.

  7. Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Jaber-Ansari, Laila

    Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) and graphene have emerged as leading additives for high capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. In this work, the these nanomaterials have been developed and their properties have been fine-tuned to help solve fundamental issues in conventional lithium ion battery electrodes. Towards this end, the application of SWCNTs in lithium-ion anodes has been studied. As-grown SWCNTs possess a distribution of physical and electronic structures, and it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Towards this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations. To understand the interaction of the graphene with lithium ions and electrolyte species during electrochemical we use Raman spectroscopy in a model system of monolayer graphene transferred on a Si(111) substrate and density functional theory (DFT) to investigate defect formation as a function of lithiation. This model system enables the early stages of defect formation to be probed in a manner previously not possible with commonly-used reduced graphene oxide or multilayer graphene substrates. Using ex

  8. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.

    PubMed

    Wu, Tingting; Wang, Gang; Zhan, Fei; Dong, Qiang; Ren, Qidi; Wang, Jianren; Qiu, Jieshan

    2016-04-15

    The potential of zero charge (Epzc) of electrodes can greatly influence the salt removal capacity, charge efficiency and cyclic stability of capacitive deionization (CDI). Thus optimizing the Epzc of CDI electrodes is of great importance. A simple strategy to negatively shift the Epzc of CDI electrodes by modifying commercial activated carbon with quaternized poly (4-vinylpyridine) (AC-QPVP) is reported in this work. The Epzc of the prepared AC-QPVP composite electrode is as negative as -0.745 V vs. Ag/AgCl. Benefiting from the optimized Epzc of electrodes, the asymmetric CDI cell which consists of the AC-QPVP electrode and a nitric acid treated activated carbon (AC-HNO3) electrode exhibits excellent CDI performance. For inverted CDI, the working potential window of the asymmetric CDI cell can reach 1.4 V, and its salt removal capacity can be as high as 9.6 mg/g. For extended voltage CDI, the salt removal capacity of the asymmetric CDI cell at 1.2/-1.2 V is 20.6 mg/g, which is comparable to that of membrane CDI using pristine activated carbon as the electrodes (19.5 mg/g). The present work provides a simple method to prepare highly positively charged CDI electrodes and may pave the way for the development of high-performance CDI cells.

  9. IMPROVED SELECTIVE ELECTROCATALYTIC OXIDATION OF PHENOLS BY TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR

    EPA Science Inventory

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil yielded a greater response to phenol and catechol than those using a higher viscosity oil of s...

  10. IMPROVED SELECTIVE ELECTROCATALYTIC OXIDATION OF PHENOLS BY TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR

    EPA Science Inventory

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil yielded a greater response to phenol and catechol than those using a higher viscosity oil of s...

  11. The dependence of the electronic conductivity of carbon molecular sieve electrodes on their charging states.

    PubMed

    Pollak, Elad; Genish, Isaschar; Salitra, Gregory; Soffer, Abraham; Klein, Lior; Aurbach, Doron

    2006-04-13

    The dependence of the electronic conductivity of activated carbon electrodes on their potential in electrolyte solutions was examined. Kapton polymer films underwent carbonization (1000 degrees C), followed by a mild oxidation process (CO(2) at 900 degrees C) for various periods of time, to obtain carbons of different pore structures. A specially designed cell was assembled in order to measure the conductivity of carbon electrodes at different potentials in solutions. When the carbon electrodes possessed molecular sieving properties, a remarkable dependence of their conductivity on their charging state was observed. Aqueous electrolyte solutions containing ions of different sizes were used in order to demonstrate this phenomenon. As the average pore size of the activated carbons was larger, their molecular sieving ability was lower, and the dependence of their conductivity on their charging state regained its classical form. This behavior is discussed herein.

  12. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    NASA Astrophysics Data System (ADS)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  13. Thin-film electroencephalographic electrodes using multi-walled carbon nanotubes are effective for neurosurgery.

    PubMed

    Awara, Kousuke; Kitai, Ryuhei; Isozaki, Makoto; Neishi, Hiroyuki; Kikuta, Kenichiro; Fushisato, Naoki; Kawamoto, Akira

    2014-12-15

    Intraoperative morphological and functional monitoring is essential for safe neurosurgery. Functional monitoring is based on electroencephalography (EEG), which uses silver electrodes. However, these electrodes generate metal artifacts as silver blocks X-rays, creating white radial lines on computed tomography (CT) images during surgery. Thick electrodes interfere with surgical procedures. Thus, thinner and lighter electrodes are ideal for intraoperative use. The authors developed thin brain electrodes using carbon nanotubes that were formed into thin sheets and connected to electrical wires. The nanotube sheets were soft and fitted the curve of the head very well. When attached to the head using paste, the impedance of the newly developed electrodes was 5 kΩ or lower, which was similar to that of conventional metal electrodes. These electrodes can be used in combination with intraoperative CT, magnetic resonance imaging (MRI), or cerebral angiography. Somatosensory-evoked potentials, auditory brainstem responses, and visually evoked potentials were clearly identified in ten volunteers. The electrodes, without any artifacts that distort images, did not interfere with X-rays, CT, or MR images. They also did not cause skin damage. Carbon nanotube electrodes may be ideal for neurosurgery.

  14. Carbon Paste Electrodes Made from Different Carbonaceous Materials: Application in the Study of Antioxidants

    PubMed Central

    Apetrei, Constantin; Apetrei, Irina Mirela; De Saja, Jose Antonio; Rodriguez-Mendez, Maria Luz

    2011-01-01

    This work describes the sensing properties of carbon paste electrodes (CPEs) prepared from three different types of carbonaceous materials: graphite, carbon microspheres and carbon nanotubes. The electrochemical responses towards antioxidants including vanillic acid, catechol, gallic acid, l-ascorbic acid and l-glutathione have been analyzed and compared. It has been demonstrated that the electrodes based on carbon microspheres show the best performances in terms of kinetics and stability, whereas G-CPEs presented the smallest detection limit for all the antioxidants analyzed. An array of electrodes has been constructed using the three types of electrodes. As demonstrated by means of Principal Component Analysis, the system is able to discriminate among antioxidants as a function of their chemical structure and reactivity. PMID:22319354

  15. Progress towards high-power Li/CFx batteries: electrode architectures using carbon nanotubes with CFx.

    PubMed

    Zhang, Qing; Takeuchi, Kenneth J; Takeuchi, Esther S; Marschilok, Amy C

    2015-09-21

    Carbon monofluoride (CFx) has a high energy density, exceeding 2000 W h kg(-1), yet its application in primary lithium batteries is limited by its power capability. Multi-walled carbon nanotubes (CNTs) are appealing additives for high-power batteries, due to their outstanding electronic transport properties, high aspect ratio necessitating low volume fraction for percolation, and high tensile strength. This perspective describes the current state of the art in lithium-carbon monofluoride (Li/CFx) batteries and highlights the opportunities for the development of high-power Li/CFx batteries via utilization of carbon nanotubes. In this report, we generated several electrode architectures using CFx/CNT combinations, and demonstrated the effectiveness of CNTs in enhancing the rate capability and energy density of Li/CFx batteries. First, we investigated the resistivity of CFx combined with CNTs and compared the CFx/CNT composites with conventional carbon additives. Second, we built CFx-CNT electrodes without metallic current collectors using CNTs as substrates, and compared their electrochemical performance with conventional CFx electrodes using aluminum foil as a current collector. Furthermore, we fabricated multi-layered CNT-CFx-CNT composite electrodes (sandwich electrodes) and studied the impact of the structure on the performance of the electrode. Our work demonstrates some of the opportunities for utilization of CNTs in CFx electrodes and the resultant implementation of CFx as a battery cathode in next-generation high-power batteries.

  16. New Electrode Manufacturing Process Equipment: Novel High Energy Density Lithium-Ion Cell Designs via Innovative Manufacturing Process Modules for Cathode and Integrated Separator

    SciTech Connect

    2010-07-01

    BEEST Project: Applied Materials is developing new tools for manufacturing Li-Ion batteries that could dramatically increase their performance. Traditionally, the positive and negative terminals of Li-Ion batteries are mixed with glue-like materials called binders, pressed onto electrodes, and then physically kept apart by winding a polymer mesh material between them called a separator. With the Applied Materials system, many of these manually intensive processes will be replaced by next generation coating technology to apply each component. This process will improve product reliability and performance of the cells at a fraction of the current cost. These novel manufacturing techniques will also increase the energy density of the battery and reduce the size of several of the battery’s components to free up more space within the cell for storage.

  17. Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems

    NASA Astrophysics Data System (ADS)

    Chusid, O.; Ein Ely, E.; Aurbach, D.; Babai, M.; Carmeli, Y.

    1993-03-01

    In this work we studied several parameters that influence the intercalation of lithium ions into carbons (e.g. carbon type, binder and solution composition). The carbons investigated included carbon blacks (e.g. acetylene black, Ketjen black), graphite and carbon fibers. The solvents used in this study include methyl formate, propylene and ethylene carbonate, ethers (e.g. tetrahydrofuran) and their mixtures. The salts included LiClO 4, LiAsF 6 and LiBF 4. CO 2 was tested as an additive. The electrochemical behavior of the electrodes in solutions was followed by chronopotentiometry in galvanostatic charge/discharge cycling and their surface chemistry in solutions was investigated using surface sensitive Fourier-transform infrared spectroscopy (FT-IR) in transmittance, attenuated total reflectance and diffuse reflectance modes. It was found that the solvents and salts are reduced on the carbon electrodes at low potentials to form surface films. In general, their surface chemistry is quite similar to that of lithium or noble metal electrodes at low potential (in the same solutions). The electrochemical behavior of the carbon electrodes in terms of degree of intercalation and its reversibility is strongly affected by their surface chemistry. Reversible intercalation was obtained with graphite in methyl formate solutions containing CO 2. Some degree of reversible intercalation was also obtained with graphite in ethers. The presence of propylene carbonate in solution is detrimental for lithium intercalation in graphite. Reversible lithium-carbon intercalation was also obtained with acetylene black and carbonized polyacrylonitrile. The binder types have a strong impact on the electrode's performance. Preliminary guidelines for optimizing the performance of carbon electrodes as anodes in rechargeable lithium battery are discussed.

  18. Laser generated microstructures in tape cast electrodes for rapid electrolyte wetting: new technical approach for cost efficient battery manufacturing

    NASA Astrophysics Data System (ADS)

    Pfleging, W.; Kohler, R.; Pröll, J.

    2014-03-01

    Three-dimensional (3D) battery architectures are under current scientific investigation since they can achieve large areal energy capacities while maintaining high power densities. A main objective of surface patterning is the enhancement of lithium-ion diffusion which is often a limiting factor in lithium-ion cells. By using a rather new approach, laser material processing of thick-film electrodes has been investigated for the precise adjustment of 3D surface topography. Besides lithium-ion diffusion in electrode materials as an electrochemically limited process, a critical step in lithium-ion pouch cell manufacturing is the homogeneous electrolyte wetting of stacked electrodes and separators. This process requires cost expensive and time-consuming vacuum and storage processes at elevated temperatures. A new and cost efficient laser process has been successfully applied in order to significantly improve the electrode wetting and the battery operation. Preliminary investigations for testing the process on pouch cell geometry revealed higher capacities and increased cell life-time compared to standard cells without storage processes at elevated temperatures. The laser structuring process can be applied to commercial electrode materials and integrated into existing production lines.

  19. Preparation of porous carbon nanofibers derived from PBI/PLLA for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Jung, Kyung-Hye; Ferraris, John P.

    2016-10-01

    Porous carbon nanofibers were prepared by electrospinning blend solutions of polybenzimidazole/poly-L-lactic acid (PBI/PLLA) and carbonization. During thermal treatment, PLLA was decomposed, resulting in the creation of pores in the carbon nanofibers. From SEM images, it is shown that carbon nanofibers had diameters in the range of 100-200 nm. The conversion of PBI to carbon was confirmed by Raman spectroscopy, and the surface area and pore volume of carbon nanofibers were determined using nitrogen adsorption/desorption analyses. To investigate electrochemical performances, coin-type cells were assembled using free-standing carbon nanofiber electrodes and ionic liquid electrolyte. cyclic voltammetry studies show that the PBI/PLLA-derived porous carbon nanofiber electrodes have higher capacitance due to lower electrochemical impedance compared to carbon nanofiber electrode from PBI only. These porous carbon nanofibers were activated using ammonia for further porosity improvement and annealed to remove the surface functional groups to better match the polarity of electrode and electrolyte. Ragone plots, correlating energy density with power density calculated from galvanostatic charge-discharge curves, reveal that activation/annealing further improves energy and power densities.

  20. Preparation of porous carbon nanofibers derived from PBI/PLLA for supercapacitor electrodes.

    PubMed

    Jung, Kyung-Hye; Ferraris, John P

    2016-10-21

    Porous carbon nanofibers were prepared by electrospinning blend solutions of polybenzimidazole/poly-L-lactic acid (PBI/PLLA) and carbonization. During thermal treatment, PLLA was decomposed, resulting in the creation of pores in the carbon nanofibers. From SEM images, it is shown that carbon nanofibers had diameters in the range of 100-200 nm. The conversion of PBI to carbon was confirmed by Raman spectroscopy, and the surface area and pore volume of carbon nanofibers were determined using nitrogen adsorption/desorption analyses. To investigate electrochemical performances, coin-type cells were assembled using free-standing carbon nanofiber electrodes and ionic liquid electrolyte. cyclic voltammetry studies show that the PBI/PLLA-derived porous carbon nanofiber electrodes have higher capacitance due to lower electrochemical impedance compared to carbon nanofiber electrode from PBI only. These porous carbon nanofibers were activated using ammonia for further porosity improvement and annealed to remove the surface functional groups to better match the polarity of electrode and electrolyte. Ragone plots, correlating energy density with power density calculated from galvanostatic charge-discharge curves, reveal that activation/annealing further improves energy and power densities.

  1. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review.

    PubMed

    Zhi, Mingjia; Xiang, Chengcheng; Li, Jiangtian; Li, Ming; Wu, Nianqiang

    2013-01-07

    This paper presents a review of the research progress in the carbon-metal oxide composites for supercapacitor electrodes. In the past decade, various carbon-metal oxide composite electrodes have been developed by integrating metal oxides into different carbon nanostructures including zero-dimensional carbon nanoparticles, one-dimensional nanostructures (carbon nanotubes and carbon nanofibers), two-dimensional nanosheets (graphene and reduced graphene oxides) as well as three-dimensional porous carbon nano-architectures. This paper has described the constituent, the structure and the properties of the carbon-metal oxide composites. An emphasis is placed on the synergistic effects of the composite on the performance of supercapacitors in terms of specific capacitance, energy density, power density, rate capability and cyclic stability. This paper has also discussed the physico-chemical processes such as charge transport, ion diffusion and redox reactions involved in supercapacitors.

  2. Oxygen reduction on Ni, Ag, and Cu meniscus electrodes in molten carbonate

    SciTech Connect

    Ogura, Hiroyuki; Shirogami, Tamotsu

    1994-12-31

    The oxygen reduction pathways in molten carbonates have been investigated by analyzing the charge transfer resistances of the i-V curves on the meniscus electrodes of Ni, Cu, and Ag screens at 550 C. The electrochemical reduction pathways of oxygen at the meniscus electrode were found to be different depending on the electrode materials. For the Ni meniscus electrode system, the reactive material of charge transfer is the lithium doped nickel oxide, for the Ag system that is the silver oxide ion, and for the Cu system that is peroxide ion, respectively.

  3. [Study on the coated carbon PVC membrane selective electrode of aconitine].

    PubMed

    Lü, T; Si, X; Chen, B; Yin, G

    1990-09-01

    Coated carbon PVC membrane selective electrode of aconitine was prepared with the Aconitine-tetraphenylborate ion-associate complex as the electroactive material. The electrode showed a linear response to aconitine within the concentration range 1.0 x 10(-2) - 5.0 x 10(-5) mol/L. The limit of detection was 6.3 x 10(-6) mol/L and the slope of the electrode was 57.6 mV/decade. The authors established a basis and a method for the control of content limit of aconitine in Shen Fu Injection with this electrode.

  4. Carbon nanotube detectors for microchip CE: comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces.

    PubMed

    Pumera, Martin; Merkoçi, Arben; Alegret, Salvador

    2007-04-01

    The performance of microchip electrophoresis/electrochemistry system with carbon nanotube (CNT) film electrodes was studied. Electrocatalytic activities of different carbon materials (single-wall CNT (SWCNT), multiwall CNT (MWCNT), carbon powder) cast on different electrode substrates (glassy carbon (GC), gold, and platinum) were compared in a microfluidic setup and their performance as microchip electrochemical detectors was assessed. An MWCNT film on a GC electrode shows electrocatalytic effect toward oxidation of dopamine (E(1/2) shift of 0.09 V) and catechol (E(1/2) shift of 0.19 V) when compared to a bare GC electrode, while other CNT/carbon powder films on the GC electrode display negligible effects. Modification of a gold electrode by graphite powder results in a strong electrocatalytic effect toward oxidation of dopamine and catechol (E(1/2) shift of 0.14 and 0.11 V, respectively). A significant shift of the half-wave potentials to lower values also provide the MWCNT film (E(1/2) shift of 0.08 and 0.08 V for dopamine and catechol, respectively) and the SWCNT film (E(1/2) shift of 0.10 V for catechol) when compared to a bare gold electrode. A microfluidic device with a CNT film-modified detection electrode displays greatly improved separation resolution (R(s)) by a factor of two compared to a bare electrode, reflecting the electrocatalytic activity of CNT.

  5. Method of making a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    2002-09-17

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  6. International Assessment of Carbon Nanotube Manufacturing and Applications

    DTIC Science & Technology

    2007-06-01

    platinum-coated MWCNT electrodes in a proton exchange membrane fuel cell ( PEMFC ) (Wang et al. 2004). The MWCNTs were grown by CVD after electrode...on the paper after CNT growth. Cyclic voltammetry demonstrated performance of the CNT electrodes far below that of a conventional PEMFC using a...from aromatic dihalides and bisphenolate salts by nucleophilic substitution PEO Polyethylene oxide (PEO) PEI Polyethyleneime PEMFC Proton exchange

  7. TWT efficiency improvement by a low-cost technique for deposition of carbon on MDC electrodes

    NASA Technical Reports Server (NTRS)

    Ebihara, Ben T.; Ramins, Peter; Peet, Shelly

    1987-01-01

    A simple method of improving the TWT and multistage depressed collector (MDC) efficiency has been demonstrated. The efficiency improvement was produced by the application of a thin layer of carbon to the copper electrodes of the MDC by means of a rapid low-cost technique involving the pyrolysis of hydrocarbon oil in electric arc discharges. Experimental results with a representative TWT and MDC showed an 11 percent improvement in both the TWT and MDC efficiencies as compared to those of the same TWT and MDC with machined copper electrode surfaces. An extended test with a 550-W CW TWT indicated good durability of the carbon-coated electrode surfaces.

  8. Fabrication and electrical properties of single wall carbon nanotube channel and graphene electrode based transistors arrays

    SciTech Connect

    Seo, M.; Kim, H.; Kim, Y. H.; Yun, H.; McAllister, K.; Lee, S. W.; Na, J.; Kim, G. T.; Lee, B. J.; Kim, J. J.; Jeong, G. H.; Lee, I.; Kim, K. S.

    2015-07-20

    A transistor structure composed of an individual single-walled carbon nanotube (SWNT) channel with a graphene electrode was demonstrated. The integrated arrays of transistor devices were prepared by transferring patterned graphene electrode patterns on top of the aligned SWNT along one direction. Both single and multi layer graphene were used for the electrode materials; typical p-type transistor and Schottky diode behavior were observed, respectively. Based on our fabrication method and device performances, several issues are suggested and discussed to improve the device reliability and finally to realize all carbon based future electronic systems.

  9. A Comparison of Single-Wall Carbon Nanotube Electrochemical Capacitor Electrode Fabrication Methods

    DTIC Science & Technology

    2012-01-24

    REPORT A comparison of single-wall carbon nanotube electrochemical capacitor electrode fabrication methods 14. ABSTRACT 16. SECURITY CLASSIFICATION OF... Carbon nanotubes (CNTs) are being widely investigated as a replacement for activated carbon in super- capacitors. A wide range of CNT specific...ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Carbon nanotube

  10. Electrochemiluminescence of luminol at the titanate nanotubes modified glassy carbon electrode.

    PubMed

    Xu, Guifang; Zeng, Xiaoxue; Lu, Shuangyan; Dai, Hong; Gong, Lingshan; Lin, Yanyu; Wang, Qingping; Tong, Yuejin; Chen, Guonan

    2013-01-01

    A new strategy for the construction of a sensitive and stable electrochemiluminescent platform based on titanate nanotubes (TNTs) and Nafion composite modified electrode for luminol is described, TNTs contained composite modified electrodes that showed some photocatalytic activity toward luminol electrochemiluminescence emission, and thus could dramatically enhance luminol light emission. This extremely sensitive and stable platform allowed a decrease of the experiment electrochemiluminescence luminol reagent. In addition, in luminol solution at low concentrations, we compared the capabilities of a bare glassy carbon electrode with the TNT composite modified electrode for hydrogen peroxide detection. The results indicated that compared with glassy carbon electrode this platform was extraordinarily sensitive to hydrogen peroxide. Therefore, by combining with an appropriate enzymatic reaction, this platform would be a sensitive matrix for many biomolecules.

  11. Magnetism and spin transport of carbon chain between armchair graphene nanoribbon electrodes

    NASA Astrophysics Data System (ADS)

    Farghadan, R.; Yoosefi, M.

    2016-09-01

    The magnetic and spin transport properties of a carbon chain between two armchair graphene nanoribbon (AGNR) electrodes were studied using tight-binding Hamiltonian, mean-field Hubbard model and Landauer-Butikker formalism. The results showed that only odd-numbered carbon chains show intrinsic magnetic moments in chain-graphene junctions. It was also found that the electronic, magnetic and spin transport properties of carbon chain-graphene junctions strongly depend on the position and the length of the carbon chains between AGNR electrodes. Interestingly, we found a fully spin-polarized transmission near the Fermi energy in all odd-numbered carbon chain-graphene junctions, regardless of their lengths and without any magnetic field and magnetic electrodes.

  12. Chemistry of carbon polymer composite electrode - An X-ray photoelectron spectroscopy study

    NASA Astrophysics Data System (ADS)

    Andersen, Shuang Ma; Dhiman, Rajnish; Skou, Eivind

    2015-01-01

    Surface chemistry of the electrodes in a proton exchange membrane fuel cell is of great importance for the cell performance. Many groups have reported that electrode preparation condition has a direct influence on the resulting electrode properties. In this work, the oxidation state of electrode components and the composites (catalyst ionomer mixtures) in various electrode structures were systematically studied with X-ray photoelectron spectroscopy (XPS). Based on the spectra, when catalyst is physically mixed with Nafion ionomer, the resulting electrode surface chemistry is a combination of the two components. When the electrode is prepared with a lamination procedure, the ratio between fluorocarbon and graphitic carbon is decreased. Moreover, ether type oxide content is decreased although carbon oxide is slightly increased. This indicates structure change of the catalyst layer due to an interaction between the ionomer and the catalyst and possible polymer structural change during electrode fabrication. The surface of micro porous layer was found to be much more influenced by the lamination, especially when it is in contact with catalysts in the interphase. Higher amount of platinum oxide was observed in the electrode structures (catalyst ionomer mixture) compared to the catalyst powder. This also indicates a certain interaction between the functional groups in the polymer and platinum surface.

  13. Electrochemical determination of thiols at single-wall carbon nanotubes and PQQ modified electrodes.

    PubMed

    Han, Heyou; Tachikawa, Hiroyasu

    2005-01-01

    The electrocatalytic oxidation of thiols has been observed at a glassy carbon (GC) electrode coated with a single-wall carbon nanotube (SWNT) film. Fourteen thiols including L-cysteine (CySH) and glutathione were tested using the SWNT/GC electrode, and the cyclic voltammetry (CV) showed that each thiol was oxidized at much less positive potential than those at other electrodes such as bare GC and diamond electrodes. The SWNT/GC electrode was also modified with pyrroloquinoline quinone (PQQ) which showed a further improvement of the catalytic behavior of the SWNT/GC electrode: e.g. the oxidation peak current of CySH was observed at 0.27 V vs. Ag/AgCl in pH 7.5 phosphate buffer. The amperometic responses at these electrodes showed a linear relationship with the substrate concentration in a 10(-6)-10(-3) M range and 10(-6)-10(-7) M detection limits for several thiols including CySH, L-homocysteine, N-acetyl-L-cysteine, L-penicillamine and glutathione. These electrodes show a response time of 2-3 s and storage stabilities over 3 weeks. A PQQ/SWNT/GC electrode has been successfully applied for the assay of both L-cysteine and N-acetyl-L-cysteine in the dietary supplement.

  14. Graphene as conductive additives in binderless activated carbon electrodes for power enhancement of supercapacitor

    NASA Astrophysics Data System (ADS)

    Nor, N. S. M.; Deraman, M.; Suleman, M.; Norizam, M. D. M.; Basri, N. H.; Sazali, N. E. S.; Hamdan, E.; Hanappi, M. F. Y. M.; Tajuddin, N. S. M.; Othman, M. A. R.; Shamsudin, S. A.; Omar, R.

    2016-11-01

    Carbon based supercapacitor electrodes from composite of binderless activated carbon and graphene as a conductive additive were fabricated with various amount of graphene (0, 2, 4, 6, 8 and 10 wt%). Graphene was mixed in self-adhesive carbon grains produced from pre-carbonized powder derived from fibers of oil palm empty fruit bunches and converted into green monoliths (GMs). The GMs were carbonized (N2) and activated (CO2) to produce activated carbon monoliths (ACMs) electrodes. Porosity characterizations by nitrogen adsorption-desorption isotherm method shows that the pore characteristics of the ACMs are influenced by the graphene additive. The results of galvanostatic charge-discharge tests carried out on the supercapacitor cells fabricated using these electrodes shows that the addition of graphene additive (even in small amount) decreases the equivalent series resistance and enhances the specific power of the cells but significantly lowers the specific capacitance. The supercapacitor cell constructed with the electrode containing 4 wt % of graphene offers the maximum power (175 W kg-1) which corresponds to an improvement of 55%. These results demonstrate that the addition of graphene as conductive additive in activated carbon electrodes can enhance the specific power of the supercapacitor.

  15. Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes

    PubMed Central

    Chen, Guanxiong; Wu, Shuilin; Hui, Liwei; Zhao, Yuan; Ye, Jianglin; Tan, Ziqi; Zeng, Wencong; Tao, Zhuchen; Yang, Lihua; Zhu, Yanwu

    2016-01-01

    It is found that carbon quantum dots (CQDs) self-assemble to a layer structure at ice crystals-water interface with freeze- drying. Such layers interconnect with each other, forming a free-standing CQD assembly, which has an interlayer distance of about 0.366 nm, due to the existence of curved carbon rings other than hexagons in the assembly. CQDs are fabricated by rupturing C60 by KOH activation with a production yield of ~15 wt.%. The CQDs obtained have an average height of 1.14 nm and an average lateral size of 7.48 nm, and are highly soluble in water. By packaging annealed CQD assembly to high density (1.23 g cm−3) electrodes in supercapacitors, a high volumetric capacitance of 157.4 F cm−3 and a high areal capacitance of 0.66 F cm−2 (normalized to the loading area of electrodes) are demonstrated in 6 M KOH aqueous electrolyte with a good rate capability. PMID:26754463

  16. Electrochemical and Optical Evaluation of Noble Metal-and Carbon-ITO Hybrid Optically Transparent Electrodes

    SciTech Connect

    Zudans, Imants; Paddock, Jean R.; Kuramitz, Hideki; Maghasi, Anne T.; Wansapura, Chamika M.; Conklin, Sean D.; Kaval, Necati; Shtoyko, Tanya; Monk, David J.; Bryan, Samuel A.; Hubler, Timothy L.; Richardson, John N.; Seliskar, Carl J.; Heineman, William R.

    2004-04-15

    Optically transparent hybrid electrodes were constructed by sputtering or thermally evaporating layers of varying thickness of Au, Pd, Pt, or C onto an existing conductive indium-tin oxide (ITO) layer on glass. These electrodes were characterized using UV-Vis spectroscopy and cyclic voltammetry; redox probes examined were potassium ferricyanide, tris-(2, 2'-bipyridyl)ruthenium(II) chloride, hydroquinone, and para-aminophenol (PAP). Each type of hybrid was evaluated and compared with other hybrids, as well as with bare ITO electrodes and commercially available Au, Pt, and glassy carbon disk electrodes. Our results indicated that these hybrid electrodes are reasonably robust, easy to prepare, and extend the capabilities of bare ITO surfaces with respect to the electrochemical response (especially for organic redox probes), while giving up little in the way of optical transparency. Because of these characteristics, hybrid electrodes should be especially suited to many spectroelectrochemical applications.

  17. Fabrication of carbon nanotubes paste electrode for determination of Cd (II) and Pb (II) ions

    NASA Astrophysics Data System (ADS)

    Le Hai, Tran; Hai, Tran Duy

    2017-09-01

    In this study, the electrode for determination of Cd (II) and Pb (II) was prepared by a paste composition of multi-wall carbon nanotubes (MWCNTs) and paraffin oil as a binder. Effect of MWCNTs/paraffin oil ratio on electrochemical behaviors of the electrodes was investigated. For the characterization of the fabricated MWCNT paste electrodes, the cyclic voltammetry, SEM images, RAMAN and XRD spectroscopy were employed. It was found that the electrode containing 20% (w/w) paraffin oil and 80 % (w/w) MWCNTs exhibited the satisfactory properties through the anodic stripping voltammetry (ASV) results. This electrode showed a reversible redox process with an electrochemical mechanism of controlled diffusion. Furthermore, the ASV results of the prepared electrode revealed a linear response of Pb (II) and Cd (II) concentrations with a detection limit of 6.33 µmol.L-1 and 0.42 µmol.L-1, respectively

  18. Graphene-carbon nanotube hybrid materials and use as electrodes

    DOEpatents

    Tour, James M.; Zhu, Yu; Li, Lei; Yan, Zheng; Lin, Jian

    2016-09-27

    Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.

  19. Improved direct electrochemistry for proteins adsorbed on a UV/ozone-treated carbon nanofiber electrode.

    PubMed

    Xue, Qiang; Kato, Dai; Kamata, Tomoyuki; Guo, Qiaohui; You, Tianyan; Niwa, Osamu

    2013-01-01

    We studied the direct electron transfer (DET) of proteins on a carbon nanofiber (CNF) modified carbon film electrode by employing the one-step UV/ozone treatment of CNF. This treatment changed the CNF surface from hydrophobic to hydrophilic because a sufficient quantity of oxygen functional groups was introduced onto the CNF surface. Furthermore, this simple approach increased both the effective surface area and the number of edge-plane defect sites. As a result, the reversibility of redox species, such as ferrocyanide and dopamine, was greatly improved on the treated electrode surface. We obtained on efficient DET of bilirubin oxidase (BOD) and cytochrome c (cyt c) at the treated CNF electrode, which exhibited 38 (for BOD) and 6 (for cyt c) times higher than that at untreated CNF modified electrode. These results indicate that the combination of nanostructured carbon and this UV/ozone treatment process can efficiently create a functionalized surface for the electron transfer of proteins.

  20. Desalting in wastewater reclamation using capacitive deionization with carbon aerogel electrodes

    SciTech Connect

    Richardson, J.H.; Farmer, J.C.; Fix, D.V.; de Pruneda, J.A.H.; Mack, G.V.; Poco, J.F.; Nielsen, J.K.; Pekala, R.W.

    1996-07-01

    Capacitive deionization with carbon aerogel electrodes is an efficient and economical new process for removing salt and impurities from water. Carbon aerogel is a material that enables the successful purification of water because of its high surface area, optimum pore size, and low electrical resistivity. The electrodes are maintained at a potential difference of about one volt; ions are removed from the water by the imposed electrostatic field and retained on the electrode surface until the polarity is reversed. The capacitive deionization of water with a stack of carbon aerogel electrodes has been successfully demonstrated. The overall process offers advantages when compared to conventional water-purification methods, requiring neither pumps, membranes, distillation columns, nor thermal heaters. Consequently, the overall process is both robust and energy efficient. The current state of technology development commercialization, and potential applications of this process are reviewed. Particular attention and comparison with alternate technologies will be done for seawater, brackish water, and desalting in wastewater reclamation.

