Sample records for carbon fixation pathways

  1. Improving carbon fixation pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducat, DC; Silver, PA

    2012-08-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing and enhancing photosynthetic reactions in a species independent manner. Furthermore, the elucidation of alternative carbon-fixation routes distinct from the Calvin cycle raises possibilities that novel pathways and organisms can be utilized to fix atmosphericmore » carbon dioxide into useful materials.« less

  2. Design and analysis of synthetic carbon fixation pathways

    PubMed Central

    Bar-Even, Arren; Noor, Elad; Lewis, Nathan E.; Milo, Ron

    2010-01-01

    Carbon fixation is the process by which CO2 is incorporated into organic compounds. In modern agriculture in which water, light, and nutrients can be abundant, carbon fixation could become a significant growth-limiting factor. Hence, increasing the fixation rate is of major importance in the road toward sustainability in food and energy production. There have been recent attempts to improve the rate and specificity of Rubisco, the carboxylating enzyme operating in the Calvin–Benson cycle; however, they have achieved only limited success. Nature employs several alternative carbon fixation pathways, which prompted us to ask whether more efficient novel synthetic cycles could be devised. Using the entire repertoire of approximately 5,000 metabolic enzymes known to occur in nature, we computationally identified alternative carbon fixation pathways that combine existing metabolic building blocks from various organisms. We compared the natural and synthetic pathways based on physicochemical criteria that include kinetics, energetics, and topology. Our study suggests that some of the proposed synthetic pathways could have significant quantitative advantages over their natural counterparts, such as the overall kinetic rate. One such cycle, which is predicted to be two to three times faster than the Calvin–Benson cycle, employs the most effective carboxylating enzyme, phosphoenolpyruvate carboxylase, using the core of the naturally evolved C4 cycle. Although implementing such alternative cycles presents daunting challenges related to expression levels, activity, stability, localization, and regulation, we believe our findings suggest exciting avenues of exploration in the grand challenge of enhancing food and renewable fuel production via metabolic engineering and synthetic biology. PMID:20410460

  3. Augmenting the Calvin-Benson-Bassham cycle by a synthetic malyl-CoA-glycerate carbon fixation pathway.

    PubMed

    Yu, Hong; Li, Xiaoqian; Duchoud, Fabienne; Chuang, Derrick S; Liao, James C

    2018-05-22

    The Calvin-Benson-Bassham (CBB) cycle is presumably evolved for optimal synthesis of C3 sugars, but not for the production of C2 metabolite acetyl-CoA. The carbon loss in producing acetyl-CoA from decarboxylation of C3 sugar limits the maximum carbon yield of photosynthesis. Here we design a synthetic malyl-CoA-glycerate (MCG) pathway to augment the CBB cycle for efficient acetyl-CoA synthesis. This pathway converts a C3 metabolite to two acetyl-CoA by fixation of one additional CO 2 equivalent, or assimilates glyoxylate, a photorespiration intermediate, to produce acetyl-CoA without net carbon loss. We first functionally demonstrate the design of the MCG pathway in vitro and in Escherichia coli. We then implement the pathway in a photosynthetic organism Synechococcus elongates PCC7942, and show that it increases the intracellular acetyl-CoA pool and enhances bicarbonate assimilation by roughly 2-fold. This work provides a strategy to improve carbon fixation efficiency in photosynthetic organisms.

  4. A synthetic pathway for the fixation of carbon dioxide in vitro.

    PubMed

    Schwander, Thomas; Schada von Borzyskowski, Lennart; Burgener, Simon; Cortina, Niña Socorro; Erb, Tobias J

    2016-11-18

    Carbon dioxide (CO 2 ) is an important carbon feedstock for a future green economy. This requires the development of efficient strategies for its conversion into multicarbon compounds. We describe a synthetic cycle for the continuous fixation of CO 2 in vitro. The crotonyl-coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle is a reaction network of 17 enzymes that converts CO 2 into organic molecules at a rate of 5 nanomoles of CO 2 per minute per milligram of protein. The CETCH cycle was drafted by metabolic retrosynthesis, established with enzymes originating from nine different organisms of all three domains of life, and optimized in several rounds by enzyme engineering and metabolic proofreading. The CETCH cycle adds a seventh, synthetic alternative to the six naturally evolved CO 2 fixation pathways, thereby opening the way for in vitro and in vivo applications. Copyright © 2016, American Association for the Advancement of Science.

  5. The emergence and early evolution of biological carbon-fixation.

    PubMed

    Braakman, Rogier; Smith, Eric

    2012-01-01

    The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology, making it more

  6. An Ancient Pathway Combining Carbon Dioxide Fixation with the Generation and Utilization of a Sodium Ion Gradient for ATP Synthesis

    PubMed Central

    Poehlein, Anja; Schmidt, Silke; Kaster, Anne-Kristin; Goenrich, Meike; Vollmers, John; Thürmer, Andrea; Bertsch, Johannes; Schuchmann, Kai; Voigt, Birgit; Hecker, Michael; Daniel, Rolf; Thauer, Rudolf K.; Gottschalk, Gerhard; Müller, Volker

    2012-01-01

    Synthesis of acetate from carbon dioxide and molecular hydrogen is considered to be the first carbon assimilation pathway on earth. It combines carbon dioxide fixation into acetyl-CoA with the production of ATP via an energized cell membrane. How the pathway is coupled with the net synthesis of ATP has been an enigma. The anaerobic, acetogenic bacterium Acetobacterium woodii uses an ancient version of this pathway without cytochromes and quinones. It generates a sodium ion potential across the cell membrane by the sodium-motive ferredoxin:NAD oxidoreductase (Rnf). The genome sequence of A. woodii solves the enigma: it uncovers Rnf as the only ion-motive enzyme coupled to the pathway and unravels a metabolism designed to produce reduced ferredoxin and overcome energetic barriers by virtue of electron-bifurcating, soluble enzymes. PMID:22479398

  7. Acetogenesis and the Wood-Ljungdahl Pathway of CO2 Fixation

    PubMed Central

    Ragsdale, Stephen W.; Pierce, Elizabeth

    2008-01-01

    I. Summary Conceptually, the simplest way to synthesize an organic molecule is to construct it one carbon at a time. The Wood-Ljungdahl pathway of CO2 fixation involves this type of stepwise process. The biochemical events that underlie the condensation of two one-carbon units to form the two-carbon compound, acetate, have intrigued chemists, biochemists, and microbiologists for many decades. We begin this review with a description of the biology of acetogenesis. Then, we provide a short history of the important discoveries that have led to the identification of the key components and steps of this usual mechanism of CO and CO2 fixation. In this historical perspective, we have included reflections that hopefully will sketch the landscape of the controversies, hypotheses, and opinions that led to the key experiments and discoveries. We then describe the properties of the genes and enzymes involved in the pathway and conclude with a section describing some major questions that remain unanswered. PMID:18801467

  8. Conversion of 4-Hydroxybutyrate to Acetyl Coenzyme A and Its Anapleurosis in the Metallosphaera sedula 3-Hydroxypropionate/4-Hydroxybutyrate Carbon Fixation Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkins, AB; Adams, MWW; Kelly, RM

    2014-03-25

    The extremely thermoacidophilic archaeon Metallosphaera sedula (optimum growth temperature, 73 degrees C, pH 2.0) grows chemolithoautotrophically on metal sulfides or molecular hydrogen by employing the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) carbon fixation cycle. This cycle adds two CO2 molecules to acetyl coenzyme A (acetyl-CoA) to generate 4HB, which is then rearranged and cleaved to form two acetyl-CoA molecules. Previous metabolic flux analysis showed that two-thirds of central carbon precursor molecules are derived from succinyl-CoA, which is oxidized to malate and oxaloacetate. The remaining one-third is apparently derived from acetyl-CoA. As such, the steps beyond succinyl-CoA are essential for completing the carbon fixation cyclemore » and for anapleurosis of acetyl-CoA. Here, the final four enzymes of the 3HP/4HB cycle, 4-hydroxybutyrate-CoA ligase (AMP forming) (Msed_0406), 4-hydroxybutyryl-CoA dehydratase (Msed_1321), crotonyl-CoA hydratase/(S)-3-hydroxybutyryl-CoA dehydrogenase (Msed_0399), and acetoacetyl-CoA beta-ketothiolase (Msed_0656), were produced recombinantly in Escherichia coli, combined in vitro, and shown to convert 4HB to acetyl-CoA. Metabolic pathways connecting CO2 fixation and central metabolism were examined using a gas-intensive bioreactor system in which M. sedula was grown under autotrophic (CO2-limited) and heterotrophic conditions. Transcriptomic analysis revealed the importance of the 3HP/4HB pathway in supplying acetyl-CoA to anabolic pathways generating intermediates in M. sedula metabolism. The results indicated that flux between the succinate and acetyl-CoA branches in the 3HP/4HB pathway is governed by 4-hydroxybutyrate-CoA ligase, possibly regulated posttranslationally by the protein acetyltransferase (Pat)/Sir2-dependent system. Taken together, this work confirms the final four steps of the 3HP/4HB pathway, thereby providing the framework for examining connections between CO2 fixation and central metabolism in M

  9. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments.

    PubMed

    Dyksma, Stefan; Bischof, Kerstin; Fuchs, Bernhard M; Hoffmann, Katy; Meier, Dimitri; Meyerdierks, Anke; Pjevac, Petra; Probandt, David; Richter, Michael; Stepanauskas, Ramunas; Mußmann, Marc

    2016-08-01

    Marine sediments are the largest carbon sink on earth. Nearly half of dark carbon fixation in the oceans occurs in coastal sediments, but the microorganisms responsible are largely unknown. By integrating the 16S rRNA approach, single-cell genomics, metagenomics and transcriptomics with (14)C-carbon assimilation experiments, we show that uncultured Gammaproteobacteria account for 70-86% of dark carbon fixation in coastal sediments. First, we surveyed the bacterial 16S rRNA gene diversity of 13 tidal and sublittoral sediments across Europe and Australia to identify ubiquitous core groups of Gammaproteobacteria mainly affiliating with sulfur-oxidizing bacteria. These also accounted for a substantial fraction of the microbial community in anoxic, 490-cm-deep subsurface sediments. We then quantified dark carbon fixation by scintillography of specific microbial populations extracted and flow-sorted from sediments that were short-term incubated with (14)C-bicarbonate. We identified three distinct gammaproteobacterial clades covering diversity ranges on family to order level (the Acidiferrobacter, JTB255 and SSr clades) that made up >50% of dark carbon fixation in a tidal sediment. Consistent with these activity measurements, environmental transcripts of sulfur oxidation and carbon fixation genes mainly affiliated with those of sulfur-oxidizing Gammaproteobacteria. The co-localization of key genes of sulfur and hydrogen oxidation pathways and their expression in genomes of uncultured Gammaproteobacteria illustrates an unknown metabolic plasticity for sulfur oxidizers in marine sediments. Given their global distribution and high abundance, we propose that a stable assemblage of metabolically flexible Gammaproteobacteria drives important parts of marine carbon and sulfur cycles.

  10. Transcriptome and key genes expression related to carbon fixation pathways in Chlorella PY-ZU1 cells and their growth under high concentrations of CO2.

    PubMed

    Huang, Yun; Cheng, Jun; Lu, Hongxiang; He, Yong; Zhou, Junhu; Cen, Kefa

    2017-01-01

    The biomass yield of Chlorella PY-ZU1 drastically increased when cultivated under high CO 2 condition compared with that cultivated under air condition. However, less attention has been given to the microalgae photosynthetic mechanisms response to different CO 2 concentrations. The genetic reasons for the higher growth rate, CO 2 fixation rate, and photosynthetic efficiency of microalgal cells under higher CO 2 concentration have not been clearly defined yet. In this study, the Illumina sequencing and de novo transcriptome assembly of Chlorella PY-ZU1 cells cultivated under 15% CO 2 were performed and compared with those of cells grown under air. It was found that carbonic anhydrase (CAs, enzyme for interconversion of bicarbonate to CO 2 ) dramatically decreased to near 0 in 15% CO 2 -grown cells, which indicated that CO 2 molecules directly permeated into cells under high CO 2 stress without CO 2 -concentrating mechanism. Extrapolating from the growth conditions and quantitative Real-Time PCR of CCM-related genes, the K m (CO 2 ) (the minimum intracellular CO 2 concentration that rubisco required) of Chlorella PY-ZU1 might be in the range of 80-192 μM. More adenosine triphosphates was saved for carbon fixation-related pathways. The transcript abundance of rubisco (the most important enzyme of CO 2 fixation reaction) was 16.3 times higher in 15% CO 2 -grown cells than that under air. Besides, the transcript abundances of most key genes involved in carbon fixation pathways were also enhanced in 15% CO 2 -grown cells. Carbon fixation and nitrogen metabolism are the two most important metabolisms in the photosynthetic cells. These genes related to the two most metabolisms with significantly differential expressions were beneficial for microalgal growth (2.85 g L -1 ) under 15% CO 2 concentration. Considering the micro and macro growth phenomena of Chlorella PY-ZU1 under different concentrations of CO 2 (0.04-60%), CO 2 transport pathways responses to different CO

  11. Carbon fixation in oceanic crust: Does it happen, and is it important?

    NASA Astrophysics Data System (ADS)

    Orcutt, B.; Sylvan, J. B.; Rogers, D.; Lee, R.; Girguis, P. R.; Carr, S. A.; Jungbluth, S.; Rappe, M. S.

    2014-12-01

    The carbon sources supporting a deep biosphere in igneous oceanic crust, and furthermore the balance of heterotrophy and autotrophy, are poorly understood. When the large reservoir size of oceanic crust is considered, carbon transformations in this environment have the potential to significantly impact the global carbon cycle. Furthermore, igneous oceanic crust is the most massive potential habitat for life on Earth, so understanding the carbon sources for this potential biosphere are important for understanding life on Earth. Geochemical evidence suggests that warm and anoxic upper basement is net heterotrophic, but the balance of these processes in cooler and potentially oxic oceanic crust are poorly known. Here, we present data from stable carbon isotope tracer incubations to examine carbon fixation in basalts collected from the Loihi Seamount, the Juan de Fuca Ridge, and the western flank of the Mid-Atlantic Ridge, to provide a first order constraint on the rates of carbon fixation on basalts. These data will be compared to recently available assessments of carbon cycling rates in fluids from upper basement to synthesize our current state of understanding of the potential for carbon fixation and respiration in oceanic crust. Moreover, we will present new genomic data of carbon fixation genes observed in the basalt enrichments as well as from the subsurface of the Juan de Fuca Ridge flank, enabling identification of the microbes and metabolic pathways involved in carbon fixation in these systems.

  12. Abundance and Distribution of Diagnostic Carbon Fixation Genes in a Deep-Sea Hydrothermal Gradient Ecosystem

    NASA Astrophysics Data System (ADS)

    Blumenfeld, H. N.; Kelley, D. S.; Girguis, P. R.; Schrenk, M. O.

    2010-12-01

    The walls of deep-sea hydrothermal vent chimneys sustain steep thermal and chemical gradients resulting from the mixing of hot (350°C+) hydrothermal fluids with cold, oxygenated seawater. The chemical disequilibrium generated from this process has the potential to drive numerous chemolithoautotrophic metabolisms, many of which have been demonstrated to be operative in microbial pure cultures. In addition to the well-known Calvin Cycle, at least five additional pathways have been discovered including the Reverse Tricarboxylic Acid Cycle (rTCA), the Reductive Acetyl-CoA pathway, and the 3-hydroxyproprionate pathway. Most of the newly discovered pathways have been found in thermophilic and hyperthermophilic Bacteria and Archaea, which are the well represented in microbial diversity studies of hydrothermal chimney walls. However, to date, little is known about the environmental controls that impact various carbon fixation pathways. The overlap of limited microbial diversity with distinct habitat conditions in hydrothermal chimney walls provides an ideal setting to explore these relationships. Hydrothermal chimney walls from multiple structures recovered from the Juan de Fuca Ridge in the northeastern Pacific were sub-sampled and analyzed using PCR-based assays. Earlier work showed elevated microbial abundances in the outer portions of mature chimney walls, with varying ratios of Archaea to Bacteria from the outer to inner portions of the chimneys. Common phylotypes identified in these regions included Epsilonproteobacteria, Gammaproteobacteria, and Desulfurococcales. Total genomic DNA was extracted from mineralogically distinct niches within these structures and queried for genes coding key regulatory enzymes for each of the well studied carbon fixation pathways. Preliminary results show the occurrence of genes representing rTCA cycle (aclB) and methyl coenzyme A reductase (mcrA) - a proxy for the Reductive Acetyl-CoA Pathway within interior portion of mature

  13. Genomic evidence for the Wood-Ljungdahl pathway for carbon fixation in warm basaltic ocean crust

    NASA Astrophysics Data System (ADS)

    Smith, A. R.; Fisk, M. R.; Mueller, R.; Colwell, F. S.; Mason, O. U.; Popa, R.

    2016-12-01

    Microbial life in the deep suboceanic aquifer can harness geochemical energy resulting from water-rock reactions and contribute to carbon cycling in the ocean via primary production, or chemosynthesis. Iron-bearing minerals such as olivine in oceanic crust can produce molecular hydrogen, small molecular weight hydrocarbons, and hydrogen sulfide as they react with seawater. Although this generally occurs in serpentinizing systems at very high temperatures deep in the subsurface, it has also been hypothesized to drive the subseafloor microbial ecosystems present in shallower basaltic aquifers. We present genome-based evidence for chemolithoautotrophic microbes present on the surface of olivine incubated in Juan de Fuca Ridge basaltic ocean crust for a 4-year period. These metagenome-derived genomes show dominant taxa capable of using both branches of the Wood-Ljungdahl pathway for carbon fixation and energy generation. This pathway uses molecular hydrogen potentially derived from the olivine surface as it reacts with seawater and CO2 which is inherent to seawater. These taxa were not reported from aquifer fluid samples, but have been found only in association with mineral surfaces in this study location. Most taxa in this simple community are distant relatives of cultured taxa; therefore this genome information is crucial to understanding how the subseafloor aquifer community is structured, how it obtains energy, how it cycles carbon, and gives us keys to help cultivate these organisms in the laboratory. Our findings also support the Subsurface Lithoautotrophic Microbial Ecosystem (SLiME) hypothesis and have implications for understanding life on early Earth and the potential for life in the Martian subsurface.

  14. A carbon sink pathway increases carbon productivity in cyanobacteria.

    PubMed

    Oliver, John W K; Atsumi, Shota

    2015-05-01

    The burning of fossil reserves, and subsequent release of carbon into the atmosphere is depleting the supply of carbon-based molecules used for synthetic materials including plastics, oils, medicines, and glues. To provide for future society, innovations are needed for the conversion of waste carbon (CO2) into organic carbon useful for materials. Chemical production directly from photosynthesis is a nascent technology, with great promise for capture of CO2 using sunlight. To improve low yields, it has been proposed that photosynthetic capacity can be increased by a relaxation of bottlenecks inherent to growth. The limits of carbon partitioning away from growth within the cell and the effect of partitioning on carbon fixation are not well known. Here we show that expressing genes in a pathway between carbon fixation and pyruvate increases partitioning to 2,3-butanediol (23BD) and leads to a 1.8-fold increase in total carbon yield in the cyanobacterium Synechococcus elongatus PCC 7942. Specific 2,3-butanediol production increases 2.4-fold. As partitioning increases beyond 30%, it leads to a steep decline in total carbon yield. The data suggests a local maximum for carbon partitioning from the Calvin Benson cycle that is scalable with light intensity. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Prokaryotic Responses to Ammonium and Organic Carbon Reveal Alternative CO2 Fixation Pathways and Importance of Alkaline Phosphatase in the Mesopelagic North Atlantic

    PubMed Central

    Baltar, Federico; Lundin, Daniel; Palovaara, Joakim; Lekunberri, Itziar; Reinthaler, Thomas; Herndl, Gerhard J.; Pinhassi, Jarone

    2016-01-01

    To decipher the response of mesopelagic prokaryotic communities to input of nutrients, we tracked changes in prokaryotic abundance, extracellular enzymatic activities, heterotrophic production, dark dissolved inorganic carbon (DIC) fixation, community composition (16S rRNA sequencing) and community gene expression (metatranscriptomics) in 3 microcosm experiments with water from the mesopelagic North Atlantic. Responses in 3 different treatments amended with thiosulfate, ammonium or organic matter (i.e., pyruvate plus acetate) were compared to unamended controls. The strongest stimulation was found in the organic matter enrichments, where all measured rates increased >10-fold. Strikingly, in the organic matter treatment, the dark DIC fixation rates—assumed to be related to autotrophic metabolisms—were equally stimulated as all the other heterotrophic-related parameters. This increase in DIC fixation rates was paralleled by an up-regulation of genes involved in DIC assimilation via anaplerotic pathways. Alkaline phosphatase was the metabolic rate most strongly stimulated and its activity seemed to be related to cross-activation by nonpartner histidine kinases, and/or the activation of genes involved in the regulation of elemental balance during catabolic processes. These findings suggest that episodic events such as strong sedimentation of organic matter into the mesopelagic might trigger rapid increases of originally rare members of the prokaryotic community, enhancing heterotrophic and autotrophic carbon uptake rates, ultimately affecting carbon cycling. Our experiments highlight a number of fairly unstudied microbial processes of potential importance in mesopelagic waters that require future attention. PMID:27818655

  16. De Novo Transcriptome Analysis of an Aerial Microalga Trentepohlia jolithus: Pathway Description and Gene Discovery for Carbon Fixation and Carotenoid Biosynthesis

    PubMed Central

    Li, Qianqian; Liu, Jianguo; Zhang, Litao; Liu, Qian

    2014-01-01

    Background Algae in the order Trentepohliales have a broad geographic distribution and are generally characterized by the presence of abundant β-carotene. The many monographs published to date have mainly focused on their morphology, taxonomy, phylogeny, distribution and reproduction; molecular studies of this order are still rare. High-throughput RNA sequencing (RNA-Seq) technology provides a powerful and efficient method for transcript analysis and gene discovery in Trentepohlia jolithus. Methods/Principal Findings Illumina HiSeq 2000 sequencing generated 55,007,830 Illumina PE raw reads, which were assembled into 41,328 assembled unigenes. Based on NR annotation, 53.28% of the unigenes (22,018) could be assigned to gene ontology classes with 54 subcategories and 161,451 functional terms. A total of 26,217 (63.44%) assembled unigenes were mapped to 128 KEGG pathways. Furthermore, a set of 5,798 SSRs in 5,206 unigenes and 131,478 putative SNPs were identified. Moreover, the fact that all of the C4 photosynthesis genes exist in T. jolithus suggests a complex carbon acquisition and fixation system. Similarities and differences between T. jolithus and other algae in carotenoid biosynthesis are also described in depth. Conclusions/Significance This is the first broad transcriptome survey for T. jolithus, increasing the amount of molecular data available for the class Ulvophyceae. As well as providing resources for functional genomics studies, the functional genes and putative pathways identified here will contribute to a better understanding of carbon fixation and fatty acid and carotenoid biosynthesis in T. jolithus. PMID:25254555

  17. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation

    NASA Astrophysics Data System (ADS)

    Pachiadaki, Maria G.; Sintes, Eva; Bergauer, Kristin; Brown, Julia M.; Record, Nicholas R.; Swan, Brandon K.; Mathyer, Mary Elizabeth; Hallam, Steven J.; Lopez-Garcia, Purificacion; Takaki, Yoshihiro; Nunoura, Takuro; Woyke, Tanja; Herndl, Gerhard J.; Stepanauskas, Ramunas

    2017-11-01

    Carbon fixation by chemoautotrophic microorganisms in the dark ocean has a major impact on global carbon cycling and ecological relationships in the ocean’s interior, but the relevant taxa and energy sources remain enigmatic. We show evidence that nitrite-oxidizing bacteria affiliated with the Nitrospinae phylum are important in dark ocean chemoautotrophy. Single-cell genomics and community metagenomics revealed that Nitrospinae are the most abundant and globally distributed nitrite-oxidizing bacteria in the ocean. Metaproteomics and metatranscriptomics analyses suggest that nitrite oxidation is the main pathway of energy production in Nitrospinae. Microautoradiography, linked with catalyzed reporter deposition fluorescence in situ hybridization, indicated that Nitrospinae fix 15 to 45% of inorganic carbon in the mesopelagic western North Atlantic. Nitrite oxidation may have a greater impact on the carbon cycle than previously assumed.

  18. CARBON DIOXIDE FIXATION.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  19. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation.

    PubMed

    Pachiadaki, Maria G; Sintes, Eva; Bergauer, Kristin; Brown, Julia M; Record, Nicholas R; Swan, Brandon K; Mathyer, Mary Elizabeth; Hallam, Steven J; Lopez-Garcia, Purificacion; Takaki, Yoshihiro; Nunoura, Takuro; Woyke, Tanja; Herndl, Gerhard J; Stepanauskas, Ramunas

    2017-11-24

    Carbon fixation by chemoautotrophic microorganisms in the dark ocean has a major impact on global carbon cycling and ecological relationships in the ocean's interior, but the relevant taxa and energy sources remain enigmatic. We show evidence that nitrite-oxidizing bacteria affiliated with the Nitrospinae phylum are important in dark ocean chemoautotrophy. Single-cell genomics and community metagenomics revealed that Nitrospinae are the most abundant and globally distributed nitrite-oxidizing bacteria in the ocean. Metaproteomics and metatranscriptomics analyses suggest that nitrite oxidation is the main pathway of energy production in Nitrospinae. Microautoradiography, linked with catalyzed reporter deposition fluorescence in situ hybridization, indicated that Nitrospinae fix 15 to 45% of inorganic carbon in the mesopelagic western North Atlantic. Nitrite oxidation may have a greater impact on the carbon cycle than previously assumed. Copyright © 2017, American Association for the Advancement of Science.

  20. A "footprint" of plant carbon fixation cycle functions during the development of a heterotrophic fungus.

    PubMed

    Lyu, Xueliang; Shen, Cuicui; Xie, Jiatao; Fu, Yanping; Jiang, Daohong; Hu, Zijin; Tang, Lihua; Tang, Liguang; Ding, Feng; Li, Kunfei; Wu, Song; Hu, Yanping; Luo, Lilian; Li, Yuanhao; Wang, Qihua; Li, Guoqing; Cheng, Jiasen

    2015-08-11

    Carbon fixation pathway of plants (CFPP) in photosynthesis converts solar energy to biomass, bio-products and biofuel. Intriguingly, a large number of heterotrophic fungi also possess enzymes functionally associated with CFPP, raising the questions about their roles in fungal development and in evolution. Here, we report on the presence of 17 CFPP associated enzymes (ten in Calvin-Benson-Basham reductive pentose phosphate pathway and seven in C4-dicarboxylic acid cycle) in the genome of Sclerotinia sclerotiorum, a heterotrophic phytopathogenic fungus, and only two unique enzymes: ribulose-1, 5-bisphosphate carboxylase-oxygenase (Rubisco) and phosphoribulokinase (PRK) were absent. This data suggested an incomplete CFPP-like pathway (CLP) in fungi. Functional profile analysis demonstrated that the activity of the incomplete CLP was dramatically regulated during different developmental stages of S. sclerotiorum. Subsequent experiments confirmed that many of them were essential to the virulence and/or sclerotial formation. Most of the CLP associated genes are conserved in fungi. Phylogenetic analysis showed that many of them have undergone gene duplication, gene acquisition or loss and functional diversification in evolutionary history. These findings showed an evolutionary links in the carbon fixation processes of autotrophs and heterotrophs and implicated the functions of related genes were in course of continuous change in different organisms in evolution.

  1. Carbon Dioxide Fixation in Isolated Kalanchoe Chloroplasts 1

    PubMed Central

    Levi, Carolyn; Gibbs, Martin

    1975-01-01

    Chloroplasts isolated from Kalanchoe diagremontiana leaves were capable of photosynthesizing at a rate of 5.4 μmoles of CO2 per milligram of chlorophyll per hour. The dark rate of fixation was about 1% of the light rate. A high photosynthetic rate was associated with low starch content of the leaves. Ribose 5-phosphate, fructose 1,6-diphosphate, and dithiothreitol stimulated fixation, whereas phosphoenolpyruvate and azide were inhibitors. The products of CO2 fixation were primarily those of the photosynthetic carbon reduction cycle. PMID:16659249

  2. A RuBisCO-mediated carbon metabolic pathway in methanogenic archaea

    PubMed Central

    Kono, Takunari; Mehrotra, Sandhya; Endo, Chikako; Kizu, Natsuko; Matusda, Mami; Kimura, Hiroyuki; Mizohata, Eiichi; Inoue, Tsuyoshi; Hasunuma, Tomohisa; Yokota, Akiho; Matsumura, Hiroyoshi; Ashida, Hiroki

    2017-01-01

    Two enzymes are considered to be unique to the photosynthetic Calvin–Benson cycle: ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), responsible for CO2 fixation, and phosphoribulokinase (PRK). Some archaea possess bona fide RuBisCOs, despite not being photosynthetic organisms, but are thought to lack PRK. Here we demonstrate the existence in methanogenic archaea of a carbon metabolic pathway involving RuBisCO and PRK, which we term ‘reductive hexulose-phosphate' (RHP) pathway. These archaea possess both RuBisCO and a catalytically active PRK whose crystal structure resembles that of photosynthetic bacterial PRK. Capillary electrophoresis-mass spectrometric analysis of metabolites reveals that the RHP pathway, which differs from the Calvin–Benson cycle only in a few steps, is active in vivo. Our work highlights evolutionary and functional links between RuBisCO-mediated carbon metabolic pathways in methanogenic archaea and photosynthetic organisms. Whether the RHP pathway allows for autotrophy (that is, growth exclusively with CO2 as carbon source) remains unknown. PMID:28082747

  3. Model of carbon fixation in microbial mats from 3,500 Myr ago to the present

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Mancinelli, Rocco L.

    1990-01-01

    Using modern microbial mats as analogs for ancient stromatolites, it is shown that the rate of carbon fixation is higher at the greater levels of atmospheric CO2 that were probably present in the past. It is suggested that carbon fixation in microbial mats was not carbon-limited during the early Precambrian, but became carbon-limited as the supply of inorganic carbon decreased. Carbon limitation led to a lower rate of carbon fixation, especially towards the end of the Precambrian.

  4. Synthetic biology for CO2 fixation.

    PubMed

    Gong, Fuyu; Cai, Zhen; Li, Yin

    2016-11-01

    Recycling of carbon dioxide (CO 2 ) into fuels and chemicals is a potential approach to reduce CO 2 emission and fossil-fuel consumption. Autotrophic microbes can utilize energy from light, hydrogen, or sulfur to assimilate atmospheric CO 2 into organic compounds at ambient temperature and pressure. This provides a feasible way for biological production of fuels and chemicals from CO 2 under normal conditions. Recently great progress has been made in this research area, and dozens of CO 2 -derived fuels and chemicals have been reported to be synthesized by autotrophic microbes. This is accompanied by investigations into natural CO 2 -fixation pathways and the rapid development of new technologies in synthetic biology. This review first summarizes the six natural CO 2 -fixation pathways reported to date, followed by an overview of recent progress in the design and engineering of CO 2 -fixation pathways as well as energy supply patterns using the concept and tools of synthetic biology. Finally, we will discuss future prospects in biological fixation of CO 2 .

  5. Evidence of carbon fixation pathway in a bacterium from candidate phylum SBR1093 revealed with genomic analysis.

    PubMed

    Wang, Zhiping; Guo, Feng; Liu, Lili; Zhang, Tong

    2014-01-01

    Autotrophic CO2 fixation is the most important biotransformation process in the biosphere. Research focusing on the diversity and distribution of relevant autotrophs is significant to our comprehension of the biosphere. In this study, a draft genome of a bacterium from candidate phylum SBR1093 was reconstructed with the metagenome of an industrial activated sludge. Based on comparative genomics, this autotrophy may occur via a newly discovered carbon fixation path, the hydroxypropionate-hydroxybutyrate (HPHB) cycle, which was demonstrated in a previous work to be uniquely possessed by some genera from Archaea. This bacterium possesses all of the thirteen enzymes required for the HPHB cycle; these enzymes share 30∼50% identity with those in the autotrophic species of Archaea that undergo the HPHB cycle and 30∼80% identity with the corresponding enzymes of the mixotrophic species within Bradyrhizobiaceae. Thus, this bacterium might have an autotrophic growth mode in certain conditions. A phylogenetic analysis based on the 16S rRNA gene reveals that the phylotypes within candidate phylum SBR1093 are primarily clustered into 5 clades with a shallow branching pattern. This bacterium is clustered with phylotypes from organically contaminated environments, implying a demand for organics in heterotrophic metabolism. Considering the types of regulators, such as FnR, Fur, and ArsR, this bacterium might be a facultative aerobic mixotroph with potential multi-antibiotic and heavy metal resistances. This is the first report on Bacteria that may perform potential carbon fixation via the HPHB cycle, thus may expand our knowledge of the distribution and importance of the HPHB cycle in the biosphere.

  6. High CO2 subsurface environment enriches for novel microbial lineages capable of autotrophic carbon fixation

    NASA Astrophysics Data System (ADS)

    Probst, A. J.; Jerett, J.; Castelle, C. J.; Thomas, B. C.; Sharon, I.; Brown, C. T.; Anantharaman, K.; Emerson, J. B.; Hernsdorf, A. W.; Amano, Y.; Suzuki, Y.; Tringe, S. G.; Woyke, T.; Banfield, J. F.

    2015-12-01

    Subsurface environments span the planet but remain little understood from the perspective of the capacity of the resident organisms to fix CO2. Here we investigated the autotrophic capacity of microbial communities in range of a high-CO2 subsurface environments via analysis of 250 near-complete microbial genomes (151 of them from distinct species) that represent the most abundant organisms over a subsurface depth transect. More than one third of the genomes belonged to the so-called candidate phyla radiation (CPR), which have limited metabolic capabilities. Approximately 30% of the community members are autotrophs that comprise 70% of the microbiome with metabolism likely supported by sulfur and nitrogen respiration. Of the carbon fixation pathways, the Calvin Benson Basham Cycle was most common, but the Wood-Ljungdhal pathway was present in the greatest phylogenetic diversity of organisms. Unexpectedly, one organism from a novel phylum sibling to the CPR is predicted to fix carbon by the reverse TCA cycle. The genome of the most abundant organism, an archaeon designated "Candidatus Altiarchaeum hamiconexum", was also found in subsurface samples from other continents including Europe and Asia. The archaeon was proven to be a carbon fixer using a novel reductive acetyl-CoA pathway. These results provide evidence that carbon dioxide is the major carbon source in these environments and suggest that autotrophy in the subsurface represents a substantial carbon dioxide sink affecting the global carbon cycle.

  7. A Retrospective Case Series of Carbon Fiber Plate Fixation of Ankle Fractures.

    PubMed

    Pinter, Zachariah W; Smith, Kenneth S; Hudson, Parke W; Jones, Caleb W; Hadden, Ryan; Elattar, Osama; Shah, Ashish

    2018-06-01

    Distal fibula fractures represent a common problem in orthopaedics. When fibula fractures require operative fixation, implants are typically made from stainless steel or titanium alloys. Carbon fiber implants have been used elsewhere in orthopaedics for years, and their advantages include a modulus of elasticity similar to that of bone, biocompatibility, increased fatigue strength, and radiolucency. This study hypothesized that carbon fiber plates would provide similar outcomes for ankle fracture fixation as titanium and steel implants. A retrospective chart review was performed of 30 patients who underwent fibular open reduction and internal fixation (ORIF). The main outcomes assessed were postoperative union rate and complication rate. The nonunion or failure rate for carbon fiber plates was 4% (1/24), and the union rate was 96% (23/24). The mean follow-up time was 20 months, and the complication rate was 8% (2/24). Carbon fiber plates are a viable alternative to metal plates in ankle fracture fixation, demonstrating union and complication rates comparable to those of traditional fixation techniques. Their theoretical advantages and similar cost make them an attractive implant choice for ORIF of the fibula. However, further studies are needed for extended follow-up and inclusion of larger patient cohorts. Level IV: Retrospective Case series.

  8. Phytoplankton plasticity drives large variability in carbon fixation efficiency

    NASA Astrophysics Data System (ADS)

    Ayata, Sakina-Dorothée.; Lévy, Marina; Aumont, Olivier; Resplandy, Laure; Tagliabue, Alessandro; Sciandra, Antoine; Bernard, Olivier

    2014-12-01

    Phytoplankton C:N stoichiometry is highly flexible due to physiological plasticity, which could lead to high variations in carbon fixation efficiency (carbon consumption relative to nitrogen). However, the magnitude, as well as the spatial and temporal scales of variability, remains poorly constrained. We used a high-resolution biogeochemical model resolving various scales from small to high, spatially and temporally, in order to quantify and better understand this variability. We find that phytoplankton C:N ratio is highly variable at all spatial and temporal scales (5-12 molC/molN), from mesoscale to regional scale, and is mainly driven by nitrogen supply. Carbon fixation efficiency varies accordingly at all scales (±30%), with higher values under oligotrophic conditions and lower values under eutrophic conditions. Hence, phytoplankton plasticity may act as a buffer by attenuating carbon sequestration variability. Our results have implications for in situ estimations of C:N ratios and for future predictions under high CO2 world.

  9. A model for diurnal patterns of carbon fixation in a Precambrian microbial mat based on a modern analog

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.

    1991-01-01

    Microbial mat communities are one of the first and most prevalent biological communities known from the Precambrian fossil record. These fossil mat communities are found as laminated sedimentary rock structures called stromatolites. Using a modern microbial mat as an analog for Precambrian stromatolites, a study of carbon fixation during a diurnal cycle under ambient conditions was undertaken. The rate of carbon fixation depends primarily on the availability of light (consistent with photosynthetic carbon fixation) and inorganic carbon, and not nitrogen or phosphorus. Atmospheric PCO2 is thought to have decreased from 10 bars at 4 Ga (10(9) years before present) to approximately 10(-4) bars today, implying a change in the availability of inorganic carbon for carbon fixation. Experimental manipulation of levels of inorganic carbon to levels that may have been available to Precambrian mat communities resulted in increased levels of carbon fixation during daylight hours. Combining these data with models of daylength during the Precambrian, models are derived for diurnal patterns of photosynthetic carbon fixation in a Precambrian microbial mat community. The models suggest that, even in the face of shorter daylengths during the Precambrian, total daily carbon fixation has been declining over geological time, with most of the decrease having occurred during the Precambrian.

  10. Identification of an algal carbon fixation-enhancing factor extracted from Paramecium bursaria.

    PubMed

    Kato, Yutaka; Imamura, Nobutaka

    2011-01-01

    The green ciliate Paramecium bursaria contains several hundred symbiotic Chlorella species. We previously reported that symbiotic algal carbon fixation is enhanced by P. bursaria extracts and that the enhancing factor is a heat-stable, low-molecular-weight, water-soluble compound. To identify the factor, further experiments were carried out. The enhancing activity remained even when organic compounds in the extract were completely combusted at 700 degrees C, suggesting that the factor is an inorganic substance. Measurement of the major cations, K+, Ca2+, and Mg2+, by an electrode and titration of the extract resulted in concentrations of 0.90 mM, 0.55 mM, and 0.21 mM, respectively. To evaluate the effect of these cations, a mixture of the cations at the measured concentrations was prepared, and symbiotic algal carbon fixation was measured in the solution. The results demonstrated that the fixation was enhanced to the same extent as with the P. bursaria extract, and thus this mixture of K+, Ca2+, and Mg2+ was concluded to be the carbon fixation-enhancing factor. There was no effect of the cation mixture on free-living C. vulgaris. Comparison of the cation concentrations of nonsymbiotic and symbiotic Paramecium extracts revealed that the concentrations of K+ and Mg2+ in nonsymbiotic Paramecium extracts were too low to enhance symbiotic algal carbon fixation, suggesting that symbiotic P. bursaria provide suitable cation conditions for photosynthesis to its symbiotic Chlorella.

  11. Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feist, AM; Nagarajan, H; Rotaru, AE

    2014-04-24

    Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically withmore » formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species. Author Summary The ability of microorganisms to exchange electrons directly with their environment has large implications for our knowledge of industrial and environmental processes. For decades, it has been known that microbes can use electrodes as electron acceptors in microbial fuel cell settings. Geobacter metallireducens has been one of the model organisms for characterizing microbe-electrode interactions as well as environmental processes such as bioremediation. Here, we significantly expand the knowledge of metabolism and energetics of this model organism by employing constraint-based metabolic modeling. Through this analysis, we build the metabolic pathways necessary for carbon fixation, a desirable property for industrial chemical

  12. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils.

    PubMed

    Long, Xi-En; Yao, Huaiying; Wang, Juan; Huang, Ying; Singh, Brajesh K; Zhu, Yong-Guan

    2015-06-16

    Previous studies suggested that microbial photosynthesis plays a potential role in paddy fields, but little is known about chemoautotrophic carbon fixers in drained paddy soils. We conducted a microcosm study using soil samples from five paddy fields to determine the environmental factors and quantify key functional microbial taxa involved in chemoautotrophic carbon fixation. We used stable isotope probing in combination with phospholipid fatty acid (PLFA) and molecular approaches. The amount of microbial (13)CO2 fixation was determined by quantification of (13)C-enriched fatty acid methyl esters and ranged from 21.28 to 72.48 ng of (13)C (g of dry soil)(-1), and the corresponding ratio (labeled PLFA-C:total PLFA-C) ranged from 0.06 to 0.49%. The amount of incorporationof (13)CO2 into PLFAs significantly increased with soil pH except at pH 7.8. PLFA and high-throughput sequencing results indicated a dominant role of Gram-negative bacteria or proteobacteria in (13)CO2 fixation. Correlation analysis indicated a significant association between microbial community structure and carbon fixation. We provide direct evidence of chemoautotrophic C fixation in soils with statistical evidence of microbial community structure regulation of inorganic carbon fixation in the paddy soil ecosystem.

