Science.gov

Sample records for carbon fire reinforced

  1. Reinforced Carbon Nanotubes.

    DOEpatents

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  2. Carbon Nanofiber Reinforced Polymers

    DTIC Science & Technology

    2006-01-01

    2006 2. REPORT TYPE 3. DATES COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE Carbon Nanofiber Reinforced Polymers 5a. CONTRACT NUMBER 5b...REVIEW Carbon Nanofiber Reinforced Polymers J.N. Baucom, A. Rohatgi, W.R. Pogue III, and J.P. Thomas Materials Science and Technology Division...of mass-produced and inexpensive, discontinuous carbon nanofibers to create a percolated fiber network within a polymeric matrix that will result in

  3. Methods for producing reinforced carbon nanotubes

    DOEpatents

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  4. Continuous carbon nanotube reinforced composites.

    PubMed

    Ci, L; Suhr, J; Pushparaj, V; Zhang, X; Ajayan, P M

    2008-09-01

    Carbon nanotubes are considered short fibers, and polymer composites with nanotube fillers are always analogues of random, short fiber composites. The real structural carbon fiber composites, on the other hand, always contain carbon fiber reinforcements where fibers run continuously through the composite matrix. With the recent optimization in aligned nanotube growth, samples of nanotubes in macroscopic lengths have become available, and this allows the creation of composites that are similar to the continuous fiber composites with individual nanotubes running continuously through the composite body. This allows the proper utilization of the extreme high modulus and strength predicted for nanotubes in structural composites. Here, we fabricate such continuous nanotube polymer composites with continuous nanotube reinforcements and report that under compressive loadings, the nanotube composites can generate more than an order of magnitude improvement in the longitudinal modulus (up to 3,300%) as well as damping capability (up to 2,100%). It is also observed that composites with a random distribution of nanotubes of same length and similar filler fraction provide three times less effective reinforcement in composites.

  5. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    PubMed Central

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo. PMID:24707488

  6. Carbon nanotubes reinforced composites for biomedical applications.

    PubMed

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  7. Effect of Sodium bicarbonate on Fire behaviour of tilled E- Glass Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Girish, S.; Devendra, K.; Bharath, K. N.

    2016-09-01

    Composites such as fibre reinforced polymers give us the good mechanical properties, but their fire behaviour is not appreciable and needs to be improved. In this work, E- glass fiber is used as a reinforcement material and Epoxy resin is used as a matrix with particulate sodium bi-carbonate (NaHCO3) is used as additive. The hand lay-up technique is adopted for the development of composites by varying percentage of additive. All the tests were conducted according to ASTM standards to study the Fire behaviour of the developed composites. The different fire properties like Ignition time, mass loss rate and flame propagation rate of Fiber Reinforced Polymers (FRP) with NaHCO3 are compared with neat FRPs. It is found that the ignition time increases as the percentage of additive is increased.

  8. Nanographene reinforced carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Bansal, Dhruv

    Carbon/Carbon Composites (CCC) are made of carbon reinforcement in carbon matrix and have high thermal stability and fatigue resistance. CCC are used in nose cones, heat shields and disc brakes of aircrafts due to their exceptional mechanical properties at high temperature. The manufacturing process of CCC involves a carbonization stage in which unwanted elements, except carbon, are eliminated from the polymer precursor. Carbonization results in the formation of voids and cracks due to the thermal mismatch between the reinforcement and the matrix and expulsion of volatiles from the polymer matrix. Thermal cracks and voids decrease the density and mechanical properties of the manufactured CCC. In this work, Nanographene Platelets (NGP) were explored as nanofillers to fill the voids/cracks and reduce thermal shrinkage in CCC. They were first compared with Vapor Grown Carbon Nanofibers (VGCNF) by dispersion of different concentrations (0.5wt%, 1.5wt%, 3wt%) in resole-type phenolic resin and were characterized to explore their effect on rheology, heat of reaction and wetting behavior. The dispersions were then cured to form nanocomposites and were characterized for morphology, flexure and thermal properties. Finally, NGP were introduced into the carbon/carboncomposites in two stages, first by spraying in different concentrations (0.5wt%, 1.5wt%, 3wt%, 5wt %) during the prepreg formation and later during densification by directly mixing in the corresponding densification mix. The manufactured NGP reinforced CCC were characterized for microstructure, porosity, bulk density and mechanical properties (Flexure and ILSS) which were further cross-checked by non-destructive techniques (vibration and ultrasonic). In this study, it was further found that at low concentration (≤ 1.5 wt%) NGP were more effective in increasing the heat of reaction and in decreasing the viscosity of the phenolic resin. The decrease in viscosity led to better wetting properties of NGP / phenolic

  9. Behaviour of fibre reinforced polymer confined reinforced concrete columns under fire condition

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ershad Ullah

    In recent years, fibre reinforced polymer (FRP) materials have demonstrated enormous potential as materials for repairing and retrofitting concrete bridges that have deteriorated from factors such as electro-chemical corrosion and increased load requirements. However, concerns associated with fire remain an obstacle to applications of FRP materials in buildings and parking garages due to FRP's sensitivity to high temperatures as compared with other structural materials and to limited knowledge on their thermal and mechanical behaviour in fire. This thesis presents results from an ongoing study on the fire performance of FRP materials, fire insulation materials and systems, and FRP wrapped reinforced concrete columns. The overall goal of the study is to understand the fire behaviour of FRP materials and FRP strengthened concrete columns and ultimately, provide rational fire safety design recommendations and guidelines for FRP strengthened concrete columns. A combined experimental and numerical investigation was conducted to achieve the goals of this research study. The experimental work consisted of both small-scale FRP material testing at elevated temperatures and full-scale fire tests on FRP strengthened columns. A numerical model was developed to simulate the behaviour of unwrapped reinforced concrete and FRP strengthened reinforced concrete square or rectangular columns in fire. After validating the numerical model against test data available in literature, it was determined that the numerical model can be used to analyze the behaviour of concrete axial compressive members in fire. Results from this study also demonstrated that although FRP materials experience considerable loss of their mechanical and bond properties at temperatures somewhat below the glass transition temperature of the resin matrix, externally-bonded FRP can be used in strengthening concrete structural members in buildings, if appropriate supplemental fire protection system is provided over

  10. The fabrication of artifacts out of glassy carbon and carbon-fiber-reinforced carbon for biomedical applications.

    PubMed

    Jenkins, G M; Grigson, C J

    1979-05-01

    Polymeric carbons are produced by the carbonization of a wide range of organic polymeric systems. We have concentrated on the fabrication of two types of polymeric carbons, glassy carbon and carbon-fiber-reinforced carbon (CFRC), both involving phenolic resin precursors. We describe herein the technology which enables us to make dental implants and heart valves out of glassy carbon. We also show how carbon-fiber-reinforced carbon can be made in the form of rods and plates for orthopedic use and molded before firing to produce complex, rigid, individually sculptured shapes suitable for maxillofacial bone replacement. The mechanical properties will be discussed in relation to the structure of these various forms of polymeric carbon. The main purpose of the work is to show that the technology of polymeric-carbon manufacture is essentially simple and the manufacturing process is readily carried out in laboratories which have already been equipped to fabricate standard dental prostheses.

  11. Carbon Nanomaterials as Reinforcements for Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Carbon nanomaterials including fellerenes, nanotubes (CNT) and nanofibers have been proposed for many applications. One of applications is to use the carbon nanomaterials as reinforcements for composites, especially for polymer matrices. Carbon nanotubes is a good reinforcement for lightweight composite applications due to its low mass density and high Young's modulus. Two obscures need to overcome for carbon nanotubes as reinforcements in composites, which are large quantity production and functioning the nanotubes. This presentation will discuss the carbon nanotube growth by chemical vapor deposition. In order to reduce the cost of producing carbon nanotubes as well as preventing the sliding problems, carbon nanotubes were also synthesized on carbon fibers. The synthesis process and characterization results of nanotubes and nanotubes/fibers will be discussed in the presentation.

  12. Elastomer Reinforced with Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  13. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    NASA Astrophysics Data System (ADS)

    Amir, N.; Othman, W. M. S. W.; Ahmad, F.

    2015-07-01

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  14. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    SciTech Connect

    Amir, N. Othman, W. M. S. W. Ahmad, F.

    2015-07-22

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  15. Acoustic emission of fire damaged fiber reinforced concrete

    NASA Astrophysics Data System (ADS)

    Mpalaskas, A. C.; Matikas, T. E.; Aggelis, D. G.

    2016-04-01

    The mechanical behavior of a fiber-reinforced concrete after extensive thermal damage is studied in this paper. Undulated steel fibers have been used for reinforcement. After being exposed to direct fire action at the temperature of 850°C, specimens were subjected to bending and compression in order to determine the loss of strength and stiffness in comparison to intact specimens and between the two types. The fire damage was assessed using nondestructive evaluation techniques, specifically ultrasonic pulse velocity (UPV) and acoustic emission (AE). Apart from the strong, well known, correlation of UPV to strength (both bending and compressive), AE parameters based mainly on the frequency and duration of the emitted signals after cracking events showed a similar or, in certain cases, better correlation with the mechanical parameters and temperature. This demonstrates the sensitivity of AE to the fracture incidents which eventually lead to failure of the material and it is encouraging for potential in-situ use of the technique, where it could provide indices with additional characterization capability concerning the mechanical performance of concrete after it subjected to fire.

  16. Evaluation of post-fire strength of concrete flexural members reinforced with glass fiber reinforced polymer (GFRP) bars

    NASA Astrophysics Data System (ADS)

    Ellis, Devon S.

    Owing to their corrosion resistance and superior strength to weight ratio, there has been, over the past two decades, increased interest in the use of fiber-reinforced polymer (FRP) reinforcing bars in reinforced concrete structural members. The mechanical behavior of FRP reinforcement differs from that of steel reinforcement. For example, FRP reinforcement exhibit a linear stress-strain behavior until the bar ruptures and the strength, stiffness and bond properties of FRP reinforcement are affected more adversely by elevated temperatures. All structures are subject to the risk of damage by fire and fires continue to be a significant cause of damage to structures. Many structures do not collapse after being exposed to fire. The safety of the structure for any future use is dependent on the ability to accurately estimate the post-fire load capacity of the structure. Assuming that the changes, due to fire exposure, in the mechanical behavior of the GFRP reinforcing bar and concrete, and the bond between the reinforcing bar and the concrete are understood, an analytical procedure for estimating the post-fire strength of GFRP reinforced concrete flexural elements can be developed. This thesis investigates the changes in: a) tensile properties and bond of GFRP bars; and b) the flexural behavior of GFRP reinforced concrete beams flexural after being exposed to elevated temperatures up to 400°C and cooled to ambient temperature. To this end, twelve tensile tests, twelve pullout bond tests and ten four-point beam tests were performed. The data from the tests were used to formulate analytical procedures for evaluating the post-fire strength of GFRP reinforced concrete beams. The procedure produced conservative results when compared with the experimental data. In general, the residual tensile strength and modulus of elasticity of GFRP bars decrease as the exposure temperature increases. The loss in properties is however, smaller than that observed by other researchers when

  17. Experimental Behavior of Carbon Fiber Reinforced Isolators

    SciTech Connect

    Russo, Gaetano; Pauletta, Margherita; Cortesia, Andrea; Dal Bianco, Alberto

    2008-07-08

    This paper describes an investigation on the experimental behavior of innovative elastomeric isolators reinforced by carbon fiber fabrics. These fabrics are very much lighter than steel plates used in conventional isolators and able to transfer to the adjacent elastomer layers tangential stresses adequate to oppose the transversal deformation of rubber under vertical loads. The isolators are not bonded to the sub- and super-structure (elimination of the steel end-plates), hence their weight and cost are reduced. The experimental investigation is carried out on small-scale isolator prototypes reinforced by quadridirectional carbon fiber fabrics. The isolators are subjected to the following qualification tests prescribed by the Italian Code 'Ordinanza 3274' for steel reinforced isolators: 1) 'Static assessment of the compression stiffness'; 2) 'Static assessment of the shear modulus G'; 3) 'Dynamic assessment of the dynamic shear modulus G{sub din} and of the damping coefficient {xi}; 4) 'Assessment of the G{sub din}-{gamma} and {xi}-{gamma} diagrams by means of dynamic tests'; 5) 'Assessment of creep characteristics'; 6) 'Evaluation of the capacity of sustaining at least 10 cycles'. As a result of the tests, the isolators survived large shear strains, comparable to those expected for conventional isolators.

  18. Carbon nanotube reinforced polyacrylonitrile and poly(etherketone) fibers

    NASA Astrophysics Data System (ADS)

    Jain, Rahul

    The graphitic nature, continuous structure, and high mechanical properties of carbon nanotubes (CNTs) make them good candidate for reinforcing polymer fiber. The different types of CNTs including single-wall carbon nanotubes (SWNTs), few-wall carbon nanotubes (FWNTs), and multi-wall carbon nanotubes (MWNTs), and carbon nanofibers (CNFs) differ in terms of their diameter and number of graphitic walls. The desire has been to increase the concentration of CNTs as much as possible to make next generation multi-functional materials. The work in this thesis is mainly focused on MWNT and CNF reinforced polyacrylonitrile (PAN) composite fibers, and SWNT, FWNT, and MWNT reinforced poly(etherketone) (PEK) composite fibers. To the best of our knowledge, this is the first study to report the spinning of 20% MWNT or 30% CNF reinforced polymer fiber spun using conventional fiber spinning. Also, this is the first study to report the PEK/CNT composite fibers. The fibers were characterized for their thermal, tensile, mechanical, and dynamic mechanical properties. The fiber structure and morphology was studied using WAXD and SEM. The effect of two-stage heat drawing, sonication time for CNF dispersion, fiber drying temperature, and molecular weight of PAN was also studied. Other challenges associated with processing high concentrations of solutions for making composite fibers have been identified and reported. The effect of CNT diameter and concentration on fiber spinnability and electrical conductivity of composite fiber have also been studied. This work suggests that CNT diameter controls the maximum possible concentration of CNTs in a composite fiber. The results show that by properly choosing the type of CNT, length of CNTs, dispersion of CNTs, fiber spinning method, fiber draw ratio, and type of polymer, one can get electrically conducting fibers with wide range of conductivities for different applications. The PEK based control and composite fibers possess high thermal

  19. Radiation effects on carbon fiber reinforced thermoplastics

    SciTech Connect

    Sasuga, Tsuneo; Udagawa, Akira; Seguchi, Tadao

    1993-12-31

    Polyether-ether-ketone (PEEK) and a newly developed thermoplastic polyimide ``new-TPI`` were applied to carbon fiber reinforced plastic (CFRP) as a matrix resin. PEEK and new-TPI showed excellent resistance over 50 MGy to electron irradiation and the crosslinking proceeded predominantly by irradiation. The changes in mechanical properties induced by electron irradiation of the CFRP with the two resins were examined at various temperatures. The flexural strength and modulus measured at {minus}196 and 25{degree}C were scarcely affected up to 120 MGy and both the values measured at high temperature were increased with dose.

  20. [Fusion implants of carbon fiber reinforced plastic].

    PubMed

    Früh, H J; Liebetrau, A; Bertagnoli, R

    2002-05-01

    Carbon fiber reinforced plastics (CFRP) are used in the medical field when high mechanical strength, innovative design, and radiolucency (see spinal fusion implants) are needed. During the manufacturing process of the material CFRP carbon fibers are embedded into a resin matrix. This resin material could be thermoset (e.g., epoxy resin EPN/DDS) or thermoplastic (e.g., PEAK). CFRP is biocompatible, radiolucent, and has higher mechanical capabilities compared to other implant materials. This publication demonstrates the manufacturing process of fusion implants made of a thermoset matrix system using a fiber winding process. The material has been used clinically since 1994 for fusion implants of the cervical and lumbar spine. The results of the fusion systems CORNERSTONE-SR C (cervical) and UNION (lumbar) showed no implant-related complications. New implant systems made of this CFRP material are under investigation and are presented.

  1. Investigations of mechanical and wear properties of alumina/titania/fire-clay reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Patel, Vinay Kumar; Chauhan, Shivani; Sharma, Aarushi

    2016-05-01

    In this work, the effect of various particulates (alumina, titania, fire clay) reinforcements on mechanical and wear properties of epoxy composites have been studied with a prime motive of replacing the costly alumina and titania by much economical fire clay for high mechanical strength and/or wear resistant materials. Fire clay based epoxy composites delivered better mechanical (both tensile and impact) properties than the alumina filled or neat epoxy composites and slightly lower than titania reinforced composites, which qualified the fire clay a very suitable cost effective alternatives of both alumina and titania for high mechanical strength based applications. However, the poor wear behavior of fire clay reinforced composites revealed its poor candidacy for wear and tear applications.

  2. Estimation of carbon emissions from crown fires in Turkey

    NASA Astrophysics Data System (ADS)

    Kucuk, O.; Bilgili, E.

    2009-04-01

    Forest biomass consumption is an important index for carbon cycling. Forest fire represents one of the important sources of greenhouse gas (GHG) emissions due to biomass burning processes. Forest fire contribute to increasing atmospheric CO2 concentration therefore, role of forest fires in the global carbon cycle has received increasing interest. Various methods were used to estimation of carbon emission. IPCC methodology is commonly used for the calculation of GHG amounts released at forest fire in Europe especially on a national basis. Many European countries have done many studies relation to estimation of carbon emissions from forest fires. However, carbon emissions from forest fires were not estimated in Turkey. The objective of this paper was to estimate carbon emission from forest fires from 1997 to 2006 in three forest district directorate of Turkey. We have used IPCC methodology for estimation of carbon emission form forest fire in Turkey. The emission calculations associated with forest fires were carried out using the IPCC methodology for estimating emissions from biomass burning. According to IPCC methodology, the annual carbon release of gas is the product of parameters: Annual biomass loss by burning (kt), fraction of biomass oxidized on-site, carbon content (CC), emission ratio, N/C ratio. A set of forest fire data during 1997-2006 obtained from the Turkish Ministry of Environment and Forestry-General Directorate of Forestry Service. Fuel biomass and fuel consumption data were provided from experimental fires and biomass studies in Turkey. The highest carbon emission amount was CO2 gas. A wide range in carbon emissions of 0.37-94.85 Gg was caused by variability in pre-fire fuel characteristics (fuel size, distribution, fuel moisture and total load), fire type, fire season and fire weather, which affected fuel moisture and fire behavior. Keywords: Carbon emissions, Forest fire, Fuel consumption, IPCC, Turkey

  3. Oxidation of Reinforced Carbon-Carbon Subjected to Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.; Pham, Vuong T.; Norman, Ignacio; Chao, Dennis C.; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    Results of arc-jet tests conducted at the NASA Johnson Space Center (JSC) on Reinforced Carbon-Carbon (RCC) samples subjected to hypervelocity impact are presented. The RCC test specimens are representative of RCC component used on the Space Shuttle Orbiter. The objective of the arc jet testing was to establish the oxidation characteristics of RCC when hypervelocity projectiles, simulating meteoroid/orbital debris (MOD), impact the RCC material. In addition, analytical modeling of the increased material oxidation in the impacted area, using measured hole growth data, to develop correlations for use in trajectory simulations is also discussed.

  4. Reinforcement effect of biomass carbon and protein in elastic biocomposites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass carbon and soy protein were used to reinforce natural rubber biocomposites. The particle size of biomass carbon were reduced and characterized with elemental analysis, x-ray diffraction, infrared spectroscopy, and particle size analysis. The rubber composite reinforced with the biomass carbo...

  5. Carbon Fiber Reinforced Glass Matrix Composites for Space Based Applications.

    DTIC Science & Technology

    1987-08-31

    Nardone , "Carbon Fiber Reinforced Glass Matrix Composites for Space Based Applications", Office of Naval Research Contract N00014-85-C-0332, Report R86... Nardone and K M. Prewo, "Tensile Performance of Carbon Fiber Reinforced Glass", J. Mater. Sci. accepted for publication, 1987. 27. R. F. Cooper and K

  6. Effective reinforcement in carbon nanotube-polymer composites.

    PubMed

    Wang, W; Ciselli, P; Kuznetsov, E; Peijs, T; Barber, A H

    2008-05-13

    Carbon nanotubes have mechanical properties that are far in excess of conventional fibrous materials used in engineering polymer composites. Effective reinforcement of polymers using carbon nanotubes is difficult due to poor dispersion and alignment of the nanotubes along the same axis as the applied force during composite loading. This paper reviews the mechanical properties of carbon nanotubes and their polymer composites to highlight how many previously prepared composites do not effectively use the excellent mechanical behaviour of the reinforcement. Nanomechanical tests using atomic force microscopy are carried out on simple uniaxially aligned carbon nanotube-reinforced polyvinyl alcohol (PVA) fibres prepared using electrospinning processes. Dispersion of the carbon nanotubes within the polymer is achieved using a surfactant. Young's modulus of these simple composites is shown to approach theoretically predicted values, indicating that the carbon nanotubes are effective reinforcements. However, the use of dispersant is also shown to lower Young's modulus of the electrospun PVA fibres.

  7. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging.

    PubMed

    Zhang, Jin; Li, Wei; Cui, Hong-Liang; Shi, Changcheng; Han, Xiaohui; Ma, Yuting; Chen, Jiandong; Chang, Tianying; Wei, Dongshan; Zhang, Yumin; Zhou, Yufeng

    2016-06-14

    Terahertz (THz) time-domain spectroscopy (TDS) imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP) composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations.

  8. NDE for Characterizing Oxidation Damage in Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, Richard W.; Jacobson, nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter s thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using NDE methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. The results of that study are briefly reviewed in this article as well. Additionally, a short discussion on the future role of simulation to aid in these studies is provided.

  9. Orbiter Reinforced Carbon-Carbon Advanced Sealant Systems: Screening Tests

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.; Lewis, Ronad K.; Norman, Ignacio; Chao, Dennis; Nicholson, Leonard S. (Technical Monitor)

    2000-01-01

    Oxidation protection for the Orbiter reinforced carbon-carbon (RCC consists of three components: silicon carbide coating, tetraethyl orthosilicate (TEOS) impregnated into the carbon substrate and a silicon based surface sealant (designated Type A). The Orbiter Type A sealant is being consumed each mission, which results in increased carbon-carbon substrate mass loss, which adversely impacts the mission life of the RCC components. In addition, the sealant loss in combination with launch pad contamination (salt deposit and zinc oxide) results in RCC pinholes. A sealant refurbishment schedule to maintain mission life and minimize affects of pin hole formation has been implemented in the Orbiter maintenance schedule. The objective of this investigation is to develop an advanced sealant system for the RCC that extends the refurbishment schedule by reducing sealant loss/pin hole formation and that can be applied to existing Orbiter RCC components. This paper presents the results of arc jet screening tests conducted on several sealants that are being considered for application to the Orbiter RCC.

  10. Oxidation of Reinforced Carbon-Carbon Subjected to Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.; Pham, Vuong T.; Norman, Ignacio; Chao, Dennis C.

    2000-01-01

    This paper presents results from arc jet tests conducted at the NASA Johnson Space Center on reinforced carbon-carbon (RCC) samples subjected to hypervelocity impact. The RCC test specimens are representative of RCC components used on the Space Shuttle Orbiter. The arc jet testing established the oxidation characteristics of RCC when hypervelocity projectiles, simulating meteoroid/orbital debris, impact the RCC material. In addition to developing correlations for use in trajectory simulations, we discuss analytical modeling of the increased material oxidation in the impacted area using measured hole growth data. Entry flight simulations are useful in assessing the increased Space Shuttle RCC component degradation as a result of impact damage and the hot gas flow through an enlarging hole into the wing leading-edge cavity.

  11. Emittance measurements of Space Shuttle orbiter reinforced carbon-carbon

    NASA Technical Reports Server (NTRS)

    Caram, Jose M.; Bouslog, Stanley A.; Cunnington, George R., Jr.

    1992-01-01

    The spectral and total normal emittance of the Reinforced Carbon-Carbon (RCC) used on Space Shuttle nose cap and wing leading edges has been measured at room temperature and at surface temperatures of 1200 to 2100 K. These measurements were made on virgin and two flown RCC samples. Room temperature directional emittance data were also obtained and were used to determine the total hemispherical emittance of RCC as a function of temperature. Results of the total normal emittance for the virgin samples showed good agreement with the current RCC emittance design curve; however, the data from the flown samples showed an increase in the emittance at high temperature possibly due to exposure from flight environments.

  12. Behavior of Insulated Carbon-FRP-Strengthened RC Beams Exposed to Fire

    NASA Astrophysics Data System (ADS)

    Sayin, B.

    2014-09-01

    There are two main approaches to improving the fire resistance of fiber-reinforced polymer (FRP) systems. While the most common method is to protect or insulate the FRP system, an other way is to use fibers and resins with a better fire performance. This paper presents a numerical investigation into the five protection behavior of insulated carbon-fiber-reinforced-polymer (CFRP)-strengthened reinforced concrete (RC) beams. The effects of external loading and thermal expansion of materials at elevated temperatures are taken into consideration in a finite-element model. The validity of the numerical model is demonstrated with results from an existing experimental study on insulated CFRP-strengthened RC beams. Conclusions of this investigation are employed to predict the structural behavior of CFRP-strengthened concrete structures.

  13. Mechanical strength of additive manufactured carbon fiber reinforced polyetheretherketone

    NASA Astrophysics Data System (ADS)

    Chumaevskii, A. V.; Tarasov, S. Yu.; Filippov, A. V.; Kolubaev, E. A.; Rubtsov, V. E.; Eliseev, A. A.

    2016-11-01

    Mechanical properties of both pure and chopped carbon fiber reinforced polyetheretherketone samples have been carried out. It was shown that the reinforcement resulted in increasing the elasticity modulus, compression and tensile ultimate strength by a factor of 3.5, 2.9 and 2.8, respectively. The fracture surfaces have been examined using both optical and scanning electron microscopy.

  14. Oxidation Microstructure Studies of Reinforced Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Curry, Donald M.

    2006-01-01

    Laboratory oxidation studies of reinforced carbon/carbon (RCC) are discussed with particular emphasis on the resulting microstructures. This study involves laboratory furnace (500-1500 C deg) and arc-jet exposures (1538 C deg) on various forms of RCC. RCC without oxidation protection oxidized at 800 and 1100 C deg exhibits pointed and reduced diameter fibers, due to preferential attack along the fiber edges. RCC with a SiC conversion coating exhibits limited attack of the carbon substrate at 500, 700 and 1500 C deg. However samples oxidized at 900, 1100, and 1300 C deg show small oxidation cavities at the SiC/carbon interface below through-thickness cracks in the SiC coating. These cavities have rough edges with denuded fibers and can be easily distinguished from cavities created in processing. Arc-jet tests at 1538 C deg show limited oxidation attack when the SiC coating and glass sealants are intact. When the SiC/sealant protection system is damaged, attack is extensive and proceeds through matrix cracks, creating denuded fibers on the edges of the cracks. Even at 1538 C deg, where diffusion control dominates, attack is non-uniform with fiber edges oxidizing in preference to the bulk fiber and matrix.

  15. Behaviour of Reinforced Concrete Columns of Various Cross-Sections Subjected to Fire

    NASA Astrophysics Data System (ADS)

    Balaji, Aneesha; Muhamed Luquman, K.; Nagarajan, Praveen; Madhavan Pillai, T. M.

    2016-09-01

    Fire resistance is one of the crucial design regulations which are now mandatory in most of the design codes. Therefore, a thorough knowledge of behaviour of structures exposed to fire is required in this aspect. Columns are the most vulnerable structural member to fire as it can be exposed to fire from all sides. However, the data available for fire resistant design for columns are limited. Hence the present work is focused on the effect of cross-sectional shape of column in fire resistance design. The various cross-sections considered are Square, Ell (L), Tee (T), and Plus (`+') shape. Also the effect of size and shape and distribution of steel reinforcement on fire resistance of columns is studied. As the procedure for determining fire resistance is not mentioned in Indian Standard code IS 456 (2000), the simplified method (500 °C isotherm method) recommended in EN 1992-1-2:2004 (E) (Eurocode 2) is adopted. The temperature profiles for various cross-sections are developed using finite element method and these profiles are used to predict fire resistance capability of compression members. The fire resistance based on both numerical and code based methods are evaluated and compared for various types of cross-section.

  16. Carbon fiber reinforced thermoplastic composites for future automotive applications

    NASA Astrophysics Data System (ADS)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  17. Stronger Carbon Fibers for Reinforced Plastics

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.; Lerner, N. R.

    1983-01-01

    Process makes fibers 70 percent stronger at lower carbonization temperature. Stronger carbon fibers result from benzoic acid pretreatment and addition of acetylene to nitrogen carbonizing atmosphere. New process also makes carbon fibers of higher electrical resistance -- an important safety consideration.

  18. [Carbon fiber-reinforced plastics as implant materials].

    PubMed

    Bader, R; Steinhauser, E; Rechl, H; Siebels, W; Mittelmeier, W; Gradinger, R

    2003-01-01

    Carbon fiber-reinforced plastics have been used clinically as an implant material for different applications for over 20 years.A review of technical basics of the composite materials (carbon fibers and matrix systems), fields of application,advantages (e.g., postoperative visualization without distortion in computed and magnetic resonance tomography), and disadvantages with use as an implant material is given. The question of the biocompatibility of carbon fiber-reinforced plastics is discussed on the basis of experimental and clinical studies. Selected implant systems made of carbon composite materials for treatments in orthopedic surgery such as joint replacement, tumor surgery, and spinal operations are presented and assessed. Present applications for carbon fiber reinforced plastics are seen in the field of spinal surgery, both as cages for interbody fusion and vertebral body replacement.

  19. A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer.

    PubMed

    Puskas, Judit E; Foreman-Orlowski, Elizabeth A; Lim, Goy Teck; Porosky, Sara E; Evancho-Chapman, Michelle M; Schmidt, Steven P; El Fray, Mirosława; Piatek, Marta; Prowans, Piotr; Lovejoy, Krystal

    2010-03-01

    This paper presents the synthesis and characterization of a polyisobutylene (PIB)-based nanostructured carbon-reinforced thermoplastic elastomer. This thermoplastic elastomer is based on a self-assembling block copolymer having a branched PIB core carrying -OH functional groups at each branch point, flanked by blocks of poly(isobutylene-co-para-methylstyrene). The block copolymer has thermolabile physical crosslinks and can be processed as a plastic, yet retains its rubbery properties at room temperature. The carbon-reinforced thermoplastic elastomer had more than twice the tensile strength of the neat polymer, exceeding the strength of medical grade silicone rubber, while remaining significantly softer. The carbon-reinforced thermoplastic elastomer displayed a high T(g) of 126 degrees C, rendering the material steam-sterilizable. The carbon also acted as a free radical trap, increasing the onset temperature of thermal decomposition in the neat polymer from 256.6 degrees C to 327.7 degrees C. The carbon-reinforced thermoplastic elastomer had the lowest water contact angle at 82 degrees and surface nano-topography. After 180 days of implantation into rabbit soft tissues, the carbon-reinforced thermoplastic elastomer had the thinnest tissue capsule around the microdumbbell specimens, with no eosinophiles present. The material also showed excellent integration into bones.

  20. Fire and Microtopography in Peatlands: Feedbacks and Carbon Dynamics

    NASA Astrophysics Data System (ADS)

    Benscoter, B.; Turetsky, M. R.

    2011-12-01

    Fire is the dominant natural disturbance in peatland ecosystems. Over the past decade, peat fires have emerged as an important issue for global climate change, human health, and economic loss, largely due to the extreme peat fire events in Indonesia and Russia that severely impacted metropolitan areas and social infrastructure. However, the impact and importance of fire in peatland ecosystems are more far-reaching. Combustion of vegetation and soil organic matter releases an average of 2.2 kg C m-2 to the atmosphere, primarily as CO2, as well as a number of potentially harmful emissions such as fine particulate matter and mercury. Additionally, while peatlands are generally considered to be net sinks of atmospheric carbon, the removal of living vegetation by combustion halts primary production following fire resulting in a net loss of ecosystem carbon to the atmosphere for several years. The recovery of carbon sink function is linked to plant community succession and development, which can vary based on combustion severity and the resulting post-fire microhabitat conditions. Microtopography has a strong influence on fire behavior and combustion severity during peatland wildfires. In boreal continental peatlands, combustion severity is typically greatest in low-lying hollows while raised hummocks are often lightly burned or unburned. The cross-scale influence of microtopography on landscape fire behavior is due to differences in plant community composition between microforms. The physiological and ecohydrological differences among plant communities result in spatial patterns in fuel availability and condition, influencing the spread, severity, and type of combustion over local to landscape scales. In addition to heterogeneous combustion loss of soil carbon, this differential fire behavior creates variability in post-fire microhabitat conditions, resulting in differences in post-fire vegetation succession and carbon exchange trajectories. These immediate and legacy

  1. Effects of nano-sized boron nitride (BN) reinforcement in expandable graphite based in-tumescent fire retardant coating

    NASA Astrophysics Data System (ADS)

    Zulkurnain, E. S.; Ahmad, F.; Gillani, Q. F.

    2016-08-01

    The purpose of in-tumescent fire retardant coating (IFRC) is to protect substrate from fire attack by limiting heat transfer. A range of coating formulations have been prepared using Bisphenol A epoxy resin BE-188 and polyamide solidifier H-2310 as two-part binder, ammonium polyphosphate (APP) as acid source, melamine (MEL) as the blowing agent, expandable graphite (EG) as carbon source and nano-boron nitride (BN) as inorganic nano filler. The filler was used to improve the performances of the APP-EG-MEL coating. The effects of nano-BN on the char morphology and thermal degradation were investigated by fire test, thermo gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X- ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FESEM). The results showed that by substituting or reinforcing of 4% weight percentage of nano-BN, residual weight of the char increases by 23.82% compared to APP-EG-MEL coating without filler. Higher carbon content was obtained in the char and a more compact char was produced. The results indicated that nano-BN could be used as a filler to improve thermal stability of the APP-EG-MEL coating.

  2. Numerical estimation of fire resistance and a flexible design of fire protection for structures made of reinforced materials

    NASA Astrophysics Data System (ADS)

    Kaledin, Vl. O.; Mitkevich, A. B.; Strakhov, V. L.

    2012-07-01

    The basic principles of a progressive methodology for calculating the fire resistance of reinforced structures, meant for application to high-rise, multifunctional, and unique buildings, are presented. The methodology is universal with respect to materials, types of building structures with fire protection, and different force and heat loads acting on them under the conditions of fire. It permits one to take into account all particularities of the thermomechanical behavior of structures in the case of joint action of thermal and force loads. The solution procedure is based on using high-level mathematical models and universal methods of numerical analysis, i.e., the finite-element method (FEM) and the finite-difference method (FDM). To simplify and reduce the labor content of computational algorithms, a mathematical model of special beam finite element has been developed, which in a natural way takes into account the complex structure of buildings, spatial nonuniformity of temperature fields, and the nonlinear behavior of materials. This procedure allowed us to determine the limits of applicability of the known approximate approach, which is based on the use of the concept of "critical temperature," to the estimation of fire resistance and to the design of fire protection of concrete structures. The procedure has been used in designing a number of unique structures built in Moscow.

  3. Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.

  4. Fire-Resistant Reinforcement Makes Steel Structures Sturdier

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Built and designed by Avco Corporation, the Apollo heat shield was coated with an ablative material whose purpose was to burn and, thus, dissipate energy. The material charred to form a protective coating which blocked heat penetration beyond the outer surface. Avco Corporation subsequently entered into a contract with Ames Research Center to develop spinoff applications of the heat shield in the arena of fire protection, specifically for the development of fire-retardant paints and foams for aircraft. This experience led to the production of Chartek 59, manufactured by Avco Specialty Materials (a subsidiary of Avco Corporation eventually acquired by Textron, Inc.) and marketed as the world s first intumescent epoxy material. As an intumescent coating, Chartek 59 expanded in volume when exposed to heat or flames and acted as an insulating barrier. It also retained its space-age ablative properties and dissipated heat through burn-off. Further applications were discovered, and the fireproofing formulation found its way into oil refineries, chemical plants, and other industrial facilities working with highly flammable products.

  5. Biogeochemistry and plant physiological traits interact to reinforce patterns of post-fire dominance in boreal forests

    NASA Astrophysics Data System (ADS)

    Shenoy, A.; Kielland, K.; Johnstone, J. F.

    2011-12-01

    -specific differences in N preference coupled with their respective physiological response to fire severity represent a positive feedback loop that reinforce the opposing stand dominance patterns that have developed at the two ends of the fire severity spectrum. Shifts in forest composition from the current dominance by conifers to a future landscape dominated by deciduous forest are of concern due to impacts on climate-albedo feedbacks, forest productivity, ecosystem carbon storage, and wildlife habitat use.

  6. Potential release of fibers from burning carbon composites. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Bell, V. L.

    1980-01-01

    A comprehensive experimental carbon fiber source program was conducted to determine the potential for the release of conductive carbon fibers from burning composites. Laboratory testing determined the relative importance of several parameters influencing the amounts of single fibers released, while large-scale aviation jet fuel pool fires provided realistic confirmation of the laboratory data. The dimensions and size distributions of fire-released carbon fibers were determined, not only for those of concern in an electrical sense, but also for those of potential interest from a health and environmental standpoint. Fire plume and chemistry studies were performed with large pool fires to provide an experimental input into an analytical modelling of simulated aircraft crash fires. A study of a high voltage spark system resulted in a promising device for the detection, counting, and sizing of electrically conductive fibers, for both active and passive modes of operation.

  7. Chemical Safety Alert: Fire Hazard from Carbon Adsorption Deodorizing Systems

    EPA Pesticide Factsheets

    Activated carbon systems used to adsorb vapors for odor control may pose a fire hazard when used for certain types of substances, such as crude sulfate turpentine. Facilities should take precautions and proper procedures to avoid or mitigate these hazards.

  8. Variable carbon losses from recurrent fires in drained tropical peatlands.

    PubMed

    Konecny, Kristina; Ballhorn, Uwe; Navratil, Peter; Jubanski, Juilson; Page, Susan E; Tansey, Kevin; Hooijer, Aljosja; Vernimmen, Ronald; Siegert, Florian

    2016-04-01

    Tropical peatland fires play a significant role in the context of global warming through emissions of substantial amounts of greenhouse gases. However, the state of knowledge on carbon loss from these fires is still poorly developed with few studies reporting the associated mass of peat consumed. Furthermore, spatial and temporal variations in burn depth have not been previously quantified. This study presents the first spatially explicit investigation of fire-driven tropical peat loss and its variability. An extensive airborne Light Detection and Ranging data set was used to develop a prefire peat surface modelling methodology, enabling the spatially differentiated quantification of burned area depth over the entire burned area. We observe a strong interdependence between burned area depth, fire frequency and distance to drainage canals. For the first time, we show that relative burned area depth decreases over the first four fire events and is constant thereafter. Based on our results, we revise existing peat and carbon loss estimates for recurrent fires in drained tropical peatlands. We suggest values for the dry mass of peat fuel consumed that are 206 t ha(-1) for initial fires, reducing to 115 t ha(-1) for second, 69 t ha(-1) for third and 23 t ha(-1) for successive fires, which are 58-7% of the current IPCC Tier 1 default value for all fires. In our study area, this results in carbon losses of 114, 64, 38 and 13 t C ha(-1) for first to fourth fires, respectively. Furthermore, we show that with increasing proximity to drainage canals both burned area depth and the probability of recurrent fires increase and present equations explaining burned area depth as a function of distance to drainage canal. This improved knowledge enables a more accurate approach to emissions accounting and will support IPCC Tier 2 reporting of fire emissions.

  9. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging

    PubMed Central

    Zhang, Jin; Li, Wei; Cui, Hong-Liang; Shi, Changcheng; Han, Xiaohui; Ma, Yuting; Chen, Jiandong; Chang, Tianying; Wei, Dongshan; Zhang, Yumin; Zhou, Yufeng

    2016-01-01

    Terahertz (THz) time-domain spectroscopy (TDS) imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP) composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations. PMID:27314352

  10. Characterization of Carbon Nanotube Reinforced Nickel

    NASA Technical Reports Server (NTRS)

    Gill, Hansel; Hudson, Steve; Bhat, Biliyar; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Carbon nanotubes are cylindrical molecules composed of carbon atoms in a regular hexagonal arrangement. If nanotubes can be uniformly dispersed in a supporting matrix to form structural materials, the resulting structures could be significantly lighter and stronger than current aerospace materials. Work is currently being done to develop an electrolyte-based self-assembly process that produces a Carbon Nanotube/Nickel composite material with high specific strength. This process is expected to produce a lightweight metal matrix composite material, which maintains it's thermal and electrical conductivities, and is potentially suitable for applications such as advanced structures, space based optics, and cryogenic tanks.

  11. MODELING FUNCTIONALLY GRADED INTERPHASE REGIONS IN CARBON NANOTUBE REINFORCED COMPOSITES

    NASA Technical Reports Server (NTRS)

    Seidel, G. D.; Lagoudas, D. C.; Frankland, S. J. V.; Gates, T. S.

    2006-01-01

    A combination of micromechanics methods and molecular dynamics simulations are used to obtain the effective properties of the carbon nanotube reinforced composites with functionally graded interphase regions. The multilayer composite cylinders method accounts for the effects of non-perfect load transfer in carbon nanotube reinforced polymer matrix composites using a piecewise functionally graded interphase. The functional form of the properties in the interphase region, as well as the interphase thickness, is derived from molecular dynamics simulations of carbon nanotubes in a polymer matrix. Results indicate that the functional form of the interphase can have a significant effect on all the effective elastic constants except for the effective axial modulus for which no noticeable effects are evident.

  12. Mechanical characterization of commercially made carbon-fiber-reinforced polymethylmethacrylate.

    PubMed

    Saha, S; Pal, S

    1986-01-01

    Acrylic bone cement is significantly weaker and of lower modulus of elasticity than compact bone. It is also weaker in tension than in compression. This limits its use in orthopedics to areas where tensile stresses were minimum. Many authors have shown that addition of small percentages of fiber reinforcement by hand mixing improved the mechanical properties significantly but with variable results. In this investigation we have examined the mechanical properties of machine-mixed, commercially available carbon-fiber-reinforced bone cement. Appropriate samples of normal low-viscosity cement and carbon-fiber-reinforced cement were prepared and tested mechanically. Carbon fiber increased the tensile strength and modulus by 30% and 35.8% respectively. The compression strength and modulus, however, increased by only 10.7%. Similarly, bending and shear strengths improved by 29.5% and 18.5%, respectively. Diametral compression strength, which is an indirect measure of tensile strength, however, showed only 6.2% improvement. The maximum temperature rise during polymerization was also reduced significantly by the fiber reinforcement.

  13. Laser-surface-alloyed carbon nanotubes reinforced hydroxyapatite composite coatings

    SciTech Connect

    Chen Yao; Gan Cuihua; Zhang Tainua; Yu Gang; Bai Pucun; Kaplan, Alexander

    2005-06-20

    Carbon-nanotube (CNT)-reinforced hydroxyapatite composite coatings have been fabricated by laser surface alloying. Microstructural observation using high-resolution transmission electron microscopy showed that a large amount of CNTs remained with their original tubular morphology, even though some CNTs reacted with titanium element in the substrate during laser irradiation. Additionally, measurements on the elastic modulus and hardness of the composite coatings indicated that the mechanical properties were affected by the amount of CNTs in the starting precursor materials. Therefore, CNT-reinforced hydroxyapatite composite is a promising coating material for high-load-bearing metal implants.

  14. Laser-surface-alloyed carbon nanotubes reinforced hydroxyapatite composite coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Gan, Cuihua; Zhang, Tainua; Yu, Gang; Bai, Pucun; Kaplan, Alexander

    2005-06-01

    Carbon-nanotube (CNT)-reinforced hydroxyapatite composite coatings have been fabricated by laser surface alloying. Microstructural observation using high-resolution transmission electron microscopy showed that a large amount of CNTs remained with their original tubular morphology, even though some CNTs reacted with titanium element in the substrate during laser irradiation. Additionally, measurements on the elastic modulus and hardness of the composite coatings indicated that the mechanical properties were affected by the amount of CNTs in the starting precursor materials. Therefore, CNT-reinforced hydroxyapatite composite is a promising coating material for high-load-bearing metal implants.

  15. Wear Behaviour of Carbon Nanotubes Reinforced Nanocrystalline AA 4032 Composites

    NASA Astrophysics Data System (ADS)

    Senthil Saravanari, M. S.; Kumaresh Babu, S. P.; Sivaprasad, K.

    2016-09-01

    The present paper emphasizes the friction and wear properties of Carbon Nanotubes reinforced AA 4032 nanocomposites prepared by powder metallurgy technique. CNTs are multi-wall in nature and prepared by electric arc discharge method. Multi-walled CNTs are blended with AA 4032 elemental powders and compaction followed by sintering to get bulk nanocomposites. The strength of the composites has been evaluated by microhardness and the surface contact between the nanocomposites and EN 32 steel has been evaluated by Pin on disk tester. The results are proven that reinforcement of CNTs play a major role in the enhancement of hardness and wear.

  16. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites.

    PubMed

    Bekyarova, E; Thostenson, E T; Yu, A; Kim, H; Gao, J; Tang, J; Hahn, H T; Chou, T-W; Itkis, M E; Haddon, R C

    2007-03-27

    We report an approach to the development of advanced structural composites based on engineered multiscale carbon nanotube-carbon fiber reinforcement. Electrophoresis was utilized for the selective deposition of multi- and single-walled carbon nanotubes (CNTs) on woven carbon fabric. The CNT-coated carbon fabric panels were subsequently infiltrated with epoxy resin using vacuum-assisted resin transfer molding (VARTM) to fabricate multiscale hybrid composites in which the nanotubes were completely integrated into the fiber bundles and reinforced the matrix-rich regions. The carbon nanotube/carbon fabric/epoxy composites showed approximately 30% enhancement of the interlaminar shear strength as compared to that of carbon fiber/epoxy composites without carbon nanotubes and demonstrate significantly improved out-of-plane electrical conductivity.

  17. An examination of nucleus accumbens cell firing during extinction and reinstatement of water reinforcement behavior in rats.

    PubMed

    Hollander, Jonathan A; Ijames, Stephanie G; Roop, Richard G; Carelli, Regina M

    2002-03-08

    Electrophysiological recording procedures were used to examine nucleus accumbens (Acb) cell firing in rats (n = 13) during water reinforcement sessions consisting of three phases. During phase one (maintenance), a lever press resulted in water reinforcement (fixed ratio 1; 0.05 ml/press) paired with an auditory stimulus (0.5 s). Of 128 Acb neurons recorded during maintenance, 40 cells (31%) exhibited one of three types of neuronal firing patterns described previously [J. Neurosci. 14 (12) (1994) 7735-7746; J. Neurosci. 20 (11) (2000) 4255-4266]. Briefly, Acb neurons exhibited increases in firing rate within seconds preceding the reinforced response (type PR) or increases (type RFe) or decreases (type RFi) in activity seconds following response completion. In phase two (extinction), subsequent lever pressing had no programmed consequences (i.e., water reinforcement and the auditory stimulus were not presented). After 30 min of no responding, animals were given water reinforcement/auditory stimulus 'primes' to reestablish lever pressing behavior during the third phase (reinstatement). Results indicated that all types of phasic neurons (PR, RFe and RFi) exhibited an attenuated firing rate during extinction, and in some cases recovery of patterned discharges were observed during reinstatement. No significant changes in cell firing were observed for any cell type during presentation of the stimulus prime used to reestablish operant responding following extinction. These findings are discussed in terms of how Acb neurons process information related to 'natural' reinforcers versus drugs of abuse.

  18. Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites

    PubMed Central

    Ahmad, Iftikhar; Yazdani, Bahareh; Zhu, Yanqiu

    2015-01-01

    Ceramics suffer the curse of extreme brittleness and demand new design philosophies and novel concepts of manufacturing to overcome such intrinsic drawbacks, in order to take advantage of most of their excellent properties. This has been one of the foremost challenges for ceramic material experts. Tailoring the ceramics structures at nanometre level has been a leading research frontier; whilst upgrading via reinforcing ceramic matrices with nanomaterials including the latest carbon nanotubes (CNTs) and graphene has now become an eminent practice for advanced applications. Most recently, several new strategies have indeed improved the properties of the ceramics/CNT nanocomposites, such as by tuning with dopants, new dispersions routes and modified sintering methods. The utilisation of graphene in ceramic nanocomposites, either as a solo reinforcement or as a hybrid with CNTs, is the newest development. This article will summarise the recent advances, key difficulties and potential applications of the ceramics nanocomposites reinforced with CNTs and graphene. PMID:28347001

  19. Carbon Fiber Reinforced Ceramic Composites for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Freedman, Marc (Technical Monitor); Shivakumar, Kunigal N.

    2003-01-01

    Fiber reinforced ceramic composites are materials of choice for gas turbine engines because of their high thermal efficiency, thrust/weight ratio, and operating temperatures. However, the successful introduction of ceramic composites to hot structures is limited because of excessive cost of manufacturing, reproducibility, nonuniformity, and reliability. Intense research is going on around the world to address some of these issues. The proposed effort is to develop a comprehensive status report of the technology on processing, testing, failure mechanics, and environmental durability of carbon fiber reinforced ceramic composites through extensive literature study, vendor and end-user survey, visits to facilities doing this type of work, and interviews. Then develop a cooperative research plan between NASA GRC and NCA&T (Center for Composite Materials Research) for processing, testing, environmental protection, and evaluation of fiber reinforced ceramic composites.

  20. Method of making carbon fiber-carbon matrix reinforced ceramic composites

    NASA Technical Reports Server (NTRS)

    Williams, Brian (Inventor); Benander, Robert (Inventor)

    2007-01-01

    A method of making a carbon fiber-carbon matrix reinforced ceramic composite wherein the result is a carbon fiber-carbon matrix reinforcement is embedded within a ceramic matrix. The ceramic matrix does not penetrate into the carbon fiber-carbon matrix reinforcement to any significant degree. The carbide matrix is a formed in situ solid carbide of at least one metal having a melting point above about 1850 degrees centigrade. At least when the composite is intended to operate between approximately 1500 and 2000 degrees centigrade for extended periods of time the solid carbide with the embedded reinforcement is formed first by reaction infiltration. Molten silicon is then diffused into the carbide. The molten silicon diffuses preferentially into the carbide matrix but not to any significant degree into the carbon-carbon reinforcement. Where the composite is intended to operate between approximately 2000 and 2700 degrees centigrade for extended periods of time such diffusion of molten silicon into the carbide is optional and generally preferred, but not essential.

  1. Electronic equipment vulnerability to fire released carbon fibers

    NASA Technical Reports Server (NTRS)

    Pride, R. A.; Mchatton, A. D.; Musselman, K. A.

    1980-01-01

    The vulnerability of electronic equipment to damage by carbon fibers released from burning aircraft type structural composite materials was investigated. Tests were conducted on commercially available stereo power amplifiers which showed that the equipment was damaged by fire released carbon fibers but not by the composite resin residue, soot and products of combustion of the fuel associated with burning the carbon fiber composites. Results indicate that the failure rates of the equipment exposed to the fire released fiber were consistent with predictions based on tests using virgin fibers.

  2. GPR survey for reinforcement of historical heritage construction at fire tower of Sopron

    NASA Astrophysics Data System (ADS)

    Kanli, Ali Ismet; Taller, Gabor; Nagy, Peter; Tildy, Peter; Pronay, Zsolt; Toros, Endre

    2015-01-01

    One of the most ancient cultural heritages of Hungary is the fire tower located in the heart of Sopron city. With the passage of time, some renovation and reinforcement studies were required for the valuable structure. For this purpose, GPR based non-destructive geophysical surveys were carried out before and after cement injection in order to observe the changes within the structures of the walls, to understand the success of cement injection in the reinforcement studies, to find and to monitor the voids and possible cracks on the ancient walls and to find the proper places within the walls of the historical tower which were needed to be injected by cement. These surveys were applied during the preliminary stage of the structural monitoring project and during restoration of the four main parts of the fire tower's walls. Additionally, some GPR surveys were carried out before the steel was inserted into some parts of the walls and some units of the fire tower. After the cement injection process, it is realized that the reflections from the fractured and porous zones weakened or were lost as seen clearly in GPR data. Besides these, significant rises within the P-wave velocities were also observed.

  3. NMR detection of thermal damage in carbon fiber reinforced epoxy resins.

    PubMed

    Brady, Steven K; Conradi, Mark S; Vaccaro, Christopher M

    2005-02-01

    Composite materials of epoxy resins reinforced by carbon fibers are increasingly being used in the construction of aircraft. In these applications, the material may be thermally damaged and weakened by jet blast and accidental fires. The feasibility of using proton NMR relaxation times T1, T1rho, and T2 to detect and quantify the thermal damage is investigated. In conventional spectrometers with homogeneous static magnetic fields, T1rho is readily measured and is found to be well correlated with thermal damage. This suggests that NMR measurements of proton T1rho may be used for non-destructive evaluation of carbon fiber-epoxy composites. Results from T1rho measurements in the inhomogeneous static and RF magnetic fields of an NMR-MOUSE are also discussed.

  4. The role of fire in the boreal carbon budget

    USGS Publications Warehouse

    Harden, J.W.; Trumbore, S.E.; Stocks, B.J.; Hirsch, A.; Gower, S.T.; O'Neill, K. P.; Kasischke, E.S.

    2000-01-01

    To reconcile observations of decomposition rates, carbon inventories, and net primary production (NPP), we estimated long-term averages for C exchange in boreal forests near Thompson, Manitoba. Soil drainage as defined by water table, moss cover, and permafrost dynamics, is the dominant control on direct fire emissions. In upland forests, an average of about 10-30% of annual NPP was likely consumed by fire over the past 6500 years since these landforms and ecosystems were established. This long-term, average fire emission is much larger than has been accounted for in global C cycle models and may forecast an increase in fire activity for this region. While over decadal to century times these boreal forests may be acting as slight net sinks for C from the atmosphere to land, periods of drought and severe fire activity may result in net sources of C from these systems.

  5. Mechanical Reinforcement of Diopside Bone Scaffolds with Carbon Nanotubes

    PubMed Central

    Shuai, Cijun; Liu, Tingting; Gao, Chengde; Feng, Pei; Peng, Shuping

    2014-01-01

    Carbon nanotubes are ideal candidates for the mechanical reinforcement of ceramic due to their excellent mechanical properties, high aspect ratio and nanometer scale diameter. In this study, the effects of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties of diopside (Di) scaffolds fabricated by selective laser sintering were investigated. Results showed that compressive strength and fracture toughness improved significantly with increasing MWCNTs from 0.5 to 2 wt %, and then declined with increasing MWCNTs to 5 wt %. Compressive strength and fracture toughness were enhanced by 106% and 21%, respectively. The reinforcing mechanisms were identified as crack deflection, MWCNTs crack bridging and pull-out. Further, the scaffolds exhibited good apatite-formation ability and supported adhesion and proliferation of cells in vitro. PMID:25342324

  6. Method of Manufacturing Carbon Fiber Reinforced Carbon Composite Valves

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1998-01-01

    A method for forming a carbon composite valve for internal combustion engines is discussed. The process includes the steps of braiding carbon fiber into a rope thereby forming a cylindrically shaped valve stem portion and continuing to braid said fiber while introducing into the braiding carbon fiber rope a carbon matrix plug having an outer surface in a net shape of a valve head thereby forming a valve head portion. The said carbon matrix plug acting as a mandrel over which said carbon fiber rope is braided, said carbon fiber rope and carbon matrix plug forming a valve head portion suitable for mating with a valve seat; cutting said braided carbon valve stem portion at one end to form a valve tip and cutting said braided carbon fiber after said valve head portion to form a valve face and thus provide a composite valve preform; and densifying said preform by embedding the braided carbon in a matrix of carbon to convert said valve stem portion to a valve stem and said valve head portion to a valve head thereby providing said composite valve.

  7. Carbon Fiber Reinforced Glass Matrix Composites for Satellite Applications

    DTIC Science & Technology

    1992-06-01

    graphite basal planes. On the other hand, a high elastic modulus fiber derived from a mesophase pitch precursor, such as P-100, has a radial...and B. V. Perov. Elsevier Science Publishers B. V., Amsterdam, 1985. 2. B. Rand, "Carbon Fibres from Mesophase Pitch " pp. 495-575 in ibid.. 3. W. K...HMU fiber and the other reinforced with pitch -based fiber (P- 100 or FT700), will be described and compared with respect to various features of the

  8. Rheology of Carbon Fibre Reinforced Cement-Based Mortar

    SciTech Connect

    Banfill, Phillip F. G.; Starrs, Gerry; McCarter, W. John

    2008-07-07

    Carbon fibre reinforced cement based materials (CFRCs) offer the possibility of fabricating 'smart' electrically conductive materials. Rheology of the fresh mix is crucial to satisfactory moulding and fresh CFRC conforms to the Bingham model with slight structural breakdown. Both yield stress and plastic viscosity increase with increasing fibre length and volume concentration. Using a modified Viskomat NT, the concentration dependence of CFRC rheology up to 1.5% fibre volume is reported.

  9. Modified Single-Wall Carbon Nanotubes for Reinforce Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Lebron-COlon, Marisabel; Meador, Michael A.

    2006-01-01

    A significant improvement in the mechanical properties of the thermoplastic polyimide film was obtained by the addition of noncovalently functionalized single-wall carbon nanotubes (SWNTs). Polyimide films were reinforced using pristine SWNTs and functionalized SWNTs (F-SWNTs). The tensile strengths of the polyimide films containing F-SWNTs were found to be approximately 1.4 times higher than those prepared from pristine SWNTs.

  10. Electrical behavior of carbon whisker reinforced elastomer matrix composites

    SciTech Connect

    Chellappa, V.; Chiou, Z.W.; Jang, B.Z.

    1994-12-31

    The electrical and mechanical properties of carbon whisker reinforced thermoplastic elastomer composites were investigated. The reinforcement whisker was made by a catalytic chemical vapor deposition (CCVD) process and the polymer matrix was from a thermoplastic elastomer (TPE, a butadiene-styrene block co-polymer). The electrical resistivity ({rho}) of the CCVD carbon whisker-elastomer composites can be varied by uniaxial deformation (10{sup 1}-10{sup 8}{Omega}-cm) and by changing the temperature (10{sup 1}-10{sup 5}{Omega}-cm). The temperature-resistivity studies indicate, that the resistivity of these composites depend on the physical property of the elastomer. The {rho} vs 1/T curves exhibit two distinct slopes intersected at the T{sub g} of the elastomer (-50{degrees}C). Further uniaxial deformation studies at room temperature (20{degrees}C) demonstrated that the resistivity increased exponentially with the deformation. The dependence of resistivity (or conductivity) of the composites with respect to deformation and temperature was explained on the basis of electron tunnelling induced conduction. CCVD carbon whiskers can be used as a reinforcement (filler) for the elastomer and can also make them electrically conductive.

  11. Carbon Fiber Reinforced Ceramic Composites for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal; Argade, Shyam

    2003-01-01

    This report presents a critical review of the processing techniques for fabricating continuous fiber-reinforced CMCs for possible applications at elevated temperatures. Some of the issues affecting durability of the composite materials such as fiber coatings and cracking of the matrix because of shrinkage in PIP-process are also examined. An assessment of the potential inexpensive processes is also provided. Finally three potential routes of manufacturing C/SiC composites using a technology that NC A&T developed for carbon/carbon composites are outlined. Challenges that will be encountered are also listed.

  12. Fire Control Agent Effectiveness for Hazardous Chemical Fires: Carbon Disulfide.

    DTIC Science & Technology

    1981-01-01

    KHCO 3 ) , 3 ) a powder which is the reaction product of urea and potassium hi- carbonate, trade named Monnex, and 4 ) monoammonium phosphate (commonly...products. T Technical Report Documentation Page 2. Report No. Government Accesson No. 3 . Reciptnt’s Catalog No.CG-D-09-81 A - 4 . Title and Subtitle...Unclassified v + 92 Form DOT F 1700.7 (8-72) Reproduction of completed page outhoried 30~ Ila * 00 C= 4 L t i 1 99 t 9 3 ~~~ I j q.~ 39.- ao -. 1a - to *~~~I

  13. Fire, global warming, and the carbon balance of boreal forests

    SciTech Connect

    Kasischke, E.S.; Christensen, N.L. Jr.; Stocks, B.J.

    1995-05-01

    Fire strongly influences carbon cycling and storage in boreal forests. In the near-term, if global warming occurs, the frequency and intensity of fires in boreal forests are likely to increase significantly. A sensitivity analysis on the relationship between fire and carbon storage in the living-biomass and ground-layer compartments of boreal forests was performed to determine how the carbon stocks would be expected to change as a result of global warming. A model was developed to study this sensitivity. The model shows if the annual area burned in boreal forests increases by 50%, as predicted by some studies, then the amount of carbon stored in the ground layer would decrease between 3.5 and 5.6 kg/m{sup 2}, and the amount of carbon stored in the living biomass would increase by 1.2 kg/m{sup 2}. There would be a net loss of carbon in boreal forests between 2.3 and 4.4 kg/m{sup 2}, or 27.1-51.9 Pg on a global scale. Because the carbon in the ground layer is lot more quickly than carbon is accumulated in living biomass, this could lead to a short-term release of carbon over the next 50-100 yr at a rate of 0.33-0.8 Pg/yr, dependent on the distribution of carbon between organic and mineral soil in the ground layer (which is presently not well-understood) and the increase in fire frequency caused by global warming. 57 refs., 9 figs., 2 tabs.

  14. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes.

    PubMed

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng; Kang, Zhe

    2016-05-17

    In this study, a novel multi-walled carbon nanotubes reinforced nanocrystalline copper matrix composite with super high strength and moderate plasticity was synthesized. We successfully overcome the agglomeration problem of the carbon nanotubes and the grain growth problem of the nanocrystalline copper matrix by combined use of the electroless deposition and spark plasma sintering methods. The yield strength of the composite reach up to 692 MPa, which is increased by 2 and 5 times comparing with those of the nanocrystalline and coarse copper, respectively. Simultaneously, the plasticity of the composite was also significantly increased in contrast with that of the nanocrystalline copper. The increase of the density of the carbon nanotubes after coating, the isolation effect caused by the copper coating, and the improvement of the compatibility between the reinforcements and matrix as well as the effective control of the grain growth of the copper matrix all contribute to improving the mechanical properties of the composite. In addition, a new strengthening mechanism, i.e., the series-connection effect of the nanocrystalline copper grains introduced by carbon nanotubes, is proposed to further explain the mechanical behavior of the nanocomposite.

  15. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes

    PubMed Central

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng; Kang, Zhe

    2016-01-01

    In this study, a novel multi-walled carbon nanotubes reinforced nanocrystalline copper matrix composite with super high strength and moderate plasticity was synthesized. We successfully overcome the agglomeration problem of the carbon nanotubes and the grain growth problem of the nanocrystalline copper matrix by combined use of the electroless deposition and spark plasma sintering methods. The yield strength of the composite reach up to 692 MPa, which is increased by 2 and 5 times comparing with those of the nanocrystalline and coarse copper, respectively. Simultaneously, the plasticity of the composite was also significantly increased in contrast with that of the nanocrystalline copper. The increase of the density of the carbon nanotubes after coating, the isolation effect caused by the copper coating, and the improvement of the compatibility between the reinforcements and matrix as well as the effective control of the grain growth of the copper matrix all contribute to improving the mechanical properties of the composite. In addition, a new strengthening mechanism, i.e., the series-connection effect of the nanocrystalline copper grains introduced by carbon nanotubes, is proposed to further explain the mechanical behavior of the nanocomposite. PMID:27185503

  16. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng; Kang, Zhe

    2016-05-01

    In this study, a novel multi-walled carbon nanotubes reinforced nanocrystalline copper matrix composite with super high strength and moderate plasticity was synthesized. We successfully overcome the agglomeration problem of the carbon nanotubes and the grain growth problem of the nanocrystalline copper matrix by combined use of the electroless deposition and spark plasma sintering methods. The yield strength of the composite reach up to 692 MPa, which is increased by 2 and 5 times comparing with those of the nanocrystalline and coarse copper, respectively. Simultaneously, the plasticity of the composite was also significantly increased in contrast with that of the nanocrystalline copper. The increase of the density of the carbon nanotubes after coating, the isolation effect caused by the copper coating, and the improvement of the compatibility between the reinforcements and matrix as well as the effective control of the grain growth of the copper matrix all contribute to improving the mechanical properties of the composite. In addition, a new strengthening mechanism, i.e., the series-connection effect of the nanocrystalline copper grains introduced by carbon nanotubes, is proposed to further explain the mechanical behavior of the nanocomposite.

  17. New generation fiber reinforced polymer composites incorporating carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Soliman, Eslam

    The last five decades observed an increasing use of fiber reinforced polymer (FRP) composites as alternative construction materials for aerospace and infrastructure. The high specific strength of FRP attracted its use as non-corrosive reinforcement. However, FRP materials were characterized with a relatively low ductility and low shear strength compared with steel reinforcement. On the other hand, carbon nanotubes (CNTs) have been introduced in the last decade as a material with minimal defect that is capable of increasing the mechanical properties of polymer matrices. This dissertation reports experimental investigations on the use of multi-walled carbon nanotubes (MWCNTs) to produce a new generation of FRP composites. The experiments showed significant improvements in the flexure properties of the nanocomposite when functionalized MWCNTs were used. In addition, MWCNTs were used to produce FRP composites in order to examine static, dynamic, and creep behavior. The MWCNTs improved the off-axis tension, off-axis flexure, FRP lap shear joint responses. In addition, they reduced the creep of FRP-concrete interface, enhanced the fracture toughness, and altered the impact resistance significantly. In general, the MWCNTs are found to affect the behaviour of the FRP composites when matrix failure dominates the behaviour. The improvement in the mechanical response with the addition of low contents of MWCNTs would benefit many industrial and military applications such as strengthening structures using FRP composites, composite pipelines, aircrafts, and armoured vehicles.

  18. Carbon fiber reinforced root canal posts. Mechanical and cytotoxic properties.

    PubMed

    Torbjörner, A; Karlsson, S; Syverud, M; Hensten-Pettersen, A

    1996-01-01

    The aim of this study was to compare the mechanical properties of a prefabricated root canal post made of carbon fiber reinforced composites (CFRC) with metal posts and to assess the cytotoxic effects elicited. Flexural modulus and ultimate flexural strength was determined by 3 point loading after CRFC posts had been stored either dry or in water. The bending test was carried out with and without preceding thermocycling of the CFRC posts. The cytotoxicity was evaluated by an agar overlay method after dry and wet storage. The values of flexural modulus and ultimate flexural strength were for dry stored CFRC post 82 +/- 6 GPa and 1154 +/- 65 MPa respectively. The flexural values decreased significantly after water storage and after thermocycling. No cytotoxic effects were observed adjacent to any CFRC post. Although fiber reinforced composites may have the potential to replace metals in many clinical situations, additional research is needed to ensure a satisfying life-span.