  1. Covalently functionalized single-walled carbon nanotubes and graphene composite electrodes for pseudocapacitor application

    NASA Astrophysics Data System (ADS)

    Le Barny, Pierre; Servet, Bernard; Campidelli, Stéphane; Bondavalli, Paolo; Galindo, Christophe

    2013-09-01

    The use of carbon-based materials in electrochemical double-layer supercapacitors (EDLC) is currently being the focus of much research. Even though activated carbon (AC) is the state of the art electrode material, AC suffers from some drawbacks including its limited electrical conductivity, the need for a binder to ensure the expected electrode cohesion and its limited accessibility of its pores to solvated ions of the electrolyte. Owing to their unique physical properties, carbon nanotubes (CNTs) or graphene could overcome these drawbacks. It has been demonstrated that high specific capacitance could be obtained when the carbon accessible surface area of the electrode was finely tailored by using graphene combined with other carbonaceous nanoparticles such as CNTs12.In this work, to further increase the specific capacitance of the electrode, we have covalently grafted onto the surface of single-walled carbon nanotubes (SWCNTs), exfoliated graphite or graphene oxide (GO), anthraquinone (AQ) derivatives which are electrochemically active materials. The modified SWCNTs and graphene-like materials have been characterized by Raman spectroscopy, X-ray photoemission and cyclic voltammetry . Then suspensions based on mixtures of modified SWCNTs and modified graphene-like materials have been prepared and transformed into electrodes either by spray coating or by filtration. These electrodes have been characterized by SEM and by cyclic voltammetry in 0.1M H2S04 electrolyte.

  2. Minimizing fouling at hydrogenated conical-tip carbon electrodes during dopamine detection in vivo.

    PubMed

    Chandra, Shaneel; Miller, Anthony D; Bendavid, Avi; Martin, Philip J; Wong, Danny K Y

    2014-03-04

    In this paper, physically small conical-tip carbon electrodes (∼2-5 μm diameter and ∼4 μm axial length) were hydrogenated to develop a probe capable of withstanding fouling during dopamine detection in vivo. Upon hydrogenation, the resultant hydrophobic sp(3) carbon surface deters adsorption of amphiphilic lipids, proteins, and peptides present in extracellular fluid and hence minimizes electrode fouling. These hydrogenated carbon electrodes showed a 35% decrease in sensitivity but little change in the limit of detection for dopamine over a 7-day incubation in a synthetic laboratory solution containing 1.0% (v/v) caproic acid (a lipid), 0.1% (w/v) bovine serum albumin and 0.01% (w/v) cytochrome C (both are proteins), and 0.002% (w/v) human fibrinopeptide B (a peptide). Subsequently, during dopamine detection in vivo, over 70% of the dopamine oxidation current remained after the first 30 min of a 60-min experiment, and at least 50% remained over the next half-period at the hydrogenated carbon electrodes. On the basis of these results, an initial average electrode surface fouling rate of 1.2% min(-1) was estimated, which gradually declined to 0.7% min(-1). These results support minimal fouling at hydrogenated carbon electrodes applied to dopamine detection in vivo.

  3. Novel air electrode for metal-air battery with new carbon material and method of making same

    DOEpatents

    Ross, P.N. Jr.

    1988-06-21

    This invention relates to a rechargeable battery or fuel cell. More particularly, this invention relates to a novel air electrode comprising a new carbon electrode support material and a method of making same. 3 figs.

  4. A fully microfabricated carbon nanotube three-electrode system on glass substrate for miniaturized electrochemical biosensors.

    PubMed

    Kim, Joon Hyub; Lee, Jun-Yong; Jin, Joon-Hyung; Park, Chan Won; Lee, Cheol Jin; Min, Nam Ki

    2012-06-01

    We present an integration process to fabricate single-walled carbon nanotube (SWCNT) three-electrode systems on glass substrate for electrochemical biosensors. Key issues involve optimization of the SWCNT working electrode to achieve high sensitivity, developing an optimal Ag/AgCl reference electrode with good stability, and process development to integrate these electrodes. Multiple spray coatings of the SWCNT film on glass substrate enabled easier integration of the SWCNT film into an electrochemical three-electrode system. O₂ plasma etching and subsequent activation of spray-coated SWCNT films were needed to pattern and functionalize the SWCNT working electrode films without serious damage to the SWCNTs, and to remove organic residues. The microfabricated three-electrode systems were characterized by microscopic and spectroscopic techniques, and the electrochemical properties were investigated using cyclic voltammetry and chrono-amperometry. The fully-integrated CNT three-electrode system showed an effective working electrode area about three times larger than its geometric surface area and an improved electrochemical activity for hydrogen peroxide decomposition. Finally, the effectiveness of miniaturized pf-SWCNT electrodes as biointerfaces was examined by applying them to immunosensors to detect Legionella(L) pneumophila, based on a direct sandwich enzyme-linked immunosorbent assay (ELISA) format with 3,3',5,5'-tetramethylbenzidine dihydrochloride/hydrogen peroxide(TMB/H₂O₂) as the substrate/mediator system. The lower detection limit of the pf-SWCNT-based immunosensors to L. pneumophila is about 1500 times lower than that of the standard ELISA assay.

  5. Method of making a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    2000-08-01

    A method of making a double layer capacitior includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two arts of the capacitor case are conductive and function as the capacitor terminals.

  6. Facile preparation of nickel/carbonized wood nanocomposite for environmentally friendly supercapacitor electrodes

    PubMed Central

    Yaddanapudi, Haritha Sree; Tian, Kun; Teng, Shiang; Tiwari, Ashutosh

    2016-01-01

    We are reporting a facile way to prepare nickel/carbon nanocomposites from wood as a novel electrode material for supercapacitors. The surface morphology and the structure of the as-prepared electrodes were studied by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that after high-temperature carbonization process, the wood is converted into graphitic carbon with nickel nanoparticles uniformly distributed within the three dimensional structure of the wood. Electrochemical characterization such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge measurements were conducted. These results showed that the introduction of nickel into the carbonized wood improves the specific capacitance and the cyclic stability of the nanocomposite electrode over that of the pure carbonized wood electrode. The composite electrode displayed an enhanced capacitive performance of 3616 F/g at 8 A/g, and showed an excellent capacitance retention after 6000 charge-discharge cycles. These results endow the nickel nanoparticles impregnated carbonized wood with a great potential for future application in supercapacitors. PMID:27651005

  7. 78 FR 16247 - Approval for Export-Only Manufacturing Authority, Foreign-Trade Zone 203, SGL Automotive Carbon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... Foreign-Trade Zones Board Approval for Export-Only Manufacturing Authority, Foreign-Trade Zone 203, SGL Automotive Carbon Fibers, LLC, (Carbon Fiber Manufacturing), Moses Lake, Washington Pursuant to its authority... requested export-only manufacturing authority on behalf of SGL Automotive Carbon Fibers, LLC, within FTZ...

  8. 78 FR 55057 - Authority To Manufacture Carbon Fiber for the U.S. Market Not Approved; Foreign-Trade Subzone...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... Foreign-Trade Zones Board Authority To Manufacture Carbon Fiber for the U.S. Market Not Approved; Foreign... manufacture carbon fiber under zone procedures for the U.S. market within Subzone 148C at the TTA facility in... authority to manufacture carbon fiber for the U.S. market under zone procedures within Subzone 148C at...

  9. [Research on treatment of high salt wastewater by the graphite and activated carbon fiber composite electrodes].

    PubMed

    Zhou, Gui-Zhong; Wang, Zhao-Feng; Wang, Xuan; Li, Wen-Qian; Li, Shao-Xiang

    2014-05-01

    High salinity wastewater is one of the difficulties in the field of wastewater treatment. As a new desalination technology, electrosorption technology has many advantages. This paper studied a new type of carbon-based electrodes, the graphite and activated carbon fiber composite electrodes. And the influencing factors of electrosorption and its desalination effect were investigated. The electrosorption device had optimal desalination effect when the voltage was 1. 6 V, the retention time was 60 min and the plate spacing was 1 cm. The graphite and activated carbon fiber composite electrodes were used to treat the black liquor of refined cotton and sodium copper chlorophyll wastewater to investigate its desalination effect. When the electrodes were used to treat the black liquor of refined cotton after acid treatment, the removal rate of conductivity and COD reached 58. 8% and 75. 6% respectively when 8 pairs of electrodes were used. And when the electrode was used to treat the sodium copper chlorophyll wastewater, the removal rate of conductivity and COD reached higher than 50. 0% and 13. 5% respectively when 6-8 pairs of electrodes were used.

  10. Effect of Carbon and Binder on High Sulfur Loading Electrode for Li-S Battery Technology

    DOE PAGES

    Sun, Ke; Cama, Christina A.; Huang, Jian; ...

    2017-03-10

    For the Lithium-Sulfur (Li-S) battery to be competitive in commercialization, it is requested that the sulfur electrode must have deliverable areal capacity > 8 mAh cm-2, which corresponds to a sulfur loading > 6 mg cm-2. At this relatively high sulfur loading, we evaluated the impact of binder and carbon type on the mechanical integrity and the electrochemical properties of sulfur electrodes. We identified hydroxypropyl cellulose (HPC) as a new binder for the sulfur electrode because it offers better adhesion between the electrode and the aluminum current collector than the commonly used polyvinylidene fluoride (PVDF) binder. In combination with themore » binder study, multiple types of carbon with high specific surface area were evaluated as sulfur hosts for high loading sulfur electrodes. A commercial microporous carbon derived from wood with high pore volume showed the best performance. An electrode with sulfur loading up to 10 mg cm-2 was achieved with the optimized recipe. Based on systematic electrochemical studies, the soluble polysulfide to insoluble Li2S2/Li2S conversion was identified to be the major barrier for high loading sulfur electrodes to achieve high sulfur utilization.« less

  11. Single and mixed chemically modified carbon paste ion-selective electrodes for determination of ketotifen fumarate.

    PubMed

    Khater, M M; Issa, Y M; Mohamed, S H

    2013-02-01

    New modified carbon paste electrodes for determination of ketotifen fumarate in its pure and pharmaceutical preparations were constructed. The used modifiers are ketotifen phosphotungestate (Keto(3) PT), and ketotifen tetraphenylborate (Keto-TPB). Single and mixed ion-associate electrodes were prepared. Both Keto-TPB and mixed (Keto-TPB and Keto(3) PT) electrodes have a linearity range of 1.00 × 10(-5) -1.00 × 10(-2) mol L(-1) . The slopes were 58.30 and 54.20 mV/decade for Keto-TPB and mixed chemically modified carbon paste electrodes (CMCPE), respectively. The limits of detection were 1.42 × 10(-6) and 1.00 × 10(-5) mol L(-1) for Keto-TPB and mixed CMCPEs, respectively. The potential variation due to pH change is considered acceptable in the pH ranges 4.44-9.11 and 2.50-9.00 for Keto-TPB and mixed ion-exchanger CMCPE, respectively. The response time was ≤10 s for both electrodes. Selectivity coefficients values towards different inorganic cations, sugars, and amino acids reflect high selectivity of the prepared electrodes. Potentiometric titrations and standard addition methods were applied for the determination of ketotifen ion in its pure samples and pharmaceutical formulations (Zaditen tablet and syrup) using proposed electrodes. The electrodes were also tested in flow injection analysis (FIA). The results obtained from both methods were statistically treated by F- and t-tests. The carbon paste electrodes have the advantages of being more easily prepared and longer life span compared to the plastic membrane electrodes previously reported.

  12. Capacitance of porous carbon electrode in mixed salt non-aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Egashira, Minato; Sawada, Nozomu; Ueda, Kazuteru; Yoshimoto, Nobuko; Morita, Masayuki

    Capacitances of a porous carbon electrode in non-aqueous electrolytes containing tetraethylamonium tetrafluoroborate (TEABF 4) and a lithium salt with various compositions have been investigated for the potential use in electric double layer capacitor. In the electrolyte prepared by dissolving TEABF 4 and LiBF 4 into the mixed solvent of ethylene carbonate (EC) with diethyl carbonate (DMC), an activated carbon fiber (ACF) electrode exhibits a larger capacitance than in TEABF 4 single salt electrolyte on cyclic voltammograms. The symmetrical capacitor cell containing the LiBF 4-TEABF 4 mixed salt electrolyte also exhibits larger capacitance on a constant-current test compared with that containing the TEABF 4 single salt electrolyte, while the capacitance degradation is observable for this cell at a significant extent, while the test under controlled potential of the ACF electrode to -0.2 to 1.0 V vs. Ag provides somewhat stable capacitance over 30 cycles.

  13. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  14. Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes

    SciTech Connect

    Greg M. Swain, PI

    2009-03-10

    The DOE-funded research conducted by the Swain group was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder. (Note: All potentials are reported versus Ag/AgCl (sat'd KCl) and cm{sup 2} refers to the electrode geometric area, unless otherwise stated).

  15. Three-Dimensional Carbon Nanotubes Forest/Carbon Cloth as an Efficient Electrode for Lithium-Polysulfide Batteries.

    PubMed

    Wu, Xiong-Wei; Xie, Hao; Deng, Qi; Wang, Hui-Xian; Sheng, Hang; Yin, Ya-Xia; Zhou, Wen-Xin; Li, Rui-Lian; Guo, Yu-Guo

    2017-01-18

    The development of a three-dimensionally flexible, large-surface area, high-conductivity electrode is important to improve the low conductivity and utilization of active materials and restrict the shuttle of long-chain polysulfides in Li-polysulfide batteries. Herein, we constructed an integrated three-dimensional carbon nanotube forest/carbon cloth electrode with heteroatom doping and high electrical conductivity. The as-constructed electrode provides strong trapping on the polysulfide species and fast charge transfer. Therefore, the Li-polysulfide batteries with as-constructed electrodes achieved high specific capacities of ∼1200 and ∼800 mA h g(-1) at 0.1 and 1 C, respectively. After 300 cycles at 0.5 C, a specific capacity of 623 mA h g(-1) was retained.

  16. Face-centered-cubic lithium crystals formed in mesopores of carbon nanofiber electrodes.

    PubMed

    Lee, Byoung-Sun; Seo, Jong-Hyun; Son, Seoung-Bum; Kim, Seul Cham; Choi, In-Suk; Ahn, Jae-Pyoung; Oh, Kyu Hwan; Lee, Se-Hee; Yu, Woong-Ryeol

    2013-07-23

    In the foreseeable future, there will be a sharp increase in the demand for flexible Li-ion batteries. One of the most important components of such batteries will be a freestanding electrode, because the traditional electrodes are easily damaged by repeated deformations. The mechanical sustainability of carbon-based freestanding electrodes subjected to repeated electrochemical reactions with Li ions is investigated via nanotensile tests of individual hollow carbon nanofibers (HCNFs). Surprisingly, the mechanical properties of such electrodes are improved by repeated electrochemical reactions with Li ions, which is contrary to the conventional wisdom that the mechanical sustainability of carbon-based electrodes should be degraded by repeated electrochemical reactions. Microscopic studies reveal a reinforcing mechanism behind this improvement, namely, that inserted Li ions form irreversible face-centered-cubic (FCC) crystals within HCNF cavities, which can reinforce the carbonaceous matrix as strong second-phase particles. These FCC Li crystals formed within the carbon matrix create tremendous potential for HCNFs as freestanding electrodes for flexible batteries, but they also contribute to the irreversible (and thus low) capacity of HCNFs.

  17. Vertical electric field stimulation of neural cells on porous amorphous carbon electrodes

    NASA Astrophysics Data System (ADS)

    Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit

    2014-03-01

    We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to stimulate neuronal cell proliferation in presence of external electric field. The electric field was applied perpendicular to carbon electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm2) and low impedance (3.3 k Ω at 1 kHz). When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (<= 2.5 V/cm) compared to that measured without an applied field (0 V/cm). Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to stimulate neurite outgrowth and viability of nerve cells.

  18. Optimization of hollow cathode discharge electrode for damage free remote plasma removal process for semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Cho, Tae S.; Han, Qing; Yang, Dongqing; Park, Soonam; Lubomirsky, Dima; Venkataraman, Shankar

    2016-05-01

    Cone-shaped hollow cathode electrode configuration for a damage free remote plasma removal process has been optimized for given pressures based on Paschen characteristic curves, voltage-current characteristics and time-resolved discharge observations as well as oxide film removal performances. Remote plasmas have been generated in two types of cone-shaped electrodes with mixtures of He, NF3, and NH3 for pressure range of 1-30 Torr. Paschen characteristic curves and voltage-current (V-I) characteristics define an operating pressure for low breakdown voltage and the hollow cathode effect to minimize the particles. Sinusoidal voltage waveform and asymmetry electrode configuration alternate the glow discharge and hollow cathode discharge modes in a cycle. The current and infrared emission intensity from the glow discharge increases together for both cone-shaped electrodes with increasing pressure, whereas the hollow cathode discharge plasma emits strong infrared only when pD condition is satisfied. For the wide cone electrode configuration, high voltage operation at higher pressure results in particle contamination on the processed wafer by high energy ion bombardment. Operating at optimum pressure for a given electrode configuration shows faster oxide etch rate with better uniformity over a whole 300 mm wafer.

  19. Electrochemical determination of maltol in beverages with glassy carbon electrode and its silica sol-gel modified electrode.

    PubMed

    Di, Junwei; Bi, Shuping; Zhang, Feng

    2004-05-28

    The electrochemical behavior of maltol on a glassy carbon (GC) electrode was investigated. The results were applied to differential pulse voltammetric determination of maltol in beverages pretreated by ultrafiltration. Under the optimum experimental conditions, the linear range is 1x10(-5) to 6x10(-4)moll(-1) maltol and the relative standard deviation for 0.4mmoll(-1) maltol is 0.6% (n=9). The detection limit was 5mumoll(-1). Furthermore, silica sol-gel film on GC electrode could be used as suitable selective membrane, which integrated selective membrane on the electrode and substituted for the pretreatment of ultrafiltration. Under the above conditions, maltol was determined by semi-differential linear sweep voltammetry at a silica sol-gel modified GC electrode in the concentration range of 5x10(-6) to 5x10(-4)moll(-1). The detection limit was 2mumoll(-1) and the relative standard deviation for 0.1mmoll(-1) maltol was 0.7% (n=7). The proposed method is of sensitivity, simplicity, rapidness and no contamination. It had been applied to the direct determination of maltol in beverages such as grape wines, drinks and beers without any pretreatment. The results obtained with the present method were satisfactory with those obtained by spectrophotometry. It could be used as a simple and practical method for the determination of the flavor enhancer maltol in beverages.

  20. The effect of gamma radiation on reference electrodes and platinum and carbon steel bare metal electrodes in a simulated waste solution. Final report

    SciTech Connect

    Danielson, M.J.

    1993-09-01

    Electrochemical potential measurements of materials in waste tanks are important in determining if the materials have a propensity for stress corrosion cracking and pitting. Potential measurement requires a reference electrode, but the effect of radiation on the potential generated by the reference electrode has been an unknown quantity. To determine the significance of the radiation effect, Pacific Northwest Laboratory conducted studies of five types of electrodes under gamma radiation at room temperature. The subjects were two types of silver/silver chloride reference electrodes (Fisher and Lazaran), a mercury/calomel reference electrode, a platinum ``flag,`` and a piece of A-537 carbon steel; the electrodes were exposed to a simulated caustic tank environment. The Fisher silver/silver chloride and mercury/calomel reference electrodes showed essentially no radiation effects up to a flux of 2.1E6 R/h and fluence of 9.4E8 R, indicating they would be useful reference electrodes for in-tank studies. The Lazaran{reg_sign} silver/silver chloride electrode showed serious potential deviations at fluences of 2.E8 R, but it would be the electrode of choice in many situations because it is simple to maintain. Radiation affected the open circuit potential of both the platinum and carbon steel electrodes. This effect indicates that corrosion studies without radiation may not duplicate the corrosion processes expected in a waste tank. Mixed-potential theory was used to explain the radiation effects.

  1. Anodic electrosynthesis of some peroxy compounds on glassy carbon electrodes

    SciTech Connect

    Khomutov, N.E.; Zakhodyakina, N.A.; Svirida, L.V.; Nesvat, N.V.

    1987-11-10

    The authors present the results of a study of the anodic electrosynthesis of hydrogen peroxide and its derivatives on glassy carbon in solutions of sodium carbonate and sodium carbonate with sodium borate. We studied the kinetics of anodic processes on glassy carbon with the aid of polarization measurements and a method for determining the concentrations of active oxygen in the anolyte and the current efficiency. The current efficiencies with respect to active oxygen obtained on glassy carbon in the mixed solution of sodium borate and sodium carbonate are close to the current efficiencies which are observed on platinum anodes in the industrial electrosynthesis of perborates.

  2. Amperometric choline biosensor based on multiwalled carbon nanotubes/zirconium oxide nanoparticles electrodeposited on glassy carbon electrode.

    PubMed

    Pundir, S; Chauhan, N; Narang, J; Pundir, C S

    2012-08-01

    A bienzymatic choline biosensor was constructed by coimmobilizing acetylcholinesterase (AChE) and choline oxidase (ChO) onto nanocomposite of carboxylated multiwalled carbon nanotubes (c-MWCNTs) and zirconium oxide nanoparticles (ZrO(2)NPs) electrodeposited on the surface of a glassy carbon electrode (GCE) and using it (AChE-ChO/c-MWCNT/ZrO(2)NPs/GCE) as working electrode, Ag/AgCl as reference electrode, and Pt wire as auxiliary electrode connected through a potentiostat. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and cyclic voltammetry (CV) studies, optimized, and evaluated. The biosensor exhibited optimum response within 4 s at +0.2V, pH 7.4, and 25 °C. The detection limit and working range of the biosensor were 0.01 μM and 0.05 to 200 μM, respectively. The half-life of the enzyme electrode was 60 days at 4 °C. The serum choline level, as measured by the biosensor, was 9.0 to 12.8 μmol/L (with a mean of 10.81 μmol/L) in apparently healthy persons and 5.0 to 8.4 μmol/L (with a mean of 6.53 μmol/L) in persons suffering from Alzheimer's disease. The enzyme electrode was unaffected by a number of serum substances.

  3. Carbon-Coated Silicon Nanowires on Carbon Fabric as Self-Supported Electrodes for Flexible Lithium-Ion Batteries.

    PubMed

    Wang, Xiaolei; Li, Ge; Seo, Min Ho; Lui, Gregory; Hassan, Fathy M; Feng, Kun; Xiao, Xingcheng; Chen, Zhongwei

    2017-03-22

    A novel self-supported electrode with long cycling life and high mass loading was developed based on carbon-coated Si nanowires grown in situ on highly conductive and flexible carbon fabric substrates through a nickel-catalyzed one-pot atmospheric pressure chemical vapor deposition. The high-quality carbon coated Si nanowires resulted in high reversible specific capacity (∼3500 mA h g(-1) at 100 mA g(-1)), while the three-dimensional electrode's unique architecture leads to a significantly improved robustness and a high degree of electrode stability. An exceptionally long cyclability with a capacity retention of ∼66% over 500 cycles at 1.0 A g(-1) was achieved. The controllable high mass loading enables an electrode with extremely high areal capacity of ∼5.0 mA h cm(-2). Such a scalable electrode fabrication technology and the high-performance electrodes hold great promise in future practical applications in high energy density lithium-ion batteries.

  4. Enzymatic electrodes nanostructured with functionalized carbon nanotubes for biofuel cell applications.

    PubMed

    Nazaruk, E; Sadowska, K; Biernat, J F; Rogalski, J; Ginalska, G; Bilewicz, R

    2010-10-01

    Nanostructured bioelectrodes were designed and assembled into a biofuel cell with no separating membrane. The glassy carbon electrodes were modified with mediator-functionalized carbon nanotubes. Ferrocene (Fc) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) bound chemically to the carbon nanotubes were found useful as mediators of the enzyme catalyzed electrode processes. Glucose oxidase from Aspergillus niger AM-11 and laccase from Cerrena unicolor C-139 were incorporated in a liquid-crystalline matrix-monoolein cubic phase. The carbon nanotubes-nanostructured electrode surface was covered with the cubic phase film containing the enzyme and acted as the catalytic surface for the oxidation of glucose and reduction of oxygen. Thanks to the mediating role of derivatized nanotubes the catalysis was almost ten times more efficient than on the GCE electrodes: catalytic current of glucose oxidation was 1 mA cm(-2) and oxygen reduction current exceeded 0.6 mA cm(-2). The open circuit voltage of the biofuel cell was 0.43 V. Application of carbon nanotubes increased the maximum power output of the constructed biofuel cell to 100 μW cm(-2) without stirring of the solution which was ca. 100 times more efficient than using the same bioelectrodes without nanotubes on the electrode surface.

  5. Enhanced electrochemical detection of DNA hybridization with carbon nanotube modified paste electrode.

    PubMed

    Nie, Libo; Guo, Huishi; He, Quanguo; Chen, Jianrong; Miao, Yuqing

    2007-02-01

    A novel electrochemical genesensor using twice hybridization enhancement of gold nanoparticles based on carbon paste modified electrode is described. The carbon nanotube modified carbon paste electrode (CNTPE) and mesoporous molecular sieve SBA-15 modified carbon paste electrode (MSCPE) were investigated. The assay relies on the immobilization of streptavidin-biotin labeled target oligonucleotides onto the electrode surface and its hybridization to the gold nanoparticle-labeled DNA probe. After twice hybridization enhanced connection of gold nanoparticles to the hybridized system, the differential pulse voltammetry (DPV) signal of total gold nanoparticles was monitored. It was found that the adsorption of oligonucleotide and hybridized DPV signal on CNTPE were both enhanced in comparison with that of pure carbon paste electrode (CPE). But this trend was reverse on MSCPE. The DPV detection of twice hybridized gold nanoparticles indicated that the sensitivity of the genesensor enhanced about one order of magnitude compared with one-layer hybridization. One-base mismatched DNA and complementary DNA could be distinguished clearly. However, no distinct advantage of MSCPE over CPE was found.

  6. Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells.

    PubMed

    Velten, Josef; Mozer, Attila J; Li, Dan; Officer, David; Wallace, Gordon; Baughman, Ray; Zakhidov, Anvar

    2012-03-02

    We demonstrated the replacement of the Pt catalyst normally used in the counter electrode of a dye-sensitized solar cell (DSSC) by a nanocomposite of dry spun carbon multi-walled nanotube (MWNT) sheets with graphene flakes (Gr-F). The effectiveness of this counter electrode on the reduction of the triiodide in the iodide/triiodide redox (I(-)/I(3)(-)) redox reaction was studied in parallel with the use of the dry spun carbon MWNT sheets alone and graphene flakes used independent of each other. This nanocomposite deposited onto fluorinated tin-oxide-coated glass showed improved catalytic behavior and power conversion efficiency (7.55%) beyond the use of the MWNTs alone (6.62%) or graphene alone (4.65%) for the triiodide reduction reaction in DSSC. We also compare the use of the carbon MWNT/Gr-F composite counter electrode with a DSSC using the standard Pt counter electrode (8.8%). The details of increased performance of graphene/MWNT composite electrodes as studied are discussed in terms of increased catalytic activity permitted by sharp atomic edges that arise from the structure of graphene flakes or the defect sites in the carbon MWNT and increased electrical conductivity between the carbon MWNT bundles by the graphene flakes.

  7. Stability of carbon electrodes for aqueous lithium-air secondary batteries

    NASA Astrophysics Data System (ADS)

    Ohkuma, Hirokazu; Uechi, Ichiro; Matsui, Masaki; Takeda, Yasuo; Yamamoto, Osamu; Imanishi, Nobuyuki

    2014-01-01

    The air electrode performance of various carbon materials, such as Ketjen black (KB), acetylene black (AB and AB-S), Vulcan XC-72R (VX), and vapor grown carbon fiber (VGCF) with and without La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) catalyst were examined in an aqueous solution of saturated LiOH with 10 M LiCl in the current density range 0.2-2.0 mA cm-2. The best performance for oxygen reduction and evolution reactions was observed for the KB electrode, which has the highest surface area among the carbon materials examined. A steady over-potential of 0.2 V was obtained for the oxygen reduction reaction using the KB electrode without the catalyst, while the over-potential was 0.15 V for KB with the LSCF catalyst at 2.0 mA cm-2. The over-potentials for the oxygen evolution reaction were slightly higher than those for the oxygen reduction reaction, and gradually increased with the polarization period. Analysis of the gas in the cell after polarization above 0.4 V revealed the evolution of a small amount of CO during the oxygen evolution reaction by the decomposition of carbon in the electrode. The amount of CO evolved was significantly decreased by the addition of LSCF to the carbon electrode.

  8. Effect of nano-scale characteristics of graphene on electrochemical performance of activated carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Jasni, M. R. M.; Deraman, M.; Suleman, M.; Hamdan, E.; Sazali, N. E. S.; Nor, N. S. M.; Shamsudin, S. A.

    2016-02-01

    Graphene with its typical nano-scale characteristic properties has been widely used as an additive in activated carbon electrodes in order to enhance the performance of the electrodes for their use in high performance supercapacitors. Activated carbon monoliths (ACMs) electrodes have been prepared by carbonization and activation of green monoliths (GMs) of pre-carbonized fibers of oil palm empty fruit bunches or self-adhesive carbon grains (SACGs) and SACGs added with 6 wt% of KOH-treated multi-layer graphene. ACMs electrodes have been assembled in symmetrical supercapacitor cells that employed aqueous KOH electrolyte (6 M). The cells have been tested with cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge discharge methods to investigate the effect of graphene addition on the specific capacitance (Csp), specific energy (E), specific power (P), equivalent series resistance (ESR) and response time (τo) of the supercapacitor cells. The results show that the addition of graphene in the GMs change the values of Csp, Emax, Pmax, ESR and τo from (61-96) F/g, 2 Wh/kg, 104 W/kg, 2.6 Ω and 38 s, to the respective values of (110-124) F/g, 3 Wh/kg, 156 W/kg, 3.4 Ω and 63 s. This study demonstrates that the graphene addition in the GMs has a significant effect on the electrochemical behavior of the electrodes.

  9. Effect of electrode gap on the sensing properties of multiwalled carbon nanotubes based gas sensor

    NASA Astrophysics Data System (ADS)

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif

    2016-11-01

    Vertically aligned multiwalled carbon nanotubes (MWCNT) were grown on Si substrate coated with alumina and iron using chemical vapor deposition. Electrode gap of 10, 25 and 50 µm were adopted to determine the effect of varying gap spacing on the sensing properties such as voltage breakdown, sensitivity and selectivity for three gases namely argon, carbon dioxide and ammonia. Argon has the lowest voltage breakdown for every electrode gap. The fabricated MWCNT based gas sensor drastically reduced the voltage breakdown by 89.5% when the electrode spacing is reduced from 50 µm to 10 µm. The reduction is attributed to the high non-uniform electric field between the electrodes caused by the protrusion of nanotips. The sensor shows good sensitivity and selectivity with the ability to detect the gas in the mixture with air provided that the concentration is ≥ 20% where the voltage breakdown will be close to the pure gas.

  10. An electrochemical fungicide pyrimethanil sensor based on carbon nanotubes/ionic-liquid construction modified electrode.

    PubMed

    Yang, Jichun; Wang, Qiong; Zhang, Minhui; Zhang, Shuming; Zhang, Lei

    2015-11-15

    In this study, a simple, rapid, sensitive and environmentally friendly electroanalytical detection method for pyrimethanil (PMT) was developed, which was based on multi-walled carbon nanotubes (MWCNTs) and ionic liquids (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) modified glassy carbon electrode (GCE). MWCNTs-IL modified electrode significantly enhanced the oxidation peak current of PMT by combining the excellent electrochemical properties of MWCNTs and IL, suggesting that the modified electrode can remarkably improve the sensitivity of PMT detection. Under the optimum conditions, this electrochemical sensor exhibited a linear concentration range for PMT of 1.0 × 10(-7)-1.0 × 10(-4) mol L(-1) and the detection limit was 1.6 × 10(-8) mol L(-1) (S/N = 3). The fabricated electrode showed good reproducibility, stability and anti-interference, and also it was successfully employed to detect PMT in real samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Decrease of contact resistance at the interface of carbon nanotube/electrode by nanowelding

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Wang, Yanfang; Zhang, Yafei

    2016-12-01

    Reliable interconnection between carbon nanotubes (CNTs) and external circuit is one of the prerequisite in CNT electronics. In this work, ultrasonic nanowelding was used to bond CNTs with metal electrodes. By exerting ultrasonic energy at the interface of CNT/electrode, a reliable joint with negligible contact resistance was obtained between CNTs and electrodes. The performance of welding is susceptible to the ultrasonic parameters such as ultrasonic power and clamping force, as well as the metal type. It is found that the metals with good ductility or low melting point are easier to achieve effective joints. Moreover, interfacial compounds are formed at the welded surface of metal Al and Fe, which is resulted from the interacting and chemical bonding of carbon and metal atoms. After nanowelding, the contact resistance between CNTs and electrode is decreased dramatically, and the two-terminal resistance of the sample approximates to the intrinsic resistance of the CNT itself.