  13. Carbon sequestration in soybean crop soils: the role of hydrogen-coupled CO2 fixation

    NASA Astrophysics Data System (ADS)

    Graham, A.; Layzell, D. B.; Scott, N. A.; Cen, Y.; Kyser, T. K.

    2011-12-01

    Conversion of native vegetation to agricultural land in order to support the world's growing population is a key factor contributing to global climate change. However, the extent to which agricultural activities contribute to greenhouse gas emissions compared to carbon storage is difficult to ascertain, especially for legume crops, such as soybeans. Soybean establishment often leads to an increase in N2O emissions because N-fixation leads to increased soil available N during decomposition of the low C:N legume biomass. However, soybean establishment may also reduce net greenhouse gas emissions by increasing soil fertility, plant growth, and soil carbon storage. The mechanism behind increased carbon storage, however, remains unclear. One explanation points to hydrogen coupled CO2 fixation; the process by which nitrogen fixation releases H2 into the soil system, thereby promoting chemoautotrophic carbon fixation by soil microbes. We used 13CO2 as a tracer to track the amount and fate of carbon fixed by hydrogen coupled CO2 fixation during one-year field and laboratory incubations. The objectives of the research are to 1) quantify rates of 13CO2 fixation in soil collected from a field used for long-term soybean production 2) examine the impact of H2 gas concentration on rates of 13CO2 fixation, and 3) measure changes in δ13C signature over time in 3 soil fractions: microbial biomass, light fraction, and acid stable fraction. If this newly-fixed carbon is incorporated into the acid-stable soil C fraction, it has a good chance of contributing to long-term soil C sequestration under soybean production. Soil was collected in the field both adjacent to root nodules (nodule soil) and >3cm away (root soil) and labelled with 13CO2 (1% v/v) in the presence and absence of H2 gas. After a two week labelling period, δ13C signatures already revealed differences in the four treatments of bulk soil: -17.1 for root, -17.6 for nodule, -14.2 for root + H2, and -6.1 for nodule + H2

  14. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria

    NASA Astrophysics Data System (ADS)

    Kanno, Masahiro; Carroll, Austin L.; Atsumi, Shota

    2017-03-01

    Cyanobacteria have attracted much attention as hosts to recycle CO2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO2 and glucose, and produces 12.6 g l-1 of 2,3-butanediol with a rate of 1.1 g l-1 d-1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.

  15. Nitrogen fixation on early Mars and other terrestrial planets: experimental demonstration of abiotic fixation reactions to nitrite and nitrate.

    PubMed

    Summers, David P; Khare, Bishun

    2007-04-01

    Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO(2). Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO(2) does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO(2) reaction with ice, adsorbed water, etc.).

  16. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria.

    PubMed

    Kanno, Masahiro; Carroll, Austin L; Atsumi, Shota

    2017-03-13

    Cyanobacteria have attracted much attention as hosts to recycle CO 2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO 2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO 2 and glucose, and produces 12.6 g l -1 of 2,3-butanediol with a rate of 1.1 g l -1  d -1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.

  17. Carbon fixation in sediments of Sino-Pacific seas-differential contributions of bacterial and archaeal domains

    NASA Astrophysics Data System (ADS)

    Das, Anindita; Cao, Wenrui; Zhang, Hongjie; Saren, Gaowa; Jiang, Mingyu; Yu, Xinke

    2017-11-01

    Oceanic stretches experiencing perpetual darkness and extreme limitation of utilizable organic matter often rely on chemosynthetic carbon (C)-fixation. However, C-fixation is not limited to carbon-deplete environments alone but might also occur in varying degrees in carbon-replete locales depending on the nature and concentration of utilizable carbon, electron donors and acceptors. Quantification of microbial C-fixation and relative contribution of domains bacteria and archaea are therefore crucial. The present experiment estimates the differential rates of C-fixation by archaea and bacteria along with the effects of different electron donors. Four Sino-Pacific marine sediments from Bashi strait (Western Pacific Warm Pool), East China Sea, South China Sea and Okinawa Trough were examined. Total microbial C-uptake was estimated by doping of aqueous NaH14CO3. Total bacterial C-uptake was measured by blocking archaeal metabolism using inhibitor GC7. Archaeal contribution was estimated by subtracting total bacterial from total microbial C-uptake. Effect of electron donor addition was analyzed by spiking with ammonium, sulfide, and reduced metals. Results suggested that C-fixation in marine sediments was not the function of archaea alone, which was in contrast to results from several recent publications. C-fixing bacteria are also equally active. Often in spite of great effort of one domain to fix carbon, the system does not become net C-fixing due to equal and opposite C-releasing activity of the other domain. Thus a C-releasing bacterial or archaeal community can become C-fixing with the change of nature and concentration of electron donors.

  18. Transition Organometallic Heterobimettalic Microns-Carbon Dioxide and Microns-Format Complexes in Homogeneous Carbon Dioxide Fixation

    DTIC Science & Technology

    1992-08-12

    AD-A254 538 OFFICE OF NAVAL RESEARCH FINAL REPORT FCR Contract N00014-87-K-0465 R&T Code 413j006 "Transition Organometallic Heterobimetallic ix...ransition Organometallic Heterobimetallic P-Carbon Dioxide and p-FormateComplexes in Homogeneous Carbon Dioxide Fixation 12. PERSONAL AUTHOR(S) Alan R...J. L. Shibley, and A. R. Cutler, J. Organomet. Chem. 1989,378, 421.* "Characterization of the Heterobimetallic ±(r011-C: T12 -O,O’) Carbon Dioxide

  19. CARBON-14 FIXATION IN POLLEN OF YELLOW LUPINE (LUPINUS LUTEUS LINN.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwien, W.G.; Frazier, J.C.; Moser, H.C.

    1962-10-31

    Carbon-14 fixation studies were made on germinated pollen of yellow lupine to ascertain whether the chlorophyll reported to be in these grains was functional photosynthetically. Light and dark exposures to atmospheres containing 20 and 500 mu c of carbon-14 labeled carbon dioxide were made for 1.5 and 45 minutes, respectively. The exposed pollen was extracted in 80% ethanol, the resulting extract reduced in volume, and chromatographed two dimensionally. When the chromatograms were cut inio numbered small squares and their activity counted in an automatic sample counting system, a marked similarity was observed in the pattern of radioactivity from all exposures.more » Eluting and co- chromatographing this activity from the squares, with known standards, demonstrated labeling to be specific to certain intermediates of the Krebs cycle and their derived amine acids. The labeling in these intermediates and the absence of labeling in photosynthetic metabolites is strong evidence that only respiratory fixation of carbon-14 occurs in the germinated pollen of this variety of yellow lupine under the conditions of the experiment. (auth)« less

  20. Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific

    NASA Astrophysics Data System (ADS)

    Schuback, N.; Flecken, M.; Maldonado, M. T.; Tortell, P. D.

    2015-10-01

    Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation at PSII (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides physiological insight into phytoplankton photosynthesis, and is critical for the application of FRRF as a primary productivity measurement tool. In the present study, we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific, over the course of a diurnal cycle. We show that rates of ETRRCII are closely tied to the diurnal cycle in light availability, whereas rates of carbon fixation appear to be influenced by endogenous changes in metabolic energy allocation under iron-limited conditions. Unsynchronized diurnal oscillations of the two rates led to 3.5 fold changes in the conversion factor coupling ETRRCII and carbon fixation (Φe:C / nPSII). Consequently, diurnal variability in phytoplankton carbon fixation cannot be adequately captured with FRRF approaches if a constant conversion factor is applied. Utilizing several auxiliary photophysiological measurements, we observed that a high conversion factor is associated with conditions of excess light, and correlates with the expression of non-photochemical quenching (NPQ) in the pigment antenna, as derived from FRRF measurements. The observed correlation between NPQ and the conversion factor Φe:C / nPSII has the potential to improve estimates of phytoplankton carbon fixation rates from FRRF measurements alone.

  1. Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific

    NASA Astrophysics Data System (ADS)

    Schuback, Nina; Flecken, Mirkko; Maldonado, Maria T.; Tortell, Philippe D.

    2016-02-01

    Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at an unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation in reaction center II (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides physiological insight into phytoplankton photosynthesis and is critical for the application of FRRF as a primary productivity measurement tool. In the present study, we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific over the course of a diurnal cycle. We show that rates of ETRRCII are closely tied to the diurnal cycle in light availability, whereas rates of carbon fixation appear to be influenced by endogenous changes in metabolic energy allocation under iron-limited conditions. Unsynchronized diurnal oscillations of the two rates led to 3.5-fold changes in the conversion factor between ETRRCII and carbon fixation (Kc / nPSII). Consequently, diurnal variability in phytoplankton carbon fixation cannot be adequately captured with FRRF approaches if a constant conversion factor is applied. Utilizing several auxiliary photophysiological measurements, we observed that a high conversion factor is associated with conditions of excess light and correlates with the increased expression of non-photochemical quenching (NPQ) in the pigment antenna, as derived from FRRF measurements. The observed correlation between NPQ and Kc / nPSII requires further validation but has the potential to improve estimates of phytoplankton carbon fixation rates from FRRF measurements alone.

  2. Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study

    NASA Astrophysics Data System (ADS)

    Wieder, William R.; Cleveland, Cory C.; Lawrence, David M.; Bonan, Gordon B.

    2015-04-01

    Uncertainties in terrestrial carbon (C) cycle projections increase uncertainty of potential climate feedbacks. Efforts to improve model performance often include increased representation of biogeochemical processes, such as coupled carbon-nitrogen (N) cycles. In doing so, models are becoming more complex, generating structural uncertainties in model form that reflect incomplete knowledge of how to represent underlying processes. Here, we explore structural uncertainties associated with biological nitrogen fixation (BNF) and quantify their effects on C cycle projections. We find that alternative plausible structures to represent BNF result in nearly equivalent terrestrial C fluxes and pools through the twentieth century, but the strength of the terrestrial C sink varies by nearly a third (50 Pg C) by the end of the twenty-first century under a business-as-usual climate change scenario representative concentration pathway 8.5. These results indicate that actual uncertainty in future C cycle projections may be larger than previously estimated, and this uncertainty will limit C cycle projections until model structures can be evaluated and refined.

  3. Transcriptome-based analysis on carbon metabolism of Haematococcus pluvialis mutant under 15% CO2.

    PubMed

    Li, Ke; Cheng, Jun; Lu, Hongxiang; Yang, Weijuan; Zhou, Junhu; Cen, Kefa

    2017-06-01

    To elucidate the mechanism underlying the enhanced growth rate in the Haematococcus pluvialis mutated with 60 Co-γ rays and domesticated with 15% CO 2 , transcriptome sequencing was conducted to clarify the carbon metabolic pathways of mutant cells. The CO 2 fixation rate of mutant cells increased to 2.57gL -1 d -1 under 15% CO 2 due to the enhanced photosynthesis, carbon fixation, glycolysis pathways. The upregulation of PetH, ATPF0A and PetJ related to photosynthetic electron transport, ATP synthase and NADPH generation promoted the photosynthesis. The upregulation of genes related to Calvin cycle and ppdK promoted carbon fixation in both C3 and C4 photosynthetic pathways. The reallocation of carbon was also enhanced under 15% CO 2 . The 19-, 14- and 3.5-fold upregulation of FBA, TPI and PK genes, respectively, remarkably promoted the glycolysis pathways. This accelerated the conversion of photosynthetic carbon to pyruvate, which was an essential precursor for astaxanthin and lipids biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A Simple Demonstration of Carbon Dioxide Fixation and Acid Production in CAM Plants

    ERIC Educational Resources Information Center

    Walker, John R. L.; McWha, James A.

    1976-01-01

    Described is an experiment investigating carbon dioxide fixation in the dark and the diurnal rhythm of acid production in plants exhibiting Crassulacean Acid Metabolism. Included are suggestions for four further investigations. (SL)

  5. Carbon Fixation Driven by Molecular Hydrogen Results in Chemolithoautotrophically Enhanced Growth of Helicobacter pylori.

    PubMed

    Kuhns, Lisa G; Benoit, Stéphane L; Bayyareddy, Krishnareddy; Johnson, Darryl; Orlando, Ron; Evans, Alexandra L; Waldrop, Grover L; Maier, Robert J

    2016-05-01

    A molecular hydrogen (H2)-stimulated, chemolithoautotrophic growth mode for the gastric pathogen Helicobacter pylori is reported. In a culture medium containing peptides and amino acids, H2-supplied cells consistently achieved 40 to 60% greater growth yield in 16 h and accumulated 3-fold more carbon from [(14)C]bicarbonate (on a per cell basis) in a 10-h period than cells without H2 Global proteomic comparisons of cells supplied with different atmospheric conditions revealed that addition of H2 led to increased amounts of hydrogenase and the biotin carboxylase subunit of acetyl coenzyme A (acetyl-CoA) carboxylase (ACC), as well as other proteins involved in various cellular functions, including amino acid metabolism, heme synthesis, or protein degradation. In agreement with this result, H2-supplied cells contained 3-fold more ACC activity than cells without H2 Other possible carbon dioxide (CO2) fixation enzymes were not up-expressed under the H2-containing atmosphere. As the gastric mucus is limited in carbon and energy sources and the bacterium lacks mucinase, this new growth mode may contribute to the persistence of the pathogen in vivo This is the first time that chemolithoautotrophic growth is described for a pathogen. Many pathogens must survive within host areas that are poorly supplied with carbon and energy sources, and the gastric pathogen Helicobacter pylori resides almost exclusively in the nutritionally stringent mucus barrier of its host. Although this bacterium is already known to be highly adaptable to gastric niches, a new aspect of its metabolic flexibility, whereby molecular hydrogen use (energy) is coupled to carbon dioxide fixation (carbon acquisition) via a described carbon fixation enzyme, is shown here. This growth mode, which supplements heterotrophy, is termed chemolithoautotrophy and has not been previously reported for a pathogen. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Chemoautotrophic carbon fixation rates and active bacterial communities in intertidal marine sediments.

    PubMed

    Boschker, Henricus T S; Vasquez-Cardenas, Diana; Bolhuis, Henk; Moerdijk-Poortvliet, Tanja W C; Moodley, Leon

    2014-01-01

    Chemoautotrophy has been little studied in typical coastal marine sediments, but may be an important component of carbon recycling as intense anaerobic mineralization processes in these sediments lead to accumulation of high amounts of reduced compounds, such as sulfides and ammonium. We studied chemoautotrophy by measuring dark-fixation of 13C-bicarbonate into phospholipid derived fatty acid (PLFA) biomarkers at two coastal sediment sites with contrasting sulfur chemistry in the Eastern Scheldt estuary, The Netherlands. At one site where free sulfide accumulated in the pore water right to the top of the sediment, PLFA labeling was restricted to compounds typically found in sulfur and ammonium oxidizing bacteria. At the other site, with no detectable free sulfide in the pore water, a very different PLFA labeling pattern was found with high amounts of label in branched i- and a-PLFA besides the typical compounds for sulfur and ammonium oxidizing bacteria. This suggests that other types of chemoautotrophic bacteria were also active, most likely Deltaproteobacteria related to sulfate reducers. Maximum rates of chemoautotrophy were detected in first 1 to 2 centimeters of both sediments and chemosynthetic biomass production was high ranging from 3 to 36 mmol C m(-2) d(-1). Average dark carbon fixation to sediment oxygen uptake ratios were 0.22±0.07 mol C (mol O2)(-1), which is in the range of the maximum growth yields reported for sulfur oxidizing bacteria indicating highly efficient growth. Chemoautotrophic biomass production was similar to carbon mineralization rates in the top of the free sulfide site, suggesting that chemoautotrophic bacteria could play a crucial role in the microbial food web and labeling in eukaryotic poly-unsaturated PLFA was indeed detectable. Our study shows that dark carbon fixation by chemoautotrophic bacteria is a major process in the carbon cycle of coastal sediments, and should therefore receive more attention in future studies on

  7. An efficient copper-based magnetic nanocatalyst for the fixation of carbon dioxide at atmospheric pressure.

    PubMed

    Sharma, Rakesh Kumar; Gaur, Rashmi; Yadav, Manavi; Goswami, Anandarup; Zbořil, Radek; Gawande, Manoj B

    2018-01-30

    In the last few decades, the emission of carbon dioxide (CO 2 ) in the environment has caused havoc across the globe. One of the most promising strategies for fixation of CO 2 is the cycloaddition reaction between epoxides and CO 2 to produce cyclic carbonates. For the first time, we have fabricated copper-based magnetic nanocatalyst and have applied for the CO 2 fixation. The prepared catalyst was thoroughly characterized using various techniques including XRD, FT-IR, TEM, FE-SEM, XPS, VSM, ICP-OES and elemental mapping. The reactions proceeded at atmospheric pressure, relatively lower temperature, short reaction time, solvent- less and organic halide free reaction conditions. Additionally, the ease of recovery through an external magnet, reusability of the catalyst and excellent yields of the obtained cyclic carbonates make the present protocol practical and sustainable.

  8. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway.

    PubMed

    Figueroa, Israel A; Barnum, Tyler P; Somasekhar, Pranav Y; Carlström, Charlotte I; Engelbrektson, Anna L; Coates, John D

    2018-01-02

    Dissimilatory phosphite oxidation (DPO), a microbial metabolism by which phosphite (HPO 3 2- ) is oxidized to phosphate (PO 4 3- ), is the most energetically favorable chemotrophic electron-donating process known. Only one DPO organism has been described to date, and little is known about the environmental relevance of this metabolism. In this study, we used 16S rRNA gene community analysis and genome-resolved metagenomics to characterize anaerobic wastewater treatment sludge enrichments performing DPO coupled to CO 2 reduction. We identified an uncultivated DPO bacterium, Candidatus Phosphitivorax ( Ca. P.) anaerolimi strain Phox-21, that belongs to candidate order GW-28 within the Deltaproteobacteria , which has no known cultured isolates. Genes for phosphite oxidation and for CO 2 reduction to formate were found in the genome of Ca. P. anaerolimi, but it appears to lack any of the known natural carbon fixation pathways. These observations led us to propose a metabolic model for autotrophic growth by Ca. P. anaerolimi whereby DPO drives CO 2 reduction to formate, which is then assimilated into biomass via the reductive glycine pathway.

  9. Hot spring microbial community composition, morphology, and carbon fixation: implications for interpreting the ancient rock record

    NASA Astrophysics Data System (ADS)

    Schuler, Caleb G.; Havig, Jeff R.; Hamilton, Trinity L.

    2017-11-01

    Microbial communities in hydrothermal systems exist in a range of macroscopic morphologies including stromatolites, mats, and filaments. The architects of these structures are typically autotrophic, serving as primary producers. Structures attributed to microbial life have been documented in the rock record dating back to the Archean including recent reports of microbially-related structures in terrestrial hot springs that date back as far as 3.5 Ga. Microbial structures exhibit a range of complexity from filaments to more complex mats and stromatolites and the complexity impacts preservation potential. As a result, interpretation of these structures in the rock record relies on isotopic signatures in combination with overall morphology and paleoenvironmental setting. However, the relationships between morphology, microbial community composition, and primary productivity remain poorly constrained. To begin to address this gap, we examined community composition and carbon fixation in filaments, mats, and stromatolites from the Greater Obsidian Pool Area (GOPA) of the Mud Volcano Area, Yellowstone National Park, WY. We targeted morphologies dominated by bacterial phototrophs located in close proximity within the same pool which are exposed to similar geochemistry as well as bacterial mat, algal filament and chemotrophic filaments from nearby springs. Our results indicate i) natural abundance δ13C values of biomass from these features (-11.0 to -24.3 ‰) are similar to those found in the rock record; ii) carbon uptake rates of photoautotrophic communities is greater than chemoautotrophic; iii) oxygenic photosynthesis, anoxygenic photosynthesis, and chemoautotrophy often contribute to carbon fixation within the same morphology; and iv) increasing phototrophic biofilm complexity corresponds to a significant decrease in rates of carbon fixation—filaments had the highest uptake rates whereas carbon fixation by stromatolites was significantly lower. Our data highlight

  10. Inhibitory effect of self-generated extracellular dissolved organic carbon on carbon dioxide fixation in sulfur-oxidizing bacteria during a chemoautotrophic cultivation process and its elimination.

    PubMed

    Wang, Ya-Nan; Tsang, Yiu Fai; Wang, Lei; Fu, Xiaohua; Hu, Jiajun; Li, Huan; Le, Yiquan

    2018-03-01

    The features of extracellular dissolved organic carbon (EDOC) generation in two typical aerobic sulfur-oxidizing bacteria (Thiobacillus thioparus DSM 505 and Halothiobacillus neapolitanus DSM 15147) and its impact on CO 2 fixation during chemoautotrophic cultivation process were investigated. The results showed that EDOC accumulated in both strains during CO 2 fixation process. Large molecular weight (MW) EDOC derived from cell lysis and decay was dominant during the entire process in DSM 505, whereas small MW EDOC accounted for a large proportion during initial and middle stages of DSM 15147 as its cytoskeleton synthesis rate did not keep up with CO 2 assimilation rate. The self-generated EDOC feedback repressed cbb gene transcription and thus decreased total bacterial cell number and CO 2 fixation yield in both strains, but DSM 505 was more sensitive to this inhibition effect. Moreover, the membrane bioreactor effectively decreased the EDOC/TOC ratio and improved carbon fixation yield of DSM 505. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide

    PubMed Central

    Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue

    2015-01-01

    Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean. PMID:26327191

  12. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue

    2015-09-01

    Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean.

  13. Heterotrophic Carbon Dioxide Fixation Products of Euglena

    PubMed Central

    Peak, Jennifer G.; Peak, Meyrick J.; Ting, Irwin P.

    1980-01-01

    The metabolic products of heterotrophic (dark) CO2 fixation by Euglena gracilis Klebs strain Z Pringsheim were separated and identified. They consisted of amino acids, phosphorylated compounds, tricarboxylic acid cycle intermediates, and nucleotides. Exposure of the cells to NH4+ after a period of NH4+ deprivation stimulated heterotrophic CO2 fixation almost 4-fold, modifying the spectrum of the fixation products. In particular, the NH4+ treatment stimulated fixation of CO2 into glutamine, glycine, alanine, and serine. PMID:16661238

  14. In vivo implant fixation of carbon fiber-reinforced PEEK hip prostheses in an ovine model.

    PubMed

    Nakahara, Ichiro; Takao, Masaki; Bandoh, Shunichi; Bertollo, Nicky; Walsh, William R; Sugano, Nobuhiko

    2013-03-01

    Carbon fiber-reinforced polyetheretherketone (CFR/PEEK) is theoretically suitable as a material for use in hip prostheses, offering excellent biocompatibility, mechanical properties, and the absence of metal ions. To evaluate in vivo fixation methods of CFR/PEEK hip prostheses in bone, we examined radiographic and histological results for cementless or cemented CFR/PEEK hip prostheses in an ovine model with implantation up to 52 weeks. CFR/PEEK cups and stems with rough-textured surfaces plus hydroxyapatite (HA) coatings for cementless fixation and CFR/PEEK cups and stems without HA coating for cement fixation were manufactured based on ovine computed tomography (CT) data. Unilateral total hip arthroplasty was performed using cementless or cemented CFR/PEEK hip prostheses. Five cementless cups and stems and six cemented cups and stems were evaluated. On the femoral side, all cementless stems demonstrated bony ongrowth fixation and all cemented stems demonstrated stable fixation without any gaps at both the bone-cement and cement-stem interfaces. All cementless cases and four of the six cemented cases showed minimal stress shielding. On the acetabular side, two of the five cementless cups demonstrated bony ongrowth fixation. Our results suggest that both cementless and cemented CFR/PEEK stems work well for fixation. Cup fixation may be difficult for both cementless and cemented types in this ovine model, but bone ongrowth fixation on the cup was first seen in two cementless cases. Cementless fixation can be achieved using HA-coated CFR/PEEK implants, even under load-bearing conditions. Copyright © 2012 Orthopaedic Research Society.

  15. The impact of environmental factors on carbon dioxide fixation by microalgae.

    PubMed

    Morales, Marcia; Sánchez, León; Revah, Sergio

    2018-02-01

    Microalgae are among the most productive biological systems for converting sunlight into chemical energy, which is used to capture and transform inorganic carbon into biomass. The efficiency of carbon dioxide capture depends on the cultivation system configuration (photobioreactors or open systems) and can vary according to the state of the algal physiology, the chemical composition of the nutrient medium, and environmental factors such as irradiance, temperature and pH. This mini-review is focused on some of the most important environmental factors determining photosynthetic activity, carbon dioxide biofixation, cell growth rate and biomass productivity by microalgae. These include carbon dioxide and O2 concentrations, light intensity, cultivation temperature and nutrients. Finally, a review of the operation of microalgal cultivation systems outdoors is presented as an example of the impact of environmental conditions on biomass productivity and carbon dioxide fixation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Carbohydrate Metabolism and Carbon Fixation in Roseobacter denitrificans OCh114

    PubMed Central

    Tang, Kuo-Hsiang; Feng, Xueyang; Tang, Yinjie J.; Blankenship, Robert E.

    2009-01-01

    The Roseobacter clade of aerobic marine proteobacteria, which compose 10–25% of the total marine bacterial community, has been reported to fix CO2, although it has not been determined what pathway is involved. In this study, we report the first metabolic studies on carbohydrate utilization, CO2 assimilation, and amino acid biosynthesis in the phototrophic Roseobacter clade bacterium Roseobacter denitrificans OCh114. We develop a new minimal medium containing defined carbon source(s), in which the requirements of yeast extract reported previously for the growth of R. denitrificans can be replaced by vitamin B12 (cyanocobalamin). Tracer experiments were carried out in R. denitrificans grown in a newly developed minimal medium containing isotopically labeled pyruvate, glucose or bicarbonate as a single carbon source or in combination. Through measurements of 13C-isotopomer labeling patterns in protein-derived amino acids, gene expression profiles, and enzymatic activity assays, we report that: (1) R. denitrificans uses the anaplerotic pathways mainly via the malic enzyme to fix 10–15% of protein carbon from CO2; (2) R. denitrificans employs the Entner-Doudoroff (ED) pathway for carbohydrate metabolism and the non-oxidative pentose phosphate pathway for the biosynthesis of histidine, ATP, and coenzymes; (3) the Embden-Meyerhof-Parnas (EMP, glycolysis) pathway is not active and the enzymatic activity of 6-phosphofructokinase (PFK) cannot be detected in R. denitrificans; and (4) isoleucine can be synthesized from both threonine-dependent (20% total flux) and citramalate-dependent (80% total flux) pathways using pyruvate as the sole carbon source. PMID:19794911

  17. Diversity and Contributions to Nitrogen Cycling and Carbon Fixation of Soil Salinity Shaped Microbial Communities in Tarim Basin

    PubMed Central

    Ren, Min; Zhang, Zhufeng; Wang, Xuelian; Zhou, Zhiwei; Chen, Dong; Zeng, Hui; Zhao, Shumiao; Chen, Lingling; Hu, Yuanliang; Zhang, Changyi; Liang, Yunxiang; She, Qunxin; Zhang, Yi; Peng, Nan

    2018-01-01

    Arid and semi-arid regions comprise nearly one-fifth of the earth's terrestrial surface. However, the diversities and functions of their soil microbial communities are not well understood, despite microbial ecological importance in driving biogeochemical cycling. Here, we analyzed the geochemistry and microbial communities of the desert soils from Tarim Basin, northwestern China. Our geochemical data indicated half of these soils are saline. Metagenomic analysis showed that bacterial phylotypes (89.72% on average) dominated the community, with relatively small proportions of Archaea (7.36%) and Eukaryota (2.21%). Proteobacteria, Firmicutes, Actinobacteria, and Euryarchaeota were most abundant based on metagenomic data, whereas genes attributed to Proteobacteria, Actinobacteria, Euryarchaeota, and Thaumarchaeota most actively transcribed. The most abundant phylotypes (Halobacterium, Halomonas, Burkholderia, Lactococcus, Clavibacter, Cellulomonas, Actinomycetospora, Beutenbergia, Pseudomonas, and Marinobacter) in each soil sample, based on metagenomic data, contributed marginally to the population of all microbial communities, whereas the putative halophiles, which contributed the most abundant transcripts, were in the majority of the active microbial population and is consistent with the soil salinity. Sample correlation analyses according to the detected and active genotypes showed significant differences, indicating high diversity of microbial communities among the Tarim soil samples. Regarding ecological functions based on the metatranscriptomic data, transcription of genes involved in various steps of nitrogen cycling, as well as carbon fixation, were observed in the tested soil samples. Metatranscriptomic data also indicated that Thaumarchaeota are crucial for ammonia oxidation and Proteobacteria play the most important role in other steps of nitrogen cycle. The reductive TCA pathway and dicarboxylate-hydroxybutyrate cycle attributed to Proteobacteria and

  18. Response of Carbon Dioxide Fixation to Water Stress

    PubMed Central

    Plaut, Z.; Bravdo, B.

    1973-01-01

    Application of water stress to isolated spinach (Spinacia oleracea) chloroplasts by redutcion of the osmotic potentials of CO2 fixation media below −6 to −8 bars resulted in decreased rates of fixation regardless of solute composition. A decrease in CO2 fixation rate of isolated chloroplasts was also found when leaves were dehydrated in air prior to chloroplast isolation. An inverse response of CO2 fixation to osmotic potential of the fixation medium was found with chloroplasts isolated from dehydrated leaves—namely, fixation rate was inhibited at −8 bars, compared with −16 or −24 bars. Low leaf water potentials were found to inhibit CO2 fixation of intact leaf discs to almost the same degree as they did CO2 fixation by chloroplasts isolated from those leaves. CO2 fixation by intact leaves was decreased by 50 and 80% when water potentials were reduced from −7.1 to −9.6 and from −7.1 to −17.6 bars, respectively. Transpiration was decreased by only 40 and 60%, under the same conditions. However, correction for the increase in leaf temperature indicated transpiration decreases of 57 and 80%, similar to the relative decreases in CO2 fixation. Despite the 4-fold increase in leaf resistance to CO2 diffusion in the gas phase when the water potential of leaves was reduced from −6.5 to −14.0 bars, an additional increase of about 50% in mesophyll resistance was obtained. CO2 concentration at compensation also increased when leaf water potential was reduced. PMID:16658493

  19. The effects of environmental physical factors on the microbial communities and the distribution of different CO2 fixation pathways in a limestone landscape

    NASA Astrophysics Data System (ADS)

    Wun, S. R.; Huang, T. Y.; Hsu, B. M.; Fan, C. W.

    2017-12-01

    We aimed to study the effects of physical factors on the relative abundance of bacteria and their preferential admissions of autotrophic CO2 fixation pathways after subjected to environmental long-term influence. The Narrow-Sky located in upper part of Takangshan is a small gulch of Pleistocene coralline limestone formation in southern Taiwan. The physical parameters such as illumination, humidity, and temperature were varied largely in habitats around the gulch, namely on the limestone wall at the opening of gulch, on the coordinate ground soil, on the wall inside the gulch, and the water drip from limestone wall. The total organic carbon was measured in solid samples to evaluate the biomass of the habitats. A metagenomic approach was carried out to reveal their microbial community structure. After the metagenomic library of operational taxonomic units (OTUs) was constructed, a BLAST search by "nomenclature of bacteria" instead of sequences between the OTU libraries and KEGG database was carried out to generate libraries of "model microbial communities", which the complete genomes of the entire bacterial populations were available. Our results showed the biomass of habitats in the opening of gulch was twice higher than the inside, suggesting the illumination played an important role in biosynthesis. In quantitative comparison in key enzymes of CO2 fixation pathways by model communities, 70% to 90% of bacteria possessed key enzymes of Fuchs-Holo cycle, while only 5% to 20% of bacteria contained key enzymes of Calvin-Benson cycle. The key enzymes for hydroxypropionate/ hydroxybutyrate and dicarboxylate/ 4-hydroxybutyrate cycles were not found in this study. In the water sample, approximate 10% of bacteria consisted of the key enzyme for Arnon-Buchanan cycle. Less than 2% of bacteria in all habitats take the reductive acetyl-CoA cycle for CO2 fixation. This study provides a novel method to study biosynthetic process of microbial communities in natural habitats.

  20. Anaerobic Carbon Metabolism by the Tricarboxylic Acid Cycle : Evidence for Partial Oxidative and Reductive Pathways during Dark Ammonium Assimilation.

    PubMed

    Vanlerberghe, G C; Horsey, A K; Weger, H G; Turpin, D H

    1989-12-01

    Nitrogen-limited cells of Selenastrum minutum (Naeg.) Collins are able to assimilate NH(4) (+) in the dark under anaerobic conditions. Addition of NH(4) (+) to anaerobic cells results in a threefold increase in tricarboxylic acid cycle (TCAC) CO(2) efflux and an eightfold increase in the rate of anaplerotic carbon fixation via phosphoenolpyruvate carboxylase. Both of these observations are consistent with increased TCAC carbon flow to supply intermediates for amino acid biosynthesis. Addition of H(14)CO(3) (-) to anaerobic cells assimilating NH(4) (+) results in the incorporation of radiolabel into the alpha-carboxyl carbon of glutamic acid. Incorporation of radiolabel into glutamic acid is not simply a short-term phenomenon following NH(4) (+) addition as the specific activity of glutamic acid increases over time. This indicates that this alga is able to maintain partial oxidative TCAC carbon flow while under anoxia to supply alpha-ketoglutarate for glutamate production. During dark aerobic NH(4) (+) assimilation, no radiolabel appears in fumarate or succinate and only a small amount occurs in malate. During anaerobic NH(4) (+) assimilation, these metabolites contain a large proportion of the total radiolabel and radiolabel accumulates in succinate over time. Also, the ratio of dark carbon fixation to NH(4) (+) assimilation is much higher under anaerobic than aerobic conditions. These observations suggest the operation of a partial reductive TCAC from oxaloacetic acid to malate, fumarate, and succinate. Such a pathway might contribute to redox balance in an anaerobic cell maintaining partial oxidative TCAC activity.

  1. Engineered yeast with a CO2-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars.

    PubMed

    Li, Yun-Jie; Wang, Miao-Miao; Chen, Ya-Wei; Wang, Meng; Fan, Li-Hai; Tan, Tian-Wei

    2017-03-06

    Bio-ethanol production from lignocellulosic raw materials could serve as a sustainable potential for improving the supply of liquid fuels in face of the food-to-fuel competition and the growing energy demand. Xylose is the second abundant sugar of lignocelluloses hydrolysates, but its commercial-scale conversion to ethanol by fermentation is challenged by incomplete and inefficient utilization of xylose. Here, we use a coupled strategy of simultaneous maltose utilization and in-situ carbon dioxide (CO 2 ) fixation to achieve efficient xylose fermentation by the engineered Saccharomyces cerevisiae. Our results showed that the introduction of CO 2 as electron acceptor for nicotinamide adenine dinucleotide (NADH) oxidation increased the total ethanol productivity and yield at the expense of simultaneous maltose and xylose utilization. Our achievements present an innovative strategy using CO 2 to drive and redistribute the central pathways of xylose to desirable products and demonstrate a possible breakthrough in product yield of sugars.

  2. Assessment of carbon fibre composite fracture fixation plate using finite element analysis.

    PubMed

    Saidpour, Seyed H

    2006-07-01

    In the internal fixation of fractured bone by means of bone-plates fastened to the bone on its tensile surface, an on-going concern has been the excessive stress shielding of the bone by the excessively-stiff stainless-steel plate. The compressive stress shielding at the fracture-interface immediately after fracture-fixation delays callus formation and bone healing. Likewise, the tensile stress shielding in the layer of bone underneath the plate can cause osteoporosis and decrease in tensile strength of this layer. In this study a novel forearm internal fracture fixation plate made from short carbon fibre reinforced plastic (CFRP) was used in an attempt to address the problem. Accordingly, it has been possible to analyse the stress distribution in the composite plates using finite-element modelling. A three-dimensional, quarter-symmetric finite element model was generated for the plate system. The stress state in the underlying bone was examined for several loading conditions. Based on the analytical results the composite plate system is likely to reduce stress-shielding effects at the fracture site when subjected to bending and torsional loads. The design of the plate was further optimised by reducing the width around the innermost holes.

  3. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations

    PubMed Central

    Levicán, Gloria; Ugalde, Juan A; Ehrenfeld, Nicole; Maass, Alejandro; Parada, Pilar

    2008-01-01

    Background Carbon and nitrogen fixation are essential pathways for autotrophic bacteria living in extreme environments. These bacteria can use carbon dioxide directly from the air as their sole carbon source and can use different sources of nitrogen such as ammonia, nitrate, nitrite, or even nitrogen from the air. To have a better understanding of how these processes occur and to determine how we can make them more efficient, a comparative genomic analysis of three bioleaching bacteria isolated from mine sites in Chile was performed. This study demonstrated that there are important differences in the carbon dioxide and nitrogen fixation mechanisms among bioleaching bacteria that coexist in mining environments. Results In this study, we probed that both Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans incorporate CO2 via the Calvin-Benson-Bassham cycle; however, the former bacterium has two copies of the Rubisco type I gene whereas the latter has only one copy. In contrast, we demonstrated that Leptospirillum ferriphilum utilizes the reductive tricarboxylic acid cycle for carbon fixation. Although all the species analyzed in our study can incorporate ammonia by an ammonia transporter, we demonstrated that Acidithiobacillus thiooxidans could also assimilate nitrate and nitrite but only Acidithiobacillus ferrooxidans could fix nitrogen directly from the air. Conclusion The current study utilized genomic and molecular evidence to verify carbon and nitrogen fixation mechanisms for three bioleaching bacteria and provided an analysis of the potential regulatory pathways and functional networks that control carbon and nitrogen fixation in these microorganisms. PMID:19055775

  4. Carbon isotopic composition of individual Precambrian microfossils

    NASA Technical Reports Server (NTRS)

    House, C. H.; Schopf, J. W.; McKeegan, K. D.; Coath, C. D.; Harrison, T. M.; Stetter, K. O.

    2000-01-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  5. Sequestration of carbon dioxide with hydrogen to useful products

    DOEpatents

    Adams, Michael W. W.; Kelly, Robert M.; Hawkins, Aaron B.; Menon, Angeli Lal; Lipscomb, Gina Lynette Pries; Schut, Gerrit Jan

    2017-03-07

    Provided herein are genetically engineered microbes that include at least a portion of a carbon fixation pathway, and in one embodiment, use molecular hydrogen to drive carbon dioxide fixation. In one embodiment, the genetically engineered microbe is modified to convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof at levels greater than a control microbe. Other products may also be produced. Also provided herein are cell free compositions that convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof. Also provided herein are methods of using the genetically engineered microbes and the cell free compositions.

  6. Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens.

    PubMed

    Feist, Adam M; Nagarajan, Harish; Rotaru, Amelia-Elena; Tremblay, Pier-Luc; Zhang, Tian; Nevin, Kelly P; Lovley, Derek R; Zengler, Karsten

    2014-04-01

    Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species.

  7. Pathways to Carbon-Negative Liquid Biofuels

    NASA Astrophysics Data System (ADS)

    Woolf, D.; Lehmann, J.

    2017-12-01

    Many climate change mitigation scenarios assume that atmospheric carbon dioxide removal will be delivered at scale using bioenergy power generation with carbon capture and storage (BECCS). However, other pathways to negative emission technologies (NETs) in the energy sector are possible, but have received relatively little attention. Given that the costs, benefits and life-cycle emissions of technologies vary widely, more comprehensive analyses of the policy options for NETs are critical. This study provides a comparative assessment of the potential pathways to carbon-negative liquid biofuels. It is often assumed that that decarbonisation of the transport sector will include use of liquid biofuels, particularly for applications that are difficult to electrify such as aviation and maritime transport. However, given that biomass and land on which to grow it sustainably are limiting factors in the scaling up of both biofuels and NETs, these two strategies compete for shared factors of production. One way to circumvent this competition is carbon-negative biofuels. Because capture of exhaust CO2 in the transport sector is impractical, this will likely require carbon capture during biofuel production. Potential pathways include, for example, capture of CO2 from fermentation, or sequestration of biochar from biomass pyrolysis in soils, in combination with thermochemical or bio-catalytic conversion of syngas to alcohols or alkanes. Here we show that optimal pathway selection depends on specific resource constraints. As land availability becomes increasingly limiting if bioenergy is scaled up—particularly in consideration that abandoned degraded land is widely considered to be an important resource that does not compete with food fiber or habitat—then systems which enhance land productivity by increasing soil fertility using soil carbon sequestration become increasingly preferable compared to bioenergy systems that deplete or degrade the land resource on which they

  8. Evolution and Adaptation of Phytoplankton Photosynthetic Pathways to perturbations of the geological carbon system

    NASA Astrophysics Data System (ADS)

    Rickaby, R. E.; Young, J. N.; Hermoso, M.; Heureux, A.; McCLelland, H.; Lee, R.; Eason Hubbard, M.

    2012-12-01

    The ocean and atmosphere carbon system has varied greatly over geological history both in response to initial evolutionary innovation, and as a driver of adaptive change. Here we establish that positive selection in Rubisco, the most abundant enzyme on the Earth responsible for all photosynthetic carbon fixation, occurred early in Earth's history, and basal to the radiation of the modern marine algal groups. Our signals of positive selection appear to be triggered by changing intracellular concentrations of carbon dioxide (CO2) due to the emergence of carbon concentrating mechanisms between 1.56 and 0.41 Ba in response to declining atmospheric CO2 . We contend that, at least in terms of carbon, phytoplankton generally were well poised to manage subsequent abrupt carbon cycle perturbations. The physiological pathways for optimising carbon acquisition across a wide range of ambient carbon dioxide concentrations had already been established and were genetically widespread across open ocean phytoplankton groups. We will further investigate some case studies from the Mesozoic and Cenozoic abrupt carbon cycle excursions using isotopic tools to probe the community photosynthetic response and demonstrate the flexibility of phytoplankton photosynthesis in the face of major perturbations. In particular, an unprecedented resolution record across the Toarcian (Early Jurassic) carbon isotope excursion in the Paris Basin reveals a selection and evolution towards a community reliant solely on diffusive carbon dioxide supply for photosynthesis at the height of the excursion at 1500-2500 ppm CO2. The continued flourishing of the phytoplankton biological pump throughout this excursion was able to remove the excess carbon injected into the water column in less than 45 kyrs.