  19. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  20. Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  1. Carbon Fiber Reinforced Carbon Composite Rotary Valve for an Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Northam, G.Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    2000-01-01

    Carbon fiber reinforced carbon composite rotary sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or wrap-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties do not present the sealing and lubrication problems that have prevented rotary sleeve and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  2. Synthesis and characterization of carbon microsphere for extinguishing sodium fire

    NASA Astrophysics Data System (ADS)

    Snehalatha, V.; Ponraju, D.; Nashine, B. K.; Chellapandi, P.

    2013-06-01

    In Sodium cooled Fast breeder Reactors (SFRs), accidental leakage of liquid sodium leads to sodium fire. Carbon microsphere is a promising and novel extinguishant for sodium fire since it possesses high thermal conductivity, chemical inertness and excellent flow characteristics. Low density Carbon microsphere (CMS) with high thermal stability was successfully synthesized from functionalized styrene divinyl benzene copolymer by carbonization under inert atmosphere. Protocol for stepwise carbonization was developed by optimizing heating rate and time of heating. The synthesized CMS was characterized by Densimeter, Scanning Electron Microscope (SEM), Fourier Transfer Infra-Red spectroscopy (FTIR), Thermogravimetry (TG), X-ray Diffraction (XRD) and RAMAN spectroscopy. CMS thus obtained was spherical in shape having diameters ranging between 60 to 80μm with narrow size distribution. The smooth surface of CMS ensures its free flow characteristics. The yield of carbonization process was about 38%. The performance of CMS was tested on small scale sodium. This paper describes the development of carbon microsphere for extinguishing sodium fire and its characteristics.

  3. Creep Forming of Carbon-Reinforced Ceramic-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaughn, Wallace L.; Scotti, Stephan J.; Ashe, Melissa P.; Connolly, Liz

    2007-01-01

    A set of lecture slides describes an investigation of creep forming as a means of imparting desired curvatures to initially flat stock plates of carbon-reinforced ceramic-matrix composite (C-CMC) materials. The investigation is apparently part of a continuing effort to develop improved means of applying small CCMC repair patches to reinforced carbon-carbon leading edges of aerospace vehicles (e.g., space shuttles) prior to re-entry into the atmosphere of the Earth. According to one of the slides, creep forming would be an intermediate step in a process that would yield a fully densified, finished C-CMC part having a desired size and shape (the other steps would include preliminary machining, finish machining, densification by chemical vapor infiltration, and final coating). The investigation included experiments in which C-CMC disks were creep-formed by heating them to unspecified high temperatures for time intervals of the order of 1 hour while they were clamped into single- and double-curvature graphite molds. The creep-formed disks were coated with an oxidation- protection material, then subjected to arc-jet tests, in which the disks exhibited no deterioration after exposure to high-temperature test conditions lasting 490 seconds.

  4. Defect depth measurement of carbon fiber reinforced polymers by thermography

    NASA Astrophysics Data System (ADS)

    Chen, Terry Y.; Chen, Jian-Lun

    2016-01-01

    Carbon fiber reinforced polymers has been widely used in all kind of the industries. However the internal defects can result in the change of material or mechanical properties, and cause safety problem. In this study, step-heating thermography is employed to measure the time series temperature distribution of composite plate. The principle of heat conduction in a flat plate with defect inside is introduced. A temperature separation criterion to determine the depth of defect inside the specimen is obtained experimentally. Applying this criterion to CFRP specimens with embedded defects, the depth of embedded defect in CFRP can be determined quite well from the time series thermograms obtained experimentally.

  5. Fusion bonding of carbon fabric reinforced polyphenylene sulphide

    NASA Astrophysics Data System (ADS)

    de Baere, I.; van Paepegem, W.; Degrieck, J.

    2010-06-01

    In recent years, there is a growing interest in joining techniques for thermoplastic composites as an alternative to adhesive bonding. In this manuscript, a fusion bonding process called hot-tool welding is investigated for this purpose and the used material is a carbon fabric reinforced polyphenylene sulphide. The quality of the welds is experimentally assessed using a short three-point bending setup, which has an interesting distribution of interlaminar shear stresses. It can be concluded that although the hot-tool welding process shows high short-beam strengths, it has some drawbacks. Therefore, a design of an infrared welding setup is presented.

  6. Multiwalled carbon nanotube reinforced biomimetic bundled gel fibres.

    PubMed

    Kim, Young-Jin; Yamamoto, Seiichiro; Takahashi, Haruko; Sasaki, Naruo; Matsunaga, Yukiko T

    2016-08-19

    This work describes the fabrication and characterization of hydroxypropyl cellulose (HPC)-based biomimetic bundled gel fibres. The bundled gel fibres were reinforced with multiwalled carbon nanotubes (MWCNTs). A phase-separated aqueous solution with MWCNT and HPC was transformed into a bundled fibrous structure after being injected into a co-flow microfluidic device and applying the sheath flow. The resulting MWCNT-bundled gel fibres consist of multiple parallel microfibres. The mechanical and electrical properties of MWCNT-bundled gel fibres were improved and their potential for tissue engineering applications as a cell scaffold was demonstrated.

  7. Tailoring oxidation of aluminum nanoparticles reinforced with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sharma, Manjula; Sharma, Vimal

    2016-05-01

    In this report, the oxidation temperature and reaction enthalpy of Aluminum (Al) nanoparticles has been controlled by reinforcing with carbon nanotubes. The physical mixing method with ultrasonication was employed to synthesize CNT/Al nanocomposite powders. The micro-morphology of nanoconmposite powders has been analysed by scanning electron microscopy, energy dispersive spectroscopy, raman spectroscopy and X-ray diffraction techniques. The oxidation behavior of nanocomposite powders analyzed by thermogravimetry/differential scanning calorimertry showed improvement in the exothermic enthalpy. Largest exothermic enthalpy of-1251J/g was observed for CNT (4 wt%)/Al nanocomposite.

  8. Modeling carbon monoxide spread in underground mine fires

    PubMed Central

    Yuan, Liming; Zhou, Lihong; Smith, Alex C.

    2016-01-01

    Carbon monoxide (CO) poisoning is a leading cause of mine fire fatalities in underground mines. To reduce the hazard of CO poisoning in underground mines, it is important to accurately predict the spread of CO in underground mine entries when a fire occurs. This paper presents a study on modeling CO spread in underground mine fires using both the Fire Dynamics Simulator (FDS) and the MFIRE programs. The FDS model simulating part of the mine ventilation network was calibrated using CO concentration data from full-scale mine fire tests. The model was then used to investigate the effect of airflow leakage on CO concentration reduction in the mine entries. The inflow of fresh air at the leakage location was found to cause significant CO reduction. MFIRE simulation was conducted to predict the CO spread in the entire mine ventilation network using both a constant heat release rate and a dynamic fire source created from FDS. The results from both FDS and MFIRE simulations are compared and the implications of the improved MFIRE capability are discussed. PMID:27069400

  9. Increased fire frequency optimization of black carbon mixing and storage

    NASA Astrophysics Data System (ADS)

    Pyle, Lacey; Masiello, Caroline; Clark, Kenneth

    2016-04-01

    Soil carbon makes up a substantial part of the global carbon budget and black carbon (BC - produced from incomplete combustion of biomass) can be significant fraction of soil carbon. Soil BC cycling is still poorly understood - very old BC is observed in soils, suggesting recalcitrance, yet in short term lab and field studies BC sometimes breaks down rapidly. Climate change is predicted to increase the frequency of fires, which will increase global production of BC. As up to 80% of BC produced in wildfires can remain at the fire location, increased fire frequency will cause significant perturbations to soil BC accumulation. This creates a challenge in estimating soil BC storage, in light of a changing climate and an increased likelihood of fire. While the chemical properties of BC are relatively well-studied, its physical properties are much less well understood, and may play crucial roles in its landscape residence time. One important property is density. When BC density is less than 1 g/cm3 (i.e. the density of water), it is highly mobile and can easily leave the landscape. This landscape mobility following rainfall may inflate estimates of its degradability, making it crucial to understand both the short- and long term density of BC particles. As BC pores fill with minerals, making particles denser, or become ingrown with root and hyphal anchors, BC is likely to become protected from erosion. Consequently, how quickly BC is mixed deeper into the soil column is likely a primary controller on BC accumulation. Additionally the post-fire recovery of soil litter layers caps BC belowground, protecting it from erosional forces and re-combustion in subsequent fires, but still allowing bioturbation deeper into the soil column. We have taken advantage of a fire chronosequence in the Pine Barrens of New Jersey to investigate how density of BC particles change over time, and how an increase in fire frequency affects soil BC storage and soil column movement. Our plots have

  10. The Fire-Alarm Game: Exit Training Using Negative and Positive Reinforcement under Varied Stimulus Conditions. Short Reports.

    ERIC Educational Resources Information Center

    Holburn, C. Steven; Dougher, Michael J.

    1985-01-01

    Techniques for training a severely retarded blind client to exit his living unit during a fire drill used a combination of negative and positive reinforcement. Following a shaping procedure, the client learned to leave his living unit from any internal point through generalization training and subsequent test probes. (Author/CL)

  11. Closeup view of the Reinforced CarbonCarbon nose cap on the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Reinforced Carbon-Carbon nose cap on the front fuselage of the Orbiter Discovery. Note the 76-wheeled orbiter transfer system attached to the orbiter at the forward attach point, the same attach point used to mount the orbiter onto the External Tank. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. Simulation of the Thermographic Response of Near Surface Flaws in Reinforced Carbon-Carbon Panels

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Howell, Patricia A.; Burke, Eric R.

    2009-01-01

    Thermographic inspection is a viable technique for detecting in-service damage in reinforced carbon-carbon (RCC) composites that are used for thermal protection in the leading edge of the shuttle orbiter. A thermographic technique for detection of near surface flaws in RCC composite structures is presented. A finite element model of the heat diffusion in structures with expected flaw configurations is in good agreement with the experimental measurements.

  13. SIMULATIONS OF THE THERMOGRAPHIC RESPONSE OF NEAR SURFACE FLAWS IN REINFORCED CARBON-CARBON PANELS

    SciTech Connect

    Winfree, William P.; Howell, Patricia A.; Burke, Eric R.

    2010-02-22

    Thermographic inspection is a viable technique for detecting in-service damage in reinforced carbon-carbon (RCC) composites that are used for thermal protection in the leading edge of the shuttle orbiter. A thermographic technique for detection of near surface flaws in RCC composite structures is presented. A finite element model of the heat diffusion in structures with expected flaw configurations is in good agreement with the experimental measurements.

  14. Multi-Scale Microstructure and Mechanical Properties of High Carbon Eutectic Tantalum Carbide Reinforced with Carbon Nanotubes

    DTIC Science & Technology

    2012-07-02

    understanding of mechanical properties at multiple length scales. Spark plasma sintering technique was employed to consolidate fully dense TaC reinforced...multiwall carbon nanotube (CNT) reinforced TaC composite with an understanding of mechanical and oxidation properties. Spark plasma sintering was...employed to consolidate TaC reinforced with nano B4C and carbon nanotubes. TaC and TaC-1 wt.% B4C powders were consolidated using spark plasma sintering

  15. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide fire extinguishing system requirements... Carbon dioxide fire extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  16. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide fire extinguishing system requirements... Carbon dioxide fire extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  17. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide fire extinguishing system requirements... Carbon dioxide fire extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  18. 46 CFR 167.45-45 - Carbon dioxide fire-extinguishing system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide fire-extinguishing system requirements... Carbon dioxide fire-extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  19. Carbon emissions from spring 1998 fires in tropical Mexico

    SciTech Connect

    Cairns, M.A.; Hao, W.M.; Alvarado, E.; Haggerty, P.K.

    1999-04-01

    The authors used NOAA-AVHRR satellite imagery, biomass density maps, fuel consumption estimates, and a carbon emission factor to estimate the total carbon (C) emissions from the Spring 1998 fires in tropical Mexico. All eight states in southeast Mexico were affected by the wildfires, although the activity was concentrated near the common border of Oaxaca, Chiapas, and Veracruz. The fires burned approximately 482,000 ha and the land use/land cover classes most extensively impacted were the tall/medium selvas (tropical evergreen forests), open/fragmented forests, and perturbed areas. The total prompt emissions were 4.6 TgC during the two-month period of the authors` study, contributing an additional 24% to the region`s average annual net C emissions from forestry and land-use change. Mexico in 1998 experienced its driest Spring since 1941, setting the stage for the widespread burning.

  20. FIBER LENGTH DISTRIBUTION MEASUREMENT FOR LONG GLASS AND CARBON FIBER REINFORCED INJECTION MOLDED THERMOPLASTICS

    SciTech Connect

    Kunc, Vlastimil; Frame, Barbara J; Nguyen, Ba N.; TuckerIII, Charles L.; Velez-Garcia, Gregorio

    2007-01-01

    Procedures for fiber length distribution (FLD) measurement of long fiber reinforced injection molded thermoplastics were refined for glass and carbon fibers. Techniques for sample selection, fiber separation, digitization and length measurement for both fiber types are described in detail. Quantitative FLD results are provided for glass and carbon reinforced polypropylene samples molded with a nominal original fiber length of 12.7 mm (1/2 in.) using equipment optimized for molding short fiber reinforced thermoplastics.

  1. Black carbon formation by savanna fires: Measurements and implications for the global carbon cycle

    NASA Astrophysics Data System (ADS)

    Kuhlbusch, T. A. J.; Andreae, M. O.; Cachier, H.; Goldammer, J. G.; Lacaux, J.-P.; Shea, R.; Crutzen, P. J.

    1996-10-01

    During a field study in southern Africa (Southern African Fire-Atmosphere Research Initiative (SAFARI-92)), black carbon formation was quantified in the residues of savanna fires. The volatilization ratios of C, H, N, and S were determined by measuring their contents in the fuel and residue loads on six experimental sites. The volatilization of sulfur (86 ± 8%) was significantly higher than previously reported. Volatilization of H, N, and S was significantly correlated with that of carbon, enabling us to estimate their volatilization during savanna fires by extrapolation from those of carbon. By partitioning the residues in various fractions (unburned, partially burned, and ash), a strong correlation between the H/C ratio in the residue and the formation of black carbon was obtained. The ratio of carbon contained in ash to carbon contained in the unburned and partially burned fraction is introduced as an indicator of the degree of charring. As nitrogen was enriched in the residue, especially in the ash fraction of >0.63 mm, this indicator may be useful for an assessment of nutrient cycling. We show that the formation of black carbon is dependent on the volatilization of carbon as well as the degree of charring. The ratio of black carbon produced to the carbon exposed to the fire in this field study (0.6-1.5%) was somewhat lower than in experimental fires under laboratory conditions (1.0-1.8%) which may be due to less complete combustion. The average ratio of black carbon in the residue to carbon emitted as CO2 ranged from 0.7 to 2.0%. Using these ratios together with various estimates of carbon exposed or emitted by savanna fires, the worldwide black carbon formation was estimated to be 10-26 Tg C yr-1 with more than 90% of the black carbon remaining on the ground. The formation of this black carbon is a net sink of biospheric carbon and thus of atmospheric CO2 as well as a source of O2.

  2. 77 FR 33859 - Carbon Dioxide Fire Suppression Systems on Commercial Vessels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    .... Carbon Dioxide Fire Suppression Systems on Commerical Vessels; Final Rule #0;#0;Federal Register / Vol... Carbon Dioxide Fire Suppression Systems on Commercial Vessels AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: The Coast Guard is amending the current regulations for fire suppression systems...

  3. Reinforcing multiwall carbon nanotubes by electron beam irradiation

    SciTech Connect

    Duchamp, Martial; Meunier, Richard; Smajda, Rita; Mionic, Marijana; Forro, Laszlo; Magrez, Arnaud; Seo, Jin Won; Song, Bo; Tomanek, David

    2010-10-15

    We study the effect of electron beam irradiation on the bending modulus of multiwall carbon nanotubes grown by chemical vapor deposition. Atomic force microscopy observations of the nanotube deflection in the suspended-beam geometry suggest an internal, reversible stick-slip motion prior to irradiation, indicating presence of extended defects. Upon electron beam irradiation, nanotubes with an initial bending modulus exceeding 10 GPa initially get stiffer, before softening at high doses. Highly defective nanotubes with smaller initial bending moduli do not exhibit the initial reinforcement. These data are explained by ab initio molecular dynamics calculations suggesting a spontaneous cross-linking of neighboring nanotube walls at extended vacancy defects created by the electron beam, in agreement with electron microscopy observations. At low defect concentration, depending on the edge morphology, the covalent bonds between neighboring nanotube walls cause reinforcement by resisting relative motion of neighboring walls. At high concentration of defects that are present initially or induced by high electron beam dose, the structural integrity of the entire system suffers from increasing electron beam damage.

  4. Multifunctional composites using reinforced laminae with carbon-nanotube forests

    NASA Astrophysics Data System (ADS)

    Veedu, Vinod P.; Cao, Anyuan; Li, Xuesong; Ma, Kougen; Soldano, Caterina; Kar, Swastik; Ajayan, Pulickel M.; Ghasemi-Nejhad, Mehrdad N.

    2006-06-01

    Traditional fibre-reinforced composite materials with excellent in-plane properties fare poorly when out-of-plane through-thickness properties are important. Composite architectures with fibres designed orthogonal to the two-dimensional (2D) layout in traditional composites could alleviate this weakness in the transverse direction, but all of the efforts so far have only produced limited success. Here, we unveil an approach to the 3D composite challenge, without altering the 2D stack design, on the basis of the concept of interlaminar carbon-nanotube forests that would provide enhanced multifunctional properties along the thickness direction. The carbon-nanotube forests allow the fastening of adjacent plies in the 3D composite. We grow multiwalled carbon nanotubes on the surface of micro-fibre fabric cloth layouts, normal to the fibre lengths, resulting in a 3D effect between plies under loading. These nanotube-coated fabric cloths serve as building blocks for the multilayered 3D composites, with the nanotube forests providing much-needed interlaminar strength and toughness under various loading conditions. For the fabricated 3D composites with nanotube forests, we demonstrate remarkable improvements in the interlaminar fracture toughness, hardness, delamination resistance, in-plane mechanical properties, damping, thermoelastic behaviour, and thermal and electrical conductivities making these structures truly multifunctional.

  5. Life Cycle Assessment of Carbon Fiber-Reinforced Polymer Composites

    SciTech Connect

    Das, Sujit

    2011-01-01

    Carbon fiber-reinforced polymer matrix composites is gaining momentum with the pressure to lightweight vehicles, however energy-intensity and cost remain some of the major barriers before this material could be used in large-scale automotive applications. A representative automotive part, i.e., a 30.8 kg steel floor pan having a 17% weight reduction potential with stringent cash performance requirements has been considered for the life cycle energy and emissions analysis based on the latest developments occurring in the precursor type (conventional textile-based PAN vs. renewable-based lignin), part manufacturing (conventional SMC vs. P4) and fiber recycling technologies. Carbon fiber production is estimated to be about 14 times more energy-intensive than conventional steel production, however life cycle primary energy use is estimated to be quite similar to the conventional part, i.e., 18,500 MJ/part, especially when considering the uncertainty in LCI data that exists from using numerous sources in the literature. Lignin P4 technology offers the most life cycle energy and CO2 emissions benefits compared to a conventional stamped steel technology. With a 20% reduction in energy use in the lignin conversion to carbon fiber and free availability of lignin as a by-product of ethanol and wood production, a 30% reduction in life cycle energy use could be obtained. A similar level of life cycle energy savings could also be obtained with a higher part weight reduction potential of 43%.

  6. Tribological behaviour of unidirectional carbon fibre-reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Şahin, Y.; De Baets, P.

    2017-02-01

    Tribological behaviour of unidirectional carbon fibre-reinforced epoxy composites containing 42wt.% (CU42) and 52wt.% (CU52) carbon fibres fabricated by moulding technique was investigated on a pin-on-flat plate configuration. It is the first time to measure static and dynamic coefficient of frictions and wear rates of epoxy composites under heavy loading conditions. Microstructures of composites were examined by scanning electron microscopy (SEM). The experimental results indicated the carbon fiber improved the tribological properties of thermoset epoxy by reducing wear rate, but increased the coefficient of friction. At higher load, average wear rates were about 10.8x10-5 mm3/N.m for composites while it was about 38.20x10-5 mm3/N.m for epoxy resin. The wear rate decreased with decreasing load while friction coefficient increased with decreasing load. Moreover, friction coefficient of composites of CU42 tested at 90 N load was measured to be in the range 0.35 and 0.13 for static and dynamic component, respectively.

  7. Recognizing defects in carbon-fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Schuetze, R.; Hillger, W.

    1982-01-01

    The damage tolerance of structures made of carbon-fiber-reinforced plastic is tested under various loads. Test laminate (73/1/1, 24/9/1, 1465 A) specimens of thickness 1.5-3.2 mm with various defects were subjected to static and dynamic loads. Special attention was given to delamination, and ultrasonic C-scans were made on the specimens. It was shown that cracks from even small defects are detected with great accuracy. The same probes were also X rayed; defects that could not be detected under ordinary X rays were bored and studied under vacuum by a contrast technique. The nondestructive ultrasonic and X ray tests were controlled by partially destructive tests, and good agreement was observed.

  8. Metal-bonded, carbon fiber-reinforced composites

    DOEpatents

    Sastri, Suri A.; Pemsler, J. Paul; Cooke, Richard A.; Litchfield, John K.; Smith, Mark B.

    1996-01-01

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates.

  9. Metal-bonded, carbon fiber-reinforced composites

    DOEpatents

    Sastri, S.A.; Pemsler, J.P.; Cooke, R.A.; Litchfield, J.K.; Smith, M.B.

    1996-03-05

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates. 2 figs.

  10. Mitigating operating room fires: development of a carbon dioxide fire prevention device.

    PubMed

    Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J

    2014-04-01

    Operating room fires are sentinel events that present a real danger to surgical patients and occur at least as frequently as wrong-sided surgery. For fire to occur, the 3 points of the fire triad must be present: an oxidizer, an ignition source, and fuel source. The electrosurgical unit (ESU) pencil triggers most operating room fires. Carbon dioxide (CO2) is a gas that prevents ignition and suppresses fire by displacing oxygen. We hypothesize that a device can be created to reduce operating room fires by generating a cone of CO2 around the ESU pencil tip. One such device was created by fabricating a divergent nozzle and connecting it to a CO2 source. This device was then placed over the ESU pencil, allowing the tip to be encased in a cone of CO2 gas. The device was then tested in 21%, 50%, and 100% oxygen environments. The ESU was activated at 50 W cut mode while placing the ESU pencil tip on a laparotomy sponge resting on an aluminum test plate for up to 30 seconds or until the sponge ignited. High-speed videography was used to identify time of ignition. Each test was performed in each oxygen environment 5 times with the device activated (CO2 flow 8 L/min) and with the device deactivated (no CO2 flow-control). In addition, 3-dimensional spatial mapping of CO2 concentrations was performed with a CO2 sampling device. The median ± SD [range] ignition time of the control group in 21% oxygen was 2.9 s ± 0.44 [2.3-3.0], in 50% oxygen 0.58 s ± 0.12 [0.47-0.73], and in 100% oxygen 0.48 s ± 0.50 [0.03-1.27]. Fires were ignited with each control trial (15/15); no fires ignited when the device was used (0/15, P < 0.0001). The CO2 concentration at the end of the ESU pencil tip was 95%, while the average CO2 concentration 1 to 1.4 cm away from the pencil tip on the bottom plane was 64%. In conclusion, an operating room fire prevention device can be created by using a divergent nozzle design through which CO2 passes, creating a cone of fire suppressant. This device as

  11. Properties of glass/carbon fiber reinforced epoxy hybrid polymer composites

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Sevkani, V. R.; Patel, B. R.; Patel, V. B.

    2016-05-01

    Composite Materials are well known for their tailor-made properties. For the fabrication of composites different types of reinforcements are used for different applications. Sometimes for a particular application, one type of reinforcement may not fulfill the requirements. Therefore, more than one type of reinforcements may be used. Thus, the idea of hybrid composites arises. Hybrid composites are made by joining two or more different reinforcements with suitable matrix system. It helps to improve the properties of composite materials. In the present work glass/carbon fiber reinforcement have been used with a matrix triglycidyl ether of tris(m-hydroxy phenyl) phosphate epoxy resin using amine curing agent. Different physical and mechanical properties of the glass, carbon and glass/carbon fiber reinforced polymeric systems have been found out.

  12. Flame retardant polypropylene nanocomposites reinforced with surface treated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Guleria, Abhishant

    Polypropylene nanocomposites are prepared by reinforcing carbon nanotubes by ex-situ solution mixing method. Interfacial dispersion of carbon nanotubes in polypropylene have been improved by surface modification of CNTs and adding surfactants. Polypropylene nanocomposites fabrication was done after treating CNTs. Firstly, oxidation of CNTs followed by silanization for addition of functionalized groups on the surface of CNTs. Maleic anhydride grafted PPs were used as surfactants. Maleic anhydrides with two different molecular weights were LAMPP and HMAPP. Successful oxidation of CNTs by nitric acid and functionalized CNTs by 3-Aminopropyltriethoxysilane was confirmed by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) with evidence of absorption peak at 1700 and 1100-1000 cm-1. Scanning electron microscopy (SEM) micrographs revealed that the CNTs dispersion quality was improved by directly adding LMAPP/HMAPP into PP/CNTs system and the PP-CNTs adhesion was enhanced through both the CNTs surface treatment and the addition of surfactant. Thermal gravimetric analysis (TGA) revealed an enhanced thermal stability in the PP/CNTs and PP/CNTs/MAPP. Differential scanning calorimetry (DSC) characterization demonstrated that the crystalline temperature, fusion heat and crystalline fraction of hosting PP were decreased with the introduction of CNTs and surface treated CNTs; however, melting temperature was only slightly changed. Melting rheological behaviors including complex viscosity, storage modulus, and loss modulus indicated significant changes in the PP/MAPP/CNTs system before and after functionalization of CNTs, and the mechanism were also discussed in details.

  13. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Carbon dioxide and halon fire extinguishing systems. 147... dioxide and halon fire extinguishing systems. (a) Carbon dioxide or halon cylinders forming part of a...) Carbon dioxide or halon cylinders must be rejected for further service when they— (1) Leak; (2)...

  14. 46 CFR 167.45-1 - Steam, carbon dioxide, and halon fire extinguishing systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Steam, carbon dioxide, and halon fire extinguishing....45-1 Steam, carbon dioxide, and halon fire extinguishing systems. (a) General requirements. (1...) At annual inspections, all carbon dioxide (CO2) cylinders, whether fixed or portable, shall...

  15. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Carbon dioxide and halon fire extinguishing systems. 147... HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.65 Carbon dioxide and halon fire extinguishing systems. (a) Carbon dioxide or halon cylinders forming part of...

  16. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Carbon dioxide and halon fire extinguishing systems. 147... HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.65 Carbon dioxide and halon fire extinguishing systems. (a) Carbon dioxide or halon cylinders forming part of...

  17. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Carbon dioxide and halon fire extinguishing systems. 147... HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.65 Carbon dioxide and halon fire extinguishing systems. (a) Carbon dioxide or halon cylinders forming part of...

  18. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Carbon dioxide and halon fire extinguishing systems. 147... HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.65 Carbon dioxide and halon fire extinguishing systems. (a) Carbon dioxide or halon cylinders forming part of...

  19. The global Cretaceous-Tertiary fire: Biomass or fossil carbon

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Guenther, Frank

    1988-01-01

    The global soot layer at the K-T boundary indicates a major fire triggered by meteorite impact. However, it is not clear whether the principal fuel was biomass or fossil carbon. Forests are favored by delta value of C-13, which is close to the average for trees, but the total amount of elemental C is approximately 10 percent of the present living carbon, and thus requires very efficient conversion to soot. The PAH was analyzed at Woodside Creek, in the hope of finding a diagnostic molecular marker. A promising candidate is 1-methyl-7-isopropyl phenanthrene (retene,), which is probably derived by low temperature degradation of abietic acid. Unlike other PAH that form by pyrosynthesis at higher temperatures, retene has retained the characteristic side chains of its parent molecule. A total of 11 PAH compounds were identified in the boundary clay. Retene is present in substantial abundance. The identification was confirmed by analysis of a retene standard. Retene is characteristic of the combustion of resinous higher plants. Its formation depends on both temperature and oxygen access, and is apparently highest in oxygen-poor fires. Such fires would also produce soot more efficiently which may explain the high soot abundance. The relatively high level of coronene is not typical of a wood combustion source, however, though it can be produced during high temperature pyrolysis of methane, and presumably other H, C-containing materials. This would require large, hot, low O2 zones, which may occur only in very large fires. The presence of retene indicates that biomass was a significant fuel source for the soot at the Cretaceous-Tertiary boundary. The total amount of elemental C produced requires a greater than 3 percent soot yield, which is higher than typically observed for wildfires. However, retene and presumably coronene imply limited access of O2 and hence high soot yield.

  20. Analysis of the Shuttle Orbiter reinforced carbon-carbon oxidation protection system

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, Donald M.; Chao, Dennis; Pham, Vuong T.

    1994-01-01

    Reusable, oxidation-protected reinforced carbon-carbon (RCC) has been successfully flown on all Shuttle Orbiter flights. Thermal testing of the silicon carbide-coated RCC to determine its oxidation characteristics has been performed in convective (plasma Arc-Jet) heating facilities. Surface sealant mass loss was characterized as a function of temperature and pressure. High-temperature testing was performed to develop coating recession correlations for predicting performance at the over-temperature flight conditions associated with abort trajectories. Methods for using these test data to establish multi-mission re-use (i.e., mission life) and single mission limits are presented.

  1. Model for the Effect of Fiber Bridging on the Fracture Resistance of Reinforced-Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Chan, Kwai S.; Lee, Yi-Der; Hudak, Stephen J., Jr.

    2009-01-01

    A micromechanical methodology has been developed for analyzing fiber bridging and resistance-curve behavior in reinforced-carbon-carbon (RCC) panels with a three-dimensional (3D) composite architecture and a silicon carbide (SiC) surface coating. The methodology involves treating fiber bridging traction on the crack surfaces in terms of a weight function approach and a bridging law that relates the bridging stress to the crack opening displacement. A procedure has been developed to deduce material constants in the bridging law from the linear portion of the K-resistance curve. This report contains information on the application of procedures and outcomes.

  2. Prediction of oxidation performance of reinforced carbon-carbon material for Space Shuttle leading edges

    NASA Technical Reports Server (NTRS)

    Medford, J. E.

    1975-01-01

    A method was developed for predicting oxidation performance, in an earth atmospheric entry environment, of reinforced carbon-carbon material, coated for oxidation resistance. A model was developed which describes oxidation control mechanisms, and the equations defining these mechanisms were derived. These relations were used to correlate oxidation test data, and to infer pertinent rate constants. Predictions were made of material oxidation performance in a representative entry environment, and the predictions were compared with ground test data. Results indicate that the method can be successfully used for predicting material oxidation performance.

  3. Assessment of Fracture Toughness of a Discretely-Reinforced Carbon-Carbon Composite Material

    NASA Astrophysics Data System (ADS)

    Stepashkin, A. A.; Ozherelkov, D. Yu.; Sazonov, Yu. B.; Komissarov, A. A.; Mozolev, V. V.

    2015-07-01

    The stress-strain state at the tip of a crack in a discretely reinforced quasi-isotropic carbon-carbon composite material (CCCM) is studied. The stress intensity factor J 1 c and the J-integral are evaluated in accordance with domestic methods and international standards. The distribution of the fields of displacements and strains on the surface of the specimens is determined by the method of numerical correlation of digital images using a VIC-D system. The applicability of different criteria to evaluation of the fracture toughness of CCCM of type TERMAR is determined.

  4. Snow darkening caused by black carbon emitted from fires

    NASA Astrophysics Data System (ADS)

    Engels, Jessica; Kloster, Silvia; Bourgeois, Quentin

    2014-05-01

    We implemented the effect of snow darkening caused by black carbon (BC) emitted from forest fires into the Max Planck Institute for Meteorology Earth System Model (MPI-M ESM) to estimate its potential climate impact of present day fire occurrence. Considerable amounts of black carbon emitted from fires are transported into snow covered regions. Already very small quantities of black carbon reduce the snow reflectance, with consequences for snow melting and snow spatial coverage. Therefore, the SNICAR (SNow And Ice Radiation) model (Flanner and Zender (2005)) is implemented in the land surface component (JSBACH) of the atmospheric general circulation model ECHAM6, developed at the MPI-M. The SNICAR model includes amongst other processes a complex calculation of the snow albedo depending on black carbon in snow and snow grain growth depending on water vapor fluxes for a five layer snow scheme. For the implementation of the SNICAR model into the one layer scheme of ECHAM6-JSBACH, we used the SNICAR-online version (http://snow.engin.umich.edu). This single-layer simulator provides the albedo of snow for selectable combinations of impurity content (e.g. black carbon), snow grain size, and incident solar flux characteristics. From this scheme we derived snow albedo values for black carbon in snow concentrations ranging between 0 and 1500 ng(BC)/g(snow) and for different snow grain sizes for the visible (0.3 - 0.7 µm) and near infrared range (0.7 - 1.5 µm). As snow grains grow over time, we assign different snow ages to different snow grain sizes (50, 150, 500, and 1000 µm). Here, a radius of 50 µm corresponds to new snow, whereas a radius of 1000 µm corresponds to old snow. The required snow age is taken from the BATS (Biosphere Atmosphere Transfer Scheme, Dickinson et al. (1986)) snow albedo implementation in ECHAM6-JSBACH. Here, we will present an extended evaluation of the model including a comparison of modeled black carbon in snow concentrations to observed

  5. Fuel moisture influences on fire-altered carbon in masticated fuels: An experimental study

    NASA Astrophysics Data System (ADS)

    Brewer, Nolan W.; Smith, Alistair M. S.; Hatten, Jeffery A.; Higuera, Philip E.; Hudak, Andrew T.; Ottmar, Roger D.; Tinkham, Wade T.

    2013-03-01

    Biomass burning is a significant contributor to atmospheric carbon emissions but may also provide an avenue in which fire-affected ecosystems can accumulate carbon over time, through the generation of highly resistant fire-altered carbon. Identifying how fuel moisture, and subsequent changes in the fire behavior, relates to the production of fire-altered carbon is important in determining how persistent charred residues are following a fire within specific fuel types. Additionally, understanding how mastication (mechanical forest thinning) and fire convert biomass to black carbon is essential for understanding how this management technique, employed in many fire-prone forest types, may influence stand-level black carbon in soils. In this experimental study, 15 masticated fuel beds, conditioned to three fuel moisture ranges, were burned, and production rates of pyrogenic carbon and soot-based black carbon were evaluated. Pyrogenic carbon was determined through elemental analysis of the post-fire residues, and soot-based black carbon was quantified with thermochemical methods. Pyrogenic carbon production rates ranged from 7.23% to 8.67% relative to pre-fire organic carbon content. Black carbon production rates averaged 0.02% in the 4-8% fuel moisture group and 0.05% in the 13-18% moisture group. A comparison of the ratio of black carbon to pyrogenic carbon indicates that burning with fuels ranging from 13% to 15% moisture content resulted in a higher proportion of black carbon produced, suggesting that the precursors to black carbon were indiscriminately consumed at lower fuel moistures. This research highlights the importance of fuel moisture and its role in dictating both the quantity and quality of the carbon produced in masticated fuel beds.

  6. Carbon Fiber Reinforced Glass Matrix Composites for Structural Space Based Applications

    DTIC Science & Technology

    1989-07-31

    1988) 2745-2752. 2 R89-917704-1 10. V. C. Nardone and K. M. Prewo, "Tensile Performance of Carbon-Fibre-Reinforced Glass," J. Mater. Sci., 23 (1988...168-180. 11. K. M. Prewo and V. C. Nardone , "Carbon Fiber Reinforced Glass Matrix Composites for Space Based Applications," UTRC Report R86-917161-1...Mater. Sci., 23 (1988) 2745-2752. 11. V. C. Nardone and K. M. Prewo, "Tensile Performance of Carbon-Fibre-Reinforced Glass," J. Mater. Sci., 23 (1988

  7. [Preparation of carbon fiber reinforced fluid type resin denture (author's transl)].

    PubMed

    Kasuga, H; Sato, H; Nakabayashi, N

    1980-01-01

    Transverse strength of cured fluid resins is weaker than that of the heat cured. We have studied to improve the mechanical strength of self-cured acrylic resin by application of carbon fibers as reinforcement and simple methods which must be acceptable for technicians are proposed. A cloth type carbon fiber was the best reinforcement among studied carbon fibers such as chopped or mat. The chopped fibers were difficult to mix homogeneously with fluid resins and effectiveness of the reinforcement was low. Breaking often occurred at the interface between the reinforcement and resin in the cases of mat which gave defects to the test specimens. To prepare reinforced denture, the cloth was trimmed on the master cast after removal of wax and the prepreg was formed with the alginate impression on the cast by Palapress and the cloth. Other steps were same as the usual fluid resin.

  8. Carbon-Coated Silica and Silica-Coated Carbon for Elastomer Reinforcement

    NASA Astrophysics Data System (ADS)

    Kohls, D. J.; Beaucage, G.; Pratsinis, S. E.; Kammler, H.

    2000-03-01

    Recently several silica producers have introduced dual-phase grades of silica/carbon powders intended for use in elastomer reinforcement. These mass-produced, nano-structured materials have carbon content in excess of 75carbon aggregates, the intent being to enhance the strength of filler-filler networking in a nano-composite. We have recently developed pyrolytic, nano-scale silica aggregates with interfacial carbon (typically less than 3the aim of enhancing elastomer-filler interaction in green tires. Our carbon-coated silicas display improved processability in typical tire compounds and enhanced dynamic mechanical performance. We also have developed facilities to produce organically functionalized silicas using a novel, room-temperature, aerosol, chemical reactor (ASG reactor). This talk will present our results on dynamic mechanical properties of elastomer compounds with our carbon-coated silica; commercial dual-phase, silica-coated carbon; ASG-organically-modified silicas; conventional carbon black; conventional precipated and fumed silica; as well as blends of the conventional materials. The mass-fractal structure as determined by SAXS and SALS, as well as gas and DBP absorption measurements and microscopy will be presented.

  9. Carbon nanotube-reinforced carbon nano-composite fibrils by electro-spinning

    NASA Astrophysics Data System (ADS)

    Ali, Ashraf Abd El-Fattah

    Fibers of Polyacrylonitrile (PAN) are the precursor of 90% of produced carbon fibers. It is generally thought that the better the degree of molecular orientation in the original PAN fiber, the better the mechanical properties, in particular the modulus of the resultant fibers. Electro-spinning is a unique process in that it is able to produce polymer fibers having diameters ranging over several orders of magnitude, from the micrometer range typical of conventional fibers down to the nanometer range. Until now and based on the literature review the shape and pattern of produced fibers in all electro-spun polymer solutions have taken an in-plan random pattern and affected by the shape of the collector, which gives a limitation of using these ultra fine produced fibers in textile applications. A notable phenomenon has been recognized under certain spinning conditions for PAN solution, which enable the production of continuous yarn containing partially oriented nano-fibers. This phenomenon opened the door to achieve many objectives such as the production of carbon-carbon nano composites by dispersing (CNT) of superior physical properties inside the PAN polymer solution and producing continues carbon nanotube reinforced PAN based carbon nano composite fibrils. The present study is an attempt to optimize the electro-spinning process for nano-scale fibers, understand the electro-mechanics of electro-spun continuous nano-fiber yarns, stabilize, carbonize and graphitize of nano fiber yarns with and without CNT and finally study the physical, chemical and mechanical properties of the produced carbon nanotube reinforced PAN based carbon nano composite fibrils before and after heat treatments. The HREM results showed a good alignment for the CNT inside the PAN based carbon nano fiber composites as well as an increase in the crystallite size up to 5nm, which calculated based on Raman spectroscopy measurements. The AFM showed a two-folds increase in the composite modulus more

  10. Increase in carbon emissions from forest fires after intensive reforestation and forest management programs.

    PubMed

    Choi, Sung-Deuk; Chang, Yoon-Seok; Park, Byung-Kwon

    2006-12-15

    This paper shows an example of substantial increase in carbon emissions from forest fires after reforestation on a national scale. It is the first estimation of historical carbon emissions from forest fires in Korea during the last 40 years. Investigation was focused on the recent increase in large forest fires and its closely related factors. A simple modeling approach to estimate carbon emission was applied. The direct carbon emission from forest fires in 2000, ranging from 115 to 300 Gg C, corresponds to 1-3% of the annual carbon uptake by forests. The influence of forest fires on the carbon cycle in Korea is not so significant, but Korean forests have a large potential for generating severe local fires due to increasing forest carbon density and a high forest area ratio (forest area/total land area) of 65%. The carbon emission per area burned (Mg C ha(-1)) clearly reflects the trend toward increases in the number of severe fires. Statistical analyses and the trends of annual temperature and precipitation show that the recent large increase in carbon emissions may be the negative consequences of intensive forest regrowth that is the product of successful reforestation and forest management programs rather than the effect of climate change. These results imply a need for further studies in other countries, where large-scale plantation has been conducted, to evaluate the role of plantation and forest fires on the global carbon cycle.

  11. Fire recurrence effects on aboveground plant and soil carbon stocks in Mediterranean shrublands with Aleppo pine

    NASA Astrophysics Data System (ADS)

    Herman, J.; den Ouden, J.; Mohren, G. M. J.; Retana, J.; Serrasolses, I.

    2009-04-01

    Changes in fire regime due to intensification of human influence during the last decades led to changes in vegetation structure and composition, productivity and carbon sink strength of Mediterranean shrublands and forests. It is anticipated that further climate warming and lower precipitation will enhance fire frequency, having consequences for the carbon budget and carbon storage in Mediterranean ecosystems. The purpose of this study was to determine whether fire recurrence modifies aboveground plant and soil carbon stocks, soil organic carbon content and total soil nitrogen content in shrublands with Aleppo pine on the Garraf Massif in Catalonia (Spain). Stands differing in fire frequency (1, 2 and 3 fires since 1957) were examined 13 years after the stand-replacing fire of 1994 and compared with control stands which were free of fire since 1957. Recurrent fires led to a decrease in total ecosystem carbon stocks. Control sites stored 12203 g m-2C which was 3.5, 5.0 and 5.5 times more than sites that burned 1, 2 and 3 times respectively. Carbon stored in the aboveground biomass exceeded soil carbon stocks in control plots, while soils were the dominant carbon pool in burned plots. An increasing fire frequency from 1 to 2 fires decreased total soil carbon stock. Control soils stored 3551 g m-2C, of which 70 % was recovered over 13 years in once burned soils and approximately 50 % in soils that had 2 or 3 fires. The soil litter (LF) layer carbon stock decreased with increasing fire frequency from 1 to 2 fires, whereas humus (H) layer and upper mineral soil carbon stocks did not change consistently with fire frequency. Fire decreased the organic carbon content in LF and H horizons, however no significant effect of fire frequency was found. Increasing fire frequency from 1 to 2 fires caused a decrease in the organic carbon content in the upper mineral soil. Total soil N content and C/N ratios were not significantly impacted by fire frequency. Recurrent fires had the

  12. Application of Eddy Current Techniques for Orbiter Reinforced Carbon-Carbon Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John

    2005-01-01

    The development and application of advanced nondestructive evaluation techniques for the Reinforced Carbon-Carbon (RCC) components of the Space Shuttle Orbiter Leading Edge Structural Subsystem (LESS) was identified as a crucial step toward returning the shuttle fleet to service. In order to help meet this requirement, eddy current techniques have been developed for application to RCC components. Eddy current technology has been found to be particularly useful for measuring the protective coating thickness over the reinforced carbon-carbon and for the identification of near surface cracking and voids in the RCC matrix. Testing has been performed on as manufactured and flown RCC components with both actual and fabricated defects representing impact and oxidation damage. Encouraging initial results have led to the development of two separate eddy current systems for in-situ RCC inspections in the orbiter processing facility. Each of these systems has undergone blind validation testing on a full scale leading edge panel, and recently transitioned to Kennedy Space Center to be applied as a part of a comprehensive RCC inspection strategy to be performed in the orbiter processing facility after each shuttle flight.

  13. In-Space Repair of Reinforced Carbon-Carbon Thermal Protection System Structures

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2006-01-01

    Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation system as well as for future Crew Exploration Vehicles (CEV). The damage to these components could be caused by impact during ground handling or due to falling of ice or other objects during launch. In addition, in-orbit damage includes micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during simulated entry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, integrated system for tile and leading edge repair (InSTALER) have been developed. In this presentation, critical in-space repair needs and technical challenges as well as various issues and complexities will be discussed along with the plasma performance and post test characterization of repaired RCC materials.

  14. Historical trends of forest fires and carbon emissions in China from 1988 to 2012

    NASA Astrophysics Data System (ADS)

    Zhang, Yujin; Qin, Dahe; Yuan, Wenping; Jia, Bingrui

    2016-09-01

    A larger amount of carbon is stored in forest ecosystems than in the entire atmosphere. Thus, relatively small changes in forest carbon stocks can significantly impact net carbon exchange between the biosphere and atmosphere. Changes in forest stocks can result from various disturbances, such as insect pests, windstorms, flooding, and especially forest fires. Globally, the impact of forest fires has been enhanced due to ongoing warming of the climate. The current study reported an evaluation of carbon emissions from historical forest fires in China during 1988-2012 with observational data collected from national agriculture statistics. Historical fire trends and fire-induced carbon emissions were described over space and time at both national and regional levels. The results indicated that no significant increases in fire occurrence and carbon emissions were observed during the study period at the national level. However, at the regional level, there was a significant increasing trend in fire occurrence, and drought severity was a major driver of fire activity. Most carbon emissions were from north and northeast China, and these emissions contributed significantly to total carbon emissions. The results also showed that annual fire-induced emissions ranged from 0.04 Tg C to 7.22 Tg C, with an average of 1.03 Tg C. Large interannual and spatial variabilities of carbon emissions were also indicated, and these were attributed to spatial and temporal variations in fire regimes. The results improve understanding of fire characteristics and provide significant information for reducing model-related uncertainty of fire-induced carbon emissions.

  15. Guided wave propagation in porous unidirectional carbon fiber reinforced plastic

    NASA Astrophysics Data System (ADS)

    Dobmann, Nicolas; Bach, Martin

    2017-02-01

    Networks of piezoelectric transducers mounted on aircraft structures for Acousto Ultrasonics (AU) purposes are designed to be applied during the service life of the aircraft. The approach to integrate these sensor networks already during the manufacture of carbon fiber reinforced plastic (CFRP) host structures prompts ideas to achieve an additional benefit by their application for cure monitoring, thus extending their use to the manufacturing chain. This benefit could be extended even further if guided waves generated by AU sensor networks could be used for porosity testing extensively applied for CFRP aircraft structures. In light of this, an experimental study was conducted to investigate effects of porosity on the propagation of guided waves in a basic configuration of unidirectional CFRP. Several samples were manufactured at different porosity levels by variation of the processing pressure. Wave fields were acquired using an ultrasonic scanning device. In the present work, phase velocities are chosen as best measurable and quantifiable propagation feature and the approach for the analysis of phase velocities in porosity samples is outlined. First results are presented and discussed regarding the influence of porosity on guided wave phase velocity and basic applicability for porosity testing of aircraft structures.

  16. Oxidation Behavior of Carbon Fiber Reinforced Silicon Carbide Composites

    NASA Technical Reports Server (NTRS)

    Valentin, Victor M.

    1995-01-01

    Carbon fiber reinforced Silicon Carbide (C-SiC) composites offer high strength at high temperatures and good oxidation resistance. However, these composites present some matrix microcracks which allow the path of oxygen to the fiber. The aim of this research was to study the effectiveness of a new Silicon Carbide (SiC) coating developed by DUPONT-LANXIDE to enhance the oxidation resistance of C-SiC composites. A thermogravimetric analysis was used to determine the oxidation rate of the samples at different temperatures and pressures. The Dupont coat proved to be a good protection for the SiC matrix at temperatures lower than 1240 C at low and high pressures. On the other hand, at temperatures above 1340 C the Dupont coat did not seem to give good protection to the composite fiber and matrix. Even though some results of the tests have been discussed, because of time restraints, only a small portion of the desired tests could be completed. Therefore, no major conclusions or results about the effectiveness of the coat are available at this time.

  17. Thermal diffusivity measurements on porous carbon fiber reinforced polymer tubes

    NASA Astrophysics Data System (ADS)

    Gruber, Jürgen; Gresslehner, Karl Heinz; Mayr, Günther; Hendorfer, Günther

    2017-02-01

    This work presents the application of methods for the determination of the thermal diffusivity well suited for flat bodies adapted to cylindrical bodies. Green's functions were used to get the temperature time history for small and large times, for the approach of intersecting these two straight lines. To verify the theoretical considerations noise free data are generated by finite element simulations. Furthermore effects of inhomogeneous excitation and the anisotropic heat conduction of carbon fiber reinforced polymers were taken into account in these numerical simulations. It could be shown that the intersection of the two straight lines is suitable for the determination of the thermal diffusivity, although the results have to be corrected depending on the ratio of the cylinders inner and outer radii. Inhomogeneous excitation affects the results of this approach as it lead to multidimensional heat flux. However, based on the numerical simulations a range of the azimuthal angle exists, where the thermal diffusivity is nearly independent of the angle. The method to determine the thermal diffusivity for curved geometries by the well suited Thermographic Signal Reconstruction method and taking into account deviations from the slab by a single correction factor has great advantages from an industrial point of view, just like an easy implementation into evaluation software and the Thermographic Signal Reconstruction methods rather short processing time.

  18. Wildfire and drought dynamics destabilize carbon stores of fire-suppressed forests.

    PubMed

    Earles, J Mason; North, Malcolm P; Hurteau, Matthew D

    2014-06-01

    Widespread fire suppression and thinning have altered the structure and composition of many forests in the western United States, making them more susceptible to the synergy of large-scale drought and fire events. We examine how these changes affect carbon storage and stability compared to historic fire-adapted conditions. We modeled carbon dynamics under possible drought and fire conditions over a 300-year simulation period in two mixed-conifer conditions common in the western United States: (1) pine-dominated with an active fire regime and (2) fir-dominated, fire suppressed forests. Fir-dominated stands, with higher live- and dead-wood density, had much lower carbon stability as drought and fire frequency increased compared to pine-dominated forest. Carbon instability resulted from species (i.e., fir's greater susceptibility to drought and fire) and stand (i.e., high density of smaller trees) conditions that develop in the absence of active management. Our modeling suggests restoring historic species composition and active fire regimes can significantly increase carbon stability in fire-suppressed, mixed-conifer forests. Long-term management of forest carbon should consider the relative resilience of stand structure and composition to possible increases in disturbance frequency and intensity under changing climate.

  19. Towards a global assessment of pyrogenic carbon from vegetation fires.

    PubMed

    Santín, Cristina; Doerr, Stefan H; Kane, Evan S; Masiello, Caroline A; Ohlson, Mikael; de la Rosa, Jose Maria; Preston, Caroline M; Dittmar, Thorsten

    2016-01-01

    The production of pyrogenic carbon (PyC; a continuum of organic carbon (C) ranging from partially charred biomass and charcoal to soot) is a widely acknowledged C sink, with the latest estimates indicating that ~50% of the PyC produced by vegetation fires potentially sequesters C over centuries. Nevertheless, the quantitative importance of PyC in the global C balance remains contentious, and therefore, PyC is rarely considered in global C cycle and climate studies. Here we examine the robustness of existing evidence and identify the main research gaps in the production, fluxes and fate of PyC from vegetation fires. Much of the previous work on PyC production has focused on selected components of total PyC generated in vegetation fires, likely leading to underestimates. We suggest that global PyC production could be in the range of 116-385 Tg C yr(-1) , that is ~0.2-0.6% of the annual terrestrial net primary production. According to our estimations, atmospheric emissions of soot/black C might be a smaller fraction of total PyC (<2%) than previously reported. Research on the fate of PyC in the environment has mainly focused on its degradation pathways, and its accumulation and resilience either in situ (surface soils) or in ultimate sinks (marine sediments). Off-site transport, transformation and PyC storage in intermediate pools are often overlooked, which could explain the fate of a substantial fraction of the PyC mobilized annually. We propose new research directions addressing gaps in the global PyC cycle to fully understand the importance of the products of burning in global C cycle dynamics.

  20. Hypervelocity impact tests on Space Shuttle Orbiter RCC thermal protection material. [Reinforced Carbon-Carbon laminate

    NASA Technical Reports Server (NTRS)

    Humes, D. H.

    1978-01-01

    It is noted that the Shuttle Orbiter will be more subject to meteoroid impact than previous spacecraft, due to its greater surface area and longer cumulative time in space. The Orbiter structural material, RCC, a reinforced carbon-carbon laminate with a diffused silicon carbide coating, is evaluated in terms of its resistance to hypervelocity impact. It was found that the specimens (disks with a mass of 34 g and a thickness of 5.0 mm) were cratered only on the front surface when the impact energy was 3 J or less. At 3 J, a trace of the black carbon interior was exposed. The specimens were completely penetrated when the energy was 34 J or greater.

  1. Short- and long-term effects of fire on carbon in US dry temperate forest systems

    USGS Publications Warehouse

    Hurteau, Matthew D.; Brooks, Matthew L.

    2011-01-01

    Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires, resulting in greater tree mortality, have caused a decrease in forest carbon stability. Fire management actions can mitigate the risk of high-severity fires, but these actions often require a trade-off between maximizing carbon stocks and carbon stability. We discuss the effects of fire on forest carbon stocks and recommend that managing forests on the basis of their specific ecologies should be the foremost goal, with carbon sequestration being an ancillary benefit. ?? 2011 by American Institute of Biological Sciences. All rights reserved.

  2. 46 CFR 167.45-1 - Steam, carbon dioxide, and halon fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Steam, carbon dioxide, and halon fire extinguishing....45-1 Steam, carbon dioxide, and halon fire extinguishing systems. (a) General requirements. (1... shall not be led into the cabins, other living spaces, or working spaces. Pipes for conveying...

  3. Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Jacobson, Nathan S.; Rauser, Richard W.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2010-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 C and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3mm. Single-sided NDE methods were used because they might be practical for on-wing inspection, while X-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally cracked coating and subsequent oxidation damage was also studied with X-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.

  4. Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon (RCC)

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, Richard W.; Jacobson, Nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.

  5. [Improving fiber adhesion by surface oxidation in carbon fiber reinforced bone cement].

    PubMed

    Hopf, T; Büttner, S; Brill, W

    1989-01-01

    The mechanical superiority of carbon fiber reinforced PMMA containing additional apatite was shown previously. For further improvement these carbon fibers were now submitted to a superficial oxidation treatment by HNO3. A closer contact between the carbon fibers and PMMA and even trabeculae-like adhesions were detected by Scanning Electron Microscopy. The fatigue strength of the carbon fiber reinforced bone cement could be increased at 17% by this oxidation treatment. This increase, however, is less than that observed in the case of other fiber reinforced composites. Most likely this is caused by the pronounced polymerisation contraction of PMMA. Further improvement of the adhesion of the fibers to cement may be achieved by different oxidation techniques, further extraction of foreign substances or graft polymerization of the carbon fibers by PMMA or other polymers.

  6. Effects of EB irradiation on stress-strain curves for carbon fiber reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Yamada, K.; Mizutani, A.; Uchida, N.; Tanaka, K.; Nishi, Yoshitake

    2004-02-01

    In order to evaluate influence of electron beam (EB) irradiation on elasticity and stress- strain curve of composite materials reinforced by carbon fiber (CF), carbon fiber reinforced polymer (CFRP) and carbon fiber reinforced graphite (C/C) were treated by EB irradiation of 0.3 MGy. Since the EB strengthening was mainly dominated by the ductility enhancements of carbon fiber and matrix of epoxy resin, EB irradiation enlarged fracture stress and enhanced fracture strain of CFRP. Furthermore, EB irradiation slightly enhanced bending elasticity of CFRP and largely enhanced the initial spring constant related to elasticity of C/C coil. Although the elasticity enhancement of carbon fibers did not largely contribute that of CFRP, that of treated graphite matrix in C/C mainly caused the C/C coil elasticity enhancement by EB irradiation. Such a new treatment is a dream-worthy technology for structural materials to be applied in the fields of future engineering.

  7. Simulation of Hypervelocity Impact Effects on Reinforced Carbon-Carbon. Chapter 6

    NASA Technical Reports Server (NTRS)

    Park, Young-Keun; Fahrenthold, Eric P.

    2004-01-01

    Spacecraft operating in low earth orbit face a significant orbital debris impact hazard. Of particular concern, in the case of the Space Shuttle, are impacts on critical components of the thermal protection system. Recent research has formulated a new material model of reinforced carbon-carbon, for use in the analysis of hypervelocity impact effects on the Space Shuttle wing leading edge. The material model has been validated in simulations of published impact experiments and applied to model orbital debris impacts at velocities beyond the range of current experimental methods. The results suggest that momentum scaling may be used to extrapolate the available experimental data base, in order to predict the size of wing leading edge perforations at impact velocities as high as 13 km/s.

  8. A method for determining structural properties of RCC thermal protection material. [Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Wakefield, R. M.; Fowler, K. R.

    1978-01-01

    A method was developed for evaluation and prediction of effects of oxidation of the graphitic substrate on structural properties of Reinforced Carbon-Carbon (RCC) thermal protection material. Test specimens of RCC material were exposed to successive periods of convective heating in a plasma-jet facility to simulate the chemical reactions of Shuttle atmospheric entry. After each period of testing, the test specimen mass loss and performance in a nondestructive flexure test were determined. A computational model of the RCC specimen was developed for the NASA Structural Analysis (NASTRAN) program and validated by comparison of calculated and experimental results of flexure tests. The elastic moduli and ultimate loads in tension and compression were then computed for various levels of substrate oxidation.

  9. Carbon fiber/copper mesh reinforced carbon composite for sliding contact material

    NASA Astrophysics Data System (ADS)

    Deng, Chaoyong; Zhang, Hongbo; Yin, Jian; Xiong, Xiang; Wang, Pei; Sun, Miao

    2017-02-01

    A novel carbon fiber/copper mesh knitted fabric reinforced carbon (Cf/Cu/C) composite was fabricated by a CVI-I/C technique. The mechanical, electrical, arc discharge and tribological properties of the Cf/Cu/C composite were compared with those of a traditional C/Cu composite fabricated by powder metallurgy. The results show that the copper mesh distributes uniformly in the Cf/Cu/C composite, and it exhibits higher mechanical property and more excellent electrical resistivity than those of the C/Cu composite. Meanwhile, the arc resistance property of Cf/Cu/C composite is also better than the C/Cu composite under the same testing conditions. The wear rate is about 80% of the C/Cu composite.

  10. Thermal modeling of carbon-epoxy laminates in fire environments.

    SciTech Connect

    McGurn, Matthew T. , Buffalo, NY); DesJardin, Paul Edward , Buffalo, NY); Dodd, Amanda B.

    2010-10-01

    A thermal model is developed for the response of carbon-epoxy composite laminates in fire environments. The model is based on a porous media description that includes the effects of gas transport within the laminate along with swelling. Model comparisons are conducted against the data from Quintere et al. Simulations are conducted for both coupon level and intermediate scale one-sided heating tests. Comparisons of the heat release rate (HRR) as well as the final products (mass fractions, volume percentages, porosity, etc.) are conducted. Overall, the agreement between available the data and model is excellent considering the simplified approximations to account for flame heat flux. A sensitivity study using a newly developed swelling model shows the importance of accounting for laminate expansion for the prediction of burnout. Excellent agreement is observed between the model and data of the final product composition that includes porosity, mass fractions and volume expansion ratio.

  11. Is fire a long term sink or source of atmospheric carbon? A comprehensive evaluation of a boreal forest fire

    NASA Astrophysics Data System (ADS)

    Santin, C.; Doerr, S. H.; Preston, C.; Bryant, R.

    2012-12-01

    Fires lead to a rapid release of carbon (C) from forest and other fire-prone ecosystems, emitting important quantities of C to the atmosphere. Every year 300-600 Mill. ha burn around the globe, generating CO2 emissions equivalent to half of the current annual global from fossil fuel combustion. Over the longer-term vegetation fires are widely considered as 'net zero Carbon (C) emission events', because C emissions from fires, excluding those associated with deforestation, are balanced by C uptake by regenerating vegetation. This 'zero C emission' scenario, however, may be flawed, as it does not consider the role of pyrogenic C (PyC). During fire, some of the fuel is transformed into PyC (i.e. charcoal, black C, soot), which is characterized by an enhanced recalcitrance and a longer mean residence time in the environment than its 'fresh' precursors. Therefore, after complete regeneration of the vegetation, the PyC generated represents an additional longer-term C pool and, hence, recurring fire-regrowth cycles could be considered as a 'net sink of atmospheric C'. To test the validity of this hypothesis, and to estimate how quantitatively important this PyC pool might be, accurate data on PyC production with respect to the fuel combusted are needed. Unfortunately, detailed quantification of fuel prior to fire is normally only available for prescribed and experimental fires, which are usually of low-intensity and therefore not representative of higher-intensity wildfires. Furthermore, what little data is available is usually based on only a specific fraction of the PyC present following burning rather than the whole range of PyC products and stores (i.e. PyC in soil, ash, downed wood and standing vegetation). The FireSmart project (Ft. Providence, NWT, Canada, June 2012) provided the ideal framework to address this research gap. This experimental fire reproduced wildfire conditions in boreal forest, i.e. stand-replacing crown fire and, at the same time, allowed i) pre-fire

  12. Century-scale patterns and trends of global pyrogenic carbon emissions and fire influences on terrestrial carbon balance

    NASA Astrophysics Data System (ADS)

    Yang, Jia; Tian, Hanqin; Tao, Bo; Ren, Wei; Lu, Chaoqun; Pan, Shufen; Wang, Yuhang; Liu, Yongqiang

    2015-09-01

    Fires have consumed a large amount of terrestrial organic carbon and significantly influenced terrestrial ecosystems and the physical climate system over the past century. Although biomass burning has been widely investigated at a global level in recent decades via satellite observations, less work has been conducted to examine the century-scale changes in global fire regimes and fire influences on the terrestrial carbon balance. In this study, we investigated global pyrogenic carbon emissions and fire influences on the terrestrial carbon fluxes from 1901 to 2010 by using a process-based land ecosystem model. Our results show a significant declining trend in global pyrogenic carbon emissions between the early 20th century and the mid-1980s but a significant upward trend between the mid-1980s and the 2000s as a result of more frequent fires in ecosystems with high carbon storage, such as peatlands and tropical forests. Over the past 110 years, average pyrogenic carbon emissions were estimated to be 2.43 Pg C yr-1 (1 Pg = 1015 g), and global average combustion rate (defined as carbon emissions per unit area burned) was 537.85 g C m-2 burned area. Due to the impacts of fires, the net primary productivity and carbon sink of global terrestrial ecosystems were reduced by 4.14 Pg C yr-1 and 0.57 Pg C yr-1, respectively. Our study suggests that special attention should be paid to fire activities in the peatlands and tropical forests in the future. Practical management strategies, such as minimizing forest logging and reducing the rate of cropland expansion in the humid regions, are in need to reduce fire risk and mitigate fire-induced greenhouse gases emissions.

  13. Towards a global assessment of pyrogenic carbon from vegetation fires

    NASA Astrophysics Data System (ADS)

    Dittmar, Thorsten; Santín, Cristina; Doerr, Stefan; Kane, Evan; Masiello, Caroline; Ohlson, Mikael; De La Rosa, Jose Maria; Preston, Caroline

    2016-04-01

    The production of pyrogenic carbon (PyC; a continuum of organic carbon (C) ranging from partially charred biomass and charcoal to soot) is a widely acknowledged C sink, with the latest estimates indicating that ~50% of the PyC produced by vegetation fires potentially sequesters C over centuries. Nevertheless, the quantitative importance of PyC in the global C balance remains contentious, and therefore, PyC is rarely considered in global C cycle and climate studies. Here we examine the robustness of existing evidence and identify the main research gaps in the production, fluxes and fate of PyC from vegetation fires. Much of the previous work on PyC production has focused on selected components of total PyC generated in vegetation fires, likely leading to underestimates. We suggest that global PyC production could be in the range of 116-385 Tg C per year, that is ~0.2-0.6% of the annual terrestrial net primary production. According to our estimations, atmospheric emissions of soot/black C might be a smaller fraction of total PyC (<2%) than previously reported. Research on the fate of PyC in the environment has mainly focused on its degradation pathways, and its accumulation and resilience either in situ (surface soils) or in ultimate sinks (marine sediments). Off-site transport, transformation and PyC storage in intermediate pools are often overlooked, which could explain the fate of a substantial fraction of the PyC mobilized annually. Rivers carry about 25-28 Tg dissolved PyC per year into the ocean where it accumulates in dissolved form over ten-thousands of year to one of the largest PyC pool on Earth. The riverine flux of suspended (particulate) PyC is largely unconstrained to date. We propose new research directions addressing gaps in the global PyC cycle to fully understand the importance of the products of burning in global C cycle dynamics. This presentation is based largely on a recent review by the same group of authors (Santín et al., 2016, Global Change

  14. Dependence of the degree of reinforcement of polymer/carbon nanotubes nanocomposites on the nanofiller dimension

    NASA Astrophysics Data System (ADS)

    Mikitaev, A. K.; Kozlov, G. V.

    2015-05-01

    The dependence of the degree of reinforcement of polymethylmethacrylate/carbon nanotubes on the nanofiller content at ultrasmall concentrations of the latter is investigated. It is shown that the extreme character of this dependence is determined by the structural features of the nanofiller. Functionalization of carbon nanotubes gives a positive effect only below their percolation threshold.

  15. Preparation and properties of in-situ growth of carbon nanotubes reinforced hydroxyapatite coating for carbon/carbon composites.

    PubMed

    Liu, Shoujie; Li, Hejun; Su, Yangyang; Guo, Qian; Zhang, Leilei

    2017-01-01

    Carbon nanotubes (CNTs) possess excellent mechanical properties for their role playing in reinforcement as imparting strength to brittle hydroxyapatite (HA) bioceramic coating. However, there are few reports relating to the in-situ grown carbon nanotubes reinforced hydroxyapatite (CNTs-HA) coating. Here we demonstrate the potential application in reinforcing biomaterials by an attempt to use in-situ grown of CNTs strengthen HA coating, using a combined method composited of injection chemical vapor deposition (ICVD) and pulsed electrodeposition. The microstructure, phases and chemical compositions of CNTs-HA coatings were characterized by various advanced methods. The scanning electron microscopy (SEM) images indicated that CNTs-HA coatings avoided the inhomogeneous dispersion of CNTs inside HA coating. The result show that the interfacial shear strength between CNTs-HA coating and the C/C composite matrix reaches to 12.86±1.43MPa. Potenitodynamic polarization and electrochemical impedance spectroscopy (EIS) studies show that the content of CNTs affects the corrosion resistance of CNTs-HA coating. Cell culturing and simulated body fluid test elicit the biocompatibility with living cells and bioactivity of CNTs-HA coatings, respectively.