  12. Ultra-Thin Optically Transparent Carbon Electrodes Produced from Layers of Adsorbed Proteins

    PubMed Central

    Alharthi, Sarah A.; Benavidez, Tomas E.; Garcia, Carlos D.

    2013-01-01

    This work describes a simple, versatile, and inexpensive procedure to prepare optically transparent carbon electrodes, using proteins as precursors. Upon adsorption, the protein-coated substrates were pyrolyzed under reductive conditions (5% H2) to form ultra-thin, conductive electrodes. Because proteins spontaneously adsorb to interfaces forming uniform layers, the proposed method does not require a precise control of the preparation conditions, specialized instrumentation, or expensive precursors. The resulting electrodes were characterized by a combination of electrochemical, optical, and spectroscopic means. As a proof-of-concept, the optically-transparent electrodes were also used as substrate for the development of an electrochemical glucose biosensor. The proposed films represent a convenient alternative to more sophisticated, and less available, carbon-based nanomaterials. Furthermore, these films could be formed on a variety of substrates, without classical limitations of size or shape. PMID:23421732

  13. Decrease of contact resistance at the interface of carbon nanotube/electrode by nanowelding

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Wang, Yanfang; Zhang, Yafei

    2017-03-01

    Reliable interconnection between carbon nanotubes (CNTs) and external circuit is one of the prerequisite in CNT electronics. In this work, ultrasonic nanowelding was used to bond CNTs with metal electrodes. By exerting ultrasonic energy at the interface of CNT/electrode, a reliable joint with negligible contact resistance was obtained between CNTs and electrodes. The performance of welding is susceptible to the ultrasonic parameters such as ultrasonic power and clamping force, as well as the metal type. It is found that the metals with good ductility or low melting point are easier to achieve effective joints. Moreover, interfacial compounds are formed at the welded surface of metal Al and Fe, which is resulted from the interacting and chemical bonding of carbon and metal atoms. After nanowelding, the contact resistance between CNTs and electrode is decreased dramatically, and the two-terminal resistance of the sample approximates to the intrinsic resistance of the CNT itself.

  14. Effect of the electrode material on the breakdown voltage and space charge distribution of propylene carbonate under impulse voltage

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Jin, Yang; Sima, Wenxia; Liu, Mengna

    2016-04-01

    This paper reports three types of electrode materials (copper, aluminum, and stainless steel) that are used to measure the impulse breakdown voltage of propylene carbonate. The breakdown voltage of propylene carbonate with these electrode materials is different and is in decreasing order of stainless steel, copper, and aluminum. To explore how the electrode material affects the insulating properties of the liquid dielectric, the electric field distribution and space charge distribution of propylene carbonate under impulse voltage with the three electrode materials are measured on the basis of a Kerr electro-optic test. The space charge injection ability is highest for aluminum, followed by copper, and then the stainless steel electrodes. Furthermore, the electric field distortion rate decreased in the order of the aluminum, copper, and then the stainless steel electrode. This paper explains that the difference in the electric field distortion rate between the three electrode materials led to the difference in the impulse breakdown voltage of propylene carbonate.

  15. Fabrication and characterization of carbon-based counter electrodes prepared by electrophoretic deposition for dye-sensitized solar cells

    PubMed Central

    2012-01-01

    Three different carbon-based counter electrodes are investigated in light of catalytic activities such as electrochemical frequencies and interface impedances. We fabricated carbon-based counter electrodes of dye-sensitized solar cells [DSSCs] using graphene, single-walled carbon nanotubes [SWNTs], and graphene-SWNT composites by electrophoretic deposition method. We observed the optical and electrochemical properties of the carbon-based counter electrodes. The DSSC with the graphene-deposited counter electrode demonstrated the best conversion efficiency of 5.87% under AM 1.5 and 1 sun condition. It could be utilized for a low-cost and high-throughput process for DSSCs. PMID:22221501

  16. Durability of carbon-plastic electrodes for zinc/bromine storage batteries

    NASA Astrophysics Data System (ADS)

    Arnold, C., Jr.

    1992-10-01

    In previous work, failure of early versions of the zinc/bromine battery was traced to degradation and warpage of the carbon-plastic electrode. These electrodes were fabricated from copolymers of ethylene and propylene (EP) containing structures that were found to be susceptible to degradation by the electrolyte. In this work, we evaluated two developmental electrodes from Johnson Controls Battery Group, Inc., in which the EP copolymer was replaced with a high-density polyethylene (HDPE) that contained glass-fiber reinforcing fillers. The glass fiber content of these two electrodes was different (19 vs. 31 percent). We determined the effect of electrolyte on sorption behavior, dimensional stability, chemical stability, and thermal, mechanical, and electrical properties under real-time and accelerated aging conditions. We also characterized unaged samples of both electrodes to determine their chemical composition and physical structure. We found that high glass content in the electrode minimizes sorption and increases dimensional stability. Both high and low glass content electrodes were found to be chemically and thermally stable toward the electrolyte. A slight decrease in the storage modulus (G') of both electrodes was attributed to sorption of non-ionic and hydrophobic ingredients in the electrolyte. The electrical conductivity of both electrodes appeared to improve (increase) upon exposure to the electrolyte. No time or temperature trends were observed for the chemical, thermal, or mechanical properties of electrodes made from HDPE. Since decreases in these properties were noted for electrodes made from EP copolymers under similar conditions, it appears that the HDPE-based electrodes have superior long-term stability in the ZnBr2 environment.

  17. Hybrid transparent electrodes of silver nanowires and carbon nanotubes: a low-temperature solution process.

    PubMed

    Tokuno, Takehiro; Nogi, Masaya; Jiu, Jinting; Suganuma, Katsuaki

    2012-05-31

    Hybrid transparent electrodes with silver nanowires (AgNWs) and single-walled carbon nanotubes (SWCNTs) were fabricated on plastic films by a low-temperature solution process. The hybrid transparent electrodes exhibited a sheet resistance of 29.2 Ω/sq with a transparency of 80% when 6 wt.% of SWCNTs was mixed with AgNWs. This sheet resistance was less than one-fourth that of the AgNW transparent electrodes that were prepared using the same method. This reduction in sheet resistance is because the SWCNTs formed bridges between the AgNWs, thus, resulting in high conductivity of the hybrid transparent electrodes. The hybrid electrodes formed on plastic films exhibited high conductivity as well as excellent stability in sheet resistance when tested using a repeated bending test.PACS: 62.23.Hj; 61.48.De; 81.15.-z.

  18. Hybrid Electrodes of Carbon Nanotube and Reduced Graphene Oxide for Energy Storage Applications.

    PubMed

    Choi, Eunmi; Chae, Su Jin; Kim, Areum; Kang, Keun Won; Oh, Min Seok; Kwon, Soon Hyeong; Yoon, Sung Pil; Pyo, Sung Gyu

    2015-11-01

    The choice of electrode materials in lithium ion batteries and supercapacitors is important for the stability, capacity, and cycle life of the device. Despite its low capacity, graphite has often been used as an electrode material due to its inherent stability. Due to an increasing demand for large-capacity energy storage systems, there is also a demand for the development of large-capacity Li ion batteries and supercapacitors. Therefore, carbonaceous materials like graphene and carbon nanotubes (CNTs), which have high stability as well as excellent electrical conductivity and mechanical strength, are receiving attention as new electrode materials. Recently, starting from simply applying graphene and CNTs as electrode materials and progressing to the development of hybrid materials, there have been increasing research efforts in enhancing the performance of Li ion batteries and supercapacitors through the use of carbonaceous materials. This paper will discuss new composite materials and electrode structures that use graphene and CNTs for applications in Li ion batteries and supercapacitors.

  19. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin.

    PubMed

    Sun, Wei; Dong, Lifeng; Deng, Ying; Yu, Jianhua; Wang, Wencheng; Zhu, Qianqian

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Absorptive carbon nanotube electrodes: consequences of optical interference loss in thin film solar cells.

    PubMed

    Tait, Jeffrey G; De Volder, Michaël F L; Cheyns, David; Heremans, Paul; Rand, Barry P

    2015-04-28

    A current bottleneck in the thin film photovoltaic field is the fabrication of low cost electrodes. We demonstrate ultrasonically spray coated multiwalled carbon nanotube (CNT) layers as opaque and absorptive metal-free electrodes deposited at low temperatures and free of post-deposition treatment. The electrodes show sheet resistance as low as 3.4 Ω □(-1), comparable to evaporated metallic contacts deposited in vacuum. Organic photovoltaic devices were optically simulated, showing comparable photocurrent generation between reflective metal and absorptive CNT electrodes for photoactive layer thickness larger than 600 nm when using archetypal poly(3-hexylthiophene) (P3HT) : (6,6)-phenyl C61-butyric acid methyl ester (PCBM) cells. Fabricated devices clearly show that the absorptive CNT electrodes display comparable performance to solution processed and spray coated Ag nanoparticle devices. Additionally, other candidate absorber materials for thin film photovoltaics were simulated with absorptive contacts, elucidating device design in the absence of optical interference and reflection.

  1. Highly flexible and transparent dielectric elastomer actuators using silver nanowire and carbon nanotube hybrid electrodes.

    PubMed

    Lee, Ye Rim; Kwon, Hyungho; Lee, Do Hoon; Lee, Byung Yang

    2017-09-27

    We demonstrate a dielectric elastomer actuator (DEA) with a high areal strain value of 146% using hybrid electrodes of silver nanowires (AgNWs) and single-walled carbon nanotubes (SWCNTs). The addition of a very small amount of SWCNTs (∼35 ng mm(-2)) to a highly resistive AgNW network resulted in a remarkable reduction of the electrode sheet resistance by three orders, increasing the breakdown field by 183% and maximum strain, while maintaining the reduction of optical transmittance within 11%. The DEA based on our transparent and stretchable hybrid electrodes can be easily fabricated by a simple vacuum filtration and transfer process of the electrode film on a pre-strained dielectric elastomer membrane. We expect that our approach will be useful in the future for fabricating stretchable and transparent electrodes in various soft electronic devices.

  2. Fast Electrocatalytic Determination of Methimazole at an Activated Glassy Carbon Electrode

    PubMed Central

    Jalali, Fahimeh; Hatami, Zahra

    2016-01-01

    A fast and simple voltammetric method for the determination of methimazole in pharmaceutical products was reported. A glassy carbon electrode was pretreated by anodization at +1.75 V (vs. SCE) for 5 min, followed by potential cycling in the range of 0.3-1.3 V (20 cycles). The pretreated electrode showed an excellent electrocatalytic effect on the oxidation of methimazole. Compared with untreated electrode, a large decrease (~300 mV) in the oxidation peak of methimazole was observed. The oxidation peak current at the new potential (0.4 V vs. SCE) was linearly dependent on the concentration of methimazole in the range of 7.0 - 130 μM with a detection limit of 3.7 μM (S/N = 3). The method was successfully used in the determination of methimazole in thyramozol tablets. Due to the simple and fast electrode preparation, there is no need for electrode cleaning or storage. PMID:28243269

  3. Settlement with Continental Carbon Company to Reduce Air Pollution at Manufacturing Facility in Okla. and Texas

    EPA Pesticide Factsheets

    WASHINGTON - In a settlement with the United States and the states of Alabama and Oklahoma, Continental Carbon Company has agreed to install pollution control technology that will significantly cut emissions of harmful air pollutants at manufacturing facil

  4. Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing

    EIA Publications

    2006-01-01

    Based on the Manufacturing Energy Consumption Survey (MECS) conducted by the U.S. Department of Energy, Energy Information Administration (EIA), this paper presents historical energy-related carbon dioxide emission estimates for energy-intensive sub-sectors and 23 industries. Estimates are based on surveys of more than 15,000 manufacturing plants in 1991, 1994, 1998, and 2002. EIA is currently developing its collection of manufacturing data for 2006.

  5. Anodic Stripping Voltametry at Mercury Film Deposited on Ultrasmall Carbon Ring Electrodes

    DTIC Science & Technology

    1990-11-05

    ABSTRACT ’Mas-,im 2?0 wC!OS) Anodic stripping voltammetry of lead and cadmium without deliberately added electrolytes has been studied at ultrasmall...ANODIC STRIPPING VOLTAMMETRY AT MERCURY FILMS DEPOSITED ON ULTRASMALL CARBON RING ELECTRODES ABSTRACT Anodic stripping voltammetry of lead and cadmium ...electroac- tive species to the electrode region then arises. Golas and Osteryoung [11,12] have performed anodic stripping square - wave voltam- metry in

  6. Electrochemical oxidation of guanine: electrode reaction mechanism and tailoring carbon electrode surfaces to switch between adsorptive and diffusional responses.

    PubMed

    Li, Qian; Batchelor-McAuley, Christopher; Compton, Richard G

    2010-06-03

    The electrochemical oxidation of guanine is studied in aqueous media at various carbon electrodes. Specifically edge plane pyrolytic graphite (EPPG), basal plane pyrolytic graphite (BPPG), and highly ordered pyrolytic graphite (HOPG) were used, and the voltammetry was found to vary significantly. In all cases, signals characteristic of adsorbed guanine were seen and the total charge passed varied from surface to surface in the order roughened BPPG > EPPG > BPPG > HOPG. It is of note that the peak height for the EPPG electrode is less than that found for roughened BPPG; furthermore, across the series of electrodes, there is a significant decrease in peak potential with increasing density of edge plane sites present at the electrode surface. This leads us to conclude that there are two dominating and controlling factors present: (i) the density of basal plane sites on which guanine can adsorb and (ii) the density of edge plane sites necessary for the electro-oxidation of the analyte. This conclusion is corroborated through further experiments with multi- and single-walled carbon nanotubes. Adsorption was seen to be enhanced by modification of the EPPG surface with alumina particles, and as such, increased peak signals were observed in their presence. It is further reported that via the pre-adsorption of acetone onto the graphite surface that the adsorption of guanine may be blocked, resulting in a diffusional voltammetric signal. This diffusional response has been successfully modeled and gives insight into the complex -4e(-), -4H(+) oxidation mechanism; specifically, it enables explanation of the observed change in rate-determining step with scan rate. The oxidation of guanine first proceeds via a two-electron oxidation followed by a chemical step to form 8-oxoguanine, then 8-oxoguanine is then further oxidized to form nonelectroactive products. The change is mechanism is attributed to the variation in potential of the first and second electron transfer with scan

  7. Biological properties of carbon/carbon implant composites with unique manufacturing processes.

    PubMed

    Wang, Guo-Hui; Yu, Shu; Zhu, Shai-Hong; Gao, Chang-Qing; Liu, Yong; Miu, Yun-Liang; Huang, Bo-Yun

    2009-12-01

    The goal was to manufacture carbon/carbon (C/C) composites through a unique procedure with improved biocompatibility and reduced debris release. C/C composites were prepared by chemical vapor deposition, and their biological properties were analyzed. With regard to mechanical properties, compressive strength/modulus was 219.1 MPa/9.72 GPa, flexural strength/modulus was 121.63 MPa/21.9 GPa, and interlaminar sheer was 15.13 GPa. Biocompatibility testing revealed: (1) the extract liquid from the C/C composites had no effect on cell proliferation; (2) the extract had no impact on micronucleus frequency as compared with the control groups (P > 0.05); (3) in vivo, there was mild tissue inflammation after implantation within the first 2 weeks, but there was no significant difference compared with the control group (P > 0.05); (4) the implants were well integrated into the host tissue, and debris was limited. The tested samples have excellent biocompatibilities and reduced release of debris. The demonstrated changes in manufacturing procedures are promising.

  8. An electrolyte distribution model in consideration of the electrode wetting in the molten carbonate fuel cell

    SciTech Connect

    Kawase, Makoto; Mugikura, Yoshihiro; Watanabe, Takao

    2000-03-01

    In the molten carbonate fuel cell, the electrolyte distribution in the electrode is one of the major factors affecting cell performance. An electrolyte distribution model was developed in consideration of the electrode's wetting properties and the pore size distribution within the electrode. Because wettability data, e.g., contact angles, are required for model calculations, the meniscus heights of (Li/K)CO{sub 3} and (Li/Na)CO{sub 3} on Ni were measured under various anode gas conditions, and contact angles were derived.

  9. Fabrication of Functionalized Carbon Nanotube Buckypaper Electrodes for Application in Glucose Biosensors

    PubMed Central

    Papa, Henry; Gaillard, Melissa; Gonzalez, Leon; Chatterjee, Jhunu

    2014-01-01

    A highly sensitive glucose detection method was developed using functionalized carbon nanotube buckypaper as a free standing electrode in an electrochemical biosensor. Glucose oxidase was immobilized onto various buckypaper samples in order to oxidize glucose resulting in a measureable current/voltage signal output of the biosensor. Cyclic voltammetry (CV) and amperometry were utilized to determine the sensitivity of these buckypaper electrodes. Sensors of three different types of buckypaper were prepared and compared. These modified buckypaper electrode-based sensors showed much higher sensitivity to glucose compared to other electrochemical glucose sensors. PMID:25587433

  10. Method of preparing a dimensionally stable electrode for use in a molten carbonate fuel cell

    DOEpatents

    Swarr, T.E.; Wnuck, W.G.

    1986-01-29

    A method is disclosed for preparing a dimensionally stable electrode structure, particularly nickel-chromium anodes, for use in a molten carbonate fuel cell stack. A low-chromium to nickel alloy is provided and oxidized in a mildly oxidizing gas of sufficient oxidation potential to oxidize chromium in the alloy structure. Typically, a steam/H/sub 2/ gas mixture in a ratio of about 100/1 and at a temperature below 800/sup 0/C is used as the oxidizing medium. This method permits the use of less than 5 wt % chromium in nickel alloy electrodes while obtaining good resistance to creep in the electrodes of a fuel cell stack.

  11. Insights into the electrocatalysis of nitrobenzene using chemically-modified carbon nanotube electrodes

    PubMed Central

    Sang, Yutao; Wang, Baoyan; Wang, Qinchao; Zhao, George; Guo, Peizhi

    2014-01-01

    The electrochemical behavior of nitrobenzene and its derivatives at chemically-functionalized multi-wall carbon nanotubes (MWNTs) modified electrodes was studied. Experimental results showed that hydroxyl-containing MWNTs exhibited the highest electrocatalytic activity among the used MWNTs because of its weak capacitive features and oxygen-containing functional groups. The cycle voltammetrys of nitrobenzene derivatives on the MWNTs modified electrodes can be easily tuned by changing the substituted groups of nitrobenzene. Based on the experimental data, the electrochemical reaction mechanisms of nitrobenzene and its derivatives on the MWNTs modified electrodes have been discussed and analyzed. PMID:25204889

  12. Electrochemical synthesis of gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode and their application

    NASA Astrophysics Data System (ADS)

    Song, Y. Z.; Li, X.; Song, Y.; Cheng, Z. P.; Zhong, H.; Xu, J. M.; Lu, J. S.; Wei, C. G.; Zhu, A. F.; Wu, F. Y.; Xu, J.

    2013-01-01

    Gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode were prepared using electrochemical synthesis method. The thin films of gold Nanoparticles/multi-walled carbon nanotubes were characterized by scanning electron microscopy, powder X-ray diffraction, and cyclic voltammetry. Electrochemical behavior of adrenaline hydrochloride at gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode was investigated. A simple, sensitive, and inexpensive method for determination of adrenaline hydrochloride was proposed.

  13. PREPARATION AND CHARACTERIZATION OF MOLECULARLY IMPRINTED ELECTROPOLYMERIZED CARBON ELECTRODES

    EPA Science Inventory

    Molecularly imprinted polymers (MIP) selective for fluorescein, rhodamine or 2,4-dichlorophenoxyacetic acid (2,4-D) were electropolymerized onto graphite electrodes using an aqueous solution equimolar in resorsinol/ortho-phenylenediamine and in the presence of the template mole...

  14. PREPARATION AND CHARACTERIZATION OF MOLECULARLY IMPRINTED ELECTROPOLYMERIZED CARBON ELECTRODES

    EPA Science Inventory

    Molecularly imprinted polymers (MIP) selective for fluorescein, rhodamine or 2,4-dichlorophenoxyacetic acid (2,4-D) were electropolymerized onto graphite electrodes using an aqueous solution equimolar in resorsinol/ortho-phenylenediamine and in the presence of the template mole...

  15. A study on the preparation of diamond like carbon film and its electrodes

    NASA Astrophysics Data System (ADS)

    Wu, Shen-jiang; Li, Dang-juan; Xu, Junqi

    2016-01-01

    Diamond-like carbon (DLC) films have attracted much attention because of their excellent performance; however, the low anti-laser damage ability of such films seriously restricts their applicability. To overcome this problem, applying the bias field to the DLC film could slow down the DLC film graphitization process and improve the LIDT of the DLC film. Results showed that the longitudinal electric field could decrease the sp3 hybridization to sp2 hybridization, prevent the formation of sp2 clusters. in this study, Unbalanced magnetron sputtering (UBMS) was used to deposit a diamond-like carbon (DLC) film on Si substrates. The refractive index and extinction coefficient of the DLC films were measured using elliptical polarization spectrometer. The transmittance and the surface roughness of DLC films were examined using optical microscopy, SEM, AFM and Raman spectroscopy. Ti electrodes were deposited on DLC films directly, forming a transverse and longitudinal bias field on films' surfaces. The 3D electrodes morphology of the DLC film was observed. The electrode thickness was measured by a white-light interferometer, and the average thickness of the electrodes was 325.90 nm. The surface roughness of the electrodes was tested using the Talysurf CCI 2000 noncontact surface-measuring instrument, and the average roughness of the electrodes was 0.50 nm. The electrodes have good Ohmic contact and little thermal stress, and it can be used to form a parallel electric field.

  16. The electrocatalytic examination of cephalosporins at carbon paste electrode modified with CoSalophen.

    PubMed

    Jamasbi, E S; Rouhollahi, A; Shahrokhian, S; Haghgoo, S; Aghajani, S

    2007-03-15

    The electrocatalytic oxidation of cephalexin and cefazolin has been studied at a carbon paste electrode modified with cobalt salophen (CoSal) by cyclic voltammetry. The selectivity of the carbon paste modified with CoSal in detecting cephalexin and cefazolin was examined. To suggest the electrocatalytic mechanism for electro-oxidation of cefazolin, the electrochemical behavior of ceftriaxone was investigated which has a thiol group out of the beta lactam ring. The electrocatalytic oxidation of these antibiotics is shown to be irreversible at the CoSal modified electrode. Scan rate dependence of cefazolin, which is a sulfur-containing compound, has been examined. The results indicated that the electrocatalytic oxidation of the compounds is diffusion controlled. The responses of the modified electrode were compared with those of unmodified electrode and it has shown that the modified electrode has better sensitivity than unmodified electrode to the detection of cefazolin. The overall number of electrons contributed to the oxidation of cefazolin is obtained 1 by chronoamperometry; the number of electron involved in the rate-determining step was 1. The results of differential pulse voltammetry (DPV) using the modified electrode with high sensitivity were applied for the determination of cefazolin in human synthetic serum samples. The linear range was obtained from 1x10(-5) to 1x10(-3)M for DPV determination of cefazolin in buffered solutions (pH 3.0).

  17. Electrochemical, morphological and microstructural characterization of carbon film resistor electrodes for application in electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Gouveia-Caridade, Carla; Soares, David M.; Liess, Hans-Dieter; Brett, Christopher M. A.

    2008-08-01

    The electrochemical and microstructural properties of carbon film electrodes made from carbon film electrical resistors of 1.5, 15, 140 Ω and 2.0 kΩ nominal resistance have been investigated before and after electrochemical pre-treatment at +0.9 V vs SCE, in order to assess the potential use of these carbon film electrodes as electrochemical sensors and as substrates for sensors and biosensors. The results obtained are compared with those at electrodes made from previously investigated 2 Ω carbon film resistors. Cyclic voltammetry was performed in acetate buffer and phosphate buffer saline electrolytes and the kinetic parameters of the model redox system Fe(CN) 63-/4- obtained. The 1.5 Ω resistor electrodes show the best properties for sensor development with wide potential windows, similar electrochemical behaviour to those of 2 Ω and close-to-reversible kinetic parameters after electrochemical pre-treatment. The 15 and 140 Ω resistor electrodes show wide potential windows although with slower kinetics, whereas the 2.0 kΩ resistor electrodes show poor cyclic voltammetric profiles even after pre-treatment. Electrochemical impedance spectroscopy related these findings to the interfacial properties of the electrodes. Microstructural and morphological studies were carried out using contact mode Atomic Force Microscopy (AFM), Confocal Raman spectroscopy and X-ray diffraction. AFM showed more homogeneity of the films with lower nominal resistances, related to better electrochemical characteristics. X-ray diffraction and Confocal Raman spectroscopy indicate the existence of a graphitic structure in the carbon films.

  18. Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes.

    PubMed

    Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit

    2013-12-01

    We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to support neuronal cell proliferation and differentiation in electric field mediated culture conditions. The electric field was applied perpendicular to carbon substrate electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm(2)) and low impedance (3.3 kΩ at 1 kHz). The optimal window of electric field stimulation for better cell viability and neurite outgrowth is established. When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (≤ 2.5 V/cm) compared to that measured without an applied field (0 V/cm). While the cell viability was assessed by two complementary biochemical assays (MTT and LDH), the differentiation was studied by indirect immunostaining. Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to either enhance or to restrict neurite outgrowth respectively at lower or higher field strengths, when neuroblastoma cells are cultured on porous glassy carbon electrodes having a desired combination of electrochemical properties.

  19. Derivatization of single-walled carbon nanotubes with redox mediator for biocatalytic oxygen electrodes.

    PubMed

    Sadowska, K; Stolarczyk, K; Biernat, J F; Roberts, K P; Rogalski, J; Bilewicz, R

    2010-11-01

    Single-walled carbon nanotubes (SWCNTs) were covalently modified with a redox mediator derived from 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and implemented in the construction of electrodes for biocatalytic oxygen reduction. The procedure is based on: covalent bonding of mediator to nanotubes, placing the nanotubes directly on the carbon electrode surface and covering the nanostructured electrode with a Nafion film containing laccase as the biocatalyst. The modified electrode is stable and the problem of mediator (ABTS) leaking from the film is eliminated by binding it covalently to the nanotubes. Three different synthetic approaches were used to obtain ABTS-modified carbon nanotubes. Nanotubes were modified at ends/defect sites or on the nanotube sidewalls and characterized by Raman spectroscopy, TGA and electrochemistry. The accessibility of differently located ABTS units by the laccase active center and mediation of electron transfer were studied by cyclic voltammetry. The surface concentrations of ABTS groups electrically connected with the electrode were compared for each of the electrodes based on the charges of the voltammetric peaks recorded in the deaerated solution. The nanotube modification procedure giving the best parameters of the catalytic process was selected.

  20. beta-Sonogel-carbon electrodes: a new alternative for the electrochemical determination of catecholamines.

    PubMed

    Izaoumen, Nissrin; Cubillana-Aguilera, Laura M; Naranjo-Rodríguez, Ignacio; de Cisneros, José L Hidalgo-Hidalgo; Bouchta, Dounia; Temsamani, Khalid R; Palacios-Santander, José M

    2009-04-30

    In this work, a new alternative for the electrochemical determination of catecholamines based on beta-cyclodextrin-Sonogel-Carbon electrodes is reported. The incorporation of beta-CD and graphite in the preparation of the Sonogel-Carbon material leads to a modification of the electrode surface properties which causes a significant increase in the oxidation peak current of biomolecules such as dopamine, L-epinephrine, D,L-norepinephrine and catechol. This phenomenon might be attributed to the formation of an inclusion complex between beta-CD and the catecholamines. The amount of beta-CD necessary to form the Sonogel electrode was studied and optimization of electrochemical parameters, perm selectivity and mechanical stability of the sensor are discussed. Scanning electron microscopy and electrochemical impedance spectroscopy measurements were employed to characterize the electrical parameters and the structural properties of the new electrode surface, respectively. Cyclic voltammetry (CV) and Adsorptive differential pulse voltammetry (AdDPV) measurements were also used to explore the electrochemical behaviour of the electrode versus the quoted catecholamines. The beta-CD-Sonogel-Carbon electrode offers fast and linear responses towards dopamine, norepinephrine, epinephrine and catechol, with good and low detection limits: 0.164, 0.294, 0.699 and 0.059 micromol L(-1), respectively.

  1. Control of geometrical properties of carbon nanotube electrodes towards high-performance microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Erbay, Celal; Pu, Xiong; Choi, Woongchul; Choi, Mi-Jin; Ryu, Yeontack; Hou, Huijie; Lin, Furong; de Figueiredo, Paul; Yu, Choongho; Han, Arum

    2015-04-01

    In microbial fuel cells (MFCs), physical and electrochemical interactions between microbes and electrode surfaces are critical to performance. Nanomaterial-based electrodes have shown promising performances, however their unique characteristics have not been fully utilized. The developed electrodes here consist of multi-wall carbon nanotubes (MWCNTs) directly grown in the radial direction from the wires of stainless steel (SS) meshes, providing extremely large three-dimensional surfaces while ensuring minimal ohmic loss between CNTs and SS meshes, fully utilizing the advantages of CNTs. Systematic studies on how different lengths, packing densities, and surface conditions of CNTs affect MFC power output revealed that long and loosely packed CNTs without any amorphous carbon show the highest power production performance. The power density of this anode is 7.4-fold higher compared to bare carbon cloth, which is the highest reported improvement for MFCs with nanomaterial-decorated electrodes. The results of this study offer great potential for advancing the development of microbial electrochemical systems by providing a highly efficient nanomaterial-based electrode that delivers large surface area, high electrochemical activity, and minimum ohmic loss, as well as provide design principles for next-generation nanomaterial-based electrodes that can be broadly applicable for highly efficient microbial electrochemical cells.

  2. Lead-carbon electrode designed for renewable energy storage with superior performance in partial state of charge operation

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Li; Yin, Jian; Lin, Zhe-Qi; Shi, Jun; Wang, Can; Liu, De-Bo; Wang, Yue; Bao, Jin-Peng; Lin, Hai-Bo

    2017-02-01

    Renewable energy storage is a key issue in our modern electricity-powered society. Lead acid batteries (LABs) are operated at partial state of charge in renewable energy storage system, which causes the sulfation and capacity fading of Pb electrode. Lead-carbon composite electrode is a good solution to the sulfation problem of LAB. In this paper, a rice-husk-derived hierarchically porous carbon with micrometer-sized large pores (denoted as RHC) has been used as the component of lead-carbon composite electrode. Scanning electron microscopy was used to characterize the morphology of lead-carbon composite electrode. Electrochemical impedance spectroscopy was used to determine the charge transfer capability of lead-carbon composite electrode. Both full charge-discharge method and charge-discharge method operating at harsh partial state of charge condition have been used to prove the superior energy storage capability of lead-carbon composite electrode. Experiment results prove that the micrometer-sized pores of RHC are beneficial to the construction and stability of lead-carbon composite electrode. Microporous carbon material with high surface area is not suitable for the construction of lead-carbon electrode due to the ruin of lead-carbon structure caused by severe electrochemical hydrogen evolution.