  9. Phytoplankton Productivity in an Arctic Fjord (West Greenland): Estimating Electron Requirements for Carbon Fixation and Oxygen Production

    PubMed Central

    Hancke, Kasper; Dalsgaard, Tage; Sejr, Mikael Kristian; Markager, Stiig; Glud, Ronnie Nøhr

    2015-01-01

    Accurate quantification of pelagic primary production is essential for quantifying the marine carbon turnover and the energy supply to the food web. Knowing the electron requirement (Κ) for carbon (C) fixation (Κ C) and oxygen (O2) production (Κ O2), variable fluorescence has the potential to quantify primary production in microalgae, and hereby increasing spatial and temporal resolution of measurements compared to traditional methods. Here we quantify Κ C and Κ O2 through measures of Pulse Amplitude Modulated (PAM) fluorometry, C fixation and O2 production in an Arctic fjord (Godthåbsfjorden, W Greenland). Through short- (2h) and long-term (24h) experiments, rates of electron transfer (ETRPSII), C fixation and/or O2 production were quantified and compared. Absolute rates of ETR were derived by accounting for Photosystem II light absorption and spectral light composition. Two-hour incubations revealed a linear relationship between ETRPSII and gross 14C fixation (R2 = 0.81) during light-limited photosynthesis, giving a Κ C of 7.6 ± 0.6 (mean ± S.E.) mol é (mol C)−1. Diel net rates also demonstrated a linear relationship between ETRPSII and C fixation giving a Κ C of 11.2 ± 1.3 mol é (mol C)−1 (R2 = 0.86). For net O2 production the electron requirement was lower than for net C fixation giving 6.5 ± 0.9 mol é (mol O2)−1 (R2 = 0.94). This, however, still is an electron requirement 1.6 times higher than the theoretical minimum for O2 production [i.e. 4 mol é (mol O2)−1]. The discrepancy is explained by respiratory activity and non-photochemical electron requirements and the variability is discussed. In conclusion, the bio-optical method and derived electron requirement support conversion of ETR to units of C or O2, paving the road for improved spatial and temporal resolution of primary production estimates. PMID:26218096

  10. Effects of Carbon Dioxide and Oxygen on the Regulation of Photosynthetic Carbon Metabolism by Ammonia in Spinach Mesophyll Cells 1

    PubMed Central

    Lawyer, Arthur L.; Cornwell, Karen L.; Larsen, Peder O.; Bassham, James A.

    1981-01-01

    Photosynthetic carbon metabolism of isolated spinach mesophyll cells was characterized under conditions favoring photorespiratory (PR; 0.04% CO2 and 20% O2) and nonphotorespiratory (NPR; 0.2% CO2 and 2% O2) metabolism, as well as intermediate conditions. Comparisons were made between the metabolic effects of extracellularly supplied NH4+ and intracellular NH4+, produced primarily via PR metabolism. The metabolic effects of 14CO2 fixation under PR conditions were similar to perturbations of photosynthetic metabolism brought about by externally supplied NH4+; both increased labeling and intracellular concentrations of glutamine at the expense of glutamate and increased anaplerotic synthesis through α-ketoglutarate. The metabolic effects of added NH4+ during NPR fixation were greater than those during PR fixation, presumably due to lower initial NH4+ levels during NPR fixation. During PR fixation, addition of ammonia caused decreased pools and labeling of glutamate and serine and increased glycolate, glyoxylate, and glycine labeling. The glycolate pathway was thus affected by increased rates of carbon flow and decreased glutamate availability for glyoxylate transamination, resulting in increased usage of serine for transamination. Sucrose labeling decreased with NH4+ addition only during PR fixation, suggesting that higher photosynthetic rates under NPR conditions can accommodate the increased drain of carbon toward amino acid synthesis while maintaining sucrose synthesis. PMID:16662084

  11. Global terrestrial carbon and nitrogen cycling insensitive to estimates of biological N fixation

    NASA Astrophysics Data System (ADS)

    Steinkamp, J.; Weber, B.; Werner, C.; Hickler, T.

    2015-12-01

    Dinitrogen (N2) is the most abundant molecule in the atmosphere and incorporated in other molecules an essential nutrient for life on earth. However, only few natural processes can initiate a reaction of N2. These natural processes are fire, lightning and biological nitrogen fixation (BNF) with BNF being the largest source. In the course of the last century humans have outperformed the natural processes of nitrogen fixation by the production of fertilizer. Industrial and other human emission of reactive nitrogen, as well as fire and lightning lead to a deposition of 63 Tg (N) per year. This is twice the amount of BNF estimated by the default setup of the dynamic global vegetation model LPJ-GUESS (30 Tg), which is a conservative approach. We use different methods and parameterizations for BNF in LPJ-GUESS: 1.) varying total annual amount; 2.) annual evenly distributed and daily calculated fixation rates; 3.) an improved dataset of BNF by cryptogamic covers (free-living N-fixers). With this setup BNF is ranging from 30 Tg to 60 Tg. We assess the impact of BNF on carbon storage and grand primary production (GPP) of the natural vegetation. These results are compared to and evaluated against available independent datasets. We do not see major differences in the productivity and carbon stocks with these BNF estimates, suggesting that natural vegetation is insensitive to BNF on a global scale and the vegetation can compensate for the different nitrogen availabilities. Current deposition of nitrogen compounds and internal cycling through mineralization and uptake is sufficient for natural vegetation productivity. However, due to the coarse model grid and spatial heterogeneity in the real world this conclusion does not exclude the existence of habitats constrained by BNF.

  12. Photosynthetic carbon metabolism in seagrasses C-labeling evidence for the c(3) pathway.

    PubMed

    Andrews, T J; Abel, K M

    1979-04-01

    The delta(13)C values of several seagrasses were considerably less negative than those of terrestrial C(3) plants and tended toward those of terrestrial C(4) plants. However, for Thalassia hemprichii (Ehrenb.) Aschers and Halophila spinulosa (R. Br.) Aschers, phosphoglycerate and other C(3) cycle intermediates predominated among the early labeled products of photosynthesis in (14)C-labeled seawater (more than 90% at the earliest times) and the labeling pattern at longer times was brought about by the operation of the C(3) pathway. Malate and aspartate together accounted for only a minor fraction of the total fixed label at all times and the kinetic data of this labeling were not at all consistent with these compounds being early intermediates in seagrass photosynthesis. Pulse-chase (14)C-labeling studies further substantiated these conclusions. Significant labeling of photorespiratory intermediates was observed in all experiments. The kinetics of total fixation of label during some steady-state and pulse-chase experiments suggested that there may be an intermediate pool of inorganic carbon of variable size closely associated with the leaves, either externally or internally. Such a pool may be one cause for the C(4)-like carbon isotope ratios of seagrasses.

  13. Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans

    DOE PAGES

    Nazem-Bokaee, Hadi; Gopalakrishnan, Saratram; Ferry, James G.; ...

    2016-01-17

    Methanosarcina acetivorans is a model archaeon with renewed interest due to its unique reversible methane production pathways. However, the mechanism and relevant pathways implicated in (co)utilizing novel carbon substrates in this organism are still not fully understood. This paper provides a comprehensive inventory of thermodynamically feasible routes for anaerobic methane oxidation, co-reactant utilization, and maximum carbon yields of major biofuel candidates by M. acetivorans. Here, an updated genome-scale metabolic model of M. acetivorans is introduced (iMAC868 containing 868 genes, 845 reactions, and 718 metabolites) by integrating information from two previously reconstructed metabolic models (i.e., iVS941 and iMB745), modifying 17 reactions,more » adding 24 new reactions, and revising 64 gene-proteinreaction associations based on newly available information. The new model establishes improved predictions of growth yields on native substrates and is capable of correctly predicting the knockout outcomes for 27 out of 28 gene deletion mutants. By tracing a bifurcated electron flow mechanism, the iMAC868 model predicts thermodynamically feasible (co)utilization pathway of methane and bicarbonate using various terminal electron acceptors through the reversal of the aceticlastic pathway. In conclusion, this effort paves the way in informing the search for thermodynamically feasible ways of (co)utilizing novel carbon substrates in the domain Archaea.« less

  14. Carbon dioxide fixation in the metabolism of propylene and propylene oxide by Xanthobacter strain Py2.

    PubMed Central

    Small, F J; Ensign, S A

    1995-01-01

    Evidence for a requirement for CO2 in the productive metabolism of aliphatic alkenes and epoxides by the propylene-oxidizing bacterium Xanthobacter strain Py2 is presented. In the absence of CO2, whole-cell suspensions of propylene-grown cells catalyzed the isomerization of propylene oxide (epoxypropane) to acetone. In the presence of CO2, no acetone was produced. Acetone was not metabolized by suspensions of propylene-grown cells, in either the absence or presence of CO2. The degradation of propylene and propylene oxide by propylene-grown cells supported the fixation of 14CO2 into cell material, and the time course of 14C fixation correlated with the time course of propylene and propylene oxide degradation. The degradation of glucose and propionaldehyde by propylene-grown or glucose-grown cells did not support significant 14CO2 fixation. With propylene oxide as the substrate, the concentration dependence of 14CO2 fixation exhibited saturation kinetics, and at saturation, 0.9 mol of CO2 was fixed per mol of propylene oxide consumed. Cultures grown with propylene in a nitrogen-deficient medium supplemented with NaH13CO3 specifically incorporated 13C label into the C-1 (major labeled position) and C-3 (minor labeled position) carbon atoms of the endogenous storage compound poly-beta-hydroxybutyrate. No specific label incorporation was observed when cells were cultured with glucose or n-propanol as a carbon source. The depletion of CO2 from cultures grown with propylene, but not glucose or n-propanol, inhibited bacterial growth. We propose that propylene oxide metabolism in Xanthobacter strain Py2 proceeds by terminal carboxylation of an isomerization intermediate, which, in the absence of CO2, is released as acetone. PMID:7592382

  15. Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii.

    PubMed

    Godaux, Damien; Bailleul, Benjamin; Berne, Nicolas; Cardol, Pierre

    2015-06-01

    The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of these alternative electron flows (AEFs) in the reactivation of photosynthetic carbon fixation during a shift from dark anoxia to light. At light onset, hydrogenase activity sustains a linear electron flow from photosystem II, which is followed by a transient PSI-CEF in the wild type. By promoting ATP synthesis without net generation of photosynthetic reductants, the two AEF are critical for restoration of the capacity for carbon dioxide fixation in the light. Our data also suggest that the decrease in hydrogen evolution with time of illumination might be due to competition for reduced ferredoxins between ferredoxin-NADP(+) oxidoreductase and hydrogenases, rather than due to the sensitivity of hydrogenase activity to oxygen. Finally, the absence of the two alternative pathways in a double mutant pgrl1 hydrogenase maturation factor G-2 is detrimental for photosynthesis and growth and cannot be compensated by any other AEF or anoxic metabolic responses. This highlights the role of hydrogenase activity and PSI-CEF in the ecological success of microalgae in low-oxygen environments. © 2015 American Society of Plant Biologists. All Rights Reserved.

  16. Design, fabrication and structural optimization of tubular carbon/Kevlar®/PMMA/graphene nanoplate composite for bone fixation prosthesis.

    PubMed

    Nasiri, F; Ajeli, S; Semnani, D; Jahanshahi, M; Emadi, R

    2018-05-02

    The present work investigates the mechanical properties of tubular carbon/Kevlar ® composite coated with poly(methyl methacrylate)/graphene nanoplates as used in the internal fixation of bones. Carbon fibers are good candidates for developing high-strength biomaterials and due to better stress transfer and electrical properties, they can enhance tissue formation. In order to improve carbon brittleness, ductile Kevlar ® was added to the composite. The tubular carbon/Kevlar ® composites have been prepared with tailorable braiding technology by changing the fiber pattern and angle in the composite structure and the number of composite layers. Fuzzy analyses are used for optimizing the tailorable parameters of 80 prepared samples and then mechanical properties of selected samples are discussed from the viewpoint of mechanical properties required for a bone fixation device. Experimental results showed that with optimizing braiding parameters the desired composite structure with mechanical properties close to bone properties could be produced. Results showed that carbon/Kevlar ® braid's physical properties, fiber composite distribution and diameter uniformity resulted in matrix uniformity, which enhanced strength and modulus due to better ability for distributing stress on the composite. Finally, as graphene nanoplates demonstrated their potential properties to improve wound healing intended for bone replacement, so reinforcing the PMMA matrix with graphene nanoplates enhanced the composite quality, for use as an implant.

  17. Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleiner, Manuel; Wentrop, C.; Lott, C.

    Low nutrient and energy availability has led to the evolution of numerous strategies for overcoming these limitations, of which symbiotic associations represent a key mechanism. Particularly striking are the associations between chemosynthetic bacteria and marine animals that thrive in nutrient-poor environments such as the deep-sea because the symbionts allow their hosts to grow on inorganic energy and carbon sources such as sulfide and CO2. Remarkably little is known about the physiological strategies that enable chemosynthetic symbioses to colonize oligotrophic environments. In this study, we used metaproteomics and metabolomics to investigate the intricate network of metabolic interactions in the chemosynthetic associationmore » between Olavius algarvensis, a gutless marine worm, and its bacterial symbionts. We propose novel pathways for coping with energy and nutrient limitation, some of which may be widespread in both free-living and symbiotic bacteria. These include (i) a pathway for symbiont assimilation of the host waste products acetate, propionate, succinate and malate, (ii) the potential use of carbon monoxide as an energy source, a substrate previously not known to play a role in marine invertebrate symbioses, (iii) the potential use of hydrogen as an energy source, (iv) the strong expression of high affinity uptake transporters, and (v) novel energy efficient steps in CO2 fixation and sulfate reduction. The high expression of proteins involved in pathways for energy and carbon uptake and conservation in the O. algarvensis symbiosis indicates that the oligotrophic nature of its environment exerted a strong selective pressure in shaping these associations.« less

  18. Methanotrophy induces nitrogen fixation during peatland development

    PubMed Central

    Larmola, Tuula; Leppänen, Sanna M.; Tuittila, Eeva-Stiina; Aarva, Maija; Merilä, Päivi; Fritze, Hannu; Tiirola, Marja

    2014-01-01

    Nitrogen (N) accumulation rates in peatland ecosystems indicate significant biological atmospheric N2 fixation associated with Sphagnum mosses. Here, we show that the linkage between methanotrophic carbon cycling and N2 fixation may constitute an important mechanism in the rapid accumulation of N during the primary succession of peatlands. In our experimental stable isotope enrichment study, previously overlooked methane-induced N2 fixation explained more than one-third of the new N input in the younger peatland stages, where the highest N2 fixation rates and highest methane oxidation activities co-occurred in the water-submerged moss vegetation. PMID:24379382

  19. Proteomics analysis reveals a dynamic diurnal pattern of photosynthesis-related pathways in maize leaves

    PubMed Central

    Lu, Tiegang; Zhang, Zhiguo

    2017-01-01

    Plant leaves exhibit differentiated patterns of photosynthesis rates under diurnal light regulation. Maize leaves show a single-peak pattern without photoinhibition at midday when the light intensity is maximized. This mechanism contributes to highly efficient photosynthesis in maize leaves. To understand the molecular basis of this process, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics analysis was performed to reveal the dynamic pattern of proteins related to photosynthetic reactions. Steady, single-peak and double-peak protein expression patterns were discovered in maize leaves, and antenna proteins in these leaves displayed a steady pattern. In contrast, the photosystem, carbon fixation and citrate pathways were highly controlled by diurnal light intensity. Most enzymes in the limiting steps of these pathways were major sites of regulation. Thus, maize leaves optimize photosynthesis and carbon fixation outside of light harvesting to adapt to the changes in diurnal light intensity at the protein level. PMID:28732011

  20. Proteomics analysis reveals a dynamic diurnal pattern of photosynthesis-related pathways in maize leaves.

    PubMed

    Feng, Dan; Wang, Yanwei; Lu, Tiegang; Zhang, Zhiguo; Han, Xiao

    2017-01-01

    Plant leaves exhibit differentiated patterns of photosynthesis rates under diurnal light regulation. Maize leaves show a single-peak pattern without photoinhibition at midday when the light intensity is maximized. This mechanism contributes to highly efficient photosynthesis in maize leaves. To understand the molecular basis of this process, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics analysis was performed to reveal the dynamic pattern of proteins related to photosynthetic reactions. Steady, single-peak and double-peak protein expression patterns were discovered in maize leaves, and antenna proteins in these leaves displayed a steady pattern. In contrast, the photosystem, carbon fixation and citrate pathways were highly controlled by diurnal light intensity. Most enzymes in the limiting steps of these pathways were major sites of regulation. Thus, maize leaves optimize photosynthesis and carbon fixation outside of light harvesting to adapt to the changes in diurnal light intensity at the protein level.

  1. Methanotrophy Induces Nitrogen Fixation in Boreal Mosses

    NASA Astrophysics Data System (ADS)

    Tiirola, M. A.

    2014-12-01

    Many methanotrophic bacterial groups fix nitrogen in laboratory conditions. Furthermore, nitrogen (N) is a limiting nutrient in many environments where methane concentrations are highest. Despite these facts, methane-induced N fixation has previously been overlooked, possibly due to methodological problems. To study the possible link between methanotrophy and diazotrophy in terrestrial and aquatic habitats, we measured the co-occurrence of these two processes in boreal forest, peatland and stream mosses using a stable isotope labeling approach (15 N2 and 13 CH4 double labeling) and sequencing of the nifH gene marker. N fixation associated with forest mosses was dependent on the annual N deposition, whereas methane stimulate N fixation neither in high (>3 kg N ha -1 yr -1) nor low deposition areas, which was in accordance with the nifH gene sequencing showing that forest mosses (Pleurozium schreberi and Hylocomium splendens ) carried mainly cyanobacterial N fixers. On the other extreme, in stream mosses (Fontinalis sp.) methane was actively oxidized throughout the year, whereas N fixation showed seasonal fluctuation. The co-occurrence of the two processes in single cell level was proven by co-localizing both N and methane-carbon fixation with the secondary ion mass spectrometry (SIMS) approach. Methanotrophy and diazotrophy was also studied in peatlands of different primary successional stages in the land-uplift coast of Bothnian Bay, in the Siikajoki chronosequence, where N accumulation rates in peat profiles indicate significant N fixation. Based on experimental evidence it was counted that methane-induced N fixation explained over one-third of the new N input in the younger peatland successional stages, where the highest N fixation rates and highest methane oxidation activities co-occurred in the water-submerged Sphagnum moss vegetation. The linkage between methanotrophic carbon cycling and N fixation may therefore constitute an important mechanism in the rapid

  2. Multicomponent self-assembly of a pentanuclear Ir-Zn heterometal-organic polyhedron for carbon dioxide fixation and sulfite sequestration.

    PubMed

    Li, Xuezhao; Wu, Jinguo; He, Cheng; Zhang, Rong; Duan, Chunying

    2016-04-14

    By incorporating a fac-tris(4-(2-pyridinyl)phenylamine)iridium as the backbone of the tripodal ligand to constrain the coordination geometry of Zn(II) ions, a pentanuclear Ir-Zn heterometal-organic luminescent polyhedron was obtained via a subcomponent self-assembly for carbon dioxide fixation and sulfite sequestration.

  3. Regulation of Carbon Flow by Nitrogen and Light in the Red Alga, Gelidium coulteri.

    PubMed

    Macler, B A

    1986-09-01

    The red alga Gelidium coulteri Harv. photosynthetically fixed [(14)C] bicarbonate at high rates under defined conditions in unialgal laboratory culture. The fixation rate and flow of photosynthate into various end products were dependent on the nitrogen status of the tissue. Plants fed luxury levels of nitrogen (approximately 340 micromolar) showed fixation rates several-fold higher than those seen for plants starved for nitrogen. The addition of NO(3) (-) or NH(4) (+) to such starved plants further inhibited fixation over at least the first several hours after addition. The majority of (14)C after incubations of 30 minutes to 8 hours was found in the compounds floridoside, agar and floridean starch. In addition, amino acids and intermediate compounds of the reductive pentose phosphate pathway, glycolytic pathway and tricarboxylic acid cycle were detected. Nitrogen affected the partitioning of labeled carbon into these compounds. Plants under luxury nitrogen conditions had higher floridoside levels and markedly lower amounts of agar and starch than found in plants limited for nitrogen. Amino acid, phycobiliprotein and chlorophyll levels were also significantly higher in nitrogen-enriched plants. Addition of NO(3) (-) to starved plants led to an increase in floridoside, tricarboxylic acid cycle intermediates and amino acids within 1 hour and inhibited carbon flow into agar and starch. Carbon fixation in the dark was only 1 to 7% of that seen in the light. Dark fixation of [(14)C]bicarbonate yielded label primarily in tricarboxylic acid cycle intermediates, amino acids and polysaccharides. Nitrogen stimulated amino acid synthesis at the expense of agar and starch. Floridoside was only a minor component in the dark. Pulse-chase experiments, designed to show carbon turnover, indicated a 2-fold increase in labeling of agar over 96 hours of chase in the light. No increases were seen in the dark. Low molecular weight pools, including floridoside, decreased 2- to 5-fold

  4. Two Iron Complexes as Homogeneous and Heterogeneous Catalysts for the Chemical Fixation of Carbon Dioxide.

    PubMed

    Karan, Chandan Kumar; Bhattacharjee, Manish

    2018-04-16

    Two new bimetallic iron-alkali metal complexes of amino acid (serine)-based reduced Schiff base ligand were synthesized and structurally characterized. Their efficacy as catalysts for the chemical fixation of carbon dioxide was explored. The heterogeneous version of the catalytic reaction was developed by the immobilization of these homogeneous bimetallic iron-alkali metal complexes in an anion-exchange resin. The resin-bound complexes can be used as recyclable catalysts up to six cycles.

  5. Nitrogen Fixation in Thermophilic Chemosynthetic Microbial Communities Depending on Hydrogen, Sulfate, and Carbon Dioxide

    PubMed Central

    Nishihara, Arisa; Haruta, Shin; McGlynn, Shawn E.; Thiel, Vera; Matsuura, Katsumi

    2018-01-01

    The activity of nitrogen fixation measured by acetylene reduction was examined in chemosynthetic microbial mats at 72–75°C in slightly-alkaline sulfidic hot springs in Nakabusa, Japan. Nitrogenase activity markedly varied from sampling to sampling. Nitrogenase activity did not correlate with methane production, but was detected in samples showing methane production levels less than the maximum amount, indicating a possible redox dependency of nitrogenase activity. Nitrogenase activity was not affected by 2-bromo-ethane sulfonate, an inhibitor of methanogenesis. However, it was inhibited by the addition of molybdate, an inhibitor of sulfate reduction and sulfur disproportionation, suggesting the involvement of sulfate-reducing or sulfur-disproportionating organisms. Nitrogenase activity was affected by different O2 concentrations in the gas phase, again supporting the hypothesis of a redox potential dependency, and was decreased by the dispersion of mats with a homogenizer. The loss of activity that occurred from dispersion was partially recovered by the addition of H2, sulfate, and carbon dioxide. These results suggested that the observed activity of nitrogen fixation was related to chemoautotrophic sulfate reducers, and fixation may be active in a limited range of ambient redox potential. Since thermophilic chemosynthetic communities may resemble ancient microbial communities before the appearance of photosynthesis, the present results may be useful when considering the ancient nitrogen cycle on earth. PMID:29367473

  6. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert

    USGS Publications Warehouse

    Housman, D.C.; Powers, H.H.; Collins, A.D.; Belnap, J.

    2006-01-01

    Biological soil crusts (cyanobacteria, mosses and lichens collectively) perform essential ecosystem services, including carbon (C) and nitrogen (N) fixation. Climate and land-use change are converting later successional soil crusts to early successional soil crusts with lower C and N fixation rates. To quantify the effect of such conversions on C and N dynamics in desert ecosystems we seasonally measured diurnal fixation rates in different biological soil crusts. We classified plots on the Colorado Plateau (Canyonlands) and Chihuahuan Desert (Jornada) as early (Microcoleus) or later successional (Nostoc/Scytonema or Placidium/Collema) and measured photosynthesis (Pn), nitrogenase activity (NA), and chlorophyll fluorescence (Fv/Fm) on metabolically active (moist) soil crusts. Later successional crusts typically had greater Pn, averaging 1.2-1.3-fold higher daily C fixation in Canyonlands and 2.4-2.8-fold higher in the Jornada. Later successional crusts also had greater NA, averaging 1.3-7.5-fold higher daily N fixation in Canyonlands and 1.3-25.0-fold higher in the Jornada. Mean daily Fv/Fm was also greater in later successional Canyonlands crusts during winter, and Jornada crusts during all seasons except summer. Together these findings indicate conversion of soil crusts back to early successional stages results in large reductions of C and N inputs into these ecosystems.

  7. Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria.

    PubMed

    Xiong, Wei; Lee, Tai-Chi; Rommelfanger, Sarah; Gjersing, Erica; Cano, Melissa; Maness, Pin-Ching; Ghirardi, Maria; Yu, Jianping

    2015-12-07

    Central carbon metabolism in cyanobacteria comprises the Calvin-Benson-Bassham (CBB) cycle, glycolysis, the pentose phosphate (PP) pathway and the tricarboxylic acid (TCA) cycle. Redundancy in this complex metabolic network renders the rational engineering of cyanobacterial metabolism for the generation of biomass, biofuels and chemicals a challenge. Here we report the presence of a functional phosphoketolase pathway, which splits xylulose-5-phosphate (or fructose-6-phosphate) to acetate precursor acetyl phosphate, in an engineered strain of the model cyanobacterium Synechocystis (ΔglgC/xylAB), in which glycogen synthesis is blocked, and xylose catabolism enabled through the introduction of xylose isomerase and xylulokinase. We show that this mutant strain is able to metabolise xylose to acetate on nitrogen starvation. To see whether acetate production in the mutant is linked to the activity of phosphoketolase, we disrupted a putative phosphoketolase gene (slr0453) in the ΔglgC/xylAB strain, and monitored metabolic flux using (13)C labelling; acetate and 2-oxoglutarate production was reduced in the light. A metabolic flux analysis, based on isotopic data, suggests that the phosphoketolase pathway metabolises over 30% of the carbon consumed by ΔglgC/xylAB during photomixotrophic growth on xylose and CO2. Disruption of the putative phosphoketolase gene in wild-type Synechocystis also led to a deficiency in acetate production in the dark, indicative of a contribution of the phosphoketolase pathway to heterotrophic metabolism. We suggest that the phosphoketolase pathway, previously uncharacterized in photosynthetic organisms, confers flexibility in energy and carbon metabolism in cyanobacteria, and could be exploited to increase the efficiency of cyanobacterial carbon metabolism and photosynthetic productivity.

  8. The oxalate-carbonate pathway: at the interface between biology and geology

    NASA Astrophysics Data System (ADS)

    Junier, P.; Cailleau, G.; Martin, G.; Guggiari, M.; Bravo, D.; Clerc, M.; Aragno, M.; Job, D.; Verrecchia, E.

    2012-04-01

    The formation of calcite in otherwise carbonate-free acidic soils through the biological degradation of oxalate is a mechanism termed oxalate-carbonate pathway. This pathway lies at the interface between biological and geological systems and constitutes an important, although underestimated, soil mineral carbon sink. In this case, atmospheric CO2 is fixed by the photosynthetic activity of oxalogenic plants, which is partly destined to the production of oxalate used for the chelation of metals, and particularly, calcium. Fungi are also able to produce oxalate to cope with elevated concentrations of metals. In spite of its abundance as a substrate, oxalate is a very stable organic anion that can be metabolized only by a group of bacteria that use it as carbon and energy sources. These bacteria close the biological cycle by degrading calcium oxalate, releasing Ca2+ and inducing a change in local soil pH. If parameters are favourable, the geological part of the pathway begins, because this change in pH will indirectly lead to the precipitation of secondary calcium carbonate (calcite) in unexpected geological conditions. Due to the initial acidic soil conditions, and the absence of geological carbonate in the basement, it is unexpected to find C in the form of calcite. The activity of the oxalate-carbonate pathway has now been demonstrated in several places around the world, suggesting that its importance can be even greater than expected. In addition, new roles for each of the biological players of the pathway have been revealed recently forcing us to reconsider a global biogeochemical model for oxalate cycling.

  9. Regulation of autotrophic CO2 fixation in the archaeon Thermoproteus neutrophilus.

    PubMed

    Ramos-Vera, W Hugo; Labonté, Valérie; Weiss, Michael; Pauly, Julia; Fuchs, Georg

    2010-10-01

    Thermoproteus neutrophilus, a hyperthermophilic, chemolithoautotrophic, anaerobic crenarchaeon, uses a novel autotrophic CO(2) fixation pathway, the dicarboxylate/hydroxybutyrate cycle. The regulation of the central carbon metabolism was studied on the level of whole cells, enzyme activity, the proteome, transcription, and gene organization. The organism proved to be a facultative autotroph, which prefers organic acids as carbon sources that can easily feed into the metabolite pools of this cycle. Addition of the preferred carbon sources acetate, pyruvate, succinate, and 4-hydroxybutyrate to cultures resulted in stimulation of the growth rate and a diauxic growth response. The characteristic enzyme activities of the carbon fixation cycle, fumarate hydratase, fumarate reductase, succinyl coenzyme A (CoA) synthetase, and enzymes catalyzing the conversion of succinyl-CoA to crotonyl-CoA, were differentially downregulated in the presence of acetate and, to a lesser extent, in the presence of other organic substrates. This regulation pattern correlated well with the differential expression profile of the proteome as well as with the transcription of the encoding genes. The genes encoding phosphoenolpyruvate (PEP) carboxylase, fumarate reductase, and four enzymes catalyzing the conversion of succinyl-CoA to crotonyl-CoA are clustered. Two putative operons, one comprising succinyl-CoA reductase plus 4-hydroxybutyrate-CoA ligase genes and the other comprising 4-hydroxybutyryl-CoA dehydratase plus fumarate reductase genes, were divergently transcribed into leaderless mRNAs. The promoter regions were characterized and used for isolating DNA binding proteins. Besides an Alba protein, a 18-kDa protein characteristic for autotrophic Thermoproteales that bound specifically to the promoter region was identified. This system may be suitable for molecular analysis of the transcriptional regulation of autotrophy-related genes.

  10. Bacterial nitrogen fixation in sand bioreactors treating winery wastewater with a high carbon to nitrogen ratio.

    PubMed

    Welz, Pamela J; Ramond, Jean-Baptiste; Braun, Lorenz; Vikram, Surendra; Le Roes-Hill, Marilize

    2018-02-01

    Heterotrophic bacteria proliferate in organic-rich environments and systems containing sufficient essential nutrients. Nitrogen, phosphorus and potassium are the nutrients required in the highest concentrations. The ratio of carbon to nitrogen is an important consideration for wastewater bioremediation because insufficient nitrogen may result in decreased treatment efficiency. It has been shown that during the treatment of effluent from the pulp and paper industry, bacterial nitrogen fixation can supplement the nitrogen requirements of suspended growth systems. This study was conducted using physicochemical analyses and culture-dependent and -independent techniques to ascertain whether nitrogen-fixing bacteria were selected in biological sand filters used to treat synthetic winery wastewater with a high carbon to nitrogen ratio (193:1). The systems performed well, with the influent COD of 1351 mg/L being reduced by 84-89%. It was shown that the nitrogen fixing bacterial population was influenced by the presence of synthetic winery effluent in the surface layers of the biological sand filters, but not in the deeper layers. It was hypothesised that this was due to the greater availability of atmospheric nitrogen at the surface. The numbers of culture-able nitrogen-fixing bacteria, including presumptive Azotobacter spp. exhibited 1-2 log increases at the surface. The results of this study confirm that nitrogen fixation is an important mechanism to be considered during treatment of high carbon to nitrogen wastewater. If biological treatment systems can be operated to stimulate this phenomenon, it may obviate the need for nitrogen addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Phosphoketolase pathway engineering for carbon-efficient biocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henard, Calvin Andrew; Freed, Emily Frances; Guarnieri, Michael Thomas

    2015-12-01

    Recent advances in metabolic engineering have facilitated the development of microbial biocatalysts capable of producing an array of bio-products, ranging from fuels to drug molecules. These bio-products are commonly generated through an acetyl-CoA intermediate, which serves as a key precursor in the biological conversion of carbon substrates. Moreover, conventional biocatalytic upgrading strategies proceeding through this route are limited by low carbon efficiencies, in large part due to carbon losses associated with pyruvate decarboxylation to acetyl-CoA. Bypass of pyruvate decarboxylation offers a means to dramatically enhance carbon yields and, in turn, bioprocess economics. Here, we discuss recent advances and prospects formore » employing the phosphoketolase pathway for direct biosynthesis of acetyl-CoA from carbon substrates, and phosphoketolase-based metabolic engineering strategies for carbon efficient biocatalysis.« less

  12. Hybrid Amine-Functionalized Graphene Oxide as a Robust Bifunctional Catalyst for Atmospheric Pressure Fixation of Carbon Dioxide using Cyclic Carbonates.

    PubMed

    Saptal, Vitthal B; Sasaki, Takehiko; Harada, Kei; Nishio-Hamane, Daisuke; Bhanage, Bhalchandra M

    2016-03-21

    An environmentally-benign carbocatalyst based on amine-functionalized graphene oxide (AP-GO) was synthesized and characterized. This catalyst shows superior activity for the chemical fixation of CO2 into cyclic carbonates at the atmospheric pressure. The developed carbocatalyst exhibits superior activity owing to its large surface area with abundant hydrogen bonding donor (HBD) capability and the presence of well-defined amine functional groups. The presence of various HBD and amine functional groups on the graphene oxide (GO) surface yields a synergistic effect for the activation of starting materials. Additionally, this catalyst shows high catalytic activity to synthesize carbonates at 70 °C and at 1 MPa CO2 pressure. The developed AP-GO could be easily recovered and used repetitively in up to seven recycle runs with unchanged catalyst activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Integration of metagenomic and stable carbon isotope evidence reveals the extent and mechanisms of carbon dioxide fixation in high-temperature microbial communities

    DOE PAGES

    Jennings, Ryan de Montmollin; Moran, James J.; Jay, Zackary J.; ...

    2017-02-03

    Biological fixation of CO 2 is the primary mechanism of C reduction in natural systems, and provides a diverse suite of organic compounds utilized by chemoorganoheterotrophs. The extent and mechanisms of CO 2 fixation were evaluated across a comprehensive set of high-temperature, chemotrophic microbial communities in Yellowstone National Park by combining metagenomic and stable 13C isotope analyses. Fifteen geothermal sites representing three distinct habitat types (iron-oxide mats, anoxic sulfur sediments, and filamentous ‘streamer’ communities) were investigated. Genes of the 3-hydroxypropionate/4-hydroxybutyrate, dicarboxylate/4-hydroxybutyrate, and reverse tricarboxylic acid CO 2 fixation pathways were identified in assembled genome sequence corresponding to the predominant Crenarchaeotamore » and Aquificales observed across this habitat range. Stable 13C analyses of dissolved inorganic and organic C (DIC, DOC), and possible landscape C sources were used to interpret the 13C content of microbial community samples. Isotope mixing models showed that the minimum amounts of autotrophic C in microbial biomass were > 50 % in the majority of communities analyzed, but were also dependent on the amounts of heterotrophy and/or accumulation of landscape C. Furthermore, the significance of CO 2 as a C source in these communities provides a foundation for understanding metabolic linkages among autotrophs and heterotrophs, community assembly and succession, and the likely coevolution of deeply-branching thermophiles.« less

  14. Two-dimensional isobutyl acetate production pathways to improve carbon yield

    PubMed Central

    Tashiro, Yohei; Desai, Shuchi H.; Atsumi, Shota

    2015-01-01

    For an economically competitive biological process, achieving high carbon yield of a target chemical is crucial. In biochemical production, pyruvate and acetyl-CoA are primary building blocks. When sugar is used as the sole biosynthetic substrate, acetyl-CoA is commonly generated by pyruvate decarboxylation. However, pyruvate decarboxylation during acetyl-CoA formation limits the theoretical maximum carbon yield (TMCY) by releasing carbon, and in some cases also leads to redox imbalance. To avoid these problems, we describe here the construction of a metabolic pathway that simultaneously utilizes glucose and acetate. Acetate is utilized to produce acetyl-CoA without carbon loss or redox imbalance. We demonstrate the utility of this approach for isobutyl acetate (IBA) production, wherein IBA production with glucose and acetate achieves a higher carbon yield than with either sole carbon source. These results highlight the potential for this multiple carbon source approach to improve the TMCY and balance redox in biosynthetic pathways. PMID:26108471

  15. Regulation of Carbon Flow by Nitrogen and Light in the Red Alga, Gelidium coulteri1

    PubMed Central

    Macler, Bruce A.

    1986-01-01

    The red alga Gelidium coulteri Harv. photosynthetically fixed [14C] bicarbonate at high rates under defined conditions in unialgal laboratory culture. The fixation rate and flow of photosynthate into various end products were dependent on the nitrogen status of the tissue. Plants fed luxury levels of nitrogen (approximately 340 micromolar) showed fixation rates several-fold higher than those seen for plants starved for nitrogen. The addition of NO3− or NH4+ to such starved plants further inhibited fixation over at least the first several hours after addition. The majority of 14C after incubations of 30 minutes to 8 hours was found in the compounds floridoside, agar and floridean starch. In addition, amino acids and intermediate compounds of the reductive pentose phosphate pathway, glycolytic pathway and tricarboxylic acid cycle were detected. Nitrogen affected the partitioning of labeled carbon into these compounds. Plants under luxury nitrogen conditions had higher floridoside levels and markedly lower amounts of agar and starch than found in plants limited for nitrogen. Amino acid, phycobiliprotein and chlorophyll levels were also significantly higher in nitrogen-enriched plants. Addition of NO3− to starved plants led to an increase in floridoside, tricarboxylic acid cycle intermediates and amino acids within 1 hour and inhibited carbon flow into agar and starch. Carbon fixation in the dark was only 1 to 7% of that seen in the light. Dark fixation of [14C]bicarbonate yielded label primarily in tricarboxylic acid cycle intermediates, amino acids and polysaccharides. Nitrogen stimulated amino acid synthesis at the expense of agar and starch. Floridoside was only a minor component in the dark. Pulse-chase experiments, designed to show carbon turnover, indicated a 2-fold increase in labeling of agar over 96 hours of chase in the light. No increases were seen in the dark. Low molecular weight pools, including floridoside, decreased 2- to 5-fold over this period

  16. In Vivo Studies in Rhodospirillum rubrum Indicate That Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) Catalyzes Two Obligatorily Required and Physiologically Significant Reactions for Distinct Carbon and Sulfur Metabolic Pathways*♦

    PubMed Central

    Dey, Swati; North, Justin A.; Sriram, Jaya; Evans, Bradley S.; Tabita, F. Robert

    2015-01-01

    All organisms possess fundamental metabolic pathways to ensure that needed carbon and sulfur compounds are provided to the cell in the proper chemical form and oxidation state. For most organisms capable of using CO2 as sole source of carbon, ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) catalyzes primary carbon dioxide assimilation. In addition, sulfur salvage pathways are necessary to ensure that key sulfur-containing compounds are both available and, where necessary, detoxified in the cell. Using knock-out mutations and metabolomics in the bacterium Rhodospirillum rubrum, we show here that Rubisco concurrently catalyzes key and essential reactions for seemingly unrelated but physiologically essential central carbon and sulfur salvage metabolic pathways of the cell. In this study, complementation and mutagenesis studies indicated that representatives of all known extant functional Rubisco forms found in nature are capable of simultaneously catalyzing reactions required for both CO2-dependent growth as well as growth using 5-methylthioadenosine as sole sulfur source under anaerobic photosynthetic conditions. Moreover, specific inactivation of the CO2 fixation reaction did not affect the ability of Rubisco to support anaerobic 5-methylthioadenosine metabolism, suggesting that the active site of Rubisco has evolved to ensure that this enzyme maintains both key functions. Thus, despite the coevolution of both functions, the active site of this protein may be differentially modified to affect only one of its key functions. PMID:26511314

  17. Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals.

    PubMed

    Hawkins, Aaron S; McTernan, Patrick M; Lian, Hong; Kelly, Robert M; Adams, Michael W W

    2013-06-01

    Non-photosynthetic routes for biological fixation of carbon dioxide into valuable industrial chemical precursors and fuels are moving from concept to reality. The development of 'electrofuel'-producing microorganisms leverages techniques in synthetic biology, genetic and metabolic engineering, as well as systems-level multi-omic analysis, directed evolution, and in silico modeling. Electrofuel processes are being developed for a range of microorganisms and energy sources (e.g. hydrogen, formate, electricity) to produce a variety of target molecules (e.g. alcohols, terpenes, alkenes). This review examines the current landscape of electrofuel projects with a focus on hydrogen-utilizing organisms covering the biochemistry of hydrogenases and carbonic anhydrases, kinetic and energetic analyses of the known carbon fixation pathways, and the state of genetic systems for current and prospective electrofuel-producing microorganisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. In Vivo Studies in Rhodospirillum rubrum Indicate That Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) Catalyzes Two Obligatorily Required and Physiologically Significant Reactions for Distinct Carbon and Sulfur Metabolic Pathways.