  16. Strain-rate dependence of the compressive properties of normal and carbon-fiber-reinforced bone cement.

    PubMed

    Saha, S; Pal, S

    1983-11-01

    Normal and carbon-fiber-reinforced (1 wt. %) bone cement samples were tested in compression at various strain rates. Both the compressive strength and proportional limit increased in general with increasing strain rate. Similar strain-rate sensitivity was also shown by the carbon-fiber-reinforced bone cement. The mechanical properties, namely the modulus of elasticity, the proportional limit, and the compressive strength of the carbon-fiber-reinforced bone cement showed highly significant positive correlations with the strain rate.

  17. Fire!

    ERIC Educational Resources Information Center

    Jones, Rebecca

    1996-01-01

    The number of school fires is up nationwide. This article describes unsafe school conditions, problems with new fire codes, and the factors that contribute to school fires. Installation of sprinkler systems is recommended. A fire-safety checklist is included. (LMI)

  18. Fire Impact on Carbon Emissions on Logged and Unlogged Scots pine Forest Sites in Siberia

    NASA Astrophysics Data System (ADS)

    Ivanova, G.; Kukavskaya, E.; Buryak, L.; Kalenskaya, O.; Bogorodskaya, A.; Conard, S. G.

    2012-12-01

    Fires cover millions ha of boreal forests of Russia annually, mostly in Siberia. Wildfire and forest harvesting are the major disturbances in Siberia's boreal zone. Logged areas appear to be highly susceptible to fire due to a combination of high fuel loads and accessibility for human-caused ignition. Fire spreading from logging sites to surrounding forest is a common situation in this region. Changing patterns of timber harvesting increase landscape complexity and can be expected to increase the emissions and ecosystem damage from wildfires, inhibit recovery of natural ecosystems, and exacerbate impacts of wildfire on changing climate and on air quality. Fire effects on pine stands and biomass of surface vegetation were estimated on logged and unlogged sites in the Central Siberia region as a part of the project "The Influence of Changing Forestry Practices on the Effects of Wildfire and on Interactions Between Fire and Changing Climate in Central Siberia" supported by NASA (NEESPI). Fires occurring on logged areas were typically of higher severity than those in unlogged forests, but the specific effects of fire and logging varied widely among forest types and as a result of weather patterns during and prior to the fire. Consumption of surface and ground fuels in spring fires was 25% to 50% of that in summer fires. Estimated carbon emissions due to fire were 2-5 times higher on logged areas compared to undisturbed sites. Post-fire soil respiration decreases found for both site types partially offset carbon losses. Carbon emissions from fire and post-fire ecosystem damage on logged sites are expected to increase under changing climate conditions in Siberia.

  19. Fire reinforces structure of pondcypress (Taxodium distichum var. imbricarium) domes in a wetland landscape

    USGS Publications Warehouse

    Watts, Adam C.; Kobziar, Leda N.; Snyder, James R.

    2012-01-01

    Fire periodically affects wetland forests, particularly in landscapes with extensive fire-prone uplands. Rare occurrence and difficulty of access have limited efforts to understand impacts of wildfires fires in wetlands. Following a 2009 wildfire, we measured tree mortality and structural changes in wetland forest patches. Centers of these circular landscape features experienced lower fire severity, although no continuous patch-size or edge effect was evident. Initial survival of the dominant tree, pondcypress (Taxodium distichum var. imbricarium), was high (>99%), but within one year of the fire approximately 23% of trees died. Delayed mortality was correlated with fire severity, but unrelated to other hypothesized factors such as patch size or edge distance. Tree diameter and soil elevation were important predictors of mortality, with smaller trees and those in areas with lower elevation more likely to die following severe fire. Depressional cypress forests typically exhibit increasing tree size towards their interiors, and differential mortality patterns were related to edge distance. These patterns result in the exaggeration of a dome-shaped profile. Our observations quantify roles of fire and hydrology in determining cypress mortality in these swamps, and imply the existence of feedbacks that maintain the characteristic shape of cypress domes.

  20. Light weight fire resistant graphite composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hsu, M. T. S.

    1986-01-01

    Composite structures with a honeycomb core and characterized by lightweight and excellent fire resistance are provided. These sandwich structures employ facesheets made up of bismaleimide-vinyl styrylpyridine copolymers with fiber reinforcement such as carbon fiber reinforcement. In preferred embodiments the facesheets are over layered with a decorative film. The properties of these composites make them attractive materials of construction aircraft and spacecraft.

  1. Carbon and black carbon in Yosemite National Park soils: sources, prescribed fire impacts, and policies

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Traina, S. J.

    2012-12-01

    We investigated the chemical and radiocarbon properties of black carbon recently deposited and accumulated in surface soils of six sites along an altitudinal gradient in Yosemite National Park, central California. The effect of prescribed (or controlled) forest burning on existing carbon and black carbon in surface soils was assessed to illuminate the role of this forest management and wildfire control strategy in the soil carbon cycle. The proportional contribution of fossil fuel or radiocarbon dead carbon versus biomass sources on these black carbon materials was analyzed to elucidate their origin, estimate their ages and explore the possible effects of prescribed burning on the amount of black carbon produced recently as well as historically. Supplementing these field results, we conducted a comparative spatial analysis of recent prescribed burn and wildfire coverage in Central California's San Joaquin Valley to approximate the effectiveness of prescribed burning for wildfire prevention. Federal and California policies pertaining to prescribed forest fires and/or black carbon were then evaluated for their effectiveness, air quality considerations, and environmental benefits. 13C NMR spectrum of soil surface char from study sites Prescribed burn coverage versus wildfires in central California

  2. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE - Part 2: Carbon emissions and the role of fires in the global carbon balance

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Cadule, P.; Thonicke, K.; van Leeuwen, T. T.

    2014-12-01

    Carbon dioxide emissions from wild and anthropogenic fires return the carbon absorbed by plants to the atmosphere, and decrease the sequestration of carbon by land ecosystems. Future climate warming will likely increase the frequency of fire-triggering drought; so that the future terrestrial carbon uptake will depend on how fires respond to altered climate variation. In this study, we modelled the role of fires in the global terrestrial carbon balance for 1901-2012, using the global vegetation model ORCHIDEE equipped with the SPITFIRE model. We conducted two simulations with and without the fire module being activated, with a static land cover. The simulated global fire carbon emissions for 1997-2009 are 2.1 Pg C yr-1, which is close to the 2.0 Pg C yr-1 as given by the GFED3.1 data. The simulated land carbon uptake after accounting for emissions for 2003-2012 is 3.1Pg C yr-1, within the uncertainty of the residual carbon sink estimation (2.8 ± 0.8 Pg C yr-1). Fires are found to reduce the terrestrial carbon uptake by 0.32 Pg C yr-1 over 1901-2012, that is 20% of the total carbon sink in a world without fire. The fire-induced land sink reduction (SRfire) is significantly correlated with climate variability, with larger sink reduction occurring in warm and dry years, in particular during El Niño events. Our results suggest a symmetrical "respiration equivalence" by fires. During the ten lowest SRfire years (SRfire = 0.17 Pg C yr-1), fires mainly compensate the heterotrophic respiration that would happen if no fires had occurred. By contrast, during the ten highest SRfire fire years (SRfire = 0.49 Pg C yr-1), fire emissions exceed their "respiration equivalence" and create a substantial reduction in terrestrial carbon uptake. Our finding has important implication for the future role of fires in the terrestrial carbon balance, because the capacity of terrestrial ecosystems to sequester carbon will be diminished by future climate change characterized by increased

  3. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE - Part 2: Carbon emissions and the role of fires in the global carbon balance

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Cadule, P.; Thonicke, K.; van Leeuwen, T. T.

    2015-05-01

    Carbon dioxide emissions from wild and anthropogenic fires return the carbon absorbed by plants to the atmosphere, and decrease the sequestration of carbon by land ecosystems. Future climate warming will likely increase the frequency of fire-triggering drought, so that the future terrestrial carbon uptake will depend on how fires respond to altered climate variation. In this study, we modelled the role of fires in the global terrestrial carbon balance for 1901-2012, using the ORCHIDEE global vegetation model equipped with the SPITFIRE model. We conducted two simulations with and without the fire module being activated, using a static land cover. The simulated global fire carbon emissions for 1997-2009 are 2.1 Pg C yr-1, which is close to the 2.0 Pg C yr-1 as estimated by GFED3.1. The simulated land carbon uptake after accounting for emissions for 2003-2012 is 3.1 Pg C yr-1, which is within the uncertainty of the residual carbon sink estimation (2.8 ± 0.8 Pg C yr-1). Fires are found to reduce the terrestrial carbon uptake by 0.32 Pg C yr-1 over 1901-2012, or 20% of the total carbon sink in a world without fire. The fire-induced land sink reduction (SRfire) is significantly correlated with climate variability, with larger sink reduction occurring in warm and dry years, in particular during El Niño events. Our results suggest a "fire respiration partial compensation". During the 10 lowest SRfire years (SRfire = 0.17 Pg C yr-1), fires mainly compensate for the heterotrophic respiration that would occur in a world without fire. By contrast, during the 10 highest SRfire fire years (SRfire = 0.49 Pg C yr-1), fire emissions far exceed their respiration partial compensation and create a larger reduction in terrestrial carbon uptake. Our findings have important implications for the future role of fires in the terrestrial carbon balance, because the capacity of terrestrial ecosystems to sequester carbon will be diminished by future climate change characterized by increased

  4. Fire Response of Geopolymer Structural Composites.

    DTIC Science & Technology

    1996-01-01

    The fire response of a potassium aluminosilicate matrix ( geopolymer ) carbon fiber composite was measured and the results compared to organic matrix...laminates ignited readily and released appreciable heat and smoke, while carbon-fiber reinforced geopolymer composites did not ignite, burn, or release...any smoke even after extended heat flux exposure. The geopolymer matrix carbon fiber composite retains sixty-three percent of its original 245 MPa flexural strength after a simulated large fire exposure. (MM)

  5. Pull-out simulations of a capped carbon nanotube in carbon nanotube-reinforced nanocomposites

    SciTech Connect

    Li, Y.; Liu, S.; Hu, N.; Ning, H.; Wu, L.; Alamusi; Han, X.; Zhou, L.; Yamamoto, G.; Hashida, T.; Chang, C.; Atobe, S.; Fukunaga, H.

    2013-04-14

    Systematic atomic simulations based on molecular mechanics were conducted to investigate the pull-out behavior of a capped carbon nanotube (CNT) in CNT-reinforced nanocomposites. Two common cases were studied: the pull-out of a complete CNT from a polymer matrix in a CNT/polymer nanocomposite and the pull-out of the broken outer walls of a CNT from the intact inner walls (i.e., the sword-in-sheath mode) in a CNT/alumina nanocomposite. By analyzing the obtained relationship between the energy increment (i.e., the difference in the potential energy between two consecutive pull-out steps) and the pull-out displacement, a set of simple empirical formulas based on the nanotube diameter was developed to predict the corresponding pull-out force. The predictions from these formulas are quite consistent with the experimental results. Moreover, the much higher pull-out force for a capped CNT than that of the corresponding open-ended CNT implies a significant contribution from the CNT cap to the interfacial properties of the CNT-reinforced nanocomposites. This finding provides a valuable insight for designing nanocomposites with desirable mechanical properties.

  6. Selective Carbon Fiber Reinforced Nylon 66 Spur Gears: Development and Performance

    NASA Astrophysics Data System (ADS)

    Senthilvelan, S.; Gnanamoorthy, R.

    2006-01-01

    A new design methodology is developed to mold the polymer spur gears with high strength fiber reinforcement only in the highly stressed region. High performance high cost short carbon fiber reinforced Nylon 66 is used in the highly stressed tooth region and low cost unreinforced Nylon 66 is used in the hub region. Two different geometries, circular and spline shaped hubs were used for developing the selective reinforced gears by multi-shot injection-molding process. Joint strength of the selectively reinforced gear was estimated using shear tests. Clear hub and tooth region separation without any distortion was observed in joint shear tests. A molten material due to fusion bonding was observed at the interfaces. The joint strength was also evaluated by conducting gear fatigue tests using a power absorption test rig at various torque levels and at a constant gear rotational speed. Monolithic reinforced gear and selective reinforced gears with spline hub exhibited similar fatigue behavior. The failure mode depends upon the test torque level. The selective reinforced gears with circular hub showed joint failures at high-test torque levels. Absence of mechanical interlocking feature in the circular hub geometry contributes to the joint failure. Thermal bond, part interference and mechanical interlocking feature provide sufficient joint strength to the selective reinforced gear with spline hub.

  7. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.

    2015-08-01

    We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p < 0.003) was stronger than links between SSTs and either cyclones or fires alone, suggesting that fires and tropical cyclones were directly coupled to the same underlying atmospheric dynamics governing tropical moisture redistribution. These relationships help explain why seasonal outlook forecasts for hurricanes and Amazon fires both failed in 2013 and may enable the design of improved early warning systems for drought and fire in Amazon forests.

  8. Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout.

    PubMed

    Mirzaei, Mostafa; Kiani, Yaser

    2016-01-01

    During the past five years, it has been shown that carbon nanotubes act as an exceptional reinforcement for composites. For this reason, a large number of investigations have been devoted to analysis of fundamental, structural behavior of solid structures made of carbon-nanotube-reinforced composites (CNTRC). The present research, as an extension of the available works on the vibration analysis of CNTRC structures, examines the free vibration characteristics of plates containing a cutout that are reinforced with uniform or nonuniform distribution of carbon nanotubes. The first-order shear deformation plate theory is used to estimate the kinematics of the plate. The solution method is based on the Ritz method with Chebyshev basis polynomials. Such a solution method is suitable for arbitrary in-plane and out-of-plane boundary conditions of the plate. It is shown that through a functionally graded distribution of carbon nanotubes across the thickness of the plate, the fundamental frequency of a rectangular plate with or without a cutout may be enhanced. Furthermore, the frequencies are highly dependent on the volume fraction of carbon nanotubes and may be increased upon using more carbon nanotubes as reinforcement.

  9. Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout

    PubMed Central

    Mirzaei, Mostafa

    2016-01-01

    Summary During the past five years, it has been shown that carbon nanotubes act as an exceptional reinforcement for composites. For this reason, a large number of investigations have been devoted to analysis of fundamental, structural behavior of solid structures made of carbon-nanotube-reinforced composites (CNTRC). The present research, as an extension of the available works on the vibration analysis of CNTRC structures, examines the free vibration characteristics of plates containing a cutout that are reinforced with uniform or nonuniform distribution of carbon nanotubes. The first-order shear deformation plate theory is used to estimate the kinematics of the plate. The solution method is based on the Ritz method with Chebyshev basis polynomials. Such a solution method is suitable for arbitrary in-plane and out-of-plane boundary conditions of the plate. It is shown that through a functionally graded distribution of carbon nanotubes across the thickness of the plate, the fundamental frequency of a rectangular plate with or without a cutout may be enhanced. Furthermore, the frequencies are highly dependent on the volume fraction of carbon nanotubes and may be increased upon using more carbon nanotubes as reinforcement. PMID:27335742

  10. Carbon Nanotube Reinforced Polymers for Radiation Shielding Applications

    NASA Technical Reports Server (NTRS)

    Thibeault, S. (Technical Monitor); Vaidyanathan, Ranji

    2004-01-01

    This viewgraph presentation provides information on the use of Extrusion Freeform Fabrication (EEF) for the fabrication of carbon nanotubes. The presentation addresses TGA analysis, Raman spectroscopy, radiation tests, and mechanical properties of the carbon nanotubes.

  11. Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates

    PubMed Central

    Surawski, N. C.; Sullivan, A. L.; Roxburgh, S. H.; Meyer, C.P. Mick; Polglase, P. J.

    2016-01-01

    Vegetation fires are a complex phenomenon in the Earth system with many global impacts, including influences on global climate. Estimating carbon emissions from vegetation fires relies on a carbon mass balance technique that has evolved with two different interpretations. Databases of global vegetation fire emissions use an approach based on ‘consumed biomass', which is an approximation to the biogeochemically correct ‘burnt carbon' approach. Here we show that applying the ‘consumed biomass' approach to global emissions from vegetation fires leads to annual overestimates of carbon emitted to the atmosphere by 4.0% or 100 Tg compared with the ‘burnt carbon' approach. The required correction is significant and represents ∼9% of the net global forest carbon sink estimated annually. Vegetation fire emission studies should use the ‘burnt carbon' approach to quantify and understand the role of this burnt carbon, which is not emitted to the atmosphere, as a sink enriched in carbon. PMID:27146785

  12. Climatic Variability, Fire Regimes and Carbon Dynamics in Dry Forest Ecosystems of the Western US

    NASA Astrophysics Data System (ADS)

    Hessl, A. E.; McKenzie, D.

    2003-12-01

    Historical variability of fire regimes in the western Americas is associated with climatic phenomena such as ENSO. We describe the relationship between fire occurrence and interannual to decadal climatic variability (Palmer Drought Severity Index [PDSI], El Niño/Southern Oscillation [ENSO] and the Pacific Decadal Oscillation [PDO]) and explain how land use changes in the 20th century affected these relationships. Ongoing research uses these past changes to understand the influence of fire regimes on the regional carbon balance. We used 1701 fire-scarred trees collected in five study sites in central and eastern Washington to investigate current year, lagged, and low frequency relationships between composite fire histories and PDSI, PDO, and ENSO (using the Southern Oscillation Index [SOI] as a measure of ENSO variability) using superposed epoch analysis and cross-spectral analysis. Fires tended to occur during dry summers and during the positive phase of the PDO. Cross-spectral analysis indicates that percentage of trees scarred by fire and the PDO are spectrally coherent at 47 years, the approximate cycle of the PDO. Similarly, percentage scarred and ENSO are spectrally coherent at 6 years, the approximate cycle of ENSO. However other results suggest that ENSO was only a weak driver of fire occurrence in the past three centuries. While drought and fire appear to be tightly linked between 1700-1900, the relationship between drought and fire occurrence was disrupted during the 20th century as a result of land use changes. We suggest that long-term fire planning using the PDO may be possible in the PNW, potentially allowing decadal-scale management of fire regimes, prescribed fire and potentially, carbon emissions. Future work will quantify the changes in carbon emissions associated with a return to natural fire regimes and compares them with estimates of carbon emissions associated with current management. To model past, present and future emissions from fire in

  13. High-frequency components made of carbon-fiber reinforced plastics for satellite payloads

    NASA Astrophysics Data System (ADS)

    Saulich, G.

    1981-06-01

    The design and the material characteristics of carbon-fiber reinforced plastics (CFRP) are discussed, taking into account characteristic data for various types of fibers and details of material construction. Waveguide filters made of carbon-fiber reinforced plastics are considered. These filters are used in satellite transponders in connection with the high resonator quality required. Attention is given to tubes and plates of CFRF, aspects of metallization, and adhesive bonding. Reflector antennas of CFRP are discussed, taking into account the design of CFRP reflectors, the reflection characteristics of CFRP reflectors, CFRP laminate characteristics, reflector coatings, and selection criteria for the design of CFRP reflectors.

  14. Research on the melt impregnation of continuous carbon fiber reinforced nylon 66 composites

    NASA Astrophysics Data System (ADS)

    Jia, M. Y.; Li, C. X.; Xue, P.; Chen, K.; Chen, T. H.

    2016-07-01

    Impregnation mold of continuous carbon fiber reinforced thermoplastic composites was designed and built in the article. Based on the theory of fluid mechanics and Darcy's law, a model of the melt impregnation was also established. The influences of fiber bundle width and impregnation pins’ diameter on the impregnation degree were studied by numerical simulation. Continuous carbon fiber reinforced nylon 66 composites were prepared. The effects of coated angle and impregnation mold temperature on the mechanical properties of the composites were also described.The agreement between the experimental data and prediction by the model was found to be satisfactory.

  15. Thermal performance of alumina filler reinforced intumescent fire retardant coating for structural application

    NASA Astrophysics Data System (ADS)

    Ahmad, Faiz; Ullah, Sami; Farhana Mohammad, Wan; Farth Shariff, M.

    2014-06-01

    In the modern construction, fire safety has significant consideration for the protection of people and assets. Several intumescent fire protection systems are in practice and have constrain of releasing toxic gases on degradation forms an insulating char layer protecting underlying substrate. An intumescent coating expands many times of its thickness on exposure to fire and protect the underlying substrate from fire. This study presents the results of thermal performance of an intumescent fire retardant coating (IFRC) developed for structural application. IFRC was developed using expandable graphite (EG), ammonium poly phosphate (APP) and melamine (MEL), epoxy resin Bisphenol-A (BPA) and hardener triethylenetetramine (TETA) were used as a binder as a curing agent. Char expansion of IFRC was measured by furnace fire test at 450°C, thermal performance was measured using a Bunsen burner at 950°C and temperature of substrate was recorded for 60 min at an interval of two min. Results showed that IFRC containing 3wt% alumina showed char expansion X19. After one hour exposure of coating to heat, substrate temperature recorded was 154°C. X-ray Diffraction (XRD) results showed the presence of high temperature compounds present in the char of coating, considered responsible to reduce the penetration of heat to the substrate.

  16. Risk and Protective Factors for Fires, Burns, and Carbon Monoxide Poisoning in U.S. Households

    PubMed Central

    Runyan, Carol W.; Johnson, Renee M.; Yang, Jingzhen; Waller, Anna E.; Perkis, David; Marshall, Stephen W.; Coyne-Beasley, Tamera; McGee, Kara S.

    2011-01-01

    Background More needs to be known about the prevalence of risk and protective factors for fires, burns, and carbon monoxide poisoning in U.S. households. Methods A random-digit-dial survey was conducted about home safety with 1003 respondents representing households in the continental United States. Descriptive statistics assess the prevalence of risk and protective factors for fires, burns, and carbon monoxide overall, and by demographic characteristics, household structure, region, and residential tenure. The data were weighted to adjust for nonresponse and to reflect the U.S. population. Results Although most respondents reported having a smoke alarm (97%), and 80% reported having one on each level of their home, <20% reported checking the alarm at least every 3 months. Seventy-one percent reported having a fire extinguisher, 29% had a carbon monoxide detector, and 51% of those living with at least one other person had a fire escape plan. Few could report the temperature of their hot water at the tap (9%), or the setting on the hot water heater (25%). Only 6% had an antiscald device. Conclusions Results suggest that there is much room for improvement regarding adoption of measures to prevent fires, burns, and carbon monoxide poisoning. Further investigations of the efficacy of carbon monoxide detectors, fire extinguishers, and escape plans, as well as effectiveness studies of fire and burn-prevention efforts are needed. PMID:15626564

  17. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    SciTech Connect

    Xiong, Yongliang; Wang, Yifeng

    2016-04-19

    A method of removing a target gas from a gas stream is disclosed. The method uses advanced, fire-resistant activated carbon compositions having vastly improved fire resistance. Methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard.

  18. An In Vitro Comparative Evaluation of Fracture Resistance of Custom Made, Metal, Glass Fiber Reinforced and Carbon Reinforced Posts in Endodontically Treated Teeth

    PubMed Central

    Sonkesriya, Subhash; Olekar, Santosh T; Saravanan, V; Somasunderam, P; Chauhan, Rashmi Singh; Chaurasia, Vishwajit Rampratap

    2015-01-01

    Background: Posts are used to enhance crown buildup in pulpless teeth with destructed crown portion. Different types of post are used in endodontically treated teeth. The aim of the present in vitro study was to evaluate fracture resistance of custom made, metal, glass fiber reinforced and carbon reinforced posts in endodontically treated teeth. Materials and Methods: An in vitro study was carried out on extracted 40 human maxillary central incisor teeth, which was divided into four groups with 10 samples in each group with custom made, metal post, glass fiber reinforced, and carbon reinforced posts. The samples were decoronated at cemento-enamel junction and endodontically treated. Post space was prepared and selected posts were cemented. The composite cores were prepared at the height of 5 mm and samples mounted on acrylic blocks. Later fracture resistance to the compressive force of samples was measured using Universal Testing Machine. Results: The maximum resistance to the compressive force was observed in carbon reinforced and glass fiber reinforced posts compared others which is statistically significant (P > 0.001) and least was seen in custom fabricated post. Conclusion: It is concluded that carbon reinforced fiber post and glass fiber posts showed good fracture resistance compared to custom made and metal posts. PMID:26028904

  19. FIRE

    Atmospheric Science Data Center

    2017-03-16

    Projects:  FIRE Definition/Description:  The F irst I SCCP R egional E xperiments (FIRE) have been designed to improve data products and cloud/radiation ... circulation models (GCMs). Specifically, the goals of FIRE are (1) to improve basic understanding of the interaction of physical ...

  20. Damage Detection in Composite Interfaces through Carbon Nanotube Reinforcement

    DTIC Science & Technology

    2010-02-12

    NANOTUBE REINFORCEMENT by Mollie A. Bily, Young W. Kwon, and Randall D. Pollak 12 February 2010 Approved for public release; distribution is... Young W. Kwon Randall D. Pollak Professor Lt Col, United States Air Force Department of Mechanical and Department of Mechanical and...5a. CONTRACT NUMBER F1ATA09134G002 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mollie A. Bily, Young W. Kwon and

  1. Standard Operating Procedure - Manufacture of Carbon Fibre Reinforced Plastic Waveguides and Slotted Waveguide Antennas, Version 1.0

    DTIC Science & Technology

    2011-06-01

    aerospace grade carbon fibre reinforced plastic ( CFRP ) prepreg. RELEASE LIMITATION Approved for public release UNCLASSIFIED Report...arrays manufactured from aerospace grade carbon fibre reinforced plastic ( CFRP ) prepreg. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION... CFRP ) prepreg tape and fabric. This report details Version 1.0 of a Standard Operating Procedure for this manufacture. UNCLASSIFIED

  2. Thermochemical Degradation Mechanisms for the Reinforced Carbon/Carbon Panels on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Rapp, Robert A.

    1995-01-01

    The wing leading edge and nose cone of the Space Shuttle are fabricated from a reinforced carbon/carbon material (RCC). The material attains its oxidation resistance from a diffusion coating of SiC and a glass sealant. During re-entry, the RCC material is subjected to an oxidizing high temperature environment, which leads to degradation via several mechanisms. These mechanisms include oxidation to form a silica scale, reaction of the SiO2 with the SiC to evolve gaseous products, viscous flow of the glass, and vaporization of the glass. Each of these is discussed in detail. Following extended service and many missions, the leading-edge wing surfaces have exhibited small pinholes. A chloridation/oxidation mechanism is proposed to arise from the NaCl deposited on the wings from the sea-salt laden air in Florida. This involves a local chloridation reaction of the SiC and subsequent re-oxidation at the external surface. Thermodynamic calculations indicate the feasibility of these reactions at active pits. Kinetic calculations predict pore depths close to those observed.

  3. Infrared On-Orbit Inspection of Shuttle Orbiter Reinforced Carbon-Carbon Using Solar Heating

    NASA Technical Reports Server (NTRS)

    Howell, P. A.; Winfree, W. P.; Cramer, K. Elliott

    2005-01-01

    Thermographic nondestructive inspection techniques have been shown to provide quantitative, large area damage detection capabilities for the ground inspection of the reinforced carbon-carbon (RCC) used for the wing leading edge of the Shuttle orbiter. The method is non-contacting and able to inspect large areas in a relatively short inspection time. Thermal nondestructive evaluation (NDE) inspections have been shown to be applicable for several applications to the Shuttle in preparation for return to flight, including for inspection of RCC panels during impact testing, and for between-flight orbiter inspections. The focus of this work is to expand the capabilities of the thermal NDE methodology to enable inspection by an astronaut during orbital conditions. The significant limitations of available resources, such as weight and power, and the impact of these limitations on the inspection technique are discussed, as well as the resultant impact on data analysis and processing algorithms. Of particular interest is the impact to the inspection technique resulting from the use of solar energy as a heat source, the effect on the measurements due to working in the vacuum of space, and the effect of changes in boundary conditions, such as radiation losses seen by the material, on the response of the RCC. The resultant effects on detectability limits are discussed. Keywords: Nondestructive Evaluation, Shuttle, on-orbit inspection, thermography, infrared

  4. Compilation of reinforced carbon-carbon transatlantic abort landing arc jet test results

    NASA Technical Reports Server (NTRS)

    Milhoan, James D.; Pham, Vuong T.; Yuen, Eric H.

    1993-01-01

    This document consists of the entire test database generated to support the Reinforced Carbon-Carbon Transatlantic Abort Landing Study. RCC components used for orbiter nose cap and wing leading edge thermal protection were originally designed to have a multi-mission entry capability of 2800 F. Increased orbiter range capability required a predicted increase in excess of 3300 F. Three test series were conducted. Test series #1 used ENKA-based RCC specimens coated with silicon carbide, treated with tetraethyl orthosilicate, sealed with Type A surface enhancement, and tested at 3000-3400 F with surface pressure of 60-101 psf. Series #2 used ENKA- or AVTEX-based RCC, with and without silicon carbide, Type A or double Type AA surface enhancement, all impregnated with TEOS, and at temperatures from 1440-3350 F with pressures from 100-350 psf. Series #3 tested ENKA-based RCC, with and without silicon carbide coating. No specimens were treated with TEOS or sealed with Type A. Surface temperatures ranged from 2690-3440 F and pressures ranged from 313-400 psf. These combined test results provided the database for establishing RCC material single-mission-limit temperature and developing surface recession correlations used to predict mass loss for abort conditions.

  5. Carbon fiber plume sampling for large scale fire tests at Dugway Proving Ground. [fiber release during aircraft fires

    NASA Technical Reports Server (NTRS)

    Chovit, A. R.; Lieberman, P.; Freeman, D. E.; Beggs, W. C.; Millavec, W. A.

    1980-01-01

    Carbon fiber sampling instruments were developed: passive collectors made of sticky bridal veil mesh, and active instruments using a light emitting diode (LED) source. These instruments measured the number or number rate of carbon fibers released from carbon/graphite composite material when the material was burned in a 10.7 m (35 ft) dia JP-4 pool fire for approximately 20 minutes. The instruments were placed in an array suspended from a 305 m by 305 m (1000 ft by 1000 ft) Jacob's Ladder net held vertically aloft by balloons and oriented crosswind approximately 140 meters downwind of the pool fire. Three tests were conducted during which released carbon fiber data were acquired. These data were reduced and analyzed to obtain the characteristics of the released fibers including their spatial and size distributions and estimates of the number and total mass of fibers released. The results of the data analyses showed that 2.5 to 3.5 x 10 to the 8th power single carbon fibers were released during the 20 minute burn of 30 to 50 kg mass of initial, unburned carbon fiber material. The mass released as single carbon fibers was estimated to be between 0.1 and 0.2% of the initial, unburned fiber mass.

  6. Followup to Columbia Investigation: Reinforced Carbon/Carbon From the Breach Location in the Wing Leading Edge Studied

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Opila, Elizabeth J.; Tallant, David

    2005-01-01

    Initial estimates on the temperature and conditions of the breach in the Space Shuttle Columbia's wing focused on analyses of the slag deposits. These deposits are complex mixtures of the reinforced carbon/carbon (RCC) constituents, insulation material, and wing structural materials. Identification of melted/solidified Cerachrome insulation (Thermal Ceramics, Inc., Augusta, GA) indicated that the temperatures at the breach had exceeded 1760 C.

  7. Synthesis and Characterization of Multi Wall Carbon Nanotubes (MWCNT) Reinforced Sintered Magnesium Matrix Composites

    NASA Astrophysics Data System (ADS)

    Vijaya Bhaskar, S.; Rajmohan, T.; Palanikumar, K.; Bharath Ganesh Kumar, B.

    2016-04-01

    Metal matrix composites (MMCs) reinforced with ceramic nano particles (less than 100 nm), termed as metal matrix nano composites (MMNCs), can overcome those disadvantages associated with the conventional MMCs. MMCs containing carbon nanotubes are being developed and projected for diverse applications in various fields of engineering like automotive, avionic, electronic and bio-medical sectors. The present investigation deals with the synthesis and characterization of hybrid magnesium matrix reinforced with various different wt% (0-0.45) of multi wall carbon nano tubes (MWCNT) and micro SiC particles prepared through powder metallurgy route. Microstructure and mechanical properties such as micro hardness and density of the composites were examined. Microstructure of MMNCs have been investigated by scanning electron microscope, X-ray diffraction and energy dispersive X-ray spectroscopy (EDS) for better observation of dispersion of reinforcement. The results indicated that the increase in wt% of MWCNT improves the mechanical properties of the composite.

  8. Antenna Patterns from Single Slots in Carbon Fibre Reinforced Plastic Waveguides

    DTIC Science & Technology

    2010-02-01

    manufactured from carbon fibre reinforced plastic (CFRP), specifically T650/F584 plain weave fabric prepreg . This cross-section is the same as that...sandwich panels Attenuation losses in waveguides manufactured from metal and typical CFRP prepregs (AS4/3501-6 and IM7/5250-4 unidirectional tape, and...CFRP waveguides were manufactured from Hexcel T650/F584 plain weave carbon/epoxy prepreg , with a [45 -45]s stacking sequence, in accordance with the

  9. The reflectivity of carbon fiber reinforced polymer short circuit illuminated by guided microwaves

    NASA Astrophysics Data System (ADS)

    Bojovschi, A.; Scott, J.; Ghorbani, K.

    2013-09-01

    An investigation of the interaction between guided electromagnetic waves and carbon fibre reinforced polymer waveguide short circuits is presented. To determine the electromagnetic response of the composite waveguide short circuit, its anisotropic characteristics are considered. The reflection coefficients of the short circuit, at the reference plane, are about 0.98 over the whole 8 GHz to 12 GHz band. The results indicate the viability of carbon fiber based short circuits for lightweight waveguides.

  10. A New Generation of Sub Mm Telescopes, Made of Carbon Fiber Reinforced Plastic

    NASA Technical Reports Server (NTRS)

    Mezger, P.; Baars, J. W. M.; Ulich, B. L.

    1984-01-01

    Carbon fiber reinforced plastic (CFRP) appears to be the material most suited for the construction of submillimeter telescopes (SMT) not only for ground-based use but also for space applications. The accuracy of the CFRP reflectors needs to be improved beyond value of the 17 micron rms envisaged for the 10 m SMT.

  11. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    DOEpatents

    Sugama, Toshifumi

    1990-01-01

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed.

  12. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    DOEpatents

    Sugama, Toshifumi.

    1990-05-22

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed. 2 figs.

  13. Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone.

    PubMed

    Neumann, Eduardo Aloisio Fleck; Villar, Cristina Cunha; França, Fabiana Mantovani Gomes

    2014-01-01

    Fractured abutment screws may be replaced; however, sometimes, the screw cannot be removed and the entire implant must be surgically removed and replaced. The aim of this study was to compare the fracture resistance of abutment retention screws made of titanium, polyetheretherketone (PEEK) and 30% carbon fiber-reinforced PEEK, using an external hexagonal implant/UCLA-type abutment interface assembly. UCLA-type abutments were fixed to implants using titanium screws (Group 1), polyetheretherketone (PEEK) screws (Group 2), and 30% carbon fiber-reinforced PEEK screws (Group 3). The assemblies were placed on a stainless steel holding apparatus to allow for loading at 45o off-axis, in a universal testing machine. A 200 N load (static load) was applied at the central point of the abutment extremity, at a crosshead speed of 5 mm/minute, until failure. Data was analyzed by ANOVA and Tukey's range test. The titanium screws had higher fracture resistance, compared with PEEK and 30% carbon fiber-reinforced PEEK screws (p < 0.05). In contrast, no statistically significant difference was observed between the fracture resistance of the PEEK and the 30% carbon fiber-reinforced PEEK screws (p> 0.05). Finally, visual analysis of the fractions revealed that 100% of them occurred at the neck of the abutment screw, suggesting that this is the weakest point of this unit. PEEK abutment screws have lower fracture resistance, in comparison with titanium abutment screws.

  14. Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna.

    PubMed

    Pellegrini, Adam F A; Hedin, Lars O; Staver, A Carla; Govender, Navashni

    2015-05-01

    Fire and nutrients interact to influence the global distribution and dynamics of the savanna biome, but the results of these interactions are both complex and poorly known. A critical but unresolved question is whether short-term losses of carbon and nutrients caused by fire can trigger long-term and potentially compensatory responses in the nutrient stoichiometry of plants, or in the abundance of dinitrogen-fixing trees. There is disagreement in the literature about the potential role of fire on savanna nutrients, and, in turn, on plant stoichiometry and composition. A major limitation has been the lack of fire manipulations over time scales sufficiently long for these interactions to emerge. We use a 58-year, replicated, large-scale, fire manipulation experiment in Kruger National Park (South Africa) in savanna to quantify the effect of fire on (1) distributions of carbon, nitrogen, and phosphorus at the ecosystem scale; (2) carbon: nitrogen: phosphorus stoichiometry of above- and belowground tissues of plant species; and (3) abundance of plant functional groups including nitrogen fixers. Our results show dramatic effects of fire on the relative distribution of nutrients in soils, but that individual plant stoichiometry and plant community composition remained unexpectedly resilient. Moreover, measures of nutrients and carbon stable isotopes allowed us to discount the role of tree cover change in favor of the turnover of herbaceous biomass as the primary mechanism that mediates a transition from low to high 'soil carbon and nutrients in the absence of fire. We conclude that, in contrast to extra-tropical grasslands or closed-canopy forests, vegetation in the savanna biome may be uniquely adapted to nutrient losses caused by recurring fire.

  15. Distribution of dicarboxylic acids and carbon isotopic compositions in aerosols from 1997 Indonesian forest fires

    NASA Astrophysics Data System (ADS)

    Narukawa, M.; Kawamura, K.; Takeuchi, N.; Nakajima, T.

    Fine aerosol particles collected in Southeast Asia during 1997 Indonesian forest fires were studied for the concentrations of total carbon (TC), water-soluble organic carbon (WSOC) and low molecular weight dicarboxylic acids (C2-C12) as well as carbon isotopic ratios of TC (δ13CTC). TC and WSOC showed a large increase during the heavy forest fire event. At the same period, dicarboxylic acids, dominated by oxalic (C2) followed by succinic (C4) and malonic (C3) acids, also showed a concentration increase. Furthermore, the δ13CTC showed a decrease from ca. -25.5 to -27.5‰ during an intensified forest fire event, suggesting an addition of organic aerosols derived from C3 plants whose δ13C are lighter. These results indicate that the aerosol particles in Southeast Asia were significantly affected by the combustion processes of vegetations during the 1997 Indonesian forest fires that were extensively induced by El Ninõ event.

  16. Fire Impact on Surface Fuels and Carbon Emissions in Scots pine Logged Sites of Siberia

    NASA Astrophysics Data System (ADS)

    Ivanova, G. A.; Kukavskaya, E. A.; Bogorodskaya, A. V.; Ivanov, V. A.; Zhila, S. V.; Conard, S. G.

    2012-04-01

    Forest fire and large-scale forest harvesting are the two major disturbances in the Russian boreal forests. Non-recovered logged sites total about a million hectares. Logged sites are characterized by higher fire hazard than forest sites due great amounts of logging slash, which dries out much more rapidly compared to understory fuels. Moreover, most logging sites can be easily accessed by local population. Both legal and illegal logging are also increasing rapidly in many forest areas of Siberia. Fire effects on forest overstory, subcanopy woody layer, and ground vegetation biomass were estimated on logged vs. unlogged sites in the Central Siberia region in 2009-2012 as a part of the project "The Influence of Changing Forestry Practices on the Effects of Wildfire and on Interactions Between Fire and Changing Climate in Central Siberia" supported by NASA (NEESPI). Dead down woody fuels are significantly less at unburned/logged area of dry southern regions compared to more humid northern regions. Fuel consumption was typically less in spring fires than during summer fires. Fire-caused carbon emissions on logged sites appeared to be twice that on unlogged sites. Soil respiration is less at logged areas compared to undisturbed forest. After fire soil respiration decreases both at logged and unlogged areas. arbon emissions from fire and post-fire ecosystem damage on logged sites are expected to increase under changing climate conditions and as a result of anticipated increases in future forest harvesting in Siberia.

  17. Prescribed fire as a means of reducing forest carbon emissions in the western United States.

    PubMed

    Wiedinmyer, Christine; Hurteau, Matthew D

    2010-03-15

    Carbon sequestration by forested ecosystems offers a potential climate change mitigation benefit. However, wildfire has the potential to reverse this benefit In the western United States, climate change and land management practices have led to increases in wildfire intensity and size. One potential means of reducing carbon emissions from wildfire is the use of prescribed burning,which consumes less biomass and therefore releases less carbon to the atmosphere. This study uses a regional fire emissions model to estimate the potential reduction in fire emissions when prescribed burning is applied in dry, temperate forested systems of the western U.S. Daily carbon dioxide (CO(2)) fire emissions for 2001-2008 were calculated for the western U.S. for two cases: a default wildfire case and one in which prescribed burning was applied. Wide-scale prescribed fire application can reduce CO(2) fire emissions for the western U.S. by 18-25%1 in the western U.S., and by as much as 60% in specific forest systems. Although this work does not address important considerations such as the feasibility of implementing wide-scale prescribed fire management or the cumulative emissions from repeated prescribed burning, it does provide constraints on potential carbon emission reductions when prescribed burning is used.

  18. Cyclic Occurrence of Fire and Its Role in Carbon Dynamics along an Edaphic Moisture Gradient in Longleaf Pine Ecosystems

    PubMed Central

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = −2.48 tonnes C ha−1), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha−1, respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha−1 at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1–2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30–60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems. PMID:23335986

  19. Cyclic occurrence of fire and its role in carbon dynamics along an edaphic moisture gradient in longleaf pine ecosystems.

    PubMed

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = -2.48 tonnes C ha(-1)), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha(-1), respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha(-1) at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1-2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30-60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems.

  20. Fire-induced Carbon Emissions and Regrowth Uptake in Western U.S. Forests: Documenting Variation Across Forest Types, Fire Severity, and Climate Regions

    NASA Technical Reports Server (NTRS)

    Ghimire, Bardan; Williams, Christopher A.; Collatz, George James; Vanderhoof, Melanie

    2012-01-01

    The forest area in the western United States that burns annually is increasing with warmer temperatures, more frequent droughts, and higher fuel densities. Studies that examine fire effects for regional carbon balances have tended to either focus on individual fires as examples or adopt generalizations without considering how forest type, fire severity, and regional climate influence carbon legacies. This study provides a more detailed characterization of fire effects and quantifies the full carbon impacts in relation to direct emissions, slow release of fire-killed biomass, and net carbon uptake from forest regrowth. We find important variations in fire-induced mortality and combustion across carbon pools (leaf, live wood, dead wood, litter, and duff) and across low- to high-severity classes. This corresponds to fire-induced direct emissions from 1984 to 2008 averaging 4 TgC/yr and biomass killed averaging 10.5 TgC/yr, with average burn area of 2723 sq km/yr across the western United States. These direct emission and biomass killed rates were 1.4 and 3.7 times higher, respectively, for high-severity fires than those for low-severity fires. The results show that forest regrowth varies greatly by forest type and with severity and that these factors impose a sustained carbon uptake legacy. The western U.S. fires between 1984 and 2008 imposed a net source of 12.3 TgC/yr in 2008, accounting for both direct fire emissions (9.5 TgC/yr) and heterotrophic decomposition of fire-killed biomass (6.1 TgC yr1) as well as contemporary regrowth sinks (3.3 TgC/yr). A sizeable trend exists toward increasing emissions as a larger area burns annually.

  1. The synthesis of titanium carbide-reinforced carbon nanofibers.

    PubMed

    Zhu, Pinwen; Hong, Youliang; Liu, Bingbing; Zou, Guangtian

    2009-06-24

    Tailoring hard materials into nanoscale building blocks can greatly extend the applications of hard materials and, at the same time, also represents a significant challenge in the field of nanoscale science. This work reports a novel process for the preparation of carbon-based one-dimensional hard nanomaterials. The titanium carbide-carbon composite nanofibers with an average diameter of 90 nm are prepared by an electrospinning technique and a high temperature pyrolysis process. A composite solution containing polyacrylonitrile and titanium sources is first electrospun into the composite nanofibers, which are subsequently pyrolyzed to produce the desired products. The x-ray diffraction pattern and transmission electron microscopy results show that the main phase of the as-synthesized nanofibers is titanium carbide. The Raman analyses show that the composite nanofibers have low graphite clusters in comparison with the pure carbon nanofibers originating from the electrospun polyacrylonitrile nanofibers. The mechanical property tests demonstrate that the titanium carbide-carbon nanofiber membranes have four times higher tensile strength than the carbon nanofiber membranes, and the Young's modulus of the titanium carbide-carbon nanofiber membranes increases in direct proportion to the titanium quantity.

  2. Carbon and Aerosol Emissions from Biomass Fires in Mexico

    NASA Astrophysics Data System (ADS)

    Hao, W. M.; Flores Garnica, G.; Baker, S. P.; Urbanski, S. P.

    2009-12-01

    Biomass burning is an important source of many atmospheric greenhouse gases and photochemically reactive trace gases. There are limited data available on the spatial and temporal extent of biomass fires and associated trace gas and aerosol emissions in Mexico. Biomass burning is a unique source of these gases and aerosols, in comparison to industrial and biogenic sources, because the locations of fires vary considerably both daily and seasonally and depend on human activities and meteorological conditions. In Mexico, the fire season starts in January and about two-thirds of the fires occur in April and May. The amount of trace gases and aerosols emitted by fires spatially and temporally is a major uncertainty in quantifying the impact of fire emissions on regional atmospheric chemical composition. To quantify emissions, it is necessary to know the type of vegetation, the burned area, the amount of biomass burned, and the emission factor of each compound for each ecosystem. In this study biomass burning experiments were conducted in Mexico to measure trace gas emissions from 24 experimental fires and wildfires in semiarid, temperate, and tropical ecosystems from 2005 to 2007. A range of representative vegetation types were selected for ground-based experimental burns to characterize fire emissions from representative Mexico fuels. A third of the country was surveyed each year, beginning in the north. The fire experiments in the first year were conducted in Chihuahua, Nuevo Leon, and Tamaulipas states in pine forest, oak forest, grass, and chaparral. The second-year fire experiments were conducted on pine forest, oak forest, shrub, agricultural, grass, and herbaceous fuels in Jalisco, Puebla, and Oaxaca states in central Mexico. The third-year experiments were conducted in pine-oak forests of Chiapas, coastal grass, and low subtropical forest on the Yucatan peninsula. FASS (Fire Atmosphere Sampling System) towers were deployed for the experimental fires. Each FASS

  3. Mechanical Properties of Carbon Fiber-Reinforced Aluminum Manufactured by High-Pressure Die Casting

    NASA Astrophysics Data System (ADS)

    Kachold, Franziska; Singer, Robert

    2016-08-01

    Carbon fiber reinforced aluminum was produced by a specially adapted high-pressure die casting process. The MMC has a fiber volume fraction of 27%. Complete infiltration was achieved by preheating the bidirectional, PAN-based carbon fiber body with IR-emitters to temperatures of around 750 °C. The degradation of the fibers, due to attack of atmospheric oxygen at temperatures above 600 °C, was limited by heating them in argon-rich atmosphere. Additionally, the optimization of heating time and temperature prevented fiber degradation. Only the strength of the outer fibers is reduced by 40% at the most. The fibers in core of fiber body are nearly undamaged. In spite of successful manufacturing, the tensile strength of the MMC is below strength of the matrix material. Also unidirectional MMCs with a fiber volume fraction of 8% produced under the same conditions, lack of the reinforcing effect. Two main reasons for the unsatisfactory mechanical properties were identified: First, the fiber-free matrix, which covers the reinforced core, prevents effective load transfer from the matrix to the fibers. And second, the residual stresses in the fiber-free zones are as high as 100 MPa. This causes premature failure in the matrix. From this, it follows that the local reinforcement of an actual part is limited. The stress distribution caused by residual stresses and by loading needs to be known. In this way, the reinforcing phase can be placed and aligned accordingly. Otherwise delamination and premature failure might occur.

  4. 46 CFR 35.40-10 - Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Steam, foam, carbon dioxide, or clean agent fire... TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-10 Steam, foam, carbon dioxide, or clean agent fire smothering apparatus—TB/ALL. Each steam, foam, carbon dioxide, or clean...

  5. 46 CFR 35.40-10 - Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Steam, foam, carbon dioxide, or clean agent fire... TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-10 Steam, foam, carbon dioxide, or clean agent fire smothering apparatus—TB/ALL. Each steam, foam, carbon dioxide, or clean...

  6. 46 CFR 167.45-1 - Steam, carbon dioxide, Halon 1301, and clean agent fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Steam, carbon dioxide, Halon 1301, and clean agent fire... Requirements § 167.45-1 Steam, carbon dioxide, Halon 1301, and clean agent fire extinguishing systems. (a... the cabins, other living spaces, or working spaces. Pipes for conveying carbon dioxide or...

  7. 46 CFR 167.45-1 - Steam, carbon dioxide, Halon 1301, and clean agent fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Steam, carbon dioxide, Halon 1301, and clean agent fire... Requirements § 167.45-1 Steam, carbon dioxide, Halon 1301, and clean agent fire extinguishing systems. (a... the cabins, other living spaces, or working spaces. Pipes for conveying carbon dioxide or...

  8. 46 CFR 35.40-10 - Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Steam, foam, carbon dioxide, or clean agent fire... TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-10 Steam, foam, carbon dioxide, or clean agent fire smothering apparatus—TB/ALL. Each steam, foam, carbon dioxide, or clean...

  9. Gpr and Seismic Based Non-Destructive Geophysical Survey for Reinforcement of Historical Fire Tower of Sopron-Hungary

    NASA Astrophysics Data System (ADS)

    Kanli, A. I.; Taller, G.; Nagy, P.; Tildy, P.; Pronay, Z.; Toros, E.

    2013-12-01

    The Fire-Tower which is located in the main square at the hearth of Sopron is the symbol of the city. The museum of Sopron exists in the Storno-house west from the tower. The new city hall stands next to the tower to the east. Funds are from the roman age while the tower was first mentioned in writing in 1409. In 1676, it was burned down to the ground, but re-constructed. In 1894, the old City Hall was deconstucted, but the tower became unstable. István Kiss and Frigyes Schulek saved it by the walling up of the gate. In the year 1928, the scuptures of the main gate which symbolizes the fidelity of the town was sculpted by Zsigmond Kisfaludy Strobl. The old building was deconstructed from its west side, a new concrate museum was built in 1970. After years, important renovation and reinforcement studies had to be needed. For this aim, during the renovation and reinforcement studies, GPR and Seismic based non-destructive geophysical surveys were carried out before and after cement injection to observe the changes of the wall conditions of the historical tower located in Sopron-Hungary for understanding the success of the reinforcements studies. In the GPR survey, 400 MHz and 900 MHz antennas were used. The space between each profiles were taken as 0.5 m for 400 MHz and 0.25m for 900 MHz respectively. After the injection process, reflections from the fractured and porous zones were weakened imaged clearly by GPR data and significant rise of the p-wave velocities were observed.

  10. Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example.

    PubMed

    Russell-Smith, Jeremy; Yates, Cameron P; Edwards, Andrew C; Whitehead, Peter J; Murphy, Brett P; Lawes, Michael J

    2015-01-01

    Carbon markets afford potentially useful opportunities for supporting socially and environmentally sustainable land management programs but, to date, have been little applied in globally significant fire-prone savanna settings. While fire is intrinsic to regulating the composition, structure and dynamics of savanna systems, in north Australian savannas frequent and extensive late dry season wildfires incur significant environmental, production and social impacts. Here we assess the potential of market-based savanna burning greenhouse gas emissions abatement and allied carbon biosequestration projects to deliver compatible environmental and broader socio-economic benefits in a highly biodiverse north Australian setting. Drawing on extensive regional ecological knowledge of fire regime effects on fire-vulnerable taxa and communities, we compare three fire regime metrics (seasonal fire frequency, proportion of long-unburnt vegetation, fire patch-size distribution) over a 15-year period for three national parks with an indigenously (Aboriginal) owned and managed market-based emissions abatement enterprise. Our assessment indicates improved fire management outcomes under the emissions abatement program, and mostly little change or declining outcomes on the parks. We attribute improved outcomes and putative biodiversity benefits under the abatement program to enhanced strategic management made possible by the market-based mitigation arrangement. For these same sites we estimate quanta of carbon credits that could be delivered under realistic enhanced fire management practice, using currently available and developing accredited Australian savanna burning accounting methods. We conclude that, in appropriate situations, market-based savanna burning activities can provide transformative climate change mitigation, ecosystem health, and community benefits in northern Australia, and, despite significant challenges, potentially in other fire-prone savanna settings.

  11. Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example

    PubMed Central

    Russell-Smith, Jeremy; Yates, Cameron P.; Edwards, Andrew C.; Whitehead, Peter J.; Murphy, Brett P.; Lawes, Michael J.

    2015-01-01

    Carbon markets afford potentially useful opportunities for supporting socially and environmentally sustainable land management programs but, to date, have been little applied in globally significant fire-prone savanna settings. While fire is intrinsic to regulating the composition, structure and dynamics of savanna systems, in north Australian savannas frequent and extensive late dry season wildfires incur significant environmental, production and social impacts. Here we assess the potential of market-based savanna burning greenhouse gas emissions abatement and allied carbon biosequestration projects to deliver compatible environmental and broader socio-economic benefits in a highly biodiverse north Australian setting. Drawing on extensive regional ecological knowledge of fire regime effects on fire-vulnerable taxa and communities, we compare three fire regime metrics (seasonal fire frequency, proportion of long-unburnt vegetation, fire patch-size distribution) over a 15-year period for three national parks with an indigenously (Aboriginal) owned and managed market-based emissions abatement enterprise. Our assessment indicates improved fire management outcomes under the emissions abatement program, and mostly little change or declining outcomes on the parks. We attribute improved outcomes and putative biodiversity benefits under the abatement program to enhanced strategic management made possible by the market-based mitigation arrangement. For these same sites we estimate quanta of carbon credits that could be delivered under realistic enhanced fire management practice, using currently available and developing accredited Australian savanna burning accounting methods. We conclude that, in appropriate situations, market-based savanna burning activities can provide transformative climate change mitigation, ecosystem health, and community benefits in northern Australia, and, despite significant challenges, potentially in other fire-prone savanna settings. PMID:26630453

  12. Daily black carbon emissions from fires in northern Eurasia for 2002-2015

    NASA Astrophysics Data System (ADS)

    Hao, Wei Min; Petkov, Alexander; Nordgren, Bryce L.; Corley, Rachel E.; Silverstein, Robin P.; Urbanski, Shawn P.; Evangeliou, Nikolaos; Balkanski, Yves; Kinder, Bradley L.

    2016-12-01

    Black carbon (BC) emitted from fires in northern Eurasia is transported and deposited on ice and snow in the Arctic and can accelerate its melting during certain times of the year. Thus, we developed a high spatial resolution (500 m × 500 m) dataset to examine daily BC emissions from fires in this region for 2002-2015. Black carbon emissions were estimated based on MODIS (Moderate Resolution Imaging Spectroradiometer) land cover maps and detected burned areas, the Forest Inventory Survey of the Russian Federation, the International Panel on Climate Change (IPCC) Tier-1 Global Biomass Carbon Map for the year 2000, and vegetation specific BC emission factors. Annual BC emissions from northern Eurasian fires varied greatly, ranging from 0.39 Tg in 2010 to 1.82 Tg in 2015, with an average of 0.71 ± 0.37 Tg from 2002 to 2015. During the 14-year period, BC emissions from forest fires accounted for about two-thirds of the emissions, followed by grassland fires (18 %). Russia dominated the BC emissions from forest fires (92 %) and central and western Asia was the major region for BC emissions from grassland fires (54 %). Overall, Russia contributed 80 % of the total BC emissions from fires in northern Eurasia. Black carbon emissions were the highest in the years 2003, 2008, and 2012. Approximately 58 % of the BC emissions from fires occurred in spring, 31 % in summer, and 10 % in fall. The high emissions in spring also coincide with the most intense period of ice and snow melting in the Arctic.

  13. Reinforced Carbon-Carbon Subcomponent Flat Plate Impact Testing for Space Shuttle Orbiter Return to Flight

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Brand, Jeremy H.; Pereira, J. Michael; Revilock, Duane M.

    2007-01-01

    Following the tragedy of the Space Shuttle Columbia on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the Space Shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize Reinforced Carbon-Carbon (RCC) and various debris materials which could potentially shed on ascent and impact the Orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS DYNA to predict damage by potential and actual impact events on the Orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: fundamental tests to obtain independent static and dynamic material model properties of materials of interest, sub-component impact tests to provide highly controlled impact test data for the correlation and validation of the models, and full-scale impact tests to establish the final level of confidence for the analysis methodology. This paper discusses the second level subcomponent test program in detail and its application to the LS DYNA model validation process. The level two testing consisted of over one hundred impact tests in the NASA Glenn Research Center Ballistic Impact Lab on 6 by 6 in. and 6 by 12 in. flat plates of RCC and evaluated three types of debris projectiles: BX 265 External Tank foam, ice, and PDL 1034 External Tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile. The information obtained from this testing validated the LS DYNA damage prediction models and provided a certain level of confidence to begin performing analysis for full-size RCC test articles for returning NASA to flight with STS 114 and beyond.

  14. Impact absorption properties of carbon fiber reinforced bucky sponges.

    PubMed

    Thevamaran, Ramathasan; Saini, Deepika; Karakaya, Mehmet; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao; Daraio, Chiara

    2017-03-24

    We describe the super compressible and highly recoverable response of bucky sponges as they are struck by a heavy flat-punch striker. The bucky sponges studied here are structurally stable, self-assembled mixtures of multiwalled carbon nanotubes (MWCNTs) and carbon fibers (CFs). We engineered the microstructure of the sponges by controlling their porosity using different CF contents. Their mechanical properties and energy dissipation characteristics during impact loading are presented as a function of their composition. The inclusion of CFs improves the impact force damping by up to 50% and the specific damping capacity by up to 7% compared to bucky sponges without CFs. The sponges also exhibit significantly better stress mitigation characteristics compared to vertically aligned carbon nanotube foams of similar densities. We show that delamination on the MWCNT-CF interfaces occurs during unloading, and arises from the heterogeneous fibrous microstructure of the bucky sponges.

  15. Tribological properties of metal-matrix composite materials reinforced by superelastic hard carbon particles

    NASA Astrophysics Data System (ADS)

    Ushakova, I. N.; Drozdova, E. I.; Chernogorova, O. P.; Blinov, V. M.; Ekimov, E. A.

    2016-05-01

    Metal-matrix composite materials (CMs) are synthesized from a mixture of a metal powder (Ti, Fe, Co, Ni, Cu, Al-based alloy) and fullerenes (10 wt %). The thermobaric synthesis conditions (700-1000°C, 5-8 GPa) ensure the collapse of fullerene molecules and their transformation into superelastic carbon phase particles with an indentation hardness H IT = 10-37 GPa, an elastic modulus E IT = 60-260 GPa, and an elastic recovery of >80% upon indentation. After reinforcing by superelastic hard carbon, the friction coefficient of CM decreases by a factor of 2-4 as compared to the friction coefficient of the matrix metal, and the abrasive wear resistance increases by a factor of 4-200. Superelastic hard carbon particles are a unique reinforcing material for an increase in the wear resistance and a simultaneous decrease in the friction coefficient of CM.

  16. [A study on alpha-tricalcium phosphate bone cement carbon fiber-reinforced].

    PubMed

    Wu, Wenjin; Yang, Weizhong; Zhou, Dali; Ma, Jiang; Xiao, Bin

    2006-06-01

    In order to improve the mechanical properties of alpha-tricalcium phosphate (alpha-TCP), we prepared surface-modified carbon fibers (CF) reinforced alpha-TCP composite bone cement. Bone cement was soaked in Ringer's body solution to test its capacity of fast formation of hydroxyapatite crystals and self-solidification. Scan electronic microscope (SEM) observation and compressive strength measurement were taken to analyze the mechanical properties and the micro- morphological structure of CF reinforced alpha-TCP bone cement. The results showed that the bone cement was transferred into hydroxyapatite plates after being soaked in Ringer's simulated body fluid for 5 days. Suitable amount of carbon fibers could well spread in and bond with the matrix of the bone cement. The mechanical properties of the bone cement have been improved by CF reinforcing; the compressive strength reaches 46.7 MPa when the amount of carbon fibers is 0.5% in weight percent, which is 22% higher than that of the non-reinforced alpha-TCP bone cement.

  17. Constraints on total fire carbon emissions over maritime southeast Asia in 2015

    NASA Astrophysics Data System (ADS)

    Huijnen, Vincent; Wooster, Martin; Kaiser, Johannes; Gaveau, David; Flemming, Johannes; Parrington, Mark; Inness, Antje; Murdiyarso, Daniel; Main, Bruce; van Weele, Michiel

    2016-04-01

    In September and October 2015 widespread forest and peatland fires burned over large parts of maritime southeast Asia, releasing large amounts of terrestrially-stored carbon into the atmosphere, primarily in the form of CO2, CO and CH4. Although seasonal fires are a frequent occurrence in the human modified landscapes in the south of Kalimantan, the southeastern provinces of Sumatra, and West Papua, the extent of the fires was greatly inflated by an extended period of drought associated with a particularly strong El Niño. In this contribution we provide an estimate of the total carbon released in these fires, making use of satellite observations of the fire's radiative power output as processed with GFAS, applied in the modelling and assimilation framework of the Copernicus Atmosphere Monitoring Service (CAMS: http://atmosphere.copernicus.eu/). The carbon emissions are further constrained with MOPITT atmospheric CO column measurements as well as unique on-site plume measurements on Kalimantan. We estimate the carbon emissions from the 2015 fires to be the largest over the maritime southeast Asian region since those associated with the record breaking El Niño of 1997.

  18. Structural and electronic properties of carbon nanotube-reinforced epoxy resins.

    PubMed

    Suggs, Kelvin; Wang, Xiao-Qian

    2010-03-01

    Nanocomposites of cured epoxy resin reinforced by single-walled carbon nanotubes exhibit a plethora of interesting behaviors at the molecular level. We have employed a combination of force-field-based molecular mechanics and first-principles calculations to study the corresponding binding and charge-transfer behavior. The simulation study of various nanotube species and curing agent configurations provides insight into the optimal structures in lieu of interfacial stability. An analysis of charge distributions of the epoxy functionalized semiconducting and metallic tubes reveals distinct level hybridizations. The implications of these results for understanding dispersion mechanism and future nano reinforced composite developments are discussed.

  19. Synthesis and Characterization of Carbon Nanotubes for Reinforced and Functional Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S.; Watson, M.

    2003-01-01

    Many efforts have been engaged recently in synthesizing single-walled and multi-walled carbon nanotubes due to their superior mechanical, electrical and thermal properties, which could be used for numerous applications to enhance the performance of electronics, sensors and composites. This presentation will demonstrate the synthesizing process of carbon nanotube by thermal chemical vapor deposition and the characterization results by using electron microscopy and optical spectroscopy. Carbon nanotubes could be synthesized on various substances. The conditions of fabricating single-walled or multi-walled carbon nanotubes depend strongly on temperature and hydrocarbon concentration but weakly on pressure. The sizes, orientations, and growth modes of carbon nanotubes will be illustrated. The advantages and limitations of several potential aerospace applications such as reinforced and functional composites, temperature sensing, and thermal control by using carbon nanotubes will be discussed.

  20. Synthesis and Characterization of Carbon Nanotubes for Reinforced and Functional Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Many efforts have been engaged recently in synthesizing single-walled and multi-walled carbon nanotubes due to their superior mechanical, electrical and thermal properties, which could be used to enhance numerous applications such as electronics, sensors and composite strength. This presentation will show the synthesizing process of carbon nanotubes by thermal chemical vapor deposition and the characterization results by using electron microscopy and optical spectroscopy. Carbon nanotubes were synthesized on various substances. The conditions of fabricating single-walled or multi-walled carbon nanotubes depend strongly on temperatures and hydrocarbon concentrations but weakly on pressures. The size, growth modes and orientations of carbon nanotube will be illustrated. The advantages and limitations of several potential applications including sensor, heat pipe, field emission, radiation shielding, and reinforcements for composites by using carbon nanotubes will be discussed.

  1. Thermal expansion of multiwall carbon nanotube reinforced nanocrystalline silver matrix composite

    SciTech Connect

    Sharma, Manjula Sharma, Vimal; Pal, Hemant

    2014-04-24

    Multiwall carbon nanotube reinforced silver matrix composite was fabricated by novel molecular level mixing method, which involves nucleation of Ag ions inside carbon nanotube dispersion at the molecular level. As a result the carbon nanotubes get embedded within the powder rather than on the surfaces. Micro structural characterization by X- ray diffraction and scanning electron microscopy reveals that the nanotubes are homogeneously dispersed and anchored within the matrix. The thermal expansion of the composite with the multiwall nanotube content (0, 1.5 vol%) were investigated and it is found that coefficient of thermal expansion decreases with the addition of multiwall nanotube content and reduce to about 63% to that of pure Ag.

  2. Clinical evaluation of carbon fiber reinforced carbon endodontic post, glass fiber reinforced post with cast post and core: A one year comparative clinical study

    PubMed Central

    Preethi, GA; Kala, M

    2008-01-01

    Aim: Restoring endodontically treated teeth is one of the major treatments provided by the dental practitioner. Selection and proper use of restorative materials continues to be a source of frustration for many clinicians. There is controversy surrounding the most suitable choice of restorative material and the placement method that will result in the highest probability of successful treatment. This clinical study compares two different varieties of fiber posts and one cast post and core in terms of mobility of crown margin under finger pressure, recurrent caries detected at the crown margin, fracture of the restoration, fracture of the root and periapical and periodontal pathology requiring crown removal over the period of 12months as evaluated by clinical and radiographical examination. Materials and Methods: 30 root canal treated, single rooted maxillary anterior teeth of 25 patients in the age range of 18–60 years where a post retained crown was indicated were selected for the study between January 2007 and August 2007; and prepared in a standard clinical manner. It was divided into 3 groups of 10 teeth in each group. After post space preparation, the Carbon fiber and Glass fiber reinforced posts were cemented with Scotch bond multipurpose plus bonding agent and RelyX adhesive resin cement in the first and second groups respectively. The Cast post and cores were cemented with Zinc Phosphate cement in the third group. Following post- cementation, the preparation was further refined and a rubber base impression was taken for metal-ceramic crowns which was cemented with Zinc Phosphate cement. A baseline periapical radiograph was taken once each crown was cemented. All patients were evaluated after one week (baseline), 3 months, 6 months and one year for following characteristics mobility of crown margin under finger pressure, recurrent caries detected at the crown margin, fracture of the restoration, fracture of the root and periapical and periodontal pathology

  3. Isotopic composition of carbon dioxide from a boreal forest fire: Inferring carbon loss from measurements and modeling

    USGS Publications Warehouse

    Schuur, E.A.G.; Trumbore, S.E.; Mack, M.C.; Harden, J.W.