  3. The Impact of Surface Chemistry on Bio-derived Carbon Performance as Supercapacitor Electrodes

    NASA Astrophysics Data System (ADS)

    Alshareef, Niman H.; Whitehair, Daniel; Xia, Chuan

    2016-12-01

    In this study, we demonstrate that highly functionalized and porous carbons can be derived from palm-leaf waste using the template-free facile synthesis process. The derived carbons have high content of nitrogen dopant, high surface area, and various defects. Moreover, these carbons exhibit a high electrical conductivity (107 S m-1). Thanks to the high content of edge N (64.3%) and highly microporous nature (82% of microspores), these biomass-derived carbons show promising performance when used as supercapacitor electrodes. To be specific, these carbonaceous materials show a specific capacitance as high as 197 and 135 F g-1 at 2 and 20 A g-1 in three-electrode configuration, respectively. Furthermore, the symmetrical cells using palm-leaf-derived carbon show an energy density of 8.4 Wh Kg-1 at a power density of 0.64 kW Kg-1, with high cycling life stability (˜8% loss after 10,000 continuous charge-discharge cycles at 20 A g-1). Interestingly, as the power density increases from 4.4 kW kg-1 to 36.8 kW kg-1, the energy density drops slowly from 8.4 Wh kg-1 to 3.4 Wh kg-1. Getting such extremely high power density without significant loss of energy density indicates that these palm-leaf-derived carbons have excellent electrode performance as supercapacitor electrodes.

  4. Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes.

    PubMed

    Crespo, Gastón A; Macho, Santiago; Bobacka, Johan; Rius, F Xavier

    2009-01-15

    Porous carbon materials and carbon nanotubes were recently used as solid contacts in ion-selective electrodes (ISE), and the signal transduction mechanism of these carbon-based materials is therefore of great interest. In this work the ion-to-electron transduction mechanism of carbon nanotubes is studied by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Single-walled carbon nanotubes (SWCNT) are deposited on glassy carbon (GC) disk electrodes by repetitive spraying, resulting in SWCNT layers with thicknesses of 10, 35, and 50 mum. The impedance spectra of these GC/SWCNT electrodes in contact with aqueous electrolyte solution show a very small resistance and a large bulk capacitance that is related to a large effective double layer at the SWCNT/electrolyte interface. Interestingly, the impedance response of GC/SWCNT is very similar to that of poly(3,4-ethylenedioxythiophene) (PEDOT) film electrodes studied earlier under the same experimental conditions. The same equivalent circuit is valid for both types of materials. The reason is that both materials can be described schematically as an asymmetric capacitor where one side is formed by electronic charge (electrons/holes) in the SWCNT wall or along the conjugated polymer chain of PEDOT and the other side is formed by ions (anions/cations) in the solution (or in the ion-selective membrane when used as a solid contact in ISE).

  5. The Impact of Surface Chemistry on Bio-derived Carbon Performance as Supercapacitor Electrodes

    NASA Astrophysics Data System (ADS)

    Alshareef, Niman H.; Whitehair, Daniel; Xia, Chuan

    2017-03-01

    In this study, we demonstrate that highly functionalized and porous carbons can be derived from palm-leaf waste using the template-free facile synthesis process. The derived carbons have high content of nitrogen dopant, high surface area, and various defects. Moreover, these carbons exhibit a high electrical conductivity (107 S m-1). Thanks to the high content of edge N (64.3%) and highly microporous nature (82% of microspores), these biomass-derived carbons show promising performance when used as supercapacitor electrodes. To be specific, these carbonaceous materials show a specific capacitance as high as 197 and 135 F g-1 at 2 and 20 A g-1 in three-electrode configuration, respectively. Furthermore, the symmetrical cells using palm-leaf-derived carbon show an energy density of 8.4 Wh Kg-1 at a power density of 0.64 kW Kg-1, with high cycling life stability (˜8% loss after 10,000 continuous charge-discharge cycles at 20 A g-1). Interestingly, as the power density increases from 4.4 kW kg-1 to 36.8 kW kg-1, the energy density drops slowly from 8.4 Wh kg-1 to 3.4 Wh kg-1. Getting such extremely high power density without significant loss of energy density indicates that these palm-leaf-derived carbons have excellent electrode performance as supercapacitor electrodes.

  6. Roll-To-Roll Process for Transparent Metal Electrodes in OLED Manufacturing

    SciTech Connect

    Slafer, W. Dennis

    2010-06-02

    This program will develop and demonstrate a new manufacturing technology that can help to improve the efficiency and reduce the cost of producing the next generation solid-state lighting (OLEDs)for a broad range of commercial applications. This will not only improve US competitiveness in the manufacturing sector but will also result in a positive impact in meeting the Department of Energy’s goal of developing high efficiency lighting while reducing the environmental impact.

  7. High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes

    PubMed Central

    Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei

    2014-01-01

    We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 104. When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 106. PMID:25142376

  8. Chemically Modified Electrodes. Part XX. Radiofrequency Plasma Polymerization of Vinylferrocene on Glassy Carbon and Platinum Electrodes.

    DTIC Science & Technology

    1980-01-29

    1978) 3222. 3 N. Oyama and F. C. Anson , J. Amer. Chem. Soc., 101 (1979) 739. 4 Symposium on Chemically Modified Electrodes, Extended Abstracts of...T. Hirotsu, J. Polym. Sci., Polym. Chem. Ed., 16 (1978) 229. 24 N. Oyama, A. P. Brown and F. C. Anson , J. Electroanal. Chem., 87 (1978) 435. 25 H...91232 Dr. Fred Saalfeld Mr. John Boyle Chemistry Division Materials Branch Naval Research Laboratory Naval Ship Engineering Center Washington, D.C

  9. Electrocatalytic amperometric determination of amitrole using a cobalt-phthalocyanine-modified carbon paste electrode.

    PubMed

    Chicharro, Manuel; Zapardiel, Antonio; Bermejo, Esperanza; Moreno, Mónica; Madrid, Elena

    2002-07-01

    Cobalt-phthalocyanine-modified carbon paste electrodes are shown to be excellent indicators for electrocatalytic amperometric measurements of triazolic herbicides such as amitrole, at low oxidation potentials (+0.40 V). The detection and determination of amitrole in flow injection analysis with a modified carbon paste electrode with Co-phthalocyanine is described. The concentrations of amitrole in 0.1 M NaOH solutions were determined using the electrocatalytic oxidation signal corresponding to the Co(II)/Co(III) redox process. A detection limit of 0.04 microg mL(-1) (4 ng amitrole) was obtained for a sample loop of 100 microL at a fixed potential of +0.55 V (vs. Ag/AgCl) in 0.1 M NaOH and a flow rate of 4.0 mL min(-1). Furthermore, the modified carbon paste electrodes offers reproducible responses in such a system, and the relative standard deviation was 3.3% using the same surface, 5.1% using different surface, and 6.9% using different pastes. The performance of the cobalt-phthalocyanine-modified carbon paste electrodes is illustrated here for the determination of amitrole in commercial formulations. The response of the electrodes is stable, with more than 80% of the initial retained activity after 50 min of continuous use.

  10. High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Cai, Jie; Niu, Haitao; Wang, Hongxia; Shao, Hao; Fang, Jian; He, Jingren; Xiong, Hanguo; Ma, Chengjie; Lin, Tong

    2016-08-01

    Carbon nanofibers with inter-bonded fibrous structure show high supercapacitor performance when being used as electrode materials. Their preparation is highly desirable from cellulose through a pyrolysis technique, because cellulose is an abundant, low cost natural material and its carbonization does not emit toxic substance. However, interconnected carbon nanofibers prepared from electrospun cellulose nanofibers and their capacitive behaviors have not been reported in the research literature. Here we report a facile one-step strategy to prepare inter-bonded carbon nanofibers from partially hydrolyzed cellulose acetate nanofibers, for making high-performance supercapacitors as electrode materials. The inter-fiber connection shows considerable improvement in electrode electrochemical performances. The supercapacitor electrode has a specific capacitance of ∼241.4 F g-1 at 1 A g-1 current density. It maintains high cycling stability (negligible 0.1% capacitance reduction after 10,000 cycles) with a maximum power density of ∼84.1 kW kg-1. They may find applications in the development of efficient supercapacitor electrodes for energy storage applications.

  11. Carbon Nanotubes Versus Graphene as Flexible Transparent Electrodes in Inverted Perovskite Solar Cells.

    PubMed

    Jeon, Il; Yoon, Jungjin; Ahn, Namyoung; Atwa, Mohamed; Delacou, Clement; Anisimov, Anton; Kauppinen, Esko I; Choi, Mansoo; Maruyama, Shigeo; Matsuo, Yutaka

    2017-10-10

    Transparent carbon electrodes composed of single-walled carbon nanotubes or graphene were used as the bottom electrode in flexible inverted perovskite solar cells. Their photovoltaic performance and mechanical resilience were compared and analyzed using various techniques. Whereas a conventional inverted perovskite solar cells using indium tin oxide showed a power conversion efficiency of 17.8%, the carbon nanotube- and graphene-based cells showed efficiencies of 12.8% and 14.2%, respectively. A thin layer of MoO3 was used for its stable doping effect. The difference in photovoltaic performance between the carbon nanotube- and graphene-based cells was due to the inferior morphology and lower transmittance of the carbon nanotube films compared with the graphene films. Raman spectroscopy and four-probe measurements after strain application revealed that the graphene-based cells were more susceptible to strain than the carbon nanotube-based cells for a given magnitude of strain. Cyclic flexural testing also showed higher resilience of the carbon nanotube-based cells compared with graphene-based cells, though the difference was marginal. Overall, graphene is a better option than carbon nanotubes as the bottom transparent electrode in perovskite solar cells. However, the transfer step for graphene has lower reproducibility, and thus the development of better graphene transfer methods would help maximize the current capacity of graphene-based cells.

  12. Highly porous activated carbons from resource-recovered Leucaena leucocephala wood as capacitive deionization electrodes.

    PubMed

    Hou, Chia-Hung; Liu, Nei-Ling; Hsi, Hsing-Cheng

    2015-12-01

    Highly porous activated carbons were resource-recovered from Leucaena leucocephala (Lam.) de Wit. wood through combined chemical and physical activation (i.e., KOH etching followed by CO2 activation). This invasive species, which has severely damaged the ecological economics of Taiwan, was used as the precursor for producing high-quality carbonaceous electrodes for capacitive deionization (CDI). Carbonization and activation conditions strongly influenced the structure of chars and activated carbons. The total surface area and pore volume of activated carbons increased with increasing KOH/char ratio and activation time. Overgasification induced a substantial amount of mesopores in the activated carbons. In addition, the electrochemical properties and CDI electrosorptive performance of the activated carbons were evaluated; cyclic voltammetry and galvanostatic charge/discharge measurements revealed a typical capacitive behavior and electrical double layer formation, confirming ion electrosorption in the porous structure. The activated-carbon electrode, which possessed high surface area and both mesopores and micropores, exhibited improved capacitor characteristics and high electrosorptive performance. Highly porous activated carbons derived from waste L. leucocephala were demonstrated to be suitable CDI electrode materials.

  13. Fabrication and modeling of electrochemical double-layer capacitors using carbon nano-onion electrode structures

    NASA Astrophysics Data System (ADS)

    Parigi, Fabio

    Electrochemical capacitors or ultracapacitors (UCs) that are commercially available today overcome battery limitations in terms of charging time (from tens of minutes to seconds) and limited lifetime (from a few thousand cycles up to more than one million) but still lack specific energy and energy density (2-5% of a lithium ion battery). The latest innovations in carbon nanomaterials, such as carbon nanotubes as an active electrode material for UCs, can provide up to five times as much energy and deliver up to seven times more power than today's activated carbon electrodes. Further improvements in UC power density have been achieved by using state-of-the-art carbon nano-onions (CNOs) for ultracapacitor electrodes. CNO UCs could exhibit up to five times the power density of single-wall CNT UCs and could substantially contribute to reducing the size of an energy storage system as well as the volume and weight, thus improving device performance. This dissertation describes the fabrication of CNO electrodes as part of an UC device, the measurement and analysis of the new electrode's performance as an energy storage component, and development of a new circuit model that accurately describes the CNO UC electrical behavior. The novel model is based on the impedance spectra of CNO UCs and cyclic voltammetry measurements. Further, the model was validated using experimental data and simulation. My original contributions are the fabrication process for reliable and repeatable electrode fabrication and the modeling of a carbon nano-onion ultracapacitor. The carbon nano-onion ultracapacitor model, composed of a resistor, an inductor, a capacitor (RLC), and a constant phase element (CPE), was developed along with a parameter extraction procedure for the benefit of other users. The new model developed, proved to be more accurate than previously reported UC models.

  14. Advantages of flattened electrode in bottom contact single-walled carbon nanotube field-effect transistor

    SciTech Connect

    Setiadi, Agung; Akai-Kasaya, Megumi Saito, Akira; Kuwahara, Yuji

    2014-09-01

    We fabricated single-walled carbon nanotube (SWNT) field-effect transistor (FET) devices on flattened electrodes, in which there are no height difference between metal electrodes and the substrate. SWNT-FET fabricated using bottom contact technique have some advantages, such that the SWNTs are free from electron irradiation, have direct contact with the desired metal electrodes, and can be functionalized before or after deposition. However, the SWNTs can be bent at the contact point with the metal electrodes leading to a different electrical characteristic of the devices. The number of SWNT direct junctions in short channel length devices is drastically increased by the use of flattened electrodes due to strong attractive interaction between SWNT and the substrate. The flattened electrodes show a better balance between their hole and electron mobility compared to that of the non-flattened electrodes, that is, ambipolar FET characteristic. It is considered that bending of the SWNTs in the non-flattened electrode devices results in a higher Schottky barrier for the electrons.

  15. All-Organic Actuator Fabricated with Single Wall Carbon Nanotube Electrodes

    NASA Technical Reports Server (NTRS)

    Lowther, Sharon E.; Harrison, Joycelyn S.; Kang, Jinho; Park, Cheol; Park, Chan Eon

    2008-01-01

    Compliant electrodes to replace conventional metal electrodes have been required for many actuators to relieve the constraint on the electroactive layer. Many conducting polymers have been proposed for the alternative electrodes, but they still have a problem of poor thermal stability. This article reports a novel all-organic actuator with single wall carbon nanotube (SWCNT) films as the alternative electrode. The SWCNT film was obtained by filtering a SWCNT solution through an anodized alumina membrane. The conductivity of the SWCNT film was about 280 S/cm. The performance of the SWCNT film electrode was characterized by measuring the dielectric properties of NASA Langley Research Center - Electroactive Polymer (LaRC-EAP) sandwiched by the SWCNT electrodes over a broad range of temperature (from 25 C to 280 C) and frequency (from 1 KHz to 1 MHz). The all-organic actuator with the SWCNT electrodes showed a larger electric field-induced strain than that with metal electrodes, under identical measurement conditions.

  16. Energy storage capability of the dye sensitized solar cells via utilization of highly porous carbon electrodes

    NASA Astrophysics Data System (ADS)

    Rahimi, Fatemeh; Takshi, Arash

    2016-09-01

    Dye sensitized solar cells (DSSCs) have shown promising results in the field of renewable energy owing to their low cost and portable features. In practical applications, their harvested energy could be stored in a supercapacitor once it exceeds the regular consumption. Various methods of manipulation of the active electrode have been examined to facilitate the energy storage of the system, whereas the counter electrode has always been known for its catalytic functionality and its contribution to the capacitive response of the device left a well-oriented study to be desired. In this work, the substitution of the platinum electrode with a specific porous electrode resulted in a supercapacitive behavior of the device. The photoactive electrode was fabricated using zinc oxide nanowires (ZnO) grown on a conductive transparent substrate with hydrothermal deposition method. The electrode was used to make a standard DSSC using a ruthenium dye, iodide/triiodide standard redox electrolyte, and a platinum counter electrode. The cyclic voltammetry (CV) study of the device showed a low capacitance with 350 mV open circuit voltage. Replacing the platinum counter electrode with a particularly designed porous paper-based carbon nanotube electrode resulted in a considerable difference in the CV response. A capacitive behavior was observed due to the large surface area of the counter electrode and the ZnO nanostructures on the photoactive electrode. Due to the large capacitance and relatively small photocurrent, the change in the open circuit voltage was limited. However, enhancement of the photocurrent could improve both the energy harvesting and charge storage in the device.

  17. Functional Single-walled Carbon Nanotube Electrodes for Solar Energy Conversion

    NASA Astrophysics Data System (ADS)

    Blackburn, Jeffrey

    2010-03-01

    In this presentation, we discuss our progress in producing high surface area electrodes from single-walled carbon nanotubes (SWNTs) and the utilization of these electrodes in solar energy conversion devices. SWNTs have several fundamental properties that make them attractive for functional electrodes, including high electron and hole mobilities, a tunable work function with an energy range relevant to many photovoltaic devices, and optical transitions in the visible and near infrared that may be useful for solar driven photochemical reactions. Additionally, they possess numerous properties amenable to practical, scalable, and economic electrode deposition including abundant source material, a natural disposition for solution processing, and high surface area and flexibility. All of these features make them extremely attractive for replacing conventional electrodes, such as tin-doped indium oxide (ITO), which suffer from questionable world supply, high temperature/low pressure deposition requirements, and brittleness. We will present our development of a versatile and scalable ultrasonic spray process for producing SWNT electrodes with high transparency, high conductivity, and very low surface roughness. This method can be adapted for aqueous and organic solvents, allowing SWNT electrodes to be sprayed on a variety of different substrates, including directly on photovoltaic devices. The performance of PV devices incorporating our electrodes is nearly equivalent to devices incorporating traditional transparent conducting oxides. Finally, we demonstrate that this method can be extended to the production of a variety of different functional SWNT electrodes, including bio-hybrid electrodes for the production of hydrogen fuel. These electrodes achieve electrolytic current densities close to that of platinum at a fraction of the cost. We will discuss devices incorporating bulk SWNTs as well as SWNTs enriched in specific electronic structures.

  18. Effective dose in the manufacturing process of rutile covered welding electrodes.

    PubMed

    Herranz, M; Rozas, S; Pérez, C; Idoeta, R; Núñez-Lagos, R; Legarda, F

    2013-03-01

    Shielded metal arc welding using covered electrodes is the most common welding process. Sometimes the covering contains naturally occurring radioactive materials (NORMs). In Spain the most used electrodes are those covered with rutile mixed with other materials. Rutile contains some detectable natural radionuclides, so it can be considered a NORM. This paper mainly focuses on the use of MCNP (Monte Carlo N-Particle Transport Code) as a predictive tool to obtain doses in a factory which produces this type of electrode and assess the radiological impact in a specific facility after estimating the internal dose.To do this, in the facility, areas of highest radiation and positions of workers were identified, radioactive content of rutile and rutile covered electrodes was measured, and, considering a worst possible scenario, external dose at working points has been calculated using MCNP. This procedure has been validated comparing the results obtained with those from a pressurised ionisation chamber and TLD dosimeters. The internal dose has been calculated using DCAL (dose and risk calculation). The doses range between 8.8 and 394 μSv yr(-1), always lower than the effective dose limit for the public, 1 mSv yr(-1). The highest dose corresponds to the mixing area.

  19. Flow injection catalase activity measurement based on gold nanoparticles/carbon nanotubes modified glassy carbon electrode.

    PubMed

    El Nashar, Rasha Mohamed

    2012-07-15

    Amperometric flow injection method of hydrogen peroxide analysis was developed based on catalase enzyme (CAT) immobilization on a glassy carbon electrode (GC) modified with electrochemically deposited gold nanoparticles on a multiwalled carbon nanotubes/chitosan film. The resulting biosensor was applied to detect hydrogen peroxide with a linear response range 1.0×10(-7)-2.5×10(-3)M with a correlation coefficient 0.998 and response time less than 10s. The optimum conditions of film deposition such as potential applied, deposition time and pH were tested and the flow injection conditions were optimized to be: flow rate of 3ml/min, sample volume 75μl and saline phosphate buffer of pH 6.89. Catalase enzyme activity was successfully determined in liver homogenate samples of rats, raised under controlled dietary plan, using a flow injection analysis system involving the developed biosensor simultaneously with spectrophotometric detection, which is the common method of enzymatic assay. Copyright © 2011. Published by Elsevier B.V.

  20. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors

    PubMed Central

    Wang, Yanqing; Fugetsu, Bunshi; Wang, Zhipeng; Gong, Wei; Sakata, Ichiro; Morimoto, Shingo; Hashimoto, Yoshio; Endo, Morinobu; Dresselhaus, Mildred; Terrones, Mauricio

    2017-01-01

    Nitrogen-doped porous activated carbon monoliths (NDP-ACMs) have long been the most desirable materials for supercapacitors. Unique to the conventional template based Lewis acid/base activation methods, herein, we report on a simple yet practicable novel approach to production of the three-dimensional NDP-ACMs (3D-NDP-ACMs). Polyacrylonitrile (PAN) contained carbon nanotubes (CNTs), being pre-dispersed into a tubular level of dispersions, were used as the starting material and the 3D-NDP-ACMs were obtained via a template-free process. First, a continuous mesoporous PAN/CNT based 3D monolith was established by using a template-free temperature-induced phase separation (TTPS). Second, a nitrogen-doped 3D-ACM with a surface area of 613.8 m2/g and a pore volume 0.366 cm3/g was obtained. A typical supercapacitor with our 3D-NDP-ACMs as the functioning electrodes gave a specific capacitance stabilized at 216 F/g even after 3000 cycles, demonstrating the advantageous performance of the PAN/CNT based 3D-NDP-ACMs. PMID:28074847

  1. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Yanqing; Fugetsu, Bunshi; Wang, Zhipeng; Gong, Wei; Sakata, Ichiro; Morimoto, Shingo; Hashimoto, Yoshio; Endo, Morinobu; Dresselhaus, Mildred; Terrones, Mauricio

    2017-01-01

    Nitrogen-doped porous activated carbon monoliths (NDP-ACMs) have long been the most desirable materials for supercapacitors. Unique to the conventional template based Lewis acid/base activation methods, herein, we report on a simple yet practicable novel approach to production of the three-dimensional NDP-ACMs (3D-NDP-ACMs). Polyacrylonitrile (PAN) contained carbon nanotubes (CNTs), being pre-dispersed into a tubular level of dispersions, were used as the starting material and the 3D-NDP-ACMs were obtained via a template-free process. First, a continuous mesoporous PAN/CNT based 3D monolith was established by using a template-free temperature-induced phase separation (TTPS). Second, a nitrogen-doped 3D-ACM with a surface area of 613.8 m2/g and a pore volume 0.366 cm3/g was obtained. A typical supercapacitor with our 3D-NDP-ACMs as the functioning electrodes gave a specific capacitance stabilized at 216 F/g even after 3000 cycles, demonstrating the advantageous performance of the PAN/CNT based 3D-NDP-ACMs.

  2. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors.

    PubMed

    Wang, Yanqing; Fugetsu, Bunshi; Wang, Zhipeng; Gong, Wei; Sakata, Ichiro; Morimoto, Shingo; Hashimoto, Yoshio; Endo, Morinobu; Dresselhaus, Mildred; Terrones, Mauricio

    2017-01-11

    Nitrogen-doped porous activated carbon monoliths (NDP-ACMs) have long been the most desirable materials for supercapacitors. Unique to the conventional template based Lewis acid/base activation methods, herein, we report on a simple yet practicable novel approach to production of the three-dimensional NDP-ACMs (3D-NDP-ACMs). Polyacrylonitrile (PAN) contained carbon nanotubes (CNTs), being pre-dispersed into a tubular level of dispersions, were used as the starting material and the 3D-NDP-ACMs were obtained via a template-free process. First, a continuous mesoporous PAN/CNT based 3D monolith was established by using a template-free temperature-induced phase separation (TTPS). Second, a nitrogen-doped 3D-ACM with a surface area of 613.8 m(2)/g and a pore volume 0.366 cm(3)/g was obtained. A typical supercapacitor with our 3D-NDP-ACMs as the functioning electrodes gave a specific capacitance stabilized at 216 F/g even after 3000 cycles, demonstrating the advantageous performance of the PAN/CNT based 3D-NDP-ACMs.

  3. Fabrication of carbon nanotube nanogap electrodes by helium ion sputtering for molecular contacts

    SciTech Connect

    Thiele, Cornelius; Vieker, Henning; Beyer, André; Gölzhäuser, Armin; Flavel, Benjamin S.; Hennrich, Frank; Muñoz Torres, David; Eaton, Thomas R.; Mayor, Marcel; Kappes, Manfred M.; Löhneysen, Hilbert v.; and others

    2014-03-10

    Carbon nanotube nanogaps have been used to contact individual organic molecules. However, the reliable fabrication of a truly nanometer-sized gap remains a challenge. We use helium ion beam lithography to sputter nanogaps of only (2.8 ± 0.6) nm size into single metallic carbon nanotubes embedded in a device geometry. The high reproducibility of the gap size formation provides a reliable nanogap electrode testbed for contacting small organic molecules. To demonstrate the functionality of these nanogap electrodes, we integrate oligo(phenylene ethynylene) molecular rods, and measure resistance before and after gap formation and with and without contacted molecules.

  4. Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing

    PubMed Central

    Miller, Philip R.; Gittard, Shaun D.; Edwards, Thayne L.; Lopez, DeAnna M.; Xiao, Xiaoyin; Wheeler, David R.; Monteiro-Riviere, Nancy A.; Brozik, Susan M.; Polsky, Ronen; Narayan, Roger J.

    2011-01-01

    In this study, carbon fiber electrodes were incorporated within a hollow microneedle array, which was fabricated using a digital micromirror device-based stereolithography instrument. Cell proliferation on the acrylate-based polymer used in microneedle fabrication was examined with human dermal fibroblasts and neonatal human epidermal keratinocytes. Studies involving full-thickness cadaveric porcine skin and trypan blue dye demonstrated that the hollow microneedles remained intact after puncturing the outermost layer of cadaveric porcine skin. The carbon fibers underwent chemical modification in order to enable detection of hydrogen peroxide and ascorbic acid; electrochemical measurements were demonstrated using integrated electrode-hollow microneedle devices. PMID:21522504

  5. Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing.

    PubMed

    Miller, Philip R; Gittard, Shaun D; Edwards, Thayne L; Lopez, Deanna M; Xiao, Xiaoyin; Wheeler, David R; Monteiro-Riviere, Nancy A; Brozik, Susan M; Polsky, Ronen; Narayan, Roger J

    2011-03-30

    In this study, carbon fiber electrodes were incorporated within a hollow microneedle array, which was fabricated using a digital micromirror device-based stereolithography instrument. Cell proliferation on the acrylate-based polymer used in microneedle fabrication was examined with human dermal fibroblasts and neonatal human epidermal keratinocytes. Studies involving full-thickness cadaveric porcine skin and trypan blue dye demonstrated that the hollow microneedles remained intact after puncturing the outermost layer of cadaveric porcine skin. The carbon fibers underwent chemical modification in order to enable detection of hydrogen peroxide and ascorbic acid; electrochemical measurements were demonstrated using integrated electrode-hollow microneedle devices.

  6. Carbon Tube Electrodes for Electrocardiography-Gated Cardiac Multimodality Imaging in Mice

    PubMed Central

    Choquet, Philippe; Goetz, Christian; Aubertin, Gaelle; Hubele, Fabrice; Sannié, Sébastien; Constantinesco, André

    2011-01-01

    This report describes a simple design of noninvasive carbon tube electrodes that facilitates electrocardiography (ECG) in mice during cardiac multimodality preclinical imaging. Both forepaws and the left hindpaw, covered by conductive gel, of mice were placed into the openings of small carbon tubes. Cardiac ECG-gated single-photon emission CT, X-ray CT, and MRI were tested (n = 60) in 20 mice. For all applications, electrodes were used in a warmed multimodality imaging cell. A heart rate of 563 ± 48 bpm was recorded from anesthetized mice regardless of the imaging technique used, with acquisition times ranging from 1 to 2 h. PMID:21333165

  7. Electrochemical oxidation of cisatracurium on carbon paste electrode and its analytical applications.

    PubMed

    Torres, R F; Mochón, M C; Sánchez, J C; Bello López, M A; Pérez, A G

    2001-03-16

    The electrochemical oxidation of cisatracurium was investigated by cyclic voltammetry and differential pulse voltammetry at a carbon paste electrode and the experimental parameters have been optimized in order to obtain the optimum analytical signal. A differential pulse voltammetric method with carbon paste electrode is described for the determination of cisatracurium with detection limit of 0.38 mug/ml and quantitation limit of 1.26 mug/ml. The proposed method was applied to determine the content of cisatracurium in human urine and human serum, obtaining accurate and precise results.

  8. Highly sensitive detection of hexavalent chromium utilizing a sol-gel/carbon nanotube modified electrode.

    PubMed

    Rosolina, Samuel M; Bragg, Stefanie A; Ouyang, Ruizhuo; Chambers, James Q; Xue, Zi-Ling

    2016-11-15

    A pyridine-functionalized thin film has been fabricated to selectively preconcentrate Cr(VI) anions for electrochemical detection in the 5-300 μg L(-1) range. Glassy carbon electrodes were modified through physical deposition of single-walled carbon nanotubes (SWNTs) on the electrode surface, followed by electrochemical deposition of a sol-gel containing a 2-pyridine functional group. The use of SWNTs has increased sensitivity for Cr(VI) detection in aqueous solutions, providing a detection limit of 0.8 μg L(-1).

  9. Electrode

    SciTech Connect

    Clere, T.M.

    1983-08-30

    A 3-dimensional electrode is disclosed having substantially coplanar and substantially flat portions and ribbon-like curved portions, said curved portions being symmetrical and alternating in rows above and below said substantially coplanar, substantially flat portions, respectively, and a geometric configuration presenting in one sectional aspect the appearance of a series of ribbon-like oblate spheroids interrupted by said flat portions and in another sectional aspect, 90/sup 0/ from said one aspect, the appearance of a square wave pattern.

  10. Characterisation of porous carbon electrode materials used in proton exchange membrane fuel cells via gas adsorption

    NASA Astrophysics Data System (ADS)

    Watt-Smith, M. J.; Rigby, S. P.; Ralph, T. R.; Walsh, F. C.

    Porous carbon materials are typically used in both the substrate (typically carbon paper) and the electrocatalyst supports (often platinised carbon) within proton exchange membrane fuel cells. Gravimetric nitrogen adsorption has been studied at a carbon paper substrate, two different Pt-loaded carbon paper electrodes and three particulate carbon blacks. N 2 BET surface areas and surface fractal dimensions were determined using the fractal BET and Frenkel-Halsey-Hill models for all but one of the materials studied. The fractal dimensions of the carbon blacks obtained from gas adsorption were compared with those obtained independently by small angle X-ray scattering and showed good agreement. Density functional theory was used to characterise one of the carbon blacks, as the standard BET model was not applicable.

  11. Evaluation of the electrochemical behavior of pentachlorophenol by cyclic voltammetry on carbon paste electrode modified by humic acids.

    PubMed

    Airoldi, Flávia P S; Da Silva, Wilson T L; Crespilho, Frank N; Rezende, Maria O O

    2007-01-01

    Humic substances, or natural recalcitrant organic matter, have an important role in the environment for their plant nutritional functions or for their capability to control the mobility of xenobiotic substances, such as pesticides. To verify the electrochemical behavior of pentachlorophenol (PCP), cyclic voltammetry was used because of its versatility. The following two different electrodes were used: carbon paste electrode (CPE) and carbon paste electrode chemically modified with humic acid (HACMCPE). The results demonstrated that PCP was better accumulated at the HACMCPE electrode, as a consequence of a larger current signal than at the CPE electrode. Cyclic voltammograms showed oxidation steps of PCP itself and probable production of quinonelike compounds.

  12. Voltammetric determination of cysteine using carbon paste electrode modified with Co(II)-Y zeolite.

    PubMed

    Nezamzadeh-Ejhieh, Alireza; Hashemi, Habibeh-Sadat

    2012-01-15

    A novel zeolite modified electrode for use in voltammetric determination of l-cysteine (CySH) was described. The electrode comprises a Co(II)-exchanged zeolite Y as modifier in carbon paste matrix. First, the electrochemical behavior of Co(II) in modified carbon paste electrode was studied. The results demonstrated that diffusion can control the redox process of cobalt cations at the surface of the modified electrode. Then, the behavior of the electrode in the presence of CySH was studied by using cyclic voltammetry and a novel behavior was observed. In high concentration of CySH (above 10 mmol L(-1)), one pair of semi-reversible electrochemical extra peak was observed which was assigned to the processes of oxidation-reduction of CySH at the unmodified and modified electrode. Acidic conditions with respect to the neutral one cause an increase in the electrode response. The modified electrode showed a suitable linear calibration graph in the concentration range of 1.0×10(-9)-1.0×10(-3)mol L(-1) cysteine with a detection limit of 2.37×10(-10)mol L(-1). The influence of potential interfering substances on the peak current was studied and the results showed that the method was highly selective for determination of CySH. Thus, the proposed electrode was used for the determination of CySH in real samples including human blood serum, urine, N-acetylcysteine tablet and powdered poultry feed and the satisfactory results were obtained. Typical features of the sensor can be summarized as: low cost, simple preparation, fast response, good stability and selectivity, wide linear range, low detection limit and high reproducibility.