    PubMed

    Dey, Swati; North, Justin A; Sriram, Jaya; Evans, Bradley S; Tabita, F Robert

    2015-12-25

    All organisms possess fundamental metabolic pathways to ensure that needed carbon and sulfur compounds are provided to the cell in the proper chemical form and oxidation state. For most organisms capable of using CO2 as sole source of carbon, ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) catalyzes primary carbon dioxide assimilation. In addition, sulfur salvage pathways are necessary to ensure that key sulfur-containing compounds are both available and, where necessary, detoxified in the cell. Using knock-out mutations and metabolomics in the bacterium Rhodospirillum rubrum, we show here that Rubisco concurrently catalyzes key and essential reactions for seemingly unrelated but physiologically essential central carbon and sulfur salvage metabolic pathways of the cell. In this study, complementation and mutagenesis studies indicated that representatives of all known extant functional Rubisco forms found in nature are capable of simultaneously catalyzing reactions required for both CO2-dependent growth as well as growth using 5-methylthioadenosine as sole sulfur source under anaerobic photosynthetic conditions. Moreover, specific inactivation of the CO2 fixation reaction did not affect the ability of Rubisco to support anaerobic 5-methylthioadenosine metabolism, suggesting that the active site of Rubisco has evolved to ensure that this enzyme maintains both key functions. Thus, despite the coevolution of both functions, the active site of this protein may be differentially modified to affect only one of its key functions. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil.

    PubMed

    Pratscher, Jennifer; Dumont, Marc G; Conrad, Ralf

    2011-03-08

    Ammonia oxidation is an essential part of the global nitrogen cycling and was long thought to be driven only by bacteria. Recent findings expanded this pathway also to the archaea. However, most questions concerning the metabolism of ammonia-oxidizing archaea, such as ammonia oxidation and potential CO(2) fixation, remain open, especially for terrestrial environments. Here, we investigated the activity of ammonia-oxidizing archaea and bacteria in an agricultural soil by comparison of RNA- and DNA-stable isotope probing (SIP). RNA-SIP demonstrated a highly dynamic and diverse community involved in CO(2) fixation and carbon assimilation coupled to ammonia oxidation. DNA-SIP showed growth of the ammonia-oxidizing bacteria but not of archaea. Furthermore, the analysis of labeled RNA found transcripts of the archaeal acetyl-CoA/propionyl-CoA carboxylase (accA/pccB) to be expressed and labeled. These findings strongly suggest that ammonia-oxidizing archaeal groups in soil autotrophically fix CO(2) using the 3-hydroxypropionate-4-hydroxybutyrate cycle, one of the two pathways recently identified for CO(2) fixation in Crenarchaeota. Catalyzed reporter deposition (CARD)-FISH targeting the gene encoding subunit A of ammonia monooxygenase (amoA) mRNA and 16S rRNA of archaea also revealed ammonia-oxidizing archaea to be numerically relevant among the archaea in this soil. Our results demonstrate a diverse and dynamic contribution of ammonia-oxidizing archaea in soil to nitrification and CO(2) assimilation and that their importance to the overall archaeal community might be larger than previously thought.

  20. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil

    PubMed Central

    Pratscher, Jennifer; Dumont, Marc G.; Conrad, Ralf

    2011-01-01

    Ammonia oxidation is an essential part of the global nitrogen cycling and was long thought to be driven only by bacteria. Recent findings expanded this pathway also to the archaea. However, most questions concerning the metabolism of ammonia-oxidizing archaea, such as ammonia oxidation and potential CO2 fixation, remain open, especially for terrestrial environments. Here, we investigated the activity of ammonia-oxidizing archaea and bacteria in an agricultural soil by comparison of RNA- and DNA-stable isotope probing (SIP). RNA-SIP demonstrated a highly dynamic and diverse community involved in CO2 fixation and carbon assimilation coupled to ammonia oxidation. DNA-SIP showed growth of the ammonia-oxidizing bacteria but not of archaea. Furthermore, the analysis of labeled RNA found transcripts of the archaeal acetyl-CoA/propionyl-CoA carboxylase (accA/pccB) to be expressed and labeled. These findings strongly suggest that ammonia-oxidizing archaeal groups in soil autotrophically fix CO2 using the 3-hydroxypropionate–4-hydroxybutyrate cycle, one of the two pathways recently identified for CO2 fixation in Crenarchaeota. Catalyzed reporter deposition (CARD)-FISH targeting the gene encoding subunit A of ammonia monooxygenase (amoA) mRNA and 16S rRNA of archaea also revealed ammonia-oxidizing archaea to be numerically relevant among the archaea in this soil. Our results demonstrate a diverse and dynamic contribution of ammonia-oxidizing archaea in soil to nitrification and CO2 assimilation and that their importance to the overall archaeal community might be larger than previously thought. PMID:21368116

  1. Significance of non-sinking particulate organic carbon and dark CO2 fixation to heterotrophic carbon demand in the mesopelagic northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Baltar, Federico; Arístegui, Javier; Sintes, Eva; Gasol, Josep M.; Reinthaler, Thomas; Herndl, Gerhard J.

    2010-05-01

    It is generally assumed that sinking particulate organic carbon (POC) constitutes the main source of organic carbon supply to the deep ocean's food webs. However, a major discrepancy between the rates of sinking POC supply (collected with sediment traps) and the prokaryotic organic carbon demand (the total amount of carbon required to sustain the heterotrophic metabolism of the prokaryotes; i.e., production plus respiration, PCD) of deep-water communities has been consistently reported for the dark realm of the global ocean. While the amount of sinking POC flux declines exponentially with depth, the concentration of suspended, buoyant non-sinking POC (nsPOC; obtained with oceanographic bottles) exhibits only small variations with depth in the (sub)tropical Northeast Atlantic. Based on available data for the North Atlantic we show here that the sinking POC flux would contribute only 4-12% of the PCD in the mesopelagic realm (depending on the primary production rate in surface waters). The amount of nsPOC potentially available to heterotrophic prokaryotes in the mesopelagic realm can be partly replenished by dark dissolved inorganic carbon fixation contributing between 12% to 72% to the PCD daily. Taken together, there is evidence that the mesopelagic microheterotrophic biota is more dependent on the nsPOC pool than on the sinking POC supply. Hence, the enigmatic major mismatch between the organic carbon demand of the deep-water heterotrophic microbiota and the POC supply rates might be substantially smaller by including the potentially available nsPOC and its autochthonous production in oceanic carbon cycling models.

  2. Nutrient feedbacks to soil heterotrophic nitrogen fixation in forests

    USGS Publications Warehouse

    Perakis, Steven; Pett-Ridge, Julie C.; Catricala, Christina E.

    2017-01-01

    Multiple nutrient cycles regulate biological nitrogen (N) fixation in forests, yet long-term feedbacks between N-fixation and coupled element cycles remain largely unexplored. We examined soil nutrients and heterotrophic N-fixation across a gradient of 24 temperate conifer forests shaped by legacies of symbiotic N-fixing trees. We observed positive relationships among mineral soil pools of N, carbon (C), organic molybdenum (Mo), and organic phosphorus (P) across sites, evidence that legacies of symbiotic N-fixing trees can increase the abundance of multiple elements important to heterotrophic N-fixation. Soil N accumulation lowered rates of heterotrophic N-fixation in organic horizons due to both N inhibition of nitrogenase enzymes and declines in soil organic matter quality. Experimental fertilization of organic horizon soil revealed widespread Mo limitation of heterotrophic N-fixation, especially at sites where soil Mo was scarce relative to C. Fertilization also revealed widespread absence of P limitation, consistent with high soil P:Mo ratios. Responses of heterotrophic N-fixation to added Mo (positive) and N (negative) were correlated across sites, evidence that multiple nutrient controls of heterotrophic N-fixation were more common than single-nutrient effects. We propose a conceptual model where symbiotic N-fixation promotes coupled N, C, P, and Mo accumulation in soil, leading to positive feedback that relaxes nutrient limitation of overall N-fixation, though heterotrophic N-fixation is primarily suppressed by strong negative feedback from long-term soil N accumulation.

  3. Diurnal Variation in Gas Exchange: The Balance between Carbon Fixation and Water Loss.

    PubMed

    Matthews, Jack S A; Vialet-Chabrand, Silvere R M; Lawson, Tracy

    2017-06-01

    Stomatal control of transpiration is critical for maintaining important processes, such as plant water status, leaf temperature, as well as permitting sufficient CO 2 diffusion into the leaf to maintain photosynthetic rates ( A ). Stomatal conductance often closely correlates with A and is thought to control the balance between water loss and carbon gain. It has been suggested that a mesophyll-driven signal coordinates A and stomatal conductance responses to maintain this relationship; however, the signal has yet to be fully elucidated. Despite this correlation under stable environmental conditions, the responses of both parameters vary spatially and temporally and are dependent on species, environment, and plant water status. Most current models neglect these aspects of gas exchange, although it is clear that they play a vital role in the balance of carbon fixation and water loss. Future efforts should consider the dynamic nature of whole-plant gas exchange and how it represents much more than the sum of its individual leaf-level components, and they should take into consideration the long-term effect on gas exchange over time. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. "Cold" Fixation: Reconciliation of Nitrogen Fixation Rates and Diazotroph Assemblages in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Fong, A. A.; Waite, A.; Rost, B.; Richter, K. U.

    2016-02-01

    Measurements of biological nitrogen fixation are typically conducted in oligotrophic subtropical and tropical marine environments where concentrations of fixed inorganic nitrogen are low. To date, only a handful of nitrogen fixation studies have been conducted in high latitude marine environments, but further investigation is needed to resolve the distribution of cold ocean diazotrophic assemblages. Nitrogen fixation rates and nifH gene distributions were measured at seven stations from 5°E to 20°E, north of 81°N in the Arctic Ocean at the onset of summer 2015. Discrete water samples in ice-covered regions were collected from the sea surface to 200 m for 15N2-tracer additions and targeted nifH gene and transcript analyses. Previous work suggests that heterotrophic bacteria dominate diazotrophic communities in the Arctic Ocean. Therefore, additional nifH gene surveys of sinking particles were conducted to test for enrichment on organic matter-rich microenvironments. Together, these measurements aim to reconcile diazotrophic activity with microbial community composition, further elucidating how nitrogen fixers could impact current concepts in polar carbon and nutrient cycling.

  5. The role of nitrogen fixation in neotropical dry forests: insights from ecosystem modeling and field data

    NASA Astrophysics Data System (ADS)

    Trierweiler, A.; Xu, X.; Gei, M. G.; Powers, J. S.; Medvigy, D.

    2016-12-01

    Tropical dry forests (TDFs) have immense functional diversity and face multiple resource constraints (both water and nutrients). Legumes are abundant and exhibit a wide diversity of N2-fixing strategies in TDFs. The abundance and diversity of legumes and their interaction with N2-fixing bacteria may strongly control the coupled carbon-nitrogen cycle in the biome and influence whether TDFs will be particularly vulnerable or uniquely adapted to projected global change. However, the importance of N2-fixation in TDFs and the carbon cost of acquiring N through symbiotic relationships are not fully understood. Here, we use models along with field measurements to examine the role of legumes, nitrogen fixation, and plant-symbiont nutrient exchanges in TDFs. We use a new version of the Ecosystem Demography (ED2) model that has been recently parameterized for TDFs. The new version incorporates plant-mycorrhizae interactions and multiple resource constraints (carbon, nitrogen, phosphorus, and water). We represent legumes and other functional groups found in TDFs with a range of resource acquisition strategies. In the model, plants then can dynamically adjust their carbon allocation and nutrient acquisition strategies (e.g. N2-fixing bacteria and mycorrhizal fungi) according to the nutrient limitation status. We test (i) the model's performance against a nutrient gradient of field sites in Costa Rica and (ii) the model's sensitivity to the carbon cost to acquire N through fixation and mycorrhizal relationships. We also report on simulated tree community responses to ongoing field nutrient fertilization experiments. We found that the inclusion of the N2-fixation legume plant functional traits were critical to reproducing community dynamics of Costa Rican field TDF sites and have a large impact on forest biomass. Simulated ecosystem fixation rates matched the magnitude and temporal patterns of field measured fixation. Our results show that symbiotic nitrogen fixation plays an

  6. CO2 Fixation, Lipid Production, and Power Generation by a Novel Air-Lift-Type Microbial Carbon Capture Cell System.

    PubMed

    Hu, Xia; Liu, Baojun; Zhou, Jiti; Jin, Ruofei; Qiao, Sen; Liu, Guangfei

    2015-09-01

    An air-lift-type microbial carbon capture cell (ALMCC) was constructed for the first time by using an air-lift-type photobioreactor as the cathode chamber. The performance of ALMCC in fixing high concentration of CO2, producing energy (power and biodiesel), and removing COD together with nutrients was investigated and compared with the traditional microbial carbon capture cell (MCC) and air-lift-type photobioreactor (ALP). The ALMCC system produced a maximum power density of 972.5 mW·m(-3) and removed 86.69% of COD, 70.52% of ammonium nitrogen, and 69.24% of phosphorus, which indicate that ALMCC performed better than MCC in terms of power generation and wastewater treatment efficiency. Besides, ALMCC demonstrated 9.98- and 1.88-fold increases over ALP and MCC in the CO2 fixation rate, respectively. Similarly, the ALMCC significantly presented a higher lipid productivity compared to those control reactors. More importantly, the preliminary analysis of energy balance suggested that the net energy of the ALMCC system was significantly superior to other systems and could theoretically produce enough energy to cover its consumption. In this work, the established ALMCC system simultaneously achieved the high level of CO2 fixation, energy recycle, and municipal wastewater treatment effectively and efficiently.

  7. Artificial photosynthesis of. beta. -ketocarboxylic acids from carbon dioxide and ketones via enolate complexes of aluminum porphyrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirai, Yasuhiro; Aida, Takuzo; Inoue, Shohei

    1989-04-12

    Photochemical fixation of carbon dioxide is of much interest in connection with biological photosynthesis by green plants as well as from the viewpoint of carbon resource utilization. One of the important steps in the assimilation of carbon dioxide is the carboxylation of a carbonyl compound into ketocarboxylic acid, where the reaction proceeds via an enolate species as reactive intermediate. For example, in four carbon (C{sub 4}) pathway and Crassulacean acid metabolism (CAM) processes, pyruvate is converted with the aid of ATP into phosphoenolpyruvate, which is subsequently carboxylated to give oxaloacetate by the action of pyruvate carboxylase. In relation to thismore » interesting biological process, some artificial systems have been exploited for the synthesis of {beta}-ketocarboxylic acid derivatives from carbon dioxide and ketones using nucleophiles such as metal carbonates, thiazolates, phenolates, alkoxides, and strong organic as well as inorganic basis, which promote the enolization of ketones in the intermediate step. We wish to report here a novel, visible light-induced fixation of carbon dioxide with the enolate complex of aluminum porphyrin, giving {beta}-ketocarboxylic acid under mild conditions.« less

  8. Geochemical roots of autotrophic carbon fixation: hydrothermal experiments in the system citric acid, H 2O-(±FeS)-(±NiS)

    NASA Astrophysics Data System (ADS)

    Cody, G. D.; Boctor, N. Z.; Hazen, R. M.; Brandes, J. A.; Morowitz, Harold J.; Yoder, H. S.

    2001-10-01

    Recent theories have proposed that life arose from primitive hydrothermal environments employing chemical reactions analogous to the reductive citrate cycle (RCC) as the primary pathway for carbon fixation. This chemistry is presumed to have developed as a natural consequence of the intrinsic geochemistry of the young, prebiotic, Earth. There has been no experimental evidence, however, demonstrating that there exists a natural pathway into such a cycle. Toward this end, the results of hydrothermal experiments involving citric acid are used as a method of deducing such a pathway. Homocatalytic reactions observed in the citric acid-H2O experiments encompass many of the reactions found in modern metabolic systems, i.e., hydration-dehydration, retro-Aldol, decarboxylation, hydrogenation, and isomerization reactions. Three principal decomposition pathways operate to degrade citric acid under thermal and aquathermal conditions. It is concluded that the acid catalyzed βγ decarboxylation pathway, leading ultimately to propene and CO2, may provide the most promise for reaction network reversal under natural hydrothermal conditions. Increased pressure is shown to accelerate the principal decarboxylation reactions under strictly hydrothermal conditions. The effect of forcing the pH via the addition of NaOH reveals that the βγ decarboxylation pathway operates even up to intermediate pH levels. The potential for network reversal (the conversion of propene and CO2 up to a tricarboxylic acid) is demonstrated via the Koch (hydrocarboxylation) reaction promoted heterocatalytically with NiS in the presence of a source of CO. Specifically, an olefin (1-nonene) is converted to a monocarboxylic acid; methacrylic acid is converted to the dicarboxylic acid, methylsuccinic acid; and the dicarboxylic acid, itaconic acid, is converted into the tricarboxylic acid, hydroaconitic acid. A number of interesting sulfur-containing products are also formed that may provide for additional

  9. The Path of Carbon in Photosynthesis

    DOE R&D Accomplishments Database

    Calvin, M.; Benson, A. A.

    1948-03-08

    The dark fixation of carbon dioxide by green algae has been investigated and found to be closely related to photosynthesis fixation. By illumination in the absence of carbon dioxide followed by treatment with radioactive carbon dioxide in the dark, the amount fixed has been increased ten to twenty fold. This rate of maximum fixation approaches photosynthesis maximum rates. The majority of the radioactive products formed under these conditions have been identified and isolated and the distribution of labeled carbon determined. From these results a tentative scheme for the mechanism of photosynthesis is set forth.

  10. Pathways for Metastable Carbonate Synthesis

    NASA Astrophysics Data System (ADS)

    Whittaker, Michael L.

    Carbonate minerals are integral to life on earth, as reservoirs for CO 2 in the earth's natural carbon cycle and as the skeletal elements of abundant organisms like corals and plankton. Because of its relevance, availability, and low toxicity, calcium carbonate is also an important model system for phase transformations in aqueous solutions. However, it often does not conform to classical theories of nucleation, prompting a critical reevaluation of both the pathways of carbonate mineralization and the theories that describe them. Most importantly, it has been shown that amorphous calcium carbonate (ACC) is frequently a precursor to crystalline calcium carbonate during precipitation, in both biological and inorganic systems. Amorphous precursors influence phase transformations in several ways, including decoupling densification of ions in solution from their arrangement on a crystalline lattice, altering solution thermodynamics, creating new interfaces, and changing kinetic barriers. To exert control over these processes in vivo, organisms generally confine precipitation reactions to small volumes, often within lipid membrane vesicles. Herein, I describe in vitro model systems designed to elucidate and replicate biological mineralization pathways. Giant unilamellar vesicles are shown to slow the rate of crystallization of ACC by excluding nucleation accelerants, and by preserving the high kinetic barriers to lower energy phases that result. Phosphatidylcholine, one of the most abundant natural lipids, does not interact strongly with ACC, but the interfacial chemistry canbe tuned by changing the lipid charge or reducing steric shielding. Microfluidically produced water-in-oil emulsions were used as liposome analogs to study crystallization kinetics. In ensembles of hundreds of emulsion drops, we show that vaterite forms from ACC via a classical, two-step nucleation process. We also extend the classical theory of nucleation to highly confined aqueous systems, where

  11. High dark inorganic carbon fixation rates by specific microbial groups in the Atlantic off the Galician coast (NW Iberian margin).

    PubMed

    Guerrero-Feijóo, Elisa; Sintes, Eva; Herndl, Gerhard J; Varela, Marta M

    2018-02-01

    Bulk dark dissolved inorganic carbon (DIC) fixation rates were determined and compared to microbial heterotrophic production in subsurface, meso- and bathypelagic Atlantic waters off the Galician coast (NW Iberian margin). DIC fixation rates were slightly higher than heterotrophic production throughout the water column, however, more prominently in the bathypelagic waters. Microautoradiography combined with catalyzed reporter deposition fluorescence in situ hybridization (MICRO-CARD-FISH) allowed us to identify several microbial groups involved in dark DIC uptake. The contribution of SAR406 (Marinimicrobia), SAR324 (Deltaproteobacteria) and Alteromonas (Gammaproteobacteria) to the dark DIC fixation was significantly higher than that of SAR202 (Chloroflexi) and Thaumarchaeota, in agreement with their contribution to microbial abundance. Q-PCR on the gene encoding for the ammonia monooxygenase subunit A (amoA) from the putatively high versus low ammonia concentration ecotypes revealed their depth-stratified distribution pattern. Taken together, our results indicate that chemoautotrophy is widespread among microbes in the dark ocean, particularly in bathypelagic waters. This chemolithoautotrophic biomass production in the dark ocean, depleted in bio-available organic matter, might play a substantial role in sustaining the dark ocean's food web. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Fixation of carbon dioxide into dimethyl carbonate over ...

    EPA Pesticide Factsheets

    A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydrating agent or requirement for azeotropic distillation. Prepared for submission to Nature Scientific reports.

  13. Requirement of carbon dioxide for initial growth of facultative methylotroph, Acidomonas methanolica MB58.

    PubMed

    Mitsui, Ryoji; Katayama, Hiroko; Tanaka, Mitsuo

    2015-07-01

    The facultative methylotrophic bacterium Acidomonas methanolica MB58 can utilize C1 compounds via the ribulose monophosphate pathway. A large gene cluster comprising three components related to C1 metabolism was found in the genome. From upstream, the first was an mxa cluster encoding proteins for oxidation of methanol to formaldehyde; the second was the rmp cluster encoding enzymes for formaldehyde fixation; and the third was the cbb gene cluster encoding proteins for carbon dioxide (CO2) fixation. Examination of CO2 requirements for growth of A. methanolica MB58 cells demonstrated that it did not grow on any carbon source under CO2-free conditions. Measurement of ribulose-1,5-bisphosphate carboxylase activity and RT-PCR analysis demonstrated enzymatic activity was detected in A. methanolica MB58 at growth phase, regardless of carbon sources. However, methanol dehydrogenase and 3-hexlose-6-phosphate synthase expression was regulated by methanol or formaldehyde; it were detected during growth and apparently differed from ribulose-1,5-bisphosphate carboxylase expression. These results suggested that A. methanolica MB58 may be initially dependent on autotrophic growth and that carbon assimilation was subsequently coupled with the ribulose monophosphate pathway at early- to mid-log phases during methylotrophic growth. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Soil Carbon-Fixation Rates and Associated Bacterial Diversity and Abundance in Three Natural Ecosystems.

    PubMed

    Lynn, Tin Mar; Ge, Tida; Yuan, Hongzhao; Wei, Xiaomeng; Wu, Xiaohong; Xiao, Keqing; Kumaresan, Deepak; Yu, San San; Wu, Jinshui; Whiteley, Andrew S

    2017-04-01

    CO 2 assimilation by autotrophic microbes is an important process in soil carbon cycling, and our understanding of the community composition of autotrophs in natural soils and their role in carbon sequestration of these soils is still limited. Here, we investigated the autotrophic C incorporation in soils from three natural ecosystems, i.e., wetland (WL), grassland (GR), and forest (FO) based on the incorporation of labeled C into the microbial biomass. Microbial assimilation of 14 C ( 14 C-MBC) differed among the soils from three ecosystems, accounting for 14.2-20.2% of 14 C-labeled soil organic carbon ( 14 C-SOC). We observed a positive correlation between the cbbL (ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit gene) abundance, 14 C-SOC level, and 14 C-MBC concentration confirming the role of autotrophic bacteria in soil carbon sequestration. Distinct cbbL-bearing bacterial communities were present in each soil type; form IA and form IC RubisCO-bearing bacteria were most abundant in WL, followed by GR soils, with sequences from FO soils exclusively derived from the form IC clade. Phylogenetically, the diversity of CO 2 -fixing autotrophs and CO oxidizers differed significantly with soil type, whereas cbbL-bearing bacterial communities were similar when assessed using coxL. We demonstrate that local edaphic factors such as pH and salinity affect the C-fixation rate as well as cbbL and coxL gene abundance and diversity. Such insights into the effect of soil type on the autotrophic bacterial capacity and subsequent carbon cycling of natural ecosystems will provide information to enhance the sustainable management of these important natural ecosystems.

  15. Use of the S3 Corridor for Iliosacral Fixation in a Dysmorphic Sacrum: A Case Report.

    PubMed

    El Dafrawy, Mostafa H; Strike, Sophia A; Osgood, Greg M

    2017-01-01

    The S1 and S2 corridors are the typical osseous pathways for iliosacral screw fixation of posterior pelvic ring fractures. In dysmorphic sacra, the S1 screw trajectory is often different from that in normal sacra. We present a case of iliosacral screw placement in the third sacral segment for fixation of a complex lateral compression type-3 pelvic fracture in a patient with a dysmorphic sacrum. In patients with dysmorphic sacra and unstable posterior pelvic ring fractures or dislocations, the S3 corridor may be a feasible osseous fixation pathway that can be used in a manner equivalent to the S2 corridor in a normal sacrum.

  16. Carboxysomes: metabolic modules for CO 2 fixation

    DOE PAGES

    Turmo, Aiko; Gonzalez-Esquer, Cesar Raul; Kerfeld, Cheryl A.

    2017-08-14

    The carboxysome is a bacterial microcompartment encapsulating the enzymes carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase. As the site of CO 2 fixation, it serves an essential role in the carbon dioxide concentrating mechanism of many chemoautotrophs and all cyanobacteria. Carboxysomes and other bacterial microcompartments self-assemble through specific protein–protein interactions that are typically mediated by conserved protein domains. In this review, we frame our current understanding of carboxysomes in the context of their component protein domains with their inherent function as the ‘building blocks’ of carboxysomes. These building blocks are organized in genetic modules (conserved chromosomal loci) that encode for carboxysomes andmore » ancillary proteins essential for the integration of the organelle with the rest of cellular metabolism. This conceptual framework provides the foundation for ‘plug-and-play’ engineering of carboxysomes as CO 2 fixation modules in a variety of biotechnological applications.« less

  17. Fixation distance and fixation duration to vertical road signs.

    PubMed

    Costa, Marco; Simone, Andrea; Vignali, Valeria; Lantieri, Claudio; Palena, Nicola

    2018-05-01

    The distance of first-fixation to vertical road signs was assessed in 22 participants while driving a route of 8.34 km. Fixations to road signs were recorded by a mobile eye-movement-tracking device synchronized to GPS and kinematic data. The route included 75 road signs. First-fixation distance and fixation duration distributions were positively skewed. Median distance of first-fixation was 51 m. Median fixation duration was 137 ms with a modal value of 66 ms. First-fixation distance was linearly related to speed and fixation duration. Road signs were gazed at a much closer distance than their visibility distance. In a second study a staircase procedure was used to test the presentation-time threshold that lead to a 75% accuracy in road sign identification. The threshold was 35 ms, showing that short fixations to a road signs could lead to a correct identification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    NASA Astrophysics Data System (ADS)

    Batterman, Sarah A.; Hedin, Lars O.; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J.; Hall, Jefferson S.

    2013-10-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000kg carbon per hectare) in the first 12years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  19. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession.

    PubMed

    Batterman, Sarah A; Hedin, Lars O; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J; Hall, Jefferson S

    2013-10-10

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000 kg carbon per hectare) in the first 12 years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  20. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin-Fatty Acid Biosynthetic Pathway.

    PubMed

    Haushalter, Robert W; Phelan, Ryan M; Hoh, Kristina M; Su, Cindy; Wang, George; Baidoo, Edward E K; Keasling, Jay D

    2017-04-05

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotin and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.

  1. Skin Graft Fixation Using Hydrofiber (Aquacel® Extra).

    PubMed

    Yen, Ya-Hui; Lin, Chih-Ming; Hsu, Honda; Chen, Ying-Chen; Chen, Yi-Wen; Li, Wan-Yu; Hsieh, Chia-Nan; Huang, Chieh-Chi

    2018-06-01

    The traditional method of skin graft fixation is with tie-over bollus dressing. The use of splints in the extremities for skin graft fixation is a common practice. However, these splints are heavy and uncomfortable and contribute considerably to our overall medical waste. Hydrofiber (Aquacel Extra) has a strong fluid absorption property and fixates well to the underlying wound once applied. In this study, we used hydrofiber for fixation, avoiding the use of splints after skin grafting. A total of 56 patients reconstructed with split-thickness skin graft that was fixated only with hydrofiber between March 2015 and March 2016 were included in this retrospective study. There were 44 men and 12 women with a mean age of 61 ± 18 years. The defect size ranged from 1 × 1 cm for fingertips to 30 × 12 cm for lower limb defects. The average defect size was 61 ± 78 cm. The mean skin graft take was 96% ± 6%. Because splints were not required, we saved around 48 kg of medical waste over the space of 1 year. The use of hydrofiber for skin graft fixation was effective and technically very simple. Splints were not required with this method, decreasing the medical waste created and increasing patient comfort. We suggest that this is an excellent alternative for skin graft fixation while at the same time decreasing our carbon footprint as surgeons.

  2. Estimating environmental co-benefits of U.S. low-carbon pathways using an integrated assessment model with state-level resolution.

    PubMed

    Ou, Yang; Shi, Wenjing; Smith, Steven J; Ledna, Catherine M; West, J Jason; Nolte, Christopher G; Loughlin, Daniel H

    2018-04-15

    There are many technological pathways that can lead to reduced carbon dioxide emissions. However, these pathways can have substantially different impacts on other environmental endpoints, such as air quality and energy-related water demand. This study uses an integrated assessment model with state-level resolution of the energy system to compare environmental impacts of alternative low-carbon pathways for the United States. One set of pathways emphasizes nuclear energy and carbon capture and storage, while another set emphasizes renewable energy, including wind, solar, geothermal power, and bioenergy. These are compared with pathways in which all technologies are available. Air pollutant emissions, mortality costs attributable to particulate matter smaller than 2.5 μm in diameter, and energy-related water demands are evaluated for 50% and 80% carbon dioxide reduction targets in 2050. The renewable low-carbon pathways require less water withdrawal and consumption than the nuclear and carbon capture pathways. However, the renewable low-carbon pathways modeled in this study produce higher particulate matter-related mortality costs due to greater use of biomass in residential heating. Environmental co-benefits differ among states because of factors such as existing technology stock, resource availability, and environmental and energy policies.

  3. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin–Fatty Acid Biosynthetic Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haushalter, Robert W.; Phelan, Ryan M.; Hoh, Kristina M.

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here in this paper we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotinmore » and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.« less

  4. A Synthetic Recursive “+1” Pathway for Carbon Chain Elongation

    PubMed Central

    Marcheschi, Ryan J.; Li, Han; Zhang, Kechun; Noey, Elizabeth L.; Kim, Seonah; Chaubey, Asha; Houk, K. N.; Liao, James C.

    2013-01-01

    Nature uses four methods of carbon chain elongation for the production of 2-ketoacids, fatty acids, polyketides, and isoprenoids. Using a combination of quantum mechanical (QM) modeling, protein–substrate modeling, and protein and metabolic engineering, we have engineered the enzymes involved in leucine biosynthesis for use as a synthetic “+1” recursive metabolic pathway to extend the carbon chain of 2-ketoacids. This modified pathway preferentially selects longer-chain substrates for catalysis, as compared to the non-recursive natural pathway, and can recursively catalyze five elongation cycles to synthesize bulk chemicals, such as 1-heptanol, 1-octanol, and phenylpropanol directly from glucose. The “+1” chemistry is a valuable metabolic tool in addition to the “+5” chemistry and “+2” chemistry for the biosynthesis of isoprenoids, fatty acids, or polyketides. PMID:22242720

  5. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    NASA Astrophysics Data System (ADS)

    Cailleau, G.; Braissant, O.; Verrecchia, E. P.

    2011-07-01

    An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is

  6. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    NASA Astrophysics Data System (ADS)

    Cailleau, G.; Braissant, O.; Verrecchia, E. P.

    2011-02-01

    An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the theoretical acidic conditions of these soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. Regarding the carbonate flux, another direct consequence of wood feeding is a concomitant flux of carbonate formed in wood tissues, which is not consumed by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter. Therefore, an oxalate pool is formed on the forest ground. Then, wood rotting gents (mainly termites, fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition some of these gents are themselves producers of oxalate (fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is pumped through the

  7. Heterotrophic organisms dominate nitrogen fixation in the South Pacific Gyre

    PubMed Central

    Halm, Hannah; Lam, Phyllis; Ferdelman, Timothy G; Lavik, Gaute; Dittmar, Thorsten; LaRoche, Julie; D'Hondt, Steven; Kuypers, Marcel MM

    2012-01-01

    Oceanic subtropical gyres are considered biological deserts because of the extremely low availability of nutrients and thus minimum productivities. The major source of nutrient nitrogen in these ecosystems is N2-fixation. The South Pacific Gyre (SPG) is the largest ocean gyre in the world, but measurements of N2-fixation therein, or identification of microorganisms involved, are scarce. In the 2006/2007 austral summer, we investigated nitrogen and carbon assimilation at 11 stations throughout the SPG. In the ultra-oligotrophic waters of the SPG, the chlorophyll maxima reached as deep as 200 m. Surface primary production seemed limited by nitrogen, as dissolved inorganic carbon uptake was stimulated upon additions of 15N-labeled ammonium and leucine in our incubation experiments. N2-fixation was detectable throughout the upper 200 m at most stations, with rates ranging from 0.001 to 0.19 nM N h−1. N2-fixation in the SPG may account for the production of 8–20% of global oceanic new nitrogen. Interestingly, comparable 15N2-fixation rates were measured under light and dark conditions. Meanwhile, phylogenetic analyses for the functional gene biomarker nifH and its transcripts could not detect any common photoautotrophic diazotrophs, such as, Trichodesmium, but a prevalence of γ-proteobacteria and the unicellular photoheterotrophic Group A cyanobacteria. The dominance of these likely heterotrophic diazotrophs was further verified by quantitative PCR. Hence, our combined results show that the ultra-oligotrophic SPG harbors a hitherto unknown heterotrophic diazotrophic community, clearly distinct from other oceanic gyres previously visited. PMID:22170429

  8. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawley, Alyse K.; Brewer, Heather M.; Norbeck, Angela D.

    2014-08-05

    Oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified marine waters. Currently OMZs are expanding due to global climate change. This expansion alters marine ecosystem function and the productivity of fisheries due to habitat compression and changes in biogeochemical cycling leading to fixed nitrogen loss and greenhouse gas production. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally anoxic fjord, Saanich Inlet to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components formore » nitrification, anaerobic ammonium oxidation (anammox), denitrification and inorganic carbon fixation predominantly co-varied with abundance and distribution patterns of Thaumarchaeota, Nitrospira, Planctomycetes and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Within these groups, pathways mediating inorganic carbon fixation and nitrogen and sulfur transformations were differentially expressed across the redoxcline. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters and denitrification, sulfur-oxidation and inorganic carbon fixation pathways affiliated with SUP05 dominated suboxic and anoxic waters. Nitrite-oxidation and anammox pathways affiliated with Nitrospina and Planctomycetes respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The differential expression of these pathways under changing water column redox conditions has quantitative implications for coupled biogeochemical cycling linking different modes of inorganic carbon fixation with distributed nitrogen and sulfur-based energy metabolism extensible to coastal and open ocean OMZs.« less

  9. Carbon recycling by cyanobacteria: improving CO2 fixation through chemical production.

    PubMed

    Zhang, Angela; Carroll, Austin L; Atsumi, Shota

    2017-09-01

    Atmospheric CO2 levels have reached an alarming level due to industrialization and the burning of fossil fuels. In order to lower the level of atmospheric carbon, strategies to sequester excess carbon need to be implemented. The CO2-fixing mechanism in photosynthetic organisms enables integration of atmospheric CO2 into biomass. Additionally, through exogenous metabolic pathways in these photosynthetic organisms, fixed CO2 can be routed to produce various commodity chemicals that are currently produced from petroleum. This review will highlight studies and modifications to different components of cyanobacterial CO2-fixing systems, as well as the application of these systems toward CO2-derived chemical production. 2,3-Butanediol is given particular focus as one of the most thoroughly studied systems for conversion of CO2 to a bioproduct. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. A mechanistic, globally-applicable model of plant nitrogen uptake, retranslocation and fixation

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Tan, S.; Malhi, Y.; Fisher, R. A.; Sitch, S.; Huntingford, C.

    2008-12-01

    Nitrogen is one of the nutrients that can most limit plant growth, and nitrogen availability may be a controlling factor on biosphere responses to climate change. We developed a plant nitrogen assimilation model based on a) advective transport through the transpiration stream, b) retranslocation whereby carbon is expended to resorb nitrogen from leaves, c) active uptake whereby carbon is expended to acquire soil nitrogen, and d) biological nitrogen fixation whereby carbon is expended for symbiotic nitrogen fixers. The model relies on 9 inputs: 1) net primary productivity (NPP), 2) plant C:N ratio, 3) available soil nitrogen, 4) root biomass, 5) transpiration rate, 6) saturated soil depth,7) leaf nitrogen before senescence, 8) soil temperature, and 9) ability to fix nitrogen. A carbon cost of retranslocation is estimated based on leaf nitrogen and compared to an active uptake carbon cost based on root biomass and available soil nitrogen; for nitrogen fixers both costs are compared to a carbon cost of fixation dependent on soil temperature. The NPP is then allocated to optimize growth while maintaining the C:N ratio. The model outputs are total plant nitrogen uptake, remaining NPP available for growth, carbon respired to the soil and updated available soil nitrogen content. We test and validate the model (called FUN: Fixation and Uptake of Nitrogen) against data from the UK, Germany and Peru, and run the model under simplified scenarios of primary succession and climate change. FUN is suitable for incorporation into a land surface scheme of a General Circulation Model and will be coupled with a soil model and dynamic global vegetation model as part of a land surface model (JULES).

  11. Effect of light on N2 fixation and net nitrogen release of Trichodesmium in a field study

    NASA Astrophysics Data System (ADS)

    Lu, Yangyang; Wen, Zuozhu; Shi, Dalin; Chen, Mingming; Zhang, Yao; Bonnet, Sophie; Li, Yuhang; Tian, Jiwei; Kao, Shuh-Ji

    2018-01-01

    Dinitrogen fixation (NF) by marine cyanobacteria is an important pathway to replenish the oceanic bioavailable nitrogen inventory. Light is the key to modulating NF; however, field studies investigating the light response curve (NF-I curve) of NF rate and the effect of light on diazotroph-derived nitrogen (DDN) net release are relatively sparse in the literature, hampering prediction using models. A dissolution method was applied using uncontaminated 15N2 gas to examine how the light changes may influence the NF intensity and DDN net release in the oligotrophic ocean. Experiments were conducted at stations with diazotrophs dominated by filamentous cyanobacterium Trichodesmium spp. in the western Pacific and the South China Sea. The effect of light on carbon fixation (CF) was measured in parallel using the 13C tracer method specifically for a station characterized by Trichodesmium bloom. Both NF-I and CF-I curves showed a Ik (light saturation coefficient) range of 193 to 315 µE m-2 s-1, with light saturation at around 400 µE m-2 s-1. The proportion of DDN net release ranged from ˜ 6 to ˜ 50 %, suggesting an increasing trend as the light intensity decreased. At the Trichodesmium bloom station, we found that the CF / NF ratio was light-dependent and the ratio started to increase as light was lower than the carbon compensation point of 200 µE m-2 s-1. Under low-light stress, Trichodesmium physiologically preferred to allocate more energy for CF to alleviate the intensive carbon consumption by respiration; thus, there is a metabolism tradeoff between CF and NF pathways. Results showed that short-term ( < 24 h) light change modulates the physiological state, which subsequently determined the C / N metabolism and DDN net release by Trichodesmium. Reallocation of energy associated with the variation in light intensity would be helpful for prediction of the global biogeochemical cycle of N by models involving Trichodesmium blooms.

  12. 1-CMDb: A Curated Database of Genomic Variations of the One-Carbon Metabolism Pathway.

    PubMed

    Bhat, Manoj K; Gadekar, Veerendra P; Jain, Aditya; Paul, Bobby; Rai, Padmalatha S; Satyamoorthy, Kapaettu

    2017-01-01

    The one-carbon metabolism pathway is vital in maintaining tissue homeostasis by driving the critical reactions of folate and methionine cycles. A myriad of genetic and epigenetic events mark the rate of reactions in a tissue-specific manner. Integration of these to predict and provide personalized health management requires robust computational tools that can process multiomics data. The DNA sequences that may determine the chain of biological events and the endpoint reactions within one-carbon metabolism genes remain to be comprehensively recorded. Hence, we designed the one-carbon metabolism database (1-CMDb) as a platform to interrogate its association with a host of human disorders. DNA sequence and network information of a total of 48 genes were extracted from a literature survey and KEGG pathway that are involved in the one-carbon folate-mediated pathway. The information generated, collected, and compiled for all these genes from the UCSC genome browser included the single nucleotide polymorphisms (SNPs), CpGs, copy number variations (CNVs), and miRNAs, and a comprehensive database was created. Furthermore, a significant correlation analysis was performed for SNPs in the pathway genes. Detailed data of SNPs, CNVs, CpG islands, and miRNAs for 48 folate pathway genes were compiled. The SNPs in CNVs (9670), CpGs (984), and miRNAs (14) were also compiled for all pathway genes. The SIFT score, the prediction and PolyPhen score, as well as the prediction for each of the SNPs were tabulated and represented for folate pathway genes. Also included in the database for folate pathway genes were the links to 124 various phenotypes and disease associations as reported in the literature and from publicly available information. A comprehensive database was generated consisting of genomic elements within and among SNPs, CNVs, CpGs, and miRNAs of one-carbon metabolism pathways to facilitate (a) single source of information and (b) integration into large-genome scale network

  13. The importance of nodule CO2 fixation for the efficiency of symbiotic nitrogen fixation in pea at vegetative growth and during pod formation.