    2003-01-01

    Fire is an important pathway for carbon (C) loss from boreal forest ecosystems and has a strong effect on ecosystem C balance. Fires can range widely in severity, defined as the amount of vegetation and forest floor consumed by fire, depending on local fuel and climatic conditions. Here we explore a novel method for estimating fire severity and loss of C from fire using the atmosphere to integrate ecosystem heterogeneity at the watershed scale. We measured the ??13C and ??14C isotopic values of CO2 emitted from an experimental forest fire at the Caribou-Poker Creek Research Watershed (CPCRW), near Fairbanks, Alaska. We used inverse modeling combined with dual isotope near measurements of C contained in aboveground black spruce biomass and soil organic horizons to estimate the amount of C released by this fire. The experimental burn was a medium to severe intensity fire that released, on average, about 2.5 kg Cm-2, more than half of the C contained in vegetation and soil organic horizon pools. For vegetation, the model predicted that approximately 70-75% of pools such as needles, fine branches, and bark were consumed by fire, whereas only 20-30% of pools such as coarse branches and cones were consumed. The fire was predicted to have almost completely consumed surface soil organic horizons and burned about half of the deepest humic horizon. The ability to estimate the amount of biomass combusted and C emission from fires at the watershed scale provides an extensive approach that can complement more limited intensive ground-based measurements.

  4. Disentangling the drivers of coarse woody debris behavior and carbon gas emissions during fire

    NASA Astrophysics Data System (ADS)

    Zhao, Weiwei; van der Werf, Guido R.; van Logtestijn, Richard S. P.; van Hal, Jurgen R.; Cornelissen, Johannes H. C.

    2016-04-01

    The turnover of coarse woody debris, a key terrestrial carbon pool, plays fundamental roles in global carbon cycling. Biological decomposition and fire are two main fates for dead wood turnover. Compared to slow decomposition, fire rapidly transfers organic carbon from the earth surface to the atmosphere. Both a-biotic environmental factors and biotic wood properties determine coarse wood combustion and thereby its carbon gas emissions during fire. Moisture is a key inhibitory environmental factor for fire. The properties of dead wood strongly affect how it burns either directly or indirectly through interacting with moisture. Coarse wood properties vary between plant species and between various decay stages. Moreover, if we put a piece of dead wood in the context of a forest fuel bed, the soil and wood contact might also greatly affect their fire behavior. Using controlled laboratory burns, we disentangled the effects of all these driving factors: tree species (one gymnosperms needle-leaf species, three angiosperms broad-leaf species), wood decay stages (freshly dead, middle decayed, very strongly decayed), moisture content (air-dried, 30% moisture content in mass), and soil-wood contact (on versus 3cm above the ground surface) on dead wood flammability and carbon gas efflux (CO2 and CO released in grams) during fire. Wood density was measured for all coarse wood samples used in our experiment. We found that compared to other drivers, wood decay stages have predominant positive effects on coarse wood combustion (for wood mass burned, R2=0.72 when air-dried and R2=0.52 at 30% moisture content) and associated carbon gas emissions (for CO2andCO (g) released, R2=0.55 when air-dried and R2=0.42 at 30% moisture content) during fire. Thus, wood decay accelerates wood combustion and its CO2 and CO emissions during fire, which can be mainly attributed to the decreasing wood density (for wood mass burned, R2=0.91 when air-dried and R2=0.63 at 30% moisture content) as wood

  5. Fabrication and characterization of carbon nanotube reinforced magnesium matrix composites

    NASA Astrophysics Data System (ADS)

    Mindivan, Harun; Efe, Arife; Kosatepe, A. Hadi; Kayali, E. Sabri

    2014-11-01

    In the present investigation, Mg chips are recycled to produce Mg-6 wt.% Al reinforced with 0.5, 1, 2 and 4 wt.% nanosized CNTs by mechanical ball milling, cold pressing and subsequently hot extrusion process without sintering step. The microstructure, mechanical properties and corrosion behavior of Mg/Al without CNT (base alloy) and composites were evaluated. The distribution of CNTs was analyzed using a Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS) analyzer and a Wavelength Dispersive X-Ray Fluorescence spectrometer (WDXRF). Microstructural analysis revealed that the CNTs on the Mg chips were present throughout the extrusion direction and the uniform distribution of CNTs at the chip surface decreased with increase in the CNT content. The results of the mechanical and corrosion test showed that small addition of CNTs (0.5 wt.%) evidently improved the hardness and corrosion resistance of the composite by comparing with the base alloy, while increase in the CNT weight fraction in the initial mixture resulted in a significant decrease of hardness, compression strength, wear rate and corrosion resistance.

  6. Carbon Nanotubes as Reinforcement of Cellulose Liquid Crystalline Responsive Networks.

    PubMed

    Echeverria, Coro; Aguirre, Luis E; Merino, Esther G; Almeida, Pedro L; Godinho, Maria H

    2015-09-30

    The incorporation of small amount of highly anisotropic nanoparticles into liquid crystalline hydroxypropylcellulose (LC-HPC) matrix improves its response when is exposed to humidity gradients due to an anisotropic increment of order in the structure. Dispersed nanoparticles give rise to faster order/disorder transitions when exposed to moisture as it is qualitatively observed and quantified by stress-time measurements. The presence of carbon nanotubes derives in a improvement of the mechanical properties of LC-HPC thin films.

  7. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites

    PubMed Central

    Yuan, Yanchao; Sun, Yanxiao; Yan, Shijing; Zhao, Jianqing; Liu, Shumei; Zhang, Mingqiu; Zheng, Xiaoxing; Jia, Lei

    2017-01-01

    Nondestructive retrieval of expensive carbon fibres (CFs) from CF-reinforced thermosetting advanced composites widely applied in high-tech fields has remained inaccessible as the harsh conditions required to recycle high-performance resin matrices unavoidably damage the structure and properties of CFs. Degradable thermosetting resins with stable covalent structures offer a potential solution to this conflict. Here we design a new synthesis scheme and prepare a recyclable CF-reinforced poly(hexahydrotriazine) resin matrix advanced composite. The multiple recycling experiments and characterization data establish that this composite demonstrates performance comparable to those of its commercial counterparts, and more importantly, it realizes multiple intact recoveries of CFs and near-total recycling of the principal raw materials through gentle depolymerization in certain dilute acid solution. To our best knowledge, this study demonstrates for the first time a feasible and environment-friendly preparation-recycle-regeneration strategy for multiple CF-recycling from CF-reinforced advanced composites. PMID:28251985

  8. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites

    NASA Astrophysics Data System (ADS)

    Yuan, Yanchao; Sun, Yanxiao; Yan, Shijing; Zhao, Jianqing; Liu, Shumei; Zhang, Mingqiu; Zheng, Xiaoxing; Jia, Lei

    2017-03-01

    Nondestructive retrieval of expensive carbon fibres (CFs) from CF-reinforced thermosetting advanced composites widely applied in high-tech fields has remained inaccessible as the harsh conditions required to recycle high-performance resin matrices unavoidably damage the structure and properties of CFs. Degradable thermosetting resins with stable covalent structures offer a potential solution to this conflict. Here we design a new synthesis scheme and prepare a recyclable CF-reinforced poly(hexahydrotriazine) resin matrix advanced composite. The multiple recycling experiments and characterization data establish that this composite demonstrates performance comparable to those of its commercial counterparts, and more importantly, it realizes multiple intact recoveries of CFs and near-total recycling of the principal raw materials through gentle depolymerization in certain dilute acid solution. To our best knowledge, this study demonstrates for the first time a feasible and environment-friendly preparation-recycle-regeneration strategy for multiple CF-recycling from CF-reinforced advanced composites.

  9. Oxidation Behavior of Carbon Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2008-01-01

    OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.

  10. Synergistic effects of drought and fire on the carbon carrying capacity of tropical forests and woodlands

    NASA Astrophysics Data System (ADS)

    Boer, Matthias; Bradstock, Ross

    2014-05-01

    More than half of the global forest carbon stock is held in tropical forests. A relatively large proportion of the tropical forest carbon is stored in plant biomass rather than in the soil, making these stocks particularly vulnerable to disturbances such as droughts, fires and cyclones. The frequencies, duration and intensities of such disturbances may change under future climates with poorly resolved but potentially significant (synergistic) effects on the carbon carrying capacity of tropical forests and thereby on global geochemical cycles. In this study we analyse high-resolution global data sets for tropical forest biomass (Saatchi et al., 2011. PNAS) and fire affected areas (GFED4, Giglio et al.,2013. JGR 118), together with climate data (WorldClim, Hijmans et al., 2005. Int. J. Clim. 25), to quantify the sensitivity of tropical forest carbon stocks in South America, Africa and Asia/Australia to seasonal water deficits and fire. Here, the climatic water deficit (D), calculated as the difference between mean annual potential evapotranspiration and actual evapotranspiration, is used as a measure of seasonal water stress (i.e., evaporative demand not met by available water), while the mean annual burned area fraction (1995-2013) of grid cells is used as a measure of average fire activity. Tropical forest carbon stocks are maximal, as expected, where water deficits are negligible. In those densely forested environments fire tends to be extremely rare as fuels are too wet to burn for most of the time. In all three continents, potential tropical forest carbon stocks are well predicted by a non-linear decreasing function of the mean annual climatic water deficit, with a steep drop in carbon stocks at D of 700-800 mm per year. At this threshold in the climatic water deficit we observe a strong increase in fire activity that is indicative of a critical change in vegetation structure (i.e., tree/grass ratio) and associated shift in the dominant climatic constraint on

  11. Projected carbon stocks in the conterminous USA with land use and variable fire regimes.

    PubMed

    Bachelet, Dominique; Ferschweiler, Ken; Sheehan, Timothy J; Sleeter, Benjamin M; Zhu, Zhiliang

    2015-12-01

    The dynamic global vegetation model (DGVM) MC2 was run over the conterminous USA at 30 arc sec (~800 m) to simulate the impacts of nine climate futures generated by 3GCMs (CSIRO, MIROC and CGCM3) using 3 emission scenarios (A2, A1B and B1) in the context of the LandCarbon national carbon sequestration assessment. It first simulated potential vegetation dynamics from coast to coast assuming no human impacts and naturally occurring wildfires. A moderate effect of increased atmospheric CO2 on water use efficiency and growth enhanced carbon sequestration but did not greatly influence woody encroachment. The wildfires maintained prairie-forest ecotones in the Great Plains. With simulated fire suppression, the number and impacts of wildfires was reduced as only catastrophic fires were allowed to escape. This greatly increased the expansion of forests and woodlands across the western USA and some of the ecotones disappeared. However, when fires did occur, their impacts (both extent and biomass consumed) were very large. We also evaluated the relative influence of human land use including forest and crop harvest by running the DGVM with land use (and fire suppression) and simple land management rules. From 2041 through 2060, carbon stocks (live biomass, soil and dead biomass) of US terrestrial ecosystems varied between 155 and 162 Pg C across the three emission scenarios when potential natural vegetation was simulated. With land use, periodic harvest of croplands and timberlands as well as the prevention of woody expansion across the West reduced carbon stocks to a range of 122-126 Pg C, while effective fire suppression reduced fire emissions by about 50%. Despite the simplicity of our approach, the differences between the size of the carbon stocks confirm other reports of the importance of land use on the carbon cycle over climate change.

  12. Boreal forest fires impacts on atmospheric methane, carbon dioxide, and carbon monoxide during the 2013 NASA CARVE campaign

    NASA Astrophysics Data System (ADS)

    Wiggins, E. B.; Randerson, J. T.; Czimczik, C. I.; Braunthal, A. N.; Cuozzo, N.; Miu, J.; Mouteva, G.; Fahrni, S. M.; Miller, J. B.; Miller, C. E.; Dinardo, S.; Wofsy, S. C.; Karion, A.; Sweeney, C.; Lupascu, M.

    2013-12-01

    Boreal forest fires are expected to increase in future decades as a consequence of longer growing seasons and a tendency towards greater mid-summer drought stress. These fires have the potential to accelerate changes in species composition and may exert both positive and negative feedbacks through interactions with other components of the climate system in Arctic and boreal regions. An important objective in this context is to reduce uncertainties related to boreal forest carbon emissions at different temporal and spatial scales. As a part of the NASA Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), we assessed the impact of boreal forest fires on CH4, CO2, and CO observations collected from interior Alaska during the summer of 2013. Methane and carbon dioxide measurements were acquired along multiple transects in interior Alaska using a mobile Picarro gas analyzer. We combined these observations with tower and aircraft observations from CARVE to study the three-dimensional imprint of fires on greenhouse gases over Alaska. Geospatial data on the temporal evolution of forest fires were attained through analysis of fire perimeters from the Alaska Interagency Coordination Center and by thermal hotspots from the Moderate Resolution Imaging Spectroradiometer (MODIS). During the lifetime of one significant fire (Stuart Creek), we found that that CH4 and CO2 mole fractions measured by the mobile system increased significantly as a function of distance from the fire attaining values that were elevated by 34 to 23 ppb relative to background levels of approximately 1873 ppb. Using other aircraft and continuous tower observations, we estimated CO/CO2 and CO/CH4 emission factors. Due to the significant impact of wind direction on plume transport, further study will be conducted using the Weather Research and Forecasting model to account for meteorological variability.

  13. Heavy duty piezoresistivity induced strain sensing natural rubber/carbon black nanocomposites reinforced with different carbon nanofillers

    NASA Astrophysics Data System (ADS)

    He, Qingliang; Yuan, Tingting; Zhang, Xi; Guo, Shimei; Liu, Jingjing; Liu, Jiurong; Liu, Xinyu; Sun, Luyi; Wei, Suying; Guo, Zhanhu

    2014-09-01

    Durable piezoresistive effects of natural rubber nanocomposites have been demonstrated, i.e., with stable and reversible electrical resistance change within the tested 3000 cycles upon applying a small compressive strain (˜16.7%) under a relatively high frequency (0.5 Hz, 2 s/cycle). This unique function was achieved for the first time by combining carbon nanotubes and carbon nanofibers with natural rubber composites pretreated with carbon black. Even though the combination of different carbon nanomaterials, such as graphene nanosheets and carbon nanotubes, can improve the dispersion quality of both the nanostructures in solution or in polymer matrices, this type of synergistic effect between carbon nanotubes and carbon nanofibers in producing stable and reversible piezoresistive effect has been rarely reported. Besides, the strong reinforcement (compressive stress at a maximum strain of 16.7% was increased from 12.6 for untreated to 18.5 MPa for the natural rubber/carbon black composites treated with a combination of 1.0 wt% carbon nanotubes and 1.0 wt% carbon nanofibers) makes the as-prepared composites promising for heavy duty pressure sensors, i.e., healthy motion monitoring of industrial machinery vibrations.

  14. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997

    NASA Astrophysics Data System (ADS)

    Huijnen, V.; Wooster, M. J.; Kaiser, J. W.; Gaveau, D. L. A.; Flemming, J.; Parrington, M.; Inness, A.; Murdiyarso, D.; Main, B.; van Weele, M.

    2016-05-01

    In September and October 2015 widespread forest and peatland fires burned over large parts of maritime southeast Asia, most notably Indonesia, releasing large amounts of terrestrially-stored carbon into the atmosphere, primarily in the form of CO2, CO and CH4. With a mean emission rate of 11.3 Tg CO2 per day during Sept-Oct 2015, emissions from these fires exceeded the fossil fuel CO2 release rate of the European Union (EU28) (8.9 Tg CO2 per day). Although seasonal fires are a frequent occurrence in the human modified landscapes found in Indonesia, the extent of the 2015 fires was greatly inflated by an extended drought period associated with a strong El Niño. We estimate carbon emissions from the 2015 fires to be the largest seen in maritime southeast Asia since those associated with the record breaking El Niño of 1997. Compared to that event, a much better constrained regional total carbon emission estimate can be made for the 2015 fires through the use of present-day satellite observations of the fire’s radiative power output and atmospheric CO concentrations, processed using the modelling and assimilation framework of the Copernicus Atmosphere Monitoring Service (CAMS) and combined with unique in situ smoke measurements made on Kalimantan.

  15. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997

    PubMed Central

    Huijnen, V.; Wooster, M. J.; Kaiser, J. W.; Gaveau, D. L. A.; Flemming, J.; Parrington, M.; Inness, A.; Murdiyarso, D.; Main, B.; van Weele, M.

    2016-01-01

    In September and October 2015 widespread forest and peatland fires burned over large parts of maritime southeast Asia, most notably Indonesia, releasing large amounts of terrestrially-stored carbon into the atmosphere, primarily in the form of CO2, CO and CH4. With a mean emission rate of 11.3 Tg CO2 per day during Sept-Oct 2015, emissions from these fires exceeded the fossil fuel CO2 release rate of the European Union (EU28) (8.9 Tg CO2 per day). Although seasonal fires are a frequent occurrence in the human modified landscapes found in Indonesia, the extent of the 2015 fires was greatly inflated by an extended drought period associated with a strong El Niño. We estimate carbon emissions from the 2015 fires to be the largest seen in maritime southeast Asia since those associated with the record breaking El Niño of 1997. Compared to that event, a much better constrained regional total carbon emission estimate can be made for the 2015 fires through the use of present-day satellite observations of the fire’s radiative power output and atmospheric CO concentrations, processed using the modelling and assimilation framework of the Copernicus Atmosphere Monitoring Service (CAMS) and combined with unique in situ smoke measurements made on Kalimantan. PMID:27241616

  16. The mechanical properties measurement of multiwall carbon nanotube reinforced nanocrystalline aluminum matrix composite

    SciTech Connect

    Sharma, Manjula Pal, Hemant; Sharma, Vimal

    2015-05-15

    Nanocrystalline aluminum matrix composite containing carbon nanotubes were fabricated using physical mixing method followed by cold pressing. The microstructure of the composite has been investigated using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. These studies revealed that the carbon nanotubes were homogeneously dispersed throughout the metal matrix. The consolidated samples were pressureless sintered in inert atmosphere to further actuate a strong interface between carbon nanotubes and aluminum matrix. The nanoindentation tests carried out on considered samples showed that with the addition of 0.5 wt% carbon nanotubes, the hardness and elastic modulus of the aluminum matrix increased by 21.2 % and 2 % repectively. The scratch tests revealed a decrease in the friction coefficient of the carbon nanotubes reinforced composite due to the presence of lubricating interfacial layer. The prepared composites were promising entities to be used in the field of sporting goods, construction materials and automobile industries.

  17. Mechanical properties of long carbon fiber reinforced thermoplastic (LFT) at elevated temperature

    NASA Astrophysics Data System (ADS)

    Wang, Qiushi

    Long fiber reinforced thermoplastics (LFT) possess high specific modulus and strength, superior damage tolerance and fracture toughness and have found increasing use in transportation, military, and aerospace applications. However, one of the impediments to utilizing these materials is the lack of performance data in harsh conditions, especially at elevated temperature. In order to quantify the effect of temperature on the mechanical properties of carbon fiber reinforced thermoplastic composites, carbon fiber PAA composite plates containing 20% and 30% carbon fiber were produced using extrusion/compression molding process and tested at three representative temperatures, room temperature (RT 26°C), middle temperature (MID 60°C) and glass transition temperature (Tg 80°C). A heating chamber was designed and fabricated for the testing at elevated temperature. As temperature increases, flexural modulus, flexural strength, tensile modulus and tensile strength decrease. The highest reduction observed in stiffness (modulus) values of 30% CF/PAA at Tg in the 00 orientation is 75%. The reduction values were larger for the transverse (perpendicular to flow direction) samples than the longitudinal (flow direction) samples. The property reduction in 30% CF/PAA is larger than 20% CF/PAA. Furthermore, an innovative method was developed to calculate the fiber content in carbon fiber reinforced composites by burning off the neat resin and sample in a tube furnace. This method was proved to be accurate (within 1.5 wt. % deviation) by using burning off data obtained from CF/Epoxy and CF/Vinyl Ester samples. 20% and 30% carbon/PAA samples were burned off and carbon fiber content was obtained using this method. The results of the present study will be helpful in determining the end-user applications of these composite materials. Keywords: Long Carbon Fibers, Elevated Temperature, Mechanical Properties, Burn off Test.

  18. Thermal performance of glass fiber reinforced intumescent fire retardant coating for structural applications

    SciTech Connect

    Ahmad, Faiz Ullah, Sami; Aziz, Hammad Omar, Nor Sharifah

    2015-07-22

    The results of influence of glass fiber addition into the basic intumescent coating formulation towards the enhancement of its thermal insulation properties are presented. The intumescent coatings were formulated from expandable graphite, ammonium polyphosphate, melamine, boric acid, bisphenol A epoxy resin BE-188, polyamide amine H-2310 hardener and fiberglass (FG) of length 3.0 mm. Eight intumescent formulations were developed and the samples were tested for their fire performance by burning them at 450°C, 650°C and 850°C in the furnace for two hours. The effects of each fire test at different temperatures; low and high temperature were evaluated. Scanning Electron Microscope, X-Ray Diffraction technique and Thermo Gravimetric Analysis were conducted on the samples to study the morphology, the chemical components of char and the residual weight of the coatings. The formulation, FG08 containing 7.0 wt% glass fiber provided better results with enhanced thermal insulation properties of the coatings.

  19. Thermal performance of glass fiber reinforced intumescent fire retardant coating for structural applications

    NASA Astrophysics Data System (ADS)

    Ahmad, Faiz; Ullah, Sami; Aziz, Hammad; Omar, Nor Sharifah

    2015-07-01

    The results of influence of glass fiber addition into the basic intumescent coating formulation towards the enhancement of its thermal insulation properties are presented. The intumescent coatings were formulated from expandable graphite, ammonium polyphosphate, melamine, boric acid, bisphenol A epoxy resin BE-188, polyamide amine H-2310 hardener and fiberglass (FG) of length 3.0 mm. Eight intumescent formulations were developed and the samples were tested for their fire performance by burning them at 450°C, 650°C and 850°C in the furnace for two hours. The effects of each fire test at different temperatures; low and high temperature were evaluated. Scanning Electron Microscope, X-Ray Diffraction technique and Thermo Gravimetric Analysis were conducted on the samples to study the morphology, the chemical components of char and the residual weight of the coatings. The formulation, FG08 containing 7.0 wt% glass fiber provided better results with enhanced thermal insulation properties of the coatings.

  20. Effects of irradiated polypropylene compatibilizer on the properties of short carbon fiber reinforced polypropylene composites

    NASA Astrophysics Data System (ADS)

    Gamze Karsli, Nevin; Aytac, Ayse; Akbulut, Meshude; Deniz, Veli; Güven, Olgun

    2013-03-01

    In this study, the effects of irradiated polypropylene (PP) compatibilizer addition into PP matrix on the interfacial adhesion between the carbon fiber (CF) and PP matrix were investigated. Unirradiated and irradiated PPs were blended, and two types of carbon fibers; unsized (surface treated) and sized, were used for composites preparation. In order to characterize the physical and morphological properties of all CF reinforced composites prepared, tensile tests, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Positron annihilation lifetime spectroscopy (PALS) were performed. The strong compatibilizing effects of irradiated PP on the mechanical properties of composites were noticed. It has been found that breaking strength values were increased up to 30%. The compatibilizing effect of irradiated PP was also confirmed with SEM micrographs and PALS. It has been seen that blending PP matrix with irradiated PP improved the interfacial adhesion between the carbon fiber and matrix materials. The melting point temperatures of composites were not changed significantly for all composites. The results showed that irradiated PP as a compatibilizer together with unsized carbon fiber in place of sized carbon fiber can be used in order to improve the mechanical properties of carbon fiber reinforced PP composites.

  1. Carbon paint anode for reinforced concrete bridges in coastal environments

    SciTech Connect

    Cramer, Stephen D.; Bullard, Sophie J.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Cryer, C.B.; Laylor, H.M.

    2002-01-01

    Solvent-based acrylic carbon paint anodes were installed on the north approach spans of the Yaquina Bay Bridge (Newport OR) in 1985. The anodes continue to perform satisfactorily after more than 15 years service. The anodes were inexpensive to apply and field repairs are easily made. Depolarization potentials are consistently above 100 mV with long-term current densities around 2 mA/m 2. Bond strength remains adequate, averaging 0.50 MPa (73 psi). Some deterioration of the anode-concrete interface has occurred in the form of cracks and about 4% of the bond strength measurements indicated low or no bond. Carbon anode consumption appears low. The dominant long-term anode reaction appears to be chlorine evolution, which results in limited further acidification of the anode-concrete interface. Chloride profiles were depressed compared to some other coastal bridges suggesting chloride extraction by the CP system. Further evidence of outward chloride migration was a flat chloride profile between the anode and the outer rebar.

  2. North African savanna fires and atmospheric carbon dioxide

    SciTech Connect

    Iacobellis, S.F.; Frouni, Razafimpaniolo, H.

    1994-04-20

    The effect of north African savanna fires on atmospheric CO{sub 2} is investigated using a tracer transport model. The model uses winds from operational numerical weather prediction analyses and provides CO{sub 2} concentrations as a function of space and time. After a spin-up period of several years, biomass-burning sources are added, and model experiments are run for an additional year, utilizing various estimates of CO{sub 2} sources. The various model experiments show that biomass burning in the north African savannas significantly affects CO{sub 2} concentrations in South America. The effect is more pronounced during the period from January through March, when biomass burning in South America is almost nonexistent. During this period, atmospheric CO{sub 2} concentrations in parts of South America typically may increase by 0.5 to 0.75 ppm at 970 mbar, the average pressure of the lowest model layer. These figures are above the probable uncertainty level, as model runs with biomass-burning sources estimated from independent studies using distinct data sets and techniques indicate. From May through September, when severe biomass burning occurs in South America, the effect of north African savanna fires over South America has become generally small at 970 mbar, but north of the equator it may be of the same magnitude or larger than the effect of South American fires. The CO{sub 2} concentration increase in the extreme northern and southern portions of South America, however, is mostly due to southern African fires, whose effect may be 2-3 times larger than the effect of South American fires at 970 mbar. Even in the central part of the continent, where local biomass-burning emissions are maximum, southern African fires contribute to at least 15% of the CO{sub 2} concentration increase at 970 mbar. 20 refs., 15 figs., 1 tab.

  3. Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel: Fire Dynamics Simulator comparisons with measured data.

    PubMed

    Hu, L H; Fong, N K; Yang, L Z; Chow, W K; Li, Y Z; Huo, R

    2007-02-09

    Smoke and toxic gases, such as carbon monoxide, are the most fatal factors in fires. This paper models fire-induced smoke spread and carbon monoxide transportation in an 88m long channel by Fire Dynamics Simulator (FDS) with large eddy simulation (LES). FDS is now a well-founded fire dynamics computational fluid dynamic (CFD) program, which was developed by National Institute of Standards and Technology (NIST). Two full scale experiments with fire sizes of 0.75 and 1.6MW were conducted in this channel to validate the program. The spread of the fire-induced smoke flow together with the smoke temperature distribution along the channel, and the carbon monoxide concentration at an assigned position were measured. The FDS simulation results were compared with experimental data with fairly good agreement demonstrated. The validation work is then extended to numerically study the carbon monoxide concentration distribution, both vertically and longitudinally, in this long channel. Results showed that carbon monoxide concentration increase linearly with the height above the floor and decreases exponentially with the distance away from the fire source.

  4. Enhancement of strength and stiffness of Nylon 6 filaments through carbon nanotubes reinforcement

    NASA Astrophysics Data System (ADS)

    Mahfuz, Hassan; Adnan, Ashfaq; Rangari, Vijay K.; Hasan, Mohammad M.; Jeelani, Shaik; Wright, Wendelin J.; DeTeresa, Steven J.

    2006-02-01

    We report a method to fabricate carbon nanotube reinforced Nylon filaments through an extrusion process. In this process, Nylon 6 and multiwalled carbon nanotubes (MWCNT) are first dry mixed and then extruded in the form of continuous filaments by a single screw extrusion method. Thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC) studies have indicated that there is a moderate increase in Tg without a discernible shift in the melting endotherm. Tensile tests on single filaments have demonstrated that Young's modulus and strength of the nanophased filaments have increased by 220% and 164%, respectively with the addition of only 1wt.% MWCNTs. SEM studies and micromechanics based calculations have shown that the alignment of MWCNTs in the filaments, and high interfacial shear strength between the matrix and the nanotube reinforcement was responsible for such a dramatic improvement in properties.

  5. Tensile strength and its scatter of unidirectional carbon fiber reinforced composites

    SciTech Connect

    Hamada, H.; Oya, N.; Yamashita, K.; Maekawa, Z.I.

    1995-12-31

    0 (along the fiber direction) and 90 degree (transverse to the fiber direction) tension tests of Carbon Fiber Reinforced Plastics (CFRP) using a great number of specimens were conducted. Tensile properties and their scatter were evaluated by means of the data base. Materials used in this study were seven kinds of carbon fibers and three kinds of epoxy resins. Reinforcing fiber and matrix resin properties strongly affected on 0 and 90 degree properties of CFRP respectively. In 0 degree tension tests, fracture mode of specimen vaned in each material, and a relationship between the scatter of strength and the fracture mode existed. From the results of 9 degree tension tests, some differences of interfacial properties between each laminate were` also detected. According to some considerations on fracture mechanism in 0 degree tension test, it was deduced that the fracture mode depended on the balance of fiber, matrix and interface properties.

  6. Viability of Carbon Capture and Sequestration Retrofits for Existing Coal-Fired Power Plants under an Emission Trading Scheme.

    PubMed

    Talati, Shuchi; Zhai, Haibo; Morgan, M Granger

    2016-12-06

    Using data on the coal-fired electric generating units (EGUs) in Texas we assess the economic feasibility of retrofitting existing units with carbon capture and sequestration (CCS) in order to comply with the Clean Power Plan's rate-based emission standards under an emission trading scheme. CCS with 90% capture is shown to be more economically attractive for a range of existing units than purchasing emission rate credits (ERCs) from a trading market at an average credit price above $28 per MWh under the final state standard and $35 per MWh under the final national standard. The breakeven ERC trading prices would decrease significantly if the captured CO2 were sold for use in enhanced oil recovery, making CCS retrofits viable at lower trading prices. The combination of ERC trading and CO2 use can greatly reinforce economic incentives and market demands for CCS and hence accelerate large-scale deployment, even under scenarios with high retrofit costs. Comparing the levelized costs of electricity generation between CCS retrofits and new renewable plants under the ERC trading scheme, retrofitting coal-fired EGUs with CCS may be significantly cheaper than new solar plants under some market conditions.

  7. Impacts of fire management on aboveground tree carbon stocks in Yosemite and Sequoia & Kings Canyon National Parks

    USGS Publications Warehouse

    Matchett, John R.; Lutz, James A.; Tarnay, Leland W.; Smith, Douglas G.; Becker, Kendall M.L.; Brooks, Matthew L.

    2015-01-01

    We compared our landscape carbon estimates in YOSE to remotely-sensed carbon estimates from the NASA–CASA project and found that the two methods roughly agree. Our analysis and comparisons suggest, however, that fire severity should be integrated into future carbon mapping efforts. We illustrate this with an example using the 2013 Rim Fire, which we estimate burned an area containing over 5 Tg of aboveground tree carbon, but likely left a large fraction of that carbon on the landscape if one accounts for fire severity.

  8. Wear in carbon fiber-reinforced polyethylene (poly-two) knee prostheses.

    PubMed

    Busanelli, L; Squarzoni, S; Brizio, L; Tigani, D; Sudanese, A

    1996-01-01

    The authors report a case of massive wear of carbon fiber-reinforced polyethylene used as an insert in a knee prosthesis. The finding, which was studied under a scanning electron microscope, in agreement with mechanical resistance and laboratory testing reported in the literature, confirms that this composite material (poly-two) is not more advantageous to use that ultra-high molecular weight polyethylene in terms of wear, despite favorable experimental premises.

  9. Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics.

    PubMed

    Mulaveesala, Ravibabu; Venkata Ghali, Subbarao

    2011-05-01

    This paper proposes a Barker coded excitation for defect detection using infrared non-destructive testing. Capability of the proposed excitation scheme is highlighted with recently introduced correlation based post processing approach and compared with the existing phase based analysis by taking the signal to noise ratio into consideration. Applicability of the proposed scheme has been experimentally validated on a carbon fiber reinforced plastic specimen containing flat bottom holes located at different depths.

  10. Interlaminar damage of carbon fiber reinforced polymer composite laminate under continuous wave laser irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Chi; Wu, Chen-Wu; Huang, Yi-Hui; Song, Hong-Wei; Huang, Chen-Guang

    2017-01-01

    The interlaminar damages were investigated on the carbon fiber reinforced polymer (CFRP) composite laminate under laser irradiation. Firstly, the laminated T700/BA9916 composites were exposed to continuous wave laser irradiation. Then, the interface cracking patterns of such composite laminates were examined by optical microscopy and scanning electron microscopy. Finally, the Finite Element Analysis (FEA) was performed to compute the interface stress of the laminates under laser irradiation. And the effects of the laser parameters on the interlaminar damage were discussed.

  11. Rheological properties of carbon nanotubes-reinforced magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Aziz, S. A. A.; Mazlan, SA; Nik Ismail, N. I.; Ubaidillah; Khairi, MHA; Yunus, NA

    2017-01-01

    Magnetorheological elastomer (MRE) based on the natural rubber with different types of multiwall carbon nanotubes (MWCNT) as additives were synthesized. MRE with pristine MWCNTs was prepared as a control and the carboxylated (MWCNT-COOH), as well as hydroxylated (MWCNT-OH) were introduced as new additives in MRE. Their rheological properties under different magnetic field were evaluated by using the rheometer (MCR 302, AntonPaar, Austria) equipped with the electromagnetic device. The dependency of MREs towards excitation frequencies under different magnetic field was investigated. It is shown that the storage modulus and loss factor of MRE with functionalized MWCNTs exhibited noticeable increment in MR performance compared to control parallel with the frequencies increment.

  12. Reinforcing polymer composites with epoxide-grafted carbon nanotubes.

    PubMed

    Wang, Shiren; Liang, Richard; Wang, Ben; Zhang, Chuck

    2008-02-27

    An in situ functionalization method was used to graft epoxide onto single-walled carbon nanotubes (SWNTs) and improve the integration of SWNTs into epoxy polymer. The characterization results of Raman, FT-IR and transmission electron microscopy (TEM) validated the successful functionalization with epoxide. These functionalized SWNTs were used to fabricate nanocomposites, resulting in uniform dispersion and strong interfacial bonding. The mechanical test demonstrated that, with only 1 wt% loading of functionalized SWNTs, the tensile strength of nanocomposites was improved by 40%, and Young's modulus by 60%.These results suggested that efficient load transfer has been achieved through epoxide-grafting. This investigation provided an efficient way to improve the interfacial bonding of multifunctional high-performance nanocomposites for lightweight structure material applications.

  13. Variability of fire carbon emissions in equatorial Asia and its nonlinear sensitivity to El Niño

    NASA Astrophysics Data System (ADS)

    Yin, Yi; Ciais, Philippe; Chevallier, Frederic; Werf, Guido R.; Fanin, Thierry; Broquet, Gregoire; Boesch, Hartmut; Cozic, Anne; Hauglustaine, Didier; Szopa, Sophie; Wang, Yilong

    2016-10-01

    The large peatland carbon stocks in the land use change-affected areas of equatorial Asia are vulnerable to fire. Combining satellite observations of active fire, burned area, and atmospheric concentrations of combustion tracers with a Bayesian inversion, we estimated the amount and variability of fire carbon emissions in equatorial Asia over the period 1997-2015. Emissions in 2015 were of 0.51 ± 0.17 Pg carbon—less than half of the emissions from the previous 1997 extreme El Niño, explained by a less acute water deficit. Fire severity could be empirically hindcasted from the cumulative water deficit with a lead time of 1 to 2 months. Based on CMIP5 climate projections and an exponential empirical relationship found between fire carbon emissions and water deficit, we infer a total fire carbon loss ranging from 12 to 25 Pg by 2100 which is a significant positive feedback to climate warming.

  14. Monitoring of fire incidences in vegetation types and Protected Areas of India: Implications on carbon emissions

    NASA Astrophysics Data System (ADS)

    Reddy, C. Sudhakar; Padma Alekhya, V. V. L.; Saranya, K. R. L.; Athira, K.; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.

    2017-02-01

    Carbon emissions released from forest fires have been identified as an environmental issue in the context of global warming. This study provides data on spatial and temporal patterns of fire incidences, burnt area and carbon emissions covering natural vegetation types (forest, scrub and grassland) and Protected Areas of India. The total area affected by fire in the forest, scrub and grasslands have been estimated as 48765.45, 6540.97 and 1821.33 km 2, respectively, in 2014 using Resourcesat-2 AWiFS data. The total CO 2 emissions from fires of these vegetation types in India were estimated to be 98.11 Tg during 2014. The highest emissions were caused by dry deciduous forests, followed by moist deciduous forests. The fire season typically occurs in February, March, April and May in different parts of India. Monthly CO 2 emissions from fires for different vegetation types have been calculated for February, March, April and May and estimated as 2.26, 33.53, 32.15 and 30.17 Tg, respectively. Protected Areas represent 11.46% of the total natural vegetation cover of India. Analysis of fire occurrences over a 10-year period with two types of sensor data, i.e., AWiFS and MODIS, have found fires in 281 (out of 614) Protected Areas of India. About 16.78 Tg of CO 2 emissions were estimated in Protected Areas in 2014. The natural vegetation types of Protected Areas have contributed for burnt area of 17.3% and CO 2 emissions of 17.1% as compared to total natural vegetation burnt area and emissions in India in 2014. 9.4% of the total vegetation in the Protected Areas was burnt in 2014. Our results suggest that Protected Areas have to be considered for strict fire management as an effective strategy for mitigating climate change and biodiversity conservation.

  15. Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization

    PubMed Central

    Liu, Yong; Ma, Jiaqi; Lu, Ting; Pan, Likun

    2016-01-01

    Carbon nanofibers reinforced 3D porous carbon polyhedra network (e-CNF-PCP) was prepared through electrospinning and subsequent thermal treatment. The morphology, structure and electrochemical performance of the e-CNF-PCP were characterized using scanning electron microscopy, Raman spectra, nitrogen adsorption-desorption, cyclic voltammetry and electrochemical impedance spectroscopy, and their electrosorption performance in NaCl solution was studied. The results show that the e-CNF-PCP exhibits a high electrosorption capacity of 16.98 mg g−1 at 1.2 V in 500 mg l−1 NaCl solution, which shows great improvement compared with those of electrospun carbon nanofibers and porous carbon polyhedra. The e-CNF-PCP should be a very promising candidate as electrode material for CDI applications. PMID:27608826

  16. Studying Impact Damage on Carbon-Fiber Reinforced Aircraft Composite Panels with Sonicir

    NASA Astrophysics Data System (ADS)

    Han, Xiaoyan; Zhao, Xinyue; Zhang, Ding; He, Qi; Song, Yuyang; Lubowicki, Anthony; Newaz, Golam.; Favro, Lawrence D.; Thomas, Robert L.

    2011-06-01

    Composites are becoming more important materials in commercial aircraft structures such as the fuselage and wings with the new B787 Dreamliner from Boeing which has the target to utilize 50% by weight of composite materials. Carbon-fiber reinforced composites are the material of choice in aircraft structures. This is due to their light weight and high strength (high strength-to-weight ratio), high specific stiffness, tailorability of properties, design flexibility etc. Especially, by reducing the aircraft's body weight by using such lighter structures, the cost of fuel can be greatly reduced with the high jet fuel price for commercial airlines. However, these composites are prone to impact damage and the damage may occur without any observable sign on the surface, yet resulting in delaminations and disbonds that may occur well within the layers. We are studying the impact problem with carbon-fiber reinforced composite panels and developing SonicIR for this application as a fast and wide-area NDE technology. In this paper, we present our results in studying composite structures including carbon-fiber reinforced composite materials, and preliminary quantitative studies on delamination type defect depth identification in the panels.

  17. Studying impact damage on carbon-fiber reinforced aircraft composite panels with sonicir

    SciTech Connect

    Han Xiaoyan; Zhang Ding; He Qi; Song Yuyang; Lubowicki, Anthony; Zhao Xinyue; Newaz, Golam.; Favro, Lawrence D.; Thomas, Robert L.

    2011-06-23

    Composites are becoming more important materials in commercial aircraft structures such as the fuselage and wings with the new B787 Dreamliner from Boeing which has the target to utilize 50% by weight of composite materials. Carbon-fiber reinforced composites are the material of choice in aircraft structures. This is due to their light weight and high strength (high strength-to-weight ratio), high specific stiffness, tailorability of properties, design flexibility etc. Especially, by reducing the aircraft's body weight by using such lighter structures, the cost of fuel can be greatly reduced with the high jet fuel price for commercial airlines. However, these composites are prone to impact damage and the damage may occur without any observable sign on the surface, yet resulting in delaminations and disbonds that may occur well within the layers. We are studying the impact problem with carbon-fiber reinforced composite panels and developing SonicIR for this application as a fast and wide-area NDE technology. In this paper, we present our results in studying composite structures including carbon-fiber reinforced composite materials, and preliminary quantitative studies on delamination type defect depth identification in the panels.

  18. Deformation behavior of FRP-metal composites locally reinforced with carbon fibers

    NASA Astrophysics Data System (ADS)

    Scholze, M.; Kolonko, A.; Lindner, T.; Lampke, T.; Helbig, F.

    2016-03-01

    This study investigates variations of hybrid laminates, consisting of one aluminum sheet and a unidirectional glass fiber (GF) reinforced polyamide 6 (PA6) basic structure with partial carbon fiber (CF) reinforcement. To create these heterogeneous FRP laminates, it is necessary to design and produce semi-finished textile-based products. Moreover, a warp knitting machine in conjunction with a warp thread offset unit was used to generate bionic inspired compounds. By the variation of stacking prior to the consolidation process of the hybrid laminate, an oriented CF reinforcement at the top and middle layer of the FRP is realized. In both cases the GFRP layer prevents contact between the aluminum and carbon fibers. In so doing, the high strength of carbon fibers can be transferred to the hybrid laminate in load directions with an active prevention of contact corrosion. The interface strength between thermoplastic and metal component was improved by a thermal spray coating on the aluminum sheet. Because of the high surface roughness and porosity, mechanical interlock was used to provide high interface strength without bonding agents between both components. The resulting mechanical properties of the hybrid laminates are evaluated by three point bending tests in different load directions. The effect of local fiber orientation and layer positioning on failure and deformation mechanism is additionally investigated by digital image correlation (DIC).

  19. North African savanna fires and atmospheric carbon dioxide

    NASA Technical Reports Server (NTRS)

    Iacobellis, Sam F.; Frouin, Robert; Razafimpanilo, Herisoa; Somerville, Richard C. J.; Piper, Stephen C.

    1994-01-01

    The effect of north African savanna fires on atmospheric CO2 is investigated using a tracer transport model. The model uses winds from operational numerical weather prediction analyses and provides CO2 concentrations as a function of space and time. After a spin-up period of several years, biomass-burning sources are added, and model experiments are run for an additional year, utilizing various estimates of CO2 sources. The various model experiments show that biomass burning in the north African savannas significantly affects CO2 concentrations in South America. The effect is more pronounced during the period from January through March, when biomass burning in South America is almost nonexistent. During this period, atmospheric CO2 concentrations in parts of South America typically may increase by 0.5 to 0.75 ppm at 970 mbar, the average pressure of the lowest model layer. These figures are above the probable uncertainty level, as model runs with biomass-burning sources estimated from independent studies using distinct data sets and techniques indicate. From May through September, when severe biomass burning occurs in South America, the effect of north African savanna fires over South America has become generally small at 970 mbar, but north of the equator it may be of the same magnitude or larger than the effect of South American fires. The CO2 concentration increase in the extreme northern and southern portions of South America, however, is mostly due to southern African fires, whose effect may be 2-3 times larger than the effect of South American fires at 970 mbar. Even in the central part of the continent, where local biomass-burning emissions are maximum, southern African fires contribute to at least 15% of the CO2 concentration increase at 970 mbar. At higher levels in the atmosphere, less CO2 emitted by north African savanna fires reaches South America, and at 100 mbar no significant amount of CO2 is transported across the Atlantic Ocean. The vertical

  20. Daily burned area and carbon emissions from boreal fires in Alaska

    NASA Astrophysics Data System (ADS)

    Veraverbeke, S.; Rogers, B. M.; Randerson, J. T.

    2014-12-01

    Boreal fires burn carbon-rich organic soils, thereby releasing large quantities of trace gases and aerosols that influence atmospheric composition and climate. To better understand the factors regulating boreal fire emissions, we developed a statistical model of carbon consumption by fire for Alaska with a spatial resolution of 500 m and a temporal resolution of one day. We used the model to estimate variability in carbon emissions between 2001 and 2012. Daily burned area was mapped using imagery from the Moderate Resolution Imaging Spectroradiometer combined with perimeters from the Alaska Large Fire Database. Carbon consumption was calibrated using available field measurements from black spruce forests in Alaska. We built two nonlinear multiplicative models to separately predict above- and belowground carbon consumption by fire in response to environmental variables including elevation, day of burning within the fire season, pre-fire tree cover and the differenced normalized burn ratio (dNBR). Higher belowground consumption occurred later in the season and for mid-elevation regions. Aboveground and belowground consumption also increased as a function of tree cover and the dNBR, suggesting a causal link between the processes regulating these two components of consumption. Between 2001 and 2012, the median fuel consumption was 2.48 kg C m-2 and the median pixel-based uncertainty (SD of prediction error) was 0.38 kg C m-2. There were considerable amounts of burning in other cover types than black spruce and consumption in pure black spruce stands was generally higher. Fuel consumption originated primarily from the belowground fraction (median = 2.30 kg C m-2 for all cover types and 2.63 kg C m-2 for pure black spruce stands). Total carbon emissions varied considerably from year to year, with the highest emissions occurring during 2004 (67 Tg C), 2005 (44 Tg C), 2009 (25 Tg C), and 2002 (16 Tg C) and a mean of 14 Tg C per year between 2001 and 2012. Our analysis

  1. Modelling and simulation of randomly oriented carbon fibre-reinforced composites under thermal load

    NASA Astrophysics Data System (ADS)

    Treffler, R.; Fröschl, J.; Drechsler, K.; Ladstätter, E.

    2016-03-01

    Carbon fibre-reinforced sheet moulding compounds (CF-SMC) already exhibit a complex material behaviour under uniaxial loads due to the random orientation of the fibres in the matrix resin. Mature material models for metallic materials are generally not transferable. This paper proposes an approach for modelling the fatigue behaviour of CF-SMC based on extensive static and cyclic tests using low cost secondary carbon fibres (SCF). The main focus is on describing the stiffness degradation considering the dynamic modulus of the material. Influence factors such as temperature, orientation, rate dependence and specimen thickness were additionally considered.

  2. Complementary methods for nondestructive testing of composite materials reinforced with carbon woven fibers

    NASA Astrophysics Data System (ADS)

    Steigmann, R.; Iftimie, N.; Sturm, R.; Vizureanu, P.; Savin, A.

    2015-11-01

    This paper presents complementary methods used in nondestructive evaluation (NDE) of composite materials reinforced with carbon woven fibers as two electromagnetic methods using sensor with orthogonal coils and sensor with metamaterials lens as well as ultrasound phased array method and Fiber Bragg gratings embedded instead of a carbon fiber for better health monitoring. The samples were impacted with low energy in order to study delamination influence. The electromagnetic behavior of composite was simulated by finite- difference time-domain (FDTD) software, showing a very good concordance with electromagnetic nondestructive evaluation tests.

  3. An Electrical Resistance Change Method for Carbon Fiber Reinforced Plastic Inspection

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Todoroki, A.; Mei, G.; Ren, Z.; Kwan, C.

    2007-03-01

    Carbon fibers are intrinsically conductive. They form an equivalent impedance network inside a carbon fiber reinforced plastic (CFRP) composite material. This paper presents a method of using the resistance value change to detect, localize and size the damage or defect initiated inside the CFRP. Impact delamination and fatigue cracks are successfully monitored with this approach. This low cost, easy-to-implement technology could benefit aerospace and automotive industries for in-situ structural health monitoring of graphite-epoxy based components and subsystems.

  4. The oxidative stability of carbon fibre reinforced glass-matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Batt, J. A.

    1988-01-01

    The environmental stability of carbon fibre reinforced glass-matrix composites is assessed. Loss of composite strength due to oxidative exposure at elevated temperatures under no load, static load and cyclic fatigue as well as due to thermal cycling are all examined. It is determined that strength loss is gradual and predictable based on the oxidation of carbon fibres. The glass matrix was not found to prevent this degradation but simply to limit it to a gradual process progressing from the composite surfaces inward.

  5. The Dependance of Damage Accumulation in Carbon Fibre Reinforced Epoxy Composites on Matrix Properties.

    DTIC Science & Technology

    1985-12-01

    Diguuibutiofl Unlimited 0- Contract U.S. AIR FORCE/ARMINES- Centre des Matdriaux No A.F.O.S.R. 84-0397 - Final Report December 1985 THE DEPENDANCE OF DAMAGE...61102F 2301 D1 185 11 TITLE (include Security Classification) THE DEPENDANCE OF DAMAGE ACCUMULATION IN CARBON FIBRE REINFORCED EPOXY COMPOSITES ON...ATN OF: LTS/Autovon 235-4299 26 March 1986 SUBJECT: EOARD-TR-86-04, Final Scientific Report, "The Dependance of Damage Accumu- lation in Carbon Fibre

  6. Carbon nanotube reinforced aluminum nanocomposite via plasma and high velocity oxy-fuel spray forming.

    PubMed

    Laha, T; Liu, Y; Agarwal, A

    2007-02-01

    Free standing structures of hypereutectic aluminum-23 wt% silicon nanocomposite with multiwalled carbon nanotubes (MWCNT) reinforcement have been successfully fabricated by two different thermal spraying technique viz Plasma Spray Forming (PSF) and High Velocity Oxy-Fuel (HVOF) Spray Forming. Comparative microstructural and mechanical property evaluation of the two thermally spray formed nanocomposites has been carried out. Presence of nanosized grains in the Al-Si alloy matrix and physically intact and undamaged carbon nanotubes were observed in both the nanocomposites. Excellent interfacial bonding between Al alloy matrix and MWCNT was observed. The elastic modulus and hardness of HVOF sprayed nanocomposite is found to be higher than PSF sprayed composites.

  7. Investigation of the dielectric properties and defectoscopy of nanocomposites based on silica and polymers reinforced with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Osokin, C. S.; Eseev, M. K.; Goshev, A. A.; Horodek, P.; Kapustin, S. N.; Kobets, A. G.; Volkov, A. S.

    2016-11-01

    This work presents the results of experimental studies of the properties of nanocomposites based on silica and polypropylene reinforced with carbon nanotubes by dielectric relaxation and positron annihilation spectroscopy. On the basis of these results the technique of diagnosis and control of the investigated materials are proposed. This work was supported by the project of the Ministry of Education of Russian Federation №3635 "Investigation of the nanocomposites properties at controlled modification of the structure by reinforcement with carbon nanotubes".

  8. Electrospun carbon nanofibers for improved electrical conductivity of fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Alarifi, Ibrahim M.; Alharbi, Abdulaziz; Khan, Waseem S.; Asmatulu, Ramazan

    2015-04-01

    Polyacrylonitrile (PAN) was dissolved in dimethylformamide (DMF), and then electrospun to generate nanofibers using various electrospinning conditions, such as pump speeds, DC voltages and tip-to-collector distances. The produced nanofibers were oxidized at 270 °C for 1 hr, and then carbonized at 850 °C in an argon gas for additional 1 hr. The resultant carbonized PAN nanofibers were placed on top of the pre-preg carbon fiber composites as top layers prior to the vacuum oven curing following the pre-preg composite curing procedures. The major purpose of this study is to determine if the carbonized nanofibers on the fiber reinforced composites can detect the structural defects on the composite, which may be useful for the structural health monitoring (SHM) of the composites. Scanning electron microscopy images showed that the electrospun PAN fibers were well integrated on the pre-preg composites. Electrical conductivity studies under various tensile loads revealed that nanoscale carbon fibers on the fiber reinforced composites detected small changes of loads by changing the resistance values. Electrically conductive composite manufacturing can have huge benefits over the conventional composites primarily used for the military and civilian aircraft and wind turbine blades.

  9. Multiwalled carbon nanotube (MWCNT) reinforced cellulose fibers by electrospinning.

    PubMed

    Lu, Ping; Hsieh, You-Lo

    2010-08-01

    Multiwalled carbon nanotubes (MWCNTs) were successfully incorporated in ultrafine cellulose fibers by electrospinning MWCNT-loaded cellulose acetate (CA) solutions, followed by deacetylation of CA to cellulose (cell). The mean fiber diameter reduced from 321 nm of the as-spun fibers to 257 and 228 nm of those with 0.11 and 0.55 wt % MWCNTs, respectively, and became more uniform. Hydrolysis of CA to cell further reduced the mean fiber sizes by another 8-16%. The MWCNTs were observed to be well-aligned along the fiber axes. The MWCNT/cell composite fibers had increased specific surface, from 4.27 m(2)/g to 5.07 and 7.69 m(2)/g at 0.11 and 0.55 wt % MWCNTs, respectively, and much improved water wettability. The mechanical properties of the fibers were also greatly enhanced with increased MWCNT loading levels. The fact that MWCNTs were observed in only about a third of the fibers at a very low 0.55 wt % loading suggests significantly higher tensile strength may be achieved by a further increase in MWCNT loadings.

  10. Reinforced Thermoplastic Polyimide with Dispersed Functionalized Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Lebron-Colon, Marisabel; Meador, Michael A.; Gaier, James R.; Sola, Francisco; Scheiman, Daniel A.; McCorkle, Linda S.

    2010-01-01

    Molecular pi-complexes were formed from pristine HiPCO single-wall carbon nanotubes (SWCNTs) and 1-pyrene- N-(4- N'-(5-norbornene-2,3-dicarboxyimido)phenyl butanamide, 1. Polyimide films were prepared with these complexes as well as uncomplexed SWCNTs and the effects of nanoadditive addition on mechanical, thermal, and electrical properties of these films were evaluated. Although these properties were enhanced by both nanoadditives, larger increases in tensile strength and thermal and electrical conductivities were obtained when the SWCNT/1 complexes were used. At a loading level of 5.5 wt %, the Tg of the polyimide increased from 169 to 197 C and the storage modulus increased 20-fold (from 142 to 3045 MPa). The addition of 3.5 wt % SWCNT/1 complexes increased the tensile strength of the polyimide from 61.4 to 129 MPa; higher loading levels led to embrittlement and lower tensile strengths. The electrical conductivities (DC surface) of the polyimides increased to 1 x 10(exp -4) Scm(exp -1) (SWCNT/1 complexes loading level of 9 wt %). Details of the preparation of these complexes and their effects on polyimide film properties are discussed.

  11. Arctic Deposition of Black Carbon from Fires in Northern Eurasia from 2002 to 2013

    NASA Astrophysics Data System (ADS)

    Hao, W. M.; Evangeliou, N.; Balkanski, Y.; Urbanski, S. P.

    2015-12-01

    Black carbon (BC) in smoke plumes from fires in Northern Eurasia can be transported and deposited on Arctic ice and accelerate ice melting. Thus, we developed daily BC emissions from fires in this region at a 500 m x 500 m resolution from 2002 to 2013 and modeled the BC transport and deposition in the Arctic. BC emissions were estimated based on MODIS land cover maps and detected burned areas, the Forest Inventory Survey of the Russian Federation, and biomass specific BC emission factors. An average of 250,000 km2 were burned annually in Northern Eurasia. Grassland dominates the total burned area (61%), followed by forest (27%). For grassland fires, about three-quarters of the area burned occurred in Central and Western Asia and about 17% in Russia. More than 90% of the forest burned area was in Russia. Annual BC emissions from Northern Eurasian fires varied enormously with an average of 0.82±0.50 Tg. In contrast to burned area, forest fires dominated BC emissions and accounted for about two-thirds of the emissions, followed by grassland fires (15%). More than 90% of the BC emissions from forest fires occurred in Russia. Overall, Russia contributed 83% of the total BC emissions from fires in Northern Eurasia. The transport and deposition of BC on Arctic ice from all the global sources was estimated using the LMDz-OR-INCA global chemistry-aerosol-climate model. About 7.9% of emitted BC from fires were deposited on the Arctic ice, accounting for 45-78% of the BC deposited from all sources. However, about 20% of the BC emitted from fires were deposited on Arctic in spring which is the most effective period for acceleration of melting of ice. The simulated BC concentrations are consistent with obserations at the Arctic monitoring stations of Albert, Barrow, Nord, Zeppelin, and Tiksi.

  12. Advanced in situ multi-scale characterization of hardness of carbon-fiber-reinforced plastic

    NASA Astrophysics Data System (ADS)

    Wang, Hongxin; Masuda, Hideki; Kitazawa, Hideaki; Onishi, Keiko; Kawai, Masamichi; Fujita, Daisuke

    2016-10-01

    In situ multi-scale characterization of hardness of carbon-fiber-reinforced plastic (CFRP) is demonstrated by a traditional hardness tester, instrumented indentation tester and atomic-force-microscope (AFM)-based nanoindentation. In particular, due to the large residual indentation and nonuniform distribution of the microscale carbon fibers, the Vickers hardness could not be calculated by the traditional hardness tester. In addition, the clear residual microindentation could not be formed on the CFRP by instrumented indentation tester because of the large tip half angle of the Berkovich indenter. Therefore, an efficient technique for characterizing the true nanoscale hardness of CFRP was proposed and evaluated. The local hardness of the carbon fibers or plastic matrix on the nanoscale did not vary with nanoindentation location. The Vickers hardnesses of the carbon fiber and plastic matrix determined by AFM-based nanoindentation were 340 ± 30 and 40 ± 2 kgf/mm2, respectively.

  13. PM2.5 and Carbon Emissions from Prescribed Fire in a Longleaf Pine Ecosystem

    NASA Astrophysics Data System (ADS)

    Strenfel, S. J.; Clements, C. B.; Hiers, J. K.; Kiefer, C. M.

    2008-12-01

    Prescribed fires are a frequently utilized land-management tool in the Southeastern US. In order to better characterize emissions and impacts from prescribed fire in longleaf pine ecosystems, in situ data were obtained within the burn perimeter using a 10-m instrumented flux tower. Turbulence and temperature data at 10-m were sampled at 10 Hz using a sonic anemometer and fine-wire thermocouples respectively. Measurements of PM2.5, CO and CO2 emissions were sampled at 10-m within the burn perimeter and PM2.5 and Black Carbon PM2.5 were sampled 0.5 km downwind of the fire front using a 2-m instrumented tripod. Preliminary results indicate PM2.5 and carbon emissions significantly increased during the fire-front passage, and downwind PM concentrations were amplified beyond pre-fire ambient concentrations. In addition, the considerable amount a heat release and flux data gathered from these prescribed fires suggests that near surface atmospheric conditions were directly impacted by increased turbulence generation.

  14. The Effects of Climate and Fire on Peatland Carbon Dynamics in Central and Eastern Canada

    NASA Astrophysics Data System (ADS)

    Lesser, D.; Adams, C.; Westervelt, A.; Bourakovsky, A.; Hamley, C.; Hall, A.; Camill, P.; Umbanhowar, C. E., Jr.

    2014-12-01

    Carbon fluxes in subarctic peatlands could change significantly in response to high-latitude warming. To examine the sensitivity of peatland carbon storage to changes in regional climate, moisture, and disturbance, we measured carbon accumulation and peat characteristics in cores through the transition from the Holocene Thermal Maximum (HTM, ~6-4 ka cal. yr. BP) to the Neoglacial cooling (NGC, ~4-0 ka) as possible analogs to future climate change. We sampled six cores from northern Manitoba and seven cores across southeast Labrador, Canada. These regional contrasts permitted analysis of net moisture regimes on carbon accumulation. We used calibrated 14C dates, percent carbon, and bulk density measurements to determine long-term carbon accumulation rates for the Holocene. Areal charcoal concentrations were measured as a proxy for historic fire severity, which may mediate the climate-carbon accumulation relationship. Carbon accumulation rates in Labrador showed a clear increase of 29.6 ± 2.4 g C m-2 yr-1 during the local HTM and a subsequent decrease of 15.9 ± 2.9 g C m-2 yr-1 during the NGC indicating possible influence of regional temperature on carbon dynamics in eastern Canada. In contrast, the Manitoba peatlands did not show a clear relationship between climate and carbon accumulation. Fires were common and severe in Manitoba and often slowed sedimentation rate and C storage, but were rarely present in Labrador. Local variables, including peatland development and fire, may therefore play a larger role in controlling carbon accumulation in the continental interior. The results from these two subaratic regions complicate general hypotheses that high latitude peatlands will be either carbon sinks or sources in the upcoming decades.

  15. Deformation Behavior during Processing in Carbon Fiber Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Ogihara, Shinji; Kobayashi, Satoshi

    In this study, we manufacture the device for measuring the friction between the prepreg curing process and subjected to pull-out tests with it The prepreg used in this study is a unidirectional carbon/epoxy, produced by TORAY designation of T700SC/2592.When creating specimens 4-ply prepregs are prepared and laminated. The 2-ply prepregs in the middle are shifted 50mm. In order to measure the friction between the prepreg during the cure process, we simulate the environment in the autoclave in the device, and we experiment in pull-out test. Test environment simulating temperature and pressure. The speed of displacement should be calculated by coefficient of thermal expansions (CTE). By calculation, 0.05mm/min gives the order of magnitude of displacement speed. In this study, 3 pull-out speeds are used: 0.01, 0.05 and 0.1mm/min. The specimen was heated by a couple of heaters, and we controlled the heaters with a temperature controller along the curing conditions of the prepreg. We put pressure using 4 bolts. Two strain gages were put on the bolt. We can understand the load applied to the specimen from the strain of the bolt. Pressure was adjusted the tightness of the bolt according to curing conditions. By using such a device, the pull-out test performed by tensile testing machine while adding temperature and pressure. During the 5 hours, we perform experiments while recording the load and stroke. The shear stress determined from the load and the stroke, and evaluated.

  16. Cyclic hot firing results of tungsten-wire-reinforced, copper-lined thrust chambers

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Jankovsky, Robert S.

    1990-01-01

    An advanced thrust liner material for potential long life reusable rocket engines is described. This liner material was produced with the intent of improving the reusable life of high pressure thrust chambers by strengthening the chamber in the hoop direction, thus avoiding the longitudinal cracking due to low cycle fatigue that is observed in conventional homogeneous copper chambers, but yet not reducing the high thermal conductivity that is essential when operating with high heat fluxes. The liner material produced was a tungsten wire reinforced copper composite. Incorporating this composite into two hydrogen-oxygen test rocket chambers was done so that its performance as a reusable liner material could be evaluated. Testing results showed that both chambers failed prematurely, but the crack sites were perpendicular to the normal direction of cracking indicating a degree of success in containing the tremendous thermal strain associated with high temperature rocket engines. The failures, in all cases, were associated with drilled instrumentation ports and no other damages or deformations were found elsewhere in the composite liners.

  17. Biological and physicochemical properties of carbon-graphite fibre-reinforced polymers intended for implant suprastructures.

    PubMed

    Segerström, Susanna; Sandborgh-Englund, Gunilla; Ruyter, Eystein I

    2011-06-01

    The aim of this study was to determine water sorption, water solubility, dimensional change caused by water storage, residual monomers, and possible cytotoxic effects of heat-polymerized carbon-graphite fibre-reinforced composites with different fibre loadings based on methyl methacrylate/poly(methyl methacrylate) (MMA/PMMA) and the copolymer poly (vinyl chloride-co-vinyl acetate). Two different resin systems were used. Resin A contained ethylene glycol dimethacrylate (EGDMA) and 1,4-butanediol dimethacrylate (1,4-BDMA); the cross-linker in Resin B was diethylene glycol dimethacrylate (DEGDMA). The resin mixtures were reinforced with 24, 36 and 47 wt% surface-treated carbon-graphite fibres. In addition, polymer B was reinforced with 58 wt% fibres. Water sorption was equal to or below 3.34±1.18 wt%, except for the 58 wt% fibre loading of polymer B (5.27±1.22 wt%). Water solubility was below 0.36±0.015 wt%, except for polymer B with 47 and 58 wt% fibres. For all composites, the volumetric increase was below 0.01±0.005 vol%. Residual MMA monomer was equal to or below 0.68±0.05 wt% for the fibre composites. The filter diffusion test and the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay demonstrated no cytotoxicity for the carbon-graphite fibre-reinforced composites, and residual cross-linking agents and vinyl chloride were not detectable by high-performance liquid chromatography (HPLC) analysis.

  18. Land abandonment, fire recurrence and soil carbon content in the Macizo del Caroig, Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdá, A.; González Peñaloza, F.; Santín, C.; Doerr, S. H.