  13. A novel sensor for cephalosporins based on electrocatalytic oxidation by poly(o-anisidine)/SDS/Ni modified carbon paste electrode.

    PubMed

    Ojani, Reza; Raoof, Jahan-Bakhsh; Zamani, Saeed

    2010-06-15

    In this work for first time, the electrocatalytic oxidations of some cephalosporins were carried out by poly(o-anisidine)/SDS/Ni modified carbon paste electrode using cyclic voltammetry, chronoamperometry and chronocoulometry methods. At first, poly(o-anisidine) was formed by cyclic voltammetry in monomer solution containing sodium dodesyl sulfate (SDS), on carbon paste electrode surface. Then, Ni(II) ions were incorporated to electrode by immersion of the polymeric modified electrode having amine group in 0.1molL(-1) Ni(II) ion solution. A good redox behavior was observed for the Ni(OH)(2)/NiOOH couple on the surface of this electrode. Cephalosporins were successfully oxidized on the surface of this nickel ions dispersed poly(o-anisidine) modified carbon paste electrode. The electrocatalytic oxidation peak currents of cephalosporins were linearly dependent on their concentration. Electrode was successfully applied to determine cephalosporins in pharmaceutical preparations.

  14. Nanoporous carbon derived from agro-waste pineapple leaves for supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Sodtipinta, Jedsada; Amornsakchai, Taweechai; Pakawatpanurut, Pasit

    2017-09-01

    By using KOH as the chemical activating agent in the synthesis, the activated carbon derived from pineapple leaf fiber (PALF) was prepared. The structure, morphology, and the surface functional groups of the as-prepared activated carbon were investigated using x-ray diffraction, field emission scanning electron microscope equipped with energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The electrochemical behavior and performance of the as-synthesized activated carbon electrode were measured using the cyclic voltammetry and the electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte solution in three-electrode setup. The activated carbon electrode exhibited the specific capacitance of 131.3 F g-1 at a scan rate of 5 mV s-1 with excellent cycling stability. The capacitance retention after 1000 cycles was about 97% of the initial capacitance at a scan rate of 30 mV s-1. Given these good electrochemical properties along with the high abundance of PALF, this activated carbon electrode has the potential to be one of the materials for future large-scale production of the electrochemical capacitors. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  15. A Free-Standing Sulfur/Nitrogen-Doped Carbon Nanotube Electrode for High-Performance Lithium/Sulfur Batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yin, Fuxing; Zhang, Yongguang; Zhang, Chengwei; Mentbayeva, Almagul; Umirov, Nurzhan; Xie, Hongxian; Bakenov, Zhumabay

    2015-11-01

    A free-standing sulfur/nitrogen-doped carbon nanotube (S/N-CNT) composite prepared via a simple solution method was first studied as a cathode material for lithium/sulfur batteries. By taking advantage of the self-weaving behavior of N-CNT, binders and current collectors are rendered unnecessary in the cathode, thereby simplifying its manufacturing and increasing the sulfur weight ratio in the electrode. Transmission electronic microscopy showed the formation of a highly developed core-shell tubular structure consisting of S/N-CNT composite with uniform sulfur coating on the surface of N-CNT. As a core in the composite, the N-CNT with N functionalization provides a highly conductive and mechanically flexible framework, enhancing the electronic conductivity and consequently the rate capability of the material.

  16. Carbon-Based Microbial-Fuel-Cell Electrodes: From Conductive Supports to Active Catalysts.

    PubMed

    Li, Shuang; Cheng, Chong; Thomas, Arne

    2017-02-01

    Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast-emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon-based materials can function as catalysts for the oxygen-reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon-based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon-electrode-based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described.

  17. Pristine multi-walled carbon nanotubes/SDS modified carbon paste electrode as an amperometric sensor for epinephrine.

    PubMed

    Thomas, Tony; Mascarenhas, Ronald J; D' Souza, Ozma J; Detriche, Simon; Mekhalif, Zineb; Martis, Praveen

    2014-07-01

    An amperometric sensor for the determination of epinephrine (EP) was fabricated by modifying the carbon paste electrode (CPE) with pristine multi-walled carbon nanotubes (pMWCNTs) using bulk modification followed by drop casting of sodium dodecyl sulfate (SDS) onto the surface for its optimal potential application. The modified electrode showed an excellent electrocatalytic activity towards EP by decreasing the overpotential and greatly enhancing the current sensitivity. FE-SEM images confirmed the dispersion of pMWCNTs in the CPE matrix. EDX analysis ensured the surface coverage of SDS. A comparative study of pMWCNTs with those of oxidized MWCNTs (MWCNTsOX) modified electrodes reveals that the former is the best base material for the construction of the sensor with advantages of lower oxidation overpotential and the least background current. The performance of the modified electrode was impressive in terms of the least charge transfer resistance (Rct), highest values for diffusion coefficient (DEP) and standard heterogeneous electron transfer rate constant (k°). Analytical characterization of the modified electrode exhibited two linear dynamic ranges from 1.0×10(-7) to 1.0×10(-6)M and 1.0×10(-6) to 1.0×10(-4)M with a detection limit of (4.5±0.18)×10(-8)M. A 100-fold excess of serotonin, acetaminophen, folic acid, uric acid, tryptophan, tyrosine and cysteine, 10-fold excess of ascorbic acid and twofold excess of dopamine do not interfere in the quantification of EP at this electrode. The analytical applications of the modified electrode were demonstrated by determining EP in spiked blood serum and adrenaline tartrate injection. The modified electrode involves a simple fabrication procedure, minimum usage of the modifier, quick response, excellent stability, reproducibility and anti-fouling effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode.

    PubMed

    Lin, Xiangqin; Li, Yongxin

    2006-08-15

    On the top of a multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode (MWNTs/GCE), Pt nanoclusters were electrochemically deposited, fabricating a Pt/MWNTs composite modified electrode, Pt/MWNTs/GCE. X-ray photoelectron spectroscopy, powder X-ray diffraction and field emission scanning electron microscope were used for the surface characterization of the electrode, and demonstrated the formation and distribution of Pt clusters of Pt nanoparticles of 8.4 nm in averaged size in the MWNTs matrix. The preliminary study found that this composite modified electrode has strong electrocatalytic activity toward the oxidation of estrogens involving estradiol, estrone and estriol. The voltammetric behavior of estrogens on this electrode was investigated by cyclic voltammetry, linear sweep voltammetry and square-wave voltammetry. In comparison with the MWNTs/GCE or a Pt nanoparticles modified GCE prepared in the similar way, this composite modified electrode exhibited much higher current sensitivity and catalytic activity. This electrode is also stable. The linear range of square-wave voltammetric determination was 5.0 x 10(-7)-1.5 x 10(-5)mol/L for estradiol, 2.0 x 10(-6)-5.0 x 10(-5)mol/L for estrone, and 1.0 x 10(-6)-7.5 x 10(-5)mol/L for estriol. Under an assumption that the concentration ratio of estradiol:estrone:estriol is 2:2:1, the real sample of blood serums was tested for the determination using this electrode. Satisfactory result was obtained with averaged recovery of 105%.

  19. Glucose biosensor based on a glassy carbon electrode modified with polythionine and multiwalled carbon nanotubes.

    PubMed

    Tang, Wenwei; Li, Lei; Wu, Lujun; Gong, Jiemin; Zeng, Xinping

    2014-01-01

    A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good electrical conductivity of PTH and MWCNTs, the current response was enlarged. The sensor was a parallel multi-component reaction system (PMRS) and excellent electrocatalytic performance for glucose could be obtained without a mediator. The glucose sensor had a working voltage of -0.42 V, an optimum working temperature of 25°C, an optimum working pH of 7.0, and the best percentage of polytetrafluoroethylene emulsion (PTFE) in the outer composite film was 2%. Under the optimised conditions, the biosensor displayed a high sensitivity of 2.80 µA mM(-1) cm(-2) and a low detection limit of 5 µM (S/N = 3), with a response time of less than 15 s and a linear range of 0.04 mM to 2.5 mM. Furthermore, the fabricated biosensor had a good selectivity, reproducibility, and long-term stability, indicating that the novel CTS+PTFE/GOx/MWCNTs/PTH composite is a promising material for immobilization of biomolecules and fabrication of third generation biosensors.

  20. Glucose Biosensor Based on a Glassy Carbon Electrode Modified with Polythionine and Multiwalled Carbon Nanotubes

    PubMed Central

    Tang, Wenwei; Li, Lei; Wu, Lujun; Gong, Jiemin; Zeng, Xinping

    2014-01-01

    A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like “conductive wires” connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good electrical conductivity of PTH and MWCNTs, the current response was enlarged. The sensor was a parallel multi-component reaction system (PMRS) and excellent electrocatalytic performance for glucose could be obtained without a mediator. The glucose sensor had a working voltage of −0.42 V, an optimum working temperature of 25°C, an optimum working pH of 7.0, and the best percentage of polytetrafluoroethylene emulsion (PTFE) in the outer composite film was 2%. Under the optimised conditions, the biosensor displayed a high sensitivity of 2.80 µA mM−1 cm−2 and a low detection limit of 5 µM (S/N = 3), with a response time of less than 15 s and a linear range of 0.04 mM to 2.5 mM. Furthermore, the fabricated biosensor had a good selectivity, reproducibility, and long-term stability, indicating that the novel CTS+PTFE/GOx/MWCNTs/PTH composite is a promising material for immobilization of biomolecules and fabrication of third generation biosensors. PMID:24816121

  1. High spatial resolution single multiwalled carbon nanotube electrode for stimulation, recording, and whole cell voltage clamping of electrically active cells

    NASA Astrophysics Data System (ADS)

    de Asis, Edward D.; Leung, Joseph; Wood, Sally; Nguyen, Cattien V.

    2009-10-01

    We report the stimulation, recording, and voltage clamp of muscle fibers using a 30 nm diameter single multiwalled carbon nanotube electrode (sMWNT electrode) tip. Because of the lower access resistance, the sMWNT electrode conducts extracellular and intracellular stimulation more efficiently compared to glass micropipettes. The sMWNT electrode records field potentials and action potentials and performs whole cell voltage clamping of single fibers.

  2. Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes

    NASA Astrophysics Data System (ADS)

    Bachman, John C.; Kavian, Reza; Graham, Daniel J.; Kim, Dong Young; Noda, Suguru; Nocera, Daniel G.; Shao-Horn, Yang; Lee, Seung Woo

    2015-05-01

    Electrochemical energy-storage devices have the potential to be clean and efficient, but their current cost and performance limit their use in numerous transportation and stationary applications. Many organic molecules are abundant, economical and electrochemically active; if selected correctly and rationally designed, these organic molecules offer a promising route to expand the applications of these energy-storage devices. In this study, polycyclic aromatic hydrocarbons are introduced within a functionalized few-walled carbon nanotube matrix to develop high-energy, high-power positive electrodes for pseudocapacitor applications. The reduction potential and capacity of various polycyclic aromatic hydrocarbons are correlated with their interaction with the functionalized few-walled carbon nanotube matrix, chemical configuration and electronic structure. These findings provide rational design criteria for nanostructured organic electrodes. When combined with lithium negative electrodes, these nanostructured organic electrodes exhibit energy densities of ~350 Wh kg-1electrode at power densities of ~10 kW kg-1electrode for over 10,000 cycles.

  3. Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes

    PubMed Central

    Bachman, John C.; Kavian, Reza; Graham, Daniel J.; Kim, Dong Young; Noda, Suguru; Nocera, Daniel G.; Shao-Horn, Yang; Lee, Seung Woo

    2015-01-01

    Electrochemical energy-storage devices have the potential to be clean and efficient, but their current cost and performance limit their use in numerous transportation and stationary applications. Many organic molecules are abundant, economical and electrochemically active; if selected correctly and rationally designed, these organic molecules offer a promising route to expand the applications of these energy-storage devices. In this study, polycyclic aromatic hydrocarbons are introduced within a functionalized few-walled carbon nanotube matrix to develop high-energy, high-power positive electrodes for pseudocapacitor applications. The reduction potential and capacity of various polycyclic aromatic hydrocarbons are correlated with their interaction with the functionalized few-walled carbon nanotube matrix, chemical configuration and electronic structure. These findings provide rational design criteria for nanostructured organic electrodes. When combined with lithium negative electrodes, these nanostructured organic electrodes exhibit energy densities of ∼350 Wh kg−1electrode at power densities of ∼10 kW kg−1electrode for over 10,000 cycles. PMID:25943905

  4. Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers.

    PubMed

    Crespo, Gastón A; Macho, Santiago; Rius, F Xavier

    2008-02-15

    This study developed a new type of all-solid-state ion-selective electrode based on a transducing layer of a network of single-walled carbon nanotubes. The extraordinary capacity of carbon nanotubes to promote electron transfer between heterogeneous phases made the presence of electroactive polymers or any other ion-to-electron-transfer promoter unnecessary. The new transducer layer was characterized by environmental scanning electron microscopy and electrochemical impedance spectroscopy. The stability of the electrical potential of the new solid-contact electrode was examined by performing current-reversal chronopotentiometry, and the influence of the interfacial water film was assessed by the potentiometric water layer test. The performance of the new electrode was evaluated by determining K+ with an ion-selective membrane that contained the well-known valinomycin ion carrier. The new electrode had a Nernstian slope (58.4 mV/decade), dynamic ranges of four logarithmic units, and selectivities and limits of detection comparable to other solid-contact electrodes. The short response time (less than 10 s for activities higher than 10(-5.5) M) and the stability of the signal over several days makes these new electrodes very promising candidates for attaining true miniaturization.

  5. Graphene-coated carbon fiber cloth for flexible electrodes of glucose fuel cells

    NASA Astrophysics Data System (ADS)

    Hoshi, Kazuki; Muramatsu, Kazuo; Sumi, Hisato; Nishioka, Yasushiro

    2016-02-01

    In this work, we fabricated flexible electrodes for a miniaturized, simple structured, and flexible glucose biofuel cell (BFC) using a graphene-coated carbon fiber cloth (GCFC). The areas of the anode and cathode electrodes were 3 × 10 mm2. The anode area was coated with the enzyme glucose oxidase, and the cathode area was coated with the enzyme bilirubin oxidase. No ion-exchange film was needed because glucose oxidase selectively oxidizes glucose and bilirubin oxidase selectively reduces oxygen. The power density of the BFC with GCFC electrodes in a phosphate buffer solution of 200 mM glucose solution at room temperature was 34.3 µW/cm2 at 0.43 V. The power density of a BFC using carbon fiber cloth (CFC) without graphene modification was 18.5 µW/cm2 at 0.13 V. The BFC with the GCFC electrode continued to function longer than 24 h with a power density higher than 5 µW/cm2. These effects were attributed to the much larger effective surface areas of the GCFC electrodes that maintain more enzymes than those of the CFC electrodes.

  6. Lithium-ion capacitors with 2D Nb2CTx (MXene) - carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Byeon, Ayeong; Glushenkov, Alexey M.; Anasori, Babak; Urbankowski, Patrick; Li, Jingwen; Byles, Bryan W.; Blake, Brian; Van Aken, Katherine L.; Kota, Sankalp; Pomerantseva, Ekaterina; Lee, Jae W.; Chen, Ying; Gogotsi, Yury

    2016-09-01

    There is a growing interest to hybrid energy storage devices, such as lithium-ion capacitors, in which battery-type electrodes are combined with capacitor-type ones. It is anticipated that the energy density (either gravimetric or volumetric) of lithium-ion capacitors is improved if pseudocapacitive or fast insertion materials are used instead of conventional activated carbon (AC) in the capacitor-type electrode. MXenes, a new family of two-dimensional transition metal carbides, demonstrate metallic conductivity and fast charge-discharge behavior that make them suitable for this application. In this study, we move beyond single electrodes, half-cell studies and demonstrate three types of hybrid cells using Nb2CTx-carbon nanotube (CNT) films. It is shown that lithiated graphite/Nb2CTx-CNT, Nb2CTx-CNT/LiFePO4 and lithiated Nb2CTx-CNT/Nb2CTx-CNT cells are all able to operate within 3 V voltage windows and deliver capacities of 43, 24 and 36 mAh/g (per total weight of two electrodes), respectively. Moreover, the polarity of the electrodes can be reversed in the symmetric Nb2CTx-CNT cells from providing a positive potential between 0 and 3 V to a negative one from -3 to 0 V. It is shown that the volumetric energy density (50-70 Wh/L) of our first-generation devices with MXene electrodes exceeds that of a lithium titanate/AC capacitor.

  7. Comparative study of different alcohol sensors based on Screen-Printed Carbon Electrodes.

    PubMed

    Costa Rama, Estefanía; Biscay, Julien; González García, María Begoña; Julio Reviejo, A; Pingarrón Carrazón, José Manuel; Costa García, Agustín

    2012-05-30

    Different very simple single-use alcohol enzyme sensors were developed using alcohol oxidase (AOX) from three different yeast, Hansenula sp., Pichia pastoris and Candida boidinii, and employing three different commercial mediator-based Screen-Printed Carbon Electrodes as transducers. The mediators tested, Prussian Blue, Ferrocyanide and Co-phthalocyanine were included into the ink of the working electrode. The procedure to obtain these sensors consists of the immobilization of the enzyme on the electrode surface by adsorption. For the immobilization, an AOX solution is deposited on the working electrode and left until dried (1h) at room temperature. The best results were obtained with the biosensor using Screen-Printed Co-phthalocyanine/Carbon Electrode and AOX from Hansenula sp. The reduced cobalt-phthalocyanine form is amperometrically detected at +0.4V (vs. Ag pseudo reference electrode). This sensor shows good sensitivity (1211 nA mM(-1)), high precision (2.1% RSD value for the slope value of the calibration plot) and wide linear response (0.05-1.00 mM) for ethanol determination. The sensor provides also accurate results for ethanol quantification in alcoholic drinks. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Development of carbon paste electrodes modified by molecularly imprinted polymer as potentiometry sensor of uric acid

    NASA Astrophysics Data System (ADS)

    Darmokoesoemo, Handoko; Khasanah, Miratul; Widayanti, Nesti; Kadmi, Yassine; Elmsellem, Hicham; Kusuma, Heri Septya

    The development of carbon paste electrodes modified by molecularly imprinted polymer (MIP) for the potentiometric analysis of uric acid was carried out in this study. The aim of the study was to determine the optimum composition of the electrode constituent material, the optimum pH of the uric acid solution, and the performance of the electrode, which was measured by its response time, measurement range, Nernst factor, detection limits, selectivity coefficient, precision, accuracy, and life time. MIP was made from methyl methacrylate as the monomer, ethylene glycol dimethacrylate as the cross-linker, and uric acid as the template. Electrodes that give optimum performance were produced from carbon, MIP, and paraffin with a ratio of 40:25:35 (% w/w). The obtained results show that the measurement of uric acid solution gives optimum results at pH 5, Nernst factor of 30.19 mV/decade, and a measurement range of 10-6-10-3 M. The minimum detection limit of this method was 3.03.10-6 M, and the precision and accuracy toward uric acid with concentration of 10-6-10-3 M ranged between 1.36-2.03% and 63.9-166%. The selectivity coefficient value was less than 1, which indicated that the electrode was selective against uric acid and not interfered with by urea. This electrode has a response time of less than 2 min; its life time is 8 weeks with 104 usage times.

  9. Carbon based electrodes modified with horseradish peroxidase immobilized in conducting polymers for acetaminophen analysis.

    PubMed

    Tertis, Mihaela; Florea, Anca; Sandulescu, Robert; Cristea, Cecilia

    2013-04-11

    The development and optimization of new biosensors with horseradish peroxidase immobilized in carbon nanotubes-polyethyleneimine or polypyrrole nanocomposite film at the surface of two types of transducer is described. The amperometric detection of acetaminophen was carried out at -0.2 V versus Ag/AgCl using carbon based-screen printed electrodes (SPEs) and glassy carbon electrodes (GCEs) as transducers. The electroanalytical parameters of the biosensors are highly dependent on their configuration and on the dimensions of the carbon nanotubes. The best limit of detection obtained for acetaminophen was 1.36 ± 0.013 μM and the linear range 9.99-79.01 μM for the HRP-SWCNT/PEI in GCE configuration. The biosensors were successfully applied for the detection of acetaminophen in several drug formulations.

  10. Study of the influence of carbon on the negative lead-acid battery electrodes

    NASA Astrophysics Data System (ADS)

    Bača, Petr; Micka, Karel; Křivík, Petr; Tonar, Karel; Tošer, Pavel

    Experiments were made with negative lead-acid battery electrodes doped with different concentrations of powdered carbon. It turned out that the rate of formation decreased with the rising concentration of carbon added into the active material. During accelerated cycling in the PSoC regime, the cycle life showed a maximum at a concentration of carbon near 1%, whereas at lower or higher concentrations the cycle life was profoundly lower. A marked increase of the active mass resistance with the cycle number was recorded at carbon concentrations above 2%. Orientation experiments showed that compression of the lead-acid laboratory cells caused an increase of the cycle life of the negative electrode in the studied regime.

  11. Carbon nanotube yarn electrodes for enhanced detection of neurotransmitter dynamics in live brain tissue.

    PubMed

    Schmidt, Andreas C; Wang, Xin; Zhu, Yuntian; Sombers, Leslie A

    2013-09-24

    This work demonstrates the potential of nanoscale carbon electrode materials for improved detection of electroactive neurotransmitter dynamics in the brain. Individual multiwalled carbon nanotubes were synthesized via chemical vapor deposition, spun into yarns, and used in the fabrication of disk microelectrodes that were subsequently characterized using scanning electron and atomic force microscopies. The carbon nanotube yarn electrodes were coupled with fast-scan cyclic voltammetry and used to discriminately detect rapid neurotransmitter fluctuations in acute brain slices. The results demonstrate that the distinct structural and electronic properties of the nanotubes result in improved selectivity, sensitivity, and spatial resolution, as well as faster apparent electron transfer kinetics when compared to the conventional carbon-fiber microelectrodes typically used in vivo.

  12. Carbon Based Electrodes Modified with Horseradish Peroxidase Immobilized in Conducting Polymers for Acetaminophen Analysis

    PubMed Central

    Tertis, Mihaela; Florea, Anca; Sandulescu, Robert; Cristea, Cecilia

    2013-01-01

    The development and optimization of new biosensors with horseradish peroxidase immobilized in carbon nanotubes-polyethyleneimine or polypyrrole nanocomposite film at the surface of two types of transducer is described. The amperometric detection of acetaminophen was carried out at −0.2 V versus Ag/AgCl using carbon based-screen printed electrodes (SPEs) and glassy carbon electrodes (GCEs) as transducers. The electroanalytical parameters of the biosensors are highly dependent on their configuration and on the dimensions of the carbon nanotubes. The best limit of detection obtained for acetaminophen was 1.36 ± 0.013 μM and the linear range 9.99–79.01 μM for the HRP-SWCNT/PEI in GCE configuration. The biosensors were successfully applied for the detection of acetaminophen in several drug formulations. PMID:23580052

  13. Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes

    PubMed Central

    Stapleton, Andrew J; Yambem, Soniya D; Johns, Ashley H; Afre, Rakesh A; Ellis, Amanda V; Shapter, Joe G; Andersson, Gunther G; Quinton, Jamie S; Burn, Paul L; Meredith, Paul

    2015-01-01

    Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω−1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems. PMID:27877771

  14. Electrode Degradation Study of Vertically Aligned Carbon Nanotubes on a 3D Integrated Current Collector

    SciTech Connect

    Schroeder, Marshall A.; Pearse, Alexander J.; Kozen, Alexander C.; Lee, Sang Bok; Rubloff, Gary W.; Noked, Malachi

    2015-01-01

    Assembling nanostructured materials into rationally designed mesoscale arrays for use as electrodes in electrochemical systems is anticipated to reveal new challenges, particularly concerning new synthesis modes, architecture-related performance limitations, and degradation mechanisms. In this work, we focus on characterizing the degradation of densely packed vertically aligned carbon nanotubes (VACNTs) grown directly on a metallic foam to form a self-supporting, hierarchically porous 3D electrode architecture with an integrated current collector. The degradation pathways of this electrode, observed with microscopy and semi in-situ XPS after cycling as a redox scaffold in aprotic Li—O2 and Li—S batteries, shed new light on important design, performance, and degradation considerations for integrated mesoscale electrode architectures.

  15. Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes.

    PubMed

    Stapleton, Andrew J; Yambem, Soniya D; Johns, Ashley H; Afre, Rakesh A; Ellis, Amanda V; Shapter, Joe G; Andersson, Gunther G; Quinton, Jamie S; Burn, Paul L; Meredith, Paul; Lewis, David A

    2015-04-01

    Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω(-1) is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.

  16. Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes

    NASA Astrophysics Data System (ADS)

    Stapleton, Andrew J.; Yambem, Soniya D.; Johns, Ashley H.; Afre, Rakesh A.; Ellis, Amanda V.; Shapter, Joe G.; Andersson, Gunther G.; Quinton, Jamie S.; Burn, Paul L.; Meredith, Paul; Lewis, David A.

    2015-04-01

    Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω-1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.

  17. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications.

    PubMed

    Park, Dong-Wook; Schendel, Amelia A; Mikael, Solomon; Brodnick, Sarah K; Richner, Thomas J; Ness, Jared P; Hayat, Mohammed R; Atry, Farid; Frye, Seth T; Pashaie, Ramin; Thongpang, Sanitta; Ma, Zhenqiang; Williams, Justin C

    2014-10-20

    Neural micro-electrode arrays that are transparent over a broad wavelength spectrum from ultraviolet to infrared could allow for simultaneous electrophysiology and optical imaging, as well as optogenetic modulation of the underlying brain tissue. The long-term biocompatibility and reliability of neural micro-electrodes also require their mechanical flexibility and compliance with soft tissues. Here we present a graphene-based, carbon-layered electrode array (CLEAR) device, which can be implanted on the brain surface in rodents for high-resolution neurophysiological recording. We characterize optical transparency of the device at >90% transmission over the ultraviolet to infrared spectrum and demonstrate its utility through optical interface experiments that use this broad spectrum transparency. These include optogenetic activation of focal cortical areas directly beneath electrodes, in vivo imaging of the cortical vasculature via fluorescence microscopy and 3D optical coherence tomography. This study demonstrates an array of interfacing abilities of the CLEAR device and its utility for neural applications.

  18. Performance capabilities of EDM of high carbon high chromium steel with copper and brass electrodes

    NASA Astrophysics Data System (ADS)

    Surekha, B.; Swain, Sudiptha; Suleman, Abu Jafar; Choudhury, Suvan Dev

    2017-07-01

    The paper address the statistical modeling of input-output relationships of electric discharge machining. In the present work, peak current (I) pulse on time (T) and gap voltage of electric discharge machining (EDM) process are chosen as control parameters to analyze the performance of the process. The output characteristics, namely radial overcut, electrode wear rate (EWR) and metal removal rate (MRR) are treated as the responses. A full factorial design (FFD) of experiments has been used to conduct the experiments and linear regression models are developed for different process characteristics. While conducting the experiments, high carbon and high chromium steel is considered as work piece material and brass and copper are used as electrode material. It is important to note that the experimental conditions are kept similar while machining with the help of different electrode materials. The data obtained from the experiments has been used to develop the regression models for three process parameters for two electrode materials.

  19. Portable cholesterol detection with polyaniline-carbon nanotube film based interdigitated electrodes

    NASA Astrophysics Data System (ADS)

    Nguyen, Le Huy; Binh Nguyen, Hai; Thinh Nguyen, Ngoc; Dung Nguyen, Tuan; Tran, Dai Lam

    2012-03-01

    Polyaniline-carboxylic multiwalled carbon nanotubes composite film (PANi-MWCNT) has been polymerized on the surface of interdigitated platinum electrode (fabricated by MEMS technology) which was compatibly connected to Autolab interface via universal serial bus (USB). An amperometric biosensor based on covalent immobilization of cholesterol oxidase (ChOx) on PANi-MWCNT film with potassium ferricyanide (FeCN) as the redox mediator was developed. The mediator helps to shuttle the electrons between the immobilized ChOx and the PANi-MWCNT electrode, therefore operating at a low potential of -0.3 V compared to the saturated calomel electrode (SCE). This potential precludes the interfering compounds from oxidization. The bio-electrode exhibits good linearity from 0.02 to 1.2 mM cholesterol concentration with a correlation coefficient of 0.9985.

  20. Gold nanoparticle decorated multi-walled carbon nanotubes as counter electrode for dye sensitized solar cells.

    PubMed

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2012-11-01

    A novel counter electrode material for dye sensitized solar cells (DSSCs) composed of nanostructured Au particles decorated on functionalized multi-walled carbon nanotubes (f-MWNTs) is demonstrated for the first time. MWNTs synthesized by catalytic chemical vapor deposition technique are purified and functionalized by treating with concentrated acids. Au nanoparticles are decorated on f-MWNTs by a rapid and facile microwave assisted polyol reduction method. The materials are characterized by X-ray diffractometry, Fourier transform infra red spectroscopy and electron microscopy. The DSSC fabricated with Au/f-MWNTs based counter electrode shows enhanced power conversion efficiency (eta) of 4.9% under AM 1.5G simulated solar radiation. In comparison, the reference DSSCs fabricated with f-MWNTs and Pt counter electrodes show eta of 2.1% and 4.5%. This high performance of Au/f-MWNTs counter electrode is investigated using electrochemical impedance spectroscopy and cyclic voltammetry studies.

  1. Preparation of aminylferrocene/nanogold modified glassy carbon electrode and its electrocatalysis on dopamine.

    PubMed

    Wang, Cong; Wang, Guangfeng; Jiao, Shoufeng; Guo, Zhihua; Fang, Bin

    2007-01-01

    Aminylferrocene(FcAI)-Nanogold(NG) modified glassy carbon electrode (FcAI/NG/GCE) was prepared by the Au-N bond between Au and FcAI. Electrochemical impedance spectroscopy (EIS) was employed to study the surface of the modified electrode. The electrochemical behavior of dopamine (DA) on the modified electrode was investigated and it was found that the modified electrode had an obvious electrocatalytic effect on DA. Compared with a bare GCE, the modified electrode exhibited an apparent shift of the oxidation peak potential in the negative potential direction and a marked enhancement in the current response for DA. We investigated the determination of DA on the modified electrode by differential pulse voltammetry (DPV). Linear calibration curve was obtained in the range of 7.0 x 10(-7) mol/L to 6x10(-4) mol/L of DA in 0.1 mol/L phosphate buffer solution (pH = 7.0) with a correlation coefficient of 0.9989. The detection limit (S/N = 3) of DA was estimated to be 1.0 x 10(-7) mol/L. Especially, by using the modified electrode, we can separate the oxidation peaks of ascorbic acid (AA) and DA in the PBS and it was satisfactory for the determination of DA with the interference of AA.

  2. Fast redox of composite electrode of nitroxide radical polymer and carbon with polyacrylate binder

    NASA Astrophysics Data System (ADS)

    Komaba, Shinichi; Tanaka, Tatsuya; Ozeki, Tomoaki; Taki, Takayuki; Watanabe, Hiroaki; Tachikawa, Hiroyuki

    For organic radical batteries, poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) has been reported as a promising positive electrode material. The PTMA/C composite electrode prepared with polyacrylate binder demonstrated the fast redox performance for the application to aprotic secondary batteries. When the variation in discharge capacities of the PTMA/C composite electrode was tested galvanostatically at 20 C rates, the electrode retained 96% of the initial capacity after 1000 cycles. This is attributed to the fact that the redox of PTMA is a simple reaction to form the oxoammonium salt doped with ClO 4 - anions in the electrolyte. When the PTMA/C composite electrode was discharged at different C rates, the electrode retained 81% of the theoretical capacity even at 50 C rates. This remarkably high rate capability originates from the fast electron-transfer kinetic of the 2,2,6,6-tetramethylpiperidine- N-oxyl (so-called TEMPO) radical, partially jelled polyacrylate binder, and the improved conductivity throughout the electrode by thoroughly mixing with carbon.