    PubMed

    Fischinger, Stephanie Anastasia; Schulze, Joachim

    2010-05-01

    Nodule CO2 fixation is of pivotal importance for N2 fixation. The process provides malate for bacteroids and oxaloacetate for nitrogen assimilation. The hypothesis of the present paper was that grain legume nodules would adapt to higher plant N demand and more restricted carbon availability at pod formation through increased nodule CO2 fixation and a more efficient N2 fixation. Growth, N2 fixation, and nodule composition during vegetative growth and at pod formation were studied in pea plants (Pisum sativum L.). In parallel experiments, 15N2 and 13CO2 uptake, as well as nodule hydrogen and CO2 release, was measured. Plants at pod formation showed higher growth rates and N2 fixation per plant when compared with vegetative growth. The specific activity of active nodules was about 25% higher at pod formation. The higher nodule activity was accompanied by higher amino acid concentration in nodules and xylem sap with a higher share of asparagine. Nodule 13CO2 fixation was increased at pod formation, both per plant and per 15N2 fixed unit. However, malate concentration in nodules was only 40% of that during vegetative growth and succinate was no longer detectable. The data indicate that increased N2 fixation at pod formation is connected with strongly increased nodule CO2 fixation. While the sugar concentration in nodules at pod formation was not altered, the concentration of organic acids, namely malate and succinate, was significantly lower. It is concluded that strategies to improve the capability of nodules to fix CO2 and form organic acids might prolong intensive N2 fixation into the later stages of pod formation and pod filling in grain legumes.

  14. Ammonia fixation by humic substances: A nitrogen-15 and carbon-13 NMR study

    USGS Publications Warehouse

    Thorn, K.A.; Mikita, M.A.

    1992-01-01

    The process of ammonia fixation has been studied in three well characterized and structurally diverse fulvic and humic acid samples. The Suwannee River fulvic acid, and the IHSS peat and leonardite humic acids, were reacted with 15N-labelled ammonium hydroxide, and analyzed by liquid phase 15N NMR spectrometry. Elemental analyses and liquid phase 13C NMR spectra also were recorded on the samples before and after reaction with ammonium hydroxide. The largest increase in percent nitrogen occurred with the Suwannee River fulvic acid, which had a nitrogen content of 0.88% before fixation and 3.17% after fixation. The 15N NMR spectra revealed that ammonia reacted similarly with all three samples, indicating that the functional groups which react with ammonia exist in structural configurations common to all three samples. The majority of nitrogcn incorporated into the samples appears to be in the form of indole and pyrrole nitrogen, followed by pyridine, pyrazine, amide and aminohydroquinone nitrogen. Chemical changes in the individual samples upon fixation could not be discerned from the 13C NMR spectra.

  15. Autotrophy of green non-sulphur bacteria in hot spring microbial mats: biological explanations for isotopically heavy organic carbon in the geological record

    NASA Technical Reports Server (NTRS)

    van der Meer, M. T.; Schouten, S.; de Leeuw, J. W.; Ward, D. M.

    2000-01-01

    Inferences about the evidence of life recorded in organic compounds within the Earth's ancient rocks have depended on 13C contents low enough to be characteristic of biological debris produced by the well-known CO2 fixation pathway, the Calvin cycle. 'Atypically' high values have been attributed to isotopic alteration of sedimentary organic carbon by thermal metamorphism. We examined the possibility that organic carbon characterized by a relatively high 13C content could have arisen biologically from recently discovered autotrophic pathways. We focused on the green non-sulphur bacterium Chloroflexus aurantiacus that uses the 3-hydroxypropionate pathway for inorganic carbon fixation and is geologically significant as it forms modern mat communities analogous to stromatolites. Organic matter in mats constructed by Chloroflexus spp. alone had relatively high 13C contents (-14.9%) and lipids diagnostic of Chloroflexus that were also isotopically heavy (-8.9% to -18.5%). Organic matter in mats constructed by Chloroflexus in conjunction with cyanobacteria had a more typical Calvin cycle signature (-23.5%). However, lipids diagnostic of Chloroflexus were isotopically enriched (-15.1% to -24.1%) relative to lipids typical of cyanobacteria (-33.9% to -36.3%). This suggests that, in mats formed by both cyanobacteria and Chloroflexus, autotrophy must have a greater effect on Chloroflexus carbon metabolism than the photoheterotrophic consumption of cyanobacterial photosynthate. Chloroflexus cell components were also selectively preserved. Hence, Chloroflexus autotrophy and selective preservation of its products constitute one purely biological mechanism by which isotopically heavy organic carbon could have been introduced into important Precambrian geological features.

  16. Levels of daily light doses under changed day-night cycles regulate temporal segregation of photosynthesis and N2 Fixation in the cyanobacterium Trichodesmium erythraeum IMS101.

    PubMed

    Cai, Xiaoni; Gao, Kunshan

    2015-01-01

    While the diazotrophic cyanobacterium Trichodesmium is known to display inverse diurnal performances of photosynthesis and N2 fixation, such a phenomenon has not been well documented under different day-night (L-D) cycles and different levels of light dose exposed to the cells. Here, we show differences in growth, N2 fixation and photosynthetic carbon fixation as well as photochemical performances of Trichodesmium IMS101 grown under 12L:12D, 8L:16D and 16L:8D L-D cycles at 70 μmol photons m-2 s-1 PAR (LL) and 350 μmol photons m-2 s-1 PAR (HL). The specific growth rate was the highest under LL and the lowest under HL under 16L:8D, and it increased under LL and decreased under HL with increased levels of daytime light doses exposed under the different light regimes, respectively. N2 fixation and photosynthetic carbon fixation were affected differentially by changes in the day-night regimes, with the former increasing directly under LL with increased daytime light doses and decreased under HL over growth-saturating light levels. Temporal segregation of N2 fixation from photosynthetic carbon fixation was evidenced under all day-night regimes, showing a time lag between the peak in N2 fixation and dip in carbon fixation. Elongation of light period led to higher N2 fixation rate under LL than under HL, while shortening the light exposure to 8 h delayed the N2 fixation peaking time (at the end of light period) and extended it to night period. Photosynthetic carbon fixation rates and transfer of light photons were always higher under HL than LL, regardless of the day-night cycles. Conclusively, diel performance of N2 fixation possesses functional plasticity, which was regulated by levels of light energy supplies either via changing light levels or length of light exposure.

  17. Life in hot acid: Pathway analyses in extremely thermoacidophilic archaea

    PubMed Central

    Auernik, Kathryne S.; Cooper, Charlotte R.; Kelly, Robert M.

    2013-01-01

    SUMMARY The extremely thermoacidophilic archaea are a particularly intriguing group of microorganisms that must simultaneously cope with biologically extreme pHs (≤ 4) and temperatures (Topt ≥ 60°C) in their natural environments. Their expandi ng biotechnological significance relates to their role in biomining of base and precious metals and their unique mechanisms of survival in hot acid, at both the cellular and biomolecular levels. Recent developments, such as advances in understanding of heavy metal tolerance mechanisms, implementation of a genetic system, and discovery of a new carbon fixation pathway, have been facilitated by availability of genome sequence data and molecular genetic systems. As a result, new insights into the metabolic pathways and physiological features that define extreme thermoacidophily have been obtained, in some cases suggesting prospects for biotechnological opportunities. PMID:18760359

  18. Stimulation of growth by proteorhodopsin phototrophy involves regulation of central metabolic pathways in marine planktonic bacteria.

    PubMed

    Palovaara, Joakim; Akram, Neelam; Baltar, Federico; Bunse, Carina; Forsberg, Jeremy; Pedrós-Alió, Carlos; González, José M; Pinhassi, Jarone

    2014-09-02

    Proteorhodopsin (PR) is present in half of surface ocean bacterioplankton, where its light-driven proton pumping provides energy to cells. Indeed, PR promotes growth or survival in different bacteria. However, the metabolic pathways mediating the light responses remain unknown. We analyzed growth of the PR-containing Dokdonia sp. MED134 (where light-stimulated growth had been found) in seawater with low concentrations of mixed [yeast extract and peptone (YEP)] or single (alanine, Ala) carbon compounds as models for rich and poor environments. We discovered changes in gene expression revealing a tightly regulated shift in central metabolic pathways between light and dark conditions. Bacteria showed relatively stronger light responses in Ala compared with YEP. Notably, carbon acquisition pathways shifted toward anaplerotic CO2 fixation in the light, contributing 31 ± 8% and 24 ± 6% of the carbon incorporated into biomass in Ala and YEP, respectively. Thus, MED134 was a facultative double mixotroph, i.e., photo- and chemotrophic for its energy source and using both bicarbonate and organic matter as carbon sources. Unexpectedly, relative expression of the glyoxylate shunt genes (isocitrate lyase and malate synthase) was >300-fold higher in the light--but only in Ala--contributing a more efficient use of carbon from organic compounds. We explored these findings in metagenomes and metatranscriptomes and observed similar prevalence of the glyoxylate shunt compared with PR genes and highest expression of the isocitrate lyase gene coinciding with highest solar irradiance. Thus, regulatory interactions between dissolved organic carbon quality and central metabolic pathways critically determine the fitness of surface ocean bacteria engaging in PR phototrophy.

  19. Variations in microbial carbon sources and cycling in the deep continental subsurface

    NASA Astrophysics Data System (ADS)

    Simkus, Danielle N.; Slater, Greg F.; Lollar, Barbara Sherwood; Wilkie, Kenna; Kieft, Thomas L.; Magnabosco, Cara; Lau, Maggie C. Y.; Pullin, Michael J.; Hendrickson, Sarah B.; Wommack, K. Eric; Sakowski, Eric G.; van Heerden, Esta; Kuloyo, Olukayode; Linage, Borja; Borgonie, Gaetan; Onstott, Tullis C.

    2016-01-01

    Deep continental subsurface fracture water systems, ranging from 1.1 to 3.3 km below land surface (kmbls), were investigated to characterize the indigenous microorganisms and elucidate microbial carbon sources and their cycling. Analysis of phospholipid fatty acid (PLFA) abundances and direct cell counts detected varying biomass that was not correlated with depth. Compound-specific carbon isotope analyses (δ13C and Δ14C) of the phospholipid fatty acids (PLFAs) and carbon substrates combined with genomic analyses did identify, however, distinct carbon sources and cycles between the two depth ranges studied. In the shallower boreholes at circa 1 kmbls, isotopic evidence indicated microbial incorporation of biogenic CH4 by the in situ microbial community. At the shallowest site, 1.05 kmbls in Driefontein mine, this process clearly dominated the isotopic signal. At slightly deeper depths, 1.34 kmbls in Beatrix mine, the isotopic data indicated the incorporation of both biogenic CH4 and dissolved inorganic carbon (DIC) derived from CH4 oxidation. In both of these cases, molecular genetic analysis indicated that methanogenic and methanotrophic organisms together comprised a small component (<5%) of the microbial community. Thus, it appears that a relatively minor component of the prokaryotic community is supporting a much larger overall bacterial community in these samples. In the samples collected from >3 kmbls in Tau Tona mine (TT107, TT109 Bh2), the CH4 had an isotopic signature suggesting a predominantly abiogenic origin with minor inputs from microbial methanogenesis. In these samples, the isotopic enrichments (δ13C and Δ14C) of the PLFAs relative to CH4 were consistent with little incorporation of CH4 into the biomass. The most 13C-enriched PLFAs were observed in TT107 where the dominant CO2-fixation pathway was the acetyl-CoA pathway by non-acetogenic bacteria. The differences in the δ13C of the PLFAs and the DIC and DOC for TT109 Bh2 were ∼-24‰ and 0

  20. Improved analysis of C4 and C3 photosynthesis via refined in vitro assays of their carbon fixation biochemistry

    PubMed Central

    Sharwood, Robert E.; Sonawane, Balasaheb V.; Ghannoum, Oula; Whitney, Spencer M.

    2016-01-01

    Plants operating C3 and C4 photosynthetic pathways exhibit differences in leaf anatomy and photosynthetic carbon fixation biochemistry. Fully understanding this underpinning biochemical variation is requisite to identifying solutions for improving photosynthetic efficiency and growth. Here we refine assay methods for accurately measuring the carboxylase and decarboxylase activities in C3 and C4 plant soluble protein. We show that differences in plant extract preparation and assay conditions are required to measure NADP-malic enzyme and phosphoenolpyruvate carboxylase (pH 8, Mg2+, 22 °C) and phosphoenolpyruvate carboxykinase (pH 7, >2mM Mn2+, no Mg2+) maximal activities accurately. We validate how the omission of MgCl2 during leaf protein extraction, lengthy (>1min) centrifugation times, and the use of non-pure ribulose-1,5-bisphosphate (RuBP) significantly underestimate Rubisco activation status. We show how Rubisco activation status varies with leaf ontogeny and is generally lower in mature C4 monocot leaves (45–60% activation) relative to C3 monocots (55–90% activation). Consistent with their >3-fold lower Rubisco contents, full Rubisco activation in soluble protein from C4 leaves (<5min) was faster than in C3 plant samples (<10min), with addition of Rubisco activase not required for full activation. We conclude that Rubisco inactivation in illuminated leaves primarily stems from RuBP binding to non-carbamylated enzyme, a state readily reversible by dilution during cellular protein extraction. PMID:27122573

  1. Nitrogen fixation in boreal peatlands: the effects of increased N deposition on N2-fixation

    NASA Astrophysics Data System (ADS)

    Popma, J. M.; Wieder, R.; Lamers, L.; Vile, M. A.

    2013-12-01

    Boreal peatlands are of great importance to global carbon and nitrogen cycling. While covering only 3-4 % of the terrestrial surface, they account for 25-30 % of the world's soil C and 9-15 % of the world's soil N. In Western Canada atmospheric dry deposition rates are extremely low: approximately 1 kg N ha-1 yr-1. Though these systems have been functioning as net sinks over the past 11,000 years, natural and anthropogenic disturbances might compromise the historical balance of C and N. Biological N2-fixation has recently been shown to represent a very significant input of N into these systems, contributing to 62% of total N in Western Canada. Interactions between N deposition and biological N2-fixation are as yet, unknown, but the impact of elevated deposition of N-compounds from increased industrial expansion of oil sands mining to peatlands, is concerning. Given that nitrogenase, the enzyme responsible for catalyzing N2-fixation, is energetically costly when active, enhanced inputs of atmospheric N deposition could be a major determinant for enzyme activity and rates of biological N input to these bogs. Understanding interactions between N deposition and N2 fixation in boreal peatlands can aid in predicting the consequences of increased N deposition and setting critical loads. We conducted a field-fertilization experiment in a poor fen in Alberta, Canada, to determine the effects of enhanced N deposition on a dominant fen species Sphagnum angustifolium. The experiment consisted of seven N treatments: Control, 0, 5, 10, 15, 20 and 25 kg N ha-1 y1, n=3. N2-fixation was measured during summer 2012 and 2013 using the acetylene reduction assay (ARA). ARA rates were converted to rates of N2-fixation by calibrating ARA with paired 15N2-incubations. In both 2012 and 2013, with increasing N deposition from 0 kg N ha-1 yr-1 to 25 kg N ha-1 yr-1, rates of N2 fixation decreased, with highest rates in the 0 kg N ha-1 yr-1 treatment mosses (54.2 × 1.40; 48.58 × 7.12 kg N ha

  2. Functional group diversity is key to Southern Ocean benthic carbon pathways

    PubMed Central

    Sands, Chester J.

    2017-01-01

    High latitude benthos are globally important in terms of accumulation and storage of ocean carbon, and the feedback this is likely to have on regional warming. Understanding this ecosystem service is important but difficult because of complex taxonomic diversity, history and geography of benthic biomass. Using South Georgia as a model location (where the history and geography of benthic biology is relatively well studied) we investigated whether the composition of functional groups were critical to benthic accumulation, immobilization and burial pathway to sequestration–and also aid their study through simplification of identification. We reclassified [1], [2]) morphotype and carbon mass data to 13 functional groups, for each sample of 32 sites around the South Georgia continental shelf. We investigated the influence on carbon accumulation, immobilization and sequestration estimate by multiple factors including the compositions of functional groups. Functional groups showed high diversity within and between sites, and within and between habitat types. Carbon storage was not linked to a functional group in particular but accumulation and immobilization increased with the number of functional groups present and the presence of hard substrata. Functional groups were also important to carbon burial rate, which increased with the presence of mixed (hard and soft substrata). Functional groups showed high surrogacy for taxonomic composition and were useful for examining contrasting habitat categorization. Functional groups not only aid marine carbon storage investigation by reducing time and the need for team size and speciality, but also important to benthic carbon pathways per se. There is a distinct geography to seabed carbon storage; seabed boulder-fields are hotspots of carbon accumulation and immobilization, whilst the interface between such boulder-fields and sediments are key places for burial and sequestration. PMID:28654664

  3. Estimating environmental co-benefits of U.S. low-carbon pathways using an integrated assessment model with state-level resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Yang; Shi, Wenjing; Smith, Steven J.

    There are many technological pathways that can lead to reduced carbon dioxide (CO 2) emissions. However, these pathways can have substantially different impacts on other environmental endpoints, such as air quality and energy-related water demand. This study uses an integrated assessment model with state-level resolution of the U.S. energy system to compare environmental impacts of alternative low-carbon pathways. One set of pathways emphasizes nuclear energy and carbon capture and storage (NUC/CCS), while another set emphasizes renewable energy (RE). These are compared with pathways in which all technologies are available. Air pollutant emissions, mortality costs attributable to particulate matter less thanmore » 2.5 microns in diameter (PM2.5), and energy-related water demands are evaluated for 50% and 80% CO 2 reduction targets in the U.S. in 2050. The RE low-carbon pathways require less water withdrawal and consumption than the NUC/CCS pathways because of the large cooling demands of nuclear power and CCS. However, the NUC/CCS low-carbon pathways produce greater health benefits, mainly because the NUC/CCS assumptions result in less primary PM2.5 emissions from residential wood combustion. Environmental co-benefits differ among states because of factors such as existing technology stock, resource availability, and environmental and energy policies. An important finding is that biomass in the building sector can offset some of the health co-benefits of the low-carbon pathways even though it plays only a minor role in reducing CO 2 emissions.« less

  4. Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification.

    PubMed

    Rossi, Federico; Olguín, Eugenia J; Diels, Ludo; De Philippis, Roberto

    2015-01-25

    The growing concern for the increase of the global warming effects due to anthropogenic activities raises the challenge of finding novel technological approaches to stabilize CO2 emissions in the atmosphere and counteract impinging interconnected issues such as desertification and loss of biodiversity. Biological-CO2 mitigation, triggered through biological fixation, is considered a promising and eco-sustainable method, mostly owing to its downstream benefits that can be exploited. Microorganisms such as cyanobacteria, green algae and some autotrophic bacteria could potentially fix CO2 more efficiently than higher plants, due to their faster growth. Some examples of the potential of biological-CO2 mitigation are reported and discussed in this paper. In arid and semiarid environments, soil carbon sequestration (CO2 fixation) by cyanobacteria and biological soil crusts is considered an eco-friendly and natural process to increase soil C content and a viable pathway to soil restoration after one disturbance event. Another way for biological-CO2 mitigation intensively studied in the last few years is related to the possibility to perform carbon dioxide sequestration using microalgae, obtaining at the same time bioproducts of industrial interest. Another possibility under study is the exploitation of specific chemotrophic bacteria, such as Ralstonia eutropha (or picketii) and related organisms, for CO2 fixation coupled with the production chemicals such as polyhydroxyalkanoates (PHAs). In spite of the potential of these processes, multiple factors still have to be optimized for maximum rate of CO2 fixation by these microorganisms. The optimization of culture conditions, including the optimal concentration of CO2 in the provided gas, the use of metabolic engineering and of dual purpose systems for the treatment of wastewater and production of biofuels and high value products within a biorefinery concept, the design of photobioreactors in the case of phototrophs are some

  5. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes

    PubMed Central

    Hawley, Alyse K.; Brewer, Heather M.; Norbeck, Angela D.; Paša-Tolić, Ljiljana; Hallam, Steven J.

    2014-01-01

    Marine oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified waters. Currently OMZs are expanding due to global climate change with resulting feedback on marine ecosystem function. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally stratified fjord to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification, and inorganic carbon fixation were differentially expressed across the redoxcline and covaried with distribution patterns of ubiquitous OMZ microbes including Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters, and denitrification, sulfur oxidation, and inorganic carbon fixation pathways affiliated with the SUP05 group of nitrate-reducing sulfur oxidizers dominated suboxic and anoxic waters. Nitrifier nitrite oxidation and anammox pathways affiliated with Nirospina, Nitrospira, and Planctomycetes, respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The numerical abundance of SUP05 proteins mediating inorganic carbon fixation under anoxic conditions suggests that SUP05 will become increasingly important in global ocean carbon and nutrient cycling as OMZs expand. PMID:25053816

  6. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes.

    PubMed

    Hawley, Alyse K; Brewer, Heather M; Norbeck, Angela D; Paša-Tolić, Ljiljana; Hallam, Steven J

    2014-08-05

    Marine oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified waters. Currently OMZs are expanding due to global climate change with resulting feedback on marine ecosystem function. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally stratified fjord to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification, and inorganic carbon fixation were differentially expressed across the redoxcline and covaried with distribution patterns of ubiquitous OMZ microbes including Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters, and denitrification, sulfur oxidation, and inorganic carbon fixation pathways affiliated with the SUP05 group of nitrate-reducing sulfur oxidizers dominated suboxic and anoxic waters. Nitrifier nitrite oxidation and anammox pathways affiliated with Nirospina, Nitrospira, and Planctomycetes, respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The numerical abundance of SUP05 proteins mediating inorganic carbon fixation under anoxic conditions suggests that SUP05 will become increasingly important in global ocean carbon and nutrient cycling as OMZs expand.

  7. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    PubMed

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  8. Proteomic Analysis of Carbon Concentrating Chemolithotrophic Bacteria Serratia sp. for Sequestration of Carbon Dioxide

    PubMed Central

    Bharti, Randhir K.; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials. PMID:24619032

  9. CO(2) fixation through hydrogenation by chemical or enzymatic methods.

    PubMed

    Beller, Matthias; Bornscheuer, Uwe T

    2014-04-25

    Two birds with one stone: The simulaneous fixation of the greenhouse gas carbon dioxide and storage of the alternative fuel hydrogen can be accomplished with the formation of formic acid. In principle, this is now possible either with an enzymatic system based on a newly discovered bacterial hydrogen-dependent carbon dioxide reductase or by using organometallic catalysts at room temperature and ambient pressure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. [CAM in Tillandsia usneoides: Studies on the pathway of carbon and the dependency of CO2-exchange on light intensity, temperature and water content of the plant].

    PubMed

    Kluge, M; Lange, O L; Eichmann, M V; Schmid, R

    1973-12-01

    Tillandsia usneoides, in the common sense a non-succulent plant, exhibits CO2 exchange characterized by net CO2 dark fixation during the night and depression of CO2 exchange during the day. Malate has been demonstrated to accumulate during CO2 dark fixation and to be converted to carbohydrates in light. Thus, T. usneoides exhibits CAM like typical succulents.Net CO2 uptake during the day is increased with net CO2 output being suppressed in duration of time and extent when light intensity increases. Furthermore, a slight increase in CO2 fixation during the following night can be observed if the plants were treated with high light intensity during the previous day.Curves of CO2 exchange typical for CAM are obtained if T. usneoides is kept at 15°C and 20°C. Lower temperature tend to increase CO2 uptake during the day and to inhibit CO2 dark fixation. Temperatures higher than 20°C favour loss of CO2 by respiration, which becomes apparent during the whole day and night at 30°C and higher temperatures. Thus, T. usneoides gains carbon only at temperatures well below 25°C.Net CO2 uptake during the day occurs only in moist plant material and is inhibited in plants cept under water stress conditions. However, CO2 uptake during the night is clearly favoured if the plants dry out. Therefore dry plants gain more carbon than moist ones.Curves of CO2 exchange typical for CAM were also obtained with 13 other species of the genus Tillandsia.The exhibition of CAM by the non-succulent T. usneoides calls for a new definition of the term "succulence" if it is to remain useful in characterizing this metabolic pathway. Because CO2-fixing cells of T. usneoides possess relatively large vacuoles and are relatively poor in chloroplasts, they resembles the assimilatory cells of typical CAM-exhibiting succulents. Therefore, if "succulence" only means the capacity of big vacuoles to store malate, the assimilatory cells in T. usneoides are succulent. It seems to be useful to investigate

  11. The relationship between dissolved hydrogen and nitrogen fixation in ocean waters

    NASA Astrophysics Data System (ADS)

    Moore, Robert M.; Punshon, Stephen; Mahaffey, Claire; Karl, David

    2009-09-01

    Fixed nitrogen is a key nutrient involved in regulating global marine productivity and hence the global oceanic carbon cycle. Oceanic nitrogen (N 2) fixation is estimated to supply 8×10 12 moles N y -1 to the ocean, approximately equal to current riverine and the atmospheric inputs of fixed N, and between 50 and 100% of current estimates of oceanic denitrification. However, the spatial and temporal variability of N 2 fixation remains uncertain, mostly because of the normal low resolution sampling for diazotroph distribution and fixation rates. It is well established that N 2 fixation, mediated by the enzyme nitrogenase, is a source of hydrogen (H 2), but the extent to which it leads to supersaturation of H 2 in oceanic waters is unresolved. Here, we present simultaneous measurements of upper ocean dissolved H 2 concentration (nmol L -1), and rates of N 2 fixation (μmol N m -3 d -1), determined using 15N 2 tracer techniques (at 7 or 15 m), on a transect from Fiji to Hawaii. We find a significant correlation ( r=0.98) between dissolved H 2 and rates of N 2 fixation, with the greatest supersaturation of H 2 and highest rates of N 2 fixation being observed in the subtropical gyres at the southern (˜18°S) and northern (18°N) reaches of the transect. The lowest H 2 saturation and N 2 fixation were observed in the equatorial region between 8°S and 14°N. We propose that an empirical relationship between H 2 supersaturations and N 2 fixation measurements could be used to guide sampling for 15N fixation measurements or to aid the spatial interpolation of such measurements.

  12. Anaerobic Carbon Metabolism by the Tricarboxylic Acid Cycle 1

    PubMed Central

    Vanlerberghe, Greg C.; Horsey, Anne K.; Weger, Harold G.; Turpin, David H.

    1989-01-01

    Nitrogen-limited cells of Selenastrum minutum (Naeg.) Collins are able to assimilate NH4+ in the dark under anaerobic conditions. Addition of NH4+ to anaerobic cells results in a threefold increase in tricarboxylic acid cycle (TCAC) CO2 efflux and an eightfold increase in the rate of anaplerotic carbon fixation via phosphoenolpyruvate carboxylase. Both of these observations are consistent with increased TCAC carbon flow to supply intermediates for amino acid biosynthesis. Addition of H14CO3− to anaerobic cells assimilating NH4+ results in the incorporation of radiolabel into the α-carboxyl carbon of glutamic acid. Incorporation of radiolabel into glutamic acid is not simply a short-term phenomenon following NH4+ addition as the specific activity of glutamic acid increases over time. This indicates that this alga is able to maintain partial oxidative TCAC carbon flow while under anoxia to supply α-ketoglutarate for glutamate production. During dark aerobic NH4+ assimilation, no radiolabel appears in fumarate or succinate and only a small amount occurs in malate. During anaerobic NH4+ assimilation, these metabolites contain a large proportion of the total radiolabel and radiolabel accumulates in succinate over time. Also, the ratio of dark carbon fixation to NH4+ assimilation is much higher under anaerobic than aerobic conditions. These observations suggest the operation of a partial reductive TCAC from oxaloacetic acid to malate, fumarate, and succinate. Such a pathway might contribute to redox balance in an anaerobic cell maintaining partial oxidative TCAC activity. PMID:16667215

  13. Molecular Basis of Microbial One-Carbon Metabolism 2008 Gordon Research Conference (July 20-25, 2008)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen W. Ragsdale

    2009-08-12

    One-carbon (C-1) compounds play a central role in microbial metabolism. C-1 compounds include methane, carbon monoxide, CO2, and methanol as well as coenzyme-bound one-carbon compounds (methyl-B12, CH3-H4folate, etc). Such compounds are of broad global importance because several C-1 compounds (e.g., CH4) are important energy sources, some (e.g., CO2 and CH4) are potent greenhouse gases, and others (e.g., CH2Cl2) are xenobiotics. They are central in pathways of energy metabolism and carbon fixation by microbes and many are of industrial interest. Research on the pathways of one-carbon metabolism has added greatly to our understanding of evolution, structural biology, enzyme mechanisms, gene regulation,more » ecology, and applied biology. The 2008 meeting will include recent important findings in the following areas: (a) genomics, metagenomics, and proteomic studies that have expanded our understanding of autotrophy and C-1 metabolism and the evolution of these pathways; (b) redox regulation of carbon cycles and the interrelationship between the carbon cycle and other biogeochemical cycles (sulfur, nitrogen, oxygen); (c) novel pathways for carbon assimilation; (d) biotechnology related to C-1 metabolism; (e) novel enzyme mechanisms including channeling of C-1 intermediates during metabolism; and (f) the relationship between metal homeostasis and the global carbon cycle. The conference has a diverse and gender-balanced slate of speakers and session leaders. The wide variety of disciplines brought to the study of C-1 metabolism make the field an excellent one in which to train young researchers.« less

  14. Effect of air pollution on nitrogen fixation in lichens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallio, S.; Varheenmaa, T.

    1974-01-01

    Clear decrease (80-90%) of acetylene reduction in Stereocaulon paschale and Nephroma arcticum was observed in the polluted city area of Turku (SW Finland) within a period of three-four weeks, while nitrogenase activity remained unchanged in the specimens outside the city area. Carbon dioxide fixation in these lichens lowered 20-50%.

  15. The Path of Carbon in Photosynthesis X. Carbon Dioxide Assimilation in Plants

    DOE R&D Accomplishments Database

    Calvin, M.; Bassham, J. A.; Benson, A. A.; Lynch, V.; Ouellet, C.; Schou, L.; Stepka, W.; Tolbert, N. E.

    1950-04-01

    The conclusions which have been drawn from the results of C{sup 14}O{sub 2} fixation experiments with a variety of plants are developed in this paper. The evidence for thermochemical reduction of carbon dioxide fixation intermediates is presented and the results are interpreted from such a viewpoint.

  16. Effect of repeated sterilization by different methods on strength of carbon fiber rods used in external fixator systems.

    PubMed

    Unal, Omer Kays; Poyanli, Oguz Sukru; Unal, Ulku Sur; Mutlu, Hasan Huseyin; Ozkut, Afsar Timucin; Esenkaya, Irfan

    2018-05-16

    We set out to reveal the effects of repeated sterilization, using different methods, on the carbon fiber rods of external fixator systems. We used a randomized set of forty-four unused, unsterilized, and identical carbon fiber rods (11 × 200 mm), randomly assigned to two groups: unsterilized (US) (4 rods) and sterilized (40 rods). The sterilized rods were divided into two groups, those sterilized in an autoclave (AC) and by hydrogen peroxide (HP). These were further divided into five subgroups based on the number of sterilization repetition to which the fibers were subjected (25-50-75-100-200). A bending test was conducted to measure the maximum bending force (MBF), maximum deflection (MD), flexural strength (FS), maximum bending moment (MBM) and bending rigidity (BR). We also measured the surface roughness of the rods. An increase in the number of sterilization repetition led to a decrease in MBF, MBM, FS, BR, but increased MD and surface roughness (p < 0.01). The effect of the number of sterilization repetition was more prominent in the HP group. This study revealed that the sterilization method and number of sterilization repetition influence the strength of the carbon fiber rods. Increasing the number of sterilization repetition degrades the strength and roughness of the rods.

  17. Medications influencing central cholinergic pathways affect fixation stability, saccadic response time and associated eye movement dynamics during a temporally-cued visual reaction time task.

    PubMed

    Naicker, Preshanta; Anoopkumar-Dukie, Shailendra; Grant, Gary D; Modenese, Luca; Kavanagh, Justin J

    2017-02-01

    Anticholinergic medications largely exert their effects due to actions on the muscarinic receptor, which mediates the functions of acetylcholine in the peripheral and central nervous systems. In the central nervous system, acetylcholine plays an important role in the modulation of movement. This study investigated the effects of over-the-counter medications with varying degrees of central anticholinergic properties on fixation stability, saccadic response time and the dynamics associated with this eye movement during a temporally-cued visual reaction time task, in order to establish the significance of central cholinergic pathways in influencing eye movements during reaction time tasks. Twenty-two participants were recruited into the placebo-controlled, human double-blind, four-way crossover investigation. Eye tracking technology recorded eye movements while participants reacted to visual stimuli following temporally informative and uninformative cues. The task was performed pre-ingestion as well as 0.5 and 2 h post-ingestion of promethazine hydrochloride (strong centrally acting anticholinergic), hyoscine hydrobromide (moderate centrally acting anticholinergic), hyoscine butylbromide (anticholinergic devoid of central properties) and a placebo. Promethazine decreased fixation stability during the reaction time task. In addition, promethazine was the only drug to increase saccadic response time during temporally informative and uninformative cued trials, whereby effects on response time were more pronounced following temporally informative cues. Promethazine also decreased saccadic amplitude and increased saccadic duration during the temporally-cued reaction time task. Collectively, the results of the study highlight the significant role that central cholinergic pathways play in the control of eye movements during tasks that involve stimulus identification and motor responses following temporal cues.

  18. Pathways of human development and carbon emissions embodied in trade

    NASA Astrophysics Data System (ADS)

    Steinberger, Julia K.; Timmons Roberts, J.; Peters, Glen P.; Baiocchi, Giovanni

    2012-02-01

    It has long been assumed that human development depends on economic growth, that national economic expansion in turn requires greater energy use and, therefore, increased greenhouse-gas emissions. These interdependences are the topic of current research. Scarcely explored, however, is the impact of international trade: although some nations develop socio-economically and import high-embodied-carbon products, it is likely that carbon-exporting countries gain significantly fewer benefits. Here, we use new consumption-based measures of national carbon emissions to explore how the relationship between human development and carbon changes when we adjust national emission rates for trade. Without such adjustment of emissions, some nations seem to be getting far better development `bang' for the carbon `buck' than others, who are showing scant gains for disproportionate shares of global emissions. Adjusting for the transfer of emissions through trade explains many of these outliers, but shows that further socio-economic benefits are accruing to carbon-importing rather than carbon-exporting countries. We also find that high life expectancies are compatible with low carbon emissions but high incomes are not. Finally, we see that, despite strong international trends, there is no deterministic industrial development trajectory: there is great diversity in pathways, and national histories do not necessarily follow the global trends.

  19. Nitrogen Fixation in the Intertidal Sediments of the Yangtze Estuary: Occurrence and Environmental Implications

    NASA Astrophysics Data System (ADS)

    Hou, Lijun; Wang, Rong; Yin, Guoyu; Liu, Min; Zheng, Yanling

    2018-03-01

    Nitrogen fixation is a microbial-mediated process converting atmospheric dinitrogen gas to biologically available ammonia or other molecules, and it plays an important role in regulating nitrogen budgets in coastal marine ecosystems. In this study, nitrogen fixation in the intertidal sediments of the Yangtze Estuary was investigated using nitrogen isotope tracing technique. The abundance of nitrogen fixation functional gene (nifH) was also quantified. The measured rates of sediment nitrogen fixation ranged from 0.37 to 7.91 nmol N g-1 hr-1, while the abundance of nifH gene varied from 2.28 × 106 to 1.28 × 108 copies g-1 in the study area. The benthic nitrogen fixation was correlated closely to the abundance of nifH gene and was affected significantly by salinity, pH, and availability of sediment organic carbon and ammonium. It is estimated that sediment nitrogen fixation contributed approximately 9.3% of the total terrigenous inorganic nitrogen transported annually into the Yangtze estuarine and coastal environment. This result implies that the occurrence of benthic nitrogen fixation acts as an important internal source of reactive nitrogen and to some extent exacerbates nitrogen pollution in this aquatic ecosystem.

  20. Effects of typhoon events on chlorophyll and carbon fixation in different regions of the East China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Dongxing; He, Lei; Liu, Fenfen; Yin, Kedong

    2017-07-01

    Typhoons play an important role in the regulation of phytoplankton biomass and carbon fixation in the ocean. Data from the moderate-resolution imaging spectroradiometer (MODIS) on 35 typhoon events during 2002-2011 are analyzed to examine the effects of typhoon events on variations in sea surface temperature (SST), chlorophyll-a (Chl-a), and depth-integrated primary productivity (IPP) in the East China Sea (ECS). For all 35 typhoon cases, the average SST drops by 0.1 °C in the typhoon influenced regions, and the maximal decrease is 2.2 °C. During the same period, average Chl-a increases by 0.1 mg m-3, with the maximal increase reaching up to 1 mg m-3, and average IPP increases by 32.9 mg C m-2·d-1, with the largest increase being 221 mg C m-2·d-1. The IPP are significantly correlated with SST and Chl-a data, and the correlations become stronger after typhoon passage. On average, nearly one-third of the ECS is affected by typhoons during the 10 year period, and the resident time of the typhoons in the area reach to 38.2 h. Effects of the typhoon events on SST, Chl-a, and IPP manifest differently in the three key sea areas, namely, the coastal water (depths <50 m), continental shelf (depths 50-200 m), and open sea (depths >200 m) regions in the ECS. Specifically, stronger responses are observed in shallow water than in deeper depths. The comparisons between the pre- and post-typhoon periods show that IPP in the post-typhoon period increases by 19.7% and 12.2% in the coastal and continental shelf regions, respectively, but it decreases by 9.4% in the open sea region. Overall, our results reveal that there is a close coupling between Chl-a, SST, and IPP in shallow areas and that typhoon events can have strong effects on carbon fixation in coastal regions.

  1. Screw fixation versus arthroplasty versus plate fixation for 3-part radial head fractures.

    PubMed

    Wu, P H; Shen, L; Chee, Y H

    2016-04-01

    To compare the outcome following headless compression screw fixation versus radial head arthroplasty versus plate fixation for 3-part Mason types III or IV radial head fracture. Records of 25 men and 16 women aged 21 to 80 (mean, 43.3) years who underwent fixation using 2 to 3 2-mm cannulated headless compression screws (n=16), radial head arthroplasty (n=13), or fixation with a 2-mm Synthes plate (n=12) for 3-part Mason types III or IV radial head and neck fracture were reviewed. Treatment option was decided by the surgeon based on the presence of associated injury, neurovascular deficit, and the Mason classification. Bone union, callus formation, and complications (such as heterotopic ossification, malunion, and nonunion) were assessed by an independent registrar or consultant using radiographs. The Mayo Elbow Performance Score and range of motion were assessed by an independent physiotherapist. The median age of the 3 groups were comparable. Associated injuries were most common in patients with arthroplasty, followed by screw fixation and plate fixation (61.5% vs. 50% vs. 33%, p=0.54). The median time to bone union was shorter after screw fixation than plate fixation (55 vs. 86 days, p=0.05). No patient with screw fixation had nonunion, but 4 patients with plate fixation had nonunion. The 3 groups were comparable in terms of the mean Mayo Elbow Performance Score (p=0.56) and the mean range of motion (p=0.45). The complication rate was highest after plate fixation, followed by screw fixation and arthroplasty (50% vs. 18.8% vs. 15.4%, p=0.048). Excluding 20 patients with associated injuries (8 in screw fixation, 8 in arthroplasty, and 4 in plate fixation), the 3 groups were comparable in terms of the median time to bone union (p=0.109), mean Mayo Elbow Performance Score (p=0.260), mean range of motion (p=0.162), and complication rate (p=0.096). Headless compression screw fixation is a viable option for 3-part radial head fracture. It achieves earlier bone union

  2. Plant, Microbiome, and Biogeochemistry: Quantifying moss-associated N fixation in Alaska

    NASA Astrophysics Data System (ADS)

    Stuart, J.; Mack, M. C.; Holland Moritz, H.; Fierer, N.; McDaniels, S.; Lewis, L.

    2017-12-01

    The future carbon (C) sequestration potential of the Arctic and boreal zones, currently the largest terrestrial C sink globally, is linked to nitrogen (N) cycling and N availability vis-a-vis C accumulation and plant species composition. Pristine environments in Alaska have low anthropogenic N deposition (<1 kg N ha-1 yr-1), and the main source of new N to these ecosystems is through previously overlooked N-fixation from microbial communities on mosses. Despite the importance of moss associated N-fixation, the relationship between moss species, microbial communities, and fixation rates remains ambiguous. In the summer of 2016, the fixation rates of 20 moss species from sites around both Fairbanks and Toolik Lake were quantified using 15N2 incubations. Subsequently, the microbial community and moss genome of the samples were also analyzed by collaborators. The most striking result is that all sampled moss genera fixed N, including well-studied feather mosses such as Hylocomium splendens and Pleurozium schreberi as well as less common but ecologically relevant mosses such as Aulacomnium spp., Dicranum spp., Ptilium crista-castrensis, and Tomentypnum nitens. Across all samples, preliminary fixation rates ranged from 0.004-19.994 µg N g-1 moss d-1. Depending upon percent cover, moss-associated N fixation is the largest input of new N to the ecosystem. Given this, linking variation in N-fixation rates to microbial and moss community structures can be helpful in predicting future trends of C and N cycling in northern latitudes. Vegetation changes, alterations in downstream biogeochemical N processes, and anthropogenic N deposition could all interact with or alter moss associated N-fixation, thereby changing ecosystem N inputs. Further elucidation of the species level signal in N-fixation rates and microbial community will augment our knowledge of N cycling in northern latitudes, both current and future.

  3. Anaerobic carbon metabolism by the tricarboxylic acid cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanlerberghe, G.C.; Horsey, A.K.; Weger, H.G.