    2012-04-01

    During the last 50 years two main forces have driven the fate of Mediterranean landscapes: land abandonment and forest fires (MacDonald et al., 2000; Moreira et al., 2001). Due to the economical changes suffered by the of the Mediterranean countries after the Second World War, the population migrated from the rural to the urban areas, and from South to North Europe. The land abandonment allowed the vegetation to recover and, as a consequence, an increase in forest fire took place. The soils of the abandoned land recovered the vegetation and litter layers, and consequently changes in soil properties have being found. One of these changes is the increase of soil carbon content, which is due both to vegetation recovery and to fire occurrence that increases the ash and pyrogenic carbon content in soils. Twenty plots were selected in the Macizo del Caroig in Eastern Spain on soils developed on limestone. The period of abandonment and the forest fires that had affected each plot were determined by interviews with the owners, farmers and shepherds. In addition, six (three + three) plots were selected as forest (no plough) and cultivated control plots. Each plot was sampled (10 random samples) and the organic carbon content determined. The results show that the cultivated plots have organic matter contents of 1.02 %, and the forest (Quercus ilex sp.) plots reach the highest value: 14.98 %. Within those we found values that range from 2.34 %, in the recently abandoned plots (10 year abandonment), to values of 8.23 % in the 50 year old abandoned fields.The results demonstrate that there is a recovery of the organic carbon in abandoned soils and that the forest fires do no affect this trend. The increase of soil organic matter after abandonment is a result of the recovery of vegetation(Debussche et al., 2001), which is the consequence of the end of the disturbance of forest that have affected the Mediterranean for millennia (Barbero et al., 1990). The colonization of the

  19. The effect of the reinforcing carbon on the microstructure of pitch-based granular composites.

    PubMed

    Méndez, A; Santamaría, R; Granda, M; Menéndez, R

    2003-02-01

    Carbon composites were prepared with four pitches (a commercial impregnating coal-tar pitch, two thermally treated pitches and an air-blown pitch) and four granular carbons (anthracite, graphite, green petroleum coke and foundry coke). Granular carbon/pitch proportions were optimized for each composite and differed in the characteristics of the single components. Interactions of the pitch with the granular carbons during pyrolysis and their subsequent effects on the microstructure of the final composite were monitored by light microscopy. The results show that the light texture of the matrix and the porosity of the composite depend not only on the chemical composition of the pitch but also on the specific granular carbon used as reinforcing material. The same pitch may generate different light textures depending on the characteristics of the carbon. Composites from thermally treated pitches and graphite show highly ordered matrices orientated in the direction of graphite planes. Graphite particles seem to exert a huge influence on mesophase development during the pyrolysis of the treated pitches, affecting not only the orientation of the mesophase, but also reducing the rate of mesophase formation. On the other hand, when green petroleum coke is used with the thermally treated pitches, matrices show a small size light texture, due to the high reactivity of the pitch in the presence of this granular carbon. The porosity of the composites is controlled by both the pitch and the granular carbon.

  20. Tribological performance of Graphene/Carbon nanotube hybrid reinforced Al2O3 composites

    PubMed Central

    Yazdani, Bahareh; Xu, Fang; Ahmad, Iftikhar; Hou, Xianghui; Xia, Yongde; Zhu, Yanqiu

    2015-01-01

    Tribological performance of the hot-pressed pure Al2O3 and its composites containing various hybrid contents of graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs) were investigated under different loading conditions using the ball-on-disc method. Benchmarked against the pure Al2O3, the composite reinforced with a 0.5 wt% GNP exhibited a 23% reduction in the friction coefficient along with a promising 70% wear rate reduction, and a hybrid reinforcement consisting of 0.3 wt.% GNPs + 1 wt.% CNTs resulted in even better performance, with a 86% reduction in the wear rate. The extent of damage to the reinforcement phases caused during wear was studied using Raman spectroscopy. The wear mechanisms for the composites were analysed based on the mechanical properties, brittleness index and microstructural characterizations. The excellent coordination between GNPs and CNTs contributed to the excellent wear resistance property in the hybrid GNT-reinforced composites. GNPs played the important role in the formation of a tribofilm on the worn surface by exfoliation; whereas CNTs contributed to the improvement in fracture toughness and prevented the grains from being pulled out during the tribological test. PMID:26100097

  1. Strengthening behavior of chopped multi-walled carbon nanotube reinforced aluminum matrix composites

    SciTech Connect

    Shin, S.E.; Bae, D.H.

    2013-09-15

    Strengthening behavior of the aluminum composites reinforced with chopped multi-walled carbon nanotubes (MWCNTs) or aluminum carbide formed during annealing at 500 °C has been investigated. The composites were fabricated by hot-rolling the powders which were ball-milled under various conditions. During the early annealing process, aluminum atoms can cluster inside the tube due to the diffusional flow of aluminum atoms into the tube, providing an increase of the strength of the composite. Further annealing induces the formation of the aluminum carbide phase, leading to an overall drop in the strength of the composites. While the strength of the composites can be evaluated according to the rule of mixture, a particle spacing effect can be additionally imparted on the strength of the composites reinforced with the chopped MWCNTs or the corresponding carbides since the reinforcing agents are smaller than the submicron matrix grains. - Highlights: • Strengthening behavior of chopped CNT reinforced Al-based composites is investigated. • Chopped CNTs have influenced the strength and microstructures of the composites. • Chopped CNTs are created under Ar- 3% H2 atmosphere during mechanical milling. • Strength can be evaluated by the rule of the mixture and a particle spacing effect.

  2. Effects of PLGA reinforcement methods on the mechanical property of carbonate apatite foam.

    PubMed

    Munar, Girlie M; Munar, Melvin L; Tsuru, Kanji; Ishikawa, Kunio

    2014-01-01

    The purpose of this study was to improve the mechanical property of brittle carbonate apatite (CO3Ap) foam aimed as bone substitute material by reinforcement with poly(DL-lactide-co-glycolide) (PLGA). The CO3Ap foam was reinforced with PLGA by immersion and vacuum infiltration methods. Compressive strength of CO3Ap foam (12.0±4.9 kPa) increased after PLGA reinforcement by immersion (187.6±57.6 kPa) or vacuum infiltration (407.0±111.4 kPa). Scanning electron microscopic (SEM) observation showed a gapless PLGA and CO3Ap foam interface and larger amount of PLGA inside the hollow space of the strut when vacuum infiltration method was employed. In contrast a gap was observed at the PLGA and CO3Ap foam interface and less amount of PLGA inside the hollow space of the strut when immersion method was employed. Strong PLGA-CO3Ap foam interface and larger amount of PLGA inside the hollow space of the strut is therefore the key to higher mechanical property obtained for CO3Ap foam when vacuum infiltration was employed for PLGA reinforcement.

  3. Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites.

    PubMed

    Afzal, Mohammad Atif Faiz; Kalmodia, Sushma; Kesarwani, Pallavi; Basu, Bikramjit; Balani, Kantesh

    2013-05-01

    Bacterial infection remains an important risk factor after orthopedic surgery. The present paper reports the synthesis of hydroxyapatite-silver (HA-Ag) and carbon nanotube-silver (CNT-Ag) composites via spark plasma sintering (SPS) route. The retention of the initial phases after SPS was confirmed by phase analysis using X-ray diffraction and Raman spectroscopy. Energy dispersive spectrum analysis showed that Ag was distributed uniformly in the CNT/HA matrix. The breakage of CNTs into spheroid particles at higher temperatures (1700) is attributed to the Rayleigh instability criterion. Mechanical properties (hardness and elastic modulus) of the samples were evaluated using nanoindentation testing. Ag reinforcement resulted in the enhancement of hardness (by ~15%) and elastic modulus (~5%) of HA samples, whereas Ag reinforcement in CNT, Ag addition does not have much effect on hardness (0.3 GPa) and elastic modulus (5 GPa). The antibacterial tests performed using Escherichia coli and Staphylococcus epidermidis showed significant decrease (by ~65-86%) in the number of adhered bacteria in HA/CNT composites reinforced with 5% Ag nanoparticles. Thus, Ag-reinforced HA/CNT can serve as potential antibacterial biocomposites.

  4. Metallic Concepts for Repair of Reinforced Carbon-Carbon Space Shuttle Leading Edges

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank; Nesbitt, James

    2007-01-01

    The Columbia accident has focused attention on the critical need for on-orbit repair concepts for wing leading edges in the event that potentially catastrophic damage is incurred during Space Shuttle Orbiter flight. The leading edge of the space shuttle wings consists of a series of eleven panels on each side of the orbiter. These panels are fabricated from reinforced carbon-carbon (RCC) which is a light weight composite with attractive strength at very high temperatures. The damage that was responsible for the loss of the Colombia space shuttle was deemed due to formation of a large hole in one these RCC leading edge panels produced by the impact of a large piece of foam. However, even small cracks in the RCC are considered as potentially catastrophic because of the high temperature re-entry environment. After the Columbia accident, NASA has explored various means to perform on-orbit repairs in the event that damage is sustained in future shuttle flights. Although large areas of damage, such as that which doomed Columbia, are not anticipated to re-occur due to various improvements to the shuttle, especially the foam attachment, NASA has also explored various options for both small and large area repair. This paper reports one large area repair concept referred to as the "metallic over-wrap." Environmental conditions during re-entry of the orbiter impose extreme requirements on the RCC leading edges as well as on any repair concepts. These requirements include temperatures up to 3000 F (1650 C) for up to 15 minutes in the presence of an extremely oxidizing plasma environment. Figure 1 shows the temperature profile across one panel (#9) which is subject to the highest temperatures during re-entry. Although the RCC possesses adequate mechanical strength at these temperatures, it lacks oxidation resistance. Oxidation protection is afforded by converting the outer layers of the RCC to SiC by chemical vapor deposition (CVD). At high temperatures in an oxidizing

  5. Carbon Emission from Forest Fires on Scots Pine Logging Sites in the Angara Region of Central Siberia

    NASA Astrophysics Data System (ADS)

    Ivanova, G. A.; Conard, S. G.; McRae, D. J.; Kukavskaya, E. A.; Bogorodskaya, A. V.; Kovaleva, N. M.

    2010-12-01

    Wildfire and large-scale forest harvesting are the two major disturbances in the Russian boreal forests. Non-recovered logged sites total about a million hectares in Siberia. Logged sites are characterized by higher fire hazard than forest sites due to the presence of generally untreated logging slash (i.e., available fuel) which dries out much more rapidly compared to understory fuels. Moreover, most logging sites can be easily accessed by local population; this increases the risk for fire ignition. Fire impacts on the overstory trees, subcanopy woody layer, and ground vegetation biomass were estimated on 14 logged and unlogged comparison sites in the Lower Angara Region in 2009-2010 as part of the NASA-funded NEESPI project, The Influence of Changing Forestry Practices on the Effects of Wildfire and on Interactions Between Fire and Changing Climate in Central Siberia. Based on calculated fuel consumption, we estimated carbon emission from fires on both logged and unlogged burned sites. Carbon emission from fires on logged sites appeared to be twice that on unlogged sites. Soil respiration decreased on both site types after fires. This reduction may partially offset fire-produced carbon emissions. Carbon emissions from fire and post-fire ecosystem damage on logged sites are expected to increase under changing climate conditions and as a result of anticipated increases in future forest harvesting in Siberia.

  6. Validation of the numerical model of single-layer composites reinforced with carbon fiber and aramid

    NASA Astrophysics Data System (ADS)

    Sava, Mihaela; Hadǎr, Anton; Pǎrǎuşanu, Ioan; Petrescu, Horia-Alexandru; Baciu, Florin; Marinel, Stǎnescu Marius

    2016-06-01

    In this work we studied the experimental validation of the model and finite element analysis for a single layer of composite materials reinforced with carbon (denoted as C), aramid (K) and carbon-aramid (C-K) fibers. In the literature there are not many details about the differences that arise between transversal and longitudinal characteristics of composite materials reinforced with fabric, compared to those with unidirectional fibers. In order to achieve carbon and aramid composites we used twill fabric and for carbon-aramid plain fabric, as shown in Figure 1. In order to observe the static behavior of the considered specimens, numerical simulations were carried out in addition to the experimental determination of the characteristics of these materials. Layered composites are obviously the most widespread formula for getting advanced composite structures. It allows a unique variety of material and structural combinations leading to optimal design in a wide range of applications [1,2]. To design and verify the material composites it is necessary to know the basic mechanical constants of the materials. Almost all the layered composites consider that the every layer is an orthotropic material, so there are nine independent constants of material corresponding to the three principal directions: Young modulus E1, E2 and E3, shear modulus G12, G23 and G13, and major poison ratios ν12, ν23, ν13. Experimental determinations were performed using traction tests and strain gauges. For each of the three above mentioned materials, five samples were manufactured.

  7. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P < 10−4, and 19.3% to 77.7% at 0.1 mm, P < 10−8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential. PMID:25553057

  8. Friction and Wear Behavior of Carbon Fabric-Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Şahin, Y.; De Baets, Patrick

    2017-02-01

    Besides intrinsic material properties, weight/energy savings and wear performance play an important role in the selection of materials for any engineering application. The tribological behavior of carbon fabric-reinforced epoxy composites produced by molding technique was investigated using a reciprocating pin-on-plate configuration. It was shown that the wear rate considerably decreased (by a factor of approx. 8) with the introduction of the reinforcing carbon fabric into the epoxy matrix. It was observed that the wear rate of the tested composites increased with an increase in normal load. Moreover, the coefficient of friction for epoxy/steel and composites/steel tribo-pairs was also determined and decreased with increasing load. By means of scanning electron microscopy of the wear tracks, different wear mechanisms such as matrix wear, matrix fatigue and cracking, matrix debris formation for neat epoxy together with fabric/fiber thinning, fabric breakage and fabric/matrix debonding for the reinforced epoxy could be distinguished.

  9. Factors promoting larch dominance in Eastern Siberia: fire versus growth performance and implications for carbon dynamics

    NASA Astrophysics Data System (ADS)

    Schulze, E.-D.; Wirth, C.; Mollicone, D.; von Lüpke, N.; Ziegler, W.; Achard, F.; Mund, M.; Prokushkin, A.; Scherbina, S.

    2012-01-01

    The relative roles of fire and climate in determining canopy species composition and aboveground carbon stocks were investigated. Measurements were made along a transect extending from the dark taiga zone of Central Siberia, where Picea and Abies dominate the canopy, into the Larix zone of Eastern Siberia. We test the hypotheses that the change in canopy species composition is based (1) on climate-driven performance only, (2) on fire only, or (3) on fire-performance interactions. We show that the evergreen conifers Picea obovata and Abies sibirica are the natural late-successional species both in Central and Eastern Siberia, provided there has been no fire for an extended period of time. There are no changes in the climate-driven performance of the observed species. Fire appears to be the main factor explaining the dominance of Larix. Of lesser influence were longitude, hydrology and active-layer thickness. Stand-replacing fires decreased from 300 to 50 yr between the Yenisei Ridge and the upper Tunguska. Repeated non-stand-replacing surface fires eliminated the regeneration of Abies and Picea. With every 100 yr since the last fire, the percentage of Larix decreased by 20 %. Biomass of stems of single trees did not show signs of age-related decline. Relative diameter increment was 0.41 ± 0.20 % at breast height and stem volume increased linearly over time with a rate of about 0.36 t C ha-1 yr-1 independent of age class and species. Stand volumes reached about 130 t C ha-1 (equivalent to about 520 m3 ha-1). Individual trees of Larix were older than 600 yr. The maximum age and biomass seemed to be limited by fungal rot of heart wood. 60 % of old Larix and Picea and 30 % of Pinus sibirica trees were affected by stem rot. Implications for the future role of fire and of plant diseases are discussed.

  10. Buckling of Carbon Nanotube-Reinforced Polymer Laminated Composite Materials Subjected to Axial Compression and Shear Loadings

    NASA Technical Reports Server (NTRS)

    Riddick, J. C.; Gates, T. S.; Frankland, S.-J. V.

    2005-01-01

    A multi-scale method to predict the stiffness and stability properties of carbon nanotube-reinforced laminates has been developed. This method is used in the prediction of the buckling behavior of laminated carbon nanotube-polyethylene composites formed by stacking layers of carbon nanotube-reinforced polymer with the nanotube alignment axes of each layer oriented in different directions. Linking of intrinsic, nanoscale-material definitions to finite scale-structural properties is achieved via a hierarchical approach in which the elastic properties of the reinforced layers are predicted by an equivalent continuum modeling technique. Solutions for infinitely long symmetrically laminated nanotube-reinforced laminates with simply-supported or clamped edges subjected to axial compression and shear loadings are presented. The study focuses on the influence of nanotube volume fraction, length, orientation, and functionalization on finite-scale laminate response. Results indicate that for the selected laminate configurations considered in this study, angle-ply laminates composed of aligned, non-functionalized carbon nanotube-reinforced lamina exhibit the greatest buckling resistance with 1% nanotube volume fraction of 450 nm uniformly-distributed carbon nanotubes. In addition, hybrid laminates were considered by varying either the volume fraction or nanotube length through-the-thickness of a quasi-isotropic laminate. The ratio of buckling load-to-nanotube weight percent for the hybrid laminates considered indicate the potential for increasing the buckling efficiency of nanotube-reinforced laminates by optimizing nanotube size and proportion with respect to laminate configuration.

  11. Recovery of soil carbon and nitrogen pools following forest fires in eastern Lapland, Finland.

    NASA Astrophysics Data System (ADS)

    Koster, K.; Pumpanen, J.; Berninger, F.

    2012-04-01

    Forest fires have been the dominant disturbance regimes in boreal forests since the last Ice Age. Fire is the primary process which organizes the physical and biological attributes of the boreal biome and influences energy flows and biogeochemical cycles, particularly the carbon and nitrogen cycle. Forest fire activity is expected to increase significantly with changing climate, acting as a catalyst to a wide range of ecosystem processes controlling carbon storage in boreal forests. We compared the initial recovery of carbon (C) and nitrogen (N) pools and dynamics following fire disturbance in Scots pine (Pinus sylvesteris) stands in the boreal forests of eastern Lapland (Värriö Strict Nature Reserve), Finland, by sampling soils and measuring soil respiration from sample plots established in a chronosequence of different forest sites with 4 age classes, ranging from 2 years to 150 years after fire disturbance (2, 40, 60, 150 years after fire). The sites are situated north of the Arctic Circle, near to the northern timberline at an average of 300 m altitude. The overall/total C and N contents in the first 10 cm of the topsoil (all soil layers taken into consideration) were highest on old areas (fire 150 years ago) and lowest on new areas (fire 2-40 years ago). The highest C pools (1071 g m-2) were measured on old areas from top soil horizons (consisting of decomposing litter). The total C pool was at the old site was 2329 g m-2. The area where the fire was 2 years ago had the lowest total C pools, 1550 g m-2 respectively. The lowest C pools were measured from area where the fire was 60 years ago, and from B horizon, where the amount of C was 103 g m-2.When we compared the total C pools, the newly burned areas (areas where the fire was 2 - 40 years ago) formed one group (had similar values of total C) and old areas (areas where the fire was 60-150 years ago) formed another group with similar values. Same tendencies occurred also in total N pools, where we had

  12. Carbon cycle and climate effects of forcing from fire-emitted aerosols

    NASA Astrophysics Data System (ADS)

    Landry, Jean-Sébastien; Partanen, Antti-Ilari; Damon Matthews, H.

    2017-02-01

    Aerosols emitted by landscape fires affect many climatic processes. Here, we combined an aerosol–climate model and a coupled climate–carbon model to study the carbon cycle and climate effects caused by fire-emitted aerosols (FEA) forcing at the top of the atmosphere and at the surface. This forcing (‘best guess’ present-day values of ‑0.10 and ‑1.3 W m‑2 at the top of the atmosphere and surface, respectively) had a predominant cooling influence that altered regional land carbon stocks on decadal timescales by modifying vegetation productivity and soil–litter decomposition. Changes in regional land and ocean carbon stocks became much stronger for FEA forcing acting on multi-century timescales; this occurred because carbon stocks responded to the forcing itself on such timescales and also due to gradual effects on the climate (e.g. through increased sea ice cover) that further affected the carbon cycle. Carbon increases and decreases in different regions partly offset each other, so that absolute changes in global land, atmosphere, and ocean stocks were all <2 Pg C after 30 years of FEA forcing and <6 Pg C after more than 1000 years of FEA forcing. FEA-caused changes in land carbon storage did not substantially modify the magnitude of FEA emissions, suggesting there is no consequential regional-scale positive feedback loop between these two elements. However, we found indications that the FEA-caused cooling from frequently-burning regions in Africa and Australia increased land carbon stocks in eastern South America and equatorial Asia, respectively. This suggests the potential for remote carbon cycle effects from regions emitting large amounts of fire aerosols.

  13. Changes in Fire-Derived Soil Black Carbon Storage in a Sub-humid Woodland

    NASA Astrophysics Data System (ADS)

    White, J. D.; Yao, J.; Murray, D. B.; Hockaday, W. C.

    2014-12-01

    Fire-derived black carbon (BC) in soil, including charcoal, represents a potentially important fraction of terrestrial carbon cycling due to its presumed long persistence in soil. Interpretation of site BC retention is important for assessing feedbacks to ecosystem processes including nutrient and water cycling. However, interaction between vegetation disturbance, BC formation, and off site transport may exist that complicate interpretation of BC addition to soils from wildfire or prescribed burns directly. To investigate the relationship between disturbance and site retention on soil BC, we determined BC concentrations for a woodland in central Texas, USA, from study plots in hilly terrain with a fire scar dendrochronology spanning 100 years. BC values were determined from 13C nuclear magnetic resonance (NMR) spectroscopy. Estimated values showed mean BC concentration of 2.73 ± 3.06 g BC kg-1 (0.91 ± 0.51 kg BC m-2) for sites with fire occurrence within the last 40 years compared with BC values of1.21 ± 1.70 g BC kg-1 soil (0.18 ± 0.14 kg BC m-2) for sites with fire 40 - 100 years ago. Sites with no tree ring evidence of fire during the last 100 years had the lowest mean soil BC concentration of 0.05 ± 0.11 g BC kg-1 (0.02 ± 0.03 kg BC m-2). Molecular proxies of stability (lignin/N) and decomposition (Alkyl C/O-Alky C) showed no differences across the sites, indicating that low potential for BC mineralization. Modeled soil erosion and time since fire from fire scar data showed that soil BC concentrations were inversely correlated. A modified the ecosystem process model, Biome-BGC, was also used simulate the effects of fire disturbance with different severities and seasonality on C cycling related to the BC production, effect on soil water availability, and off-site transport. Results showed that BC impacts on ecosystem processes, including net ecosystem exchange and leaf area development, were predominantly related to fire frequency. Site BC loss rates were

  14. Development of Carbon Fiber Reinforced Stellite Alloy Based Composites for Tribocorrosion Applications

    NASA Astrophysics Data System (ADS)

    Khoddamzadeh, Alireza

    This thesis reports the design and development of two classes of new composite materials, which are low-carbon Stellite alloy matrices, reinforced with either chopped plain carbon fiber or chopped nickel-coated carbon fiber. The focus of this research is on obviating the problems related to the presence of carbides in Stellite alloys by substituting carbides as the main strengthening agent in Stellite alloys with the aforementioned carbon fibers. Stellite 25 was selected as the matrix because of its very low carbon content (0.1 wt%) and thereby relatively carbide free microstructure. The nickel coating was intended to eliminate any chance of carbide formation due to the possible reaction between carbon fibers and the matrix alloying additions. The composite specimens were fabricated using the designed hot isostatic pressing and sintering cycles. The fabricated specimens were microstructurally analyzed in order to identify the main phases present in the specimens and also to determine the possible carbide formation from the carbon fibers. The material characterization of the specimens was achieved through density, hardness, microhardness, corrosion, wear, friction, and thermal conductivity tests. These novel materials exhibit superior properties compared to existing Stellite alloys and are expected to spawn a new generation of materials used for high temperature, severe corrosion, and wear resistant applications in various industries.

  15. The use of rivets for electrical resistance measurement on carbon fibre-reinforced thermoplastics

    NASA Astrophysics Data System (ADS)

    DeBaere, I.; Van Paepegem, W.; Degrieck, J.

    2007-10-01

    The use of fibre-reinforced thermoplastics, for example in the aeronautical industry, is increasing rapidly. Therefore, there is an increasing need for in situ monitoring tools, which preferably have limited influence on the behaviour of the material and which are easy to use. Furthermore, in the aeronautical industry composites are very often attached with rivets. In this study, the possibility of the use of rivets as contact electrodes for electrical resistance measurement is explored. The material used is a carbon fibre-reinforced polyphenylene sulphide. First, the set-up used is discussed. Then, static tensile tests on the laminate are performed. The possible influence of an extensometer on the measurements is examined. Furthermore, failure predictability is assessed. It may be concluded that the proposed set-up with the rivets can be used for electrical resistance measurement, with the ability to predict failure, and that the extensometer has a negative influence on the resistance measurement.

  16. Facile Synthesis and Electrical Conductivity of Carbon Nanotube Reinforced Nanosilver Composite

    NASA Astrophysics Data System (ADS)

    Pal, Hemant; Sharma, Vimal; Kumar, Rajesh; Thakur, Nagesh

    2012-12-01

    Metal matrix nanocomposites reinforced with carbon nanotubes (CNTs) have become popular in industrial applications. Due to their excellent thermophysical and mechanical properties, CNTs are considered as attractive filler for the improvement in properties of metals. In the present work, we have synthesized noncovalently functionalized CNT reinforced nanosilver composites by using a modified molecular level mixing method. The structure and morphology of nanocomposites are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy. The electrical conductivity of silver-CNT nanocomposites measured by the four-point probe method is found to be more than that of the pure nanosilver. The significant improvement in electrical conductivity of Ag=CNT nanocomposites stems from homogenous and embedded distribution of CNTs in a silver matrix with intact structure resulting from noncovalent functionalization. The low temperature sintering also enhances the electrical conductivity of Ag=CNT nanocomposites.

  17. Micro/Nanomechanical characterization of multi-walled carbon nanotubes reinforced epoxy composite.

    PubMed

    Cui, Peng; Wang, Xinnan; Tangpong, X W

    2012-11-01

    In this paper, the mechanical properties of 1 wt.% multi-walled carbon nanotubes (MWCNTs) reinforced epoxy nanocomposites were characterized using a self-designed micro/nano three point bending tester that was on an atomic force microscope (AFM) to in situ observe MWCNTs movement on the sample surface under loading. The migration of an individual MWCNT at the surface of the nanocomposite was tracked to address the nanomechanical reinforcing mechanism of the nanocomposites. Through morphology analysis of the nanocomposite via scanning electron microscopy, AFM, and digital image correlation technique, it was found that the MWCNTs agglomerate and the bundles were the main factors for limiting the bending strength of the composites. The agglomeration/bundle effect was included in the Halpin-Tsai model to account for the elastic modulus of the nanocomposites.

  18. Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska

    USGS Publications Warehouse

    Zhuang, Q.; McGuire, A.D.; O'Neill, K. P.; Harden, J.W.; Romanovsky, V.E.; Yarie, J.

    2003-01-01

    In this study, the dynamics of soil thermal, hydrologic, and ecosystem processes were coupled to project how the carbon budgets of boreal forests will respond to changes in atmospheric CO2, climate, and fire disturbance. The ability of the model to simulate gross primary production and ecosystem respiration was verified for a mature black spruce ecosystem in Canada, the age-dependent pattern of the simulated vegetation carbon was verified with inventory data on aboveground growth of Alaskan black spruce forests, and the model was applied to a postfire chronosequence in interior Alaska. The comparison between the simulated soil temperature and field-based estimates during the growing season (May to September) of 1997 revealed that the model was able to accurately simulate monthly temperatures at 10 cm (R > 0.93) for control and burned stands of the fire chronosequence. Similarly, the simulated and field-based estimates of soil respiration for control and burned stands were correlated (R = 0.84 and 0.74 for control and burned stands, respectively). The simulated and observed decadal to century-scale dynamics of soil temperature and carbon dynamics, which are represented by mean monthly values of these variables during the growing season, were correlated among stands (R = 0.93 and 0.71 for soil temperature at 20- and 10-cm depths, R = 0.95 and 0.91 for soil respiration and soil carbon, respectively). Sensitivity analyses indicate that along with differences in fire and climate history a number of other factors influence the response of carbon dynamics to fire disturbance. These factors include nitrogen fixation, the growth of moss, changes in the depth of the organic layer, soil drainage, and fire severity.

  19. Remote Sensing of Global Fire Patterns, Aerosol Optical Thickness, and Carbon Monoxide During April 1994

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Klich, Donna V.; Welch, Ronald M.; Nolf, Scott; Connors, Vickie S.

    1997-01-01

    Fires play a crucial role in several ecosystems. They are routinely used to burn forests in order to accommodate the needs of the expanding population, clear land for agricultural purposes, eliminate weeds and pests, regenerate nutrients in grazing and crop lands and produce energy for cooking and heating purposes. Most of the fires on earth are related to biomass burning in the tropics, although they are not confined to these latitudes. The boreal and tundra regions also experience fires on a yearly basis. The current study examines global fire patterns, Aerosol Optical Thickness (AOT) and carbon monoxide concentrations during April 9-19, 1994. Recently, global Advanced Very High Resolution Radiometer (AVHRR) data at nadir ground spatial resolution of 1 km are made available through the NASA/NOAA Pathfinder project. These data from April 9-19, 1994 are used to map fires over the earth. In summary, our analysis shows that fires from biomass burning appear to be the dominant factor for increased tropospheric CO concentrations as measured by the MAPS. The vertical transport of CO by convective activities, along with horizontal transport due to the prevailing winds, are responsible for the observed spatial distribution of CO.

  20. Effect of Thermal Cycling on the Tensile Behavior of Polymer Composites Reinforced by Basalt and Carbon Fibers

    NASA Astrophysics Data System (ADS)

    Khalili, S. Mohammad Reza; Najafi, Moslem; Eslami-Farsani, Reza

    2017-01-01

    The aim of the present work was to investigate the effect of thermal cycling on the tensile behavior of three types of polymer-matrix composites — a phenolic resin reinforced with woven basalt fibers, woven carbon fibers, and hybrid basalt and carbon fibers — in an ambient environment. For this purpose, tensile tests were performed on specimens previously subjected to a certain number of thermal cycles. The ultimate tensile strength of the specimen reinforced with woven basalt fibers had by 5% after thermal cycling, but the strength of the specimen with woven carbon fibers had reduced to a value by 11% higher than that before thermal cycling.

  1. The effect of filler aspect ratio on the electromagnetic properties of carbon-nanofibers reinforced composites

    NASA Astrophysics Data System (ADS)

    De Vivo, B.; Lamberti, P.; Spinelli, G.; Tucci, V.; Guadagno, L.; Raimondo, M.

    2015-08-01

    The effect of filler aspect ratio on the electromagnetic properties of epoxy-amine resin reinforced with carbon nanofibers is here investigated. A heat treatment at 2500 °C of carbon nanofibers seems to increase their aspect ratio with respect to as-received ones most likely due to a lowering of structural defects and the improvement of the graphene layers within the dixie cup conformation. These morphological differences revealed by Raman's spectroscopy and scanning electron microscopy analyses may be responsible for the different electrical properties of the resulting composites. The DC characterization of the nanofilled material highlights an higher electrical conductivity and a lower electrical percolation threshold for the heat-treated carbon nanofibers based composites. In fact, the electrical conductivity is about 0.107 S/m and 1.36 × 10-3 S/m for the nanocomposites reinforced with heat-treated and as received fibers, respectively, at 1 wt. % of nanofiller loading, while the electrical percolation threshold falls in the range [0.05-0.32]wt. % for the first nanocomposites and above 0.64 wt. % for the latter. Moreover, also a different frequency response is observed since the critical frequency, which is indicative of the transition from a resistive to a capacitive-type behaviour, shifts forward of about one decade at the same filler loading. The experimental results are supported by theoretical and simulation studies focused on the role of the filler aspect ratio on the electrical properties of the nanocomposites.

  2. The Flux of Carbon from Selective Logging, Fire, and Regrowth in Amazonia

    NASA Technical Reports Server (NTRS)

    Houghton, R. A.

    2004-01-01

    The major goal of this work was to develop a spatial, process-based model (CARLUC) that would calculate sources and sinks of carbon from changes in land use, including logging and fire. The work also included Landsat data, together with fieldwork, to investigate fire and logging in three different forest types within Brazilian Amazonia. Results from these three activities (modeling, fieldwork, and remote sensing) are described, individually, below. The work and some of the personnel overlapped with research carried out by Dr. Daniel Nepstad's LBA team, and thus some of the findings are also reported in his summaries.

  3. Carbon and nitrogen emissions due to vegetation fire in Russia in 2004-2008

    NASA Astrophysics Data System (ADS)

    Shvidenko, A.; Schepaschenko, D.; McCallum, I.; Nilsson, S.; Sukhinin, A.

    2009-04-01

    The paper presents estimates of the emissions of major greenhouse gases (CO2, CO, CH2, N20, NOx, and others) caused by vegetation fires in Russia between 2004-2008. Major goals of the assessment were: (1) to provide spatial and temporal quantification of the emissions on a monthly basis; and (2) to minimize the uncertainties of the assessment, taking into account the fuzzy character of the problem. A hybrid land cover (LC) developed as a baseline dataset of all relevant information sources (different maps, multi-sensor remote sensing data, results of different land and forest inventories, measurements in situ) was used as an information background for the assessment. The multilayer hierarchical classification of land classes allowed detailed parameterization of vegetation and surface soil layers with respect to indicators used in the calculation of fire emissions. The approach resulted in a comprehensive numerical description of stock and structure of vegetation combustibles (e.g., for forests: stem wood, branches, foliage, understory, green forest floor, coarse woody debris - snags, logs, dry branches of live trees, on-ground litter, organic matter of the upper soil layer) for each 1 km pixel. Burnt areas were estimated on a monthly basis by remote sensing data (mostly based on thermal channels of AVHRR and MODIS, data obtained by Sukachev Institute of Forest, Krasnoyarsk, Russia) and superimposed with the LC. The modeling framework included regional regularities of (1) long period seasonal distribution of burnt areas by type of fire (five types have been used for forests: crown, superficial ground, stable ground, peat (soil), underground fires); (2) average intensity of burning (amount of consumed combustibles) dependently on time of fire season, type of fire, and vegetation class; (3) partition of consumed carbon (gas composition, particles); (4) content of nitrogen in major types of combustibles; (5) expected amount of post fire dieback in perennial vegetation

  4. Towards Practical Carbonation Prediction and Modelling for Service Life Design of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Ekolu, O. S.

    2015-11-01

    Amongst the scientific community, the interest in durability of concrete structures has been high for quite a long time of over 40 years. Of the various causes of degradation of concrete structures, corrosion is the most widespread durability problem and carbonation is one of the two causes of steel reinforcement corrosion. While much scientific understanding has been gained from the numerous carbonation studies undertaken over the past years, it is still presently not possible to accurately predict carbonation and apply it in design of structures. This underscores the complex nature of the mechanisms as influenced by several interactive factors. Based on critical literature and some experience of the author, it is found that there still exist major challenges in establishing a mathematical constitutive relation for realistic carbonation prediction. While most current models employ permeability /diffusion as the main model property, analysis shows that the most practical material property would be compressive strength, which has a low coefficient of variation of 20% compared to 30 to 50% for permeability. This important characteristic of compressive strength, combined with its merit of simplicity and data availability at all stages of a structure's life, promote its potential use in modelling over permeability. By using compressive strength in carbonation prediction, the need for accelerated testing and permeability measurement can be avoided. This paper attempts to examine the issues associated with carbonation prediction, which could underlie the current lack of a sound established prediction method. Suggestions are then made for possible employment of different or alternative approaches.

  5. Direct and indirect effects of fires on the carbon balance of tropical forest ecosystems (Invited)

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Tosca, M. G.; Ward, D. S.; Kasibhatla, P. S.; Mahowald, N. M.; Hess, P. G.

    2013-12-01

    Fires influence the carbon budget of tropical forests directly because they account for a significant component of net emissions from deforestation and forest degradation. They also have indirect effects on nearby intact forests by modifying regional climate, atmospheric composition, and patterns of nutrient deposition. These latter pathways are not well understood and are often ignored in climate mitigation efforts such as the United Nations Program on Reducing Emissions from Deforestation and forest Degradation (REDD+). Here we used the Community Atmosphere Model (CAM5) and the Global Fire Emissions Database (GFED3) to quantify the impacts of fire-emitted aerosols on the productivity of tropical forests. Across the tropical forest biome, fire-emitted aerosols reduced surface temperatures and increased the diffuse solar insolation fraction. These changes in surface meteorology increased gross primary production (GPP) in the Community Land Model. However, these drivers were more than offset in many regions by reductions in soil moisture and total solar radiation. The net effect of fire aerosols caused GPP to decrease by approximately 8% in equatorial Asia and 6% in the central Africa. In the Amazon, decreases in photosynthesis in the western part of the basin were nearly balanced by increases in the south and east. Using additional CAM5 and GEOS-Chem model simulations, we estimated fire contributions to surface concentrations of ozone. Using empirical relationships between ozone exposure and GPP from field studies and models, we estimated how tropical forest GPP was further modified by fire-induced ozone. Our results suggest that efforts to reduce the fire component of tropical land use fluxes may have sustainability benefits that extend beyond the balance sheet for greenhouse gases.

  6. Field applications of a carbon fiber sheet material for strengthening reinforced concrete structure

    SciTech Connect

    Thomas, J.; Kliger, H.S.; Yoshizawa, Hiroyuki

    1996-12-31

    Forca Tow Sheet is now being introduced into the USA as a viable alternative to conventional concrete strengthen techniques. This carbon fiber shoot material is externally bonded to reinforced concrete and masonry structures and serves to strengthen existing conditions. Based on the growing use of Tow Sheet in the Japanese market die US infrastructure market is beginning to apply this technology on a number of diverse repair projects. This paper describes actual field applications on industrial and public structures in the US and Japan. Also included are the results of one yen of monitoring of die Japanese structure.

  7. A Lamb waves based statistical approach to structural health monitoring of carbon fibre reinforced polymer composites.

    PubMed

    Carboni, Michele; Gianneo, Andrea; Giglio, Marco

    2015-07-01

    This research investigates a Lamb-wave based structural health monitoring approach matching an out-of-phase actuation of a pair of piezoceramic transducers at low frequency. The target is a typical quasi-isotropic carbon fibre reinforced polymer aeronautical laminate subjected to artificial, via Teflon patches, and natural, via suitable low velocity drop weight impact tests, delaminations. The performance and main influencing factors of such an approach are studied through a Design of Experiment statistical method, considering both Pulse Echo and Pitch Catch configurations of PZT sensors. Results show that some factors and their interactions can effectively influence the detection of a delamination-like damage.

  8. Crystalline and tensile properties of carbon nanotube and graphene reinforced polyamide 12 fibers

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Nüesch, F. A.; Chu, B. T. T.

    2013-02-01

    The influence of carbon nanotubes (CNTs) and graphene nanoplatelets (GnPs) on the structure and mechanical properties of polyamide 12 (PA12) fibers was investigated. As seen from wide-angle X-ray diffraction analysis the crystallinity index increases with incorporation of nanofillers due to nucleation effects. Marked improvement was noted for mechanical properties of the composites with increase in elastic modulus, yield stress and strength of the fibers. The most significant improvement of a factor of 4 could be observed for elastic modulus with the inclusion of 0.5 wt.% GnP. A comparative study was made between the fibers reinforced with CNTs and GnPs.

  9. Anomalous enhancement of drilling rate in carbon fiber reinforced plastic using azimuthally polarized CO2 laser

    NASA Astrophysics Data System (ADS)

    Endo, Masamori; Araya, Naohiro; Kurokawa, Yuki; Uno, Kazuyuki

    2016-09-01

    We developed an azimuthally polarized pulse-periodic CO2 laser for high-performance drilling applications. We discovered an anomalous enhancement in the drilling rate with the azimuthally polarized beam compared to that with radially or randomly polarized beams. We drilled 0.45 mm-thick carbon fiber reinforced plastic (CFRP) using a focusing lens with a focal length of 50 mm and a numerical aperture (NA) of 0.09. The conditions other than polarization states were identical for all the experiments. The azimuthally polarized beam exhibited a drilling rate more than 10 times greater on average than those of the other two polarizations.

  10. Application of Non-Deterministic Methods to Assess Modeling Uncertainties for Reinforced Carbon-Carbon Debris Impacts

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Fasanella, Edwin L.; Melis, Matthew; Carney, Kelly; Gabrys, Jonathan

    2004-01-01

    The Space Shuttle Columbia Accident Investigation Board (CAIB) made several recommendations for improving the NASA Space Shuttle Program. An extensive experimental and analytical program has been developed to address two recommendations related to structural impact analysis. The objective of the present work is to demonstrate the application of probabilistic analysis to assess the effect of uncertainties on debris impacts on Space Shuttle Reinforced Carbon-Carbon (RCC) panels. The probabilistic analysis is used to identify the material modeling parameters controlling the uncertainty. A comparison of the finite element results with limited experimental data provided confidence that the simulations were adequately representing the global response of the material. Five input parameters were identified as significantly controlling the response.

  11. Reinforced Carbon Carbon (RCC) oxidation resistant material samples - Baseline coated, and baseline coated with tetraethyl orthosilicate (TEOS) impregnation

    NASA Technical Reports Server (NTRS)

    Gantz, E. E.

    1977-01-01

    Reinforced carbon-carbon material specimens were machined from 19 and 33 ply flat panels which were fabricated and processed in accordance with the specifications and procedures accepted for the fabrication and processing of the leading edge structural subsystem (LESS) elements for the space shuttle orbiter. The specimens were then baseline coated and tetraethyl orthosilicate impregnated, as applicable, in accordance with the procedures and requirements of the appropriate LESS production specifications. Three heater bars were ATJ graphite silicon carbide coated with the Vought 'pack cementation' coating process, and three were stackpole grade 2020 graphite silicon carbide coated with the chemical vapor deposition process utilized by Vought in coating the LESS shell development program entry heater elements. Nondestructive test results are reported.

  12. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration.

    PubMed

    Dang, Qi; Mba Wright, Mark; Brown, Robert C

    2015-12-15

    This study investigates a novel strategy of reducing carbon emissions from coal-fired power plants through co-firing bio-oil and sequestering biochar in agricultural lands. The heavy end fraction of bio-oil recovered from corn stover fast pyrolysis is blended and co-fired with bituminous coal to form a bio-oil co-firing fuel (BCF). Life-cycle greenhouse gas (GHG) emissions per kWh electricity produced vary from 1.02 to 0.26 kg CO2-eq among different cases, with BCF heavy end fractions ranging from 10% to 60%, which corresponds to a GHG emissions reduction of 2.9% to 74.9% compared with that from traditional bituminous coal power plants. We found a heavy end fraction between 34.8% and 37.3% is required to meet the Clean Power Plan's emission regulation for new coal-fired power plants. The minimum electricity selling prices are predicted to increase from 8.8 to 14.9 cents/kWh, with heavy end fractions ranging from 30% to 60%. A minimum carbon price of $67.4 ± 13 per metric ton of CO2-eq was estimated to make BCF power commercially viable for the base case. These results suggest that BCF co-firing is an attractive pathway for clean power generation in existing power plants with a potential for significant reductions in carbon emissions.

  13. Dissemination, resuspension, and filtration of carbon fibers. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1980-01-01

    Carbon fiber transport was studied using mathematical models established for other pollution problems. It was demonstrated that resuspension is not a major factor contributing to the risk. Filtration and fragmentation tests revealed that fiber fragmentation shifts the fiber spectrum to shorter mean lengths in high velocity air handling systems.

  14. Piezoresistive properties of cement composites reinforced by functionalized carbon nanotubes using photo-assisted Fenton

    NASA Astrophysics Data System (ADS)

    Jianlin, Luo; Kwok L, Chung; Qiuyi, Li; Shunjian, Chen; Lu, Li; Dongshuai, Hou; Chunwei, Zhang

    2017-03-01

    A combined chemical technique for surface functionalization of carbon nanotubes (CNTs) is presented in this paper. The functionalized CNTs (f-CNTs) were employed to reinforce both the mechanical and electromechanical properties of cementitious composites for the purpose of developing intrinsic self-sensing sensors. With moderate functionalization, the f-CNTs were found to easily disperse in an aqueous system while just aiding with low fraction of dispersants: (a) polyethylene oxide (MPEG), (b) Trition X-100 (Tx-100). Both the FTIR and DSC results show that the oxidation effect of this combined technique were not as strong as those when using conventional strong oxidation methods. As a result, the integrity of electronic structure inside the f-CNT reinforced cement matrixes can be effectively maintained. This paper is aimed at exploring the electrical resistivity and piezoresistive properties of the f-CNT reinforced cement composites (f-CNT-RCCs). Both the monoaxial and cyclic compression tests were undertaken on the specimens with different f-CNT doping levels of 0.1%, 0.2% and 0.3%. Experimental results indicated that excellent piezoresistive properties were achieved at the doping level of 0.3%, wherein high strain sensitivity were recorded as 254.9 and 286.6 for the cases of adding small amounts of surfactants, MPEG and combination of MPEG and Tx100, respectively.

  15. Characterization of Multiwalled Carbon Nanotube-Reinforced Hydroxyapatite Composites Consolidated by Spark Plasma Sintering

    PubMed Central

    Kim, Duk-Yeon; Han, Young-Hwan; Lee, Jun Hee; Kang, Inn-Kyu; Jang, Byung-Koog; Kim, Sukyoung

    2014-01-01

    Pure HA and 1, 3, 5, and 10 vol% multiwalled carbon nanotube- (MWNT-) reinforced hydroxyapatite (HA) were consolidated using a spark plasma sintering (SPS) technique. The relative density of pure HA increased with increasing sintering temperature, but that of the MWNT/HA composite reached almost full density at 900°C, and then decreased with further increases in sintering temperature. The relative density of the MWNT/HA composites increased with increasing MWNT content due to the excellent thermal conductivity of MWNTs. The grain size of MWNT/HA composites decreased with increasing MWNT content and increased with increasing sintering temperature. Pull-out toughening of the MWNTs of the MWNT/HA composites was observed in the fractured surface, which can be used to predict the improvement of the mechanical properties. On the other hand, the existence of undispersed or agglomerate MWNTs in the MWNT/HA composites accompanied large pores. The formation of large pores increased with increasing sintering temperature and MWNT content. The addition of MWNT in HA increased the hardness and fracture toughness by approximately 3~4 times, despite the presence of large pores produced by un-dispersed MWNTs. This provides strong evidence as to why the MWNTs are good candidates as reinforcements for strengthening the ceramic matrix. The MWNT/HA composites did not decompose during SPS sintering. The MWNT-reinforced HA composites were non-toxic and showed a good cell affinity and morphology in vitro for 1 day. PMID:24724100

  16. In Vitro Evaluation of Carbon-Nanotube-Reinforced Bioprintable Vascular Conduits

    PubMed Central

    Dolati, Farzaneh; Yu, Yin; Zhang, Yahui; De Jesus, Aribet M; Sander, Edward A.; Ozbolat, Ibrahim T.

    2014-01-01

    Vascularization of thick engineered tissue and organ constructs like the heart, liver, pancreas or kidney remains a major challenge in tissue engineering. Vascularization is needed to supply oxygen and nutrients and remove waste in living tissues and organs through a network that should possess high perfusion ability and significant mechanical strength and elasticity. In this paper, we introduce a fabrication process to print vascular conduits directly, where conduits were reinforced with carbon-nanotubes (CNTs) to enhance their mechanical properties and bioprintability. In vitro evaluation of printed conduits encapsulated in human coronary artery smooth muscle cells (HCASMCs) was performed to characterize the effects of CNT reinforcement on the mechanical, perfusion and biological performance of the conduits. Perfusion and permeability, cell viability, extracellular matrix formation and tissue histology were assessed and discussed, and it was concluded that CNT-reinforced vascular conduits provided a foundation for mechanically appealing constructs where CNTs could be replaced with natural protein nanofibers for further integration of these conduits in large-scale tissue fabrication. PMID:24632802

  17. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits

    NASA Astrophysics Data System (ADS)

    Dolati, Farzaneh; Yu, Yin; Zhang, Yahui; De Jesus, Aribet M.; Sander, Edward A.; Ozbolat, Ibrahim T.

    2014-04-01

    Vascularization of thick engineered tissue and organ constructs like the heart, liver, pancreas or kidney remains a major challenge in tissue engineering. Vascularization is needed to supply oxygen and nutrients and remove waste in living tissues and organs through a network that should possess high perfusion ability and significant mechanical strength and elasticity. In this paper, we introduce a fabrication process to print vascular conduits directly, where conduits were reinforced with carbon nanotubes (CNTs) to enhance their mechanical properties and bioprintability. In vitro evaluation of printed conduits encapsulated in human coronary artery smooth muscle cells was performed to characterize the effects of CNT reinforcement on the mechanical, perfusion and biological performance of the conduits. Perfusion and permeability, cell viability, extracellular matrix formation and tissue histology were assessed and discussed, and it was concluded that CNT-reinforced vascular conduits provided a foundation for mechanically appealing constructs where CNTs could be replaced with natural protein nanofibers for further integration of these conduits in large-scale tissue fabrication.

  18. Characterization of multiwalled carbon nanotube-reinforced hydroxyapatite composites consolidated by spark plasma sintering.

    PubMed

    Kim, Duk-Yeon; Han, Young-Hwan; Lee, Jun Hee; Kang, Inn-Kyu; Jang, Byung-Koog; Kim, Sukyoung

    2014-01-01

    Pure HA and 1, 3, 5, and 10 vol% multiwalled carbon nanotube- (MWNT-) reinforced hydroxyapatite (HA) were consolidated using a spark plasma sintering (SPS) technique. The relative density of pure HA increased with increasing sintering temperature, but that of the MWNT/HA composite reached almost full density at 900°C, and then decreased with further increases in sintering temperature. The relative density of the MWNT/HA composites increased with increasing MWNT content due to the excellent thermal conductivity of MWNTs. The grain size of MWNT/HA composites decreased with increasing MWNT content and increased with increasing sintering temperature. Pull-out toughening of the MWNTs of the MWNT/HA composites was observed in the fractured surface, which can be used to predict the improvement of the mechanical properties. On the other hand, the existence of undispersed or agglomerate MWNTs in the MWNT/HA composites accompanied large pores. The formation of large pores increased with increasing sintering temperature and MWNT content. The addition of MWNT in HA increased the hardness and fracture toughness by approximately 3~4 times, despite the presence of large pores produced by un-dispersed MWNTs. This provides strong evidence as to why the MWNTs are good candidates as reinforcements for strengthening the ceramic matrix. The MWNT/HA composites did not decompose during SPS sintering. The MWNT-reinforced HA composites were non-toxic and showed a good cell affinity and morphology in vitro for 1 day.

  19. Quantifying the role of fire in the Earth system - Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century

    SciTech Connect

    Li, Fang; Bond-Lamberty, Benjamin; Levis, Samuel

    2014-03-07

    Fire is the primary terrestrial ecosystem disturbance agent on a global scale. It affects carbon balance of global terrestrial ecosystems by emitting carbon to atmosphere directly and immediately from biomass burning (i.e., fire direct effect), and by changing net ecosystem productivity and land-use carbon loss in post-fire regions due to biomass burning and fire-induced vegetation mortality (i.e., fire indirect effect). Here, we provide the first quantitative assessment about the impact of fire on the net carbon balance of global terrestrial ecosystems for the 20th century, and investigate the roles of fire direct and indirect effects. This study is done by quantifying the difference between the 20th century fire-on and fire-off simulations with NCAR community land model CLM4.5 as the model platform. Results show that fire decreases net carbon gain of the global terrestrial ecosystems by 1.0 Pg C yr-1 average across the 20th century, as a results of fire direct effect (1.9 Pg C yr-1) partly offset by indirect effect (-0.9 Pg C yr-1). Fire generally decreases the average carbon gains of terrestrial ecosystems in post-fire regions, which are significant over tropical savannas and part of forests in North America and the east of Asia. The general decrease of carbon gains in post-fire regions is because fire direct and indirect effects have similar spatial patterns and the former (to decrease carbon gain) is generally stronger. Moreover, the effect of fire on net carbon balance significantly declines prior to ~1970 with trend of 8 Tg C yr-1 due to increasing fire indirect effect and increases afterward with trend of 18 Tg C yr-1 due to increasing fire direct effect.

  20. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-04-01

    Stand-replacing fires are the dominant fire type in North American boreal forest and leave a historical legacy of a mosaic landscape of different aged forest cohorts. To accurately quantify the role of fire in historical and current regional forest carbon balance using models, one needs to explicitly simulate the new forest cohort that is established after fire. The present study adapted the global process-based vegetation model ORCHIDEE to simulate boreal forest fire CO2 emissions and follow-up recovery after a stand-replacing fire, with representation of postfire new cohort establishment, forest stand structure and the following self-thinning process. Simulation results are evaluated against three clusters of postfire forest chronosequence observations in Canada and Alaska. Evaluation variables for simulated postfire carbon dynamics include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index (LAI), and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). The model simulation results, when forced by local climate and the atmospheric CO2 history on each chronosequence site, generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that current postfire forest carbon sink on evaluation sites observed by chronosequence methods is mainly driven by historical atmospheric CO2 increase when forests recover from fire disturbance. Historical climate generally exerts a negative effect, probably due to increasing water stress caused by significant temperature increase without sufficient increase in precipitation. Our simulation results demonstrate that a global

  1. Subscale Carbon-Carbon Nozzle Extension Development and Hot Fire Testing in Support of Upper Stage Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Valentine, Peter; Crisanti, Matthew; Greene, Sandy Elam

    2016-01-01

    Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures increasing exhaust velocities. Due to the large size of such nozzles and the related engine performance requirements, carbon-carbon (C/C) composite nozzle extensions are being considered for use in order to reduce weight impacts. NASA and industry partner Carbon-Carbon Advanced Technologies (C-CAT) are working towards advancing the technology readiness level of large-scale, domestically-fabricated, C/C nozzle extensions. These C/C extensions have the ability to reduce the overall costs of extensions relative to heritage metallic and composite extensions and to decrease weight by 50%. Material process and coating developments have advanced over the last several years, but hot fire testing to fully evaluate C/C nozzle extensions in relevant environments has been very limited. NASA and C-CAT have designed, fabricated and hot fire tested multiple subscale nozzle extension test articles of various C/C material systems, with the goal of assessing and advancing the manufacturability of these domestically producible materials as well as characterizing their performance when subjected to the typical environments found in a variety of liquid rocket and scramjet engines. Testing at the MSFC Test Stand 115 evaluated heritage and state-of-the-art C/C materials and coatings, demonstrating the capabilities of the high temperature materials and their fabrication methods. This paper discusses the design and fabrication of the 1.2k-lbf sized carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work.

  2. Watershed Fire Regime Effects On Particulate Organic Carbon Composition in Oregon and California Coast Range Rivers

    NASA Astrophysics Data System (ADS)

    Hatten, J. A.; Goni, M. A.; Wheatcroft, R. A.; Borgeld, J. C.; Padgett, J. S.; Pasternack, G. B.; Gray, A. B.; Watson, E. B.; Warrick, J. A.

    2010-12-01

    Fire causes major changes to organic carbon, converting biological organic materials to pyrogenic-derived organic carbon (Py-OC), including black carbon. Wildfire also dramatically affects hydrological and erosion processes within watersheds, potentially increasing the erosion and discharge of Py-OC as particulate organic carbon (POC). We hypothesize that the proportion of the POC being discharged as Py-OC will be affected by the watershed’s fire regime, increasing with annual proportion of the watershed burned. During the 2008 and 2009 water years, suspended sediment samples were collected from the Alsea, Umpqua, Eel, Salinas, and Arroyo Seco Rivers draining the Coast Ranges of Oregon and California. Events and discharges of various magnitudes were captured in this sample set. This sample set also included suspended sediment collected from the Arroyo Seco River after a 2008 wildfire burned through a large portion of its watershed. Fine (<63 μm) and coarse (>63 μm) particulate material was analyzed for OC and N. We used cupric oxide oxidation to determine the contribution of Py-OC and unburned organic matter to the POC load of these rivers. The area weighted mean fire return interval decreases from the Douglas fir dominated forests in the Alsea River watershed in the north to the chaparral dominated Arroyo Seco River watershed in the south (Alsea > Umpqua > Eel > Salinas > Arroyo Seco). This translated into an increase in the proportion of each watershed burned from north to south. With the increase in annual proportion of watershed burned we found that the Py-OC content of coarse and fine POC increased from north to south. These results suggest that fire plays an important role in delivering POC to long-term carbon sinks in the coastal and ocean environment.

  3. Analysis and Test of Repair Concepts for a Carbon-Rod Reinforced Laminate

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.; Rousseau, Carl Q.

    2000-01-01

    The use of pultruded carbon-epoxy rods for the reinforcement of composite laminates in some structures results in an efficient structural concept. The results of an analytical and experimental investigation of repair concepts of completely severed carbon-epoxy rods is presented. Three repair concepts are considered: (a) bonded repair with outside moldline and inside moldline doublers; (b) bonded repair with fasteners, and (c) bonded repair with outside moldline doubler only. The stiffness of the repairs was matched with the stiffness of the baseline specimen. The failure strains for the bonded repair with fasteners and the bonded repair with an outside moldline doubler exceeded a target design strain set for the repair concepts.

  4. Rate dependent response and failure of a ductile epoxy and carbon fiber reinforced epoxy composite

    SciTech Connect

    Brown, Eric N; Rae, Philip J; Dattelbaum, Dana M; Stahl, David B

    2010-01-01

    An extensive characterization suite has been performed on the response and failure of a ductile epoxy 55A and uniaxial carbon fiber reinforced epoxy composite of IM7 fibers in 55A resin from the quasistatic to shock regime. The quasistatic and intermediate strain rate response, including elastic modulus, yield and failure have are characterized by quasistatic, SHPB, and DMA measurements as a function of fiber orientation and temperature. The high strain rate shock effect of fiber orientation in the composite and response of the pure resin are presented for plate impact experiments. It has previously been shown that at lower impact velocities the shock velocity is strongly dependent on fiber orientation but at higher impact velocity the in-plane and through thickness Hugoniots converge. The current results are compared with previous studies of the shock response of carbon fiber composites with more conventional brittle epoxy matrices. The spall response of the composite is measured and compared with quasistatic fracture toughness measurements.

  5. Static and dynamic behavior of carbon fiber reinforced aluminum (CARALL) laminates

    NASA Astrophysics Data System (ADS)

    Dhaliwal, Gurpinder Singh

    The main aim of this research work was to investigate the static and dynamic properties of carbon fiber reinforced aluminum laminates cured without using any external adhesive and acid treatment of aluminum layers. A comprehensive study was undertaken to study the effect of adding epoxy resin rich polyester synthetic surface veil cloth layers on the failure modes and flexural and tensile response of these fiber metal laminates (FMLs). The main purpose of adding veil cloth layers was to prevent the occurrence of galvanic corrosion by avoiding direct contact between aluminum and carbon fiber layers. The addition of veil cloth layers leads to the combined failure of all layers in carbon fiber reinforced aluminum laminates at the same time, whereas the carbon fiber/ epoxy layers break before the failure of aluminum layers in samples cured without using veil cloth layers under tensile loading. The delamination was found to be reduced to a great extent in these laminate configurations due to the addition of veil cloth layers. Thermal residual stress developed during the curing of fiber metal laminates were predicted by utilizing analytical equations and finite element modeling. It was found out that the veil cloth layer does not affect much in reducing the thermal residual stress. Low-velocity impact tests were carried out using a drop-weight impact tower by impacting these fiber metal laminates at the center with three different energy levels to address energy absorption characteristics of these composites. Results showed that these laminates give higher forces and smaller displacement with the addition of polyester veil cloth layers due to reduced delaminated area across all interfaces of aluminum and carbon fiber layers, thus increasing slightly the energy absorption capabilities of these laminates. Primary failure modes observed during impact tests in these FMLs were cracks in the non-impacted aluminum layer, carbon fiber (CFRP) layer breakage and delamination b

  6. The effect of exfoliated graphite on carbon fiber reinforced composites for cryogenic applications

    NASA Astrophysics Data System (ADS)

    McLaughlin, Adam Michael

    It is desirable to lighten cryogenic fuel tanks through the use of composites for the development of a reusable single stage launch vehicle. Conventional composites fall victim to microcracking due to the cyclic loading and temperature change experienced during launch and re-entry conditions. Also, the strength of a composite is generally limited by the properties of the matrix. The introduction of the nanoplatelet, exfoliated graphite or graphene, to the matrix shows promise of increasing both the microcracking resistivity and the mechanical characteristics. Several carbon fiber composite plates were manufactured with varying concentrations of graphene and tested under both room and cryogenic conditions to characterize graphene's effect on the composite. Results from tensile and fracture testing indicate that the ideal concentration of graphene in our carbon fiber reinforced polymer composites for cryogenic applications is 0.08% mass graphene.

  7. Basic failure mechanisms in advanced composites. [composed of epoxy resins reinforced with carbon fibers

    NASA Technical Reports Server (NTRS)

    Mazzio, V. F.; Mehan, R. L.; Mullin, J. V.

    1973-01-01

    The fundamental failure mechanisms which result from the interaction of thermal cycling and mechanical loading of carbon-epoxy composites were studied. This work was confined to epoxy resin uniderictionally reinforced with HTS carbon fibers, and consists of first identifying local fiber, matrix and interface failure mechanisms using the model composite specimen containing a small number of fibers so that optical techniques can be used for characterization. After the local fracture process has been established for both mechanical loading and thermal cycling, engineering composite properties and gross fracture modes are then examined to determine how the local events contribute to real composite performance. Flexural strength in high fiber content specimens shows an increase in strength with increased thermal cycling. Similar behavior is noted for 25 v/o material up to 200 cycles; however, there is a drastic reduction after 200 cycles indicating a major loss of integrity probably through the accumulation of local cleavage cracks in the tensile region.

  8. A comprehensive study of woven carbon fiber-reinforced nylon 6 composites

    NASA Astrophysics Data System (ADS)

    Pillay, Selvum

    Liquid molding of thermoset composites has become very popular in all industry sectors, including aerospace, automotive, mass transit, and sporting goods, but the cost of materials and processing has limited the use to high-end applications. Thermoplastic composites are relatively cheap; however, the use has been limited to components with short fiber reinforcing. The high melt viscosity and short processing window precludes their use in the liquid molding of large structures and applications with continuous fiber reinforcement. The current research addresses the processing parameters, methodology, and limitations of vacuum assisted resin transfer molding (VARTM) of carbon fabric-reinforced, thermoplastic polyamide 6 (PA6). The material used is casting grade PA6. The process developed for using VARTM to produce carbon fabric-reinforced PA6 composites is explained in detail. The effects of infusion temperature and flow distance on the fiber weight fraction and crystallinity of the PA6 resin are presented. The degree of conversion from monomer to polymer was determined. Microscopic studies to show the wet-out of the fibers at the filament level are also presented. Tensile, flexural, short beam shear strength (SBSS), and low-velocity impact test results are presented and compared to a equivalent thermoset matrix composite. The rubber toughened epoxy system (SC-15) was chosen for the comparative study because the system has been especially developed to overcome the brittle nature of epoxy composites. The environmental effects of moisture and ultraviolet (UV) radiation on the carbon/nylon 6 composite were investigated. The samples were immersed in boiling water for 100 hr, and mechanical tests were conducted. Results showed that moisture causes plasticization of the matrix and attacks the fiber matrix interface. This leads to deterioration of the mechanical properties. The samples were also exposed to UV for up to 600 hr, and post exposure tests were conducted. The

  9. Carbon Dynamics of Natural Disturbance (Storms and Fire) in the Eastern U.S. Temperate Forests

    NASA Astrophysics Data System (ADS)

    Felzer, B. S.; Phelps, P.

    2013-12-01

    Most temperate forests in the eastern U.S. are currently recovering from disturbance. These disturbances are commonly human disturbances of agricultural abandonment or timber harvest, but natural disturbances have also had an impact. Prior to 1920, fire was more prevalent, while along the coast, tropical storms and hurricanes in the south are also common. We have constructed gridded datasets at the 0.5ox0.5o resolution of tropical storm and hurricane return frequencies based on the Zeng et al. (2009) data and fire return intervals for pre-1920 and the 20th century based on LANDFIRE Rapid Assessment Vegetation Models and vegetation types from Nowacki and Abrams (2008). These data are used within the TEM-Hydro model to determine the carbon dynamics of the temperate forest ecosystem as a result of these disturbances, but applying them both stochastically once within the last hundred years and an equivalent total, but smaller, yearly disturbance spread out evenly over the century. A fraction of trees are killed by storms, of which the leaf and root carbon and nitrogen are added to the soil and coarse woody debris is divided between decomposition directly to the atmosphere with a specified decay constant and addition to the soils over a 100 year period. A fraction of trees are killed by fire, of which leaf and root carbon and nitrogen are added to the soils, a fraction of the coarse woody debris carbon and nitrogen is volatilized, and the remainder either decomposes directly to the atmosphere or is added to the soils over time. Preliminary runs for deciduous trees in Harvard Forest, MA from 1901 to 2000, with tropical storms and mid-intensity fires applied in 1938 (year of the Harvard Forest hurricane), show that while the effect of disturbance on present-day Net Ecosystem Productivity (NEP) is minor (small carbon sink in all cases), it has a large impact on net carbon sequestration. The cumulative NEP, accounting for all carbon lost during conversion, shows largest net

  10. A Fire Department Community Health Intervention to Prevent Carbon Monoxide Poisoning Following a Hurricane

    PubMed Central

    Levy, Matthew; Jenkins, J Lee; Seaman, Kevin

    2014-01-01

    Portable generators are commonly used during electrical service interruptions that occur following large storms such as hurricanes. Nearly all portable generators use carbon based fuels and produce deadly carbon monoxide gas. Despite universal warnings to operate these generators outside only, the improper placement of generators makes these devices the leading cause of engine related carbon monoxide deaths in the United States. The medical literature reports many cases of Carbon Monoxide (CO) toxicity associated with generator use following hurricanes and other weather events. This paper describes how Howard County, Maryland Fire and Rescue (HCFR) Services implemented a public education program that focused on prevention of Carbon Monoxide poisoning from portable generator use in the wake of events where electrical service interruptions occurred or had the potential to occur. A major challenge faced was communication with those members of the population who were almost completely dependent upon electronic and wireless technologies and were without redundancies. HCFR utilized several tactics to overcome this challenge including helicopter based surveillance and the use of geocoded information from the electrical service provider to identify outage areas. Once outage areas were identified, HCFR personnel conducted a door-to-door canvasing of effected communities, assessing for hazards and distributing information flyers about the dangers of generator use. This effort represents one of the first reported examples of a community-based endeavor by a fire department to provide proactive interventions designed to prevent carbon monoxide illness. PMID:24596660

  11. Carbon emissions from decomposition of fire-killed trees following a large wildfire in Oregon, United States

    NASA Astrophysics Data System (ADS)

    Campbell, John L.; Fontaine, Joseph B.; Donato, Daniel C.

    2016-03-01

    A key uncertainty concerning the effect of wildfire on carbon dynamics is the rate at which fire-killed biomass (e.g., dead trees) decays and emits carbon to the atmosphere. We used a ground-based approach to compute decomposition of forest biomass killed, but not combusted, in the Biscuit Fire of 2002, an exceptionally large wildfire that burned over 200,000 ha of mixed conifer forest in southwestern Oregon, USA. A combination of federal inventory data and supplementary ground measurements afforded the estimation of fire-caused mortality and subsequent 10 year decomposition for several functionally distinct carbon pools at 180 independent locations in the burn area. Decomposition was highest for fire-killed leaves and fine roots and lowest for large-diameter wood. Decomposition rates varied somewhat among tree species and were only 35% lower for trees still standing than for trees fallen at the time of the fire. We estimate a total of 4.7 Tg C was killed but not combusted in the Biscuit Fire, 85% of which remains 10 years after. Biogenic carbon emissions from fire-killed necromass were estimated to be 1.0, 0.6, and 0.4 Mg C ha-1 yr-1 at 1, 10, and 50 years after the fire, respectively; compared to the one-time pyrogenic emission of nearly 17 Mg C ha-1.