  3. Electrochemical impedance measurement of prostate cancer cells using carbon nanotube array electrodes in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Heung Yun, Yeo; Dong, Zhongyun; Shanov, Vesselin N.; Schulz, Mark J.

    2007-11-01

    Highly aligned multi-wall carbon nanotubes were synthesized in the shape of towers and embedded into fluidic channels as electrodes for impedance measurement of LNCaP human prostate cancer cells. Tower electrodes up to 8 mm high were grown and easily peeled off a silicon substrate. The nanotube electrodes were then successfully soldered onto patterned printed circuit boards and cast into epoxy under pressure. After polishing the top of the tower electrodes, RF plasma was used to enhance the electrocatalytic effect by removing excess epoxy and activating the open end of the nanotubes. Electrodeposition of Au particles on the plasma-treated tower electrodes was done at a controlled density. Finally, the nanotube electrodes were embedded into a polydimethylsiloxane (PDMS) channel and electrochemical impedance spectroscopy was carried out with different conditions. Preliminary electrochemical impedance spectroscopy results using deionized water, buffer solution, and LNCaP prostate cancer cells showed that nanotube electrodes can distinguish the different solutions and could be used in future cell-based biosensor development.

  4. Single-walled carbon nanotubes deposited on surface electrodes to improve interface impedance.

    PubMed

    Gabriel, G; Gómez-Martínez, R; Villa, R

    2008-06-01

    A suspension of commercially available single-walled carbon nanotubes (SWNTs) is directly deposited onto a platinum multielectrode array surface. This is a novel and easy method to reduce interface impedance values which can be used instead of electromodified electrodes. This paper shows that this deposition method is a useful technique for the modification of patterned electrodes ranging in the micro scale. A thorough comparison between the common and well-known black platinum versus SWNTs, as interface material for different electrode areas, has been carried out. SWNTs-based electrodes smaller than 40 microm Ø improve the interface impedance values when compared to black platinum-modified electrodes of the same size. The best results can be found for the 10 microm Ø, which improves the electrode resistance by 25% in comparison with the black platinum ones. The lower resistance and higher capacitance calculated for the 40 microm diameter SWNTs-based electrode, in comparison with black platinum, also evidence a clear increment of the effective area, which is directly related to the impedance decrease.

  5. Application of multiwalled carbon nanotubes/ionic liquid modified electrode for amperometric determination of sulfadiazine.

    PubMed

    Hong, Xiaoping; Zhu, Yan; Ma, Jingying

    2012-12-01

    A highly sensitive amperometric sulfadiazine sensor based on coating multiwalled carbon nanotubes (MWCNTs) and N-octyl-pyridinium-hexafluorophosphate (OPPF(6)) ionic liquid composite on a glassy carbon (GC) electrode is described. The MWCNTs/OPPF(6) composite contributed new properties to electrochemical sensors by combining the advantages of both ionic liquids and MWCNTs. Compared with bare GC electrode, the electrocatalytic activity of MWCNTs/OPPF(6) generated a greatly improved electrochemical detection of sulfadiazine including low oxidation potential, high current responses, and good anti-fouling performance. The oxidation peak currents of sulfadiazine obtained on the MWCNTs/OPPF(6) coated GC electrode were proportional to the concentration of sulfadiazine within the range of 3.3-35.4 μM with a detection limit of 0.21 μM.

  6. [Microchip capillary electrophoresis-electrochemical detection of nitrite using a modified carbon paste electrode].

    PubMed

    Wei, Peihai; Li, Guanbin; Chen, Liren

    2005-05-01

    Carbon paste electrode modified with 3-mercaptopropyltrimethoxysilane copper (MPTMS-Cu) encapsulated in molecular sieve MCM-41 was prepared. The electrocatalytic behavior of the modified electrode towards the reduction of nitrite was studied in detail, including pH-dependence and composition-dependence studies. A microchip capillary electrophoresis-electrochemical detection system with the modified carbon paste as electrode was fabricated. The application of the system for the detection of nitrite is discussed. The detection was finished within 40 s under the following conditions: 50 mmol/L sodium acetate buffer at pH 5.8, -1.6 kV running voltage. The peak current was linear with the concentration of nitrite over 10.0 micromol/L-5.0 mmol/L and the detection limit was 4.0 micromol/L in pure water.

  7. Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode.

    PubMed

    Mohammadi, Sayed Zia; Beitollahi, Hadi; Bani Asadi, Elina

    2015-03-01

    In the present paper, the use of a carbon paste electrode modified by 3-(4'-amino-3'-hydroxy-biphenyl-4-yl)-acrylic acid (3,4'AA) and ZrO2 nanoparticles prepared by a simple and rapid method was described. The heterogeneous electron transfer properties of (3,4'AA) coupled to ZrO2 nanoparticles at the carbon paste electrode were investigated using cyclic voltammetry, chronoamperometry, and square wave voltammetry in aqueous buffer solutions. Under the optimized conditions, the square wave voltammetric peak currents of hydrazine increased linearly with hydrazine concentrations in the range of 2.5 × 10(-8) to 5.0 × 10(-5) M, and detection limit of 14 nM was obtained for hydrazine. Finally, this modified electrode was used for the determination of hydrazine in water samples, using standard addition method.

  8. Operation of a Segmented Hall Thruster with Low-sputtering Carbon-velvet Electrodes

    SciTech Connect

    Raitses, Y.; Staack, D.; Dunaevsky, A.; Fisch, N.J.

    2005-12-01

    Carbon fiber velvet material provides exceptional sputtering resistance properties exceeding those for graphite and carbon composite materials. A 2 kW Hall thruster with segmented electrodes made of this material was operated in the discharge voltage range of 200–700 V. The arcing between the floating velvet electrodes and the plasma was visually observed, especially, during the initial conditioning time, which lasted for about 1 h. The comparison of voltage versus current and plume characteristics of the Hall thruster with and without segmented electrodes indicates that the magnetic insulation of the segmented thruster improves with the discharge voltage at a fixed magnetic field. The observations reported here also extend the regimes wherein the segmented Hall thruster can have a narrower plume than that of the conventional nonsegmented thruster.

  9. Sensitive detection of hydroxylamine at a simple baicalin carbon nanotubes modified electrode.

    PubMed

    Zhang, Hongfang; Zheng, Jianbin

    2012-05-15

    A baicalin multi-wall carbon nanotubes (BaMWCNT) modified glassy carbon electrode (GCE) for the sensitive determination of hydroxylamine was described. The BaMWCNT/GCE with dramatic stability was firstly fabricated with a simple adsorption method. And it showed excellent catalytic activity toward the electrooxidation of hydroxylamine. The amperometric response at the BaMWCNT/GCE modified electrode increased linearly to hydroxylamine concentrations in the range of 0.5 μM to 0.4mM with a detection limit of 0.1 μM. The modified electrode was applied to detection hydroxylamine in the tap water, and the average recovery for the standards added was 96.0%. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. FeS@C on Carbon Cloth as Flexible Electrode for Both Lithium and Sodium Storage.

    PubMed

    Wei, Xiang; Li, Weihan; Shi, Jin-an; Gu, Lin; Yu, Yan

    2015-12-23

    Flexible and self-supported carbon-coated FeS on carbon cloth films (denoted as FeS@C/carbon cloth) is prepared by a facial hydrothermal method combined with a carbonization treatment. The FeS@C/carbon cloth could be directly used as electrodes for Li-ion batteries (LIBs) and sodium-ion batteries (NIBs). The synthetic effects of the structure, highly electron-conductive of carbon cloth, porous structure for electrolyte access, and uniform carbon shell on FeS surface to accommodate the volume change lead to improved cyclability and rate capability. For lithium storage, the FeS@C/carbon cloth electrode delivers a high discharge capacity of 420 mAh g(-1) even after 100 cycles at a current density of 0.15 C and 370 mAh g(-1)at a high current density of 7.5 C (1 C = 609 mA g(-1). When used for sodium storage, it keeps a reversible capacity of 365 mAh g(-1)after 100 cycles at 0.15 C. Similar process can be utilized for the formation of various cathode and anode composites on carbon cloth for flexible energy storage devices.

  11. Fe3O4/carbon coated silicon ternary hybrid composite as supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Oh, Ilgeun; Kim, Myeongjin; Kim, Jooheon

    2015-02-01

    In this study, Fe3O4/carbon-coated Si ternary hybrid composites were fabricated. A carbon layer was directly formed on the surface of Si by the thermal vapor deposition. The carbon-coating layer not only prevented the contact between Si and reactive electrolyte but also provided anchoring sites for the deposition of Fe3O4. Fe3O4 nanoparticles were deposited on the surface of carbon-coated Si by the hydrazine reducing method. The morphology and structure of Fe3O4 and carbon layer were characterized via X-ray diffractometry, field emission scanning electron microscopy, field emission transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analyses. These characterizations indicate that a carbon layer was fully coated on the Si particles, and Fe3O4 particles were homogeneously deposited on the carbon-coated Si particles. The Fe3O4/carbon-coated Si electrode exhibited enhanced electrochemical performance, attributed to the high conductivity and stability of carbon layer and pseudocapacitive reaction of Fe3O4. The proposed ternary-hybrid composites may be potentially useful for the fabrication of high-performance electrodes.

  12. Highly oriented carbon fiber–polymer composites via additive manufacturing

    SciTech Connect

    Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; Duty, Chad E.; Love, Lonnie J.; Naskar, Amit K.; Blue, Craig A.; Ozcan, Soydan

    2014-10-16

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructure and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.

  13. Highly oriented carbon fiber–polymer composites via additive manufacturing

    DOE PAGES

    Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; ...

    2014-10-16

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructuremore » and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.« less

  14. Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene

    NASA Astrophysics Data System (ADS)

    Tu, Dandan; He, Yu; Rong, Yuanzhen; Wang, You; Li, Guang

    2016-04-01

    In this work, an amperometric L-lactate biosensor based on a graphene-modified screen-printed carbon electrode (SPCE) was constructed. First, the electrocatalytic performance of the SPCE modified with graphene by a one-step electrodeposition process (OerGO/SPCE) was investigated. The cyclic voltammogram of OerGO/SPCE, which showed a well-defined redox peak, had a smaller peak potential separation than that of SPCE, revealing the improvement in electron transfer speed brought about by modifying with graphene. Next, lactate oxidase and potassium ferricyanide were dropped on the OerGO/SPCE to construct a graphene-modified L-lactate biosensor (LOD/K3[Fe(CN)6]/OerGO/SPCE). The proposed biosensor, with a detection limit of 60 μM, had a high sensitivity (42.42 μA mM-1 cm-2) when working at a low working potential (0.15 V). The linear range was 0.5 mM-15 mM, covering the detecting range of L-lactate in clinical applications. The L-lactate biosensor had a short response time (10 s) and required only 10 μl of the sample. This L-lactate sensor modified with electrodeposited graphene had a larger sensitivity than that based on the bare SPCE. Thus, our low-cost and disposable L-lactate biosensor enhanced by graphene can perform as an attractive electrochemical device that can be manufactured for point-of-care testing (POCT) devices and be employed in POCT applications.

  15. Oxygen electrode reaction in molten carbonate fuel cells. Final report, September 15, 1987--September 14, 1990

    SciTech Connect

    Dave, Bhasker B.

    1992-07-07

    Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, DO1/2CO, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product DO1/2CO were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

  16. Electrocatalytic Hydrogen Evolution from Molybdenum Sulfide-Polymer Composite Films on Carbon Electrodes.

    PubMed

    Lattach, Youssef; Deronzier, Alain; Moutet, Jean-Claude

    2015-07-29

    The design of more efficient catalytic electrodes remains an important objective for the development of water splitting electrolyzers. In this context a structured composite cathode material has been synthesized by electrodeposition of molybdenum sulfide (MoSx) into a poly(pyrrole-alkylammonium) matrix, previously coated onto carbon electrodes by oxidative electropolymerization of a pyrrole-alkylammonium monomer. The composite material showed an efficient electrocatalytic activity toward proton reduction and the hydrogen evolution reaction (HER). Data from Tafel plots have demonstrated that the electron transfer rate in the composite films is fast, in agreement with the high catalytic activity of this cathode material. Bulk electrolysis of acidic water at carbon foam electrodes modified with the composite have shown that the cathodes display a high catalytic activity and a reasonable operational stability, largely exceeding that of regular amorphous MoSx electrodeposited on naked carbon foam. The enhanced catalytic performances of the composite electrode material were attributed to the structuration of the composite, which led to a homogeneous distribution of the catalyst on the carbon foam network, as shown by SEM characterizations.

  17. A carbon-fiber electrode array for long-term neural recording.

    PubMed

    Guitchounts, Grigori; Markowitz, Jeffrey E; Liberti, William A; Gardner, Timothy J

    2013-08-01

    Chronic neural recording in behaving animals is an essential method for studies of neural circuit function. However, stable recordings from small, densely packed neurons remains challenging, particularly over time-scales relevant for learning. We describe an assembly method for a 16-channel electrode array consisting of carbon fibers (<5 µm diameter) individually insulated with Parylene-C and fire-sharpened. The diameter of the array is approximately 26 µm along the full extent of the implant. Carbon fiber arrays were tested in HVC (used as a proper name), a song motor nucleus, of singing zebra finches where individual neurons discharge with temporally precise patterns. Previous reports of activity in this population of neurons have required the use of high impedance electrodes on movable microdrives. Here, the carbon fiber electrodes provided stable multi-unit recordings over time-scales of months. Spike-sorting indicated that the multi-unit signals were dominated by one, or a small number of cells. Stable firing patterns during singing confirmed the stability of these clusters over time-scales of months. In addition, from a total of 10 surgeries, 16 projection neurons were found. This cell type is characterized by sparse stereotyped firing patterns, providing unambiguous confirmation of single cell recordings. Carbon fiber electrode bundles may provide a scalable solution for long-term neural recordings of densely packed neurons.

  18. The use of carbon aerogel electrodes for deionizing water and treating aqueous process wastes

    SciTech Connect

    Farmer, J.C.; Mack, G.V.; Fix, D.V.

    1996-07-01

    A wide variety of ionic contaminants can be removed from aqueous solutions by electrosorption on carbon aerogel electrodes. Carbon aerogel is an ideal electrode material because of its low electrical resistivity (< 40 m{Omega}-cm), high specific surface area (400 to 1100 m{sup 2}/g), and controllable pore size distribution (< 50 nm). This approach may avoid the generation of a substantial amount of secondary waste associated with ion exchange processing. Ion exchange resins require concentrated solutions of acid, base, or salt for regeneration, whereas carbon aerogel electrodes require only electrical discharge or reverse polarization. Aqueous solutions of NaCl, NaNO{sub 3}, NH{sub 4}ClO{sub 4}, Na{sub 2}CO{sub 3}, Na{sub 2}SO{sub 4} and Na{sub 3}PO{sub 4} have been separated into concentrate and high-purity product streams. The deionization of a 100 {mu}S/cm NaCl solution with two parallel stacks of carbon aerogel electrodes in a potential-swing mode is discussed in detail. The selective removal of Cu, Zn, Cd, Pb, Cr, Mn, Co and U from a variety of process solutions and natural waters has also been demonstrated. Feasibility tests indicate that the remediation of Cr(VI)-contaminated ground water may be possible.

  19. Membrane-electrode assemblies with high specific power based on functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zabrodskii, A. G.; Glebova, N. V.; Nechitailov, A. A.; Terukova, E. E.; Terukov, E. I.; Tomasov, A. A.; Zelenina, N. K.

    2010-12-01

    It is demonstrated that the efficiency of catalysis and platinum usage in electrochemical energy converters can be improved by employing chemically functionalized multiwalled carbon tubes. On this basis, membrane-electrode assemblies for air-hydrogen fuel cells with specific powers up to 581 mW/cm2 have been obtained.

  20. Highly transparent carbon counter electrode prepared via an in situ carbonization method for bifacial dye-sensitized solar cells.

    PubMed

    Bu, Chenghao; Liu, Yumin; Yu, Zhenhua; You, Sujian; Huang, Niu; Liang, Liangliang; Zhao, Xing-Zhong

    2013-08-14

    A facile in situ carbonization method was demonstrated to prepare the highly transparent carbon counter electrode (CE) with good mechanical stability for bifacial dye-sensitized solar cells (DSCs). The optical and electrochemical properties of carbon CEs were dramatically affected by the composition and concentration of the precursor. The well-optimized carbon CE exhibited high transparency and sufficient catalytic activity for I3(-) reduction. The bifacial DSC with obtained carbon CE achieved a high power conversion efficiency (PCE) of 5.04% under rear-side illumination, which approaches 85% that of front-side illumination (6.07%). Moreover, the device shows excellent stability as confirmed by the aging test. These promising results reveal the enormous potential of this transparent carbon CE in scaling up and commercialization of low cost and effective bifacial DSCs.

  1. Binderless Composite Electrode Monolith from Carbon Nanotube and Biomass Carbon Activated by KOH and CO2 Gas for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Farma, R.; Deraman, M.; Omar, R.; Awitdrus, Ishak, M. M.; Taer, E.; Talib, I. A.

    2011-12-01

    This paper presents a method to improve the performance of supercapacitors fabricated using binderless composite electrode monolith (BCMs) from self-adhesive carbon grains (SACG) of fibers from oil palm empty fruit bunches. The BCMs were prepared from green monoliths (GMs) contain SACG, SACG treated with KOH (5 % by weight) and SACG mixed with carbon nanotubes (CNTs) (5% by weight) and KOH (5 % by weight), respectively. These GMs were carbonized at 800 ° C under N2 environment and activated by CO2 gas at 800 ° C for 1 hour. It was found that addition of KOH and CNTs produced BCMs with higher specific capacitance and smaller internal resistance, respectively. It was also found that supercapacitor cells using these BCMs as electrodes exhibited a better specific energy and specific power. The physical properties of BCMs (density, electrical conductivity, porosity, interlayer spacing, crystallite dimension and microstructure) were affected by the addition of KOH and CNTs.

  2. Voltammetric oxidation and determination of cinnarizine at glassy carbon electrode modified with multi-walled carbon nanotubes.

    PubMed

    Hegde, Rajesh N; Hosamani, Ragunatharaddi R; Nandibewoor, Sharanappa T

    2009-09-01

    The voltammetric oxidation of cinnarizine was investigated. In pH 2.5 Britton-Robinson buffer, cinnarizine shows an irreversible oxidation peak at about 1.20 V at a multi-walled carbon nanotube (MWCNT)-modified glassy carbon electrode. The cyclic voltammetric results indicate that MWCNT-modified glassy carbon electrode can remarkably enhance electrocatalytic activity towards the oxidation of cinnarizine. The electrocatalytic behavior was further exploited as a sensitive detection scheme for the cinnarizine determination by differential-pulse voltammetry. Under optimized conditions, the concentration range and detection limit are 9.0x10(-8) to 6.0x10(-6) M and 2.58x10(-9) M, respectively for cinnarizine. The proposed method was successfully applied to cinnarizine determination in pharmaceutical samples. The analytical performance of this sensor has been evaluated for the detection of analyte in urine as a real sample.

  3. 77 FR 73978 - Foreign-Trade Zone 148-Knoxville, TN, Toho Tenax America, Inc. (Carbon Fiber Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... Foreign-Trade Zones Board Foreign-Trade Zone 148--Knoxville, TN, Toho Tenax America, Inc. (Carbon Fiber...), located in Rockwood, Tennessee, with authority to manufacture carbon fiber for export and oxidized... manufacture carbon fiber for the U.S. market; the request for such authority will continue to be reviewed...

  4. Biochips Containing Arrays of Carbon-Nanotube Electrodes

    NASA Technical Reports Server (NTRS)

    Li, Jun; Meyyappan, M.; Koehne, Jessica; Cassell, Alan; Chen, Hua

    2008-01-01

    Biochips containing arrays of nanoelectrodes based on multiwalled carbon nanotubes (MWCNTs) are being developed as means of ultrasensitive electrochemical detection of specific deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) biomarkers for purposes of medical diagnosis and bioenvironmental monitoring. In mass production, these biochips could be relatively inexpensive (hence, disposable). These biochips would be integrated with computer-controlled microfluidic and microelectronic devices in automated hand-held and bench-top instruments that could be used to perform rapid in vitro genetic analyses with simplified preparation of samples. Carbon nanotubes are attractive for use as nanoelectrodes for detection of biomolecules because of their nanoscale dimensions and their chemical properties.

  5. Laser processing of SnO2 electrode materials for manufacturing of 3D micro-batteries

    NASA Astrophysics Data System (ADS)

    Kohler, R.; Proell, J.; Ulrich, S.; Przybylski, M.; Pfleging, W.

    2011-03-01

    The material development for advanced lithium-ion batteries plays an important role in future mobile applications and energy storage systems. It is assumed that electrode materials made of nano-composited materials will improve battery lifetime and will lead to an enhancement of lithium diffusion and thus improve battery capacity and cyclability. A major problem concerning thin film electrodes is, that increasing film thickness leads to an increase in lithium diffusion path lengths and thereby a decrease in power density. To overcome this problem, the investigation of a 3D-battery system with an increased surface area is necessary. UV-laser micromachining was applied to create defined line or grating structures via mask imaging. SnO2 is a highly investigated anode material for lithium-ion batteries. Yet, the enormous volume changes occurring during electrochemical cycling lead to immense loss of capacity. The formation of micropatterns via laser ablation to create structures which enable the compensation of the volume expansion was investigated in detail. Thin films of SnO2 were deposited in Ar:O2 atmosphere via r.f. magnetron sputtering on silicon and stainless steel substrates. The thin films were studied with X-ray diffraction to determine their crystallinity. The electrochemical properties of the manufactured films were investigated via electrochemical cycling against a lithium anode.

  6. A Reliable Homemade Electrode Based on Glassy Polymeric Carbon

    ERIC Educational Resources Information Center

    Santos, Andre L.; Takeuchi, Regina M.; Oliviero, Herilton P.; Rodriguez, Marcello G.; Zimmerman, Robert L.

    2004-01-01

    The production of a GPC-based material by submitting a cross-linked resin precursor to control thermal conditions is discussed. The precursor material is prepolymerized at 60-degree Celsius in a mold and is carbonized in inert atmosphere by slowly raising the temperature, the rise is performed to avoid change in the shape of the carbonization…

  7. A Reliable Homemade Electrode Based on Glassy Polymeric Carbon

    ERIC Educational Resources Information Center

    Santos, Andre L.; Takeuchi, Regina M.; Oliviero, Herilton P.; Rodriguez, Marcello G.; Zimmerman, Robert L.

    2004-01-01

    The production of a GPC-based material by submitting a cross-linked resin precursor to control thermal conditions is discussed. The precursor material is prepolymerized at 60-degree Celsius in a mold and is carbonized in inert atmosphere by slowly raising the temperature, the rise is performed to avoid change in the shape of the carbonization…

  8. Boron-Doped Graphite for High Work Function Carbon Electrode in Printable Hole-Conductor-Free Mesoscopic Perovskite Solar Cells.

    PubMed

    Duan, Miao; Tian, Chengbo; Hu, Yue; Mei, Anyi; Rong, Yaoguang; Xiong, Yuli; Xu, Mi; Sheng, Yusong; Jiang, Pei; Hou, Xiaomeng; Zhu, Xiaotong; Qin, Fei; Han, Hongwei

    2017-09-20

    Work function of carbon electrodes is critical in obtaining high open-circuit voltage as well as high device performance for carbon-based perovskite solar cells. Herein, we propose a novel strategy to upshift work function of carbon electrode by incorporating boron atom into graphite lattice and employ it in printable hole-conductor-free mesoscopic perovskite solar cells. The high-work-function boron-doped carbon electrode facilitates hole extraction from perovskite as verified by photoluminescence. Meanwhile, the carbon electrode is endowed with an improved conductivity because of a higher graphitization carbon of boron-doped graphite. These advantages of the boron-doped carbon electrode result in a low charge transfer resistance at carbon/perovskite interface and an extended carrier recombination lifetime. Together with the merit of both high work function and conductivity, the power conversion efficiency of hole-conductor-free mesoscopic perovskite solar cells is increased from 12.4% for the pristine graphite electrode-based cells to 13.6% for the boron-doped graphite electrode-based cells with an enhanced open-circuit voltage and fill factor.

  9. Rational design of high-surface-area carbon nanotube/microporous carbon core-shell nanocomposites for supercapacitor electrodes.

    PubMed

    Yao, Yuanyuan; Ma, Cheng; Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2015-03-04

    All-carbon-based carbon nanotube (CNT)/microporous carbon core-shell nanocomposites, in which a CNT as the core and high-surface-area microporous carbon as the shell, have been prepared by in situ resorcinol-formaldehyde resin coating of CNTs, followed by carbonization and controlled KOH activation. The obtained nanocomposites have very high Brunauer-Emmett-Teller surface areas (up to 1700 m(2)/g), narrow pore size distribution (<2 nm), and 1D tubular structure within a 3D entangled network. The thickness of the microporous carbon shell can be easily tuned from 20 to 215 nm by changing the carbon precursor/CNT mass ratio. In such a unique core-shell structure, the CNT core could mitigate the key issue related to the low electronic conductivity of microporous carbons. On the other hand, the 1D tubular structure with a short pore-pathway micropore as well as a 3D entangled network could increase the utilization degree of the overall porosity and improve the electrode kinetics. Thus, these CNT/microporous carbon core-shell nanocomposites exhibit a great potential as an electrode material for supercapacitors, which could deliver high specific capacitance of 237 F/g, excellent rate performance with 75% maintenance from 0.1 to 50 A/g, and high cyclability in H2SO4 electrolyte. Moreover, the precisely controlled microporous carbon shells may allow them to serve as excellent model systems for microporous carbons, in general, to illustrate the role of the pore length on the diffusion and kinetics inside the micropores.

  10. Electrochemistry of metoclopramide at multi-walled carbon nanotube modified electrode and its voltammetric detection.

    PubMed

    Guo, Wei; Geng, Mingjiang; Zhou, Lingyun

    2012-01-01

    A simple, sensitive and inexpensive electrochemical method was developed for the determination of metoclopramide (MCP) with a multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE). MWNT was dispersed into polyacrylic acid (PAA); the aqueous suspension was then cast on GCE electrodes, forming MWNT-PAA films after evaporation of the solvent. The electrochemical behavior of MCP at the MWNT-modified electrode was investigated in detail. Compared with the bare GCE, the MWNT-modified electrode exhibits electrocatalytic activity to the oxidation of MCP because of the significant oxidation peak-current enhancement. Furthermore, various experimental parameters, such as the solution pH value, the amount of MWNT-PAA suspension and accumulation conditions were optimized for the determination of MCP. Based on the electrocatalytic effect of the MWNT-modified electrode, linear sweep voltammetry (LSV) was developed for the determination of MCP with the linear response in the range from 1.0 × 10(-7) to 1.0 × 10(-5) mol L(-1) and a detection limit of 5.0 × 10(-8) mol L(-1). The method has been successfully applied to the determination of MCP in commercial MCP tablets.

  11. Investigation of fluoroethylene carbonate effects on tin-based lithium-ion battery electrodes.

    PubMed

    Yang, Zhenzhen; Gewirth, Andrew A; Trahey, Lynn

    2015-04-01

    Electroless plating of tin on copper foil (2-D) and foams (3-D) was used to create carbon- and binder-free thin films for solid electrolyte interphase (SEI) property investigation. When electrochemically cycled vs lithium metal in coin cells, the foam electrodes exhibited better cycling performance than the planar electrodes due to electrode curvature. The effect of the additive/cosolvent fluoroethylene carbonate (FEC) was found to drastically improve the capacity retention and Coulombic efficiency of the cells. The additive amount of 2% FEC is enough to derive the benefits in the cells at a slow (C/9) cycling rate. The interfacial properties of Sn thin film electrodes in electrolyte with/without FEC additive were investigated using in situ electrochemical quartz crystal microbalance with dissipation (EQCM-D). The processes of the decomposition of the electrolyte on the electrode surface and Li alloying/dealloying with Sn were characterized quantitatively by surface mass change at the molecular level. FEC-containing electrolytes deposited less than electrolyte without FEC on the initial reduction sweep, yet increased the overall thickness/mass of SEI after several cyclic voltammetry cycles. EQCM-D studies demonstrate that the mass accumulated per mole of electrons (mpe) was varied in different voltage ranges, which reveals that the reduction products of the electrolyte with/without FEC are different.

  12. Enabling high-rate electrochemical flow capacitors based on mesoporous carbon microspheres suspension electrodes

    NASA Astrophysics Data System (ADS)

    Tian, Meng; Sun, Yueqing; Zhang, Chuanfang (John); Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2017-10-01

    Electrochemical flow capacitor (EFC) is a promising technology for grid energy storage, which combines the fast charging/discharging capability of supercapacitors with the scalable energy capacity of flow batteries. In this study, we report a high-power-density EFC using mesoporous carbon microspheres (MCMs) as suspension electrodes. By using a simple yet effective spray-drying technique, monodispersed MCMs with average particle size of 5 μm, high BET surface area of 1150-1267 m2 g-1, large pore volume of 2-4 cm3 g-1 and controllable mesopore size of 7-30 nm have been successfully prepared. The resultant MCMs suspension electrode shows excellent stability and considerable high capacitance of 100 F g-1 and good cycling ability (86% of initial capacitance after 10000 cycles). Specially, the suspension electrode exhibits excellent rate performance with 75% capacitance retention from 2 to 100 mV s-1, significantly higher than that of microporous carbon electrodes (20∼30%), due to the developed mesoporous channels facilitating for rapid ion diffusion. In addition, the electrochemical responses on both negative and positive suspension electrodes are studied, based on which an optimal capacitance matching between them is suggested for large-scale EFC unit.

  13. Carbon nanofiber electrodes and controlled nanogaps for scanning electrochemical microscopy experiments.

    PubMed

    Tel-Vered, Ran; Walsh, Darren A; Mehrgardi, Masoud A; Bard, Allen J

    2006-10-01

    The electrochemical behavior of electrodes made by sealing carbon nanofibers in glass or with electrophoretic paint has been studied by scanning electrochemical microscopy (SECM). Because of their small electroactive surface area, conical geometry with a low aspect ratio and high overpotential for proton and oxygen reduction, carbon nanofiber (CNF) electrodes are promising candidates for producing electrode nanogaps, imaging with high spatial resolution and for the electrodeposition of single metal nanoparticles (e.g., Pt, Pd) for studies as electrocatalysts. By using the feedback mode of the SECM, a CNF tip can produce a gap that is smaller than 20 nm from a platinum disk. Similarly, the SECM used in a tip-collection substrate-generation mode, which subsequently shows a feedback interaction at short distances, makes it possible to detect a single CNF by another CNF and then to form a nanometer gap between the two electrodes. This approach was used to image vertically aligned CNF arrays. This method is useful in the detection in a homogeneous solution of short-lifetime intermediates, which can be electrochemically generated at one electrode and collected at the second at distances that are equivalent to a nanosecond time scale.

  14. Investigation of Fluoroethylene Carbonate Effects on Tin-based Lithium-Ion Battery Electrodes

    SciTech Connect

    Yang, Zhenzhen; Gewirth, Andrew A.; Trahey, Lynn

    2015-04-01

    Electroless plating of tin on copper foil (2-D) and foams (3-D) was used to create carbon- and binder-free thin films for solid electrolyte interphase (SEI) property investigation. When electrochemically cycled vs lithium metal in coin cells, the foam electrodes exhibited better cycling performance than the planar electrodes due to electrode curvature. The effect of the additive/cosolvent fluoroethylene carbonate (FEC) was found to drastically improve the capacity retention and Coulombic efficiency of the cells. The additive amount of 2% FEC is enough to derive the benefits in the cells at a slow (C/9) cycling rate. The interfacial properties of Sn thin film electrodes in electrolyte with/without FEC additive were investigated using in situ electrochemical quartz crystal microbalance with dissipation (EQCM-D). The processes of the decomposition of the electrolyte on the electrode surface and Li alloying/dealloying with Sn were characterized quantitatively by surface mass change at the molecular level. FEC-containing electrolytes deposited less than electrolyte without FEC on the initial reduction sweep, yet increased the overall thickness/mass of SEI after several cyclic voltammetry cycles. EQCM-D studies demonstrate that the mass accumulated per mole of electrons (mpe) was varied in different voltage ranges, which reveals that the reduction products of the electrolyte with/without FEC are different.