    Nitrogen-limited cells of Selenastrum minutum (Naeg.) Collins are able to assimilate NH{sub 4}{sup +} in the dark under anaerobic conditions. Addition of NH{sub 4}{sup +} to anaerobic cells results in a threefold increase in tricarboxylic acid cycle (TCAC) CO{sub 2} efflux and an eightfold increase in the rate of anaplerotic carbon fixation via phosphoenspyruvate carboxylase. Both of these observations are consistent with increased TCAC carbon flow to supply intermediates for amino acid biosynthesis. Addition of H{sup 14}CO{sub 3}{sup {minus}} to anaerobic cells assimilating NH{sub 4}{sup +} results in the incorporation of radiolabel into the {alpha}-carboxyl carbon of glutamic acid. Incorporationmore » of radiolabel into glutamic acid is not simply a short-term phenomenon following NH{sub 4}{sup +} addition as the specific activity of glutamic acid increases over time. This indicates that this alga is able to maintain partial oxidative TCAC carbon flow while under anoxia to supply {alpha}ketoglutarate for glutamate production. During dark aerobic NH{sub 4}{sup +} assimilation, no radiolabel appears in fumarate or succinate and only a small amount occurs in malate. During anaerobic NH{sub 4}{sup +} assimilation, these metabolites contain a large proportion of the total radiolabel and radiolabel accumulates in succinate over time. Also, the ratio of dark carbon fixation to NH{sub 4}{sup +} assimilation is much higher under anaerobic than aerobic conditions. These observations suggest the operation of a partial reductive TCAC from oxaloacetic acid to malate, fumarate, and succinate. Such a pathway might contribute to redox balance in an anaerobic cell maintaining partial oxidative TCAC activity.« less

  4. N2 Fixation, Carbon Metabolism, and Oxidative Damage in Nodules of Dark-Stressed Common Bean Plants.

    PubMed Central

    Gogorcena, Y.; Gordon, A. J.; Escuredo, P. R.; Minchin, F. R.; Witty, J. F.; Moran, J. F.; Becana, M.

    1997-01-01

    Common beans (Phaseolus vulgaris L.) were exposed to continuous darkness to induce nodule senescence, and several nodule parameters were investigated to identify factors that may be involved in the initial loss of N2 fixation. After only 1 d of darkness, total root respiration decreased by 76% and in vivo nitrogenase (N2ase) activity decreased by 95%. This decline coincided with the almost complete depletion (97%) of sucrose and fructose in nodules. At this stage, the O2 concentration in the infected zone increased to 1%, which may be sufficient to inactivate N2ase; however, key enzymes of carbon and nitrogen metabolism were still active. After 2 d of dark stress there was a significant decrease in the level of N2ase proteins and in the activities of enzymes involved in carbon and nitrogen assimilation. However, the general collapse of nodule metabolism occurred only after 4 d of stress, with a large decline in leghemoglobin and antioxidants. At this final senescent stage, there was an accumulation of oxidatively modified proteins. This oxidative stress may have originated from the decrease in antioxidant defenses and from the Fe-catalyzed generation of activated oxygen due to the increased availability of catalytic Fe and O2 in the infected region. PMID:12223669

  5. Diagenetic pathways in deposits of cool- and cold-water carbonate factories

    NASA Astrophysics Data System (ADS)

    Frank, T. D.; James, N. P.

    2017-12-01

    This investigation integrates sedimentological, petrographic, and geochemical observations from modern and ancient heterozoan carbonate deposits that formed at temperate to polar latitudes with the aim of evaluating diagenetic pathways characteristic of these systems. These factories operate under conditions distinct from those of photozoan counterparts. Lower temperatures, higher trophic resources, lower carbonate saturation states, and strong seasonality govern not only the nature of carbonate communities, but also how deposits translate into the rock record. In these settings, carbonate production is entirely biogenic, assemblages are of low diversity, and there are no significant calcareous phototrophs. Aragonitic taxa may be present in living communities, but allochems rapidly disappear via dissolution. Carbonate producers are not capable of building rigid frameworks, so their deposits accumulate as sands and gravels and are prone to winnowing and reworking. Low production rates lead to long seafloor residence times (1000s of years) for grains, which undergo physical reworking, dissolution, and repeated infestation by endolithic borers. Microborings remain empty, increasing grain susceptibility to disintegration. Intergranular cementation on the seafloor is rare and restricted to hardgrounds. Periods of subaerial exposure do not leave traces of meteoric alteration. Results show that the deposits of heterozoan carbonate factories tend enter the geologic record as taphonomic remnants, namely reworked, unconsolidated sands and gravels with low diagenetic potential. During burial, physical and chemical compaction produce limestones with tightly packed, grain-supported fabrics, often with grains in sutured contact. Significant cementation is associated with the deep burial realm. Results reveal a dramatically different diagenetic pathway than is typical for deposits of tropical photozoan factories, in which significant recrystallization and lithification occur on

  6. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation.

    PubMed

    Petersen, Jillian M; Kemper, Anna; Gruber-Vodicka, Harald; Cardini, Ulisse; van der Geest, Matthijs; Kleiner, Manuel; Bulgheresi, Silvia; Mußmann, Marc; Herbold, Craig; Seah, Brandon K B; Antony, Chakkiath Paul; Liu, Dan; Belitz, Alexandra; Weber, Miriam

    2016-10-24

    Chemosynthetic symbioses are partnerships between invertebrate animals and chemosynthetic bacteria. The latter are the primary producers, providing most of the organic carbon needed for the animal host's nutrition. We sequenced genomes of the chemosynthetic symbionts from the lucinid bivalve Loripes lucinalis and the stilbonematid nematode Laxus oneistus. The symbionts of both host species encoded nitrogen fixation genes. This is remarkable as no marine chemosynthetic symbiont was previously known to be capable of nitrogen fixation. We detected nitrogenase expression by the symbionts of lucinid clams at the transcriptomic and proteomic level. Mean stable nitrogen isotope values of Loripes lucinalis were within the range expected for fixed atmospheric nitrogen, further suggesting active nitrogen fixation by the symbionts. The ability to fix nitrogen may be widespread among chemosynthetic symbioses in oligotrophic habitats, where nitrogen availability often limits primary productivity.

  7. [Comparison of external fixation with or without limited internal fixation for open knee fractures].

    PubMed

    Li, K N; Lan, H; He, Z Y; Wang, X J; Yuan, J; Zhao, P; Mu, J S

    2018-03-01

    Objective: To explore the characteristics and methods of different fixation methods and prevention of open knee joint fracture. Methods: The data of 86 cases of open knee joint fracture admitted from January 2002 to December 2015 in Department of Orthopaedics, Affiliated Hospital of Chengdu University were analyzed retrospectively.There were 65 males and 21 females aged of 38.6 years. There were 38 cases treated with trans articular external fixation alone, 48 cases were in the trans articular external fixation plus auxiliary limited internal fixation group. All the patients were treated according to the same three stages except for different fixation methods. Observation of external fixation and fracture fixation, fracture healing, wound healing and treatment, treatment and related factors of infection control and knee function recovery. χ(2) test was used to analyze data. Results: Eleven patients had primary wound healing, accounting for 12.8%. Seventy-five patients had two wounds healed, accounting for 87.2%. Only 38 cases of trans articular external fixator group had 31 cases of articular surface reduction, accounting for 81.6%; Five cases of trans articular external fixator assisted limited internal fixation group had 5 cases of poor reduction, accounting for 10.4%; There was significant difference between the two groups (χ(2)=44.132, P <0.05). Take a single cross joint external fixation group, a total of 23 cases of patients with infection, accounted for 60.5% of external fixation group; trans articular external fixation assisted limited internal fixation group there were 30 cases of patients with infection, accounting for the assistance of external fixator and limited internal fixation group 62.5%; There was significant difference between the two groups(χ(2)=0.035, P >0.05). Five cases of fracture nonunion cases of serious infection, patients voluntarily underwent amputation. The Lysholm Knee Scale: In the external fixation group, 23 cases were less than

  8. In-loop flow [11 C]CO2 fixation and radiosynthesis of N,N'-[11 C]dibenzylurea.

    PubMed

    Downey, Joseph; Bongarzone, Salvatore; Hader, Stefan; Gee, Antony D

    2018-03-01

    Cyclotron-produced carbon-11 is a highly valuable radionuclide for the production of positron emission tomography (PET) radiotracers. It is typically produced as relatively unreactive carbon-11 carbon dioxide ([ 11 C]CO 2 ), which is most commonly converted into a more reactive precursor for synthesis of PET radiotracers. The development of [ 11 C]CO 2 fixation methods has more recently enabled the direct radiolabelling of a diverse array of structures directly from [ 11 C]CO 2 , and the advantages afforded by the use of a loop-based system used in 11 C-methylation and 11 C-carboxylation reactions inspired us to apply the [ 11 C]CO 2 fixation "in-loop." In this work, we developed and investigated a new ethylene tetrafluoroethylene (ETFE) loop-based [ 11 C]CO 2 fixation method, enabling the fast and efficient, direct-from-cyclotron, in-loop trapping of [ 11 C]CO 2 using mixed DBU/amine solutions. An optimised protocol was integrated into a proof-of-concept in-loop flow radiosynthesis of N,N'-[ 11 C]dibenzylurea. This reaction exhibited an average 78% trapping efficiency and a crude radiochemical purity of 83% (determined by radio-HPLC), giving an overall nonisolated radiochemical yield of 72% (decay-corrected) within just 3 minutes from end of bombardment. This proof-of-concept reaction has demonstrated that efficient [ 11 C]CO 2 fixation can be achieved in a low-volume (150 μL) ETFE loop and that this can be easily integrated into a rapid in-loop flow radiosynthesis of carbon-11-labelled products. This new in-loop methodology will allow fast radiolabelling reactions to be performed using cheap/disposable ETFE tubing setup (ideal for good manufacturing practice production) thereby contributing to the widespread usage of [ 11 C]CO 2 trapping/fixation reactions for the production of PET radiotracers. © 2017 The Authors. Journal of Labelled Compounds and Radiopharmaceuticals Published by John Wiley & Sons, Ltd.

  9. Prevention of Thumb Web Space Contracture With Multiplanar External Fixation.

    PubMed

    Harper, Carl M; Iorio, Matthew L

    2016-09-01

    Thumb web space contracture following hand trauma can be disabling with numerous reconstructive procedures existing to correct the resultant deformity. Following marked soft tissue injury to the hand we utilized the Stryker Hoffmann II Micro External Fixator System to link the first and second metacarpals by a multiplanar system using 1.6 or 2.0 mm self-drilling half-pins and 3 mm carbon fiber connecting rods. This facilitated placement of the thumb in maximal palmar abduction as well as allowed adjustment of thumb position throughout the postoperative period. This technique was performed on 5 patients. Two patients were treated with a first web space external fixator for table saw injuries to the radial aspect of the hand. An additional 2 patients were treated with a first web space external fixator following metacarpophalangeal joint capsular release in the setting of thermal burns. A fifth patient underwent second ray amputation, trapeziectomy and trapezoidectomy for squamous cell carcinoma with subsequent stabilization with the external fixator. The external fixator was left in place until soft tissues were healed (average 5.5 wk). The patients were allowed to mobilize their hand in as much as the external fixator allowed, and no device-associated complications were noted. Thumb web space was preserved with passive and supple thumb circumduction and web space abduction/adduction in all patients at an average follow-up of 5 months. The average Quick Dash Score was 35±5 and the average Modern Activity Subjective Survey of 2007 was 30±8.

  10. Reprogramming One-Carbon Metabolic Pathways To Decouple l-Serine Catabolism from Cell Growth in Corynebacterium glutamicum.

    PubMed

    Zhang, Yun; Shang, Xiuling; Lai, Shujuan; Zhang, Yu; Hu, Qitiao; Chai, Xin; Wang, Bo; Liu, Shuwen; Wen, Tingyi

    2018-02-16

    l-Serine, the principal one-carbon source for DNA biosynthesis, is difficult for microorganisms to accumulate due to the coupling of l-serine catabolism and microbial growth. Here, we reprogrammed the one-carbon unit metabolic pathways in Corynebacterium glutamicum to decouple l-serine catabolism from cell growth. In silico model-based simulation showed a negative influence on glyA-encoding serine hydroxymethyltransferase flux with l-serine productivity. Attenuation of glyA transcription resulted in increased l-serine accumulation, and a decrease in purine pools, poor growth and longer cell shapes. The gcvTHP-encoded glycine cleavage (Gcv) system from Escherichia coli was introduced into C. glutamicum, allowing glycine-derived 13 CH 2 to be assimilated into intracellular purine synthesis, which resulted in an increased amount of one-carbon units. Gcv introduction not only restored cell viability and morphology but also increased l-serine accumulation. Moreover, comparative proteomic analysis indicated that abundance changes of the enzymes involved in one-carbon unit cycles might be responsible for maintaining one-carbon unit homeostasis. Reprogramming of the one-carbon metabolic pathways allowed cells to reach a comparable growth rate to accumulate 13.21 g/L l-serine by fed-batch fermentation in minimal medium. This novel strategy provides new insights into the regulation of cellular properties and essential metabolite accumulation by introducing an extrinsic pathway.

  11. Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana.

    PubMed

    Sun, Zhilan; Chen, Yi-Feng; Du, Jianchang

    2016-02-01

    Supplying microalgae with extra CO2 is a promising means for improving lipid production. The molecular mechanisms involved in lipid accumulation under conditions of elevated CO2, however, remain to be fully elucidated. To understand how elevated CO2 improves lipid production, we performed sequencing of Chlorella sorokiniana LS-2 cellular transcripts during growth and compared transcriptional dynamics of genes involved in carbon flow from CO2 to triacylglycerol. These analyses identified the majority genes of carbohydrate metabolism and lipid biosynthesis pathways in C. sorokiniana LS-2. Under high doses of CO2 , despite down-regulation of most de novo fatty acid biosynthesis genes, genes involved in carbohydrate metabolic pathways including carbon fixation, chloroplastic glycolysis, components of the pyruvate dehydrogenase complex (PDHC) and chloroplastic membrane transporters were upexpressed at the prolonged lipid accumulation phase. The data indicate that lipid production is largely independent of de novo fatty acid synthesis. Elevated CO2 might push cells to channel photosynthetic carbon precursors into fatty acid synthesis pathways, resulting in an increase of overall triacylglycerol generation. In support of this notion, genes involved in triacylglycerol biosynthesis were substantially up-regulated. Thus, elevated CO2 may influence regulatory dynamics and result in increased carbon flow to triacylglycerol, thereby providing a feasible approach to increase lipid production in microalgae. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Simulation of permeability evolution of leakage pathway in carbonate-rich caprocks in carbon sequestration

    NASA Astrophysics Data System (ADS)

    Guo, B.; Fitts, J. P.; Dobossy, M. E.; Peters, C. A.

    2013-12-01

    Geologic carbon sequestration in deep saline aquifers is a promising strategy for mitigating climate change. A major concern is the possibility of brine and CO2 migration through the caprock such as through fractures and faults. In this work, we examine the extent to which mineral dissolution will substantially alter the porosity and permeability of caprock leakage pathways as CO2-acidified brine flows through them. Three models were developed. Firstly, a reactive transport model, Permeability Evolution of Leakage pathway (PEL), was developed to simulate permeability evolution of a leakage pathway during the injection period, and assumes calcite is the only reactive mineral. The system domain is a 100 m long by 0.2 m diameter cylindrical flow path with fixed boundaries containing a rock matrix with an initial porosity of 30% and initial permeability of 1×10-13 m2. One example result is for an initial calcite volume fraction (CVF) of 0.20, in which all the calcite is dissolved after 50 years and the permeability reaches 3.2×10-13 m2. For smaller values of CVF, the permeability reaches its final value earlier but the increase in permeability is minimal. For a large value of CVF such as 0.50, the permeability could eventually reach 1×10-12 m2, but the large amount of dissolved calcium buffers the solution and slows the reaction. After 50 years the permeability change is negligible. Thus, there is a non-monotonic relationship between the amount of calcite in the rock and the resulting permeability change because of the competing dynamics of calcite dissolution and alkalinity build-up. In the second model, PEL was coupled to an existing basin-scale multiphase flow model, Princeton's Estimating Leakage Semi-Analytical (ELSA) model. The new model, ELSA-PEL, estimates the brine and CO2 leakage rates during the injection period under conditions of permeability evolution. The scenario considered in this work is for 50 years of CO2 injection into the Mt. Simon formation in

  13. Critical Involvement of Environmental Carbon Dioxide Fixation to Drive Wax Ester Fermentation in Euglena

    PubMed Central

    Nishio, Kazuki; Nakazawa, Masami; Nakamoto, Masatoshi; Okazawa, Atsushi; Kanaya, Shigehiko; Arita, Masanori

    2016-01-01

    Accumulation profiles of wax esters in Euglena gracilis Z were studied under several environmental conditions. The highest amount of total wax esters accumulated under hypoxia in the dark, and C28 (myristyl-myristate, C14:0-C14:0) was prevalent among all conditions investigated. The wax ester production was almost completely suppressed under anoxia in the light, and supplying exogenous inorganic carbon sources restored wax ester fermentation, indicating the need for external carbon sources for the wax ester fermentation. 13C-labeling experiments revealed specific isotopic enrichment in the odd-numbered fatty acids derived from wax esters, indicating that the exogenously-supplied CO2 was incorporated into wax esters via the propionyl-CoA pathway through the reverse tricarboxylic acid (TCA) cycle. The addition of 3-mercaptopicolinic acid, a phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, significantly affected the incorporation of 13C into citrate and malate as the biosynthetic intermediates of the odd-numbered fatty acids, suggesting the involvement of PEPCK reaction to drive wax ester fermentation. Additionally, the 13C-enrichment pattern of succinate suggested that the CO2 assimilation might proceed through alternative pathways in addition to the PEPCK reaction. The current results indicate that the mechanisms of anoxic CO2 assimilation are an important target to reinforce wax ester fermentation in Euglena. PMID:27669566

  14. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils

    PubMed Central

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A. S.; Wu, Jinshui

    2016-01-01

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation (14C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management. PMID:26795428

  15. Changing Urban Carbon Metabolism over Time: Historical Trajectory and Future Pathway.

    PubMed

    Chen, Shaoqing; Chen, Bin

    2017-07-05

    Cities are expected to play a major role in carbon emissions mitigation. A key step in decoupling urban economy from carbon emissions is to understand the full impact of socioeconomic development on urban metabolism over time. Herein, we establish a system-based framework for modeling the variation of urban carbon metabolism through time by integrating a metabolic flow inventory, input-output model, and network analysis. Using Beijing as a case study, we track the historical trajectory of carbon flows embodied in urban final consumption over 1985-2012. We find that while the tendency of increase in direct carbon emission continues within this time frame, consumption-based carbon footprint might have peaked around 2010. Significant transitions in emission intensity and roles sectors play in transferring carbon over the period are important signs of decoupling urban development from carbonization. Our further analysis of driving factors reveals a strong competition between efficiency gains and consumption level rise, showing a cumulative contribution of -584% and 494% to total carbon footprint, respectively. Projection into a future pathway suggests there is still a great potential for carbon mitigation for the city, but a strong mitigation plan is required to achieve such decarbonization before 2030. By bridging temporal metabolic model and socioeconomic planning, this framework fills one of the main gaps between monitoring of urban metabolism and design of a low-carbon economy.

  16. Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes

    PubMed Central

    Mus, Florence; Crook, Matthew B.; Garcia, Kevin; Garcia Costas, Amaya; Geddes, Barney A.; Kouri, Evangelia D.; Paramasivan, Ponraj; Ryu, Min-Hyung; Oldroyd, Giles E. D.; Poole, Philip S.; Udvardi, Michael K.; Voigt, Christopher A.

    2016-01-01

    Access to fixed or available forms of nitrogen limits the productivity of crop plants and thus food production. Nitrogenous fertilizer production currently represents a significant expense for the efficient growth of various crops in the developed world. There are significant potential gains to be had from reducing dependence on nitrogenous fertilizers in agriculture in the developed world and in developing countries, and there is significant interest in research on biological nitrogen fixation and prospects for increasing its importance in an agricultural setting. Biological nitrogen fixation is the conversion of atmospheric N2 to NH3, a form that can be used by plants. However, the process is restricted to bacteria and archaea and does not occur in eukaryotes. Symbiotic nitrogen fixation is part of a mutualistic relationship in which plants provide a niche and fixed carbon to bacteria in exchange for fixed nitrogen. This process is restricted mainly to legumes in agricultural systems, and there is considerable interest in exploring whether similar symbioses can be developed in nonlegumes, which produce the bulk of human food. We are at a juncture at which the fundamental understanding of biological nitrogen fixation has matured to a level that we can think about engineering symbiotic relationships using synthetic biology approaches. This minireview highlights the fundamental advances in our understanding of biological nitrogen fixation in the context of a blueprint for expanding symbiotic nitrogen fixation to a greater diversity of crop plants through synthetic biology. PMID:27084023

  17. Impacts of genetically engineered alterations in carbon sink pathways on photosynthetic performance

    DOE PAGES

    Holland, Steven C.; Artier, Juliana; Miller, Neil T.; ...

    2016-10-05

    Genetic engineering of photosynthetic organisms typically redirects native metabolism towards desirable products, which thereby represent new metabolic sinks. There is limited information on how these modifications impact the evolved mechanisms of photosynthetic energy metabolism and cellular growth. Two engineered strains of Synechocystis sp. PCC 6803 with altered carbon sink capacity were assayed for their photosynthetic and CO 2 concentrating mechanism properties in conditions of high and low inorganic carbon (Ci) availability. In the ΔglgC mutant, glycogen cannot be synthesized and a carbon sink pathway has been effectively removed. The JU547 strain has been engineered by integration of the Pseudomonas syringaemore » ethylene forming enzyme and provides a new sink. When cultured under high carbon conditions, ΔglgC displayed diminished photochemical efficiency, a more reduced NADPH pool, delayed initiation of the Calvin-Benson-Bassham cycle, and impairment of linear and cyclic electron flows. It also exhibited a large decrease in photochemical quenching indicative of the accumulation of Q A-, normally associated with a reduced PQ pool, but appears instead to be the result of an undefined dissipative mechanism to spill excess energy. In the case of carbon sink integration, JU547 displayed slightly more oxidized PQ and NADPH pools and increased rates of cyclic electron flow and an enhanced demand for inorganic carbon as suggested by increase in the expression of the bicarbonate transporter, SbtA. Overall, the results highlight the importance of the native regulatory network of autotrophic metabolism in governing photosynthetic performance and provide cogent examples of both predicable and difficult to predict phenotypic consequences upon installation of new pathways in autotrophs.« less

  18. Processing and evaluation of long fiber thermoplastic composite plates for internal fixation

    NASA Astrophysics Data System (ADS)

    Warren, Paul B.

    The metallic plates used in internal fracture fixation may have up to ten times the elastic modulus of normal bone tissue, causing stress shielding-induced osteopenia in healed bone that can lead to re-fracture after plate removal and prolonged and painful recovery. Thermoplastic polymer matrix composites reinforced with long carbon fiber are promising alternative materials for internal fixation plates because they may be produced with relative ease and be tailored to have specific mechanical properties, alleviating the stress shielding problem. Long carbon fiber-reinforced polyetheretherketone (LCF PEEK) plates were produced using the extrusion / compression molding process. Static flexural testing determined that LCF PEEK plates with rectangular cross-section had an average flexural modulus of 12 GPa, or 23% of the flexural modulus of a stainless steel plate. The LCF PEEK plates also experienced negligible (14.7%, 14.5%, and 16.7%) reductions in modulus after fatigue testing at applied moments of 2.5, 3.0, and 3.5 N•m, respectively, over 106 load cycles. Aging the plates in 0.9% NaCl solution for four and eight weeks caused 0.34% and 0.28% increases in plate mass, respectively. No significant decrease of flexural properties due to aging was detected. Differential scanning calorimetry (DSC) revealed the PEEK matrix of the plates to be 24.5% crystalline, which is lower than typical PEEK crystallinity values of 30-35%. Scanning electron microscopy (SEM) revealed three times as many fiber pullout areas in LCF PEEK fracture surfaces as in fracture surfaces of long carbon fiber-reinforced polyphenylenesulfide (LCF PPS), another plate material tested. DSC and SEM data suggest that improvements in processing conditions and fiber/matrix bonding, along with higher carbon fiber fractions, would enhance LCF PEEK plate performance. LCF PEEK remains a promising alternative to stainless steel for internal fixation plates.

  19. Incomplete Wood–Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring Dehalococcoides mccartyi

    PubMed Central

    Zhuang, Wei-Qin; Yi, Shan; Bill, Markus; Brisson, Vanessa L.; Feng, Xueyang; Men, Yujie; Conrad, Mark E.; Tang, Yinjie J.; Alvarez-Cohen, Lisa

    2014-01-01

    The acetyl-CoA “Wood–Ljungdahl” pathway couples the folate-mediated one-carbon (C1) metabolism to either CO2 reduction or acetate oxidation via acetyl-CoA. This pathway is distributed in diverse anaerobes and is used for both energy conservation and assimilation of C1 compounds. Genome annotations for all sequenced strains of Dehalococcoides mccartyi, an important bacterium involved in the bioremediation of chlorinated solvents, reveal homologous genes encoding an incomplete Wood–Ljungdahl pathway. Because this pathway lacks key enzymes for both C1 metabolism and CO2 reduction, its cellular functions remain elusive. Here we used D. mccartyi strain 195 as a model organism to investigate the metabolic function of this pathway and its impacts on the growth of strain 195. Surprisingly, this pathway cleaves acetyl-CoA to donate a methyl group for production of methyl-tetrahydrofolate (CH3-THF) for methionine biosynthesis, representing an unconventional strategy for generating CH3-THF in organisms without methylene-tetrahydrofolate reductase. Carbon monoxide (CO) was found to accumulate as an obligate by-product from the acetyl-CoA cleavage because of the lack of a CO dehydrogenase in strain 195. CO accumulation inhibits the sustainable growth and dechlorination of strain 195 maintained in pure cultures, but can be prevented by CO-metabolizing anaerobes that coexist with D. mccartyi, resulting in an unusual syntrophic association. We also found that this pathway incorporates exogenous formate to support serine biosynthesis. This study of the incomplete Wood–Ljungdahl pathway in D. mccartyi indicates a unique bacterial C1 metabolism that is critical for D. mccartyi growth and interactions in dechlorinating communities and may play a role in other anaerobic communities. PMID:24733917

  20. Importance of Nitrogen Availability on Land Carbon Sequestration in Northern Eurasia during the 21st Century

    NASA Astrophysics Data System (ADS)

    Kicklighter, D. W.; Melillo, J. M.; Monier, E.; Sokolov, A. P.; Lu, X.; Zhuang, Q.

    2015-12-01

    Atmospheric nitrogen deposition, nitrogen fixation, and the application of nitrogen fertilizers provide subsidies to land ecosystems that can increase nitrogen availability for vegetation production and thereby influence land carbon dynamics. In addition, enhanced decomposition of soil organic matter (SOM) from warming soils and permafrost degradation may also increase nitrogen availability in Northern Eurasia. Here, we examine how changes in nitrogen availability may influence land carbon dynamics in Northern Eurasia during the 21st century by comparing results for a "business as usual" scenario (the IPCC Representative Concentration Pathways or RCP 8.5) and a stabilization scenario (RCP 4.5) between a version of the Terrestrial Ecosystem Model that does not consider the effects of atmospheric nitrogen deposition, nitrogen fixation and soil thermal dynamics on land carbon dynamics (TEM 4.4) and a version that does consider these dynamics (TEM 6.0). In these simulations, atmospheric nitrogen deposition, nitrogen fixation, and fertilizer applications provide an additional 3.3 Pg N (RCP 4.5) to 3.9 Pg N (RCP 8.5) to Northern Eurasian ecosystems over the 21st century. Land ecosystems retain about 38% (RCP4.5) to 48% (RCP 8.5) of this nitrogen subsidy. Net nitrogen mineralization estimated by TEM 6.0 provide an additional 1.0 Pg N to vegetation than estimated by TEM 4.4 over the 21st century from enhanced decomposition of SOM including SOM formerly protected by permafrost. The enhanced nitrogen availability in TEM 6.0 allows Northern Eurasian ecosystems to sequester 1.8x (RCP 8.5) to 2.4x (RCP 4.5) more carbon over the 21st century than estimated by TEM 4.4. Our results indicate that consideration of nitrogen subsidies and soil thermal dynamics have a large influence on how simulated land carbon dynamics in Northern Eurasia will respond to future changes in climate, atmospheric chemistry, and disturbances.

  1. Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth

    NASA Astrophysics Data System (ADS)

    van den Elzen, Eva; Kox, Martine A. R.; Harpenslager, Sarah F.; Hensgens, Geert; Fritz, Christian; Jetten, Mike S. M.; Ettwig, Katharina F.; Lamers, Leon P. M.

    2017-03-01

    In pristine Sphagnum-dominated peatlands, (di)nitrogen (N2) fixing (diazotrophic) microbial communities associated with Sphagnum mosses contribute substantially to the total nitrogen input, increasing carbon sequestration. The rates of symbiotic nitrogen fixation reported for Sphagnum peatlands, are, however, highly variable, and experimental work on regulating factors that can mechanistically explain this variation is largely lacking. For two common fen species (Sphagnum palustre and S. squarrosum) from a high nitrogen deposition area (25 kg N ha-1 yr-1), we found that diazotrophic activity (as measured by 15 - 15N2 labeling) was still present at a rate of 40 nmol N gDW-1 h-1. This was surprising, given that nitrogen fixation is a costly process. We tested the effects of phosphorus availability and buffering capacity by bicarbonate-rich water, mimicking a field situation in fens with stronger groundwater or surface water influence, as potential regulators of nitrogen fixation rates and Sphagnum performance. We expected that the addition of phosphorus, being a limiting nutrient, would stimulate both diazotrophic activity and Sphagnum growth. We indeed found that nitrogen fixation rates were doubled. Plant performance, in contrast, did not increase. Raised bicarbonate levels also enhanced nitrogen fixation, but had a strong negative impact on Sphagnum performance. These results explain the higher nitrogen fixation rates reported for minerotrophic and more nutrient-rich peatlands. In addition, nitrogen fixation was found to strongly depend on light, with rates 10 times higher in light conditions suggesting high reliance on phototrophic organisms for carbon. The contrasting effects of phosphorus and bicarbonate on Sphagnum spp. and their diazotrophic communities reveal strong differences in the optimal niche for both partners with respect to conditions and resources. This suggests a trade-off for the symbiosis of nitrogen fixing microorganisms with their Sphagnum

  2. Comparison of clinical outcomes of iris fixation and scleral fixation as treatment for intraocular lens dislocation.

    PubMed

    Kim, Kyeong Hwan; Kim, Wan Soo

    2015-09-01

    To compare the efficacy and safety of iris fixation with scleral fixation in surgical repositioning of dislocated intraocular lenses (IOLs). Retrospective, consecutive, comparative interventional case series. setting: Referral hospital. Seventy-eight consecutive patients who underwent surgical repositioning of dislocated intraocular lenses using suturing to the sclera or iris. Forty-four eyes of 44 patients underwent scleral fixation and 35 eyes of 34 patients underwent iris fixation of dislocated intraocular lenses. Visual acuity, refractive stability, operation time, and perioperative complications, including recurrence of IOL dislocation. Corrected distance visual acuity (CDVA) improved significantly 1 month postoperatively in both groups (P < .01 each), and remained stable for 12 months. One week postoperatively, however, CDVA improved significantly in the scleral fixation (P = .040) but not in the iris fixation (P = .058) group. The amount of refractive error significantly diminished 1 day after surgery (P = .028 in the scleral fixation and P = .046 in the iris fixation group). For the astigmatic components, Jackson crossed cylinders equivalent to conventional cylinders of positive power at axes of 0 degrees (J0) and 45 degrees (J45), J45 differed significantly in the scleral fixation and iris fixation groups (P = .009), whereas J0 was similar (P > .05). Operation time was significantly shorter (P = .0007), while immediate postoperative inflammation was significantly more severe (P = .001), in the iris fixation than in the scleral fixation group. Recurrence rates were similar (P > .05), but the mean time to recurrence was significantly shorter in the iris fixation than in the scleral fixation group (P = .031). Iris fixation and scleral fixation techniques had similar efficacy in the repositioning of dislocated intraocular lenses. Although operation time was shorter for iris fixation, it had several disadvantages, including induced astigmatism

  3. Tendon transfer fixation: comparing a tendon to tendon technique vs. bioabsorbable interference-fit screw fixation.

    PubMed

    Sabonghy, Eric Peter; Wood, Robert Michael; Ambrose, Catherine Glauber; McGarvey, William Christopher; Clanton, Thomas Oscar

    2003-03-01

    Tendon transfer techniques in the foot and ankle are used for tendon ruptures, deformities, and instabilities. This fresh cadaver study compares the tendon fixation strength in 10 paired specimens by performing a tendon to tendon fixation technique or using 7 x 20-25 mm bioabsorbable interference-fit screw tendon fixation technique. Load at failure of the tendon to tendon fixation method averaged 279N (Standard Deviation 81N) and the bioabsorbable screw 148N (Standard Deviation 72N) [p = 0.0008]. Bioabsorbable interference-fit screws in these specimens show decreased fixation strength relative to the traditional fixation technique. However, the mean bioabsorbable screw fixation strength of 148N provides physiologic strength at the tendon-bone interface.

  4. Elevated temperature alters carbon cycling in a model microbial community

    NASA Astrophysics Data System (ADS)

    Mosier, A.; Li, Z.; Thomas, B. C.; Hettich, R. L.; Pan, C.; Banfield, J. F.

    2013-12-01

    Earth's climate is regulated by biogeochemical carbon exchanges between the land, oceans and atmosphere that are chiefly driven by microorganisms. Microbial communities are therefore indispensible to the study of carbon cycling and its impacts on the global climate system. In spite of the critical role of microbial communities in carbon cycling processes, microbial activity is currently minimally represented or altogether absent from most Earth System Models. Method development and hypothesis-driven experimentation on tractable model ecosystems of reduced complexity, as presented here, are essential for building molecularly resolved, benchmarked carbon-climate models. Here, we use chemoautotropic acid mine drainage biofilms as a model community to determine how elevated temperature, a key parameter of global climate change, regulates the flow of carbon through microbial-based ecosystems. This study represents the first community proteomics analysis using tandem mass tags (TMT), which enable accurate, precise, and reproducible quantification of proteins. We compare protein expression levels of biofilms growing over a narrow temperature range expected to occur with predicted climate changes. We show that elevated temperature leads to up-regulation of proteins involved in amino acid metabolism and protein modification, and down-regulation of proteins involved in growth and reproduction. Closely related bacterial genotypes differ in their response to temperature: Elevated temperature represses carbon fixation by two Leptospirillum genotypes, whereas carbon fixation is significantly up-regulated at higher temperature by a third closely related genotypic group. Leptospirillum group III bacteria are more susceptible to viral stress at elevated temperature, which may lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, this proteogenomics approach revealed the effects of climate change on carbon cycling pathways and other

  5. Carbon Metabolic Pathways in Phototrophic Bacteria and Their Broader Evolutionary Implications

    PubMed Central

    Tang, Kuo-Hsiang; Tang, Yinjie J.; Blankenship, Robert Eugene

    2011-01-01

    Photosynthesis is the biological process that converts solar energy to biomass, bio-products, and biofuel. It is the only major natural solar energy storage mechanism on Earth. To satisfy the increased demand for sustainable energy sources and identify the mechanism of photosynthetic carbon assimilation, which is one of the bottlenecks in photosynthesis, it is essential to understand the process of solar energy storage and associated carbon metabolism in photosynthetic organisms. Researchers have employed physiological studies, microbiological chemistry, enzyme assays, genome sequencing, transcriptomics, and 13C-based metabolomics/fluxomics to investigate central carbon metabolism and enzymes that operate in phototrophs. In this report, we review diverse CO2 assimilation pathways, acetate assimilation, carbohydrate catabolism, the tricarboxylic acid cycle and some key, and/or unconventional enzymes in central carbon metabolism of phototrophic microorganisms. We also discuss the reducing equivalent flow during photoautotrophic and photoheterotrophic growth, evolutionary links in the central carbon metabolic network, and correlations between photosynthetic and non-photosynthetic organisms. Considering the metabolic versatility in these fascinating and diverse photosynthetic bacteria, many essential questions in their central carbon metabolism still remain to be addressed. PMID:21866228

  6. Lung Macrophages “Digest” Carbon Nanotubes Using a Superoxide/Peroxynitrite Oxidative Pathway

    PubMed Central

    2015-01-01

    In contrast to short-lived neutrophils, macrophages display persistent presence in the lung of animals after pulmonary exposure to carbon nanotubes. While effective in the clearance of bacterial pathogens and injured host cells, the ability of macrophages to “digest” carbonaceous nanoparticles has not been documented. Here, we used chemical, biochemical, and cell and animal models and demonstrated oxidative biodegradation of oxidatively functionalized single-walled carbon nanotubes via superoxide/NO* → peroxynitrite-driven oxidative pathways of activated macrophages facilitating clearance of nanoparticles from the lung. PMID:24871084

  7. Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave.

    PubMed

    Ortiz, Marianyoly; Legatzki, Antje; Neilson, Julia W; Fryslie, Brandon; Nelson, William M; Wing, Rod A; Soderlund, Carol A; Pryor, Barry M; Maier, Raina M

    2014-02-01

    Carbonate caves represent subterranean ecosystems that are largely devoid of phototrophic primary production. In semiarid and arid regions, allochthonous organic carbon inputs entering caves with vadose-zone drip water are minimal, creating highly oligotrophic conditions; however, past research indicates that carbonate speleothem surfaces in these caves support diverse, predominantly heterotrophic prokaryotic communities. The current study applied a metagenomic approach to elucidate the community structure and potential energy dynamics of microbial communities, colonizing speleothem surfaces in Kartchner Caverns, a carbonate cave in semiarid, southeastern Arizona, USA. Manual inspection of a speleothem metagenome revealed a community genetically adapted to low-nutrient conditions with indications that a nitrogen-based primary production strategy is probable, including contributions from both Archaea and Bacteria. Genes for all six known CO2-fixation pathways were detected in the metagenome and RuBisCo genes representative of the Calvin-Benson-Bassham cycle were over-represented in Kartchner speleothem metagenomes relative to bulk soil, rhizosphere soil and deep-ocean communities. Intriguingly, quantitative PCR found Archaea to be significantly more abundant in the cave communities than in soils above the cave. MEtaGenome ANalyzer (MEGAN) analysis of speleothem metagenome sequence reads found Thaumarchaeota to be the third most abundant phylum in the community, and identified taxonomic associations to this phylum for indicator genes representative of multiple CO2-fixation pathways. The results revealed that this oligotrophic subterranean environment supports a unique chemoautotrophic microbial community with potentially novel nutrient cycling strategies. These strategies may provide key insights into other ecosystems dominated by oligotrophy, including aphotic subsurface soils or aquifers and photic systems such as arid deserts.

  8. Microwave fixation versus formalin fixation of surgical and autopsy tissue.

    PubMed

    Login, G R

    1978-05-01

    Microwave irradiation of surgical and autopsy tissue penetrates, fixes, and hardens the tissue almost immediately (the fluid media used in the microwave consisted of saline, ten percent phosphate buffered formalin, and distilled water). Tissue sections from a representative sample of organs were tested. Comparable sections were simultaneously fixed in a phosphate buffered ten percent formalin bath in a vaccum oven as a control. Hematoxylin and eosin were used to stain the sections. Results equal to and superior to the control method were obtained. Saline microwave fixation was superior to formalin microwave fixation. Tissues placed in Zenker's solution and fixed in standard microwave oven (for approximately one minute) yielded results at least equal to conventional Zenker fixation (approximately two hours). No tissue hardening resulted from Zenker microwave fixation. A unique time versus temperature graph (microwave heating curve) reduces individual variation with this technique.

  9. [Effectiveness comparison of suspension fixation plus hinged external fixator and double plate internal fixation in treatment of type C humeral intercondylar fractures].

    PubMed

    Zhang, Jian; Lin, Xu; Zhong, Zeli; Wu, Chao; Tan, Lun

    2017-07-01

    To compare the effectiveness of suspension fixation plus hinged external fixator with double plate internal fixation in the treatment of type C humeral intercondylar fractures. Between January 2014 and April 2016, 30 patients with type C (Association for the Study of Internal Fixation, AO/ASIF) humeral intercondylar fractures were treated. Kirschner wire suspension fixation plus hinged external fixator was used in 14 cases (group A), and double plate internal fixation in 16 cases (group B). There was no significant difference in gender, age, injury cause, disease duration, injury side, and type of fracture between 2 groups ( P >0.05). There was no significant difference in operation time and hospitalization stay between 2 groups ( P >0.05). But the intraoperative blood loss in group A was significantly less than that in group B ( P <0.05); the visual analogue scale (VAS) score at 1 day and 3 days after operation in group A were significantly less than those in group B ( P <0.05). Primary healing of incision was obtained in all patients of 2 groups, and no surgery-related complications occurred. The patients were followed up 6-24 months (mean, 12.3 months) in group A and 6-24 months (mean, 12.8 months) in group B. The self-evaluation satisfaction rate was 85.7% (12/14) in group A and was 81.2% (13/16) in group B at 3 months after operation, showing no significant difference ( χ 2 =0.055, P =0.990). Based on the improved Gassebaum elbow performance score at 6 months after operation, excellent and good rate of the elbow function was 78.6% (excellent in 5 cases, good in 6 cases, fair in 2 cases, and poor in 1 case) in group A and was 81.2% (excellent in 6 cases, good in 7 cases, fair in 2 cases, and poor in 1 case) in group B, showing no significant difference between 2 groups ( χ 2 =0.056, P =0.990). Heterotopic ossification occurred at 3 months after operation in 1 case of each group respectively. The X-ray films showed bony union in all cases; no loosening or

  10. Design Fixation

    ERIC Educational Resources Information Center

    Kelley, Todd R.; Sung, Euisuk

    2017-01-01

    The purpose of this article is to provide awareness of the danger of design fixation and promote the uses of brainstorming early in the design process--before fixation limits creative ideas. The authors challenged technology teachers to carefully limit the use of design examples too early in the process and provided suggestions for facilitating…

  11. [Potential Carbon Fixation Capability of Non-photosynthetic Microbial Community at Different Depth of the South China Sea and Its Response to Different Electron Donors].