  12. Electrical response of carbon nanotube reinforced nanocomposites under static and dynamic loading

    NASA Astrophysics Data System (ADS)

    Heeder, Nicholas J.

    The electrical response of multi-wall carbon nanotube (MWCNT) reinforced epoxy nanocomposites under quasi-static and dynamic compressive loading is experimentally investigated. The objective of this project was to study the electrical response of CNT-reinforced nanocomposites under mechanical loading where the carbon nanotubes are used to create an internal sensory network within, capable of detecting important information such as strain and damage. Experimental techniques were developed to effectively obtain the bulk resistance change of the nanocomposite material while subjected to quasi-static and dynamic loading. A combination of shear mixing and ultrasonication was used to fabricate the low resistance nanocomposite material. The fabrication process parameters and the optimum weight fraction of MWCNTs for generating a well-dispersed percolation network were first determined. A screw-driven testing machine, a drop weight tower, and a split Hopkinson pressure bar (SHPB) apparatus were utilized to load the specimens. Absolute resistance values were measured with a high-resolution four-point probe method for both quasi-static and dynamic loading. In addition to measuring the percentage change in electrical resistance, real-time damage was captured using high-speed photography. The real-time damage was correlated to both load and percentage change in resistance profiles to better understand the electrical behavior of CNT reinforced nanocomposites under mechanical loading. The experimental findings indicate that the bulk electrical resistance of the nanocomposites, under both quasi-static and drop weight loading conditions, initially decreased between 40%--60% during compression and then increased as damage initiated and propagated. Similarly, a 65%--85% decrease in resistance was observed when the nanocomposites were subjected to SHPB loading. Damage initiation and propagation was also captured by the resistance measurements owing to the ability of the CNTs to be

  13. Modeling carbon-nutrient interactions during the early recovery of tundra after fire.

    PubMed

    Jiang, Yueyang; Rastetter, Edward B; Rocha, Adrian V; Pearce, Andrea R; Kwiatkowski, Bonnie L; Shaver, Gaius R

    2015-09-01

    Fire frequency has dramatically increased in the tundra of northern Alaska, USA, which has major implications for the carbon budget of the region and the functioning of these ecosystems, which support important wildlife species. We investigated the postfire succession of plant and soil carbon (C), nitrogen (N), and phosphorus (P) fluxes and stocks along a burn severity gradient in the 2007 Anaktuvuk River fire scar in northern Alaska. Modeling results indicated that the early regrowth of postfire tundra vegetation was limited primarily by its canopy photosynthetic potential, rather than nutrient availability, because of the initially low leaf area and relatively high inorganic N and P concentrations in soil. Our simulations indicated that the postfire recovery of tundra vegetation was sustained predominantly by the uptake of residual inorganic N (i.e., in the remaining ash), and the redistribution of N and P from soil organic matter to vegetation. Although residual nutrients in ash were higher in the severe burn than the moderate burn, the moderate burn recovered faster because of the higher remaining biomass and consequent photosynthetic potential. Residual nutrients in ash allowed both burn sites to recover and exceed the unburned site in both aboveground biomass and production five years after the fire. The investigation of interactions among postfire C, N, and P cycles has contributed to a mechanistic understanding of the response of tundra ecosystems to fire disturbance. Our study provided insight on how the trajectory of recovery of tundra from wildfire is regulated during early succession.

  14. Satellite monitoring for carbon monoxide and particulate matter during forest fire episodes in Northern Thailand.

    PubMed

    Sukitpaneenit, Manlika; Kim Oanh, Nguyen Thi

    2014-04-01

    This study explored the use of satellite data to monitor carbon monoxide (CO) and particulate matter (PM) in Northern Thailand during the dry season when forest fires are known to be an important cause of air pollution. Satellite data, including Measurement of Pollution in the Troposphere (MOPITT) CO, Moderate Resolution Imaging Spectroradiometer aerosol optical depth (MODIS AOD), and MODIS fire hotspots, were analyzed with air pollution data measured at nine automatic air quality monitoring stations in the study area for February-April months of 2008-2010. The correlation analysis showed that daily CO and PM with size below 10 μm (PM10) were associated with the forest fire hotspot counts, especially in the rural areas with the maximum correlation coefficient (R) of 0.59 for CO and 0.65 for PM10. The correlations between MODIS AOD and PM10, between MOPITT CO and CO, and between MODIS AOD and MOPITT CO were also analyzed, confirming the association between these variables. Two forest fire episodes were selected, and the dispersion of pollution plumes was studied using the MOPITT CO total column and MODIS AOD data, together with the surface wind vectors. The results showed consistency between the plume dispersion, locations of dense hotspots, ground monitoring data, and prevalent winds. The satellite data were shown to be useful in monitoring the regional transport of forest fire plumes.

  15. Analysis of mechanical properties anisotropy of nanomodified carbon fibre-reinforced woven composites

    NASA Astrophysics Data System (ADS)

    Ruslantsev, A. N.; Portnova, Ya M.; Tairova, L. P.; Dumansky, A. M.

    2016-10-01

    The polymer binder cracking problem arises while designing and maintaining polymer composite-based aircraft load-bearing members. Some technological methods are used to solve this problem. In particular the injection of nanoagents can block the initiation and growth of microscopic cracks. Crack propagation can also be blocked if the strain energy release is not related with fracturing. One of the possible ways for such energy release is creep. Testing of the anisotropy of the woven carbon fibre reinforced plastic elastic characteristics and creep have been conducted. The samples with different layouts have been made of woven carbon fibre laminate BMI-3/3692 with nanomodified bismaleimide matrix. This matrix has a higher glass transition temperature and improved mechanical properties. The deformation regularities have been analyzed, layer elastic characteristics have been determined. The constitutive equations describing composite material creep have been obtained and its parameters have been defined. Experimental and calculated creep curves have been plotted. It was found that the effects of rheology arise as the direction of load does not match the direction of reinforcing fibres of the material.

  16. Improved Thermal Conductivity in Carbon Nanotubes-Reinforced Syntactic Foam Achieved by a New Dispersing Technique

    NASA Astrophysics Data System (ADS)

    Bhat, P.; Zegeye, E.; Ghamsari, A. K.; Woldesenbet, E.

    2015-12-01

    Syntactic foams are composite materials in which the matrix phase is reinforced with hollow micro-particles. Traditionally, syntactic foams are used for many high strength applications and as insulating materials. However, for applications demanding better heat dissipation, such as thermal management of electronic packaging, conductive fillers need to be added to syntactic foam. Carbon nanotubes (CNTs), although extremely conductive, have issues of agglomeration in the matrix. In this research, CNT-reinforced syntactic foam was developed based on our approach through which CNTs were dispersed throughout the matrix by growing them on the surface of glass microballoons. The thermal conductivity of nanotube-grown syntactic foam was tested with a Flashline® thermal analyzer. For comparison purposes, plain and nanotube-mixed syntactic foams were also fabricated and tested. Nanotube-grown microballoons improved the thermal conductivity of syntactic foam by 86% and 92% (at 50°C) compared to plain and nanotube-mixed syntactic foams, respectively. The improved thermal conductivity as well as the microstructural analysis proved the effectiveness of this approach for dispersing the carbon nanotubes in syntactic foams.

  17. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  18. Crashworthiness characteristics of a carbon fiber reinforced dual-phase epoxy–polyurea hybrid matrix composite

    DOE PAGES

    Zhou, Hongyu; Attard, Thomas L.; Dhiradhamvit, Kittinan; ...

    2014-11-07

    In this paper, the crashworthiness characteristics of rectangular tubes made from a Carbon-fiber reinforced Hybrid-Polymeric Matrix (CHMC) composite were investigated using quasi-static and impact crush tests. The hybrid matrix formulation of the CHMC was created by combining an epoxy-based thermosetting polymer with a lightly crosslinked polyurea elastomer at various cure-time intervals and volumetric ratios. The load–displacement responses of both CHMC and carbon-fiber reinforced epoxy (CF/epoxy) specimens were obtained under various crushing speeds; and crashworthiness parameters, such as the average crushing force and specific energy absorption (SEA), were calculated using subsequent load–displacement relationships. The CHMC maintained a high level of structuralmore » integrity and post-crush performance, relative to traditional CF/epoxy. The influence of the curing time and volumetric ratios of the polyurea/epoxy dual-hybridized matrix system on the crashworthiness parameters was also investigated. The results reveal that the load carrying capacity and total energy absorption tend to increase with greater polyurea thickness and lower elapsed reaction curing time of the epoxy although this is typically a function of the loading rate. In conclusion, the mechanism by which the CHMC provides increased damage tolerance was also investigated using scanning electron microscopy (SEM).« less

  19. Design and reinforcement: vertically aligned carbon nanotube-based sandwich composites.

    PubMed

    Zeng, You; Ci, Lijie; Carey, Brent J; Vajtai, Robert; Ajayan, Pulickel M

    2010-11-23

    Carbon nanotube (CNT) reinforcement of polymer composites has not yielded optimum results in that the composite properties are typically compromised by poor dispersion and random orientation of CNTs in polymers. Given the short lengths available for nanotubes, opportunities lie in incorporating CNTs with other structural reinforcements such as carbon fibers (CFs) to achieve improvement over existing composite designs. Growth of vertically aligned CNTs (VACNTs) offers new avenues for designing high-performance composites by integrating CFs and nanotubes into layered 3D architectures. To obtain composites with high rigidity and damping, we have designed and fabricated VACNT-based sandwich composites from simply stacking the freestanding VACNTs and CF fabrics and infiltrating with epoxy matrix. Comparing with the CF/epoxy laminates, the VACNT-based sandwich composites exhibit higher flexural rigidity and damping, which is achieved due to the effective integration of the VACNTs as an interfacial layer between the CF stacks. Furthermore, the lighter weight of these VACNT-based sandwich composites offers advantages in aerospace and transportation applications.

  20. Crashworthiness characteristics of a carbon fiber reinforced dual-phase epoxy–polyurea hybrid matrix composite

    SciTech Connect

    Zhou, Hongyu; Attard, Thomas L.; Dhiradhamvit, Kittinan; Wang, Yanli; Erdman, Donald

    2014-11-07

    In this paper, the crashworthiness characteristics of rectangular tubes made from a Carbon-fiber reinforced Hybrid-Polymeric Matrix (CHMC) composite were investigated using quasi-static and impact crush tests. The hybrid matrix formulation of the CHMC was created by combining an epoxy-based thermosetting polymer with a lightly crosslinked polyurea elastomer at various cure-time intervals and volumetric ratios. The load–displacement responses of both CHMC and carbon-fiber reinforced epoxy (CF/epoxy) specimens were obtained under various crushing speeds; and crashworthiness parameters, such as the average crushing force and specific energy absorption (SEA), were calculated using subsequent load–displacement relationships. The CHMC maintained a high level of structural integrity and post-crush performance, relative to traditional CF/epoxy. The influence of the curing time and volumetric ratios of the polyurea/epoxy dual-hybridized matrix system on the crashworthiness parameters was also investigated. The results reveal that the load carrying capacity and total energy absorption tend to increase with greater polyurea thickness and lower elapsed reaction curing time of the epoxy although this is typically a function of the loading rate. In conclusion, the mechanism by which the CHMC provides increased damage tolerance was also investigated using scanning electron microscopy (SEM).

  1. Aspects regarding wearing behaviour in case of aluminium composite materials reinforced with carbon fibers

    NASA Astrophysics Data System (ADS)

    Caliman, R.

    2016-08-01

    This paper presents a study regarding wear comportment of sintered composite materials obtained by mixture of aluminium with short carbon fibers. The necessity to satisfying more and more the specific functions during design of high performance structures leads to perform multi-materials such as reinforced composite parts. The wear tests were made on three different orientations of fibers on a standard machine of tribology, pin disk type. Counter-disk was made of cast iron with a superficial hardness of 92 HB. The wear rate and friction coefficient decreased exponentially with time of friction and reached a stationary value. This behaviour was attributed to the development of a lubricating film on the friction surface. To conduct this work was performed measurements on samples from the Al matrix composites and carbon fiber 43%, wear mechanism was investigated by scanning electron microscopy. In addition to fiber orientation, the tribological behaviour of metal matrix composites reinforced with fiber is influenced by the interfacial reaction of fiber-matrix. The characteristics and the dimensions of the interface depend on the cycle of temperature and time at which the material has been subjected during the manufacturing process and thereafter.

  2. Novel surface modifications of carbon fiber-reinforced polyetheretherketone hip stem in an ovine model.

    PubMed

    Nakahara, Ichiro; Takao, Masaki; Bandoh, Shunichi; Bertollo, Nicky; Walsh, William R; Sugano, Nobuhiko

    2012-01-01

    A carbon fiber-reinforced polymer (CFRP) is theoretically a suitable material for use in an uncemented hip prosthesis considering it can provide isoelastic environment with the surrounding bone, adequate fatigue strength, and a metal-free radiographic evaluation. To date, the selection of polymer material and optimization of both design and surface finish of the prostheses for osseointegration has not been accomplished. This study examined radiographic and histologic results of an uncemented CFRP stem manufactured from carbon fiber-reinforced polyetheretherketone (CFR/PEEK) with a roughened surface and a bioactive treatment in an adult ovine model following a 12-month implantation period. A unilateral hemiarthroplasty of the hip was performed using the CFRP stem or a titanium stem as a control. Four cases with the CFRP stem and five cases with titanium stem were evaluated. Bone on-growth fixation was achieved in two cases with the CFRP stem and in all the cases with the titanium stem. The CFRP cases showed minimal stress shielding while three of five cases with the titanium stem demonstrated typical osteopenia associated with stiff metal stems. Bone on-growth to the uncemented CFRP stem was achieved by using the CFR/PEEK for the material and modifying the surface design and the bioactive surface finish. Bone resorption and osteopenia observed with the Ti stems was not found with the CFRP design.

  3. [Tribological properties of carbon fiber-reinforced plastic. Experimental and clinical results].

    PubMed

    Früh, H J; Ascherl, R; Hipp, E

    1997-02-01

    Wear of the articulating components (especially PE-UHMW) of total hip endoprostheses is the most important technical factor limiting the functional lifetime. To minimize wear debris, ceramic heads, according to ISO 6474 (Al2O3), have been used, from 1969 paired with Al2O3 and since 1975 paired with PE-UHMW. Al2O3 balls articulating with cups made from CFRP have been in clinical use since 1988. Laboratory experiments and in-vivo testing showed minimized wear debris and mild biological response to wear products using CFRP (carbon fiber reinforced plastic) instead of PE-UHMW as the cup material. The articulating surfaces of retrieved ceramic heads (Al2O3-Biolox) and cementless CFRP cups (carbon fiber reinforced plastic, Caproman) were compared using sphericity measurement techniques, scanning electron microscopy (SEM) and roughness measurements (including advanced roughness parameters Rvk or Rpk according to ISO 4287). Altogether, the first results of the clinical study showed that the combination Al2O3-ball/CFRP-cup came up to the expected lower wear rates compared with the conventional combinations. The wear rates are comparable with the combination Al2O3/Al2O3 without the material-related problems of ceramic components in all ceramic combinations.

  4. Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite biocomposite.

    PubMed

    Xu, Anxiu; Liu, Xiaochen; Gao, Xiang; Deng, Feng; Deng, Yi; Wei, Shicheng

    2015-03-01

    As an FDA-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses excellent mechanical properties similar to those of human cortical bone and is a prime candidate to replace conventional metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. The present work aimed at developing a novel carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite (PEEK/CF/n-HA) ternary biocomposite with micro/nano-topographical surface for the enhancement of the osteogenesis as a potential bioactive material for bone grafting and bone tissue-engineering applications. The combined modification of oxygen plasma and sand-blasting could improve the hydrophily and generate micro/nano-topographical structures on the surface of the CFRPEEK-based ternary biocomposite. The results clearly showcased that the micro-/nano-topographical PEEK/n-HA/CF ternary biocomposite demonstrated the outstanding ability to promote the proliferation and differentiation of MG-63 cells in vitro as well as to boost the osseointegration between implant and bone in vivo, thereby boding well application to bone tissue engineering.

  5. The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis

    USGS Publications Warehouse

    Balshi, M. S.; McGuire, A.D.; Zhuang, Q.; Melillo, J.; Kicklighter, D.W.; Kasischke, E.; Wirth, C.; Flannigan, M.; Harden, J.; Clein, J.S.; Burnside, T.J.; McAllister, J.; Kurz, W.A.; Apps, M.; Shvidenko, A.

    2007-01-01

    Wildfire is a common occurrence in ecosystems of northern high latitudes, and changes in the fire regime of this region have consequences for carbon feedbacks to the climate system. To improve our understanding of how wildfire influences carbon dynamics of this region, we used the process-based Terrestrial Ecosystem Model to simulate fire emissions and changes in carbon storage north of 45??N from the start of spatially explicit historically recorded fire records in the twentieth century through 2002, and evaluated the role of fire in the carbon dynamics of the region within the context of ecosystem responses to changes in atmospheric CO2 concentration and climate. Our analysis indicates that fire plays an important role in interannual and decadal scale variation of source/sink relationships of northern terrestrial ecosystems and also suggests that atmospheric CO2 may be important to consider in addition to changes in climate and fire disturbance. There are substantial uncertainties in the effects of fire on carbon storage in our simulations. These uncertainties are associated with sparse fire data for northern Eurasia, uncertainty in estimating carbon consumption, and difficulty in verifying assumptions about the representation of fires that occurred prior to the start of the historical fire record. To improve the ability to better predict how fire will influence carbon storage of this region in the future, new analyses of the retrospective role of fire in the carbon dynamics of northern high latitudes should address these uncertainties. Copyright 2007 by the American Geophysical Union.

  6. Estimating release of carbon from 1990 and 1991 forest fires in Alaska

    NASA Technical Reports Server (NTRS)

    Kaisischke, Eric S.; French, Nancy H. F.; Bourgeau-Chavez, Laura L.; Christensen, N. L., Jr.

    1995-01-01

    An improved method to estimate the amounts of carbon released during fires in the boreal forest zone of Alaska in 1990 and 1991 is described. This method divides the state into 64 distinct physiographic regions and estimates areal extent of five different land covers: two forest types, peat land, tundra, and nonvegetated. The areal extent of each cover type was estimated from a review of topographic maps of each region and observations on the distribution of foreat types within the state. Using previous observations and theoretical models for the two forest types found in interior Alaska, models of biomass accumulation as a function of stand age were developed. Stand age distributions for each region were determined using a statistical distribution based on fire frequency, which was from available long-term historical records. Estimates of the degree of biomass combusted were based on recent field observations as well as research reported in the literature. The location and areal extent of fires in this region for 1990 and 1991 were based on both field observations and analysis of satellite (advanced very high resolution radiometer (AVHRR)) data sets. Estimates of average carbon release for the two study years ranged between 2.54 and 3.00 kg/sq m, which are 2.2 to 2.6 times greater than estimates used in other studies of carbon release through biomass burning in boreal forests. Total average annual carbon release for the two years ranged between 0.012 and 0.018 Pg C/yr, with the lower value resulting from the AVHRR estimates of fire location and area.

  7. Statistical aspects of carbon fiber risk assessment modeling. [fire accidents involving aircraft

    NASA Technical Reports Server (NTRS)

    Gross, D.; Miller, D. R.; Soland, R. M.

    1980-01-01

    The probabilistic and statistical aspects of the carbon fiber risk assessment modeling of fire accidents involving commercial aircraft are examined. Three major sources of uncertainty in the modeling effort are identified. These are: (1) imprecise knowledge in establishing the model; (2) parameter estimation; and (3)Monte Carlo sampling error. All three sources of uncertainty are treated and statistical procedures are utilized and/or developed to control them wherever possible.

  8. Carbon nanofiber reinforced epoxy matrix composites and syntactic foams - mechanical, thermal, and electrical properties

    NASA Astrophysics Data System (ADS)

    Poveda, Ronald Leonel

    The tailorability of composite materials is crucial for use in a wide array of real-world applications, which range from heat-sensitive computer components to fuselage reinforcement on commercial aircraft. The mechanical, electrical, and thermal properties of composites are highly dependent on their material composition, method of fabrication, inclusion orientation, and constituent percentages. The focus of this work is to explore carbon nanofibers (CNFs) as potential nanoscale reinforcement for hollow particle filled polymer composites referred to as syntactic foams. In the present study, polymer composites with high weight fractions of CNFs, ranging from 1-10 wt.%, are used for quasi-static and high strain rate compression analysis, as well as for evaluation and characterization of thermal and electrical properties. It is shown that during compressive characterization of vapor grown carbon nanofiber (CNF)/epoxy composites in the strain rate range of 10-4-2800 s-1, a difference in the fiber failure mechanism is identified based on the strain rate. Results from compression analyses show that the addition of fractions of CNFs and glass microballoons varies the compressive strength and elastic modulus of epoxy composites by as much as 53.6% and 39.9%. The compressive strength and modulus of the syntactic foams is also shown to generally increase by a factor of 3.41 and 2.96, respectively, with increasing strain rate when quasi-static and high strain rate testing data are compared, proving strain rate sensitivity of these reinforced composites. Exposure to moisture over a 6 month period of time is found to reduce the quasi-static and high strain rate strength and modulus, with a maximum of 7% weight gain with select grades of CNF/syntactic foam. The degradation of glass microballoons due to dealkalization is found to be the primary mechanism for reduced mechanical properties, as well as moisture diffusion and weight gain. In terms of thermal analysis results, the

  9. In-vitro MRI detectability of interbody test spacers made of carbon fibre-reinforced polymers, titanium and titanium-coated carbon fibre-reinforced polymers.

    PubMed

    Ernstberger, Thorsten; Buchhorn, Gottfried; Baums, Mike Herbert; Heidrich, Gabert

    2007-04-01

    The purpose of this study was to investigate how different materials affect the magnetic resonance imaging (MRI) detectability of interbody test spacers (ITS). We evaluated the post-implantation MRI scans with T1 TSE sequences for three different ITS made of titanium, carbon fibre-reinforced polymers (CFRP) and titanium-coated CFRP, respectively. The main target variables were total artefact volume (TAV) and median artefact area (MAA). Additionally, implant volume (IV)/TAV and cross section (CS)/MAA ratio were determined. The t test and Newman-Keuls test for multiple comparisons were used for statistical analysis. TAV and MAA did not differ significantly between CFRP and titanium-coated CFRP, but were approximately twice as high for the titanium ITS (p < 0.001). MRI detectability was optimum for CFRP and titanium-coated CFRP, but was limited at the implant-bone interface of the titanium ITS. The material's susceptibility and the implant's dimensions affected MRI artefacting. Based on TAV, the volume of titanium surface coating in the ITS studied has no influence on susceptibility in MRI scans with T1 TSE sequences.

  10. Mercury capture by native fly ash carbons in coal-fired power plants.

    PubMed

    Hower, James C; Senior, Constance L; Suuberg, Eric M; Hurt, Robert H; Wilcox, Jennifer L; Olson, Edwin S

    2010-08-01

    The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons.

  11. Mercury capture by native fly ash carbons in coal-fired power plants

    PubMed Central

    Hower, James C.; Senior, Constance L.; Suuberg, Eric M.; Hurt, Robert H.; Wilcox, Jennifer L.; Olson, Edwin S.

    2013-01-01

    The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons. PMID:24223466

  12. Formation mechanism of a silicon carbide coating for a reinforced carbon-carbon composite

    NASA Technical Reports Server (NTRS)

    Rogers, D. C.; Shuford, D. M.; Mueller, J. I.

    1975-01-01

    Results are presented for a study to determine the mechanisms involved in a high-temperature pack cementation process which provides a silicon carbide coating on a carbon-carbon composite. The process and materials used are physically and chemically analyzed. Possible reactions are evaluated using the results of these analytical data. The coating is believed to develop in two stages. The first is a liquid controlled phase process in which silicon carbide is formed due to reactions between molten silicon metal and the carbon. The second stage is a vapor transport controlled reaction in which silicon vapors react with the carbon. There is very little volume change associated with the coating process. The original thickness changes by less than 0.7%. This indicates that the coating process is one of reactive penetration. The coating thickness can be increased or decreased by varying the furnace cycle process time and/or temperature to provide a wide range of coating thicknesses.

  13. Strength Evaluation and Failure Prediction of Short Carbon Fiber Reinforced Nylon Spur Gears by Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Hu, Zhong; Hossan, Mohammad Robiul

    2013-06-01

    In this paper, short carbon fiber reinforced nylon spur gear pairs, and steel and unreinforced nylon spur gear pairs have been selected for study and comparison. A 3D finite element model was developed to simulate the multi-axial stress-strain behaviors of the gear tooth. Failure prediction has been conducted based on the different failure criteria, including Tsai-Wu criterion. The tooth roots, where has stress concentration and the potential for failure, have been carefully investigated. The modeling results show that the short carbon fiber reinforced nylon gear fabricated by properly controlled injection molding processes can provide higher strength and better performance.

  14. The Burning of Surface and Deep Peat during Boreal Forest and Peatland Fires: Implications for Fire Behaviour and Global Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Turetsky, M. R.

    2015-12-01

    Fire is increasingly appreciated as a threat to peatlands and their carbon stocks. The global peatland carbon pool exceeds that of global vegetation and is similar to the current atmospheric carbon pool. Under pristine conditions, most of the peat carbon stock is protected from burning, and resistance to fire has increased peat carbon storage in high latitude regions over long time scales. This, in part, is due to the high porosity and storage coefficient of surface peat, which minimizes water table variability and maintains wet conditions even during drought. However, higher levels of disturbance associated with warming and increasing human activities are triggering state changes and the loss of resiliency in some peatland systems. This presentation will summarize information on burn area and severity in peatlands under undisturbed scenarios of hydrologic self-regulation, and will assess the consequences of warming and drying on peatland vegetation and wildfire behaviour. Our goal is to predict where and when peatlands will become more vulnerable to deep smouldering, given the importance of deep peat layers to global carbon cycling, permafrost stability, and a variety of other ecosystem services in northern regions. Results from two major wildfire seasons (2004 in Alaska and 2014 in the Northwest Territories) show that biomass burning in peatlands releases similar amounts of carbon to the atmosphere as patterns of burning in upland forests, but that peatlands are less vulnerable to severe burning that tends to occur in boreal forests during late season fire activity.

  15. The modeled effects of fire on carbon balance and vegetation abundance in Alaskan tundra

    NASA Astrophysics Data System (ADS)

    Dietze, M. C.; Davidson, C. D.; Kelly, R.; Higuera, P. E.; Hu, F.

    2012-12-01

    Arctic climate is warming at a rate disproportionately faster than the rest of the world. Changes have been observed within the tundra that are attributed to this trend, including active layer thickening, shrub land expansion, and increases in fire frequency. Whether tundra remains a global net sink of carbon could depend upon the effects of fire on vegetation, specifically concerning the speed at which vegetation reestablishes, the stimulation of growth after fire, and the changes that occur in species composition during succession. While rapid regeneration of graminoid vegetation favors the spread of this functional type in early succession, late succession appears to favor shrub vegetation at abundances greater than those observed before fire. Possible reasons for this latter observation include changes in albedo, soil insulation, and soil moisture regimes. Here we investigate the course of succession after fire disturbance within tundra ecosystems, and the mechanisms involved. A series of simulated burn experiments were conducted on the burn site left by the 2007 Anaktuvuk River fire to access the behavior of the Ecosystem Demography model v2.2 (ED2) in the simulation of fire on the tundra. The land surface sub-model within ED is modified to improve simulate permafrost through the effects of an increased soil-column depth, a peat texture class, and the effects of wind compaction and depth hoar on snow density. Parameterization is conducted through Bayesian techniques used to constrain parameter distributions based upon data from a literature survey, field measurements at Toolik Lake, Alaska, and a data assimilation over three datasets. At each step, priority was assigned to measurements that could constrain parameters that account for the greatest explained variance in model output as determined through sensitivity analysis. Following parameterization, a series of simulations were performed to gauge the suitability of the model in predicting carbon balance and

  16. Titanium Implant Osseointegration Problems with Alternate Solutions Using Epoxy/Carbon-Fiber-Reinforced Composite

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    The aim of the article is to present recent developments in material research with bisphenyl-polymer/carbon-fiber-reinforced composite that have produced highly influential results toward improving upon current titanium bone implant clinical osseointegration success. Titanium is now the standard intra-oral tooth root/bone implant material with biocompatible interface relationships that confer potential osseointegration. Titanium produces a TiO2 oxide surface layer reactively that can provide chemical bonding through various electron interactions as a possible explanation for biocompatibility. Nevertheless, titanium alloy implants produce corrosion particles and fail by mechanisms generally related to surface interaction on bone to promote an inflammation with fibrous aseptic loosening or infection that can require implant removal. Further, lowered oxygen concentrations from poor vasculature at a foreign metal surface interface promote a build-up of host-cell-related electrons as free radicals and proton acid that can encourage infection and inflammation to greatly influence implant failure. To provide improved osseointegration many different coating processes and alternate polymer matrix composite (PMC) solutions have been considered that supply new designing potential to possibly overcome problems with titanium bone implants. Now for important consideration, PMCs have decisive biofunctional fabrication possibilities while maintaining mechanical properties from addition of high-strengthening varied fiber-reinforcement and complex fillers/additives to include hydroxyapatite or antimicrobial incorporation through thermoset polymers that cure at low temperatures. Topics/issues reviewed in this manuscript include titanium corrosion, implant infection, coatings and the new epoxy/carbon-fiber implant results discussing osseointegration with biocompatibility related to nonpolar molecular attractions with secondary bonding, carbon fiber in vivo properties, electrical

  17. The effect of filler aspect ratio on the electromagnetic properties of carbon-nanofibers reinforced composites

    SciTech Connect

    De Vivo, B.; Lamberti, P.; Spinelli, G. Tucci, V.; Guadagno, L.; Raimondo, M.

    2015-08-14

    The effect of filler aspect ratio on the electromagnetic properties of epoxy-amine resin reinforced with carbon nanofibers is here investigated. A heat treatment at 2500 °C of carbon nanofibers seems to increase their aspect ratio with respect to as-received ones most likely due to a lowering of structural defects and the improvement of the graphene layers within the dixie cup conformation. These morphological differences revealed by Raman's spectroscopy and scanning electron microscopy analyses may be responsible for the different electrical properties of the resulting composites. The DC characterization of the nanofilled material highlights an higher electrical conductivity and a lower electrical percolation threshold for the heat-treated carbon nanofibers based composites. In fact, the electrical conductivity is about 0.107 S/m and 1.36 × 10{sup −3} S/m for the nanocomposites reinforced with heat-treated and as received fibers, respectively, at 1 wt. % of nanofiller loading, while the electrical percolation threshold falls in the range [0.05–0.32]wt. % for the first nanocomposites and above 0.64 wt. % for the latter. Moreover, also a different frequency response is observed since the critical frequency, which is indicative of the transition from a resistive to a capacitive-type behaviour, shifts forward of about one decade at the same filler loading. The experimental results are supported by theoretical and simulation studies focused on the role of the filler aspect ratio on the electrical properties of the nanocomposites.

  18. Titanium Implant Osseointegration Problems with Alternate Solutions Using Epoxy/Carbon-Fiber-Reinforced Composite.

    PubMed

    Petersen, Richard C

    2014-12-01

    The aim of the article is to present recent developments in material research with bisphenyl-polymer/carbon-fiber-reinforced composite that have produced highly influential results toward improving upon current titanium bone implant clinical osseointegration success. Titanium is now the standard intra-oral tooth root/bone implant material with biocompatible interface relationships that confer potential osseointegration. Titanium produces a TiO2 oxide surface layer reactively that can provide chemical bonding through various electron interactions as a possible explanation for biocompatibility. Nevertheless, titanium alloy implants produce corrosion particles and fail by mechanisms generally related to surface interaction on bone to promote an inflammation with fibrous aseptic loosening or infection that can require implant removal. Further, lowered oxygen concentrations from poor vasculature at a foreign metal surface interface promote a build-up of host-cell-related electrons as free radicals and proton acid that can encourage infection and inflammation to greatly influence implant failure. To provide improved osseointegration many different coating processes and alternate polymer matrix composite (PMC) solutions have been considered that supply new designing potential to possibly overcome problems with titanium bone implants. Now for important consideration, PMCs have decisive biofunctional fabrication possibilities while maintaining mechanical properties from addition of high-strengthening varied fiber-reinforcement and complex fillers/additives to include hydroxyapatite or antimicrobial incorporation through thermoset polymers that cure at low temperatures. Topics/issues reviewed in this manuscript include titanium corrosion, implant infection, coatings and the new epoxy/carbon-fiber implant results discussing osseointegration with biocompatibility related to nonpolar molecular attractions with secondary bonding, carbon fiber in vivo properties, electrical

  19. Development of Rapid Pipe Moulding Process for Carbon Fiber Reinforced Thermoplastics by Direct Resistance Heating

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuto; Harada, Ryuki; Uemura, Toshiki; Katayama, Tsutao; Kuwahara, Hideyuki

    To deal with environmental issues, the gasoline mileage of passenger cars can be improved by reduction of the car weight. The use of car components made of Carbon Fiber Reinforced Plastics (CFRP) is increasing because of its superior mechanical properties and relatively low density. Many vehicle structural parts are pipe-shaped, such as suspension arms, torsion beams, door guard bars and impact beams. A reduction of the car weight is expected by using CFRP for these parts. Especially, when considering the recyclability and ease of production, Carbon Fiber Reinforced Thermoplastics are a prime candidate. On the other hand, the moulding process of CFRTP pipes for mass production has not been well established yet. For this pipe moulding process an induction heating method has been investigated already, however, this method requires a complicated coil system. To reduce the production cost, another system without such complicated equipment is to be developed. In this study, the pipe moulding process of CFRTP using direct resistance heating was developed. This heating method heats up the mould by Joule heating using skin effect of high-frequency current. The direct resistance heating method is desirable from a cost perspective, because this method can heat the mould directly without using any coils. Formerly developed Non-woven Stitched Multi-axial Cloth (NSMC) was used as semi-product material. NSMC is very suitable for the lamination process due to the fact that non-crimp stitched carbon fiber of [0°/+45°/90°/-45°] and polyamide 6 non-woven fabric are stitched to one sheet, resulting in a short production cycle time. The use of the pipe moulding process with the direct resistance heating method in combination with the NSMC, has resulted in the successful moulding of a CFRTP pipe of 300 mm in length, 40 mm in diameter and 2 mm in thickness.

  20. Suitability of carbon fiber-reinforced polyetheretherketone cages for use as anterior struts following corpectomy.

    PubMed

    Heary, Robert F; Parvathreddy, Naresh K; Qayumi, Zainab S; Ali, Naiim S; Agarwal, Nitin

    2016-08-01

    OBJECTIVE Fibular allograft remains a widely used strut for corpectomy surgeries. The amount of graft material that can be packed into an allograft strut has not been quantified. Cages are an alternative to fibular allograft for fusion surgeries. The authors of this study assessed the suitability of carbon fiber-reinforced polyetheretherketone (CFRP) cages for anterior corpectomy surgeries. They further explored the parameters known to affect fusion rates in clinical practice. METHODS Six fibular allografts were tested at standard lengths. Three sets of carbon fiber cages (Bengal, DePuy Spine), each with a different footprint size but the same lengths, were tested. The allografts and cages were wrapped in adhesive, fluid-tight transparent barriers and filled with oil. The volume and weight of the oil instilled as well as the implant footprints were measured. The fibular allografts and cages were tested at 20-, 40-, and 50-mm lengths. Two investigators independently performed all measurements 5 times. Five CFRP cubes (1 × 1 × 1 cm) were tested under pure compression, and load versus displacement curves were plotted to determine the modulus of elasticity. RESULTS Significantly more oil fit in the CFRP cages than in the fibular allografts (p < 0.0001). The weight and volume of oil was 4-6 times greater in the cages. Interobserver (r = 0.991) and intraobserver (r = 0.993) reliability was excellent. The modulus of elasticity for CFRP was 16.44 ± 2.07 GPa. CONCLUSIONS Carbon fiber-reinforced polyetheretherketone cages can accommodate much more graft material than can fibular allografts. In clinical practice, the ability to deliver greater amounts of graft material following a corpectomy may improve fusion rates.

  1. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-12-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation results

  2. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    USGS Publications Warehouse

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation

  3. Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Rogers, Brendan M.; Neilson, Ronald P.; Drapek, Ray; Lenihan, James M.; Wells, John R.; Bachelet, Dominique; Law, Beverly E.

    2011-09-01

    The diverse vegetation types and carbon pools of the U.S. Pacific Northwest (PNW) are tightly coupled to fire regimes that depend on climate and fire suppression. To realistically assess the effects of twenty-first-century climate change on PNW fire and carbon dynamics, we developed a new fire suppression rule for the MC1 dynamic general vegetation model that we ran under three climate change scenarios. Climate projections from the CSIRO Mk3, MIROC 3.2 medres, and Hadley CM3 general circulation models, forced by the A2 CO2 emissions scenario, were downscaled to a 30 arc-second (˜0.6 km2) grid. Future climates amplify the already strong seasonality of temperature and precipitation across the domain. Simulations displayed large increases in area burned (76%-310%) and burn severities (29%-41%) by the end of the twenty-first century. The relatively dry ecosystems east of the Cascades gain carbon in the future despite projections of more intense wildfires, while the mesic maritime forests lose up to 1.2 Pg C from increased burning. Simulated fire suppression causes overall carbon gains yet leaves ecosystems vulnerable to large future fires. Overall, our simulations suggest the Pacific Northwest has the potential to sequester ˜1 Pg C over the next century unless summer droughts severely intensify fire regimes.

  4. Daily and 3-hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Mu, M.; Randerson, J. T.; vanderWerf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; Griffith, D. W. T.; Wunch, D.; Toon, G. C.; Sherlock, V.; Wennberg, P. O.

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003.2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS) ]derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top ]down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from

  5. Self-tapping ability of carbon fibre reinforced polyetheretherketone suture anchors.

    PubMed

    Feerick, Emer M; Wilson, Joanne; Jarman-Smith, Marcus; Ó'Brádaigh, Conchur M; McGarry, J Patrick

    2014-10-01

    An experimental and computational investigation of the self-tapping ability of carbon fibre reinforced polyetheretherketone (CFR-PEEK) has been conducted. Six CFR-PEEK suture anchor designs were investigated using PEEK-OPTIMA® Reinforced, a medical grade of CFR-PEEK. Experimental tests were conducted to investigate the maximum axial force and torque required for self-taping insertion of each anchor design. Additional experimental tests were conducted for some anchor designs using pilot holes. Computational simulations were conducted to determine the maximum stress in each anchor design at various stages of insertion. Simulations also were performed to investigate the effect of wall thickness in the anchor head. The maximum axial force required to insert a self-tapping CFR-PEEK suture anchor did not exceed 150 N for any anchor design. The maximum torque required to insert a self-tapping CFR-PEEK suture anchor did not exceed 0.8 Nm. Computational simulations reveal significant stress concentrations in the region of the anchor tip, demonstrating that a re-design of the tip geometry should be performed to avoid fracture during self-tapping, as observed in the experimental component of this study. This study demonstrates the ability of PEEK-OPTIMA Reinforced suture anchors to self-tap polyurethane foam bone analogue. This provides motivation to further investigate the self-tapping ability of CFR-PEEK suture anchors in animal/cadaveric bone. An optimised design for CFR-PEEK suture anchors offers the advantages of radiolucency, and mechanical properties similar to bone with the ability to self-tap. This may have positive implications for reducing surgery times and the associated costs with the procedure.

  6. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.

    PubMed

    Brando, Paulo M; Oliveria-Santos, Claudinei; Rocha, Wanderley; Cury, Roberta; Coe, Michael T

    2016-07-01

    Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years.

  7. Measuring the impact of prescribed fire management on the carbon balance of a flatwoods ecosystem in Kissimmee, Florida

    NASA Astrophysics Data System (ADS)

    Becker, K.; Hinkle, C.

    2012-12-01

    It has been well documented that terrestrial ecosystems have a great potential to store and sequester carbon. Therefore, a former ranch land at the Disney Wilderness Preserve (DWP), Kissimmee, Florida, USA is being restored to native ecosystems and managed to preserve biodiversity and increase carbon storage. Here, we present measurements of C flux from an eddy covariance system located in a longleaf pine flatwoods ecosystem at DWP. C flux measurements were taken at the site before, during, and after a prescribed fire event. C stock measurements were also taken for aboveground biomass immediately before and after the fire, as well as one year post fire. This study indicated that this ecosystem typically serves as a net sink of C. However, the system became a net source of C immediately following the fire event, with a ~40% loss of aboveground C stock, but recovered to a net sink of C within 6 weeks of the fire. Annually this ecosystem was found to serve as a net C sink even with a prescribed fire event, with annual net ecosystem productivity (NEP) of 508 g C/m2 in a non-fire year (2010) and 237 g C/m2 in a fire year (2011). In addition to the fire, it is important to note that the growing season of 2011 was anomalously dry, which likely hindered productivity, and thus the NEP of the fire year would probably be more similar to the non-fire year under more typical hydrologic conditions. Despite the variability of rainfall between years, this study shows that the longleaf pine flatwoods ecosystem provides the service of C sequestration even in the context of frequent prescribed fire management.

  8. Quantifying Soil Organic Carbon Redistribution after Forest Fire using Thermal Analyses, Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Kuklewicz, K. B.; Rasmussen, C.

    2014-12-01

    The frequency and severity of wildfire in western conifer forests is expected to increase with continued climate change induced warming and drying. The effects of wildfire on carbon cycle processes, and particularly surface soil organic matter composition and post fire erosive redistribution is poorly understood. The recent Thompson Ridge wildfire event in 2013 in the Valles Caldera, part of the Jemez-Catalina Critical Zone Observatory, provides the opportunity to track post-fire changes in surface soil organic matter composition over time relative to pre-fire conditions. Here we applied thermal analyses to quantify changes in surface soil organic matter composition, with a focus on charred materials, across a range of hillslope and convergent landscape positions. It was hypothesized that the fraction of charred material would increase post-burn in all surface soils, with a subsequent decline in hillslope positions and a gain in convergent positions as surface material was eroded and deposited in water gathering portions of the landscape. Our results confirmed that charcoal increased directly after the fire in all samples, but a clear signal of erosive redistribution was not observed, suggesting that the movement of charcoal throughout a landscape is more complex than the simple hypothesis put forward here. Future work will expand the spatial distribution of samples in a systematic fashion that better captures variation in topography and erosive versus depositional areas of the landscape.

  9. Effects of the Amount and Shape of Carbon Fiber-Reinforced Polymer Strengthening Elements on the Ductile Behavior of Reinforced Concrete Beams

    NASA Astrophysics Data System (ADS)

    Hong, Sungnam

    2014-09-01

    A series of beam tests were performed to evaluate the ductility of reinforced concrete (RC) beams strengthened with carbon-fiber-reinforced polymer (CFRP) elements. A total of nine RC beams were produced and loaded up to failure in three-point bending under deflection control. In addition, the amount and shape of the CFRP elements (plates/sheets) were considered as the key test variables. Test results revealed that the strengthening with CFRP elements in the width direction was more effective than the strengthening across their height. The energy method used in an analysis showed that the energy ratio of the beams strengthened with CFRP plates were half or less than half of the energy ratio of the beams strengthened with CFRP sheets. In addition, the ductility of the beams decreased as the strengthening ratio of the CFRP elements increased.

  10. Thickness limitations in carbon nanotube reinforced silicon nitride coatings synthesized by vapor infiltration

    SciTech Connect

    Eres, Gyula

    2012-01-01

    Chemical vapor infiltration is a convenient method for synthesizing carbon nanotube (CNT)-reinforced ceramic coatings. The thickness over which infiltration is relatively uniform is limited by gas phase diffusion in the pore structure. These effects were investigated in two types of silicon nitride matrix composites. With CNTs that were distributed uniformly on the substrate surface dense coatings were limited to thicknesses of several microns. With dual structured CNT arrays produced by photolithography coatings up to 400 gm thick were obtained with minimal residual porosity. Gas transport into these dual structured materials was facilitated by creating micron sized channels between "CNT pillars" (i.e. each pillar consisted of a large number of individual CNTs). The experimental results are consistent with basic comparisons between the rates of gas diffusion and silicon nitride growth in porous structures. This analysis also provides a general insight into optimizing infiltration conditions during the fabrication of thick CNT-reinforced composite coatings. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Spectroscopic study of terahertz reflection and transmission properties of carbon-fiber-reinforced plastic composites

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Shi, Changcheng; Ma, Yuting; Han, Xiaohui; Li, Wei; Chang, Tianying; Wei, Dongshan; Du, Chunlei; Cui, Hong-Liang

    2015-05-01

    Carbon-fiber-reinforced plastic (CFRP) composites are widely used in aerospace and concrete structure reinforcement due to their high strength and light weight. Terahertz (THz) time-domain spectroscopy is an attractive tool for defect inspection in CFRP composites. In order to improve THz nondestructive testing of CFRP composites, we have carried out systematic investigations of THz reflection and transmission properties of CFRP. Unidirectional CFRP composites with different thicknesses are measured with polarization directions 0 deg to 90 deg with respect to the fiber direction, in both reflection and transmission modes. As shown in the experiments, CFRP composites are electrically conducting and therefore exhibit a high THz reflectivity. In addition, CFRP composites have polarization-dependent reflectivity and transmissivity for THz radiation. The reflected THz power in the case of parallel polarization is nearly 1.8 times higher than for perpendicular polarization. At the same time, in the transmission of THz wave, a CFRP acts as a Fabry-Pérot cavity resulting from multiple internal reflections from the CFRP-air interfaces. Moreover, from the measured data, we extract the refractive index and absorption coefficient of CFRP composites in the THz frequency range.

  12. Linear and non-linear electrical dependency of carbon nanotube reinforced composites to internal damage

    NASA Astrophysics Data System (ADS)

    Bekas, D.; Grammatikos, S. A.; Kouimtzi, C.; Paipetis, A. S.

    2015-02-01

    Carbon nanotube (CNT) enhanced composite materials have attracted the interest of many scientists worldwide, especially in the aerospace industry. Fundamental to their qualification as materials in primary aircraft structures is the investigation of the relationship between their functional characteristics and their long-term behaviour under external combined loads. Conductive reinforcement at the nanoscale is by definition multifunctional as it may (i) enhance structural performance and (ii) provide structural health monitoring functionalities. It is now well established that reversible changes in the electrical resistance in nano composites are related to strain and irreversible monotonic changes are related to cumulative damage in the nano composite. In this study, the effect of damage in the hysteretic electrical behaviour of nano-enhanced reinforced composites was investigated. The nanocomposites were subjected to different levels of damage and their response to a cyclic electrical potential excitation was monitored as a function of frequency. Along with the dynamic electrical investigation, an Electrical Potential Mapping (EPM) technique was developed to pin-point artificial damage in CNT-enhanced matrix composite materials. The electrical potential field of the bulk material has shown to be characteristic of its internal structural state. The results of EPM technique were contradicted and validated with conventional C-scans.

  13. Nanoscale damping characteristics of boron nitride nanotubes and carbon nanotubes reinforced polymer composites.

    PubMed

    Agrawal, Richa; Nieto, Andy; Chen, Han; Mora, Maria; Agarwal, Arvind

    2013-11-27

    This study compares the damping behavior of boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) as reinforcement in PLC, a biodegradable copolymer. The damping behavior of PLC composites reinforced with 2 wt % or 5 wt % nanotube filler is evaluated by nanodynamic mechanical analysis (NanoDMA). The addition of 2 wt % CNT leads to the greatest enhancement in damping (tan δ) behavior. This is attributed to pullout in CNTs because of lower interfacial shear strength with the polymer matrix and a more effective sword-in-sheath mechanism as opposed to BNNTs which have bamboo-like nodes. BNNTs however have a superior distribution in the PLC polymer matrix enabling higher contents of BNNT to further enhance the damping behavior. This is in contrast with CNTs which agglomerate at higher concentrations, thus preventing further improvement at higher concentrations. It is observed that for different compositions, tan δ values show no significant changes over varying dynamic loads or prolonged cycles. This shows the ability of nanotube mechanisms to function at varying strain rates and to survive long cycles.

  14. Preparation and mechanical properties of carbon fiber reinforced hydroxyapatite/polylactide biocomposites.

    PubMed

    Shen, Lie; Yang, Hui; Ying, Jia; Qiao, Fei; Peng, Mao

    2009-11-01

    A novel biocomposite of carbon fiber (CF) reinforced hydroxyapatite (HA)/polylactide (PLA) was prepared by hot pressing a prepreg which consisting of PLA, HA and CF. The prepreg was manufactured by solvent impregnation process. Polymer resin PLA dissolved with chloroform was mixed with HA. After reinforcement CF bundle was impregnated in the mixture, the solvent was dried completely and subsequently hot-pressed uniaxially under a pressure of 40 MPa at 170 degrees C for 20 min. A study was carried out to investigate change in mechanical properties of CF/HA/PLA composites before and after degradation in vitro. The composites have excellent mechanical properties. A peak showed in flexural strength, flexural modulus and shear strength aspects, reaching up 430 MPa, 22 GPa, 212 MPa, respectively, as the HA content increased. Degraded in vitro for 3 months, the flexural strength and flexural modulus of the CF/HA/PLA fell 13.2% and 5.4%, respectively, while the shear strength of the CF/HA/PLA composites remains at the 190 MPa level. The SEM photos showed that there were gaps between the PLA matrix and CF after degradation. Water uptake increased to 5%, but the mass loss rate was only 1.6%. The pH values of the PBS dropped less than 0.1. That's because the alkaline of HA neutralize the acid degrades from PLA, which can prevent the body from the acidity harm.

  15. Fabrication and characterization of carbon nanotube reinforced poly(methyl methacrylate) nanocomposites.

    PubMed

    Yu, Suzhu; Juay, Yang Kang; Young, Ming Shyan

    2008-04-01

    Multiwall carbon nanotube (CNT) reinforced poly(methyl methacrylate) (PMMA) nanocomposites have been successfully fabricated with melt blending. Two melt blending approaches of batch mixing and continuous extrusion have been used and the properties of the derived nanocomposites have been compared. The interaction of PMMA and CNTs, which is crucial to greatly improve the polymer properties, has been physically enhanced by adding a third party of poly(vinylidene fluoride) (PVDF) compatibilizer. It is found that the electrical threshold for both PMMA/CNT and PMMA/PVDF/CNT nanocomposites lies between 0.5 to 1 wt% of CNTs. The thermal and mechanical properties of the nanocomposites increase with CNTs and they are further increased by the addition of PVDF For 5 wt% CNT reinforced PMMA/PVDF/CNT nanocomposite, the onset of decomposition temperature is about 17 degrees C higher and elastic modulus is about 19.5% higher than those of neat PMMA. Rheological study also shows that the CNTs incorporated in the PMMA/PVDF/CNT nanocomposites act as physical cross-linkers.

  16. Microencapsulation of phase change materials with carbon nanotubes reinforced shell for enhancement of thermal conductivity

    NASA Astrophysics Data System (ADS)

    Cui, Weiwei; Xia, Yongpeng; Zhang, Huanzhi; Xu, Fen; Zou, Yongjin; Xiang, Cuili; Chu, Hailiang; Qiu, Shujun; Sun, Lixian

    2017-03-01

    Novel microencapsulated phase change materials (micro-PCMs) were synthesized via in-situ polymerization with modified carbon nanotubes(CNTs) reinforced melamine-formaldehyde resin as shell material and CNTs reinforced n-octadecane as PCMs core. DSC results confirm that the micro-PCMs possess good phase change behavior and excellent thermal cycling stability. Melting enthalpy of the micro-PCMs can achieve 133.1 J/g and has slight changes after 20 times of thermal cyclings. And the incorporation of CNTs supplies the micro-PCMs with fast thermal response rate which increases the crystallization temperature of the micro-PCMs. Moreover, the thermal conductivity of the micro-PCMs has been significantly enhanced by introducing CNTs into their shell and core materials. And the thermal conductivity of micro-PCMs with 1.67 wt.% CNTs can increase by 25%. These results exhibit that the obtained micro-PCMs have a good prospect in thermal energy storage applications.

  17. Structure-property relationship in polyethylene reinforced by polyethylene-grafted multi-walled carbon nanotubes.

    PubMed

    Causin, Valerio; Yang, Bing-Xing; Marega, Carla; Goh, Suat Hong; Marigo, Antonio

    2008-04-01

    Polyethylene-grafted multiwalled carbon nanotubes (PE-g-MWNT) were used to reinforce polyethylene (PE). The nanocomposites possessed not only improved stiffness and strength, but also increased ductility and toughness. The effects on the structure and morphology of composites due to pristine multiwalled carbon nanotubes (MWNT) and PE-g-MWNT were studied and compared using small angle X-ray scattering (SAXS), wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). The SAXS long period, crystalline layer thickness and crystallinity of polymer lamellar stacks were found to decrease significantly in MWNT composites, while the decreases were much smaller in PE-g-MWNT composites. PE-g-MWNT allowed a more efficient and unhindered crystallization at a lamellar level, while MWNT disrupted the order of lamellar stacks, probably because of their tendency to aggregate. The SAXS crystallinity and the mechanical properties of the composites showed similar trends as a function of MWNT content. This suggested that the improvement of the interfacial strength between polymer and carbon nanotubes was a result of synergistic effects of better dispersion of the filler, better stress transfer, due to the grafting of polymer and MWNT, and the nucleation of a crystalline phase around MWNT. The latter effect was confirmed by measurements of kinetics of non-isothermal crystallization.

  18. The strong diamagnetic behaviour of unidirectional carbon fiber reinforced polymer laminates

    NASA Astrophysics Data System (ADS)

    Galehdar, A.; Nicholson, K. J.; Callus, P. J.; Rowe, W. S. T.; John, S.; Wang, C. H.; Ghorbani, K.

    2012-12-01

    Carbon fibers are finite conductors with a weak diamagnetic response in a static magnetic field. When illuminated with a high-frequency alternating electromagnetic wave such that the skin depth is greater than the fiber diameter, carbon-fiber composites are shown to exhibit a strong dynamic diamagnetic response. The magnetic susceptibility (χm) is controlled by the polarization angle (θ), which is the angle between the incident electric field and conductor direction. A closed form solution for this behaviour was derived using Maxwell's equations and an understanding of the induced conductor currents. The equation was verified using simulation and free space "wall" and waveguide measurements on unidirectional IM7/977-3 carbon fiber reinforced polymer laminates. The measured responses ranged from non-magnetic at θ = 90°, χm = 0, up to strongly diamagnetic at θ = 30°, χm = -0.75, over the 8-18 GHz bandwidth. The experimental results are in good agreement with theoretical predictions and computational simulations.

  19. Feeding Single-Walled Carbon Nanotubes or Graphene to Silkworms for Reinforced Silk Fibers.

    PubMed

    Wang, Qi; Wang, Chunya; Zhang, Mingchao; Jian, Muqiang; Zhang, Yingying

    2016-10-12

    Silkworm silk is gaining significant attention from both the textile industry and research society because of its outstanding mechanical properties and lustrous appearance. The possibility of creating tougher silks attracts particular research interest. Carbon nanotubes and graphene are widely studied for their use as reinforcement. In this work, we report mechanically enhanced silk directly collected by feeding Bombyx mori larval silkworms with single-walled carbon nanotubes (SWNTs) and graphene. We found that parts of the fed carbon nanomaterials were incorporated into the as-spun silk fibers, whereas the others went into the excrement of silkworms. Spectroscopy study indicated that nanocarbon additions hindered the conformation transition of silk fibroin from random coil and α-helix to β-sheet, which may contribute to increased elongation at break and toughness modules. We further investigated the pyrolysis of modified silk, and a highly developed graphitic structure with obviously enhanced electrical conductivity was obtained through the introduction of SWNTs and graphene. The successful generation of these SWNT- or graphene-embedded silks by in vivo feeding is expected to open up possibilities for the large-scale production of high-strength silk fibers.

  20. Physical and mechanical properties of carbon fiber reinforced smart porous concrete for planting

    NASA Astrophysics Data System (ADS)

    Park, Seung-Bum; Kim, Jung-Hwan; Seo, Dae-Seuk

    2005-05-01

    The reinforcement strength of porous concrete and its applicability as a recycled aggregate was measured. Changes in physical and mechanical properties, subsequent to the mixing of carbon fiber and silica fume, were examined, and the effect of recycled aggregate depending on their mixing rate was evaluated. The applicability of planting to concrete material was also assessed. The results showed that there were not any remarkable change in the porosity and strength characteristics although its proportion of recycled aggregate increased. Also, the mixture of 10% of silica was found to be most effective for strength enforcement. In case of carbon fiber, the highest flexural strength was obtained with its mixing rate being 3%. It was also noticed that PAN-derived carbon fiber was superior to Pitch-derived ones in view of strength. The evaluation of its use for vegetation proved that the growth of plants was directly affected by the existence of covering soil, in case of having the similar size of aggregate and void.

  1. Stabilizing Surfactant Templated Cylindrical Mesopores in Polymer and Carbon Films through Composite Formation with Silica Reinforcement

    SciTech Connect

    Song, Lingyan; Feng, Dan; Lee, Hae-Jeong; Wang, Chengqing; Wu, Quanyan; Zhao, Dongyuan; Vogt, Bryan D.

    2010-10-22

    A facile approach to maintain the periodic mesostructure of cylindrical pores in polymer-resin and carbon films after thermal template removal is explored through the reactive coassembly of resol (carbon precursor) and tetraethylorthosilicate (silica precursor) with triblock copolymer Pluronic F127. Without silica, a low porosity, disordered film is formed after pyrolysis despite the presence of an ordered mesostructure prior to template removal. However for silica concentration greater than 25 wt %, pyrolysis at 350 C yields a mesoporous silica-polymer film with well-defined pore mesostructure. These films remain well ordered upon carbonization at 800 C. In addition to the mesostructural stability, the addition of silica to the matrix impacts other morphological characteristics. For example, the average pore size and porosity of the films increase from 3.2 to 7.5 nm and 12 to 45%, respectively, as the concentration of silica in the wall matrix increases from 0 to 32 wt %. The improved thermal stability of the ordered mesostructure with the addition of silica to the matrix is attributed to the reinforcement of the mechanical properties leading to resistance to stress induced collapse of the mesostructure during template removal.

  2. MoS2 nanolayers grown on carbon nanotubes: an advanced reinforcement for epoxy composites.

    PubMed

    Zhou, Keqing; Liu, Jiajia; Shi, Yongqian; Jiang, Saihua; Wang, Dong; Hu, Yuan; Gui, Zhou

    2015-03-25

    In the present study, carbon nanotubes (CNTs) wrapped with MoS2 nanolayers (MoS2-CNTs) were facilely synthesized to obtain advanced hybrids. The structure of the MoS2-CNT hybrids was characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy measurements. Subsequently, the MoS2-CNT hybrids were incorporated into EP for reducing fire hazards. Compared with pristine CNTs, MoS2-CNT hybrids showed good dispersion in EP matrix and no obvious aggregation of CNTs was observed. The obtained nanocomposites exhibited significant improvements in thermal properties, flame retardancy and mechanical properties, compared with those of neat EP and composites with a single CNT or MoS2. With the incorporation of 2.0 wt % of MoS2-CNT hybrids, the char residues and glass transition temperature (Tg) of the EP composite was significantly increased. Also, the addition of MoS2-CNT hybrids awarded excellent fire resistance to the EP matrix, which was evidenced by the significantly reduced peak heat release rate and total heat release. Moreover, the amount of organic volatiles from EP decomposition was obviously decreased, and the formation of toxic CO was effectively suppressed, implying the toxicity of the volatiles was reduced and smoke production was obviously suppressed. The dramatically reduced fire hazards were generally ascribed to the synergistic effect of MoS2 and CNTs, containing good dispersion of MoS2-CNT hybrids, catalytic char function of MoS2 nanolayers, and physical barrier effects of MoS2 nanolayers and CNT network structure.

  3. Mechanical Properties of Carbon Nanofiber Reinforced Polymer Composites-Molecular Dynamics Approach

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Chandra, Rakesh; Kumar, Pramod; Kumar, Navin

    2016-06-01

    Molecular dynamics simulation has been used to study the effect of carbon nanofiber (CNF) volume fraction ( V f) and aspect ratio ( l/d) on mechanical properties of CNF-reinforced polypropylene (PP) composites. Materials Studio 5.5 has been used as a tool for finding the modulus and damping in composites. CNF composition in PP was varied by volume from 0% to 16%. The aspect ratio of CNF was varied from l/d = 5 to l/d = 100. Results show that, with only 2% addition by volume of CNF in PP, E 11 increases 748%. Increase in E 22 is much less in comparison to the increase in E 11. With the increase in the CNF aspect ratio ( l/d) up to l/d = 60, the longitudinal loss factor ( η 11) decreases rapidly. The results of this study have been compared with those available in the literature.

  4. Effect of High Velocity Ballistic Impact on Pretensioned Carbon Fibre Reinforced Plastic (CFRP) Plates

    NASA Astrophysics Data System (ADS)

    Azhar KAMARUDIN, Kamarul; HAMID, Iskandar ABDUL

    2017-01-01

    This work describes an experimental investigation of the pretensioned thin plates made of Carbon Fibre Reinforced Plastic (CFRP) struck by hemispherical and blunt projectiles at various impact velocities. The experiments were done using a gas gun with combination of pretension equipment positioned at the end of gun barrel near the nozzle. Measurements of the initial and residual velocities were taken, and the ballistic limit velocity were calculated for each procedures. The pretension target results in reduction of ballistic limit compared to non-pretension target for both flat and hemispherical projectiles. Target impacted by hemispherical projectile experience split at earlier impact velocity compared to target by flat projectile. C-Scan images analysis technique was used to show target impact damaged by hemispherical and flat projectiles. The damage area was shown biggest at ballistic limit velocity and target splitting occurred most for pretention plate.

  5. High-frequency microwave anti-/de-icing system for carbon-reinforced airfoil structures

    NASA Astrophysics Data System (ADS)

    Feher, Lambert; Thumm, Manfred

    2001-08-01

    An aircraft may be subjected to icing for a variety of meteorological reasons during the flight. Ice formation on the plane and in particular on the aerodynamically carrying structures adversely affects the flight behaviour. Conventional de-icing methods for aluminum wings are characterised by a high energy consumption during the flight and slow ice melting due to thermal diffusion of the heat in the wing material. In addition to advanced turbines, novel materials and composites have to be used in order to reduce the weight and, hence, the fuel consumption. These composite materials have a far worse thermal conductivity than metals and undergo delamination when hot air systems, resistance or ohmic heating mats are used. In the paper, the unique advantages of a novel High Frequency Microwave Anti-/De-icing System for large future aircraft with carbon reinforced leading edge structures are presented.

  6. A novel processing route for carbon nanotube reinforced glass-ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Dassios, Konstantinos G.; Bonnefont, Guillaume; Fantozzi, Gilbert; Matikas, Theodore E.

    2015-03-01

    The current study reports the establishment of a novel feasible way for processing glass- and ceramic- matrix composites reinforced with carbon nanotubes (CNTs). The technique is based on high shear compaction of glass/ceramic and CNT blends in the presence of polymeric binders for the production of flexible green bodies which are subsequently sintered and densified by spark plasma sintering. The method was successfully applied on a borosilicate glass / multi-wall CNT composite with final density identical to that of the full-dense ceramic. Preliminary non-destructive evaluation of dynamic mechanical properties such as Young's and shear modulus and Poisson's ratio by ultrasonics show that property improvement maximizes up to a certain CNT loading; after this threshold is exceeded, properties degrade with further loading increase.

  7. High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites

    NASA Astrophysics Data System (ADS)

    Salama, A.; Li, L.; Mativenga, P.; Sabli, A.

    2016-02-01

    The large differences in physical and thermal properties of the carbon fibre-reinforced polymer (CFRP) composite constituents make laser machining of this material challenging. An extended heat-affected zone (HAZ) often occurs. The availability of ultrashort laser pulse sources such as picosecond lasers makes it possible to improve the laser machining quality of these materials. This paper reports an investigation on the drilling and machining of CFRP composites using a state-of-the-art 400 W picosecond laser system. Small HAZs (<25 µm) were obtained on the entry side of 6-mm-diameter hole drilled on sample of 6 mm thickness, whereas no HAZ was seen below the top surface on the cut surfaces. Multiple ring material removal strategy was used. Furthermore, the effect of laser processing parameters such as laser power, scanning speed and repetition rate on HAZ sizes and ablation depth was investigated.

  8. Repeated self-healing of microvascular carbon fibre reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Coope, T. S.; Wass, D. F.; Trask, R. S.; Bond, I. P.

    2014-11-01

    A self-healing, high performance, carbon fibre reinforced polymer (CFRP) composite is demonstrated by embedding a Lewis-acid catalytic curing agent within a laminate, manufactured using out of autoclave (OOA) composite manufacturing methods. Two configurations of healing agent delivery, pre-mixed and autonomous mixing, are investigated via injection of a healing agent through bio-inspired microvascular channels exposed on Mode I fractured crack planes. Healing is effected when an epoxy resin-solvent healing agent mixture reaches the boundary of embedded solid-state scandium(III) triflate (Sc(OTf)3) catalyst, located on the crack plane, to initiate the ring-opening polymerisation (ROP) of epoxides. Tailored self-healing agents confer high healing efficiency values after multiple healing cycles (69-108%) to successfully mitigate against crack propagation within the composite microstructure.

  9. Ultrasonic inspection of carbon fiber reinforced plastic by means of sample-recognition methods

    NASA Technical Reports Server (NTRS)

    Bilgram, R.

    1985-01-01

    In the case of carbon fiber reinforced plastic (CFRP), it has not yet been possible to detect nonlocal defects and material degradation related to aging with the aid of nondestructive inspection method. An approach for overcoming difficulties regarding such an inspection involves an extension of the ultrasonic inspection procedure on the basis of a use of signal processing and sample recognition methods. The basic concept involved in this approach is related to the realization that the ultrasonic signal contains information regarding the medium which is not utilized in conventional ultrasonic inspection. However, the analytical study of the phyiscal processes involved is very complex. For this reason, an empirical approach is employed to make use of the information which has not been utilized before. This approach uses reference signals which can be obtained with material specimens of different quality. The implementation of these concepts for the supersonic inspection of CFRP laminates is discussed.

  10. ["Elastic osteosynthesis" with autocompression plates of carbon fiber reinforced thermoplastic material].