  15. Spark plasma sintered carbon electrodes for electrical double layer capacitor applications

    NASA Astrophysics Data System (ADS)

    Daffos, B.; Chevallier, G.; Estournès, C.; Simon, P.

    The spark plasma sintering (SPS) is an emerging process for shaping any type of materials (metals, ceramic, polymers and their composites). The advantage of such a process is to prepare densified ceramic materials in a very short time, while keeping the materials internal porosity. In the present work, we have used the SPS technique to prepare activated carbon-based electrodes for Electrochemical Double Layer Capacitor applications (EDLC). Self-supported 600 and 300 μm-thick electrodes were prepared and characterized using of Electrochemical Impedance Spectroscopy and galvanostatic cycling in a non-aqueous 1.5 M NEt 4BF 4 in acetonitrile electrolyte. Electrochemical performance of these sintered electrodes were found to be in the same range - or even slightly better - than the conventional tape-casted activated carbon electrodes. Although organic liquid electrolyte was used to characterize the electrochemical performance of the sintered electrodes, these results demonstrate that the SPS technique could be worth of interest in the ultimate goal of designing solid-state supercapacitors.

  16. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung

    2016-04-01

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp2-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.

  17. Carbon Microfibers Grown on Graphite Electrode During Fullerene Generation Using Composite Graphite Rods

    NASA Astrophysics Data System (ADS)

    Ata, Masafumi; Kijima, Yasunori; Imoto, Hiroshi; Matsuzawa, Nobuyuki; Takahashi, Noboru

    1994-07-01

    Using carbon/metal composite electrodes, silver-colored carbon deposits were obtained on the top edges of negative electrodes during electric arc vaporization for fullerene generation. Needle-shaped, rod-shaped, and winding carbon fibers 20 30 µm in length and 3 4 µm in diameter were observed on the surface of the deposits, using a scanning electron microscope (SEM). The results of energy-dispersive X-ray (EDX) microanalysis on the fibers showed that metal carbides exist at the top portions of these fibers. It was suggested that the growth of such fibers was induced by the catalytic activity of small clusters of metal carbides which act as seeds. The structures of the fibers were discussed based on these experimental results.

  18. Simulation of capacity loss in carbon electrode for lithium-ion cells during storage

    NASA Astrophysics Data System (ADS)

    Ramasamy, Ramaraja P.; Lee, Jong-Won; Popov, Branko N.

    A mathematical model was developed which simulates the self-discharge capacity losses in the carbon anode for a SONY 18650 lithium-ion battery. The model determines the capacity loss during storage on the basis of a continuous reduction of organic solvent and de-intercalation of lithium at the carbon/electrolyte interface. The state of charge, open circuit potential, capacity loss and film resistance on the carbon electrode were calculated as a function of storage time using different values of rate constant governing the solvent reduction reaction.

  19. Electrode Build-Up of Reducible Metal Composites toward Achievable Electrochemical Conversion of Carbon Dioxide.

    PubMed

    Lee, Seunghwa; Lee, Jaeyoung

    2016-02-19

    At the beginning of the 21st century, our world is faced with a global-warming problem due to the continuous increase in carbon dioxide emission, and thus, the development of novel experimental techniques is needed. The electrochemical conversion of carbon dioxide into high-value organic compounds could be of vital importance to solve this issue. The biggest challenge has always been to develop an electrocatalyst that is chemically active and structurally stable. Herein, previous studies, recent approaches, and current points of view on the electrode structure of metal oxide composites for the advanced electrochemical conversion of carbon dioxide are reviewed.

  20. Carbon Nanosheets and Nanostructured Electrodes in Organic Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-321

    SciTech Connect

    Olson, D.

    2012-04-01

    Carbon nanosheet thin films were employed as nanostructured electrodes in organic solar cells. Due to the nanostructured texture of the carbon nanosheet electrodes, there was an increase in performance over standard ITO electrodes with very thick active layers. ZnO deposited via atomic layer deposition (ALD) was used as a hole blocking layer to provide for carrier selectivity of the carbon nanosheets.

  1. Spray-Coated Multiwalled Carbon Nanotube Composite Electrodes for Thermal Energy Scavenging Electrochemical Cells.

    PubMed

    Holubowitch, Nicolas E; Landon, James; Lippert, Cameron A; Craddock, John D; Weisenberger, Matthew C; Liu, Kunlei

    2016-08-31

    Spray-coated multiwalled carbon nanotube/poly(vinylidene fluoride) (MWCNT/PVDF) composite electrodes, scCNTs, with varying CNT compositions (2 to 70 wt %) are presented for use in a simple thermal energy-scavenging cell (thermocell) based on the ferro/ferricyanide redox couple. Their utility for direct thermal-to-electrical energy conversion is explored at various temperature differentials and cell orientations. Performance is compared to that of buckypaper, a 100% CNT sheet material used as a benchmark electrode in thermocell research. The 30 to 70 wt % scCNT composites give the highest power output by electrode area-seven times greater than buckypaper at ΔT = 50 °C. CNT utilization is drastically enhanced in our electrodes, reaching 1 W gCNT(-1) compared to 0.036 W gCNT(-1) for buckypaper. Superior performance of our spray-coated electrodes is attributed to both wettability with better use of a large portion of electrochemically active CNTs and minimization of ohmic and thermal contact resistances. Even composites with as low as 2 wt % CNTs are still competitive with prior art. The MWCNT/PVDF composites developed herein are inexpensive, scalable, and serve a general need for CNT electrode optimization in next-generation devices.

  2. Carbon nanotube/polymer composite electrodes for flexible, attachable electrochemical DNA sensors.

    PubMed

    Li, Jianfeng; Lee, Eun-Cheol

    2015-09-15

    All-solution-processed, easily-made, flexible multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS)-based electrodes were fabricated and used for electrochemical DNA sensors. These electrodes could serve as a recognition layer for DNA, without any surface modification, through π-π interactions between the MWCNTs and DNA, greatly simplifying the fabrication process for DNA sensors. The electrodes were directly connected to an electrochemical analyzer in the differential pulse voltammetry (DPV) and cyclic voltammetry (CV) measurements, where methylene blue was used as a redox indicator. Since neither functional groups nor probe DNA were immobilized on the surfaces of the electrodes, the sensor can be easily regenerated by washing these electrodes with water. The limit of detection was found to be 1.3 × 10(2)pM (S/N=3), with good DNA sequence differentiation ability. Fast fabrication of a DNA sensor was also achieved by cutting and attaching the MWCNT-PDMS composite electrodes at an analyte solution-containable region. Our results pave the way for developing user-fabricated easily attached DNA sensors at low costs.

  3. Solid-contact pH-selective electrode using multi-walled carbon nanotubes.

    PubMed

    Crespo, Gastón A; Gugsa, Derese; Macho, Santiago; Rius, F Xavier

    2009-12-01

    Multi-walled carbon nanotubes (MWCNT) are shown to be efficient transducers of the ionic-to-electronic current. This enables the development of a new solid-contact pH-selective electrode that is based on the deposition of a 35-microm thick layer of MWCNT between the acrylic ion-selective membrane and the glassy carbon rod used as the electrical conductor. The ion-selective membrane was prepared by incorporating tridodecylamine as the ionophore, potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as the lipophilic additive in a polymerized methylmethacrylate and an n-butyl acrylate matrix. The potentiometric response shows Nernstian behaviour and a linear dynamic range between 2.89 and 9.90 pH values. The response time for this electrode was less than 10 s throughout the whole working range. The electrode shows a high selectivity towards interfering ions. Electrochemical impedance spectroscopy and chronopotentiometry techniques were used to characterise the electrochemical behaviour and the stability of the carbon-nanotube-based ion-selective electrodes.

  4. Layered carbon nanotube-polyelectrolyte electrodes outperform traditional neural interface materials.

    PubMed

    Jan, Edward; Hendricks, Jeffrey L; Husaini, Vincent; Richardson-Burns, Sarah M; Sereno, Andrew; Martin, David C; Kotov, Nicholas A

    2009-12-01

    The safety, function, and longevity of implantable neuroprosthetic and cardiostimulating electrodes depend heavily on the electrical properties of the electrode-tissue interface, which in many cases requires substantial improvement. While different variations of carbon nanotube materials have been shown to be suitable for neural excitation, it is critical to evaluate them versus other materials used for bioelectrical interfacing, which have not been done in any study performed so far despite strong interest to this area. In this study, we carried out this evaluation and found that composite multiwalled carbon nanotube-polyelectrolyte (MWNT-PE) multilayer electrodes substantially outperform in one way or the other state-of-the-art neural interface materials available today, namely activated electrochemically deposited iridium oxide (IrOx) and poly(3,4-ethylenedioxythiophene) (PEDOT). Our findings provide the concrete experimental proof to the much discussed possibility that carbon nanotube composites can serve as excellent new material for neural interfacing with a strong possibility to lead to a new generation of implantable electrodes.

  5. Electrochemical performance of porous diamond-like carbon electrodes for sensing hormones, neurotransmitters, and endocrine disruptors.

    PubMed

    Silva, Tiago A; Zanin, Hudson; May, Paul W; Corat, Evaldo J; Fatibello-Filho, Orlando

    2014-12-10

    Porous diamond-like carbon (DLC) electrodes have been prepared, and their electrochemical performance was explored. For electrode preparation, a thin DLC film was deposited onto a densely packed forest of highly porous, vertically aligned multiwalled carbon nanotubes (VACNT). DLC deposition caused the tips of the carbon nanotubes to clump together to form a microstructured surface with an enlarged surface area. DLC:VACNT electrodes show fast charge transfer, which is promising for several electrochemical applications, including electroanalysis. DLC:VACNT electrodes were applied to the determination of targeted molecules such as dopamine (DA) and epinephrine (EP), which are neurotransmitters/hormones, and acetaminophen (AC), an endocrine disruptor. Using simple and low-cost techniques, such as cyclic voltammetry, analytical curves in the concentration range from 10 to 100 μmol L(-1) were obtained and excellent analytical parameters achieved, including high analytical sensitivity, good response stability, and low limits of detection of 2.9, 4.5, and 2.3 μmol L(-1) for DA, EP, and AC, respectively.

  6. Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose

    NASA Astrophysics Data System (ADS)

    Chang, Gang; Shu, Honghui; Ji, Kai; Oyama, Munetaka; Liu, Xiong; He, Yunbin

    2014-01-01

    This work describes controllable preparation of gold nanoparticles on glassy carbon electrodes by using the seed mediated growth method, which contains two steps, namely, nanoseeds attachment and nanocrystals growth. The size and the dispersion of gold nanoparticles grown on glassy carbon electrodes could be easily tuned through the growth time based on results of field-emission scanning electron microscopy. Excellent electrochemical catalytic characteristics for glucose oxidation were observed for the gold nanoparticles modified glassy carbon electrodes (AuNPs/GC), resulting from the extended active surface area provided by the dense gold nanoparticles attached. It exhibited a wide linear range from 0.1 mM to 25 mM with the sensitivity of 87.5 μA cm-2 mM-1 and low detection limit down to 0.05 mM for the sensing of glucose. The common interfering species such as chloride ion, ascorbic acid, uric acid and 4-acetamidophenol were verified having no interference effect on the detection of glucose. It is demonstrated that the seed mediated method is one of the facile approaches for fabricating Au nanoparticles modified substrates, which could work as one kind of promising electrode materials for the glucose nonenzymatic sensing.

  7. Development of low-loading, carbon monoxide tolerant PEM fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Haug, Andrew Thomas

    This work discusses the problems of, and potential solutions to, high catalyst cost of and carbon monoxide (CO) poisoning of the proton-exchange membrane fuel cell (PEMFC). As this is a comprehensive work, background on fuel cells and specifically PEMFCs is first presented. A discussion of the current status of PEMFCs is presented showing ongoing work for stationary, transportation, portable and military applications. This leads into two of the more significant problems preventing widespread commercialization of PEMFC technology: poisoning of the catalyst by CO and the cost of the catalyst. A thorough examination of CO poisoning of the PEMFC anode is presented from how CO comes to be present in the feed stream of the PEMFC anode to how it then poisons the PEMFC anode. The first work presented here describes the development of a novel CO tolerant anode (the Ruthenium filter). It shows that by placing a layer of carbon-supported Ruthenium catalyst between the Pt catalyst and the anode flow field to form a filter, tolerance to CO will be increased relative to a Pt:Ru alloy when oxygen is added to the anode fuel stream. Secondly, after an introduction to catalyst preparation techniques used today and a brief discussion of catalyst-cost in PEMFCs, it is shown how sputter-deposition technology may be used to create more kinetically active PEMFC catalyst electrodes versus standard ink-based techniques. The technologies of the Ru filter and sputter-deposition are then combined to create a low-loading, CO tolerant anode for the PEMFC. In the final work, the effect of the airbleed on CO oxidation is then modeled. In the concluding chapter, it is shown how the work presented can lead the PEMFC closer to large-scale commercialization. The Appendix A provides a detailed method by which PEMFC MEAs were manufactured using catalyst inks. This method served as the basis for all original works presented. Appendix B--F provide further background and information on the mathematical

  8. Simultaneous voltammetry determination of dihydroxybenzene isomers by poly-bromophenol blue/carbon nanotubes composite modified electrode.

    PubMed

    Yang, Pinghua; Wei, Wanzhi; Tao, Chunyuan; Zeng, Jinxiang

    2007-07-01

    A novel modified electrode was constructed by electropolymerization of bromophenol blue at a multi-walled carbon nanotubes modified glassy carbon electrode. The electrode developed was used for the simultaneous determination of the isomers of dihydroxybenzene in environmental samples using a voltammetry method. There was a linear relationship over the range 10(-6)-10(-4 )mol L(-1) of hydroquinone, catechol and resorcinol; the detection limits was 3 x 10(-7) mol L(-1). The constructed electrode showed excellent reproducibility and stability. Actual water samples were analyzed and satisfactory result was obtained.

  9. Determination and enhancement of the capacitance contributions in carbon nanotube based electrode systems

    SciTech Connect

    Hoefer, M.; Bandaru, P. R.

    2009-11-02

    We characterize the methodology of, and a possible way to enhance, the capacitance of carbon nanotube (CNT) electrode based electrochemical capacitors. Argon irradiation was used to controllably incorporate extrinsic defects into CNTs and increase the magnitude of both the pseudocapacitance and double-layer capacitance by as much as 50% and 200%, respectively, compared to untreated electrodes. Our work has implications in analyzing the prospects of CNT based electrochemical capacitors, through investigating ways and means of improving their charge storage capacity and energy density.

  10. Modeling of Schottky Barrier Modulation due to Oxidation at Metallic Electrode and Semiconducting Carbon Nanotube Junction

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2003-01-01

    A model is proposed for the previously reported lower Schottky barrier for holes PHI (sub bH) in air than in vacuum at a metallic electrode - semiconducting carbon nanotube (CNT) junction. We assume that there is a transition region between the electrode and the CNT, and an appreciable potential can drop there. The role of the oxidation is to increase this potential drop with negatively charged oxygen molecules on the CNT, leading to lower PHI(sub Bh) after oxidation. The mechanism prevails in both p- and n-CNTs, and the model consistently explains the key experimental findings.

  11. The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water

    SciTech Connect

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1995-02-17

    The capacitive deionization of water with a stack of carbon aerogel electrodes has been successfully demonstrated for the first time. Unlike ion exchange, one of the more conventional deionization processes, no chemicals were required for regeneration of the system. Electricity was used instead. Water with various anions and cations was pumped through the electrochemical cell. After polarization, ions were electrostatically removed from the water and held in the electric double layers formed at electrode surfaces. The water leaving the cell was purified, as desired.

  12. Studies on the potentiometric thallium(III)-selective carbon paste electrode and its possible applications.

    PubMed

    Vytras, K; Khaled, E; Jezková, J; Hassan, H N; Barsoum, B N

    2000-05-01

    Construction, performance characteristics and applications of a carbon paste thallium(III) ion-selective electrode are described. The electrode, which is based on ion-associate compounds formed between cetylpyridinium and chlorothallate(III) complexes dissolved in tricresyl phosphate as pasting liquid, showed near-Nernstian response over the concentration range of 5.8 x 10(-6) - 2.9 x 10(-3) mol/L. Potentiometric titrations of thallium(III) with cetylpyridinium chloride were affected by higher concentrations of excess halides, probably due to the formation of higher halogenothallates.

  13. Carbon-modified electrode for ultra trace determination of Cd (II) in aqueous solution

    NASA Astrophysics Data System (ADS)

    Almustapha, Sakinatu; Khan, Aamir Amanat Ali; Omar, Abdul Aziz; Ariwahjoedi, Bambang; Abdullah, Mohd Azmuddin

    2014-10-01

    Increasing contamination of water by trace levels of heavy metals has become major environmental threats leading to an increased demand for the detection and monitoring of metal contaminants. In this work, modification of carbon electrode for Cd2+ detection using square wave anodic stripping voltammetry was reported. The deposition potential of -1.0 V in 0.1M acetate buffer for 240 sec, followed by square wave potential scan from -1.0 to -0.2 V were used. Stripping voltammogram showed current peaks corresponding to Cd2+. The sensitivity and selectivity of the modified electrodes for Cd2+ were also determined.

  14. Fabrication of a carbon nanotube protruding electrode array for a retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Dai, Hongjie; Fishman, Harvey A.; Harris, James S.

    2005-01-01

    Implantable retinal prosthetic devices consisting of microelectrode arrays are being built in attempts to restore vision. Current retinal prostheses use metal planar electrodes. We are developing a novel electro-neural interface using carbon nanotube (CNT) bundles as flexible, protruding microelectrodes. We have synthesized vertically self-assembled, multi-walled CNT bundles by thermal chemical vapor deposition. Using conventional silicon-based micro-fabrication processes, these CNT bundles were integrated onto pre-patterned circuits. CNT protruding electrodes have significant potentials in providing safer stimulation for retinal prostheses. They could also act as recording units to sense electrical and chemical activities in neural systems for fundamental neuroscience research.

  15. Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell.

    PubMed

    Penteado, Eduardo D; Fernandez-Marchante, Carmen M; Zaiat, Marcelo; Gonzalez, Ernesto R; Rodrigo, Manuel A

    2016-09-12

    The aim of this work was to evaluate three carbon materials as anodes in microbial fuel cells (MFCs), clarifying their influence on the generation of electricity and on the treatability of winery wastewater, a highly organic-loaded waste. The electrode materials tested were carbon felt, carbon cloth and carbon paper and they were used at the same time as anode and cathode in the tests. The MFC equipped with carbon felt reached the highest voltage and power (72 mV and 420 mW m(-2), respectively), while the lowest values were observed when carbon paper was used as electrode (0.2 mV and 8.37·10(-6) mW m(-2), respectively). Chemical oxygen demand (COD) removal from the wastewater was observed to depend on the electrode material, as well. When carbon felt was used, the MFC showed the highest average organic matter consumption rate (650 mg COD L(-1) d(-1)), whereas by using carbon paper the rate decreased to 270 mg COD L(-1) d(-1). Therefore, both electricity generation and organic matter removal are strongly related not to the chemical composition of the electrode (which was graphite carbon in the three electrodes), but to its surface features and, consequently, to the amount of biomass adhered to the electrode surface.

  16. Manufacture of a gas containing carbon monoxide and hydrogen gas from a starting material containing carbon and/or hydrocarbon

    SciTech Connect

    Santen, S.; Johansson, B.

    1984-08-21

    In a process for manufacturing a gas substantially containing carbon monoxide and hydrogen gas from a starting material containing carbon and/or hydrocarbon, the starting material is injected in powder or liquid form together with an oxidizing agent and slag former in a combustion zone while heat energy is simultaneously supplied. The combustion zone is formed in the lower portion of a shaft filled with particulate, solid, carbonaceous material and sulphur-binding slag former.

  17. A hybrid system of carbon ink electrodes and chromatography paper on a CMOS chip and its application to enzymatic glucose sensor

    NASA Astrophysics Data System (ADS)

    Miki, Masashi; Iwahara, Shohei; Uno, Shigeyasu

    2014-01-01

    Enzymatic sensors on complementary metal-oxide-semiconductor (CMOS) chips are realized using carbon ink and chromatography paper (ChrPr). Electrodes are fabricated from carbon ink on CMOS chips. The carbon ink electrodes work as well-behaving electrochemical electrodes. Enzyme electrodes are realized by covering the carbon ink electrodes on the CMOS chip with ChrPr supporting enzymes and electron mediators. Such enzyme electrodes successfully give anodic current proportional to the glucose concentration. Good linearity is observed up to 10 mM glucose concentration, which is sufficient for blood glucose testing applications.

  18. Carbon reduction potential from recycling in primary materials manufacturing

    SciTech Connect

    Elliott, R.N.

    1993-12-31

    This study assesses the potential for energy savings and carbon emissions reduction by increasing the recycled content of energy-intensive materials. Aluminum, steel, paper, plastics, and container glass are considered. Government policies to encourage higher recycling rates and increased recycled materials content are proposed.

  19. Mechanical strength of additive manufactured carbon fiber reinforced polyetheretherketone

    NASA Astrophysics Data System (ADS)

    Chumaevskii, A. V.; Tarasov, S. Yu.; Filippov, A. V.; Kolubaev, E. A.; Rubtsov, V. E.; Eliseev, A. A.

    2016-11-01

    Mechanical properties of both pure and chopped carbon fiber reinforced polyetheretherketone samples have been carried out. It was shown that the reinforcement resulted in increasing the elasticity modulus, compression and tensile ultimate strength by a factor of 3.5, 2.9 and 2.8, respectively. The fracture surfaces have been examined using both optical and scanning electron microscopy.

  20. Determination of Pb2+ ions by a modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and nanosilica.

    PubMed

    Ganjali, Mohammad Reza; Motakef-Kazami, Negar; Faridbod, Farnoush; Khoee, Sepideh; Norouzi, Parviz

    2010-01-15

    A novel carbon paste ion selective electrode for determination of trace amount of lead was prepared. Multi-walled carbon nanotubes (MWCNTs) and nanosilica were used for improvement of a lead carbon paste sensor response. MWCNTs have a good conductivity which helps the transduction of the signal in carbon paste electrode. The electrode composition of 20 wt% paraffin oil, 57% graphite powder, 15% ionophore (thiram), 5% MWCNTs, and 3% nanosilica showed the stable potential response to Pb(2+) ions with the Nernstian slope of 29.8 (+/-0.2)mV decade(-1) over a wide linear concentration range of 10(-7)-10(-2)mol L(-1). The electrode has fast response time, and long term stability (more than 2 months). The proposed electrode was used to determine the concentration of lead ions in waste water and black tea samples.

  1. Use of submicron carbon filaments in place of carbon black as a porous reduction electrode in lithium batteries with a catholyte comprising bromine chloride in thionyl chloride

    SciTech Connect

    Frysz, C.A.; Shui, X.; Chung, D.D.L.

    1995-12-31

    Submicron carbon filaments used in place of carbon black as porous reduction electrodes in carbon limited lithium batteries in plate and jellyroll configurations with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8,700 mAh/g carbon, compared to a value of up to 2,900 mAh/g carbon for carbon black. The high specific capacity per g carbon (demonstrating superior carbon efficiency) for the filament electrode is partly due to the filaments` processability into sheets as thin as 0.2 mm with good porosity and without a binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode.

  2. Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells.

    PubMed

    Epifanio, Monica; Inguva, Saikumar; Kitching, Michael; Mosnier, Jean-Paul; Marsili, Enrico

    2015-12-01

    The attachment of electrochemically active microorganisms (EAM) on an electrode is determined by both the chemistry and topography of the electrode surface. Pre-treatment of the electrode surface by atmospheric air plasma introduces hydrophilic functional groups, thereby increasing cell attachment and electroactivity in short-term experiments. In this study, we use graphite and carbon felt electrodes to grow the model EAM Shewanella loihica PV-4 at oxidative potential (0.2 V vs. Ag/AgCl). Cell attachment and electroactivity are measured through electrodynamic methods. Atmospheric air plasma pre-treatment increases cell attachment and current output at graphite electrodes by 25%, while it improves the electroactivity of the carbon felt electrodes by 450%. Air plasma pre-treatment decreased the coulombic efficiency on both carbon felt and graphite electrodes by 60% and 80%, respectively. Microbially produced flavins adsorb preferentially at the graphite electrode, and air plasma pre-treatment results in lower flavin adsorption at both graphite and carbon felt electrodes. Results show that air plasma pre-treatment is a feasible option to increase current output in bioelectrochemical systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Enhancing the stability of silicon nanosheets electrodes by fluoroethylene carbonate

    NASA Astrophysics Data System (ADS)

    Park, Jeong Min; Kim, Sujin; Ha, Jung Hoon; Kim, Sung Wook; Lee, Jaejun; Park, Sangwon; Cho, Byung-Won; Choi, Heon-Jin

    2017-09-01

    Stabilization of the SEI layer that is formed by consuming active lithium in electrolytes is a critical issue for improving the cyclability of lithium ion batteries. We used SiNSs as anodes and investigated the effect of fluoroethylene carbonate (FEC) additives on the SEI layer. Our XPS, EIS and TEM analysis of Csbnd O and Cdbnd O bonds, interfacial resistance and thickness of SEl layer, respectively, shows that the FEC produces electrochemically and mechanically stable SEI layer. The SiNSs with FEC showed the capacity of over 1500 mA h g-1 with 95% efficiency after 200 cycles.

  4. Deposition of boron doped diamond and carbon nanomaterials on graphite foam electrodes

    NASA Astrophysics Data System (ADS)

    Marton, Marian; Vojs, Marian; Kotlár, Mário; Michniak, Pavol; Vančo, Ľubomír; Veselý, Marian; Redhammer, Robert

    2014-09-01

    Boron doped diamond (BDD) has remarkable physical and chemical properties, that makes it an attractive material for electrochemical applications. In this study, deposition process of BDD on porous carbon foam electrodes was performed by HFCVD method. After depositions, the substrates were not homogenously covered by the BDD thin film only. Depending on the deposition temperature, foam porosity and distance from heated filaments, different carbon nanomaterials were synthesized. The boron doped diamond, graphite nanosheets, carbon nanowalls and its composites occurred on the foams outer and inner surfaces. Two new observed types of carbon structures, the carbon nanowalls - boron doped diamond composite and graphite nanotips are analyzed and described. Analyses were made by SEM and Raman spectroscopy. The influence of deposition conditions on the growth process is discussed.

  5. Advantages of electrodes with dendrimer-protected platinum nanoparticles and carbon nanotubes for electrochemical methanol oxidation.

    PubMed

    Siriviriyanun, Ampornphan; Imae, Toyoko

    2013-04-14

    Electrochemical sensors consisting of electrodes loaded with carbon nanotubes and Pt nanoparticles (PtNPs) protected by dendrimers have been developed using a facile method to fabricate them on two types of disposable electrochemical printed chips with a screen-printed circular gold or a screen-printed circular glassy carbon working electrode. The electrochemical performance of these sensors in the oxidation of methanol was investigated by cyclic voltammetry. It was revealed that such sensors possess stable durability and high electrocatalytic activity: the potential and the current density of an anodic peak in the oxidation of methanol increased with increasing content of PtNPs on the electrodes, indicating the promotion of electrocatalytic activity in relation to the amount of catalyst. The low anodic potential suggests the easy electrochemical reaction, and the high catalyst tolerance supports the almost complete oxidation of methanol to carbon dioxide. The significant performance of these sensors in the detection of methanol oxidation comes from the high electrocatalytic ability of PtNPs, excellent energy transfer of carbon nanotubes and the remarkable ability of dendrimers to act as binders. Thus these systems are effective for a wide range of applications as chemical, biomedical, energy and environmental sensors and as units of direct methanol fuel cells.

  6. Application of multi-walled carbon nanotubes modified carbon ionic liquid electrode for electrocatalytic oxidation of dopamine.

    PubMed

    Li, Yonghong; Liu, Xinsheng; Liu, Xiaoying; Mai, Nannan; Li, Yuandong; Wei, Wanzhi; Cai, Qingyun

    2011-11-01

    A simple, sensitive, and reliable method based on a multi-walled carbon nanotubes (MWNTs) modified carbon ionic liquid electrode (CILE) has been successfully developed for determination of dopamine (DA) in the presence of ascorbic acid (AA). The acid-treated MWNTs with carboxylic acid functional groups could promote the electron-transfer reaction of DA and inhibit the voltammetric response of AA. Due to the good performance of the ionic liquid, the electrochemical response of DA on the MWNTs/CILE was better than that of other MWNTs modified electrodes. Under the optimum conditions a linear calibration plot was obtained in the range 5.0×10(-8) to 2.0×10(-4) mol L(-1) and the detection limit was 1.0×10(-8) mol L(-1).

  7. Multi-walled carbon nanotubes (MWCNT) as compliant electrodes for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Chua, Soo-Lim; Neo, Xin-Hui; Lau, Gih-Keong

    2011-04-01

    A stacked dielectric elastomer actuator (DEA) consists of multiple layers of elastomeric dielectrics interleaved with compliant electrodes. It is capable of taking a tensile load if only the interleaving compliant electrodes provide a good bonding and enough elasticity. However, the stacked configuration of DEA was found to produce less actuation strain as compared to a single-layer configuration of pre-stretched membrane. It is believed the binder for compliant electrodes has a significant influence on the actuation strain. Yet, there has yet systematic study on the effect of binder. In this paper, we will study the effects of binder, solvent, and surface fictionalization on the compliant electrodes using the conductive filler of Multi-Walled Carbon Nanotube (MWCNT). Two types of binders are used, namely a soft silicone rubber (Mold Max 10T) and a soft silicone gel (Sylgard 527 gel). The present experiments show that the actuators using binders in the compliant electrodes produce a much lower areal strain as compared to the ones without binders in them. It is found that introducing a binder in the electrodes decreases the conductivity. The MWCNT compliant electrode with binder remains conductive (<1TΩ) up to a strain of 300%, whereas the one without binder remains conductive up to a strain of 800%. Changing the type of binder to a softer and less-viscous one increases the percolation ratio for MWCNT-COOH filler from 5% to 15% but this does not significantly increase the actuation strain. In addition, this study investigates the effect of MWCNT functionalization on the dielectric elastomeric actuation. The compliant electrodes using the MWCNT functionalized with (-COOH) group was also found to have a lower electrical conductivity and areal actuation strain, in comparison to the ones using the pristine MWCNT filler. In addition to binder, solvent for dispersing MWCNT-COOH was found to affect the actuation strain even though the solvent is eventually removed by

  8. Ion-selective electrodes with colloid-imprinted mesoporous carbon as solid contact.

    PubMed

    Hu, Jinbo; Zou, Xu U; Stein, Andreas; Bühlmann, Philippe

    2014-07-15

    A new type of solid-contact ion-selective electrode (SC-ISE) has been developed that uses colloid-imprinted mesoporous (CIM) carbon with 24 nm diameter, interconnected mesopores as the intermediate layer between a gold electrode and an ionophore-doped ISE membrane. For a demonstration, valinomycin was used as K(+) ionophore, and a good Nernstian response with a slope of 59.5 mV/decade in the range from 10(-5.2) to 10(-1.0) M was observed. The high purity, low content of redox-active surface functional groups and intrinsic hydrophobic characteristics of CIM carbon prepared from mesophase pitch lead to outstanding performance of these sensors, with excellent resistance to the formation of a water layer and no interference caused by light, O2, and CO2. When a redox couple is introduced as an internal reference species, calibration-free SC-ISEs can be made with a standard deviation of E° as low as 0.7 mV. Moreover, the interconnected mesopore structure of ISE membrane-infused CIM carbon facilitates both ion and electron conduction and provides a large interfacial area with good ion-to-electron transduction. Because of the large double layer capacitance of CIM carbon, CIM carbon-based SC-ISEs exhibit excellent potential stability, as shown by chronopotentiometry and continuous potentiometric measurements. The capacitance of these electrodes as determined by chronopotentiometry is 1.0 mF, and the emf drift over 70 h is as low as 1.3 μV/h, making these electrodes the most stable SC-ISEs reported so far.