    PubMed

    Fang, Feng; Wang, Lei; Xi, Xue-fei; Hu, Jia-jun; Fu, Xiao-hua; Lu, Bing; Xu, Dian-sheng

    2015-05-01

    The seawater samples collected from many different areas with different depth in the South China Sea were cultivated using different electron donors respectively. And the variation in the potential carbon fixation capability ( PCFC ) of non-photosynthetic microbial community (NPMC) in seawater with different depth was determined after a cycle of cultivation through the statistic analysis. In addition, the cause for the variation was clarified through analyzing key gene abundance regarding CO2 fixation and characteristics of seawater with different depth. The result showed that the PCFCs of NPMC in seawater with different depth were generally low and had no significant difference when using NaNO2 as the electron donor. The PCFC of NPMC in surface seawater was higher than that in deep seawater when using H2 as the electron donor, on the contrary, the PCFC of NPMC in deep seawater was higher than that in surface seawater when using Na2S2O3 as the electron donor. The abundance of the main CO2 fixation gene cbbL in surface seawater was higher than that in deep seawater while the cbbM gene abundance in deep seawater was higher than that in surface seawater. Most hydrogen-oxidizing bacteria had the cbbL gene, and most sulfur bacteria had the cbbM gene. The tendency of seawater cbbL/cbbM gene abundance with the change of depth revealed that there were different kinds of bacteria accounting for the majority in NPMC fixing CO2 at different depth of ocean, which led to different response of PCFC of NPMC at different depth of the sea to different electron donors. The distributions of dissolved oxygen and inorganic carbon concentration with the change of the depth of the sea might be an important reason leading to the difference of NPMC structure and even the difference of PCFC at different depth of the sea.

  12. Open reduction and internal fixation compared to closed reduction and external fixation in distal radial fractures

    PubMed Central

    Kopylov, Philippe; Geijer, Mats; Tägil, Magnus

    2009-01-01

    Background and purpose In unstable distal radial fractures that are impossible to reduce or to maintain in reduced position, the treatment of choice is operation. The type of operation and the choice of implant, however, is a matter of discussion. Our aim was to investigate whether open reduction and internal fixation would produce a better result than traditional external fixation. Methods 50 patients with an unstable or comminute distal radius fracture were randomized to either closed reduction and bridging external fixation, or open reduction and internal fixation using the TriMed system. The primary outcome parameter was grip strength, but the patients were followed for 1 year with objective clinical assessment, subjective outcome using DASH, and radiographic examination. Results At 1 year postoperatively, grip strength was 90% (SD 16) of the uninjured side in the internal fixation group and 78% (17) in the external fixation group. Pronation/supination was 150° (15) in the internal fixation group and 136° (20) in the external fixation group at 1 year. There were no differences in DASH scores or in radiographic parameters. 5 patients in the external fixation group were reoperated due to malunion, as compared to 1 in the internal fixation group. 7 other cases were classified as radiographic malunion: 5 in the external fixation group and 2 in the internal fixation group. Interpretation Internal fixation gave better grip strength and a better range of motion at 1 year, and tended to have less malunions than external fixation. No difference could be found regarding subjective outcome. PMID:19857180

  13. [Carbon balance of household production system in the transition zone from the Loess Plateau to the Qinghai-Tibet Plateau, China].

    PubMed

    Wu, Chao Chao; Gao, Xiao Ye; Hou, Fu Jiang

    2017-10-01

    The transition zone from the Loess Plateau to the Qinghai-Tibet Plateau is one of the regions with most dramatic changes in agricultural production mode and most sensitive response to the carbon balance effect. This paper analyzed the carbon balance of the agriculture system along the altitude gradient in Tongwei, Weiyuan and Xiahe counties. The results showed that with the increase of altitude, the carbon emission, carbon fixation and carbon sink capacity of crops per unit area decreased accordingly, while the average carbon emission, carbon fixation and carbon source capacity of each household in livestock system increased. The integrated crop-livestock production system changed from carbon sink to carbon source. The average carbon emission of each household rose with altitude, but the carbon fixation was the opposite. The change of percentage ofhousehold in the transition zone from the Loess Plateau to the Qinghai-Tibet Plateau with carbon balance could be fitted with Logistic equation. In the crop system of Tongwei, Weiyuan and Xiahe with the altitude increase, carbon emission at the inflection point where the household percentage accounted for 50.0% was 1491, 857 and 376 kg CE·household -1 , and carbon fixation was 6187, 3872 and 778 kg CE·household -1 , respectively. For the livestock system, carbon emission was 2218, 3725 and 49511 kg CE·household -1 , and carbon fixation was 138, 230 and 2706 kg CE·household -1 , respectively. For the integrated crop-livestock system, carbon emission was 3615, 4583 and 49918 kg CE·household -1 , and carbon fixation was 6289, 4113 and 3819 kg CE·household -1 , respectively, which could be the key point for the regulation of regional carbon balance.

  14. Pathways of organic carbon oxidation in three continental margin sediments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.; Jorgensen, B. B.; Fossing, H.; Glud, R.; Gundersen, J.; Ramsing, N. B.; Thamdrup, B.; Hansen, J. W.; Nielsen, L. P.; Hall, P. O.

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe and Mn reduction) has probably been well underestimated.

  15. Salient in space, salient in time: Fixation probability predicts fixation duration during natural scene viewing.

    PubMed

    Einhäuser, Wolfgang; Nuthmann, Antje

    2016-09-01

    During natural scene viewing, humans typically attend and fixate selected locations for about 200-400 ms. Two variables characterize such "overt" attention: the probability of a location being fixated, and the fixation's duration. Both variables have been widely researched, but little is known about their relation. We use a two-step approach to investigate the relation between fixation probability and duration. In the first step, we use a large corpus of fixation data. We demonstrate that fixation probability (empirical salience) predicts fixation duration across different observers and tasks. Linear mixed-effects modeling shows that this relation is explained neither by joint dependencies on simple image features (luminance, contrast, edge density) nor by spatial biases (central bias). In the second step, we experimentally manipulate some of these features. We find that fixation probability from the corpus data still predicts fixation duration for this new set of experimental data. This holds even if stimuli are deprived of low-level images features, as long as higher level scene structure remains intact. Together, this shows a robust relation between fixation duration and probability, which does not depend on simple image features. Moreover, the study exemplifies the combination of empirical research on a large corpus of data with targeted experimental manipulations.

  16. A Prospective Randomized Trial to Assess Fixation Strategies for Severe Open Tibia Fractures: Modern Ring External Fixators Versus Internal Fixation (FIXIT Study).

    PubMed

    OʼToole, Robert V; Gary, Joshua L; Reider, Lisa; Bosse, Michael J; Gordon, Wade T; Hutson, James; Quinnan, Stephen M; Castillo, Renan C; Scharfstein, Daniel O; MacKenzie, Ellen J

    2017-04-01

    The treatment of high-energy open tibia fractures is challenging in both the military and civilian environments. Treatment with modern ring external fixation may reduce complications common in these patients. However, no study has rigorously compared outcomes of modern ring external fixation with commonly used internal fixation approaches. The FIXIT study is a prospective, multicenter randomized trial comparing 1-year outcomes after treatment of severe open tibial shaft fractures with modern external ring fixation versus internal fixation among men and women of ages 18-64. The primary outcome is rehospitalization for major limb complications. Secondary outcomes include infection, fracture healing, limb function, and patient-reported outcomes including physical function and pain. One-year treatment costs and patient satisfaction will be compared between the 2 groups, and the percentage of Gustilo IIIB fractures that can be salvaged without soft tissue flap among patients receiving external fixation will be estimated.

  17. Comparative Proteomic and Physiological Analysis Reveals the Variation Mechanisms of Leaf Coloration and Carbon Fixation in a Xantha Mutant of Ginkgo biloba L.

    PubMed

    Liu, Xinliang; Yu, Wanwen; Wang, Guibin; Cao, Fuliang; Cai, Jinfeng; Wang, Huanli

    2016-10-27

    Yellow-green leaf mutants are common in higher plants, and these non-lethal chlorophyll-deficient mutants are ideal materials for research on photosynthesis and plant development. A novel xantha mutant of Ginkgo biloba displaying yellow-colour leaves (YL) and green-colour leaves (GL) was identified in this study. The chlorophyll content of YL was remarkably lower than that in GL. The chloroplast ultrastructure revealed that YL had less dense thylakoid lamellae, a looser structure and fewer starch grains than GL. Analysis of the photosynthetic characteristics revealed that YL had decreased photosynthetic activity with significantly high nonphotochemical quenching. To explain these phenomena, we analysed the proteomic differences in leaves and chloroplasts between YL and GL of ginkgo using two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF MS. In total, 89 differential proteins were successfully identified, 82 of which were assigned functions in nine metabolic pathways and cellular processes. Among them, proteins involved in photosynthesis, carbon fixation in photosynthetic organisms, carbohydrate/energy metabolism, amino acid metabolism, and protein metabolism were greatly enriched, indicating a good correlation between differentially accumulated proteins and physiological changes in leaves. The identifications of these differentially accumulated proteins indicates the presence of a specific different metabolic network in YL and suggests that YL possess slower chloroplast development, weaker photosynthesis, and a less abundant energy supply than GL. These studies provide insights into the mechanism of molecular regulation of leaf colour variation in YL mutants.

  18. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir: Microbial life in the deep carbonated biosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Adam J. E.; Tan, BoonFei; Thompson, Janelle R.

    Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected super-critical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO 2- water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four membersmore » of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. In conclusion, the existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling.« less

  19. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir: Microbial life in the deep carbonated biosphere

    DOE PAGES

    Freedman, Adam J. E.; Tan, BoonFei; Thompson, Janelle R.

    2017-05-02

    Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected super-critical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO 2- water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four membersmore » of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. In conclusion, the existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling.« less

  20. Eighth international congress on nitrogen fixation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  1. Carbon nanopipettes characterize calcium release pathways in breast cancer cells

    NASA Astrophysics Data System (ADS)

    Schrlau, Michael G.; Brailoiu, Eugen; Patel, Sandip; Gogotsi, Yury; Dun, Nae J.; Bau, Haim H.

    2008-08-01

    Carbon-based nanoprobes are attractive for minimally invasive cell interrogation but their application in cell physiology has thus far been limited. We have developed carbon nanopipettes (CNPs) with nanoscopic tips and used them to inject calcium-mobilizing messengers into cells without compromising cell viability. We identify pathways sensitive to cyclic adenosine diphosphate ribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) in breast carcinoma cells. Our findings demonstrate the superior utility of CNPs for intracellular delivery of impermeant molecules and, more generally, for cell physiology studies. The CNPs do not appear to cause any lasting damage to cells. Their advantages over commonly used glass pipettes include smaller size, breakage and clogging resistance, and potential for multifunctionality such as in concurrent injection and electrical measurements.

  2. Carbon nanopipettes characterize calcium release pathways in breast cancer cells.

    PubMed

    Schrlau, Michael G; Brailoiu, Eugen; Patel, Sandip; Gogotsi, Yury; Dun, Nae J; Bau, Haim H

    2008-08-13

    Carbon-based nanoprobes are attractive for minimally invasive cell interrogation but their application in cell physiology has thus far been limited. We have developed carbon nanopipettes (CNPs) with nanoscopic tips and used them to inject calcium-mobilizing messengers into cells without compromising cell viability. We identify pathways sensitive to cyclic adenosine diphosphate ribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) in breast carcinoma cells. Our findings demonstrate the superior utility of CNPs for intracellular delivery of impermeant molecules and, more generally, for cell physiology studies. The CNPs do not appear to cause any lasting damage to cells. Their advantages over commonly used glass pipettes include smaller size, breakage and clogging resistance, and potential for multifunctionality such as in concurrent injection and electrical measurements.

  3. Radiological evaluation of ankle arthrodesis with Ilizarov fixation compared to internal fixation.

    PubMed

    Morasiewicz, Piotr; Dejnek, Maciej; Urbański, Wiktor; Dragan, Szymon Łukasz; Kulej, Mirosław; Dragan, Szymon Feliks

    2017-07-01

    We asked whether the type of ankle joint arthrodesis stabilization will affect: (1) rate of union, (2) rate of adjacted-joint arthritis, (3) malalignment of the ankle joint. We retrospectively radiological studied 62 patients who underwent ankle arthrodesis with Ilizarov external fixator stabilization (group 1,n=29) or internal stabilization (group 2,n=33) from 2006 to 2015. Radiologic outcomes were mesure by: (1) rate of union, (2) rate of adjacent-joint arthritis, (3) malalignment of the ankle joint. The Levene's test,Mann-Whitney U test and Students t-test were used to the statistical analyses. Ankle fusion was achieved in 100% of patients treated with external fixation and in 88% with internal stabilization. Desired frontal plane alignment was achieved in 100% of patients with external fixation and 76% with internal stabilization. Desired sagittal plane alignment was achieved in 100% of external fixation and 85% of internal stabilization. A total of 14 (48.3%) patients from group 1 showed a radiographic evidence of pre-existing adjacent-joint OA. The radiographic evidence of pre-existing adjacent-joint OA was also found in 27(81.8%) subjects from group 2. Alterations of adjacent joints were also found on postoperative radiograms of 19 (65.5%) patients subjected to Ilizarov fixation and in all 33 patients from group 2. Ilizarov fixation of ankle arthrodesis is associated with lower prevalence of adjacent-joint OA and ankle joint misalignment,and with higher fusion rates than after internal fixation.Although achieving a complex ankle fusion is generally challenging,radiological outcomes after fixation with the Ilizarov apparatus are better than after internal stabilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Photosynthetic carbon fixation characteristics of fruiting structures of Brassica campestris L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singal, H.R.; Sheoran, I.S.; Singh, R.

    1987-04-01

    Activities of key enzymes of the Calvin cycle and C/sub 4/ metabolism, rates of CO/sub 2/ fixation, and the initial products of photosynthetic /sup 14/CO/sub 2/ fixation were determined in the podwall, seed coat (fruiting structures), and the subtending leaf (leaf below a receme) of Brassica campestris L. cv Toria. Compared to activities of ribulose-1,5-bisphosphate carboxylase and other Calvin cycle enzymes, e.g. NADP-glyceraldehyde-3-phosphate-dehydrogenase and ribulose-5-phosphate kinase, the activities of phosphoenol pyruvate carboxylase and other enzymes of C/sub 4/ metabolism, viz. NADP-malate dehydrogenase, NADP-malic enzyme, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, were generally much higher in seed than in podwallmore » and leaf. Podwall and leaf were comparable to each other. Pulse-chase experiments showed that in seed the major product of /sup 14/CO/sub 2/ assimilation was malate (in short time), whereas in podwall and leaf, the label initially appeared in 3-PGA. With time, the label moved to sucrose. In contrast to legumes, Brassica pods were able to fix net CO/sub 2/ during light. However, respiratory losses were very high during the dark period.« less

  5. Catalytic wet air oxidation of phenol with functionalized carbon materials as catalysts: reaction mechanism and pathway.

    PubMed

    Wang, Jianbing; Fu, Wantao; He, Xuwen; Yang, Shaoxia; Zhu, Wanpeng

    2014-08-01

    The development of highly active carbon material catalysts in catalytic wet air oxidation (CWAO) has attracted a great deal of attention. In this study different carbon material catalysts (multi-walled carbon nanotubes, carbon fibers and graphite) were developed to enhance the CWAO of phenol in aqueous solution. The functionalized carbon materials exhibited excellent catalytic activity in the CWAO of phenol. After 60 min reaction, the removal of phenol was nearly 100% over the functionalized multi-walled carbon, while it was only 14% over the purified multi-walled carbon under the same reaction conditions. Carboxylic acid groups introduced on the surface of the functionalized carbon materials play an important role in the catalytic activity in CWAO. They can promote the production of free radicals, which act as strong oxidants in CWAO. Based on the analysis of the intermediates produced in the CWAO reactions, a new reaction pathway for the CWAO of phenol was proposed in this study. There are some differences between the proposed reaction pathway and that reported in the literature. First, maleic acid is transformed directly into malonic acid. Second, acetic acid is oxidized into an unknown intermediate, which is then oxidized into CO2 and H2O. Finally, formic acid and oxalic acid can mutually interconvert when conditions are favorable. Copyright © 2014. Published by Elsevier B.V.

  6. Significance of Phosphoenolpyruvate Carboxylase during Ammonium Assimilation: Carbon Isotope Discrimination in Photosynthesis and Respiration by the N-Limited Green Alga Selenastrum minutum.

    PubMed

    Guy, R D; Vanlerberghe, G C; Turpin, D H

    1989-04-01

    The effect of N-assimilation on the partitioning of carbon fixation between phosphoenolpyruvate carboxylase (PEPcase) and ribulose bisphosphate carboxylase/oxygenase (Rubisco) was determined by measuring stable carbon isotope discrimination during photosynthesis by an N-limited green alga, Selenastrum minutum (Naeg.) Collins. This was facilitated by a two process model accounting for simultaneous CO(2) fixation and respiratory CO(2) release. Discrimination by control cells was consistent with the majority of carbon being fixed by Rubisco. During nitrogen assimilation however, discrimination was greatly reduced indicating an enhanced flux through PEPcase which accounted for upward of 70% of total carbon fixation. This shift toward anaplerotic metabolism supports a large increase in tricarboxylic acid cycle activity primarily between oxaloacetate and alpha-ketoglutarate thereby facilitating the provision of carbon skeletons for amino acid synthesis. This provides an example of a unique set of conditions under which anaplerotic carbon fixation by PEPcase exceeds photosynthetic carbon fixation by Rubisco in a C(3) organism.

  7. Neural correlates of fixation duration in natural reading: Evidence from fixation-related fMRI.

    PubMed

    Henderson, John M; Choi, Wonil; Luke, Steven G; Desai, Rutvik H

    2015-10-01

    A key assumption of current theories of natural reading is that fixation duration reflects underlying attentional, language, and cognitive processes associated with text comprehension. The neurocognitive correlates of this relationship are currently unknown. To investigate this relationship, we compared neural activation associated with fixation duration in passage reading and a pseudo-reading control condition. The results showed that fixation duration was associated with activation in oculomotor and language areas during text reading. Fixation duration during pseudo-reading, on the other hand, showed greater involvement of frontal control regions, suggesting flexibility and task dependency of the eye movement network. Consistent with current models, these results provide support for the hypothesis that fixation duration in reading reflects attentional engagement and language processing. The results also demonstrate that fixation-related fMRI provides a method for investigating the neurocognitive bases of natural reading. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene.

    PubMed

    Bentley, Fiona K; Zurbriggen, Andreas; Melis, Anastasios

    2014-01-01

    Heterologous expression of the isoprene synthase gene in the cyanobacterium Synechocystis PCC 6803 conferred upon these microorganisms the property of photosynthetic isoprene (C₅H₈) hydrocarbons production. Continuous production of isoprene from CO₂ and H₂O was achieved in the light, occurring via the endogenous methylerythritol-phosphate (MEP) pathway, in tandem with the growth of Synechocystis. This work addressed the issue of photosynthetic carbon partitioning between isoprene and biomass in Synechocystis. Evidence is presented to show heterologous genomic integration and cellular expression of the mevalonic acid (MVA) pathway genes in Synechocystis endowing a non-native pathway for carbon flux amplification to isopentenyl-diphosphate (IPP) and dimethylallyl-diphosphate (DMAPP) precursors of isoprene. Heterologous expression of the isoprene synthase in combination with the MVA pathway enzymes resulted in photosynthetic isoprene yield improvement by approximately 2.5-fold, compared with that measured in cyanobacteria transformed with the isoprene synthase gene only. These results suggest that the MVA pathway introduces a bypass in the flux of endogenous cellular substrate in Synechocystis to IPP and DMAPP, overcoming flux limitations of the native MEP pathway. The work employed a novel chromosomal integration and expression of synthetic gene operons in Synechocystis, comprising up to four genes under the control of a single promoter, and expressing three operons simultaneously. This is the first time an entire biosynthetic pathway with seven recombinant enzymes has been heterologously expressed in a photosynthetic microorganism. It constitutes contribution to the genetic engineering toolkit of photosynthetic microorganisms and a paradigm in the pursuit of photosynthetic approaches for the renewable generation of high-impact products.

  9. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir

    PubMed Central

    Freedman, Adam J.E.; Tan, BoonFei

    2017-01-01

    Summary Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO2 reservoirs, which serve as analogs for the long‐term fate of sequestered scCO2, harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO2‐water separators at a natural scCO2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO2 and N2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO2 reservoir indicates that potential impacts of the deep biosphere on CO2 fate and transport should be taken into consideration as a component of GCS planning and modelling. PMID:28229521

  10. Catalytic fixation of atmospheric carbon dioxide by copper(ii) complexes of bidentate ligands.

    PubMed

    Muthuramalingam, Sethuraman; Khamrang, Themmila; Velusamy, Marappan; Mayilmurugan, Ramasamy

    2017-11-28

    New copper(ii) complexes, [Cu(L1) 2 (H 2 O)](ClO 4 ) 2 , 1 [L1 = 2-pyridin-2-yl-quinoline], [Cu(L2) 2 (H 2 O)](ClO 4 ) 2 , 2 [L2 = 2-pyridin-2-yl-quinoxaline], [Cu(L3) 2 (H 2 O)](ClO 4 ) 2 , 3 [L3 = 6,7-dimethyl-2-pyridin-2-yl-quinoxaline], [Cu(L4) 2 (H 2 O)](ClO 4 ) 2 , 4 [L4 = 4-phenyl-2-pyridin-2-yl-quinoline] and [Cu(L5) 2 (H 2 O)](ClO 4 ) 2 , 5 [L5 = 4-phenyl-2-pyridin-2-yl-quinazoline], were synthesized and characterized as catalysts for selective fixation of atmospheric CO 2 . The molecular structure of 2 was determined by single-crystal X-ray studies and shown to have an unusual trigonal bipyramid geometry (τ, 0.936) around the copper(ii) center, with the coordination of two ligand units and a water molecule. The Cu-N quin (2.040, 2.048 Å) bonds are slightly longer than the Cu-N pyr (1.987 Å) bonds but shorter than the Cu-O water bond (2.117 Å). Well-defined Cu(ii)/Cu(i) redox potentials of around 0.352 to 0.401 V were observed for 1-5 in acetonitrile. The electronic absorption spectra of 1-5 showed ligand-based transitions at around 208-286 nm with a visible shoulder at around 342-370 nm. The d-d transitions appeared at around 750-800 and 930-955 nm in acetonitrile. The rhombic EPR spectra of 1-5 exhibited three different g values g x , 2.27-2.34; g y , 2.06-2.09; and g z , 1.95-1.98 at 70 K. Atmospheric CO 2 was successfully fixed by 1-5 using Et 3 N as a sacrificial reducing agent, resulting in CO 3 2- -bound complexes of type [Cu(L)CO 3 (H 2 O)] that display an absorption band at around 614-673 nm and a ν st at 1647 cm -1 . This CO 3 2- -bound complex of 1 was crystallized from the reaction mixture and it displayed a distorted square pyramidal geometry (τ, 0.369) around the copper(ii) center via the coordination of only one ligand unit, a carbonate group, and water molecules. Furthermore, treatment of the carbonate-bound Cu(ii) complexes with one equivalent of H + under N 2 atmosphere resulted in the liberation of bicarbonate (HCO 3 - ) and

  11. Allocate carbon for a reason: priorities are reflected in the ¹³C/¹²C ratios of plant lipids synthesized via three independent biosynthetic pathways.

    PubMed

    Zhou, Youping; Stuart-Williams, Hilary; Grice, Kliti; Kayler, Zachary E; Zavadlav, Saša; Vogts, Angela; Rommerskirchen, Florian; Farquhar, Graham D; Gessler, Arthur

    2015-03-01

    It has long been theorized that carbon allocation, in addition to the carbon source and to kinetic isotopic effects associated with a particular lipid biosynthetic pathway, plays an important role in shaping the carbon isotopic composition ((13)C/(12)C) of lipids (Park and Epstein, 1961). If the latter two factors are properly constrained, valuable information about carbon allocation during lipid biosynthesis can be obtained from carbon isotope measurements. Published work of Chikaraishi et al. (2004) showed that leaf lipids isotopic shifts from bulk leaf tissue Δδ(13)C(bk-lp) (defined as δ(13)C(bulkleaftissue)-δ(13)C(lipid)) are pathway dependent: the acetogenic (ACT) pathway synthesizing fatty lipids has the largest isotopic shift, the mevalonic acid (MVA) pathway synthesizing sterols the lowest and the phytol synthesizing 1-deoxy-D-xylulose 5-phosphate (DXP) pathway gives intermediate values. The differences in Δδ(13)C(bk-lp) between C3 and C4 plants Δδ(13)C(bk-lp,C4-C3) are also pathway-dependent: Δδ(13)C(ACT)(bk-lp,C4-C3) > Δδ(13)C(DXP(bk-lp,C4-C3) > Δδ(13)C(MVA)(bk-lp,C4-C3). These pathway-dependent differences have been interpreted as resulting from kinetic isotopic effect differences of key but unspecified biochemical reactions involved in lipids biosynthesis between C3 and C4 plants. After quantitatively considering isotopic shifts caused by (dark) respiration, export-of-carbon (to sink tissues) and photorespiration, we propose that the pathway-specific differences Δδ(13)C(bk-lp,C4-C3) can be successfully explained by C4-C3 carbon allocation (flux) differences with greatest flux into the ACT pathway and lowest into the MVA pathways (when flux is higher, isotopic shift relative to source is smaller). Highest carbon allocation to the ACT pathway appears to be tied to the most stringent role of water-loss-minimization by leaf waxes (composed mainly of fatty lipids) while the lowest carbon allocation to the MVA pathway can be largely explained

  12. Biomechanical Evaluation of Standard Versus Extended Proximal Fixation Olecranon Plates for Fixation of Olecranon Fractures.

    PubMed

    Boden, Allison L; Daly, Charles A; Dalwadi, Poonam P; Boden, Stephanie A; Hutton, William C; Muppavarapu, Raghuveer C; Gottschalk, Michael B

    2018-01-01

    Small olecranon fractures present a significant challenge for fixation, which has resulted in development of plates with proximal extension. Olecranon-specific plates with proximal extensions are widely thought to offer superior fixation of small proximal fragments but have distinct disadvantages: larger dissection, increased hardware prominence, and the increased possibility of impingement. Previous biomechanical studies of olecranon fracture fixation have compared methods of fracture fixation, but to date there have been no studies defining olecranon plate fixation strength for standard versus extended olecranon plates. The purpose of this study is to evaluate the biomechanical utility of the extended plate for treatment of olecranon fractures. Sixteen matched pairs of fresh-frozen human cadaveric elbows were used. Of the 16, 8 matched pairs received a transverse osteotomy including 25% and 8 including 50% of the articular surface on the proximal fragment. One elbow from each pair was randomly assigned to a standard-length plate, and the other elbow in the pair received the extended-length plate, for fixation of the fracture. The ulnae were cyclically loaded and subsequently loaded to failure, with ultimate load, number of cycles, and gap formation recorded. There was no statistically significant difference between the standard and extended fixation plates in simple transverse fractures at either 25% or 50% from the proximal most portion of the articular surface of the olecranon. Standard fixation plates are sufficient for the fixation of small transverse fractures, but caution should be utilized particularly with comminution and nontransverse fracture patterns.

  13. Comparison of screw fixation with elastic fixation methods in the treatment of syndesmosis injuries in ankle fractures.

    PubMed

    Seyhan, Mustafa; Donmez, Ferdi; Mahirogullari, Mahir; Cakmak, Selami; Mutlu, Serhat; Guler, Olcay

    2015-07-01

    17 patients with ankle syndesmosic injury were treated with a 4.5mm single cortical screw fixation (passage of screw 4 cortices) and 15 patients were treated with single-level elastic fixation material. All patients were evaluated according to the AOFAS ankle and posterior foot scale at the third, sixth and twelfth months after the fixation. The ankle range of movement was recorded together with the healthy side. The Student's t test was used for statistical comparisons. No statistical significant difference was observed between the AOFAS scores (p>0.05). The range of dorsiflexion and plantar flexion motion of the elastic fixation group at the 6th and 12th months were significantly better compared to the screw fixation group (p<0.01). Elastic fixation is as functional as screw fixation in the treatment of ankle syndesmosis injuries. The unnecessary need of a second surgical intervention for removal of the fixation material is another advantageous aspect of this method of fixation. Copyright © 2015. Published by Elsevier Ltd.

  14. Sulfide oxidation, nitrate respiration, carbon acquisition, and electron transport pathways suggested by the draft genome of a single orange Guaymas Basin Beggiatoa (Cand. Maribeggiatoa) sp. filament.

    PubMed

    MacGregor, Barbara J; Biddle, Jennifer F; Harbort, Christopher; Matthysse, Ann G; Teske, Andreas

    2013-09-01

    A near-complete draft genome has been obtained for a single vacuolated orange Beggiatoa (Cand. Maribeggiatoa) filament from a Guaymas Basin seafloor microbial mat, the third relatively complete sequence for the Beggiatoaceae. Possible pathways for sulfide oxidation; nitrate respiration; inorganic carbon fixation by both Type II RuBisCO and the reductive tricarboxylic acid cycle; acetate and possibly formate uptake; and energy-generating electron transport via both oxidative phosphorylation and the Rnf complex are discussed here. A role in nitrite reduction is suggested for an abundant orange cytochrome produced by the Guaymas strain; this has a possible homolog in Beggiatoa (Cand. Isobeggiatoa) sp. PS, isolated from marine harbor sediment, but not Beggiatoa alba B18LD, isolated from a freshwater rice field ditch. Inferred phylogenies for the Calvin-Benson-Bassham (CBB) cycle and the reductive (rTCA) and oxidative (TCA) tricarboxylic acid cycles suggest that genes encoding succinate dehydrogenase and enzymes for carboxylation and/or decarboxylation steps (including RuBisCO) may have been introduced to (or exported from) one or more of the three genomes by horizontal transfer, sometimes by different routes. Sequences from the two marine strains are generally more similar to each other than to sequences from the freshwater strain, except in the case of RuBisCO: only the Guaymas strain encodes a Type II enzyme, which (where studied) discriminates less against oxygen than do Type I RuBisCOs. Genes subject to horizontal transfer may represent key steps for adaptation to factors such as oxygen and carbon dioxide concentration, organic carbon availability, and environmental variability. © 2013.

  15. Spatially-resolved isotopic study of carbon trapped in ∼3.43 Ga Strelley Pool Formation stromatolites

    NASA Astrophysics Data System (ADS)

    Flannery, David T.; Allwood, Abigail C.; Summons, Roger E.; Williford, Kenneth H.; Abbey, William; Matys, Emily D.; Ferralis, Nicola

    2018-02-01

    The large isotopic fractionation of carbon associated with enzymatic carbon assimilation allows evidence for life's antiquity, and potentially the early operation of several extant metabolic pathways, to be derived from the stable carbon isotope record of sedimentary rocks. Earth's organic carbon isotope record extends to the Late Eoarchean-Early Paleoarchean: the age of the oldest known sedimentary rocks. However, complementary inorganic carbon reservoirs are poorly represented in the oldest units, and commonly reported bulk organic carbon isotope measurements do not capture the micro-scale isotopic heterogeneities that are increasingly reported from younger rocks. Here, we investigated the isotopic composition of the oldest paired occurrences of sedimentary carbonate and organic matter, which are preserved as dolomite and kerogen within textural biosignatures of the ∼3.43 Ga Strelley Pool Formation. We targeted least-altered carbonate phases in situ using microsampling techniques guided by non-destructive elemental mapping. Organic carbon isotope values were measured by spatially-resolved bulk analyses, and in situ using secondary ion mass spectrometry to target microscale domains of organic material trapped within inorganic carbon matrixes. Total observed fractionation of 13C ranges from -29 to -45‰. Our data are consistent with studies of younger Archean rocks that host biogenic stromatolites and organic-inorganic carbon pairs showing greater fractionation than expected for Rubisco fixation alone. We conclude that organic matter was fixed and/or remobilized by at least one metabolism in addition to the CBB cycle, possibly by the Wood-Ljungdahl pathway or methanogenesis-methanotrophy, in a shallow-water marine environment during the Paleoarchean.

  16. Transient improvements in fixational stability in strabismic amblyopes following bifoveal fixation and reduced interocular suppression.

    PubMed

    Raveendran, Rajkumar Nallour; Babu, Raiju J; Hess, Robert F; Bobier, William R

    2014-03-01

    To test the hypothesis that fixational stability of the amblyopic eye in strabismics will improve when viewing provides both bifoveal fixation and reduced inter-ocular suppression by reducing the contrast to the fellow eye. Seven strabismic amblyopes (Age: 29.2 ± 9 years; five esotropes and two exotropes) showing clinical characteristics of central suppression were recruited. Interocular suppression was measured by a global motion task. For each participant, a balance point was determined which defined contrast levels for each eye where binocular combination was optimal (interocular suppression minimal). When the balance point could not be determined, this participant was excluded. Bifoveal fixation was established by ocular alignment using a haploscope. Participants dichoptically viewed similar targets (a cross of 2.3° surrounded by a square of 11.3°) at 40 cm. Target contrasts presented to each eye were either high contrast (100% to both eyes) or balanced contrast (attenuated contrast in the fellow fixing eye). Fixation stability was measured over a 5 min period and quantified using bivariate contour ellipse areas in four different binocular conditions; unaligned/high contrast, unaligned/balance point, aligned/high contrast and aligned/balance point. Fixation stability was also measured in six control subjects (Age: 25.3 ± 4 years). Bifoveal fixation in the strabismics was transient (58.15 ± 15.7 s). Accordingly, fixational stability was analysed over the first 30 s using repeated measures anova. Post hoc analysis revealed that for the amblyopic subjects, the fixational stability of the amblyopic eye was significantly improved in aligned/high contrast (p = 0.01) and aligned/balance point (p < 0.01) conditions. Fixational stability of the fellow fixing eye was not different statistically across conditions. Bivariate contour ellipse areas of the amblyopic and fellow fixing eyes were therefore averaged for each amblyope in the four conditions and compared with

  17. Biomechanical Concepts for Fracture Fixation

    PubMed Central

    Bottlang, Michael; Schemitsch, Christine E.; Nauth, Aaron; Routt, Milton; Egol, Kenneth; Cook, Gillian E.; Schemitsch, Emil H.

    2015-01-01

    Application of the correct fixation construct is critical for fracture healing and long-term stability; however, it is a complex issue with numerous significant factors. This review describes a number of common fracture types, and evaluates their currently available fracture fixation constructs. In the setting of complex elbow instability, stable fixation or radial head replacement with an appropriately sized implant in conjunction with ligamentous repair is required to restore stability. For unstable sacral fractures, “standard” iliosacral screw fixation is not sufficient for fractures with vertical or multiplanar instabilities. Periprosthetic femur fractures, in particular Vancouver B1 fractures, have increased stability when using 90/90 fixation versus a single locking plate. Far Cortical Locking combines the concept of dynamization with locked plating in order to achieve superior healing of a distal femur fracture. Finally, there is no ideal construct for syndesmotic fracture stabilization; however, these fractures should be fixed using a device that allows for sufficient motion in the syndesmosis. In general, orthopaedic surgeons should select a fracture fixation construct that restores stability and promotes healing at the fracture site, while reducing the potential for fixation failure. PMID:26584263

  18. Nitrogen Fixation By Sulfate-Reducing Bacteria in Coastal and Deep-Sea Sediments

    NASA Astrophysics Data System (ADS)

    Bertics, V. J.; Löscher, C.; Salonen, I.; Schmitz-Streit, R.; Lavik, G.; Kuypers, M. M.; Treude, T.

    2011-12-01

    Sulfate-reducing bacteria (SRB) can greatly impact benthic nitrogen (N) cycling, by for instance inhibiting coupled denitrification-nitrification through the production of sulfide or by increasing the availability of fixed N in the sediment via dinitrogen (N2)-fixation. Here, we explored several coastal and deep-sea benthic habitats within the Atlantic Ocean and Baltic Sea, for the occurrence of N2-fixation mediated by SRB. A combination of different methods including microbial rate measurements of N2-fixation and sulfate reduction, geochemical analyses (porewater nutrient profiles, mass spectrometry), and molecular analyses (CARD-FISH, HISH-SIMS, "nested" PCR, and QPCR) were applied to quantify and identify the responsible processes and organisms, respectively. Furthermore, we looked deeper into the question of whether the observed nitrogenase activity was associated with the final incorporation of N into microbial biomass or whether the enzyme activity served another purpose. At the AGU Fall Meeting, we will present and compare data from numerous stations with different water depths, temperatures, and latitudes, as well as differences in key geochemical parameters, such as organic carbon content and oxygen availability. Current metabolic and molecular data indicate that N2-fixation is occurring in many of these benthic environments and that a large part of this activity may linked to SRB.

  19. Namib Desert primary productivity is driven by cryptic microbial community N-fixation.

    PubMed

    Ramond, Jean-Baptiste; Woodborne, Stephan; Hall, Grant; Seely, Mary; Cowan, Don A

    2018-05-02

    Carbon exchange in drylands is typically low, but during significant rainfall events (wet anomalies) drylands act as a C sink. During these anomalies the limitation on C uptake switches from water to nitrogen. In the Namib Desert of southern Africa, the N inventory in soil organic matter available for mineralisation is insufficient to support the observed increase in primary productivity. The C4 grasses that flourish after rainfall events are not capable of N fixation, and so there is no clear mechanism for adequate N fixation in dryland ecosystems to support rapid C uptake. Here we demonstrate that N fixation by photoautotrophic hypolithic communities forms the basis for the N budget for plant productivity events in the Namib Desert. Stable N isotope (δ 15 N) values of Namib Desert hypolithic biomass, and surface and subsurface soils were measured over 3 years across dune and gravel plain biotopes. Hypoliths showed significantly higher biomass and lower δ 15 N values than soil organic matter. The δ 15 N values of hypoliths approach the theoretical values for nitrogen fixation. Our results are strongly indicative that hypolithic communities are the foundation of productivity after rain events in the Namib Desert and are likely to play similar roles in other arid environments.

  20. Low oxygen affects photophysiology and the level of expression of two-carbon metabolism genes in the seagrass Zostera muelleri.

    PubMed

    Kim, Mikael; Brodersen, Kasper Elgetti; Szabó, Milán; Larkum, Anthony W D; Raven, John A; Ralph, Peter J; Pernice, Mathieu

    2018-05-01

    Seagrasses are a diverse group of angiosperms that evolved to live in shallow coastal waters, an environment regularly subjected to changes in oxygen, carbon dioxide and irradiance. Zostera muelleri is the dominant species in south-eastern Australia, and is critical for healthy coastal ecosystems. Despite its ecological importance, little is known about the pathways of carbon fixation in Z. muelleri and their regulation in response to environmental changes. In this study, the response of Z. muelleri exposed to control and very low oxygen conditions was investigated by using (i) oxygen microsensors combined with a custom-made flow chamber to measure changes in photosynthesis and respiration, and (ii) reverse transcription quantitative real-time PCR to measure changes in expression levels of key genes involved in C 4 metabolism. We found that very low levels of oxygen (i) altered the photophysiology of Z. muelleri, a characteristic of C 3 mechanism of carbon assimilation, and (ii) decreased the expression levels of phosphoenolpyruvate carboxylase and carbonic anhydrase. These molecular-physiological results suggest that regulation of the photophysiology of Z. muelleri might involve a close integration between the C 3 and C 4 , or other CO 2 concentrating mechanisms metabolic pathways. Overall, this study highlights that the photophysiological response of Z. muelleri to changing oxygen in water is capable of rapid acclimation and the dynamic modulation of pathways should be considered when assessing seagrass primary production.

  1. CO2 Uptake and Fixation by a Thermoacidophilic Microbial Community Attached to Precipitated Sulfur in a Geothermal Spring▿ †

    PubMed Central

    Boyd, Eric S.; Leavitt, William D.; Geesey, Gill G.

    2009-01-01

    Carbon fixation at temperatures above 73°C, the upper limit for photosynthesis, is carried out by chemosynthetic thermophiles. Yellowstone National Park (YNP), Wyoming possesses many thermal features that, while too hot for photosynthesis, presumably support chemosynthetic-based carbon fixation. To our knowledge, in situ rates of chemosynthetic reactions at these high temperatures in YNP or other high-temperature terrestrial geothermal springs have not yet been reported. A microbial community attached to precipitated elemental sulfur (So floc) at the source of Dragon Spring (73°C, pH 3.1) in Norris Geyser Basin, YNP, exhibited a maximum rate of CO2 uptake of 21.3 ± 11.9 μg of C 107 cells−1 h−1. When extrapolated over the estimated total quantity of So floc at the spring's source, the So floc-associated microbial community accounted for the uptake of 121 mg of C h−1 at this site. On a per-cell basis, the rate was higher than that calculated for a photosynthetic mat microbial community dominated by Synechococcus spp. in alkaline springs at comparable temperatures. A portion of the carbon taken up as CO2 by the So floc-associated biomass was recovered in the cellular nucleic acid pool, demonstrating that uptake was coupled to fixation. The most abundant sequences in a 16S rRNA clone library of the So floc-associated community were related to chemolithoautotrophic Hydrogenobaculum strains previously isolated from springs in the Norris Geyser Basin. These microorganisms likely contributed to the uptake and fixation of CO2 in this geothermal habitat. PMID:19429558

  2. Temporary and definitive external fixation of war injuries: use of a French dedicated fixator.

    PubMed

    Mathieu, Laurent; Ouattara, Naklan; Poichotte, Antoine; Saint-Macari, Erwan; Barbier, Olivier; Rongiéras, Fréderic; Rigal, Sylvain

    2014-08-01

    External fixation is the recommended stabilization method for both open and closed fractures of long bones in forward surgical hospitals. Specific combat surgical tactics are best performed using dedicated external fixators. The Percy Fx (Biomet) fixator was developed for this reason by the French Army Medical Service, and has been used in various theatres of operations for more than ten years. The tactics of Percy Fx (Biomet) fixator use were analysed in two different situations: for the treatment of French soldiers wounded on several battlefields and then evacuated to France and for the management of local nationals in forward medical treatment facilities in Afghanistan and Chad. Overall 48 externals fixators were implanted on 37 French casualties; 28 frames were temporary and converted to definitive rigid frames or internal fixation after medical evacuation. The 77 Afghan patients totalled 85 external fixators, including 13 temporary frames applied in Forward Surgical Teams (FSTs) prior to their arrival at the Kabul combat support hospital. All of the 47 Chadian patients were treated in a FST with primary definitive frames because of delayed surgical management and absence of higher level of care in Chad. Temporary frames were mostly used for French soldiers to facilitate strategic air medical evacuation following trauma damage control orthopaedic principles. Definitive rigid frames permitted achieving treatment of all types of war extremity injuries, even in poor conditions.