    PubMed

    Stange, J; Mittelmeier, H

    1989-06-01

    The problem of atrophic bone that occurs in osteosynthesis employing rigid plates is first depicted. Attempts at fabricating "simirigid" plates, which, however, have so far failed to gain any practical importance are then discussed. The reason for this seems to be that made of duroplastics cannot be molded during the operation and the thermoplastics do not have sufficient strength. The production of semirigid plates made of thermoplastic Polyethersulfon (PES), reinforced with 20% short carbon fibres, results in plates which are made moldable by heating in a small oven, white retaining sufficient static strength, although only limited fatigue strength. Biomechanical examinations revealed that with appropriate dimensioning of the plates, "elastic osteosynthesis" results in less loss of mechanical function of the stabilized bones, so that less atrophy of the bone may be expected. During more pronounced exercise loading, a reversible "springiness" of the fracture results, which might stimulate callus formation and improved stability.

  11. Graphite Sheet Coating for Improved Thermal Oxidative Stability of Carbon Fiber Reinforced/PMR-15 Composites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Papadopoulos, Demetrios; Heimann, Paula; Inghram, Linda; McCorkle, Linda

    2005-01-01

    Expanded graphite was compressed into graphite sheets and used as a coating for carbon fiber reinforced PMR-15 composites. BET analysis of the graphite indicated an increase in graphite pore size on compression, however the material was proven to be an effective barrier to oxygen when prepegged with PMR-15 resin. Oxygen permeability of the PMR-15/graphite was an order of magnitude lower than the compressed graphite sheet. By providing a barrier to oxygen permeation, the rate of oxidative degradation of PMR-15 was decreased. As a result, the composite thermo-oxidative stability increased by up to 25%. The addition of a graphite sheet as a top ply on the composites yielded little change in the material's flexural strength or interlaminar shear strength.

  12. Wear of ceramic-on-carbon fiber-reinforced poly-ether ether ketone hip replacements.

    PubMed

    Brockett, Claire L; John, Gemma; Williams, Sophie; Jin, Zhongmin; Isaac, Graham H; Fisher, John

    2012-08-01

    Total hip replacement has been a successful surgical intervention for over 50 years, with the majority of bearings using a polyethylene cup. Long-term failure due to osteolysis and loosening has been widely documented and alternative bearings have been sought. A novel carbon fiber-reinforced poly-ether ether ketone (CFR-PEEK) cup was investigated through experimental friction and wear studies. Friction studies demonstrated the bearings operated in a boundary lubrication condition, with friction factors higher than those for other hip replacement bearings. The wear study was conducted with 36 mm diameter bearings tested against Biolox Delta heads for a period of 10 million cycles. The mean volumetric wear rate was 0.3 mm(3)/Mc, indicating the ceramic-on-CFR-PEEK bearing to be a very low wearing option for total hip replacement.

  13. Surface emissivity of a reinforced carbon composite material with an oxidation-inhibiting coating

    NASA Technical Reports Server (NTRS)

    Wakefield, R. M.

    1973-01-01

    Total effective emissivity and spectral emissivity over the wavelength range of 0.65 to 6.3 microns were determined for temperatures from 1300 t0 2250 deg K. A multi channel radiometer was used in the arcjet and laboratory tests. The black-body-hole method was used to independently check radiometer results. The results show the silicon-carbide coated reinforced carbon composite material is a nongray radiator. The total effective emissivity and the spectral emissivity at 0.65 micron both decreased with increasing temperature, respectively, from approximately 0.8 to 0.6, and from 0.4 to 0.25, over the temperature range. The emissivity values were the same when the sample was viewed normal to the surface or at a 45 deg angle. Recommended emissivity values are presented.

  14. Milling damage on Carbon Fibre Reinforced Polymer using TiAlN coated End mills

    NASA Astrophysics Data System (ADS)

    Konneh, Mohamed; Izman, Sudin; Rahman Kassim, Abdullah Abdul

    2015-07-01

    This paper reports on the damage caused by milling Carbon Fibre Reinforced Composite (CFRP) with 2-flute 4 mm-diameter solid carbide end mills, coated with titanium aluminium nitride. The machining parameters considered in work are, rotation speed, feed rate and depth of cut. Experiments were designed based on Box-Behnken design and the experiments conducted on a Mikrotool DT-110 CNC micro machine. A laser tachometer was used to ascertain a rotational speed for conducting any machining trial. Optical microscopy examination reveals minimum delamination value of 4.05 mm at the spindle speed of 25,000 rpm, depth of cut of 50μm and feed rate of 3 mm/min and the maximum delamination value of 5.04 mm at the spindle speed of 35000 rpm, depth of cut of 150μm and feed rate of 9 mm/min A mathematical model relating the milling parameters and delamination has been established.

  15. Multifunctional integration of thin-film silicon solar cells on carbon-fiber-reinforced epoxy composites

    SciTech Connect

    Jason Maung, K.; Hahn, H. Thomas; Ju, Y.S.

    2010-03-15

    Multifunction integration of solar cells in load-bearing structures can enhance overall system performance by reducing parasitic components and material redundancy. The article describes a manufacturing strategy, named the co-curing scheme, to integrate thin-film silicon solar cells on carbon-fiber-reinforced epoxy composites and eliminate parasitic packaging layers. In this scheme, an assembly of a solar cell and a prepreg is cured to form a multifunctional composite in one processing step. The photovoltaic performance of the manufactured structures is then characterized under controlled cyclic mechanical loading. The study finds that the solar cell performance does not degrade under 0.3%-strain cyclic tension loading up to 100 cycles. Significant degradation, however, is observed when the magnitude of cyclic loading is increased to 1% strain. The present study provides an initial set of data to guide and motivate further studies of multifunctional energy harvesting structures. (author)

  16. Segmenting delaminations in carbon fiber reinforced polymer composite CT using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Sammons, Daniel; Winfree, William P.; Burke, Eric; Ji, Shuiwang

    2016-02-01

    Nondestructive evaluation (NDE) utilizes a variety of techniques to inspect various materials for defects without causing changes to the material. X-ray computed tomography (CT) produces large volumes of three dimensional image data. Using the task of identifying delaminations in carbon fiber reinforced polymer (CFRP) composite CT, this work shows that it is possible to automate the analysis of these large volumes of CT data using a machine learning model known as a convolutional neural network (CNN). Further, tests on simulated data sets show that with a robust set of experimental data, it may be possible to go beyond just identification and instead accurately characterize the size and shape of the delaminations with CNNs.

  17. First light with a carbon fiber reinforced polymer 0.4 meter telescope

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher C.; Santiago, Freddie; Jungwirth, Matthew E.; Martinez, Ty; Restaino, Sergio R.; Bagwell, Brett; Romeo, Robert

    2014-03-01

    For the passed several years, the Naval Research Laboratory (NRL) has been investigating the use of Carbon Fiber Reinforced Polymer (CFRP) material in the construction of a telescope assembly including the optical components. The NRL, Sandia National Laboratories (SNL), and Composite Mirror Applications, Inc. (CMA) have jointly assembled a prototype telescope and achieved "first light" images with a CFRP 0.4 m aperture telescope. CFRP offers several advantages over traditional materials such as creating structures that are lightweight and low coefficient of thermal expansion and conductivity. The telescope's primary and secondary mirrors are not made from glass, but CFRP, as well. The entire telescope weighs approximately 10 kg while a typical telescope of this size would weigh quite a bit more. We present the achievement of "first light" with this telescope demonstrating the imaging capabilities of this prototype and the optical surface quality of the mirrors with images taken during a day's quiescent periods.

  18. Carbon Fiber Reinforced Polymer (CFRP) Optics Quality Assessment for Lightweight Deployable Optics

    NASA Astrophysics Data System (ADS)

    Andrews, J.; Martinez, T.; Restaino, S.; Santiago, F.; Wilcox, C.; Teare, S.; Romeo, R.; Martin, R.

    2010-09-01

    The Naval Research Laboratory and Composite Mirror Applications (CMA) have been working together for several years on the development of Carbon Fiber Reinforced Polymer (CFRP) optics and telescopes. We have documented the potential advantages of this technology in several other publications, including structural, thermal and weight advantages over traditional steel and glass optical systems. In this paper we present results of a battery of optical tests done on various CFRP replicated mirrors. Our goal is to demonstrate not only the optical quality of such mirrors but also their reproducibility and stability. We show test results on a sample of four mirrors. We performed extensive optical tests and also stability and repeatability tests. These tests are geared towards proving the use of this technology for a variety of optical applications including use in our CFRP telescopes.

  19. Low-velocity impact damage characterization of carbon fiber reinforced polymer (CFRP) using infrared thermography

    NASA Astrophysics Data System (ADS)

    Li, Yin; Zhang, Wei; Yang, Zheng-wei; Zhang, Jin-yu; Tao, Sheng-jie

    2016-05-01

    Carbon fiber reinforced polymer (CFRP) after low-velocity impact is detected using infrared thermography, and different damages in the impacted composites are analyzed in the thermal maps. The thermal conductivity under pulse stimulation, frictional heating and thermal conductivity under ultrasonic stimulation of CFRP containing low-velocity impact damage are simulated using numerical simulation method. Then, the specimens successively exposed to the low-velocity impact are respectively detected using the pulse infrared thermography and ultrasonic infrared thermography. Through the numerical simulation and experimental investigation, the results obtained show that the combination of the above two detection methods can greatly improve the capability for detecting and evaluating the impact damage in CFRP. Different damages correspond to different infrared thermal images. The delamination damage, matrix cracking and fiber breakage are characterized as the block-shape hot spot, line-shape hot spot, and

  20. Influence of attenuation on acoustic emission signals in carbon fiber reinforced polymer panels.

    PubMed

    Asamene, Kassahun; Hudson, Larry; Sundaresan, Mannur

    2015-05-01

    Influence of attenuation on acoustic emission (AE) signals in Carbon Fiber Reinforced Polymer (CFRP) crossply and quasi-isotropic panels is examined in this paper. Attenuation coefficients of the fundamental antisymmetric (A0) and symmetric (S0) wave modes were determined experimentally along different directions for the two types of CFRP panels. In the frequency range from 100 kHz to 500 kHz, the A0 mode undergoes significantly greater changes due to material related attenuation compared to the S0 mode. Moderate to strong changes in the attenuation levels were noted with propagation directions. Such mode and frequency dependent attenuation introduces major changes in the characteristics of AE signals depending on the position of the AE sensor relative to the source. Results from finite element simulations of a microscopic damage event in the composite laminates are used to illustrate attenuation related changes in modal and frequency components of AE signals.

  1. [Experimental study on carbon fiber reinforced plastic plate--analysis of stabilizing force required for plate].

    PubMed

    Iizuka, H

    1990-11-01

    Plates currently in use for the management of bone fracture made of metal present with various problems. We manufactured carbon fiber reinforced plastic (CFRP) plates from Pyrofil T/530 puriplegs overlaid at cross angles of +/- 10 degrees, +/- 20 degrees, and +/- 30 degrees for trial and carried out an experimental study on rabbit tibiofibular bones using 316L stainless steel plates of comparable shape and size as controls. The results indicate the influence of CFRP plate upon cortical bone was milder than that of stainless steel plate, with an adequate stabilizing force for the repair of fractured rabbit tibiofibular bones. CFRP has the advantages over metals of being virtually free from corrosion and fatigue, reasonably radiolucent and able to meet a wide range of mechanical requirements. This would make CFRP plate quite promising as a new devices of treating fracture of bones.

  2. Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook.

    PubMed

    Pimenta, Soraia; Pinho, Silvestre T

    2011-02-01

    Both environmental and economic factors have driven the development of recycling routes for the increasing amount of carbon fibre reinforced polymer (CFRP) waste generated. This paper presents a review of the current status and outlook of CFRP recycling operations, focusing on state-of-the-art fibre reclamation and re-manufacturing processes, and on the commercialisation and potential applications of recycled products. It is shown that several recycling and re-manufacturing processes are reaching a mature stage, with implementations at commercial scales in operation, production of recycled CFRPs having competitive structural performances, and demonstrator components having been manufactured. The major challenges for the sound establishment of a CFRP recycling industry and the development of markets for the recyclates are summarised; the potential for introducing recycled CFRPs in structural components is discussed, and likely promising applications are investigated.

  3. Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses

    SciTech Connect

    Kononenko, T. V.; Komlenok, M. S.; Konov, V. I.; Freitag, C.; Onuseit, V.; Weber, R.; Graf, T.

    2014-03-14

    Deep multipass cutting of bidirectional and unidirectional carbon fiber reinforced plastics (CFRP) with picosecond laser pulses was investigated in different static atmospheres as well as with the assistance of an oxygen or nitrogen gas flow. The ablation rate was determined as a function of the kerf depth and the resulting heat affected zone was measured. An assisting oxygen gas flow is found to significantly increase the cutting productivity, but only in deep kerfs where the diminished evaporative ablation due to the reduced laser fluence reaching the bottom of the kerf does not dominate the contribution of reactive etching anymore. Oxygen-supported cutting was shown to also solve the problem that occurs when cutting the CFRP parallel to the fiber orientation where a strong deformation and widening of the kerf, which temporarily slows down the process speed, is revealed to be typical for processing in standard air atmospheres.

  4. Laser Cutting of Carbon Fiber Reinforced Polymers using Highly Brilliant Laser Beam Sources

    NASA Astrophysics Data System (ADS)

    Klotzbach, Annett; Hauser, Markus; Beyer, Eckhard

    Carbon fiber reinforced polymers (CFRP) are applied more and more in the aircraft industry as well as in the automobile industry. The principal reason is the highly mechanical load capacity along with the low density. Moreover, the corrosion resistance plus the damping behavior of the material can be utilized fully in highly stressed structures. However, the concept of manufacture CFRP-parts close to the final contour does not substitute the need of cutting them. The different properties of fiberand matrix-material constitute an ambitious challenge while cutting CFRP using a laser beam. This paper deals with elementary analysis of the laser remote cutting process and the gas assisted laser cutting of CFRP.

  5. Effect of laser melting on plasma-sprayed aluminum oxide coatings reinforced with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Samant, Anoop; Balani, Kantesh; Dahotre, Narendra B.; Agarwal, Arvind

    2009-03-01

    The effect of laser melting on the microstructure and mechanical properties of plasma-sprayed aluminum oxide composite coating reinforced with 4 wt% multi-walled carbon nanotubes (CNTs) is reported. Laser-melted layer consists of dense, coarse columnar microstructure which is significantly different from plasma-sprayed coating that consists of splats and porosity. CNTs retained their original cylindrical graphitic structure after undergoing laser irradiation. Three dimensional heat flow model has been developed to estimate temperature variation in the laser-melted composite layer. Laser-melted layers show an increase in the microhardness at the expanse of degradation of fracture toughness. Nanoindentation study indicates an increase in the elastic modulus and yield strength of the laser-melted layer which is attributed to dense microstructure with absence of weak-bonding splats and porosity.

  6. Stormwater and fire as sources of black carbon nanoparticles to Lake Tahoe.

    PubMed

    Bisiaux, Marion M; Edwards, Ross; Heyvaert, Alan C; Thomas, James M; Fitzgerald, Brian; Susfalk, Richard B; Schladow, S Geoffrey; Thaw, Melissa

    2011-03-15

    Emitted to the atmosphere through fire and fossil fuel combustion, refractory black carbon nanoparticles (rBC) impact human health, climate, and the carbon cycle. Eventually these particles enter aquatic environments, where they may affect the fate of other pollutants. While ubiquitous, the particles are still poorly characterized in freshwater systems. Here we present the results of a study determining rBC in waters of the Lake Tahoe watershed in the western United States from 2007 to 2009. The study period spanned a large fire within the Tahoe basin, seasonal snowmelt, and a number of storm events, which resulted in pulses of urban runoff into the lake with rBC concentrations up to 4 orders of magnitude higher than midlake concentrations. The results show that rBC pulses from both the fire and urban runoff were rapidly attenuated suggesting unexpected aggregation or degradation of the particles. We find that those processes prevent rBC concentrations from building up in the clear and oligotrophic Lake Tahoe. This rapid removal of rBC soon after entry into the lake has implications for the transport of rBC in the global aquatic environment and the flux of rBC from continents to the global ocean.

  7. Management of forest fires to maximize carbon sequestration in temperate and boreal forests

    SciTech Connect

    Guggenheim, D.E. |

    1996-12-31

    This study examines opportunities for applying prescribed burning strategies to forest stands to enhance net carbon sequestration and compared prescribed burning strategies with more conventional forestry-based climate change mitigation alternatives, including fire suppression and afforestation. Biomass burning is a major contributor to greenhouse gas accumulation in the atmosphere. Biomass burning has increased by 50% since 1850. Since 1977, the annual extent of burning in the northern temperate and boreal forests has increased dramatically, from six- to nine-fold. Long-term suppression of fires in North America, Russia, and other parts of the world has led to accumulated fuel load and an increase in the destructive power of wildfires. Prescribed burning has been used successfully to reduce the destructiveness of wildfires. However, across vast areas of Russia and other regions, prescribed burning is not a component of forest management practices. Given these factors and the sheer size of the temperate-boreal carbon sink, increasing attention is being focused on the role of these forests in mitigating climate change, and the role of fire management strategies, such as prescribed burning, which could work alongside more conventional forestry-based greenhouse gas offset strategies, such as afforestation.

  8. Cutting and drilling of carbon fiber reinforced plastics (CFRP) by 70W short pulse nanosecond laser

    NASA Astrophysics Data System (ADS)

    Jaeschke, Peter; Stolberg, Klaus; Bastick, Stefan; Ziolkowski, Ewa; Roehner, Markus; Suttmann, Oliver; Overmeyer, Ludger

    2014-02-01

    Continuous carbon fibre reinforced plastics (CFRP) are recognized as having a significant lightweight construction potential for a wide variety of industrial applications. However, a today`s barrier for a comprehensive dissemination of CFRP structures is the lack of economic, quick and reliable manufacture processes, e.g. the cutting and drilling steps. In this paper, the capability of using pulsed disk lasers in CFRP machining is discussed. In CFRP processing with NIR lasers, carbon fibers show excellent optical absorption and heat dissipation, contrary to the plastics matrix. Therefore heat dissipation away from the laser focus into the material is driven by heat conduction of the fibres. The matrix is heated indirectly by heat transfer from the fibres. To cut CFRP, it is required to reach the melting temperature for thermoplastic matrix materials or the disintegration temperature for thermoset systems as well as the sublimation temperature of the reinforcing fibers simultaneously. One solution for this problem is to use short pulse nanosecond lasers. We have investigated CFRP cutting and drilling with such a laser (max. 7 mJ @ 10 kHz, 30 ns). This laser offers the opportunity of wide range parameter tuning for systematic process optimization. By applying drilling and cutting operations based on galvanometer scanning techniques in multi-cycle mode, excellent surface and edge characteristics in terms of delamination-free and intact fiber-matrix interface were achieved. The results indicate that nanosecond disk laser machining could consequently be a suitable tool for the automotive and aircraft industry for cutting and drilling steps.

  9. Covalent cum noncovalent functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film.

    PubMed

    Yuan, Wei; Chan-Park, Mary B

    2012-04-01

    Although carbon nanotubes have impressive tensile properties, exploiting these properties in composites, especially those made by the common solution casting technique, seems to be elusive thus far. The reasons could be partly due to the poor nanotube dispersion and the weak nanotube/matrix interface. To solve this dual pronged problem, we combine noncovalent and covalent functionalizations of nanotubes in a single system by the design and application of a novel dispersant, hydroxyl polyimide-graft-bisphenol A diglyceryl acrylate (PI(OH)-BDA), and use them with epoxidized single-walled carbon nanotubes (O-SWNTs). Our novel PI(OH)-BDA dispersant functionalizes the nanotubes noncovalently to achieve good dispersion of the nanotubes because of the strong π-π interaction due to main chain and steric hindrance of the BDA side chain. PI(OH)-BDA also functionalizes O-SWNTs covalently because it reacts with epoxide groups on the nanotubes, as well as the cyanate ester (CE) matrix used. The resulting solution-cast CE composites show 57%, 71%, and 124% increases in Young's modulus, tensile strength, and toughness over neat CE. These values are higher than those of composites reinforced with pristine SWNTs, epoxidized SWNTs, and pristine SWNTs dispersed with PI(OH)-BDA. The modulus and strength increase per unit nanotube weight fraction, i.e., dE/dW(NT) and dσ/dW(NT), are 175 GPa and 7220 MPa, respectively, which are significantly higher than those of other nanotube/thermosetting composites (22-70 GPa and 140-3540 MPa, respectively). Our study indicates that covalent cum noncovalent functionalization of nanotubes is an effective tool for improving both the nanotube dispersion and nanotube/matrix interfacial interaction, resulting in significantly improved mechanical reinforcement of the solution-cast composites.

  10. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites.

    PubMed

    Estili, Mehdi; Sakka, Yoshio

    2014-12-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT-ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  11. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Estili, Mehdi; Sakka, Yoshio

    2014-12-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT-ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  12. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    PubMed Central

    Estili, Mehdi; Sakka, Yoshio

    2014-01-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  13. In Situ Synthesis of Ceramic Reinforcements for Carbon/CuCrZr Joints Brazed with Composite Fillers

    NASA Astrophysics Data System (ADS)

    Mao, Yangwu; Yu, Si; Deng, Quanrong; Zhao, Pei

    2016-12-01

    Brazing of two kinds of carbon materials including graphite and carbon fiber-reinforced carbon composites to copper alloys has been realized with CuTiH2 + BN composite fillers. The microstructure characterization reveals that the ceramic reinforcements containing TiN particles and TiB whiskers have been synthesized by in situ reaction of BN additives with Ti discomposed from TiH2 in the composite filler. The filler layer of the joints is mainly composed of Cu-based solid solutions [Cu (ss)] and Ti-Cu intermetallics along with ceramic reinforcements. Furthermore, a continuous thin reaction layer mainly containing TiC is developed at the interface close to the carbon substrates. The growth of TiC layer is mainly controlled by the diffusion of carbon from the substrates into the liquid filler through the TiC layer formed. The interface evolution of the graphite/CuCrZr joints has been discussed. The electrical resistivity of the joining area is relatively low, which highly meets the requirement for the carbon commutator applications.

  14. Daily and Hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Mu, M.; Randerson, J. T.; van der Werf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; Griffith, D. W. T.; Wunch, D.; Toon, G. C.; Sherlock, V.; Wennberg, P. O.

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We distributed monthly GFED3 emissions during 2003-2009 on a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) active fire observations. We found that patterns of daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of bunting in savannas. On diurnal timescales, our analysis of the GOES active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.

  15. Blood carbon monoxide and hydrogen cyanide concentrations in the fatalities of fire and non-fire associated civil aviation accidents, 1991-1998.

    PubMed

    Chaturvedi, A K; Smith, D R; Canfield, D V

    2001-10-01

    Blood samples submitted to the Civil Aeromedical Institute (CAMI) from aviation accident fatalities are analyzed for carbon monoxide (CO), as carboxyhemoglobin (COHb), and hydrogen cyanide, as cyanide (CN(-)). These analyses are performed to establish possible exposure of victims to smoke from in-flight/post-crash fires or to CO from faulty exhaust/heating systems. The presence of both gases in blood would suggest that the victim was alive and inhaled smoke. If only COHb is elevated, the accident (or a death) could be the result of CO contamination of the interior. Information pertaining to blood levels of these gases in aviation fatalities, in relation to the associated accidents, is scattered or not available, particularly with regard to toxicity. Therefore, considering that COHb> or =10% and CN(-)> or =0.25 microg/ml are sufficient to produce some degree of toxicological effects, the necessary information was extracted from the CAMI database. Samples from 3857 fatalities of 2837 aviation accidents, occurring during 1991-1998, were received; 1012 accidents, encompassing 1571 (41%) fatalities, were fire associated, whereas 1820 accidents were non-fire related. The remaining five accidents were of unknown fire status. There were fewer fire related fatalities and associated accidents in the (COHb> or =10% and CN(-)> or =0.25 microg/ml) category than that in the (COHb<10% and CN(-)<0.25 microg/ml) category. No in-flight fire was documented in the former category, but in-flight fires were reported in 14 accidents (18 fatalities) in the latter category. No non-fire accident fatality was found wherein levels of both gases were determined to be at or above the stated levels. There were 15 non-fire accidents with 17 fatalities wherein only COHb (10-69%) was elevated. The present study suggests that aviation fire accidents/fatalities were fewer than aviation non-fire accidents/fatalities and confirms that aviation accidents related to in-flight fires and CO

  16. Satellite Investigations of Fire, Smoke, and Carbon Monoxide during April 1994 MAPS Mission: Case Studies over Tropical Asia

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Chou, Joyce; Welch, Ronald M.; Kliche, Donna V.; Connors, Vickie S.

    1998-01-01

    During April 9-19, 1994, the Measurement of Air Pollution from Satellites (MAPS) measured free tropospheric carbon monoxide (CO) concentrations on a near-global basis. For these eleven days the global lkm advanced very high resolution radiometer (AVHRR) Pathfinder data are used to detect fires and smoke over the Indo-Burma region (85 degrees E - 110 degrees E; 10 degrees N -30 degrees N). The fire activities are categorized for four major ecosystems that include (1) cropland/natural vegetation mosaic (CNVM), (2) evergreen broadleaf forest (EBF), (3) mixed forest (MFD), and (4) grassland (GL). Using published emission rates between particulate matter and carbon monoxide concentrations from temperate areas, the fire counts along with other information are used to obtain estimates of CO concentrations from the AVERR data. More than 7000 fires are detected during the study period with 23%, 43%, 24%, and 10% fires in the CNVM, EBF, MFD, and GL ecosystems, respectively. The enhanced CO concentrations over the area of study are either over or downwind of the fires detected by the AVHRR. The preliminary AVHRR estimates of CO concentrations are smaller than the MAPS-measured values by a factor of 4 to 5 for fire counts areater than 200. The differences are attributed to the lack of transport mechanisms and other assumptions in the current model. However, these results show a good potential for usino the AVHRR measurements to detect fires and smoke and also to estimate CO concentrations.

  17. Fracture Mechanics Analyses of Subsurface Defects in Reinforced Carbon-Carbon Joggles Subjected to Thermo-Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Raju, Ivatury S.; Song, Kyongchan

    2011-01-01

    Coating spallation events have been observed along the slip-side joggle region of the Space Shuttle Orbiter wing-leading-edge panels. One potential contributor to the spallation event is a pressure build up within subsurface voids or defects due to volatiles or water vapor entrapped during fabrication, refurbishment, or normal operational use. The influence of entrapped pressure on the thermo-mechanical fracture-mechanics response of reinforced carbon-carbon with subsurface defects is studied. Plane-strain simulations with embedded subsurface defects are performed to characterize the fracture mechanics response for a given defect length when subjected to combined elevated-temperature and subsurface-defect pressure loadings to simulate the unvented defect condition. Various subsurface defect locations of a fixed-length substrate defect are examined for elevated temperature conditions. Fracture mechanics results suggest that entrapped pressure combined with local elevated temperatures have the potential to cause subsurface defect growth and possibly contribute to further material separation or even spallation. For this anomaly to occur, several unusual circumstances would be required making such an outcome unlikely but plausible.

  18. Durability of carbon fiber reinforced shape memory polymer composites in space

    NASA Astrophysics Data System (ADS)

    Jang, Joon Hyeok; Hong, Seok Bin; Ahn, Yong San; Kim, Jin-Gyun; Nam, Yong-Youn; Lee, Geun Ho; Yu, Woong-Ryeol

    2016-04-01

    Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Recently, shape memory polymer composites (SMPCs) have been considered for space structure instead of shape memory alloys due to their deformability, lightweight and large recovery ratio, requiring characterization of their mechanical properties against harsh space environment and further prediction of the durability of SMPCs in space. As such, the durability of carbon fiber reinforced shape memory polymer composites (CF-SMPCs) was investigated using accelerated testing method based on short-term testing of CF-SMPCs in harsh condition. CF-SMPCs were prepared using woven carbon fabrics and a thermoset SMP via vacuum assisted resin transfer molding process. Bending tests with constant strain rate of CF-SMPCs were conducted using universal tensile machine (UTM) and Storage modulus test were conducted using dynamic mechanical thermal analysis (DMTA). Using the results, a master curve based on time-temperature superposition principle was then constructed, through which the mechanical properties of CF-SMPCs at harsh temperature were predicted. CF-SMPCs would be exposed to simulated space environments under ultra-violet radiations at various temperatures. The mechanical properties including flexural and tensile strength and shape memory properties of SMPCs would be measured using UTM before and after such exposures for comparison. Finally, the durability of SMPCs in space would be assessed by developing a degradation model of SMPC.

  19. Material characterization of several resin systems for high temperature carbon fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Yoon, Sung Ho; Oh, Jin Oh; Choi, Dong Hyun; Lee, Sang Woo

    2011-11-01

    Material characterization of several resin systems for high temperature carbon fiber reinforced composites was performed through a series of the tensile test, the dynamic mechanical analysis (DMA) test, and the strand test. The modified tensile specimens and the DMA specimens were used to evaluate the tensile and thermal analysis properties of resin systems. The strand specimens were used to evaluate the tensile properties and load transfer efficiencies of the specimens. Four types of resin systems were considered. One was a conventional resin system currently used for filament wound structures and other three were high temperature resin systems. According to the tensile and DMA test results, the tensile modulus decreases slightly and the tensile strength decreases rapidly until the temperature reaches glass transition temperature. The tensile modulus and tensile strength are almost negligible above glass transition temperature. The tensile modulus obtained from the tensile test is consistent with that from the DMA test at different temperatures. From the strand test results, considering, the load transfer efficiency is found to be around 87 to 90 % of the tensile strength of T800H-12K carbon fibers for all resin systems except the specimen with the Type 2. Finally we found that the Type 4 is the best candidate for high temperature resin system applicable to filament wound structures in the view of the glass transition temperature as well as the tensile properties.

  20. Material characterization of several resin systems for high temperature carbon fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Yoon, Sung Ho; Oh, Jin Oh; Choi, Dong Hyun; Lee, Sang Woo

    2012-04-01

    Material characterization of several resin systems for high temperature carbon fiber reinforced composites was performed through a series of the tensile test, the dynamic mechanical analysis (DMA) test, and the strand test. The modified tensile specimens and the DMA specimens were used to evaluate the tensile and thermal analysis properties of resin systems. The strand specimens were used to evaluate the tensile properties and load transfer efficiencies of the specimens. Four types of resin systems were considered. One was a conventional resin system currently used for filament wound structures and other three were high temperature resin systems. According to the tensile and DMA test results, the tensile modulus decreases slightly and the tensile strength decreases rapidly until the temperature reaches glass transition temperature. The tensile modulus and tensile strength are almost negligible above glass transition temperature. The tensile modulus obtained from the tensile test is consistent with that from the DMA test at different temperatures. From the strand test results, considering, the load transfer efficiency is found to be around 87 to 90 % of the tensile strength of T800H-12K carbon fibers for all resin systems except the specimen with the Type 2. Finally we found that the Type 4 is the best candidate for high temperature resin system applicable to filament wound structures in the view of the glass transition temperature as well as the tensile properties.

  1. Mechanical properties of neat polymer matrix materials and their unidirectional carbon fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1988-01-01

    The mechanical properties of two neat resin systems for use in carbon fiber epoxy composites were characterized. This included tensile and shear stiffness and strengths, coefficients of thermal and moisture expansion, and fracture toughness. Tests were conducted on specimens in the dry and moisture-saturated states, at temperatures of 23, 82 and 121 C. The neat resins tested were American Cyanamid 1806 and Union Carbide ERX-4901B(MPDA). Results were compared to previously tested neat resins. Four unidirectional carbon fiber reinforced composites were mechanically characterized. Axial and transverse tension and in-plane shear strengths and stiffness were measured, as well as transverse coefficients of thermal and moisture expansion. Tests were conducted on dry specimens only at 23 and 100 C. The materials tested were AS4/3502, AS6/5245-C, T300/BP907, and C6000/1806 unidirectional composites. Scanning electron microscopic examination of fracture surfaces was performed to permit the correlation of observed failure modes with the environmental test conditions.

  2. Alignment of carbon nanotubes and reinforcing effects in nylon-6 polymer composite fibers

    NASA Astrophysics Data System (ADS)

    Rangari, Vijaya K.; Yousuf, Mohammed; Jeelani, Shaik; Pulikkathara, Merlyn X.; Khabashesku, Valery N.

    2008-06-01

    Alignment of pristine carbon nanotubes (P-CNTs) and fluorinated carbon nanotubes (F-CNTs) in nylon-6 polymer composite fibers (PCFs) has been achieved using a single-screw extrusion method. CNTs have been used as filler reinforcements to enhance the mechanical and thermal properties of nylon-6 composite fibers. The composites were fabricated by dry mixing nylon-6 polymer powder with the CNTs as the first step, then followed by the melt extrusion process of fiber materials in a single-screw extruder. The extruded fibers were stretched to their maxima and stabilized using a godet set-up. Finally, fibers were wound on a Wayne filament winder machine and tested for their tensile and thermal properties. The tests have shown a remarkable change in mechanical and thermal properties of nylon-6 polymer fibers with the addition of 0.5 wt% F-CNTs and 1.0 wt% of P-CNTs. To draw a comparison between the improvements achieved, the same process has been repeated with neat nylon-6 polymer. As a result, tensile strength has been increased by 230% for PCFs made with 0.5% F-CNTs and 1% P-CNTs as additives. These fibers have been further characterized by DSC, Raman spectroscopy and SEM which confirm the alignment of CNTs and interfacial bonding to nylon-6 polymer matrix.

  3. Alignment of carbon nanotubes and reinforcing effects in nylon-6 polymer composite fibers.

    PubMed

    Rangari, Vijaya K; Yousuf, Mohammed; Jeelani, Shaik; Pulikkathara, Merlyn X; Khabashesku, Valery N

    2008-06-18

    Alignment of pristine carbon nanotubes (P-CNTs) and fluorinated carbon nanotubes (F-CNTs) in nylon-6 polymer composite fibers (PCFs) has been achieved using a single-screw extrusion method. CNTs have been used as filler reinforcements to enhance the mechanical and thermal properties of nylon-6 composite fibers. The composites were fabricated by dry mixing nylon-6 polymer powder with the CNTs as the first step, then followed by the melt extrusion process of fiber materials in a single-screw extruder. The extruded fibers were stretched to their maxima and stabilized using a godet set-up. Finally, fibers were wound on a Wayne filament winder machine and tested for their tensile and thermal properties. The tests have shown a remarkable change in mechanical and thermal properties of nylon-6 polymer fibers with the addition of 0.5 wt% F-CNTs and 1.0 wt% of P-CNTs. To draw a comparison between the improvements achieved, the same process has been repeated with neat nylon-6 polymer. As a result, tensile strength has been increased by 230% for PCFs made with 0.5% F-CNTs and 1% P-CNTs as additives. These fibers have been further characterized by DSC, Raman spectroscopy and SEM which confirm the alignment of CNTs and interfacial bonding to nylon-6 polymer matrix.

  4. Short carbon fiber reinforced ceramic - Cesic - for optical-mechanical applications

    NASA Astrophysics Data System (ADS)

    Kroedel, Matthias; Kutter, G. S.; Deyerler, M.; Pailer, Norbert M.

    2003-02-01

    Ceramic mirrors and complex structures are becoming more important for high-precision lightweighted optomechanical applications. Carbon-fiber reinforced silicon carbon (C/SiC) is a composite ceramic material consisting of SiC as its major constituent. Developments over the past 10 years by IABM, ECM, and Astrium GhbH have demonstrated the feasibility and versitility of this ceramic material for different applications. Furthermore, Cesic-a trademark of ECM for C/SiC- allows relatively quick and cheap manufacturing of components because the components can be shaped with conventional tools in a milling and/or drilling process of the greenbody material. Through a joining process and our new development of optical surfaces based on a slurry cladding technology, Cesic allows for a direct up-scaling of structures and optical surfaces to large size applications and systems. The size of the structures and mirrors that can be manufactured is limited only by the scale of the available production facilities, the largest of which currently is 2.4 m in diameter.

  5. High surface area carbon black (BP-2000) as a reinforcing agent for poly[(₋)-lactide

    SciTech Connect

    Delgado, Paula A.; Brutman, Jacob P.; Masica, Kristina; Molde, Joseph; Wood, Brandon; Hillmyer, Marc A.

    2016-10-26

    We report that the brittle nature and low-heat distortion resistance of a promising biorenewable thermoplastics, poly((₋)-lactide) (PLA), motivate the investigation of strengthening additives that can address these deficiencies. Here in our work, a high surface area carbon black (BP-2000) as well as biobased carbon blacks (hydrochars) were examined as reinforcement agents for PLA. When 1–5 wt % BP-2000 was added to PLA, the crystallization of PLA was accelerated, resulting in higher crystallinity, tensile strength, and heat resistance. A thermal creep experiment revealed that the composites exhibited no significant deformation after 30 min with 2 N of uniaxial tensile force at 80°C (above the Tg), whereas neat PLA (with similar thermal history) elongated to 79% after 5 min under the same conditions. PLA–hydrochar composites demonstrated similar brittle behavior to neat PLA. Finally, despite the promising nucleating ability of hydrochars, they displayed low interfacial adhesion with PLA because of their low surface area, resulting in poor energy transfer on stretching

  6. Recycling of woven carbon-fibre-reinforced polymer composites using supercritical water.

    PubMed

    Knight, Chase C; Zeng, Changchun; Zhang, Chuck; Wang, Ben

    2012-01-01

    Over the past few years, there has been great deal of interest in recycling carbon-fibre-reinforced polymer composites. One method that has shown promising results involves the use of supercritical fluids to achieve separation between matrix and fibres by effectively degrading the resin into lower molecular weight compounds. In addition, the solvents used are environmentally benign and can also be recovered and reused. In this study, supercritical water with 0.05 M KOH as the catalyst was used for the recycling of an aerospace-grade high-performance epoxy carbon fibre composite (Hexcel 8552/IM7). The morphology of the reclaimed fibres was observed by scanning electron microscopy, and the tensile properties of the fibres were measured by single filament testing. The effects of processing time on the resin elimination efficiency and fibre property retention were investigated. With the process developed in this research, as much as 99.2 wt% resin elimination was achieved, resulting in the recovery of clean, undamaged fibres. The reclaimed fibres retained the original tensile strength. The feasibility of recycling multiple layer composites was also explored.

  7. Optics of carbon fiber-reinforced plastics - A theoretical and an experimental study

    NASA Astrophysics Data System (ADS)

    Hohmann, Ansgar; ElMaklizi, Ahmed; Foschum, Florian; Voit, Florian; Bergmann, Florian; Simon, Emanuel; Reitzle, Dominik; Kienle, Alwin

    2016-09-01

    Laser processing of carbon fiber-reinforced plastics (CFRP) as well as their design optimization are strongly emerging fields. As the optics of CFRP is still rather unknown, the optical behavior of CFRP was investigated in this study. Different simulation models were implemented to simulate reflectance from CFRP samples as well as distribution and absorption of light within these samples. The methods include an analytical solution of Maxwell's equations and Monte Carlo solutions of the radiative transfer theory. We show that strong inaccurracies occur, if light propagation in CFRP is modeled using the radiative transfer theory. Therefore, the solution of Maxwell's equations is the method of choice for calculation of light propagation in CFRP. Furthermore, measurements of the reflectance of light from CFRP were performed and compared to the simulations for investigation of the optical behavior. Information on the refractive index of carbon fibers was obtained via goniometric measurements. The amount of reflected light was determined as 6.05±0.38% for light polarized parallel to the fiber direction, while it was 3.65±0.41% for light polarized perpendicular to the fiber direction in case of laser-processed CFRP.

  8. Flexural Properties of E Glass and TR50S Carbon Fiber Reinforced Epoxy Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Dong, Chensong; Sudarisman; Davies, Ian J.

    2013-01-01

    A study on the flexural properties of E glass and TR50S carbon fiber reinforced hybrid composites is presented in this paper. Specimens were made by the hand lay-up process in an intra-ply configuration with varying degrees of glass fibers added to the surface of a carbon laminate. These specimens were then tested in the three-point bend configuration in accordance with ASTM D790-07 at three span-to-depth ratios: 16, 32, and 64. The failure modes were examined under an optical microscope. The flexural behavior was also simulated by finite element analysis, and the flexural modulus, flexural strength, and strain to failure were calculated. It is shown that although span-to-depth ratio shows an influence on the stress-strain relationship, it has no effect on the failure mode. The majority of specimens failed by either in-plane or out-of-plane local buckling followed by kinking and splitting at the compressive GFRP side and matrix cracking combined with fiber breakage at the CFRP tensile face. It is shown that positive hybrid effects exist for the flexural strengths of most of the hybrid configurations. The hybrid effect is noted to be more obvious when the hybrid ratio is small, which may be attributed to the relative position of the GFRP layer(s) with respect to the neutral plane. In contrast to this, flexural modulus seems to obey the rule of mixtures equation.

  9. Long-term forest floor carbon dynamics after fire in upland boreal forests of western Canada

    NASA Astrophysics Data System (ADS)

    Nalder, Ian A.; Wein, Ross W.

    1999-12-01

    We examined the long-term dynamics of upland boreal forest floors after disturbance by fire. We selected two important and contrasting upland tree species, Pinus banksiana (jack pine) and Populus tremuloides (trembling aspen), in three distinct climatic zones across the boreal forest of western Canada, and sampled 80 fire-originated stands divided into six chronosequences with ages ranging from 14 to 149 years. The forest floor was a large component of carbon storage. Averaged across ages and zones, it was 1.31 and 2.78 kg C m-2 for P. banksiana and P. tremuloides, respectively, compared with 4.03 and 5.56 kg C m-2 in aboveground trees. These data exclude decomposing coarse woody debris, which was a significant component of the forest floor (0.18/0.13 kg C m-2 ) and requires further study. The contributions from shrubs (0.035/0.151 kg C m-2), ground vegetation (0.019/0.026 kg C m-2), and moss-plus-lichen (0.179/0.004 kg C m-2) were relatively small. An analysis of covariance (ANCOVA) model showed that forest floor carbon was positively related to stand age, as well as being affected by species and climatic zone. Much of the variability was explained by species, and species-specific regression models showed that for P. tremuloides forest floor carbon was strongly related to stand age, mean annual temperature, and mean annual precipitation, and for P. banksiana, forest floor carbon was strongly related to an index of moss dominance. The regression models suggest that the forest floor carbon pool in upland forests of the western Canadian boreal will be sensitive to climate change, but this sensitivity would need to be tested with process-based models.

  10. One-step fabrication of free-standing flexible membranes reinforced with self-assembled arrays of carbon nanotubes

    SciTech Connect

    Grilli, S.; Coppola, S.; Vespini, V.; Pagliarulo, V.; Ferraro, P.; Nasti, G.; Carfagna, C.

    2014-10-13

    Here, we report on a single step approach for fabricating free-standing polymer membranes reinforced with arrayed self-assembled carbon nanotubes (CNTs). The CNTs are self-assembled spontaneously by electrode-free DC dielectrophoresis based on surface charge templates. The electrical charge template is generated through the pyroelectric effect onto periodically poled lithium niobate ferroelectric crystals. A thermal stimulus enables simultaneously the self-assembly of the CNTs and the cross-linking of the host polymer. Examples of thin polydimethylsiloxane membranes reinforced with CNT patterns are shown.

  11. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  12. Dynamic response of concrete beams externally reinforced with carbon fiber reinforced plastic (CFRP) subjected to impulsive loads

    SciTech Connect

    Jerome, D.M.; Ross, C.A.

    1996-12-31

    A series of 54 laboratory scale concrete beams 3 x 3 x 30 in. in size were impulsively loaded to failure in a drop weight impact machine. The beams had no internal reinforcement, but instead were externally reinforced on the bottom or tension side of the beams with 1, 2, and 3 ply AS4C/1919 graphite epoxy panels. In addition, several of the beams were also reinforced on the sides with 3 ply CFRP. The beams were simply supported in a drop weight machine and subjected to impact loads with amplitudes up to 10 kips, and durations less than 1 ms, at beam midspan. Measurements made during the loading event included beam total load, midspan displacement, as well as midspan strain at 3 locations in the beam`s cross-section. A high speed framing camera was also used to record the beam`s displacement-time behavior as well as to gain insight into the failure mechanisms. Beam midspan accelerations were determined by double differentiation of the displacement versus time data, and in turn, the beam`s inertial loads were calculated using the beam`s equivalent mass. Beam dynamic bending loads versus time were determined from the difference between the total load versus time and the inertial load versus time data. Bending loads versus displacements were also determined along with fracture energies. Failure to correct the loads for inertia will result in incorrect conclusions being drawn from the data, especially for bending resistance of brittle concrete test specimens. A comparison with quasistatic bending (fracture) energy data showed that the dynamic failure energy absorbed by the beams was always less than the static fracture energy, due to the brittle nature of concrete when impulsively loaded.

  13. [Influence of inhaling carbon monoxide-containing gas in fire fatalities--an investigation of forensic autopsy cases].

    PubMed

    Zhu, Bao-Li; Ishikawa, Takaki; Michiue, Tomomi; Tanaka, Sayaka; Li, Dong-Ri; Zhao, Dong; Oritani, Shigeki; Ogawa, Masafumi; Maeda, Hitoshi

    2007-01-01

    To investigate the influence of inhaling carbon monoxide (CO)-containing gases in fires, forensic autopsy cases of fire victims (n=193) were examined in comparison with control cases involving other causes of fatal CO intoxication (n=6 :COHb, 69.5-83.0%). Fire victims with blood carboxyhemoglobin (COHb) levels over 60% (n=76) showed a larger arterio-venous difference in blood COHb level compared with other fire victims and other fatal CO intoxication. However, biochemical findings for myocardial, cerebral damage or respiratory distress were milder in most cases, independent of blood cyanide levels, being similar to those in fatality due to inhalation of blast furnace gas with an extremely high concentration of CO (ca. 40%). These observations suggest that an acutely fatal factor in fires involves inhalation of gases containing high amounts of CO, which may induce peracute circulatory collapse before causing marked myocardial and cerebral damage or respiratory distress.

  14. Clinical application of carbon fibre reinforced plastic leg orthosis for polio survivors and its advantages and disadvantages.

    PubMed

    Hachisuka, K; Makino, K; Wada, F; Saeki, S; Yoshimoto, N; Arai, M

    2006-08-01

    A prospective study was carried out on the clinical application and features of a carbon fibre reinforced plastic leg orthosis (carbon orthosis) for polio survivors. The subjects comprised 9 polio survivors, and 11 carbon knee-ankle-foot orthoses (KAFOs) were prescribed, fabricated, and checked out at the authors' post-polio clinic. Walking was classified based on the functional ambulatory category, and the features of walking with a carbon orthosis were self-evaluated by using a visual analogue scale. The period from modelling a cast to completion was 55 +/- 25 days; the weight of a carbon KAFO was 27.8% lighter than that of the ordinary KAFO; the standard carbon KAFO was 50% more expensive than the ordinary KAFO. The carbon KAFO remained undamaged for at least 2 years. It improved the scores in the functional ambulation categories, but there was no difference between walking with an ordinary and with a carbon KAFO. The self-evaluation of walking with a carbon KAFO revealed that the subjects using a carbon KAFO were satisfied with their carbon KAFO. The carbon KAFO is lightweight, durable, slim and smart, and is positively indicated for polio survivors.

  15. [Impact of fire on carbon dynamics of Larix gmelinii forest in Daxing'an Mountains of North-East China: a simulation with CENTURY model].

    PubMed

    Fang, Dong-Ming; Zhou, Guang-Sheng; Jiang, Yan-Ling; Jia, Bing-Rui; Xu, Zhen-Zhu; Sui, Xing-Hua

    2012-09-01

    Fire is one of the important natural disturbances to forest ecosystem, giving strong impact on the ecosystem carbon dynamics. By using CENTURY model, this paper simulated the responses of the carbon budget of Larix gmelinii forest in Huzhong area of Daxing' an Mountains to different intensities of fire. The results indicated that after the fires happened, the soil total carbon pool of the forest had a slight increase in the first few years and then recovered gradually, while the stand biomass carbon pool increased after an initial decrease, with the recovery rate of carbon pool of the stand fine components being faster than that of the coarse components. The fluctuation of the carbon pools increased with the increase of fire intensity. After the fires, both the net primary productivity (NPP) of forest vegetation and the soil heterotrophic respiration increased after an initial decrease, but the recovery rate of the NPP was faster than that of soil heterotrophic respiration, resulting in the alternation of the stand functioned as a carbon source or sink. After light fire, the forest still functioned as a weak carbon sink, and quickly recovered as a carbon sink to the level before the fire happened. After other intensities fire, the forest functioned as a carbon source within 9-12 years, and then turned back to a carbon sink again. It was suggested that lower intensity forest fire could promote the regeneration of L. gmelinii forest, reduce the combustibles, and have no strong impact on the stand carbon budget, while higher intensity forest fire would lead to the serious loss of soil- and tree carbon sequestration, retard the recovery of the forest, and thereby, the forest would be a carbon source in a longer term.

  16. Feedbacks between climate, fire severity, and differential permafrost degradation in Alaskan black spruce forests - implications for carbon cycling

    NASA Astrophysics Data System (ADS)

    Kasischke, E. S.; Kane, E. S.; O'Donnell, J. A.; Christensen, N. L.; Mitchell, S. R.; Turetsky, M. R.; Hayes, D. J.; Hoy, E.; Barrett, K. M.; McGuire, A. D.; Yuan, F.

    2011-12-01

    Black spruce forests are the dominant forest cover type in the boreal region of Alaska and Canada In the northern portion of its range, permafrost is common to sites occupied by black spruce forest, which in turn, leads topromotes the accumulation of large reservoirs of organic carbon in mineral and organic soils. Another important trait of black spruce forests is the high occurrence of fire which is enhanced by the presence of flammable foliage, surface litter (duff), dead stems, aboreal lichens, and understory vegetation that is highly flammable during the dry conditions found during the summer fire season. In turn, fire plays an important role in carbon cycling in black spruce forests through direct burning of vegetation and organic soils, initiation of secondary succession, and alteration of the ambient environmental conditions, in particular, the permafrost and the soil thermal regimes, including permafrost stability. The spatial and temporal characteristics of permafrost (e.g. ice content and, seasonal deepening thawing of the active layer) not only control fire severity in terms of depth of burning of the active layer, but also the level of permafrost degradation that occurs in the post-fire environment. Fire severity, in combination with soil thermal properties (e.g. temperature, moisture, permafrost state), moisture and temperature conditions controlled by rates of permafrost warming and drying then controls the biological processes (plant succession and growth and heterotrophic respiration), thus regulating post-fire re-accumulation of carbon in biomass. In this paper, we will review research that investigates the interactions between fire and permafrost regimes that influence and how they influence carbon cycling in black spruce forests in interior Alaska.

  17. Liquid composite molding-processing and characterization of fiber-reinforced composites modified with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zeiler, R.; Khalid, U.; Kuttner, C.; Kothmann, M.; Dijkstra, D. J.; Fery, A.; Altstädt, V.

    2014-05-01

    The increasing demand in fiber-reinforced plastics (FRPs) necessitates economic processing of high quality, like the vacuum-assisted resin transfer molding (VARTM) process. FRPs exhibit excellent in-plane properties but weaknesses in off-plane direction. The addition of nanofillers into the resinous matrix phase embodies a promising approach due to benefits of the nano-scaled size of the filler, especially its high surface and interface areas. Carbon nanotubes (CNTs) are preferable candidates for resin modification in regard of their excellent mechanical properties and high aspect ratios. However, especially the high aspect ratios give rise to withholding or filtering by fibrous fabrics during the impregnation process, i.e. length dependent withholding of tubes (short tubes pass through the fabric, while long tubes are restrained) and a decrease in the local CNT content in the laminate along the flow path can occur. In this study, hybrid composites containing endless glass fiber reinforcement and surface functionalized CNTs dispersed in the matrix phase were produced by VARTM. New methodologies for the quantification of the filtering of CNTs were developed and applied to test laminates. As a first step, a method to analyze the CNT length distribution before and after injection was established for thermosetting composites to characterize length dependent withholding of nanotubes. The used glass fiber fabric showed no perceptible length dependent retaining of CNTs. Afterward, the resulting test laminates were examined by Raman spectroscopy and compared to reference samples of known CNT content. This Raman based technique was developed further to assess the quality of the impregnation process and to quantitatively follow the local CNT content along the injection flow in cured composites. A local decline in CNT content of approx. 20% was observed. These methodologies allow for the quality control of the filler content and size-distribution in CNT based hybrid

  18. Reinforcement of Polylactic acid using pyrene functionalized Multi-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Isakki, Ram Kumar

    The conventional petroleum polymers are being replaced by the biopolymers that are biodegradable, biocompatible, eco-friendly. But to bridge the gap between them in terms of mechanical and thermal stability, reinforcement is used. This paper deals with the review of literature on production of polylactic acid, the reinforcement materials (natural and synthetic) used in the recent past, characterization methods used to determine the mechanical, thermal and morphological properties of the composites and a new method of functionalizing the Multi-Walled Carbon Nanotubes (MWNT) to improve the bonding with Polylactic acid (PLA) using pi-pi stacking. This method would avoid the damage caused by the harsh pretreatment of MWNTs with strong acids for functionalizing them and also provides an alternative method which is safe and effective. When the MWNTs are treated with 1-pyrene butyl amine, the pi-pi stacking occurs along the walls of the MWNTs which functionalizes them and ensures better bonding. The matrix is PLA and the filler material is the functionalized MWNTs. Composites were prepared varying the concentration of the filler material (0, 1, 3, 5 and 7wt %). The tensile strength and modulus was determined using Instron tensile testing machine, the morphological characteristics using Scanning Electron Microscopy (SEM), the thermal stability using the Thermogravimetric Analyzer (TGA) and the chemical bonding between the matrix and filler material was studied using Fourier Transform Infra-red Spectroscopy (FTIR). The composites prepared with 5 wt% exhibited 74.17% increase in the tensile strength and 117.5% increase in the modulus when compared to the neat PLA. The dispersion of the MWNT was studied using SEM.

  19. Active rigidization of carbon-fiber reinforced polymer composites for ultra-lightweight space structures

    NASA Astrophysics Data System (ADS)

    Sarles, Stephen A.; Leo, Donald J.

    2006-03-01

    An active approach for initiating rigidization in carbon-fiber reinforced polymer (CFRP) thermosets links controllable mechanical stiffening to inherent electrical resistivity. With direct applications toward the rigidization of ultra-lightweight, inflatable space structures, temperature-controlled resistive heating is used to create oncommand rigidization. As required by the on-orbit conditions in space, flexible, rigidizable structures demand stable and space-survivable materials that incorporate techniques for providing shape control and structural stiffening. Methods currently employed to achieve a mechanical hardening include many passive techniques: UV curing, sub-T g hardening, and hydro-gel evaporation. The benefits of a passive system (simplicity, energy efficiency) are offset by their inherent lack of control, which can lead to long curing times and weak spots due to uneven curing. In efforts to significantly reduce the transition time of the composite from a structurally-vulnerable state to a fully-rigidized shape and to increase control of the curing process, an active approach is taken. Specifically, temperature-controlled internal resistive heating initiates thermoset curing in a coated carbon fiber composite to form an electrically-controlled, thermally-activated material. Through controlled heating, this research examines how selective temperature control can be used to prescribe matrix consolidation and material rigidization on two different thermosetting resins, U-Nyte Set 201A and 201B. Feedback temperature control, based on a PID control algorithm, was applied to the process of resistive heating. Precise temperature tracking (less than 1.1°C RMS or +/-3.3% error) was achieved for controlled sample heating. Using samples of the thermoset-coated carbon-fiber tow, composite hardening through resistive heating occurred in 24 minutes and required roughly 1 W-hr/inch of electrical energy. The rigidized material was measured to be 14-21 times stiffer

  20. Magnesia tuned multi-walled carbon nanotubes–reinforced alumina nanocomposites

    SciTech Connect

    Ahmad, Iftikhar; Islam, Mohammad; Dar, Mushtaq Ahmad; Xu, Fang; Shah, Syed Ismat; Zhu, Yanqiu

    2015-01-15

    Magnesia tuned alumina ceramic nanocomposites, reinforced with multi-walled carbon nanotubes, were condensed using pressureless and hot-press sintering processes. Densification, microstructure and mechanical properties of the produced nanocomposites were meticulously investigated. Electron microscopy studies revealed the homogenous carbon nanotube dispersion within the alumina matrix and confirmed the retention of carbon nanotubes' distinctive tubular morphology and nanoscale features during the extreme mixing/sintering processes. Pressureless sintered nanocomposites showed meagre mechanical responses due to the poorly-integrated microstructures with a slight improvement upon magnesia addition. Conversely, both the magnesia addition and application of hot-press sintering technique resulted in the nanocomposite formation with near-theoretical densities (~ 99%), well-integrated microstructures and superior mechanical properties. Hot-press sintered nanocomposites incorporating 300 and 600 ppm magnesia exhibited an increase in hardness (10 and 11%), flexural strength (5 and 10%) and fracture toughness (15 and 20%) with respect to similar magnesia-free samples. Compared to monolithic alumina, a decent rise in fracture toughness (37%), flexural strength (22%) and hardness (20%) was observed in the hot-press sintered nanocomposites tuned with merely 600 ppm magnesia. Mechanically superior hot-press sintered magnesia tailored nanocomposites are attractive for several load-bearing structural applications. - Highlights: • MgO tailored Al{sub 2}O{sub 3}–2 wt.% CNT nanocomposites are presented. • The role of MgO and sintering on nanocomposite structures and properties was studied. • Well-dispersed CNTs maintained their morphology/structure after harsh sintering. • Hot-pressing and MgO led nanocomposites to higher properties/unified structures. • MgO tuned composites showed higher toughness (37%) and strength (22%) than Al{sub 2}O{sub 3}.

  1. Unintentional non-fire-related carbon monoxide exposures--United States, 2001-2003.

    PubMed

    2005-01-21

    Carbon monoxide (CO) is a colorless, odorless, poisonous gas that results from incomplete combustion of fuels (e.g., natural or liquefied petroleum gas, oil, wood, coal, or other fuels). CO sources (e.g., furnaces, generators, gas heaters, and motor vehicles) are common in homes or work environments and can put persons at risk for CO exposure and poisoning. Most signs and symptoms of CO exposure are nonspecific (e.g., headache or nausea) and can be mistakenly attributed to other causes, such as viral illnesses. Undetected or unsuspected CO exposure can result in death. To examine fatal and nonfatal unintentional, non-fire-related CO exposures, CDC analyzed 2001-2003 data on emergency department (ED) visits from the National Electronic Injury Surveillance System All Injury Program (NEISS-AIP) and 2001-2002 death certificate data from the National Vital Statistics System (NVSS). During 2001-2003, an estimated 15,200 persons with confirmed or possible non-fire-related CO exposure were treated annually in hospital EDs. In addition, during 2001-2002, an average of 480 persons died annually from non-fire-related CO poisoning. Although males and females were equally likely to visit an ED for CO exposure, males were 2.3 times more likely to die from CO poisoning. Most (64%) of the nonfatal CO exposures occurred in homes. Efforts are needed to educate the public about preventing CO exposure.

  2. Effects of oxyfluorination on surface and mechanical properties of carbon fiber-reinforced polarized-polypropylene matrix composites.

    PubMed

    Kim, Hyun-Ii; Choi, Woong-Ki; Oh, Sang-Yub; Seo, Min-Kang; Park, Soo-Jin; An, Kay-Hyeok; Lee, Young Sil; Kim, Byung-Joo

    2014-12-01

    In this work, oxyfluorination treatments on carbon fiber surfaces were carried out to improve the interfacial adhesion between carbon fibers and polarized-polypropylene (P-PP). The surface properties of oxyfluorinated carbon fibers were characterized using a single fiber contact angle, and X-ray photoelectron spectroscopy. The mechanical properties of the composites were calculated in terms of work of adhesion between fibers and matrices and also measured by a critical stress intensity factor (K(IC)). The K(IC) of oxyfluorinated carbon fibers-reinforced composites showed higher values than those of as-received carbon fibers-reinforced composites. The results showed that the adhesion strength between the carbon fibers and P-PP had significantly increased after the oxyfluorination treatments. As the theoretical and practical comparisons, OF-CF-60s showed the best mechanical interfacial performance due to the good surface free energy. This indicates that oxyfluorination produced highly polar functional groups on the fiber surface, resulting in strong adhesion between carbon fibers and P-PP in this composite system.

  3. Post-fire stand structure impacts carbon storage within Siberian larch forests

    NASA Astrophysics Data System (ADS)

    Alexander, H. D.; Natali, S.; Loranty, M. M.; Mack, M. C.; Davydov, S. P.; Zimov, N.

    2015-12-01

    Increased fire severity within boreal forests of the Siberian Arctic has the potential to alter forest stand development thereby altering carbon (C) accumulation rates and storage during the post-fire successional interval. One potential change is increased stand density, which may result from fire consumption of the soil organic layer and changes to the seedbed that favor germination and establishment of larch trees during early succession. In this study, we evaluated above- and belowground C pools across 12 stands of varying tree density within a single 75-year old fire scar located near Cherskii, Sakha Republic, Russia. In each stand, we inventoried the size and density of larch trees and large shrubs (Salix and Betula spp.), and in combination with with allometric equations, estimated aboveground contribution to C pools. We quantified woody debris C pools using the line intercept method. We sampled belowground C pools in the soil organic layer + upper (0-10 cm) mineral soil and coarse roots (> 2 mm diameter) using sediment cores and 0.25 x 0.25-m trenches, respectively. We found that high density stands store ~ 20% more C (~7,500 g C m-2) than low density stands (~5,800 g C m-2). In high density stands, about 35% more C is stored aboveground within live larch trees (1650 g C m-2) compared to low density stands (940 g C m-2), and about 15% more C is stored in the soil organic layer and upper mineral soil. Coarse root C was 20% higher in high density stands (~475 g C m-2) compared to those with low density (~350 g C m-2). Less C was stored in large shrubs in high density stands, both in aboveground portions and coarse roots, but these amounts were relatively small (< 10% of total C pools). A fire-driven shift to denser larch stands could increase C storage, leading to a negative feedback to climate, but the combined effects of density on C dynamics, summer and winter albedo, and future fire regimes will interact to determine the magnitude of any vegetation

  4. Design and evaluation of a bolted joint for a discrete carbon-epoxy rod-reinforced hat section

    NASA Technical Reports Server (NTRS)

    Rousseau, Carl Q.; Baker, Donald J.

    1996-01-01

    The use of prefabricated pultruded carbon-epoxy rods has reduced the manufacturing complexity and costs of stiffened composite panels while increasing the damage tolerance of the panels. However, repairability of these highly efficient discrete stiffeners has been a concern. Design, analysis, and test results are presented in this paper for a bolted-joint repair for the pultruded rod concept that is capable of efficiently transferring axial loads in a hat-section stiffener on the upper skin segment of a heavily loaded aircraft wing component. A tension and a compression joint design were evaluated. The tension joint design achieved approximately 1.0% strain in the carbon-epoxy rod-reinforced hat-section and failed in a metal fitting at 166% of the design ultimate load. The compression joint design failed in the carbon-epoxy rod-reinforced hat-section test specimen area at approximately 0.7% strain and at 110% of the design ultimate load. This strain level of 0.7% in compression is similar to the failure strain observed in previously reported carbon-epoxy rod-reinforced hat-section column tests.

  5. Design and Evaluation of a Bolted Joint for a Discrete Carbon-Epoxy Rod-Reinforced Hat Section

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.; Rousseau, Carl Q.

    1996-01-01

    The use of pre-fabricated pultruded carbon-epoxy rods has reduced the manufacturing complexity and costs of stiffened composite panels while increasing the damage tolerance of the panels. However, repairability of these highly efficient discrete stiffeners has been a concern. Design, analysis, and test results are presented in this paper for a bolted-joint repair for the pultruded rod concept that is capable of efficiently transferring axial loads in a hat-section stiffener on the upper skin segment of a heavily loaded aircraft wing component. A tension and a compression joint design were evaluated. The tension joint design achieved approximately 1.0 percent strain in the carbon-epoxy rod-reinforced hat-section and failed in a metal fitting at 166 percent of the design ultimate load. The compression joint design failed in the carbon-epoxy rod-reinforced hat-section test specimen area at approximately 0.7 percent strain and at 110 percent of the design ultimate load. This strain level of 0.7 percent in compression is similar to the failure strain observed in previously reported carbon-epoxy rod-reinforced hat-section column tests.

  6. Emissions from prescribed fire in temperate forest in south-east Australia: implications for carbon accounting

    NASA Astrophysics Data System (ADS)

    Possell, M.; Jenkins, M.; Bell, T. L.; Adams, M. A.

    2014-09-01

    We estimated of emissions of carbon, as CO2-equivalents, from planned fire in four sites in a south-eastern Australian forest. Emission estimates were calculated using measurements of fuel load and carbon content of different fuel types, before and after burning, and determination of fuel-specific emission factors. Median estimates of emissions for the four sites ranged from 20 to 139 T CO2-e ha-1. Variability in estimates was a consequence of different burning efficiencies of each fuel type from the four sites. Higher emissions resulted from more fine fuel (twigs, decomposing matter, near-surface live and leaf litter) or coarse woody debris (CWD; > 25 mm diameter) being consumed. In order to assess the effect of estimating emissions when only a few fuel variables are known, Monte-Carlo simulations were used to create seven scenarios where input parameters values were replaced by probability density functions. Calculation methods were: (1) all measured data were constrained between measured maximum and minimum values for each variable, (2) as for (1) except the proportion of carbon within a fuel type was constrained between 0 and 1, (3) as for (2) but losses of mass caused by fire were replaced with burning efficiency factors constrained between 0 and 1; and (4) emissions were calculated using default values in the Australian National Greenhouse Accounts (NGA), National Inventory Report 2011, as appropriate for our sites. Effects of including CWD in calculations were assessed for calculation Method 1, 2 and 3 but not for Method 4 as the NGA does not consider this fuel type. Simulations demonstrate that the probability of estimating true median emissions declines strongly as the amount of information available declines. Including CWD in scenarios increased uncertainty in calculations because CWD is the most variable contributor to fuel load. Inclusion of CWD in scenarios generally increased the amount of carbon lost. We discuss implications of these simulations and

  7. Nanomechanics and the viscoelastic behavior of carbon nanotube-reinforced polymers

    NASA Astrophysics Data System (ADS)

    Fisher, Frank Thomas

    Recent experimental results demonstrate that substantial improvements in the mechanical behavior of polymers can be attained using small amounts of carbon nanotubes as a reinforcing phase. While this suggests the potential use of carbon nanotube-reinforced polymers (NRPs) for structural applications, the development of predictive models describing NRP effective behavior will be critical in the development and ultimate employment of such materials. To date many researchers have simply studied the nanoscale behavior of NRPs using techniques developed for traditional composite materials. While such studies can be useful, this dissertation seeks to extend these traditional theories to more accurately model the nanoscale interaction of the NRP constituent phases. Motivated by micrographs showing that embedded nanotubes often exhibit significant curvature within the polymer, in the first section of this dissertation a hybrid finite element-micromechanical model is developed to incorporate nanotube waviness into micromechanical predictions of NRP effective modulus. While also suitable for other types of wavy inclusions, results from this model indicate that moderate nanotube waviness can dramatically decrease the effective modulus of these materials. The second portion of this dissertation investigates the impact of the nanotubes on the overall NRP viscoelastic behavior. Because the nanotubes are on the size scale of the individual polymer chains, nanotubes may alter the viscoelastic response of the NRP in comparison to that of the pure polymer; this behavior is distinctly different from that seen in traditional polymer matrix composites. Dynamic mechanical analysis (DMA) results for each of three modes of viscoelastic behavior (glass transition temperature, relaxation spectrum, and physical aging) are all consistent with the hypothesis of a reduced mobility, non-bulk polymer phase in the vicinity of the embedded nanotubes. These models represent initial efforts to

  8. Impact Testing on Reinforced Carbon-Carbon Flat Panels with Ice Projectiles for the Space Shuttle Return to Flight Program

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Revilock, Duane M.; Pereira, Michael J.; Lyle, Karen H.