  9. Carbon nanotube modification of microbial fuel cell electrodes.

    PubMed

    Yazdi, Alireza Ahmadian; D'Angelo, Lorenzo; Omer, Nada; Windiasti, Gracia; Lu, Xiaonan; Xu, Jie

    2016-11-15

    The use of carbon nanotubes (CNTs) for energy harvesting devices is preferable due to their unique mechanical, thermal, and electrical properties. On the other hand, microbial fuel cells (MFCs) are promising devices to recover carbon-neutral energy from the organic matters, and have been hindered with major setbacks towards commercialization. Nanoengineered CNT-based materials show remarkable electrochemical properties, and therefore have provided routes towards highly effective modification of MFC compartments to ultimately reach the theoretical limits of biomass energy recovery, low-cost power production, and thus the commercialization of MFCs. Moreover, these CNT-based composites offer significant flexibility in the design of MFCs that enable their use for a broad spectrum of applications ranging from scaled-up power generation to medically related devices. This article reviews the recent advances in the modification of MFCs using CNTs and CNT-based composites, and the extent to which each modification route impacts MFC power and current generation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. An EEG (electroencephalogram) recording system with carbon wire electrodes for simultaneous EEG-fMRI (functional magnetic resonance imaging) recording

    PubMed Central

    Negishi, Michiro; Abildgaard, Mark; Laufer, Ilan; Nixon, Terry; Constable, Robert Todd

    2008-01-01

    Simultaneous EEG-fMRI (Electroencephalography-functional Magnetic Resonance Imaging) recording provides a means for acquiring high temporal resolution electrophysiological data and high spatial resolution metabolic data of the brain in the same experimental runs. Carbon wire electrodes (not metallic EEG electrodes with carbon wire leads) are suitable for simultaneous EEG-fMRI recording, because they cause less RF (radio-frequency) heating and susceptibility artifacts than metallic electrodes. These characteristics are especially desirable for recording the EEG in high field MRI scanners. Carbon wire electrodes are also comfortable to wear during long recording sessions. However, carbon electrodes have high electrode-electrolyte potentials compared to widely used Ag/AgCl (silver/silver-chloride) electrodes, which may cause slow voltage drifts. This paper introduces a prototype EEG recording system with carbon wire electrodes and a circuit that suppresses the slow voltage drift. The system was tested for the voltage drift, RF heating, susceptibility artifact, and impedance, and was also evaluated in a simultaneous ERP (event-related potential)-fMRI experiment. PMID:18588913

  11. Carbon deposition behaviour in metal-infiltrated gadolinia doped ceria electrodes for simulated biogas upgrading in solid oxide electrolysis cells

    NASA Astrophysics Data System (ADS)

    Duboviks, V.; Lomberg, M.; Maher, R. C.; Cohen, L. F.; Brandon, N. P.; Offer, G. J.

    2015-10-01

    One of the attractive applications for reversible Solid Oxide Cells (SOCs) is to convert CO2 into CO via high temperature electrolysis, which is particularly important for biogas upgrading. To improve biogas utility, the CO2 component can be converted into fuel via electrolysis. A significant issue for SOC operation on biogas is carbon-induced catalyst deactivation. Nickel is widely used in SOC electrodes for reasons of cost and performance, but it has a low tolerance to carbon deposition. Two different modes of carbon formation on Ni-based electrodes are proposed in the present work based on ex-situ Raman measurements which are in agreement with previous studies. While copper is known to be resistant towards carbon formation, two significant issues have prevented its application in SOC electrodes - namely its relatively low melting temperature, inhibiting high temperature sintering, and low catalytic activity for hydrogen oxidation. In this study, the electrodes were prepared through a low temperature metal infiltration technique. Since the metal infiltration technique avoids high sintering temperatures, Cu-Ce0.9Gd0.1O2-δ (Cu-CGO) electrodes were fabricated and tested as an alternative to Ni-CGO electrodes. We demonstrate that the performance of Cu-CGO electrodes is equivalent to Ni-CGO electrodes, whilst carbon formation is fully suppressed when operated on biogas mixture.

  12. Tight-binding model for amine-terminated oligophenyl molecular junctions formed with carbon electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Deok Hyeon; Kim, Taekyeong

    2015-05-01

    We measured the conductance of a series of amine-terminated oligophenyl molecular junction formed with carbon electrodes by using a scanning tunneling microscope based break-junction technique. The tight-binding model that includes the molecular backbone states accurately captured the experimentally measured the molecular conductance and the exponential decay trend of the conductance with the molecular backbone length. Furthermore, we found that this model tracked successfully the shift of the highest occupied molecular orbital toward the Fermi energy as increasing the molecular length. Finally, we found that the tight-binding model explaining more week coupling strength with the graphite electrode than that with the Au electrode is in quantitative agreement with the density functional theory calculations.

  13. Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries.

    PubMed

    Takada, Koji; Yamada, Yuki; Watanabe, Eriko; Wang, Jianhui; Sodeyama, Keitaro; Tateyama, Yoshitaka; Hirata, Kazuhisa; Kawase, Takeo; Yamada, Atsuo

    2017-10-04

    The passivation of negative electrodes is key to achieving prolonged charge-discharge cycling with Na-ion batteries. Here, we report the unusual passivation ability of superconcentrated Na-salt electrolytes. For example, a 50 mol % sodium bis(fluorosulfonyl)amide (NaFSA)/succinonitrile (SN) electrolyte enables highly reversible Na(+) insertion into a hard carbon negative electrode without any electrolyte additive, functional binder, or electrode pretreatment. Importantly, an anion-derived passivation film is formed via preferential reduction of the anion upon charging, which can effectively suppress further electrolyte reduction. As a structural characteristic of the electrolyte, most anions are coordinated to multiple Na(+) cations at high concentration, which shifts the lowest unoccupied molecular orbitals of the anions downward, resulting in preferential anion reduction. The present work provides a new understanding of the passivation mechanism with respect to the coordination state of the anion.

  14. Determination of set potential voltages for cucumber mosaic virus detection using screen printed carbon electrode

    NASA Astrophysics Data System (ADS)

    Uda, M. N. A.; Hasfalina, C. M.; Samsuzana, A. A.; Faridah, S.; Rafidah A., R.; Hashim, U.; Ariffin, Shahrul A. B.; Gopinath, Subash C. B.

    2017-03-01

    Cucumber Mosaic Virus (CMV) is a most dangerous pathogen among the cucurbit plant which it striking cucumbers, zucchinis, squashes, watermelons but it also striking to non-cucurbit such as peppers, tobaccos, celeries, beans and tomatoes. Symptoms shown by this virus when they starting to strike are very significant and at the end can kill the hosts they infected. In order to detect these viruses, biosensor such as screen-printed carbon electrode (SPCE) is developed and fixes a set potential voltage is defined using Chronoamperometry (CM) immunosensor technique. For short introduction, CM is a process which is a constant applied potential voltage between the working and reference electrode is maintained in order to create an electrons transfer for the oxidation or reduction species taking place at the surface of working electrode is measured and in this manuscript, complete details about measurement were used to finding the stable set potential voltages will be pointed out.

  15. Electrocatalyzed O2 response of myoglobin immobilized on multi-walled carbon nanotube forest electrodes.

    PubMed

    Pacios, M; del Valle, M; Bartroli, J; Esplandiu, M J

    2009-10-01

    Direct electrochemistry and activity of myoglobin (Mb) immobilized on carbon nanotube (CNT) forest electrodes were investigated by probing mainly its electrocatalytical response towards oxygen. The protein was anchored on the CNT electrodes through carbodiimide coupling, which was shown to provide long term stability. The electrochemical response was monitored as a function of oxygen concentration and pH. Conformational changes together with the consequent loss of oxygen affinity were recorded at low pH, which delimits the operative range of the Mb/CNT electrodes for sensing purposes. In general, it can be concluded that CNT forests constitute suitable platforms for Mb attachment without compromising the protein bioactivity and by keeping at the same time the direct electron exchange with the heme core. All these characteristics confer to the protein modified CNT system promising properties for the implementation of (bio)sensor devices with impact in the clinical and environmental field.

  16. Determination of serotonin on platinum electrode modified with carbon nanotubes/polypyrrole/silver nanoparticles nanohybrid.

    PubMed

    Cesarino, Ivana; Galesco, Heloisa V; Machado, Sergio A S

    2014-07-01

    A new sensor has been developed by a simple electrodeposition of multi-walled carbon nanotubes (MWCNT), polypyrrole (PPy) and colloidal silver nanoparticles on the platinum (Pt) electrode surface. The Pt/MWCNT/PPy/AgNPs electrode was applied to the detection of serotonin in plasmatic serum samples using differential pulse voltammetry (DPV). The synergistic effect of MWCNT/PPy/AgNPs nanohybrid formed yielded a LOD of 0.15 μmol L(-1) (26.4 μg L(-1)). Reproducibility and repeatability values of 2.2% and 1.7%, respectively, were obtained compared to the conventional procedure. The proposed electrode can be an effective material to be used in biological analysis.

  17. Voltammetric Determination of Dopamine in Human Serum with Amphiphilic Chitosan Modified Glassy Carbon Electrode

    PubMed Central

    Wang, Cheng Yin; Wang, Zhi Xian; Zhu, Ai Ping; Hu, Xiao Ya

    2006-01-01

    An improvement of selectivity for electrochemical detection of dopamine (DA) with differential pulse voltammetry is achieved by covalently modifying a glassy carbon electrode (GCE) with O-carboxymethylchitosan (OCMCS). The amphiphilic chitosan provides electrostatic accumulation of DA onto the electrode surface. In a phosphate buffer solution (pH 6.0), a pair of well-defined reversible redox waves of DA was observed at the OCMCS/GCE with a ΔEp of 52 mV. The anodic peak current obtained from the differential pulse voltammetry of dopamine was linearly dependent on its concentration in the range of 6.0 × 10-8 to 7.0 × 10-6 M, with a correlation coefficient of 0.998. The detection limit (S/N = 3) was found to be 1.5 × 10-9 M. The modified electrode had been applied to the determination of DA in human serum samples with satisfactory results.

  18. Electrochemical studies of some quinolone antibiotics. Part I. Qualitative analysis on mercury and carbon electrodes.

    PubMed

    Warowna-Grześkiewicz, M; Chodkowski, J; Fijałek, Z

    1995-01-01

    Direct current polarography and cyclic voltammetry was used to study quinolone antibiotics: ciprofloxacin, enoxacin, norfloxacin, ofloxacin and pefloxacin on a mercury and carbon electrode. The dependence of limiting currents and half-wave potentials on the pH of the solution, mercury head, temperature, ionic strength of the solution, methyl cellulose concentration, scan rate and quinolone concentration was studied. The optimal parameters and background solutions have been chosen. It was concluded that on mercury electrode quinolones are reduced in two one-electron waves and the process of the reduction is accompanied by an acid-base equilibrium. An anodic peak observed on graphite electrode is probably caused by the oxidation of piperazine ring in the molecule.

  19. The fabrication of a bifunctional oxygen electrode without carbon components for alkaline secondary batteries

    NASA Astrophysics Data System (ADS)

    Price, Stephen W. T.; Thompson, Stephen J.; Li, Xiaohong; Gorman, Scott F.; Pletcher, Derek; Russell, Andrea E.; Walsh, Frank C.; Wills, Richard G. A.

    2014-08-01

    The fabrication of a gas diffusion electrode (GDE) without carbon components is described. It is therefore suitable for use as a bifunctional oxygen electrode in alkaline secondary batteries. The electrode is fabricated in two stages (a) the formation of a PTFE-bonded nickel powder layer on a nickel foam substrate and (b) the deposition of a NiCo2O4 spinel electrocatalyst layer by dip coating in a nitrate solution and thermal decomposition. The influence of modifications to the procedure on the performance of the GDEs in 8 M NaOH at 333 K is described. The GDEs can support current densities up to 100 mA cm-2 with state-of-the-art overpotentials for both oxygen evolution and oxygen reduction. Stable performance during >50 successive, 1 h oxygen reduction/evolution cycles at a current density of 50 mA cm-2 has been achieved.

  20. Flow injection amperometric detection of insulin at cobalt hydroxide nanoparticles modified carbon ceramic electrode.

    PubMed

    Habibi, Esmaeil; Omidinia, Eskandar; Heidari, Hassan; Fazli, Maryam

    2016-02-15

    Cobalt hydroxide nanoparticles were prepared onto a carbon ceramic electrode (CHN|CCE) using the cyclic voltammetry (CV) technique. The modified electrode was characterized by X-ray diffraction and scanning electron microscopy. The results showed that CHN with a single-layer structure was uniformly electrodeposited on the surface of CCE. The electrocatalytic activity of the modified electrode toward the oxidation of insulin was studied by CV. CHN|CCE was also used in a homemade flow injection analysis system for insulin determination. The limit of detection (signal/noise [S/N] = 3) and sensitivity were found to be 0.11 nM and 11.8 nA/nM, respectively. Moreover, the sensor was used for detection of insulin in human serum samples. This sensor showed attractive properties such as high stability, reproducibility, and high selectivity.

  1. Electrochemical detection of DNA hybridization by using a zirconia modified renewable carbon paste electrode.

    PubMed

    Zuo, Shao-Hua; Zhang, Ling-Fan; Yuan, Hui-Hui; Lan, Min-Bo; Lawrance, Geoffrey A; Wei, Gang

    2009-02-01

    A simple, polishable and renewable DNA biosensor was fabricated based on a zirconia modified carbon paste electrode. Zirconia was mixed with graphite powder and paraffin wax to produce the paste for the electrode, and response-optimized at 56% graphite powder, 19% ZrO(2) and 25% paraffin wax. An oligonucleotide probe with a terminal 5'-phosphate group was attached to the surface of the electrode via the strong affinity of zirconia for phosphate groups. DNA immobilization and hybridization were characterized by cyclic voltammetry and differential pulse voltammetry, using methylene blue as indicator. Examination of changes in response with complementary or non-complementary DNA sequences showed that the developed biosensor had a high selectivity and sensitivity towards hybridization detection (< or =2x10(-10) M complementary DNA detectable). The surface of the biosensor can be renewed quickly and reproducibly (signal RSD+/-4.6% for five successive renewals) by a simple polishing step.

  2. Studies on 1:12 phosphomolybdic heteropoly anion film modified carbon paste electrode.

    PubMed

    Guanghan, L; Xiaogang, W; Yanhua, L; Shenlai, Y

    1999-07-01

    A 1:12 phosphomolybdic anion film modified carbon paste electrode (PMo(12) electrode) is prepared by electrochemical deposition and its application is studied by cyclic voltammetry. The film modified electrode can adsorb PMo(12) selectively and thus be used for the determination of trace phosphorus. In a solution containing 2 mug ml(-1) phosphorus, the relative standard deviation is 4.69% (n=4), the peak height also varies linearly with the concentration of phosphorus over the range 0.4-25 mug ml(-1), and the detection limit is 0.04 mug ml(-1). The method is convenient and rapid. It has been used for the determination of inorganic phosphorus in phytic acid directly with satisfactory results.

  3. A novel voltammetric sensor for amoxicillin based on nickel-curcumin complex modified carbon paste electrode.

    PubMed

    Ojani, Reza; Raoof, Jahan-Bakhsh; Zamani, Saeed

    2012-06-01

    The electrocatalytic oxidation of amoxicillin was investigated on a nickel-based (Ni(II)-curcumin) chemically modified electrode. This modified electrode was prepared by electropolymerization of complex (curcumin = 1,7-bis[4-hydroxyl-3-methoxyphenyl]-1,6-heptadiene-3,5-dione) in alkaline solution. For the first time, the catalytic oxidation of amoxicillin was demonstrated by cyclic voltammetry, chronoamperometry, chronocoulometry and amperometry methods at the surface of this modified carbon paste electrode. The obtained results showed that NiOOH acts as an electrocatalyst for oxidation of amoxicillin. This electrocatalytic oxidation exhibited a good linear response for amoxicillin concentration over the range of 8 × 10⁻⁶-1×10⁻⁴ M with a detection limit of 5 × 10⁻⁶ M. Therefore, this electrocatalytic method was used as a simple, selective and rapid method able to determine amoxicillin in pharmaceutical preparations and biological media.

  4. Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste electrode.

    PubMed

    Bukkitgar, Shikandar D; Shetti, Nagaraj P

    2016-08-01

    A novel sensor for the determination of 5-fluorouracil was constructed by electrochemical deposition of methylene blue on surface of carbon paste electrode. The electrode surface morphology was studied using Atomic force microscopy and XRD. The electrochemical activity of modified electrode was characterized using cyclic voltammetry and differential pulse method. The developed sensor shows impressive enlargement in sensitivity of 5-fluorouracil determination. The peak currents obtained from differential pulse voltammetry was linear with concentration of 5-fluorouracil in the range 4×10(-5)-1×10(-7)M and detection limit and quantification limit were calculated to be 2.04nM and 6.18nM respectively. Further, the sensor was successfully applied in pharmaceutical and biological fluid sample analysis.

  5. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    NASA Astrophysics Data System (ADS)

    Xue, Kuan-Hong; Liu, Jia-Mei; Wei, Ri-Bing; Chen, Shao-Peng

    2006-09-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2SO 4, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials Epa and Epc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  6. Air diffusion biocathode with CueO as electrocatalyst adsorbed on carbon particle-modified electrodes.

    PubMed

    Kontani, Ryota; Tsujimura, Seiya; Kano, Kenji

    2009-09-01

    The current density of biofuel cells which use dissolved O(2) as electron acceptor is limited by O(2) supply to the electrode surface due to the low solubility and small diffusion coefficient of O(2) in the electrolyte solution. In order to increase the current density, we constructed an air diffusion biocathode which uses O(2) directly from the air. As cathodic biocatalyst, we utilized CueO from Escherichia coli, which belongs to the family of multi-copper oxidases. O(2) reduction was catalyzed by CueO adsorbed on Ketjen black-modified carbon paper electrodes. The hydrophobic electrode surface was obtained by optimizing the weight ratio of polytetrafluoroethylene binder to Ketjen black. The current density of O(2) reduction reached values as high as 20 mA cm(-2) at 0 V vs. Ag|AgCl, KCl(sat.) in a citrate buffer (1.0 M, pH 5.0, 25 degrees C).

  7. Highly Oriented Carbon Nanotube Sheets for Rechargeable Lithium Oxygen Battery Electrodes.

    PubMed

    Ryu, Seongwoo; Kim, Byung Gon; Choi, Jang Wook; Lee, Haeshin

    2015-10-01

    Lithium oxygen batteries are one of the next generation rechargeable batteries. High energy density of lithium oxygen batteries have been considered as a very attractive power option for electric vehicles and many other electronic devices. However, they still faced substantial challenges such as short cycle life, large voltage hysteresis, low gravimetric and volumetric power. Here we developed a highly aligned CNT structured sheet for favorable lithium oxygen cathode electrodes. We fabricated highly oriented CNT sheets by rolling vertically aligned CNT arrays. Highly oriented CNT sheets provide excellent electrical conductivity with favorable mesoporous structure for cathode electrode. As a result, the CNT sheet performed maximum discharging capacity of 1810 mA/gc. We found that electrical conductivity and pore distribution plays important rolls for improving performance in lithium oxygen batteries. This study suggests new strategies of designing highly efficient porous carbon electrodes for lithium oxygen batteries.

  8. Screen-Printed Carbon Electrodes Modified by Rhodium Dioxide and Glucose Dehydrogenase

    PubMed Central

    Polan, Vojtěch; Soukup, Jan; Vytřas, Karel

    2010-01-01

    The described glucose biosensor is based on a screen-printed carbon electrode (SPCE) modified by rhodium dioxide, which functions as a mediator. The electrode is further modified by the enzyme glucose dehydrogenase, which is immobilized on the electrode's surface through electropolymerization with m-phenylenediamine. The enzyme biosensor was optimized and tested in model glucose samples. The biosensor showed a linear range of 500–5000 mg L−1 of glucose with a detection limit of 210 mg L−1 (established as 3σ) and response time of 39 s. When compared with similar glucose biosensors based on glucose oxidase, the main advantage is that neither ascorbic and uric acids nor paracetamol interfere measurements with this biosensor at selected potentials. PMID:21528113

  9. Direct electrochemistry of xanthine oxidase at a gold electrode modified with single-wall carbon nanotubes.

    PubMed

    Wang, Liang; Yuan, Zhuobin

    2004-04-01

    The direct electrochemistry of xanthine oxidase (XOD) was accomplished at a gold electrode modified with single-wall carbon nanotubes (SWNTs). A pair of well-defined redox peaks was obtained for XOD with the reduction peak potential at -0.478 V and a peak potential separation of 28 mV at pH 7.0. Both FT-IR spectra and the dependence of the reduction peak current on the scan rate revealed that XOD adsorbed onto the SWNT surfaces. The redox wave corresponds to the redox center of the flavin adenine dinucleotide (FAD) of the XOD adsorbate. Compared to other types of carbonaceous electrode materials, the electron transfer rate of XOD redox reaction was greatly enhanced at the SWNT-modified electrode. The peak potential was shown to be pH dependent. Spectral methods verified that the attachment of XOD onto SWNTs does not perturb the XOD conformations drastically.

  10. Synthesis and fabrication of porous activated carbon/nano ZnO composite electrode for supercapacitor

    NASA Astrophysics Data System (ADS)

    P, Shabeeba; Thayyil, Mohammed Shahin; Pillai, M. P.

    2017-05-01

    Supercapacitors, also called as ultracapacitors, are electrochemical energy-storage devices that exploit the electrostatic interaction between high-surface-area nanoporous electrodes and electrolyte ions that combine properties of conventional batteries and conventional capacitors. A symmetrical ZnO-Activated Carbon (ZAC) electrode supercapacitor have been fabricated in a simple and inexpensive manner. The electrochemical characteristics of fabricated supercapacitor was analyzed using Cyclic Voltammetry (CV), galvanostatic charge discharge technique, and impedance spectroscopy methods. Capacitance of fabricated ZAC electrode were showed capacitance in the range of 60-70 F/g respectively. It has been found that the cells have excellent electro chemical reversibility, capacitive characteristics in electrolyte and stable in cyclings, which is promising for energy storage applications.

  11. Studies on Supercapacitor Electrode Material from Activated Lignin-Derived Mesoporous Carbon

    SciTech Connect

    Saha, Dipendu; Li, Yunchao; Bi, Zhonghe; Chen, Jihua; Keum, Jong Kahk; Hensley, Dale K; Grappe, Hippolyte A.; Meyer III, Harry M; Dai, Sheng; Paranthaman, Mariappan Parans; Naskar, Amit K

    2014-01-01

    We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent, and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum BET specific surface area of 1148 m2/g and a pore volume of 1.0 cm3/g. Slow physical activation helped retain dominant mesoporosity; however, aggressive chemical activation caused some loss of the mesopore volume fraction. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited the same range of surface-area-based capacitance as that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and increased the gravimetric-specific capacitance of the mesoporous carbons. Surface activation lowered bulk density and electrical conductivity. Warburg impedance as a vertical tail in the lower frequency domain of Nyquist plots supported good supercapacitor behavior for the activated mesoporous carbons. Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications.

  12. Carbon dioxide capture from a cement manufacturing process

    DOEpatents

    Blount, Gerald C.; Falta, Ronald W.; Siddall, Alvin A.

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  13. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes.

    PubMed

    Elmouwahidi, Abdelhakim; Zapata-Benabithe, Zulamita; Carrasco-Marín, Francisco; Moreno-Castilla, Carlos

    2012-05-01

    Activated carbons were prepared by KOH-activation of argan seed shells (ASS). The activated carbon with the largest surface area and most developed porosity was superficially treated to introduce oxygen and nitrogen functionalities. Activated carbons with a surface area of around 2100 m(2)/g were obtained. Electrochemical measurements were carried out with a three-electrode cell using 1M H(2)SO(4) as electrolyte and Ag/AgCl as reference electrode. The O-rich activated carbon showed the lowest capacitance (259 F/g at 125 mA/g) and the lowest capacity retention (52% at 1A/g), due to surface carboxyl groups hindering electrolyte diffusion into the pores. Conversely, the N-rich activated carbon showed the highest capacitance (355 F/g at 125 mA/g) with the highest retention (93% at 1A/g), due to its well-developed micro-mesoporosity and the pseudocapacitance effects of N functionalities. This capacitance performance was among the highest reported for other activated carbons from a large variety of biomass precursors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor

    NASA Astrophysics Data System (ADS)

    Bhattacharjya, Dhrubajyoti; Yu, Jong-Sung

    2014-09-01

    Cow dung is one of the most abundant wastes generated on earth and has been traditionally used as fertilizer and fuel in most of the developing countries. In this study activated carbon is synthesized from cow dung by a modified chemical activation method, where partially carbonized cow dung is treated with KOH in different ratio. The synthesized activated carbon possesses irregular surface morphology with high surface area in the range of 1500-2000 m2 g-1 with proper amount of micropore and mesopore volume. In particular, we demonstrate that the surface morphology and porosity parameters change with increase in KOH ratio. These activated carbons are tested as electrode material in two-electrode symmetric supercapacitor system in non-aqueous electrolyte and found to exhibit high specific capacitance with excellent retention of it at high current density and for long term operation. In particular, the activated carbon synthesized at 2:1 ratio of KOH and the pre-carbonized char shows the best performance with specific capacitance of 124 F g-1 at 0.1 A g-1 and retains up to 117 F g-1 at 1.0 A g-1 current density. The performance is attributed to high surface area along with optimum amount of micropore and mesopore volume.

  15. Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors.

    PubMed

    Lee, Jun Seop; Shin, Dong Hoon; Jun, Jaemoon; Lee, Choonghyeon; Jang, Jyongsik

    2014-06-01

    Fe3O4/carbon hybrid nanoparticles (FeCHNPs) were fabricated using dual-nozzle electrospraying, vapor deposition polymerization (VDP), and carbonization. FeOOH nanoneedles decorated with polypyrrole (PPy) nanoparticles (FePNPs) were fabricated by electrospraying pristine PPy mixed with FeCl3 solution, followed by heating stirring reaction. A PPy coating was then formed on the FeOOH nanoneedles through a VDP process. FeCHNPs were produced through carbonization of PPy and FeOOH phase transitions. These hybrid carbon nanoparticles (NPs) were used to build electrodes of electrochemical capacitors. The specific capacitance of the FeCHNPs was 455 F g(-1), which is larger than that of pristine PPy NPs (105 F g(-1)) or other hybrid PPy NPs. Furthermore, the FeCHNP-based capacitors exhibited better cycle stability during charge-discharge cycling than other hybrid NP capacitors. This is because the carbon layer on the Fe3 O4 surface formed a protective coating, preventing damage to the electrode materials during the charge-discharge processes. This fabrication technique is an effective approach for forming stable carbon/metal oxide nanostructures for energy storage applications.

  16. Electrochemical determination of cadmium and lead on pristine single-walled carbon nanotube electrodes.

    PubMed

    Bui, Minh-Phuong Ngoc; Li, Cheng Ai; Han, Kwi Nam; Pham, Xuan-Hung; Seong, Gi Hun

    2012-01-01

    A flexible, transparent, single-walled carbon nanotube (SWCNT) film electrode was prepared by vacuum filtering methods, followed by photolithographic patterning of a photoresist polymer on the SWCNT surface. The morphology of the SWCNT film electrode surface was characterized using a field-emission scanning electron microscope coupled to an energy-dispersive X-ray spectrophotometer. The electrodes were successfully used as a mercury-free electrochemical sensor for individual and simultaneous detection of cadmium (Cd(2+)) and lead (Pb(2+)) in 0.02 M HCl by square-wave stripping voltammetry. Some important operational parameters, including deposition time, deposition potential, square-wave amplitude, and square wave-frequency were optimized for the detection of Cd(2+) and Pb(2+). The newly developed sensor showed good linear behavior in the examined concentration. For individual Cd(2+) and Pb(2+) ion detection, the linear range was found from 0.033 to 0.228 ppm with detection limits of 0.7 ppb (R(2) = 0.985) for Cd(2+) and 0.8 ppb (R(2) = 0.999) for Pb(2+). For simultaneous detection, the linear range was found from 0.033 to 0.280 ppm with a limit of detection of 2.2 ppb (R(2) = 0.976) and 0.6 ppb (R(2) = 0.996) for Cd(2+) and Pb(2+), respectively. SWCNT film electrodes offered favorable reproducibility of ± 5.4% and 4.3% for Cd(2+) and Pb(2+), respectively. The experiments demonstrated the applicability of carbon nanotubes, specifically in the preparation of SWCNT films. The results suggest that the proposed flexible SWCNT film electrodes can be applied as simple, efficient, cost-effective, and/or disposable electrodes for simultaneous detection of heavy metal ions.

  17. 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes.

    PubMed

    Li, Hao; Cao, Kun; Cui, Jin; Liu, Shuangshuang; Qiao, Xianfeng; Shen, Yan; Wang, Mingkui

    2016-03-28

    A single walled carbon nanotube (SWCNT) possesses excellent hole conductivity. This work communicates an investigation of perovskite solar cells using a mesoscopic TiO2/Al2O3 structure as a framework in combination with a certain amount of SWCNT-doped graphite/carbon black counter electrode material. The CH3NH3PbI3-based device achieves a power conversion efficiency of 14.7% under AM 1.5G illumination. Detailed investigations show an increased charge collection in this device compared to that without the SWCNT additive.

  18. A voltammetric determination of caffeic acid in red wines based on the nitrogen doped carbon modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Karikalan, Natarajan; Karthik, Raj; Chen, Shen-Ming; Chen, Hsi-An

    2017-04-01

    We reported an electrochemical determination of caffeic acid (CA) based on the nitrogen doped carbon (NDC). The described sensor material was prepared by the flame synthesis method, which gave an excellent platform for the synthesis of carbon nanomaterials with the hetero atom dopant. The synthesized material was confirmed by various physical characterizations and it was further characterized by different electrochemical experiments. The NDC modified glassy carbon electrode (NDC/GCE) shows the superior electrocatalytic performance towards the determination of CA with the wide linear concentration range from 0.01 to 350 μM. It achieves the lowest detection limit of 0.0024 μM and the limit of quantification of 0.004 μM. The NDC/GCE-CA sensor reveals the good selectivity, stability, sensitivity and reproducibility which endorsed that the NDC is promising electrode for the determination of CA. In addition, NDC modified electrode is applied to the determination of CA in red wines and acquired good results.

  19. Electrochemical behavior and voltammetric determination of norfloxacin at glassy carbon electrode modified with multi walled carbon nanotubes/Nafion.

    PubMed

    Huang, Ke-Jing; Liu, Xue; Xie, Wan-Zhen; Yuan, Hong-Xia

    2008-07-15

    A simple and rapid electrochemical method is developed for the determination of trace-level norfloxacin, based on the excellent properties of multi-walled carbon nanotubes (MWCNTs). The MWCNTs/Nafion film-coated glassy carbon electrode (GCE) is constructed and the electrochemical behavior of norfloxacin at the electrode is investigated in detail. The results indicate that MWCNTs modified glassy carbon electrode exhibited efficiently electrocatalytic oxidation for norfloxacin (NFX) with relatively high sensitivity, stability and life time. Under conditions of cyclic voltammetry, the current for oxidation of selected analyte is enhanced significantly in comparison to the bare GCE. The electrocatalytic behavior is further exploited as a sensitive detection scheme for the analyte determinations by linear sweep voltammetry (LSV). Under optimized condition in voltammetric method the concentration calibration range and detection limit (S/N=3) are 0.1-100 micromol/L and 5 x 10(-8)mol/L for NFX. The proposed method was successfully applied to NFX determination in tablets. The analytical performance of this sensor has been evaluated for detection of the analyte in urine as a real sample.

  20. A voltammetric determination of caffeic acid in red wines based on the nitrogen doped carbon modified glassy carbon electrode

    PubMed Central

    Karikalan, Natarajan; Karthik, Raj; Chen, Shen-Ming; Chen, Hsi-An

    2017-01-01

    We reported an electrochemical determination of caffeic acid (CA) based on the nitrogen doped carbon (NDC). The described sensor material was prepared by the flame synthesis method, which gave an excellent platform for the synthesis of carbon nanomaterials with the hetero atom dopant. The synthesized material was confirmed by various physical characterizations and it was further characterized by different electrochemical experiments. The NDC modified glassy carbon electrode (NDC/GCE) shows the superior electrocatalytic performance towards the determination of CA with the wide linear concentration range from 0.01 to 350 μM. It achieves the lowest detection limit of 0.0024 μM and the limit of quantification of 0.004 μM. The NDC/GCE-CA sensor reveals the good selectivity, stability, sensitivity and reproducibility which endorsed that the NDC is promising electrode for the determination of CA. In addition, NDC modified electrode is applied to the determination of CA in red wines and acquired good results. PMID:28378813