    2009-01-01

    Following the tragedy of the Orbiter Columbia (STS-107) on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the space shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize reinforced carbon-carbon (RCC) along with ice and foam debris materials, which could shed on ascent and impact the orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS-DYNA (Livermore Software Technology Corp.) to predict damage by potential and actual impact events on the orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: Level 1--fundamental tests to obtain independent static and dynamic constitutive model properties of materials of interest, Level 2--subcomponent impact tests to provide highly controlled impact test data for the correlation and validation of the models, and Level 3--full-scale orbiter leading-edge impact tests to establish the final level of confidence for the analysis methodology. This report discusses the Level 2 test program conducted in the NASA Glenn Research Center (GRC) Ballistic Impact Laboratory with ice projectile impact tests on flat RCC panels, and presents the data observed. The Level 2 testing consisted of 54 impact tests in the NASA GRC Ballistic Impact Laboratory on 6- by 6-in. and 6- by 12-in. flat plates of RCC and evaluated three types of debris projectiles: Single-crystal, polycrystal, and "soft" ice. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile and validated the use of the ice and RCC models for use in LS-DYNA.

  9. Improved Mechanical Properties of Various Fabric-Reinforced Geocomposite at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Samal, Sneha; Phan Thanh, Nhan; Petríková, Iva; Marvalová, Bohadana

    2015-07-01

    This article signifies the improved performance of the various types of fabric reinforcement of geopolymer as a function of physical, thermal, mechanical, and heat-resistant properties at elevated temperatures. Geopolymer mixed with designed Si:Al ratios of 15.6 were synthesized using three different types of fabric reinforcement such as carbon, E-glass, and basalt fibers. Heat testing was conducted on 3-mm-thick panels with 15 × 90 mm surface exposure region. The strength of carbon-based geocomposite increased toward a higher temperature. The basalt-reinforced geocomposite strength decreased due to the catastrophic failure in matrix region. The poor bridging effect and dissolution of fabric was observed in the E-glass-reinforced geocomposite. At an elevated temperature, fiber bridging was observed in carbon fabric-reinforced geopolymer matrix. Among all the fabrics, carbon proved to be suitable candidate for the high-temperature applications in thermal barrier coatings and fire-resistant panels.

  10. Eroding forest carbon sinks following thinning for combined fire prevention and bioenergy production

    NASA Astrophysics Data System (ADS)

    Hudiburg, T. W.; Law, B. E.; Luyssaert, S.

    2010-12-01

    Temperate forest annual net uptake of CO2 from the atmosphere is equivalent to ~16% of the annual fossil fuel emissions in the United States. Mitigation strategies to reduce emissions of carbon dioxide have lead to investigation of alternative sources of energy including forest biomass. The prospect of forest derived bioenergy has led to implementation of new forest management strategies based on the assumption that they will reduce total CO2 emissions to the atmosphere by simultaneously reducing the risk of wildfire and substituting for fossil fuels. Using Forest Inventory Analysis (FIA) plot data, regional supplemental plot data, and remote sensing products we determined the carbon stocks and fluxes of West Coast forests under current and proposed management scenarios for a 20 year treatment period. Varying biofuels thinning treatments designed to meet multiple objectives emphasizing fire prevention, economic gain, or energy production were applied to determine the resulting net carbon balance and bioenergy potential. Contrary to the management objectives, we find that increased removals result in substantial decreases in forest carbon stocks and Net Biome Production (NBP) and increased emissions. Thinning forests for energy production is not carbon neutral. Emissions are estimated to increase over the 20-year period because preventive thinning removals exceed the CO2 that would have been emitted due to wildfires, fossil fuel inputs are required for harvest and manufacturing, and use of woody biomass in short-lived products emits large quantities of CO2 to the atmosphere. It has the net effect of releasing otherwise sequestered carbon to the atmosphere, which may effectively reduce ongoing carbon uptake by forests and as a result, increase net greenhouse gas emissions, undermining the objective of greenhouse gas reductions over the next several decades.

  11. After the Burn: Forest Carbon Stocks and Fluxes across fire disturbed landscapes in Colorado, U.S.A.

    NASA Astrophysics Data System (ADS)

    Barnes, R. T.; Buma, B.; Wolf, K.; Elwood, K. K.; Fehsenfeld, T.; Kehlenbeck, M.

    2015-12-01

    In terrestrial ecosystems, ecological disturbances can strongly regulate material and energy flows. This often results from the reduction in biomass and associated ecological relationships and physiological processes. Researchers have noted an increase in the size and severity of disturbances, such as wildfire, in recent decades. While there is significant research examining post-disturbance carbon stocks and recovery, there is less known about the fate and quality of post-disturbance carbon pools. In an effort to understand the recovery and resilience of forest carbon stocks to severe wildfire we examined the carbon and black carbon (pyrogenic) stocks (e.g. above ground biomass, coarse woody debris, charcoal, soils) and export fluxes (stream export, soil respiration) within the burn scars of three Colorado fires (Hayman in 2002, Hinman in 2002, and Waldo Canyon in 2012) and compared them to nearby unburned forested ecosystems. The Hayman and Hinman fire comparison allows us to quantify differences between fire impacts in Ponderosa-Douglas Fir (montane) and Spruce-Fir (subalpine) ecosystems, while the Hayman and Waldo Canyon comparison gives us insights into how recovery time influences carbon biogeochemistry in these systems. We will present preliminary data comparing and relating terrestrial carbon and black carbon stocks, soil respiration rates, and watershed export fluxes.

  12. Corrosion detection of steel reinforced concrete using combined carbon fiber and fiber Bragg grating active thermal probe

    NASA Astrophysics Data System (ADS)

    Li, Weijie; Ho, Siu Chun Michael; Song, Gangbing

    2016-04-01

    Steel reinforcement corrosion is one of the dominant causes for structural deterioration for reinforced concrete structures. This paper presents a novel corrosion detection technique using an active thermal probe. The technique takes advantage of the fact that corrosion products have poor thermal conductivity, which will impede heat propagation generated from the active thermal probe. At the same time, the active thermal probe records the temperature response. The presence of corrosion products can thus be detected by analyzing the temperature response after the injection of heat at the reinforcement-concrete interface. The feasibility of the proposed technique was firstly analyzed through analytical modeling and finite element simulation. The active thermal probe consisted of carbon fiber strands to generate heat and a fiber optic Bragg grating (FBG) temperature sensor. Carbon fiber strands are used due to their corrosion resistance. Wet-dry cycle accelerated corrosion experiments were performed to study the effect of corrosion products on the temperature response of the reinforced concrete sample. Results suggest a high correlation between corrosion severity and magnitude of the temperature response. The technique has the merits of high accuracy, high efficiency in measurement and excellent embeddability.

  13. Quantifying the Carbon Balance of Forest Restoration and Wildfire under Projected Climate in the Fire-Prone Southwestern US

    PubMed Central

    2017-01-01

    Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010–2019), mid (2050–2059), and late (2090–2099) century climate projections for a ponderosa pine (Pinus ponderosa) dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn) and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE) for the different treatments. Over the simulation period, 32.8–48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink. PMID:28046079

  14. Quantifying the Carbon Balance of Forest Restoration and Wildfire under Projected Climate in the Fire-Prone Southwestern US.

    PubMed

    Hurteau, Matthew D

    2017-01-01

    Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010-2019), mid (2050-2059), and late (2090-2099) century climate projections for a ponderosa pine (Pinus ponderosa) dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn) and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE) for the different treatments. Over the simulation period, 32.8-48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink.

  15. BLAZE, a novel Fire-Model for the CABLE Land-Surface Model applied to a Re-Assessment of the Australian Continental Carbon Budget

    NASA Astrophysics Data System (ADS)

    Nieradzik, L. P.; Haverd, V. E.; Briggs, P.; Meyer, C. P.; Canadell, J.

    2015-12-01

    Fires play a major role in the carbon-cycle and the development of global vegetation, especially on the continent of Australia, where vegetation is prone to frequent fire occurences and where regional composition and stand-age distribution is regulated by fire. Furthermore, the probable changes of fire behaviour under a changing climate are still poorly understood and require further investigation.In this presentation we introduce the fire-model BLAZE (BLAZe induced land-atmosphere flux Estimator), designed for a novel approach to simulate fire-frequencies, fire-intensities, fire related fluxes and the responses in vegetation. Fire frequencies are prescribed using SIMFIRE (Knorr et al., 2014) or GFED3 (e.g. Giglio et al., 2013). Fire-Line-Intensity (FLI) is computed from meteorological information and fuel loads which are state variables within the C-cycle component of CABLE (Community Atmosphere-Biosphere-Land Exchange model). This FLI is used as an input to the tree-demography model POP(Population-Order-Physiology; Haverd et al., 2014). Within POP the fire-mortality depends on FLI and tree height distribution. Intensity-dependent combustion factors (CF) are then generated for and applied to live and litter carbon pools as well as the transfers from live pools to litter caused by fire. Thus, both fire and stand characteristics are taken into account which has a legacy effect on future events. Gross C-CO2 emissions from Australian wild fires are larger than Australian territorial fossil fuel emissions. However, the net effect of fire on the Australian terrestrial carbon budget is unknown. We address this by applying the newly-developed fire module, integrated within the CABLE land surface model, and optimised for the Australian region, to a reassessment of the Australian Terrestrial Carbon Budget.

  16. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    EPA Pesticide Factsheets

    This dataset provides all data used to generate the figures and tables in the article entitled Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States published in the Journal of Geophysical Research: AtmospheresThis dataset is associated with the following publication:Holder , A., G. Hagler , J. Aurell, M. Hays , and B. Gullett. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 121(7): 3465-3483, (2016).

  17. How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: Stocks, molecular structure, and conversion to black carbon (charcoal)

    NASA Astrophysics Data System (ADS)

    Czimczik, Claudia I.; Preston, Caroline M.; Schmidt, Michael W. I.; Schulze, Ernst-Detlef

    2003-03-01

    In boreal forests, fire is a frequent disturbance and converts soil organic carbon (OC) to more degradation-resistant aromatic carbon, i.e., black carbon (BC) which might act as a long-term atmospheric-carbon sink. Little is known on the effects of fires on boreal soil OC stocks and molecular composition. We studied how a surface fire affected the composition of the forest floor of Siberian Scots pine forests by comparing the bulk elemental composition, molecular structure (13C-MAS NMR), and the aromatic carbon fraction (BC and potentially interfering constituents like tannins) of unburned and burned forest floor. Fire reduced the mass of the forest floor by 60%, stocks of inorganic elements (Si, Al, Fe, K, Ca, Na, Mg, Mn) by 30-50%, and of OC, nitrogen, and sulfur by 40-50%. In contrast to typical findings from temperate forests, unburned OC consisted mainly of (di-)O-alkyl (polysaccharides) and few aromatic structures, probably due to dominant input of lichen biomass. Fire converted OC into alkyl and aromatic structures, the latter consisting of heterocyclic macromolecules and small clusters of condensed carbon. The small cluster size explained the small BC concentrations determined using a degradative molecular marker method. Fire increased BC stocks (16 g kg-1 OC) by 40% which translates into a net-conversion rate of 0.7% (0.35% of net primary production) unburned OC to BC. Here, however, BC was not a major fraction of soil OC pool in unburned or burned forest floor, either due to rapid in situ degradation or relocation.

  18. Carbon reactivation by externally-fired rotary kiln furnace. Final report Oct 75-Jan 78

    SciTech Connect

    Chen, C.; Directo, L.S.

    1980-08-01

    An externally-fired rotary kiln furnace system has been evaluated for cost-effectiveness in carbon reactivation at the Pomona Advanced Wastewater Treatment Research Facility. The pilot scale rotary kiln furnace was operated within the range of 682 kg/day (1,500 lb/day) to 909 kg/day (2,000 lb/day). The rotary kiln furnace was found to be as effective as the multiple hearth furnace in reactivating the exhausted granular activated carbon. The operating and maintenance of the rotary kiln system required less operator skill than the multiple hearth furnace system. However, the corrosion rate was higher in the rotary tube than in the multiple hearth furnace. Cost estimates based on a typical regeneration capacity of 182 kg/hr (400 lb/hr) have been made for both rotary kiln and multiple hearth furnace systems. These indicate that the capital cost for the multiple hearth furnace is about two times that of the rotary kiln furnace. The operation and maintenance costs for both furnace systems are similar. The overall process costs for the multiple hearth and rotary kiln furnace systems are estimated to be 33.2 cents/kg (15.1 cents/lb) of carbon regenerated and 29.2 cents/kg (13.3 cents/lb) of carbon regenerated, respectively.

  19. Effect of tool wear on quality of carbon fiber reinforced polymer laminate during edge trimming

    NASA Astrophysics Data System (ADS)

    Hamedanianpour, Hossein

    Polymer matrix composites, especially carbon fiber reinforced polymers (CFRPs) are vastly used in different high technology industries, including aerospace, automotive and wind energy. Normally, when CFRPs are cured to near net shape, finishing operations such as trimming, milling or drilling are used to remove excess materials. The quality of these finishing operations is highly essential at the level of final assembly. The present study aims to study the effect of cutting tool wear on the resulting quality for the trimming process of high performance CFRP laminates, in the aerospace field. In terms of quality parameters, the study focuses on surface roughness and material integrity damages (uncut fibers, fiber pullout, delamination or thermal damage of the matrix), which could jeopardize the mechanical performance of the components. In this study, a 3/8 inch diameter CVD diamond coated carbide tool with six flutes was used to trim 24-ply carbon fiber laminates. Cutting speeds ranging from 200 m/min to 400 m/min and feed rates ranging from 0.3048 mm/rev to 0.4064 mm/rev were used in the experiments. The results obtained using a scanning electron microscope (SEM) showed increasing defect rates with an increase in tool wear. The worst surface integrity, including matrix cracking, fiber pull-out and empty holes, was also observed for plies oriented at -45° degrees. For the surface finish, it was observed that an increase in tool wear resulted in a decrease in surface roughness. Regarding tool wear, a lower rate was observed at lower feed rates and higher cutting speeds, while a higher tool wear rate was observed at intermediate values of our feed rate and cutting speed ranges.

  20. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Li, Longbiao

    2016-06-01

    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  1. Heat accumulation effects in short-pulse multi-pass cutting of carbon fiber reinforced plastics

    NASA Astrophysics Data System (ADS)

    Kononenko, T. V.; Freitag, C.; Komlenok, M. S.; Onuseit, V.; Weber, R.; Graf, T.; Konov, V. I.

    2015-09-01

    The formation of a matrix evaporation zone (MEZ) in carbon fiber reinforced plastics during multi-pass laser cutting with picosecond laser pulses is studied for a wide range of pulse frequencies (fp = 10-800 kHz) and feed rates (vf = 0.002-10 m/s). Three regimes of the formation of the MEZ are found and related with different heat accumulation effects: (i) small MEZ (<2 μm) with negligible heat accumulation, (ii) moderate-size MEZ (up to a few hundred microns) determined by heat accumulation between pulses, and (iii) large MEZ (up to a few millimeters) caused by heat accumulation between scans. The dependence of the size of the MEZ on the number of scans and the scan frequency was studied to distinguish the two heat accumulation effects (between pulses and between scans), which occur on different time-scales. A diagram to illustrate the boundaries between the three regimes of the formation of the MEZ as a function of feed rate and pulse frequency is proposed as a promising base for further studies and as a useful tool to optimize the processing parameters in practice.

  2. Scanning induction thermography (SIT) for imaging damages in carbon-fibre reinforced plastics (CFRP) components

    NASA Astrophysics Data System (ADS)

    Thomas, K. Renil; Balasubramaniam, Krishnan

    2015-03-01

    Scanning Induction Thermography (SIT) combines both Eddy Current Technique (ECT) and Thermographic Non-Destructive Techniques (TNDT) [1],[2]. This NDT technique has been earlier demonstrated for metallic components for the detection of cracks, corrosion, etc.[3]-[9] Even though Carbon-Fiber Reinforced Plastics (CFRP) has a relatively less electrical conductivity compared to metals, it was observed that sufficient heat could be generated using induction heating that can be used for nondestructive evaluation using the Induction Thermography technique. Also, measurable temperatures could be achieved using relatively less currents, when compared to metals. In Scanning Induction Thermography (SIT) technique, the induction coil moves over the sample at optimal speeds and the temperature developed in the sample due to Joule heating effects is captured as a function of time and distance using an IR camera in the form of video images. A new algorithm is also presented for the analysis of the video images for improved analysis of the data obtained. Several CFRP components were evaluated for detection of impact damage and delaminations using the SIT technique.

  3. Carbon-Fiber Reinforced Plastic Passive Composite Damper by Use of Piezoelectric Polymer/Ceramic

    NASA Astrophysics Data System (ADS)

    Tanimoto, Toshio

    2002-11-01

    In this study, the passive damping of carbon-fiber reinforced plastic (CFRP) cantilever beams is examined using (1) interleaving of viscoelastic thermoplastic films, (2) piezoelectric polymer (PVDF) film interlayers and (3) surface-bonded piezoelectric ceramics. Introducing polyethylene-based film interlayers between composite plies resulted in a significant increase in the vibration loss factor. It is also shown that the vibration damping of CFRP laminates can be improved passively by means of PVDF film interlayers and resistively shunted, surface-bonded piezoelectric ceramic, PbZrO3-PbTiO3 (PZT) sheets. This paper also discusses the enhanced vibration damping of CFRP laminates with dispersed PZT particle interlayers. All these damping methods, interleaving of thermoplastic films, interlayers of PVDF films or dispersed PZT particles between composite plies, and resistively shunted, surface-bonded PZT sheets, can be jointly used to improve the damping of CFRP laminates/structures. The use of CFRP beams in combination with several damping concepts discussed here is promising for application in structures where light weight and improved vibration damping are desired.

  4. Inflammatory response against different carbon fiber-reinforced PEEK wear particles compared with UHMWPE in vivo.

    PubMed

    Utzschneider, Sandra; Becker, Fabian; Grupp, Thomas M; Sievers, Birte; Paulus, Alexander; Gottschalk, Oliver; Jansson, Volkmar

    2010-11-01

    Poly(ether ether ketone) (PEEK) and its composites are recognized as alternative bearing materials for use in arthroplasty because of their mechanical properties. The objective of this project was to evaluate the biological response of two different kinds of carbon fiber-reinforced (CFR) PEEK compared with ultra-high molecular weight polyethylene (UHMWPE) in vivo as a standard bearing material. Wear particles of the particulate biomaterials were injected into the left knee joint of female BALB/c mice. Assessment of the synovial microcirculation using intravital fluorescence microscopy as well as histological evaluation of the synovial layer were performed 7 days after particle injection. Enhanced leukocyte-endothelial cell interactions and an increase in functional capillary density as well as histological investigations revealed that all tested biomaterials caused significantly (P < 0.05) increased inflammatory reactions compared with control animals (injected with sterile phosphate-buffered saline), without any difference between the tested biomaterials (P > 0.05). These data suggest that wear debris of CFR-PEEK is comparable with UHMWPE in its biological activity. Therefore, CFR-PEEK represents an alternative bearing material because of its superior mechanical and chemical behavior without any increased biological activity of the wear particles, compared with a standard bearing material.

  5. Experimental investigation and modelling of compressibility induced by damage in carbon black-reinforced natural rubber

    NASA Astrophysics Data System (ADS)

    Cantournet, Sabine; Layouni, Khaled; Laiarinandrasana, Lucien; Piques, Roland

    2014-05-01

    While natural rubber is commonly considered as an incompressible material, this study shows how carbon black-reinforced natural rubber (NR-CB), when subjected to various mechanical loading conditions (uniaxial, hydrostatic, monotonic, cyclic), is affected by volume change. Experiments show a volume variation even for low straining values and a significant volume change for large elongations. Moreover, volume change can be either reversible or not, depending on the loading conditions. It is related to a competition between void growth, chain orientation, and stress softening. At a microscopic scale, in situ Scanning Electron Microscopy (SEM) examinations and image analysis allow one to record damage and microscopic volume change as a function of elongation. Therefore the volume change measured at the microscopic scale is equal to the macroscopic one. Based on the experimental results, this paper shows that the hypothesis of incompressibility is worth being revisited. Thus, a nearly compressible approach was considered, where the strain energy is assumed to be the sum of spherical and deviatoric parts that are both affected by damage. The model was then implemented in a finite-element code. Good agreement was obtained between experimental results and model predictions for low triaxiality test conditions.

  6. Numerical simulation of combustion effects during laser processing of carbon fiber reinforced plastics

    NASA Astrophysics Data System (ADS)

    Ohkubo, Tomomasa; Tsukamoto, Masahiro; Sato, Yuji

    2016-03-01

    We applied the finite difference method to a numerical simulation of material removal in the laser ablation of a carbon fiber reinforced plastic (CFRP). Although a few theoretical and numerical studies of heat-affected zone (HAZ) formation have been reported, there has been no report describing heat generation due to oxidization of the materials. It is important to consider combustion effects when discussing the generation of a HAZ in order to improve the quality of CFRP cutting by laser. To develop a new calculation model that includes the effects of the combustion of each element of the CFRP, thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were performed for CFRP in air. We succeeded in qualitatively simulating the generation of a HAZ, including the effects of combustion, using data obtained by TGA and DTA. Therefore, not only thermal conductivity, but also combustion effects, should be considered when discussing how a HAZ is generated and in order to improve the cutting quality of CFRPs in laser processing.

  7. Defect Detection on Carbon Fibre Reinforced Plastics (cfrp) with Laser Generated Lamb Waves

    NASA Astrophysics Data System (ADS)

    Focke, O.; Huke, P.; Hildebrandt, A.

    2011-06-01

    Standard ultrasound methods using a phased-array or a single transducer are commonly used for non-destructive evaluation (NDE) during manufacturing of carbon fiber reinforced plastics (CFRP) parts and certificated testing schemes were developed for individual parts and geometries. However, most testing methods need direct contact, matching gels and remain therefore time consuming. Laser-Ultrasonics is advantageous due to the contactless measurement technology and high accessibility even on complex parts. Despite the non-destructive testing with body waves, we show that the NDE can be expanded using two-dimensional surface (Lamb) waves for detection of delaminations close to the surface or small deteriorations caused by e.g. impacts. Lamb waves have been excited with a single transducer and with a short-pulse Laser with additionally producing A0-and S0-Lamb waves. The waves were detected with a shearography setup that allows for measuring two-dimensionally the displacement of a surface. Short integration times of the camera were realized using a pulsed ruby laser for illumination. As a consequence to the anisotropy the propagation in different directions exhibits individual characteristics like amplitude, damping and velocity. This has motivated to build up models for the propagation of Lamb waves and to compare them with experimental results.

  8. Real time sensing of structural glass fiber reinforced composites by using embedded PVA - carbon nanotube fibers

    NASA Astrophysics Data System (ADS)

    Alexopoulos, N.; Poulin, P.; Bartholome, C.; Marioli-Riga, Z.

    2010-06-01

    Polyvinyl alcohol - carbon nanotube (PVA-CNT) fibers had been embedded to glass fiber reinforced polymers (GFRP) for the structural health monitoring of the composite material. The addition of the conductive PVA-CNT fiber to the nonconductive GFRP material aimed to enhance its sensing ability by means of the electrical resistance measurement method. The test specimen’s response to mechanical load and the in situ PVA-CNT fiber’s electrical resistance measurements were correlated for sensing and damage monitoring purposes. The embedded PVA-CNT fiber worked as a sensor in GFRP coupons in tensile loadings. Sensing ability of the PVA-CNT fibers was also demonstrated on an integral composite structure. PVA-CNT fiber near the fracture area of the structure recorded very high values when essential damage occurred to the structure. A finite element model of the same structure was developed to predict axial strains at locations of the integral composite structure where the fibers were embedded. The predicted FEA strains were correlated with the experimental measurements from the PVA-CNT fibers. Calculated and experimental values were in good agreement, thus enabling PVA-CNT fibers to be used as strain sensors.

  9. Hot Deformation Behavior and Intrinsic Workability of Carbon Nanotube-Aluminum Reinforced ZA27 Composites

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Geng, Cong; Zhu, Yunke; Peng, Jinfeng; Xu, Junrui

    2017-03-01

    Using a controlled thermal simulator system, hybrid carbon nanotube-aluminum reinforced ZA27 composites were subjected to hot compression testing in the temperature range of 473-523 K with strain rates of 0.01-10 s-1. Based on experimental results, a developed-flow stress model was established using a constitutive equation coupled with strain to describe strain softening arising from dynamic recrystallization. The intrinsic workability was further investigated by constructing three-dimensional (3D) processing maps aided by optical observations of microstructures. The 3D processing maps were constructed based on a dynamic model of materials to delineate variations in the efficiency of power dissipation and flow instability domains. The instability domains exhibited adiabatic shear band and flow localization, which need to be prevented during hot processing. The recommended domain is predicated to be within the temperature range 550-590 K and strain rate range 0.01-0.35 s-1. In this state, the main softening mechanism is dynamic recrystallization. The results from processing maps agree well with the microstructure observations.

  10. The Use of Carbon-Fiber-Reinforced (CFR) PEEK Material in Orthopedic Implants: A Systematic Review

    PubMed Central

    Li, Chuan Silvia; Vannabouathong, Christopher; Sprague, Sheila; Bhandari, Mohit

    2015-01-01

    Carbon-fiber-reinforced polyetheretherketone (CFR-PEEK) has been successfully used in orthopedic implants. The aim of this systematic review is to investigate the properties, technical data, and safety of CFR-PEEK biomaterial and to evaluate its potential for new innovation in the design of articulating medical devices. A comprehensive search in PubMed and EMBASE was conducted to identify articles relevant to the outcomes of CFR-PEEK orthopedic implants. The search was also expanded by reviewing the reference sections of selected papers and references and benchmark reports provided by content experts. A total of 23 articles were included in this review. There is limited literature available assessing the performance of CFR-PEEK, specifically as an implant material for arthroplasty systems. Nevertheless, available studies strongly support CFR-PEEK as a promising and suitable material for orthopedic implants because of its biocompatibility, material characteristics, and mechanical durability. Future studies should continue to investigate CFR-PEEK’s potential benefits. PMID:25780341

  11. Control of porosity and pore size of metal reinforced carbon nanotube membranes.

    PubMed

    Dumee, Ludovic; Velleman, Leonora; Sears, Kallista; Hill, Matthew; Schutz, Jurg; Finn, Niall; Duke, Mikel; Gray, Stephen

    2010-12-21

    Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT) Bucky-Paper (BP) composites with tuneable porosity and surface pore size. A BP is an entangled mesh non-woven like structure of nanotubes. Pure CNT BPs present both very high porosity (>90%) and specific surface area (>400 m2/g). Furthermore, their pore size is generally between 20-50 nm making them promising candidates for various membrane and separation applications. Both electro-plating and electroless plating techniques were used to plate different series of BPs and offered various degrees of success. Here we will report mainly on electroless plated gold/CNT composites. The benefit of this method resides in the versatility of the plating and the opportunity to tune both average pore size and porosity of the structure with a high degree of reproducibility. The CNT BPs were first oxidized by short UV/O3 treatment, followed by successive immersion in different plating solutions. The morphology and properties of these samples has been investigated and their performance in air permeation and gas adsorption will be reported.

  12. Mode I Fracture Toughness Prediction for Multiwalled-Carbon-Nanotube Reinforced Ceramics

    SciTech Connect

    Nguyen, Ba Nghiep; Henager, Charles H.

    2015-08-27

    This article develops a multiscale model to predict fracture toughness of multiwalled-carbon-nanotube (MWCNT) reinforced ceramics. The model bridges different scales from the scale of a MWCNT to that of a composite domain containing a macroscopic crack. From the nano, micro to meso scales, Eshelby-Mori-Tanaka models combined with a continuum damage mechanics approach are explored to predict the elastic damage behavior of the composite as a function of MWCNT volume fraction. MWCNTs are assumed to be randomly dispersed in a ceramic matrix subject to cracking under loading. A damage variable is used to describe matrix cracking that causes reduction of the elastic modulus of the matrix. This damage model is introduced in a modified boundary layer modeling approach to capture damage initiation and development at a tip of a pre-existing crack. Damage and fracture are captured only in a process window containing the crack tip under plane strain Mode I loading. The model is validated against the published experimental fracture toughness data for a MWCNT 3 mol% yttria stabilized zirconia composite system. In addition, crack resistance curves as a function of MWCNT content are predicted and fitted by a power law as observed in the experiments on zirconia.

  13. Microstructure and Mechanical Properties of Warm-Sprayed Titanium Coating on Carbon Fiber-Reinforced Plastic

    NASA Astrophysics Data System (ADS)

    Ganesan, Amirthan; Takuma, Okada; Yamada, Motohiro; Fukumoto, Masahiro

    2016-04-01

    Polymer materials are increasingly dominating various engineering fields. Recently, polymer-based composite materials' surface performances—in particular, surface in relative motion—have been improved markedly by thermal spray coating. Despite this recent progress, the deposition of high-strength materials—producing a coating thickness of the order of more than 500 μm—remains highly challenging. In the present work, a highly dense and thick titanium coating was successfully deposited onto the carbon fiber-reinforced plastic (CFRP) substrate using a newly developed high-pressure warm spray (WS) system. The coating properties, such as hardness (300 ± 20 HV) and adhesion strength (8.1 ± 0.5 MPa), were evaluated and correlated with the microstructures of the coating. In addition, a wipe-test and in situ particle velocity and temperature measurement were performed to validate the particle deposition behavior as a function of the nitrogen flow rate in the WS system. It was found that the microstructures, deposition efficiency, and mechanical properties of the coatings were highly sensitive to nitrogen flow rates. The coating porosity increased with increasing nitrogen flow rates; however, the highest density was observed for nitrogen flow rate of 1000 standard liters per minute (SLM) samples due to the high fraction of semi-molten particles in the spray stream.

  14. Assessment of carbon fiber-reinforced polyphenylene sulfide by means of laser ultrasound

    NASA Astrophysics Data System (ADS)

    Kalms, Michael; Peters, Christian; Wierbos, Ronald

    2011-04-01

    From automobile industry to aerospace, thermoformed composites are more and more in use. Thermoplastics offer a number of attractive applications in commercial use like short production times, tailored solutions, recyclability and lower cost. The thermoforming process allows for producing carbon fiber-reinforced parts in a wide range of different geometric shapes. On the other hand this benefit requires a demanding nondestructive testing procedure especially for security relevant parts. A contactless method which is able to fulfil this requirement is the extension of the ultrasound technique with laser technology. It opens up new opportunities for quality assessment during manufacturing like inspection of complex surfaces including small radii, remote observation and nondestructive testing of hot items directly after the thermal forming process. We describe the successful application of laser-based ultrasound on small complex thermoformed composite parts (Cetex® PPS). Cetex consists of semicrystalline polyphenylene sulfide thermoplastics providing outstanding toughness and excellent chemical and solvent resistance. It is qualified in aircraft industry for multiple structural applications. For instance, Cetex is used in the Airbus A380 engine air intakes and the wing fixed leading edge (J-Nose). We investigated several test samples with intentionally introduced defects. The smallest flaw size detected was 2 mm in diameter for delaminations and 6 mm in diameter for porosity.

  15. Delamination behavior of carbon fiber/epoxy composite laminates with short fiber reinforcement

    SciTech Connect

    Sohn, M.S.; Hu, X.Z. . Dept. of Mechanical and Materials Engineering)

    1994-06-01

    Delamination in laminated materials is one major mode of damage and failure encountered in application. Fracture mechanics is often used to characterize the interlaminar fracture behavior. The interlaminar fracture energies, G[sub I], G[sub II] and G[sub I/II] are the major concerns to characterize the interlaminar toughness of the composite laminates. Typical mode-I fracture is caused by normal tension, and typical mode-II fracture by shear in the direction of crack extension. The objective of the present study is to compare and discuss the mode-I and mode-II interlaminar fracture energies, G[sub I] and G[sub II] of carbon fiber/epoxy composite laminates with and without the reinforcement of short Kevlar fibers (5--7 mm in length) and to identify the microfracture features of the Kevlar fibers under those two delamination modes through SEM observations. Double cantilever beam (DCB) specimens and end notched flexure (ENF) specimens are used for the mode-I and -II delamination experiments.

  16. Interactive Exploration and Visualization using MetaTracts extracted from Carbon Fiber Reinforced Composites.

    PubMed

    Bhattacharya, Arindam; Weissenbock, Johannes; Wenger, Rephael; Amirkhanov, Artem; Kastner, Johann; Heinzl, Christoph

    2016-06-16

    This work introduces a tool for interactive exploration and visualization using MetaTracts. MetaTracts is a novel method for extraction and visualization of individual fiber bundles and weaving patterns from X-ray computed tomography (XCT) scans of endless carbon fiber reinforced polymers (CFRPs). It is designed specifically to handle XCT scans of low resolutions where the individual fibers are barely visible, which makes extraction of fiber bundles a challenging problem. The proposed workflow is used to analyze unit cells of CFRP materials integrating a recurring weaving pattern. First, a coarse version of integral curves is used to trace subsections of the individual fiber bundles in the woven CFRP materials. We call these sections MetaTracts. In the second step, these extracted fiber bundle sections are clustered using a two-step approach: first by orientation, then by proximity. The tool can generate volumetric representations as well as surface models of the extracted fiber bundles to be exported for further analysis. In addition a custom interactive tool for exploration and visual analysis of MetaTracts is designed. We evaluate the proposed workflow on a number of real world datasets and demonstrate that MetaTracts effectively and robustly identifies and extracts fiber bundles.

  17. Failure of a carbon fiber-reinforced polymer implant used for transforaminal lumbar interbody fusion.

    PubMed

    Sardar, Zeeshan; Jarzem, Peter

    2013-12-01

    Lumbar interbody fusion is a common procedure owing to the high prevalence of degenerative spinal disorders. During such procedures, carbon fiber-reinforced polymer (CFRP) cages are frequently utilized to fill the void created between adjacent vertebral bodies, to provide mechanical stability, and to carry graft material. Failure of such implants can lead to significant morbidity. We discuss the possible causes leading to the failure of a CFRP cage in a patient with rheumatoid arthritis. Review of a 49-year-old woman who underwent revision anterior lumbar interbody fusion 2 years after posterior instrumentation and transforaminal lumbar interbody fusion at L4-L5 and L5-S1. The patient developed pseudarthrosis at the two previously fused levels with failure of the posterior instrumentation. Revision surgery reveled failure with fragmentation of the CFRP cage at the L5-S1 level. CFRP implants can break if mechanical instability or nonunion occurs in the spinal segments, thus emphasizing the need for optimizing medical management and meticulous surgical technique in achieving stability.

  18. Failure of a Carbon Fiber–Reinforced Polymer Implant Used for Transforaminal Lumbar Interbody Fusion

    PubMed Central

    Sardar, Zeeshan; Jarzem, Peter

    2013-01-01

    Lumbar interbody fusion is a common procedure owing to the high prevalence of degenerative spinal disorders. During such procedures, carbon fiber–reinforced polymer (CFRP) cages are frequently utilized to fill the void created between adjacent vertebral bodies, to provide mechanical stability, and to carry graft material. Failure of such implants can lead to significant morbidity. We discuss the possible causes leading to the failure of a CFRP cage in a patient with rheumatoid arthritis. Review of a 49-year-old woman who underwent revision anterior lumbar interbody fusion 2 years after posterior instrumentation and transforaminal lumbar interbody fusion at L4–L5 and L5–S1. The patient developed pseudarthrosis at the two previously fused levels with failure of the posterior instrumentation. Revision surgery reveled failure with fragmentation of the CFRP cage at the L5–S1 level. CFRP implants can break if mechanical instability or nonunion occurs in the spinal segments, thus emphasizing the need for optimizing medical management and meticulous surgical technique in achieving stability. PMID:24436878

  19. Control of Porosity and Pore Size of Metal Reinforced Carbon Nanotube Membranes

    PubMed Central

    Dumee, Ludovic; Velleman, Leonora; Sears, Kallista; Hill, Matthew; Schutz, Jurg; Finn, Niall; Duke, Mikel; Gray, Stephen

    2011-01-01

    Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT) Bucky-Paper (BP) composites with tuneable porosity and surface pore size. A BP is an entangled mesh non-woven like structure of nanotubes. Pure CNT BPs present both very high porosity (>90%) and specific surface area (>400 m2/g). Furthermore, their pore size is generally between 20–50 nm making them promising candidates for various membrane and separation applications. Both electro-plating and electroless plating techniques were used to plate different series of BPs and offered various degrees of success. Here we will report mainly on electroless plated gold/CNT composites. The benefit of this method resides in the versatility of the plating and the opportunity to tune both average pore size and porosity of the structure with a high degree of reproducibility. The CNT BPs were first oxidized by short UV/O3 treatment, followed by successive immersion in different plating solutions. The morphology and properties of these samples has been investigated and their performance in air permeation and gas adsorption will be reported. PMID:24957493

  20. Multilevel surface engineering of nanostructured TiO2 on carbon-fiber-reinforced polyetheretherketone.

    PubMed

    Lu, Tao; Liu, Xuanyong; Qian, Shi; Cao, Huiliang; Qiao, Yuqin; Mei, Yongfeng; Chu, Paul K; Ding, Chuanxian

    2014-07-01

    As an implantable material, carbon-fiber-reinforced polyetheretherketone (CFRPEEK) possesses an adjustable elastic modulus similar to that of cortical bone and is a prime candidate to replace metallic surgical implants. However, the bioinertness and poor osteogenic properties of CFRPEEK limit its clinical application as orthopedic implants. In this work, titanium ions are introduced energetically into CFRPEEK by plasma immersion ion implantation (PIII). Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) reveal the formation of nanopores with the side wall and bottom embedded with ∼20 nm TiO2 nanoparticles on the CFRPEEK surface. Nanoindentation measurements confirm the stability and improved elastic resistance of the structured surfaces. In vitro cell adhesion, viability assay, and real-time PCR analyses disclose enhanced adhesion, proliferation, and osteo-differentiation of rat bone mesenchymal stem cells (bMSCs). The multilevel structures on CFRPEEK also exhibit partial antibacterial activity to Staphylococcus aureus and Escherichia coli. Our results indicate that a surface with multifunctional biological properties can be produced by multilevel surface engineering and application of CFRPEEK to orthopedic and dental implants can be broadened and expedited based on this scheme.

  1. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    SciTech Connect

    Xiong, Yongliang; Wang, Yifeng

    2015-02-03

    Advanced, fire-resistant activated carbon compositions useful in adsorbing gases; and having vastly improved fire resistance are provided, and methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard. They also have superior performance to Mordenites in both adsorption capacities and kinetics. In addition, the advanced compositions do not pose the fibrous inhalation hazard that exists with use of Mordenites. The fire-resistant compositions combine activated carbon mixed with one or more hydrated and/or carbonate-containing minerals that release H.sub.2O and/or CO.sub.2 when heated. This effect raises the spontaneous ignition temperature to over 500.degree. C. in most examples, and over 800.degree. C. in some examples. Also provided are methods for removing and/or separating target gases, such as Krypton or Argon, from a gas stream by using such advanced activated carbons.

  2. Laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) by single-mode fiber laser irradiation

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki; Kawaguchi, Yoshizo; Sato, Tadatake; Narazaki, Aiko; Kurosaki, Ryozo; Muramatsu, Mayu; Harada, Yoshihisa; Anzai, Kenji; Aoyama, Mitsuaki; Matsushita, Masafumi; Furukawa, Koichi; Nishino, Michiteru; Fujisaki, Akira; Miyato, Taizo; Kayahara, Takashi

    2014-03-01

    We report on the laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) with a cw IR fiber laser (single-mode fiber laser, average power: 350 W). CFRTP is a high strength composite material with a lightweight, and is increasingly being used various applications. A well-defined cutting of CFRTP which were free of debris and thermal-damages around the grooves, were performed by the laser irradiation with a fast beam galvanometer scanning on a multiple-scanpass method.

  3. High Black Carbon Concentrations and Atmospheric Pollution Around Indian Coal Fired Thermal Power Plants

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Singh, A. K.; Kumar, S.; Takemura, T.

    2013-12-01

    Emissions from coal-fired Thermal Power Plants (TPPs) are among major sources of black carbon (BC) aerosols in the atmosphere and air quality degradation. Knowledge of BC emissions from TPPs is important in characterizing regional carbonaceous particulate emissions, associated with regional climate forcing as well as effects on human health. Furthermore, elevated BC concentrations, over the Indo-Gangetic Plains (IGP) and the Himalayan foothills, has emerged as an important subject to estimate effects of deposition and atmospheric warming of BC on the accelerated melting of snow and glaciers in the Himalaya. For the first time, this study reports BC concentrations and aerosol characterization near coal-fired power plants in the IGP. Coal-fired TPPs are also recognized as major point-sources of other atmospheric pollutants such as high NO2 hotspots in the IGP, as evident from the OMI Aura satellite observations. In-situ measurements were carried out in Kanpur (central IGP) and Singrauli (eastern IGP), during January and March 2013. We show detailed spatial variability of BC within ~10 km from TPPs, that indicate BC variations up to 95 μg/m3, with strong diurnal variations associated with BC concentration peaks during early morning and evening hours. BC concentrations were measured to be significantly higher in close proximity to the coal-fired TPPs (as high as 200μg/m3), compared to the outside domain of our study region. Co-located ground-based sunphotometer measurements of aerosols also show significant spatial variability around the TPPs, with aerosol optical depth (AOD) in the range 0.38-0.58, and the largest AOD of 0.7 - 0.95 near the TPPs (similar to the peak BC concentrations). Additionally, the Angstrom Exponent was found to be in the range 0.4 - 1.0 (maximum in the morning time) and highest in the vicinity of TPPs (~1.0) suggesting abundance of fine particulates, whereas lowest recorded over the surrounding coal mining fields. We also inter-compare global

  4. A Comparative Study on Graphene Oxide and Carbon Nanotube Reinforcement of PMMA-Siloxane-Silica Anticorrosive Coatings.

    PubMed

    Harb, Samarah V; Pulcinelli, Sandra H; Santilli, Celso V; Knowles, Kevin M; Hammer, Peter

    2016-06-29

    Carbon nanotubes (CNTs) and graphene oxide (GO) have been used to reinforce PMMA-siloxane-silica nanocomposites considered to be promising candidates for environmentally compliant anticorrosive coatings. The organic-inorganic hybrids were prepared by benzoyl peroxide (BPO)-induced polymerization of methyl methacrylate (MMA) covalently bonded through 3-(trimethoxysilyl)propyl methacrylate (MPTS) to silica domains formed by hydrolytic condensation of tetraethoxysilane (TEOS). Single-walled carbon nanotubes and graphene oxide nanosheets were dispersed by surfactant addition and in a water/ethanol solution, respectively. These were added to PMMA-siloxane-silica hybrids at a carbon (CNT or GO) to silicon (TEOS and MPTS) molar ratio of 0.05% in two different matrices, both prepared at BPO/MMA molar ratios of 0.01 and 0.05. Atomic force microscopy and scanning electron microscopy showed very smooth, homogeneous, and defect-free surfaces of approximately 3-7 μm thick coatings deposited onto A1020 carbon steel by dip coating. Mechanical testing and thermogravimetric analysis confirmed that both additives CNT and GO improved the scratch resistance, adhesion, wear resistance, and thermal stability of PMMA-siloxane-silica coatings. Results of electrochemical impedance spectroscopy in 3.5% NaCl solution, discussed in terms of equivalent circuits, showed that the reinforced hybrid coatings act as a very efficient anticorrosive barrier with an impedance modulus up to 1 GΩ cm(2), approximately 5 orders of magnitude higher than that of bare carbon steel. In the case of GO addition, the high corrosion resistance was maintained for more than 6 months in saline medium. These results suggest that both carbon nanostructures can be used as structural reinforcement agents, improving the thermal and mechanical resistance of high performance anticorrosive PMMA-siloxane-silica coatings and thus extending their application range to abrasive environments.

  5. [The role of carbon monoxide and ethanol in fire casualties: A retrospective study of carboxyhemoglobin and blood ethanol levels in fire victims].

    PubMed

    Kristinsson, J; Johannesson, T; Bjarnason, O

    1994-05-01

    The study included 36 fire casualties that were submitted to post-mortem pathological and toxicological examination at the Departments of Forensic Medicine and Pharmacology, University of Iceland, during the period 1971-1990. Twenty eight were males and eigth females. The mean age was 45.3 years (range 3-74 years). Carboxyhemoglobin levels ranged from 0-84%, mean 53.5% (fig. 1) and were considered fatal (> approximately 50%) in 24 cases. Fourteen victims with fatal carboxyhemoglobin levels had no significant burn injuries. Death was therefore attributed to carbon monoxide poisoning alone. In these cases carboxyhemoglobin levels (mean 65.5%, range 49-84) were lower than those found in cases of fatal car exhaust poisonings (mean 73.0%, range 47-87%) investigated by us in the same period (8). The difference was statistically significant (t-test, P<0.01). It supports the idea that combustion products, other than carbon monoxide, may contribute to the toxic effect of fires. Ethanol was found in blood in two thirds (24) of the cases. Blood ethanol levels were in the range 0.47-4.37%0 (mean 2.34%o). Blood ethanol levels and prevalence of inebriation were compared to those found in other fatal accidents investigated by us in the same period. Ethanol levels were significantly higher in the fire cases and inebriation more common than in the reference group (t-test, P<0.01; Chi-square, P<0.001, df=l). Although poisoning with carbon monoxide is of major importance in fire casualties it should not be disregarded that inebriation may often be an equally important factor. This was in fact strongly indicated by our results.

  6. Toughening of carbon fiber-reinforced epoxy polymer composites via copolymers and graphene nano-platelets

    NASA Astrophysics Data System (ADS)

    Downey, Markus A.

    Carbon fiber-reinforced epoxy composites currently play a significant role in many different industries. Due to their high cross-link density, aromatic epoxy polymers used as the matrix in composite materials are very strong and stiff however they lack toughness. This dissertation investigates three areas of the carbon fiber-reinforced composite, which have the potential to increase toughness: the carbon fiber surface; the fiber/matrix interphase; and the matrix material. Approaches to improving each area are presented which lead to enhancing the overall composite toughness without reducing other composite mechanical properties. The toughening of the base matrix material, DGEBA/mPDA, was accomplished by two methods: first, using low concentrations of aliphatic copolymers to enhance energy absorption and second by adding graphene nano-platelets (GnP) to act as crack deflection agents. 1wt% copolymer concentration was determined to substantially increase the notched Izod impact strength without reducing other static-mechanical properties. Toughening of DGEBA/mPDA using 3wt% GnP was found to be dependent on the aspect ratio of GnP and treatment of GnP with tetraethylenepentamine (TEPA). GnP C750 enhanced flexural properties but not fracture toughness because the small aspect ratio cannot effectively deflect cracks. TEPA-grafting enhanced GnP/matrix bonding. Larger aspect ratio GnP M5 and M25 showed significant increases in fracture toughness due to better crack deflection but also decreased flexural strength based on limited GnP/matrix bonding. TEPA-grafting mitigated some of the flexural strength reductions for GnP M5, due to enhanced GnP/matrix adhesion. In the high-fiber volume fraction composite, the fiber/matrix bonding was enhanced with UV-ozone surface treatment by reducing a weak fiber surface boundary layer and increasing the concentration of reactive oxygen groups on the fiber surface. Further increases in Mode I fracture toughness were seen with the

  7. Nuclear techniques for the on-line bulk analysis of carbon in coal-fired power stations.

    PubMed

    Sowerby, B D

    2009-09-01

    Carbon trading schemes usually require large emitters of CO(2), such as coal-fired power stations, to monitor, report and be audited on their CO(2) emissions. The emission price provides a significant additional incentive for power stations to improve efficiency. In the present paper, previous work on the bulk determination of carbon in coal is reviewed and assessed. The most favourable method is that based on neutron inelastic scattering. The potential role of on-line carbon analysers in improving boiler efficiency and in carbon accounting is discussed.

  8. Carbon nanotube-reinforced hydroxyapatite composite and their interaction with human osteoblast in vitro.

    PubMed

    Khalid, P; Hussain, M A; Rekha, P D; Arun, A B

    2015-05-01

    As a bone mineral component, hydroxyapatite (HA) has been an attractive bioceramic for the reconstruction of hard tissues. However, its poor mechanical properties, including low fracture toughness and tensile strength, have been a substantial challenge to the application of HA for the replacement of load-bearing and/or large bone defects. In this study, HA is reinforced with high-purity and well-functionalized multiwalled carbon nanotubes (MWCNTs; >99 wt%) having an average diameter of 15 nm and length from 10 to 20 μm. The cellular response of these functionalized CNTs and its composites were examined in human osteoblast sarcoma cell lines. Calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) and diammonium hydrogen phosphate ((NH4)2HPO4) were used to synthesize HA in situ. MWCNTs were functionalized by heating at 100°C in 3:1 ratio of sulfuric acid and nitric acid for 60 min with stirring and dispersed in sodium dodecyl benzene sulfonate by sonication. HA particles were produced in MWCNTs solution by adding Ca(NO3)2·4H2O and (NH4)2HPO4 under vigorously stirring conditions. The composite was dried and washed in distilled water followed by heat treatment at 250°C to obtain CNT-HA powder. Physiochemical characterization of the composite material was carried out using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectrometer, and X-ray diffractometer. Furthermore, this study investigates the cytotoxic effects of functionalized-MWCNTs (f-MWCNTs) and its composites with HA in human osteoblast sarcoma cell lines. Human osteoblast cells were exposed with different concentrations of f-MWCNTs and its composite with HA. The interactions of f-MWCNT and MWCNT-HA composites were analyzed by 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The results indicate no detrimental effect on survival or mitochondrial activity of the osteoblast cells. Cell viability decreased with an increase in CNT

  9. The Development and Application of a Harmonized Burned Area Data Set for North America to Assess the Effects of Fire Disturbance on the Continental Carbon Budget

    NASA Astrophysics Data System (ADS)

    Chen, G.; Hayes, D. J.

    2014-12-01

    Fires burn an annual average of about 40,000 km2 in Canada and the U.S., making it an important feature of North American ecosystems through renewing ecosystem conditions and vegetation dynamics. Fire disturbances substantially modify ecosystem carbon dynamics both temporally and spatially. Ecosystems generally lose carbon for several years to decades following fire disturbance, but our understanding of the duration and dynamics of post-disturbance carbon fluxes remains limited. Owing to the prevailing collection of inventory data for fire burn area, intensity, distribution, and associated carbon-related parameters in North America, we are able to more accurately estimate carbon dynamics following fire disturbances. In our study, we integrated four major fire datasets (i.e., U.S. Monitoring Trends in Burn Severity dataset, Bureau of Land Management Alaska Fire Service dataset, and Canadian National Fire Database, and GFEDv3.1 fire dataset) and other auxiliary data to generate a comprehensive and continuous burned area history dataset, which covers the 1920 to 2012 time period and is gridded at quarter-degree resolution for the North American continent. Driven by this new dataset, we used the Terrestrial Ecosystem Model (TEM6.0) to simulate the impacts of fire disturbance on carbon dynamics across North American ecosystems. The results indicate that large amount of carbon was emitted due to fire disturbances during the study period, especially for the boreal ecosystems with slow recovery. The modeling results were also evaluated with the field measurements along a fire chronosequence and compared to estimates from other approaches.

  10. Evaluation of activated carbon for control of mercury from coal-fired boilers

    SciTech Connect

    Miller, S.; Laudal, D.; Dunham, G.

    1995-11-01

    The ability to remove mercury from power plant flue gas may become important because of the Clean Air Act amendments` requirement that the U.S. Environmental Protection Agency (EPA) assess the health risks associated with these emissions. One approach for mercury removal, which may be relatively simple to retrofit, is the injection of sorbents, such as activated carbon, upstream of existing particulate control devices. Activated carbon has been reported to capture mercury when injected into flue gas upstream of a spray dryer baghouse system applied to waste incinerators or coal-fired boilers. However, the mercury capture ability of activated carbon injected upstream of an electrostatic precipitator (ESP) or baghouse operated at temperatures between 200{degrees} and 400{degrees}F is not well known. A study sponsored by the U.S. Department of Energy and the Electric power Research Institute is being conducted at the University of North Dakota Energy & Environmental Research Center (EERC) to evaluate whether mercury control with sorbents can be a cost-effective approach for large power plants. Initial results from the study were reported last year. This paper presents some of the recent project results. Variables of interest include coal type, sorbent type, sorbent addition rate, collection media, and temperature.

  11. Fire, hurricane and carbon dioxide: effects on net primary production of a subtropical woodland.

    PubMed

    Hungate, Bruce A; Day, Frank P; Dijkstra, Paul; Duval, Benjamin D; Hinkle, C Ross; Langley, J Adam; Megonigal, J Patrick; Stiling, Peter; Johnson, Dale W; Drake, Bert G

    2013-11-01

    Disturbance affects most terrestrial ecosystems and has the potential to shape their responses to chronic environmental change. Scrub-oak vegetation regenerating from fire disturbance in subtropical Florida was exposed to experimentally elevated carbon dioxide (CO₂) concentration (+350 μl l(-1)) using open-top chambers for 11 yr, punctuated by hurricane disturbance in year 8. Here, we report the effects of elevated CO₂ on aboveground and belowground net primary productivity (NPP) and nitrogen (N) cycling during this experiment. The stimulation of NPP and N uptake by elevated CO₂ peaked within 2 yr after disturbance by fire and hurricane, when soil nutrient availability was high. The stimulation subsequently declined and disappeared, coincident with low soil nutrient availability and with a CO₂ -induced reduction in the N concentration of oak stems. These findings show that strong growth responses to elevated CO₂ can be transient, are consistent with a progressively limited response to elevated CO₂ interrupted by disturbance, and illustrate the importance of biogeochemical responses to extreme events in modulating ecosystem responses to global environmental change.

  12. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    EPA Science Inventory

    The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...

  13. An assessment of the risk arising from electrical effects associated with carbon fibers released from commercial aircraft fires

    NASA Technical Reports Server (NTRS)

    Kalelkar, A. S.; Fiksel, J.; Rosenfield, D.; Richardson, D. L.; Hagopian, J.

    1980-01-01

    The risks associated with electrical effects arising from carbon fibers released from commercial aviation aircraft fires were estimated for 1993. The expected annual losses were estimated to be about $470 (1977 dollars) in 1993. The chances of total losses from electrical effects exceeding $100,000 (1977 dollars) in 1993 were established to be about one in ten thousand.

  14. Non-deforestation fire vs. fossil fuel combustion: the source of CO2 emissions affects the global carbon cycle and climate responses

    NASA Astrophysics Data System (ADS)

    Landry, Jean-Sébastien; Damon Matthews, H.

    2016-04-01

    Non-deforestation fire - i.e., fire that is typically followed by the recovery of natural vegetation - is arguably the most influential disturbance in terrestrial ecosystems, thereby playing a major role in carbon exchanges and affecting many climatic processes. The radiative effect from a given atmospheric CO2 perturbation is the same for fire and fossil fuel combustion. However, major differences exist per unit of CO2 emitted between the effects of non-deforestation fire vs. fossil fuel combustion on the global carbon cycle and climate, because (1) fossil fuel combustion implies a net transfer of carbon from geological reservoirs to the atmospheric, oceanic, and terrestrial pools, whereas fire occurring in terrestrial ecosystems does not; (2) the average lifetime of the atmospheric CO2 increase is longer when originating from fossil fuel combustion compared to fire, due to the strong vegetation regrowth following fire disturbances in terrestrial ecosystems; and (3) other impacts, for example on land surface albedo, also differ between fire and fossil fuel combustion. The main purpose of this study is to illustrate the consequences from these fundamental differences between fossil fuel combustion and non-deforestation fires using 1000-year simulations of a coupled climate-carbon model with interactive vegetation. We assessed emissions from both pulse and stable fire regime changes, considering both the gross (carbon released from combustion) and net (fire-caused change in land carbon, also accounting for vegetation decomposition and regrowth, as well as climate-carbon feedbacks) fire CO2 emissions. In all cases, we found substantial differences from equivalent amounts of emissions produced by fossil fuel combustion. These findings suggest that side-by-side comparisons of non-deforestation fire and fossil fuel CO2 emissions - implicitly implying that they have similar effects per unit of CO2 emitted - should therefore be avoided, particularly when these comparisons

  15. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect

    Benson, Steven; Palo, Daniel; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-01

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, an Environmental Health and Safety (EH&S) Assessment was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment addressed air and particulate emissions as well as solid and liquid waste streams. The magnitude of the emissions and waste streams was estimated for evaluation purposes. EH&S characteristics of materials used in the system are also described. This document contains data based on the mass balances from both the 40 kJ/mol CO2 and 80 kJ/mol CO2 desorption energy cases evaluated in the Final Technical and Economic Feasibility study also conducted by Barr Engineering.

  16. A novel Fire-Model for the CABLE Land Surface Model applied to a Re-assessment of the Australian Continental Carbon Budget

    NASA Astrophysics Data System (ADS)

    Nieradzik, L. P.; Haverd, V. E.; Briggs, P.; Meyer, C. P.; Canadell, J.

    2014-12-01

    Fires play a major role in the carbon-cycle and the development of global vegetation, especially on the continent of Australia, where vegetation is prone to frequent fire occurences and where regional composition and stand-age distribution is regulated by fire. Furthermore, the probable changes of fire behaviour under a changing climate are still poorly understood and require further investigation.In this presentation we introduce a novel approach to simulate fire-frequencies, fire-intensities and the responses in vegetation. Fire frequencies are prescribed using SIMFIRE (Knorr et al., 2014) or GFED3 (e.g. Giglio et al., 2013). Fire-Line-Intensity (FLI) is computed from meteorological information and fuel loads which are state variables within the C-cycle component of CABLE. This FLI is used as an input to the tree-demography model POP (Population-Order-Physiology; Haverd et al., 2014). Within POP the fire-mortality depends on FLI and tree height distribution.Intensity-dependent combustion factors (CF) are then generated for and applied to live and litter carbon pools as well as the transfers from live pools to litter caused by fire. Thus, both fire and stand characteristics are taken into account which has a legacy effect on future events. Gross C-CO2 emissions from Australian wild fires are larger than Australian territorial fossil fuel emissions. However, the net effect of fire on the Australian terrestrial carbon budget is unknown. We address this by applying the newly-developed fire module, integrated within the CABLE land surface model, and optimised for the Australian region, to a reassessment of the Australian Terrestrial Carbon Budget.

  17. Carbon fiber-reinforced cyanate ester/nano-ZrW2O8 composites with tailored thermal expansion.

    PubMed

    Badrinarayanan, Prashanth; Rogalski, Mark K; Kessler, Michael R

    2012-02-01

    Fiber-reinforced composites are widely used in the design and fabrication of a variety of high performance aerospace components. The mismatch in coefficient of thermal expansion (CTE) between the high CTE polymer matrix and low CTE fiber reinforcements in such composite systems can lead to dimensional instability and deterioration of material lifetimes due to development of residual thermal stresses. The magnitude of thermally induced residual stresses in fiber-reinforced composite systems can be minimized by replacement of conventional polymer matrices with a low CTE, polymer nanocomposite matrix. Zirconium tungstate (ZrW(2)O(8)) is a unique ceramic material that exhibits isotropic negative thermal expansion and has excellent potential as a filler for development of low CTE polymer nanocomposites. In this paper, we report the fabrication and thermal characterization of novel, multiscale, macro-nano hybrid composite laminates comprising bisphenol E cyanate ester (BECy)/ZrW(2)O(8) nanocomposite matrices reinforced with unidirectional carbon fibers. The results reveal that incorporation of nanoparticles facilitates a reduction in CTE of the composite systems, which in turn results in a reduction in panel warpage and curvature after the cure because of mitigation of thermally induced residual stresses.

  18. Hydroxyapatite reinforced with multi-walled carbon nanotubes and bovine serum albumin for bone substitute applications

    NASA Astrophysics Data System (ADS)

    Gholami, Fatemeh; Noor, Ahmad-Fauzi Mohd

    2016-12-01

    The similarity of the chemical composition of HA to the mineral phase of bone and its excellent biocompatibility meets the requirement of materials designed for bone substitute purpose. The application of HA in load bearing devices is limited by its poor mechanical properties. CNTs with outstanding stiffness, strength, combined with their small size and large interfacial area, suggest that they may have great potential as a reinforcing agent for HA. This work aims to develop the Hydroxyapatite/Multi-walled Carbon Nanotubes/Bovine Serum Albumin (HA/MWCNTs/BSA) composites with different types of MWCNTs including hydroxylated and carboxylated MWCNTs (MWCNTs-OH, MWCNTs-COOH), and evaluation of mechanical strength and in vitro cellular response of developed composites. HA powder was mixed with de-ionized water, 15 wt.% BSA, and 0.5 wt.% of different MWCNTs* (> 95%), MWCNTs (> 99.9%), MWCNTs-OH (> 99.9%), MWCNTs-COOH (> 99.9%) to produce composites. Among all developed composites, the HA/MWCNTs-COOH/BSA shows the highest compressive strength (29.57 MPa). The cytotoxic effect of HA/MWCNTs-COOH/BSA with different concentrations (6.25 to 200 µg/ml) was evaluated by MTT assay against normal human colon fibroblast (CCD-18Co cell line). At low concentration, all developed composites were found to be non-cytotoxic when treated to the human fibroblast cells and did not elicit cytotoxic effects on cell proliferation and the highest values of cell viability (283%) for the HA/MWCNTs-COOH/BSA composites obtained; whereas when the concentration was increased, the reduction in cell viability was observed. The novel composites showed favorable cytocompatibility with improved compressive strength which make it applicable to use in range of trabecular bone.

  19. Influence of carbon nanotubes on the properties of epoxy based composites reinforced with a semicrystalline thermoplastic

    NASA Astrophysics Data System (ADS)

    Díez-Pascual, A.; Shuttleworth, P.; Gónzalez-Castillo, E.; Marco, C.; Gómez-Fatou, M.; Ellis, G.

    2014-08-01

    Novel ternary nanocomposites based on a thermoset (TS) system composed of triglycidyl p-aminophenol (TGAP) epoxy resin and 4,4'-diaminodiphenylsulfone (DDS) curing agent incorporating 5 wt% of a semicrystalline thermoplastic (TP), an ethylene/1-octene copolymer, and 0.5 or 1.0 wt% multi-walled carbon nanotubes (MWCNTs) have been prepared via physical blending and curing. The influence of the TP and the MWCNTs on the curing process, morphology, thermal and mechanical properties of the hybrid nanocomposites has been analyzed. Different morphologies evolved depending on the CNT content: the material with 0.5 wt% MWCNTs showed a matrix-dispersed droplet-like morphology with well-dispersed nanofiller that selectively located at the TS/TP interphase, while that with 1.0 wt% MWCNTs exhibited coarse dendritic TP areas containing agglomerated MWCNTs. Although the cure reaction was accelerated in its early stage by the nanofillers, curing occurred at a lower rate since these obstructed chain crosslinking. The nanocomposite with lower nanotube content displayed two crystallization peaks at lower temperature than that of pure TP, while a single peak appearing at similar temperature to that of TP was observed for the blend with higher nanotube loading. The highest thermal stability was found for TS/TP (5.0 wt%)/MWCNTs (0.5 wt%), due to a synergistic barrier effect of both TP and the nanofiller. Moreover, this nanocomposite displayed the best mechanical properties, with an optimal combination of stiffness, strength and toughness. However, poorer performance was found for TS/TP (5.0 wt%)/MWCNTs (1.0 wt%) due to the less effective reinforcement of the agglomerated nanotubes and the coalescence of the TP particles into large areas. Therefore, finely tuned morphologies and properties can be obtained by adjusting the nanotube content in the TS/TP blends, leading to high-performance hybrid nanocomposites suitable for structural and high-temperature applications.

  20. In vivo implant fixation of carbon fiber-reinforced PEEK hip prostheses in an ovine model.

    PubMed

    Nakahara, Ichiro; Takao, Masaki; Bandoh, Shunichi; Bertollo, Nicky; Walsh, William R; Sugano, Nobuhiko

    2013-03-01

    Carbon fiber-reinforced polyetheretherketone (CFR/PEEK) is theoretically suitable as a material for use in hip prostheses, offering excellent biocompatibility, mechanical properties, and the absence of metal ions. To evaluate in vivo fixation methods of CFR/PEEK hip prostheses in bone, we examined radiographic and histological results for cementless or cemented CFR/PEEK hip prostheses in an ovine model with implantation up to 52 weeks. CFR/PEEK cups and stems with rough-textured surfaces plus hydroxyapatite (HA) coatings for cementless fixation and CFR/PEEK cups and stems without HA coating for cement fixation were manufactured based on ovine computed tomography (CT) data. Unilateral total hip arthroplasty was performed using cementless or cemented CFR/PEEK hip prostheses. Five cementless cups and stems and six cemented cups and stems were evaluated. On the femoral side, all cementless stems demonstrated bony ongrowth fixation and all cemented stems demonstrated stable fixation without any gaps at both the bone-cement and cement-stem interfaces. All cementless cases and four of the six cemented cases showed minimal stress shielding. On the acetabular side, two of the five cementless cups demonstrated bony ongrowth fixation. Our results suggest that both cementless and cemented CFR/PEEK stems work well for fixation. Cup fixation may be difficult for both cementless and cemented types in this ovine model, but bone ongrowth fixation on the cup was first seen in two cementless cases. Cementless fixation can be achieved using HA-coated CFR/PEEK implants, even under load-bearing conditions.