  3. Abnormal Fixational Eye Movements in Amblyopia.

    PubMed

    Shaikh, Aasef G; Otero-Millan, Jorge; Kumar, Priyanka; Ghasia, Fatema F

    2016-01-01

    Fixational saccades shift the foveal image to counteract visual fading related to neural adaptation. Drifts are slow eye movements between two adjacent fixational saccades. We quantified fixational saccades and asked whether their changes could be attributed to pathologic drifts seen in amblyopia, one of the most common causes of blindness in childhood. Thirty-six pediatric subjects with varying severity of amblyopia and eleven healthy age-matched controls held their gaze on a visual target. Eye movements were measured with high-resolution video-oculography during fellow eye-viewing and amblyopic eye-viewing conditions. Fixational saccades and drifts were analyzed in the amblyopic and fellow eye and compared with controls. We found an increase in the amplitude with decreased frequency of fixational saccades in children with amblyopia. These alterations in fixational eye movements correlated with the severity of their amblyopia. There was also an increase in eye position variance during drifts in amblyopes. There was no correlation between the eye position variance or the eye velocity during ocular drifts and the amplitude of subsequent fixational saccade. Our findings suggest that abnormalities in fixational saccades in amblyopia are independent of the ocular drift. This investigation of amblyopia in pediatric age group quantitatively characterizes the fixation instability. Impaired properties of fixational saccades could be the consequence of abnormal processing and reorganization of the visual system in amblyopia. Paucity in the visual feedback during amblyopic eye-viewing condition can attribute to the increased eye position variance and drift velocity.

  4. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle.

    PubMed

    Mackinder, Luke C M; Meyer, Moritz T; Mettler-Altmann, Tabea; Chen, Vivian K; Mitchell, Madeline C; Caspari, Oliver; Freeman Rosenzweig, Elizabeth S; Pallesen, Leif; Reeves, Gregory; Itakura, Alan; Roth, Robyn; Sommer, Frederik; Geimer, Stefan; Mühlhaus, Timo; Schroda, Michael; Goodenough, Ursula; Stitt, Mark; Griffiths, Howard; Jonikas, Martin C

    2016-05-24

    Biological carbon fixation is a key step in the global carbon cycle that regulates the atmosphere's composition while producing the food we eat and the fuels we burn. Approximately one-third of global carbon fixation occurs in an overlooked algal organelle called the pyrenoid. The pyrenoid contains the CO2-fixing enzyme Rubisco and enhances carbon fixation by supplying Rubisco with a high concentration of CO2 Since the discovery of the pyrenoid more that 130 y ago, the molecular structure and biogenesis of this ecologically fundamental organelle have remained enigmatic. Here we use the model green alga Chlamydomonas reinhardtii to discover that a low-complexity repeat protein, Essential Pyrenoid Component 1 (EPYC1), links Rubisco to form the pyrenoid. We find that EPYC1 is of comparable abundance to Rubisco and colocalizes with Rubisco throughout the pyrenoid. We show that EPYC1 is essential for normal pyrenoid size, number, morphology, Rubisco content, and efficient carbon fixation at low CO2 We explain the central role of EPYC1 in pyrenoid biogenesis by the finding that EPYC1 binds Rubisco to form the pyrenoid matrix. We propose two models in which EPYC1's four repeats could produce the observed lattice arrangement of Rubisco in the Chlamydomonas pyrenoid. Our results suggest a surprisingly simple molecular mechanism for how Rubisco can be packaged to form the pyrenoid matrix, potentially explaining how Rubisco packaging into a pyrenoid could have evolved across a broad range of photosynthetic eukaryotes through convergent evolution. In addition, our findings represent a key step toward engineering a pyrenoid into crops to enhance their carbon fixation efficiency.

  5. Reverse Anterior Cruciate Ligament Reconstruction Fixation: A Biomechanical Comparison Study of Tibial Cross-Pin and Femoral Interference Screw Fixation.

    PubMed

    Lawley, Richard J; Klein, Samuel E; Chudik, Steven C

    2017-03-01

    To evaluate the biomechanical performance of tibial cross-pin (TCP) fixation relative to femoral cross-pin (FCP), femoral interference screw (FIS), and tibial interference screw (TIS) fixation. We randomized 40 porcine specimens (20 tibias and 20 femurs) to TIS fixation (group 1, n = 10), FIS fixation (group 2, n = 10), TCP fixation (group 3, n = 10), or FCP fixation (group 4, n = 10) and performed biomechanical testing to compare ultimate load, stiffness, yield load, cyclic displacement, and load at 5-mm displacement. We performed cross-pin fixation of the looped end and interference screw fixation of the free ends of 9-mm-diameter bovine extensor digitorum communis tendon grafts. Graft fixation constructs were cyclically loaded and then loaded to failure in line with the tunnels. Regarding yield load, FIS was superior to TIS (704 ± 125 N vs 504 ± 118 N, P = .002), TCP was superior to TIS (1,449 ± 265 N vs 504 ± 118 N, P < .001), and TCP was superior to FCP (1,449 ± 265 N vs 792 ± 397 N, P < .001). Cyclic displacement for FCP was superior to TCP. Cyclic displacement for TIS versus FIS showed no statistically significant difference (2.5 ± 1.0 mm vs 2.2 ± 0.6 mm, P = .298). Interference screw fixation consistently failed by graft slippage, whereas TCP fixation failed by tibial bone failure. FCP fixation failed by either femoral bone failure or failure elsewhere in the testing apparatus. Regarding yield load, TCP fixation performed biomechanically superior to the clinically proven FCP at time zero. Because TIS fixation shows the lowest yield strength, it represents the weak link, and combined TCP-FIS fixation theoretically would be biomechanically superior relative to combined FCP-TIS fixation with regard to yield load. Cyclic displacement showed a small difference in favor of FCP over TCP fixation and no difference between TIS and FIS. Time-zero biomechanics of TCP fixation paired with FIS fixation show that this method of fixation can be

  6. Complement fixation test to C burnetii

    MedlinePlus

    ... complement fixation test; Coxiella burnetii - complement fixation test; C burnetii - complement fixation test ... a specific foreign substance ( antigen ), in this case, C burnetii . Antibodies defend the body against bacteria, viruses, ...

  7. Abnormal Fixational Eye Movements in Amblyopia

    PubMed Central

    Shaikh, Aasef G.; Otero-Millan, Jorge; Kumar, Priyanka; Ghasia, Fatema F.

    2016-01-01

    Purpose Fixational saccades shift the foveal image to counteract visual fading related to neural adaptation. Drifts are slow eye movements between two adjacent fixational saccades. We quantified fixational saccades and asked whether their changes could be attributed to pathologic drifts seen in amblyopia, one of the most common causes of blindness in childhood. Methods Thirty-six pediatric subjects with varying severity of amblyopia and eleven healthy age-matched controls held their gaze on a visual target. Eye movements were measured with high-resolution video-oculography during fellow eye-viewing and amblyopic eye-viewing conditions. Fixational saccades and drifts were analyzed in the amblyopic and fellow eye and compared with controls. Results We found an increase in the amplitude with decreased frequency of fixational saccades in children with amblyopia. These alterations in fixational eye movements correlated with the severity of their amblyopia. There was also an increase in eye position variance during drifts in amblyopes. There was no correlation between the eye position variance or the eye velocity during ocular drifts and the amplitude of subsequent fixational saccade. Our findings suggest that abnormalities in fixational saccades in amblyopia are independent of the ocular drift. Discussion This investigation of amblyopia in pediatric age group quantitatively characterizes the fixation instability. Impaired properties of fixational saccades could be the consequence of abnormal processing and reorganization of the visual system in amblyopia. Paucity in the visual feedback during amblyopic eye-viewing condition can attribute to the increased eye position variance and drift velocity. PMID:26930079

  8. [Treatment of pediatric distal femur fractures by external fixator combined with limited internal fixation].

    PubMed

    Wei, Sheng-wang; Shi, Zhan-ying; Hu, Ju-zheng; Wu, Hao

    2016-03-01

    To discuss the clinical effects of external fixator combined with limited internal fixation in the treatment of pediatric distal femur fractures. From January 2008 to June 2014, 17 children of distal femur fractures were treated by external fixator combined with limited internal fixation. There were 12 males and 5 females, aged from 6 to 13 years old with an average of 10.2 years, ranged in the course of disease from 1 h to 2 d. Preoperative diagnoses were confirmed by X-ray films in all children. There were 11 patients with supracondylar fracture , and 6 patients with intercondylar comminuted fracture. According to AO/ASIF classification, 9 fractures were type A1, 5 cases were type A2,and 3 cases were type C1. The intraoperative and postoperative complications, postoperative radiological examination, lower limbs length and motion of knee joints were observed. Knee joint function was assessed by KSS score. All the patients were followed up from 6 to 38 months with an average of 24.4 months. No nerve or blood vessel injury was found. One case complicated with the external fixation loosening, 2 cases with the infection of pin hole and 3 cases with the leg length discrepancy. Knee joint mobility and length measurement (compared with the contralateral), the average limited inflexion was 10 degrees (0 degrees to 20 degrees), the average limited straight was 4 degrees (0 degrees to 10), the average varus or valgus angle was 3 degrees (0 degrees to 5 degrees). KSS of the injured side was (96.4 +/- 5.0) points at final follow-up, 16 cases got excellent results and 1 good. All fractures obtained healing and no epiphyseal closed early was found. External fixator combined with limited internal fixation has advantages of simple operation, reliable fixation, early functional exercise in treating pediatric distal femurs fractures.

  9. Effectiveness of external fixator combined with T-plate internal fixation for the treatment of comminuted distal radius fractures.

    PubMed

    Han, L R; Jin, C X; Yan, J; Han, S Z; He, X B; Yang, X F

    2015-03-31

    This study compared the efficacy between external fixator combined with palmar T-plate internal fixation and simple plate internal fixation for the treatment of comminuted distal radius fractures. A total of 61 patients classified as type C according to the AO/ASIF classification underwent surgery for comminuted distal radius fractures. There were 54 and 7 cases of closed and open fractures, respectively. Moreover, 19 patients received an external fixator combined with T-plate internal fixation, and 42 received simple plate internal fixation. All patients were treated successfully during 12-month postoperative follow-up. The follow-up results show that the palmar flexion and dorsiflexion of the wrist, radial height, and palmar angle were significantly better in those treated with the external fixator combined with T-plate compared to those treated with the simple plate only (P < 0.05); however, there were no significant differences in radial-ulnar deviation, wrist range of motion, or wrist function score between groups (P > 0.05). Hence, the effectiveness of external fixator combined with T-plate internal fixation for the treatment of comminuted distal radius fractures was satisfactory. Patients sufficiently recovered wrist, forearm, and hand function. In conclusion, compared to the simple T-plate, the external fixator combined with T-plate internal fixation can reduce the possibility of the postoperative re-shifting of broken bones and keep the distraction of fractures to maintain radial height and prevent radial shortening.

  10. [Complications of open reduction and internal fixation versus external fixation for unstable distal radius fractures: a meta-analysis].

    PubMed

    Yang, Z; Yuan, Z Z; Ma, J X; Ma, X L

    2016-12-20

    Objective: To make a systematic assessment of the complications of open reduction and internal fixation versus external fixation for unstable distal radius fractures. Method: A computer-based online search of PubMed, ScienceDirect, EMBASE, BIOSIS, Springer and Cochrane Library were performed.The randomized and controlled trials of open reduction and internal fixation versus external fixation for unstable distal radius fractures were collected.The included trials were screened out strictly based on the criterion of inclusion and exclusion.The quality of included trials was evaluated.RevMan 5.0 was used for data analysis. Result: A total of 17 studies involving 1 402 patients were included.There were 687 patients with open reduction and internal fixation and 715 with external fixation.The results of Meta-analysis indicated that there were statistically significant differences with regard to the postoperatively total complications, infection, malunion, tendon rupture ( I 2 =8%, RR =0.77(95% CI 0.65-0.91, Z =3.10, P <0.05). There were no statistically significant differences observed between two approaches with respect to nounion, re-operation, complex regional pain syndrome, carpal tunnel syndrome, neurapraxia, tendonitis, painful hardware, scar( P >0.05). Conclusion: Postoperative complications are present in both open reduction and internal fixation and external fixation.Compared with external fixation, open reduction and internal fixation is lower in total complications postoperatively, infection and malunion, but external fixation has lower tendon rupture incidence.

  11. Estimating environmental co-benefits of U.S. low-carbon pathways using an integrated assessment model with state-level resolution

    EPA Science Inventory

    There are many technological pathways that can lead to reduced carbon dioxide emissions. However, these pathways can have substantially different impacts on other environmental endpoints, such as air quality and energy-related water demand. This study uses an integrated assessmen...

  12. Hinged external fixation of the elbow.

    PubMed

    Chen, Neal C; Julka, Abhishek

    2010-08-01

    Hinged external fixation of the elbow provides the advantages of static fixation with the benefits of continued motion through the joint. Indications for the use of this method of fixation include traumatic instability, distraction interposition arthroplasty, instability after contracture release, and instability after excision of heterotopic ossification. Orthopedic surgeons should be familiar with hinged fixators and their application when faced with an unstable ulnohumeral joint. 2010 Elsevier Inc. All rights reserved.

  13. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir.

    PubMed

    Freedman, Adam J E; Tan, BoonFei; Thompson, Janelle R

    2017-06-01

    Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 , harbor a 'deep carbonated biosphere' with carbon cycling potential. We sampled subsurface fluids from scCO 2 -water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Design Fixation in the Wild: Design Environments and Their Influence on Fixation

    ERIC Educational Resources Information Center

    Youmans, Robert J.

    2011-01-01

    Many studies of design fixation ask designers to work in controlled laboratory or classroom environments, but innovative design work frequently occurs in dynamic, social environments. The two studies reviewed in this paper investigated how three independent variables likely to be present in many design environments affect design fixation. The…

  15. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli.

    PubMed

    Yishai, Oren; Bouzon, Madeleine; Döring, Volker; Bar-Even, Arren

    2018-05-15

    Assimilation of one-carbon compounds presents a key biochemical challenge, which limits their use as sustainable feedstocks for microbial growth and production. The reductive glycine pathway is a synthetic metabolic route that could provide an optimal way for the aerobic assimilation of reduced C1 compounds. Here, we show that a rational integration of native and foreign enzymes enables the tetrahydrofolate and glycine cleavage/synthase systems to operate in the reductive direction, such that Escherichia coli satisfies all of its glycine and serine requirements from the assimilation of formate and CO2. Importantly, the biosynthesis of serine from formate and CO2 does not lower the growth rate, indicating high flux that is able to provide 10% of cellular carbon. Our findings assert that the reductive glycine pathway could support highly efficient aerobic assimilation of C1-feedstocks.

  16. Carbon dioxide utilisation of Dunaliella tertiolecta for carbon bio-mitigation in a semicontinuous photobioreactor.

    PubMed

    Farrelly, Damien J; Brennan, Liam; Everard, Colm D; McDonnell, Kevin P

    2014-04-01

    Bio-fixation of carbon dioxide (CO2) by microalgae has been recognised as an attractive approach to offset anthropogenic emissions. Biological carbon mitigation is the process whereby autotrophic organisms, such as microalgae, convert CO2 into organic carbon and O2 through photosynthesis; this process through respiration produces biomass. In this study Dunaliella tertiolecta was cultivated in a semicontinuous culture to investigate the carbon mitigation rate of the system. The algae were produced in 1.2-L Roux bottles with a working volume of 1 L while semicontinuous production commenced on day 4 of cultivation when the carbon mitigation rate was found to be at a maximum for D. tertiolecta. The reduction in CO2 between input and output gases was monitored to predict carbon fixation rates while biomass production and microalgal carbon content are used to calculate the actual carbon mitigation potential of D. tertiolecta. A renewal rate of 45 % of flask volume was utilised to maintain the culture in exponential growth with an average daily productivity of 0.07 g L(-1) day(-1). The results showed that 0.74 g L(-1) of biomass could be achieved after 7 days of semicontinuous production while a total carbon mitigation of 0.37 g L(-1) was achieved. This represented an increase of 0.18 g L(-1) in carbon mitigation rate compared to batch production of D. tertiolecta over the same cultivation period.

  17. Direct gas-solid carbonation of serpentinite residues in the absence and presence of water vapor: a feasibility study for carbon dioxide sequestration.

    PubMed

    Veetil, Sanoopkumar Puthiya; Pasquier, Louis-César; Blais, Jean-François; Cecchi, Emmanuelle; Kentish, Sandra; Mercier, Guy

    2015-09-01

    Mineral carbonation of serpentinite mining residue offers an environmentally secure and permanent storage of carbon dioxide. The strategy of using readily available mining residue for the direct treatment of flue gas could improve the energy demand and economics of CO2 sequestration by avoiding the mineral extraction and separate CO2 capture steps. The present is a laboratory scale study to assess the possibility of CO2 fixation in serpentinite mining residues via direct gas-solid reaction. The degree of carbonation is measured both in the absence and presence of water vapor in a batch reactor. The gas used is a simulated gas mixture reproducing an average cement flue gas CO2 composition of 18 vol.% CO2. The reaction parameters considered are temperature, total gas pressure, time, and concentration of water vapor. In the absence of water vapor, the gas-solid carbonation of serpentinite mining residues is negligible, but the residues removed CO2 from the feed gas possibly due to reversible adsorption. The presence of small amount of water vapor enhances the gas-solid carbonation, but the measured rates are too low for practical application. The maximum CO2 fixation obtained is 0.07 g CO2 when reacting 1 g of residue at 200 °C and 25 barg (pCO2 ≈ 4.7) in a gas mixture containing 18 vol.% CO2 and 10 vol.% water vapor in 1 h. The fixation is likely surface limited and restricted due to poor gas-solid interaction. It was identified that both the relative humidity and carbon dioxide-water vapor ratio have a role in CO2 fixation regardless of the percentage of water vapor.

  18. An oculomotor continuum from exploration to fixation

    PubMed Central

    Otero-Millan, Jorge; Macknik, Stephen L.; Langston, Rachel E.; Martinez-Conde, Susana

    2013-01-01

    During visual exploration, saccadic eye movements scan the scene for objects of interest. During attempted fixation, the eyes are relatively still but often produce microsaccades. Saccadic rates during exploration are higher than those of microsaccades during fixation, reinforcing the classic view that exploration and fixation are two distinct oculomotor behaviors. An alternative model is that fixation and exploration are not dichotomous, but are instead two extremes of a functional continuum. Here, we measured the eye movements of human observers as they either fixed their gaze on a small spot or scanned natural scenes of varying sizes. As scene size diminished, so did saccade rates, until they were continuous with microsaccadic rates during fixation. Other saccadic properties varied as function of image size as well, forming a continuum with microsaccadic parameters during fixation. This saccadic continuum extended to nonrestrictive, ecological viewing conditions that allowed all types of saccades and fixation positions. Eye movement simulations moreover showed that a single model of oculomotor behavior can explain the saccadic continuum from exploration to fixation, for images of all sizes. These findings challenge the view that exploration and fixation are dichotomous, suggesting instead that visual fixation is functionally equivalent to visual exploration on a spatially focused scale. PMID:23533278

  19. A Meta-Analysis for Postoperative Complications in Tibial Plafond Fracture: Open Reduction and Internal Fixation Versus Limited Internal Fixation Combined With External Fixator.

    PubMed

    Wang, Dong; Xiang, Jian-Ping; Chen, Xiao-Hu; Zhu, Qing-Tang

    2015-01-01

    The treatment of tibial plafond fractures is challenging to foot and ankle surgeons. Open reduction and internal fixation and limited internal fixation combined with an external fixator are 2 of the most commonly used methods of tibial plafond fracture repair. However, conclusions regarding the superior choice remain controversial. The present meta-analysis aimed to quantitatively compare the postoperative complications between open reduction and internal fixation and limited internal fixation combined with an external fixator for tibial plafond fractures. Nine studies with 498 fractures in 494 patients were included in the present study. The meta-analysis found no significant differences in bone healing complications (risk ratio [RR] 1.17, 95% confidence interval [CI] 0.68 to 2.01, p = .58], nonunion (RR 1.09, 95% CI 0.51 to 2.36, p = .82), malunion or delayed union (RR 1.24, 95% CI 0.57 to 2.69, p = .59), superficial (RR 1.56, 95% CI 0.43 to 5.61, p = .50) and deep (RR 1.89, 95% CI 0.62 to 5.80) infections, arthritis symptoms (RR 1.20, 95% CI 0.92 to 1.58, p = .18), or chronic osteomyelitis (RR 0.31, 95% CI 0.05 to 1.84, p = .20) between the 2 groups. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Neural Correlates of Fixation Duration during Real-world Scene Viewing: Evidence from Fixation-related (FIRE) fMRI.

    PubMed

    Henderson, John M; Choi, Wonil

    2015-06-01

    During active scene perception, our eyes move from one location to another via saccadic eye movements, with the eyes fixating objects and scene elements for varying amounts of time. Much of the variability in fixation duration is accounted for by attentional, perceptual, and cognitive processes associated with scene analysis and comprehension. For this reason, current theories of active scene viewing attempt to account for the influence of attention and cognition on fixation duration. Yet almost nothing is known about the neurocognitive systems associated with variation in fixation duration during scene viewing. We addressed this topic using fixation-related fMRI, which involves coregistering high-resolution eye tracking and magnetic resonance scanning to conduct event-related fMRI analysis based on characteristics of eye movements. We observed that activation in visual and prefrontal executive control areas was positively correlated with fixation duration, whereas activation in ventral areas associated with scene encoding and medial superior frontal and paracentral regions associated with changing action plans was negatively correlated with fixation duration. The results suggest that fixation duration in scene viewing is controlled by cognitive processes associated with real-time scene analysis interacting with motor planning, consistent with current computational models of active vision for scene perception.

  1. Inhibition of the. beta. -carboxylation pathway of CO/sub 2/ fixation by bisulfite compounds. [Leaves of Sedum praealtum and Atriplex spongiosa were used

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmond, C.B.; Avadhani, P.N.

    1970-01-01

    Bisulfite compounds are well known as inhibitors of glycolate oxidase in green tissues of higher plants. In an effort to understand the relation between low glycolate oxidase activity and high P-enolpyruvate carboxylase activity in plants with the C/sub 4/ dicarboxylic acid pathway of photosynthesis, the authors have treated leaves of related species of Atriplex with these compounds. In this photosynthetic process, as well as during dark CO/sub 2/ fixation leading to acidification of Sedum leaves, they have found bisulfite compounds to be effective inhibitors of the P-enolpyruvate carboxylation system. This report provides evidence in vivo for this inhibition and describesmore » the inhibition in vitro of P-enolpyruvate carboxylation system. This report provides evidence in vivo for this inhibition and describes the inhibition in vitro of P-enolpyruvate carboxylase and NADH malate dehydrogenase. 16 references, 4 figures, 1 table.« less

  2. An original knee arthrodesis technique combining external fixator with Steinman pins direct fixation.

    PubMed

    Riouallon, G; Molina, V; Mansour, C; Court, C; Nordin, J-Y

    2009-06-01

    Knee arthrodesis may be the last possible option for infected total knee arthroplasty (TKA) patients and in revision cases involving severe bone loss and/or extensor mechanism damages. Success in these situations depends on achieving good fixation assembly stability. We report bone fusion results using a fixation technique combining cross-pinning by two Steinman pins with a single-frame external fixator. Remission of infection at long-term follow-up was an additional criteria assessed for those cases initially treated for sepsis. This fixation modality improves fusion rates. In six of this series of eight patients (mean age: 59 years), surgery was performed in a context of infection: five cases of infected TKA, and one case of septic arthritis. In the other two cases, arthrodesis was respectively indicated for a severe post-traumatic stiffness compounded by extensor system rupture and for a fracture combined to a complete mechanical implant loosening. In three of the six infection cases, arthrodesis was performed as a single-stage procedure. All patients were operated on using the same technique: primary arthrodesis site stabilization by frontal cross-pinning with two Steinman pins, followed by installation of a sagittal external fixator frame. Results were assessed at a mean 8 year follow-up. All the arthrodeses showed fusion at a mean 3.5 months (range: 2.5 to 6 months) postoperative delay without reintervention. Weight-bearing was resumed at 2 to 3 months. The external fixator was removed at a mean 5.2 months. No recurrence of infection was observed over a mean follow-up of 8.2 years (range: 1 to 15 years). Three complications occurred: one hematoma, managed surgically; one supracondylar fracture treated orthopedically; and one osteitis, managed by surgical curettage. This knee arthrodesis technique proved effective, with no failures in this short series, especially in cases of primary infection. It is a reproducible means of osteosynthesis, with little

  3. Heterophoria and fixation disparity: a review.

    PubMed

    Kommerell, G; Gerling, J; Ball, M; de Paz, H; Bach, M

    2000-06-01

    Heterophoria does not provide a reliable clue for ordering prisms in an asthenopic patient. The same reservation applies to associated phoria, as determined by prism correction of fixation disparity. Subjective tests for fixation disparity, even those with a fusionable fixation target, do not correctly indicate the vergence position of the eyes under natural viewing conditions. Attempts to measure fixation disparity on the basis of stereo disparity, using the "Measuring and Correction Methods of H.-J. Haase", have failed.

  4. Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeolitic thiophene-benzimidazolate framework

    EPA Science Inventory

    A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydra...

  5. Overcoming fixation with repeated memory suppression.

    PubMed

    Angello, Genna; Storm, Benjamin C; Smith, Steven M

    2015-01-01

    Fixation (blocks to memories or ideas) can be alleviated not only by encouraging productive work towards a solution, but, as the present experiments show, by reducing counterproductive work. Two experiments examined relief from fixation in a word-fragment completion task. Blockers, orthographically similar negative primes (e.g., ANALOGY), blocked solutions to word fragments (e.g., A_L_ _GY) in both experiments. After priming, but before the fragment completion test, participants repeatedly suppressed half of the blockers using the Think/No-Think paradigm, which results in memory inhibition. Inhibiting blockers did not alleviate fixation in Experiment 1 when conscious recollection of negative primes was not encouraged on the fragment completion test. In Experiment 2, however, when participants were encouraged to remember negative primes at fragment completion, relief from fixation was observed. Repeated suppression may nullify fixation effects, and promote creative thinking, particularly when fixation is caused by conscious recollection of counterproductive information.

  6. Carbon isotope fractionation by sulfate-reducing bacteria using different pathways for the oxidation of acetate.

    PubMed

    Goevert, Dennis; Conrad, Ralf

    2008-11-01

    Acetate is a key intermediate in the anaerobic degradation of organic matter. In anoxic environments, available acetate is a competitive substrate for sulfate-reducing bacteria (SRB) and methane-producing archaea. Little is known about the fractionation of carbon isotopes by sulfate reducers. Therefore, we determined carbon isotope compositions in cultures of three acetate-utilizing SRB, Desulfobacter postgatei, Desulfobacter hydrogenophilus, and Desulfobacca acetoxidans. We found that these species showed strong differences in their isotope enrichment factors (epsilon) of acetate. During the consumption of acetate and sulfate, acetate was enriched in 13C by 19.3% per hundred in Desulfobacca acetoxidans. By contrast, both D. postgatei and D. hydrogenophilus showed a slight depletion of 13C resulting in epsilon(ac)-values of 1.8 and 1.5% per hundred, respectively. We suggest that the different isotope fractionation is due to the different metabolic pathways for acetate oxidation. The strongly fractionating Desulfobacca acetoxidans uses the acetyl-CoA/carbon monoxide dehydrogenase pathway, which is also used by acetoclastic methanogens that show a similar fractionation of acetate (epsilon(ac) = -21 to -27% per hundred). In contrast, Desulfobacter spp. oxidize acetate to CO2 via the tricarboxylic acid (TCA) cycle and apparently did not discriminate against 13C. Our results suggestthat carbon isotope fractionation in environments with sulfate reduction will strongly depend on the composition of the sulfate-reducing bacterial community oxidizing acetate.

  7. A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust

    PubMed Central

    Magnabosco, Cara; Ryan, Kathleen; Lau, Maggie C Y; Kuloyo, Olukayode; Sherwood Lollar, Barbara; Kieft, Thomas L; van Heerden, Esta; Onstott, Tullis C

    2016-01-01

    Subsurface microbial communities comprise a significant fraction of the global prokaryotic biomass; however, the carbon metabolisms that support the deep biosphere have been relatively unexplored. In order to determine the predominant carbon metabolisms within a 3-km deep fracture fluid system accessed via the Tau Tona gold mine (Witwatersrand Basin, South Africa), metagenomic and thermodynamic analyses were combined. Within our system of study, the energy-conserving reductive acetyl-CoA (Wood-Ljungdahl) pathway was found to be the most abundant carbon fixation pathway identified in the metagenome. Carbon monoxide dehydrogenase genes that have the potential to participate in (1) both autotrophic and heterotrophic metabolisms through the reversible oxidization of CO and subsequent transfer of electrons for sulfate reduction, (2) direct utilization of H2 and (3) methanogenesis were identified. The most abundant members of the metagenome belonged to Euryarchaeota (22%) and Firmicutes (57%)—by far, the highest relative abundance of Euryarchaeota yet reported from deep fracture fluids in South Africa and one of only five Firmicutes-dominated deep fracture fluids identified in the region. Importantly, by combining the metagenomics data and thermodynamic modeling of this study with previously published isotopic and community composition data from the South African subsurface, we are able to demonstrate that Firmicutes-dominated communities are associated with a particular hydrogeologic environment, specifically the older, more saline and more reducing waters. PMID:26325359

  8. Eighth international congress on nitrogen fixation. Final program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-31

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  9. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources.

    PubMed

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe(2+) ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD(+) through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats.

  10. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources

    PubMed Central

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe2+ ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD+ through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats. PMID:26500609

  11. Modeling fixation locations using spatial point processes.

    PubMed

    Barthelmé, Simon; Trukenbrod, Hans; Engbert, Ralf; Wichmann, Felix

    2013-10-01

    Whenever eye movements are measured, a central part of the analysis has to do with where subjects fixate and why they fixated where they fixated. To a first approximation, a set of fixations can be viewed as a set of points in space; this implies that fixations are spatial data and that the analysis of fixation locations can be beneficially thought of as a spatial statistics problem. We argue that thinking of fixation locations as arising from point processes is a very fruitful framework for eye-movement data, helping turn qualitative questions into quantitative ones. We provide a tutorial introduction to some of the main ideas of the field of spatial statistics, focusing especially on spatial Poisson processes. We show how point processes help relate image properties to fixation locations. In particular we show how point processes naturally express the idea that image features' predictability for fixations may vary from one image to another. We review other methods of analysis used in the literature, show how they relate to point process theory, and argue that thinking in terms of point processes substantially extends the range of analyses that can be performed and clarify their interpretation.

  12. Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium.

    PubMed

    Mall, Achim; Sobotta, Jessica; Huber, Claudia; Tschirner, Carolin; Kowarschik, Stefanie; Bačnik, Katarina; Mergelsberg, Mario; Boll, Matthias; Hügler, Michael; Eisenreich, Wolfgang; Berg, Ivan A

    2018-02-02

    Biological inorganic carbon fixation proceeds through a number of fundamentally different autotrophic pathways that are defined by specific key enzymatic reactions. Detection of the enzymatic genes in (meta)genomes is widely used to estimate the contribution of individual organisms or communities to primary production. Here we show that the sulfur-reducing anaerobic deltaproteobacterium Desulfurella acetivorans is capable of both acetate oxidation and autotrophic carbon fixation, with the tricarboxylic acid cycle operating either in the oxidative or reductive direction, respectively. Under autotrophic conditions, the enzyme citrate synthase cleaves citrate adenosine triphosphate independently into acetyl coenzyme A and oxaloacetate, a reaction that has been regarded as impossible under physiological conditions. Because this overlooked, energetically efficient carbon fixation pathway lacks key enzymes, it may function unnoticed in many organisms, making bioinformatical predictions difficult, if not impossible. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Carbonate mineralization via an amorphous calcium carbonate (ACC) pathway: Tuning polymorph selection by Mg, pH, and mixing environment

    NASA Astrophysics Data System (ADS)

    Dove, P. M.; Blue, C.; Mergelsberg, S. T.; Giuffre, A. J.; Han, N.; De Yoreo, J. J.

    2017-12-01

    Mineral formation by nonclassical processes is widespread with many pathways that include aggregation of nanoparticles, oriented attachment of fully formed crystals, and sequential nucleation/transformation of amorphous phases (De Yoreo et al., 2015, Science). Field observations indicate amorphous calcium carbonate (ACC) can be the initial precipitate when local conditions promote high supersaturations for short time periods. Examples include microbial mats, marine porewaters that undergo pulses of increased alkalinity, closed basin lakes, and sabkhas. The crystalline products exhibit diverse morphologies and complex elemental and isotopic signatures. This study quantifies relationships between solution composition and the crystalline polymorphs that transform from ACC (Blue et al., GCA, 2017). Our experimental design synthesized ACC under controlled conditions for a suite of compositions by tuning input pH, Mg/Ca, and total carbonate concentration. ACC products were allowed to transform within output suspensions under stirred or quiescent mixing while characterizing the polymorph and composition of evolving solutions and solids. We find that ACC transforms to crystalline polymorphs with a systematic relationship to solution composition to give a quantitative framework based upon solution aMg2+/aCa2+ and aCO32-/aCa2+. We also measure a polymorph-specific evolution of pH and Mg/Ca during the transformation that indicates the initial polymorph to form. Pathway is further modulated by stirring versus quiescent conditions. The findings reconcile discrepancies among previous studies of ACC to crystalline products and supports claims that monohydrocalcite may be an overlooked, transient phase during formation of some aragonite and calcite deposits. Organic additives and extreme pH are not required to tune composition and polymorph. Insights from this study reiterate the need to revisit long-standing dogmas regarding controls on CaCO3 polymorph selection. Classical models

  14. Dependence of wheat and rice respiration on tissue nitrogen and the corresponding net carbon fixation efficiency under different rates of nitrogen application

    NASA Astrophysics Data System (ADS)

    Sun, Wenjuan; Huang, Yao; Chen, Shutao; Zou, Jianwen; Zheng, Xunhua

    2007-02-01

    To quantitatively address the role of tissue N in crop respiration under various agricultural practices, and to consequently evaluate the impact of synthetic fertilizer N application on biomass production and respiration, and hence net carbon fixation efficiency ( E ncf), pot and field experiments were carried out for an annual rotation of a rice-wheat cropping system from 2001 to 2003. The treatments of the pot experiments included fertilizer N application, sowing date and planting density. Different rates of N application were tested in the field experiments. Static opaque chambers were used for sampling the gas. The respiration as CO2 emission was detected by a gas chromatograph. A successive biomass clipping method was employed to determine the crop autotrophic respiration coefficient ( R a). Results from the pot experiments revealed a linear relationship between R a and tissue N content as R a = 4.74N-1.45 ( R 2 = 0.85, P < 0.001). Measurements and calculations from the field experiments indicated that fertilizer N application promoted not only biomass production but also increased the respiration of crops. A further investigation showed that the increase of carbon loss in terms of respiration owing to fertilizer N application exceeded that of net carbon gain in terms of aboveground biomass when fertilizer N was applied over a certain rate. Consequently, the E ncf declined as the N application rate increased.

  15. Kennedy Space Center Fixation Tube (KFT)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E.; Levine, Howard G.; Romero, Vergel

    2016-01-01

    Experiments performed on the International Space Station (ISS) frequently require the experimental organisms to be preserved until they can be returned to earth for analysis in the appropriate laboratory facility. The Kennedy Fixation Tube (KFT) was developed to allow astronauts to apply fixative, chemical compounds that are often toxic, to biological samples without the use of a glovebox while maintaining three levels of containment (Fig. 1). KFTs have been used over 200 times on-orbit with no leaks of chemical fixative. The KFT is composed of the following elements: a polycarbonate main tube where the fixative is loaded preflight, the sample tube where the plant or other biological specimens is placed during operations, the expansion plug, actuator, and base plug that provides fixative containment (Fig. 2). The main tube is pre-filled with 25 mL of fixative solution prior to flight. When actuated, the specimen contained within the sample tube is immersed with approximately 22 mL (+/- 2 mL) of the fixative solution. The KFT has been demonstrated to maintain its containment at ambient temperatures, 4degC refrigeration and -100 C freezing conditions.

  16. Timing of definitive fixation of major long bone fractures: Can fat embolism syndrome be prevented?

    PubMed

    Blokhuis, Taco J; Pape, Hans-Christoph; Frölke, Jan-Paul

    2017-06-01

    Fat embolism is common in patients with major fractures, but leads to devastating consequences, named fat embolism syndrome (FES) in some. Despite advances in treatment strategies regarding the timing of definitive fixation of major fractures, FES still occurs in patients. In this overview, current literature is reviewed and optimal treatment strategies for patients with multiple traumatic injuries, including major fractures, are discussed. Considering the multifactorial etiology of FES, including mechanical and biochemical pathways, FES cannot be prevented in all patients. However, screening for symptoms of FES should be standard in the pre-operative work-up of these patients, prior to definitive fixation of major fractures. Copyright © 2017. Published by Elsevier Ltd.

  17. Modeling the optimal central carbon metabolic pathways under feedback inhibition using flux balance analysis.

    PubMed

    De, Rajat K; Tomar, Namrata

    2012-12-01

    Metabolism is a complex process for energy production for cellular activity. It consists of a cascade of reactions that form a highly branched network in which the product of one reaction is the reactant of the next reaction. Metabolic pathways efficiently produce maximal amount of biomass while maintaining a steady-state behavior. The steady-state activity of such biochemical pathways necessarily incorporates feedback inhibition of the enzymes. This observation motivates us to incorporate feedback inhibition for modeling the optimal activity of metabolic pathways using flux balance analysis (FBA). We demonstrate the effectiveness of the methodology on a synthetic pathway with and without feedback inhibition. Similarly, for the first time, the Central Carbon Metabolic (CCM) pathways of Saccharomyces cerevisiae and Homo sapiens have been modeled and compared based on the above understanding. The optimal pathway, which maximizes the amount of the target product(s), is selected from all those obtained by the proposed method. For this, we have observed the concentration of the product inhibited enzymes of CCM pathway and its influence on its corresponding metabolite/substrate. We have also studied the concentration of the enzymes which are responsible for the synthesis of target products. We further hypothesize that an optimal pathway would opt for higher flux rate reactions. In light of these observations, we can say that an optimal pathway should have lower enzyme concentration and higher flux rates. Finally, we demonstrate the superiority of the proposed method by comparing it with the extreme pathway analysis.

  18. Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena

    NASA Astrophysics Data System (ADS)

    Czerny, J.; Ramos, J. Barcelos E.; Riebesell, U.

    2009-09-01

    The surface ocean absorbs large quantities of the CO2 emitted to the atmosphere from human activities. As this CO2 dissolves in seawater, it reacts to form carbonic acid. While this phenomenon, called ocean acidification, has been found to adversely affect many calcifying organisms, some photosynthetic organisms appear to benefit from increasing [CO2]. Among these is the cyanobacterium Trichodesmium, a predominant diazotroph (nitrogen-fixing) in large parts of the oligotrophic oceans, which responded with increased carbon and nitrogen fixation at elevated pCO2. With the mechanism underlying this CO2 stimulation still unknown, the question arises whether this is a common response of diazotrophic cyanobacteria. In this study we therefore investigate the physiological response of Nodularia spumigena, a heterocystous bloom-forming diazotroph of the Baltic Sea, to CO2-induced changes in seawater carbonate chemistry. N. spumigena reacted to seawater acidification/carbonation with reduced cell division rates and nitrogen fixation rates, accompanied by significant changes in carbon and phosphorus quota and elemental composition of the formed biomass. Possible explanations for the contrasting physiological responses of Nodularia compared to Trichodesmium may be found in the different ecological strategies of non-heterocystous (Trichodesmium) and heterocystous (Nodularia) cyanobacteria.

  19. Biomechanical stability of a supra-acetabular pedicle screw internal fixation device (INFIX) vs external fixation and plates for vertically unstable pelvic fractures.

    PubMed

    Vigdorchik, Jonathan M; Esquivel, Amanda O; Jin, Xin; Yang, King H; Onwudiwe, Ndidi A; Vaidya, Rahul

    2012-09-27

    We have recently developed a subcutaneous anterior pelvic fixation technique (INFIX). This internal fixator permits patients to sit, roll over in bed and lie on their sides without the cumbersome external appliances or their complications. The purpose of this study was to evaluate the biomechanical stability of this novel supraacetabular pedicle screw internal fixation construct (INFIX) and compare it to standard internal fixation and external fixation techniques in a single stance pelvic fracture model. Nine synthetic pelves with a simulated anterior posterior compression type III injury were placed into three groups (External Fixator, INFIX and Internal Fixation). Displacement, total axial stiffness, and the stiffness at the pubic symphysis and SI joint were calculated. Displacement and stiffness were compared by ANOVA with a Bonferroni adjustment for multiple comparisons The mean displacement at the pubic symphysis was 20, 9 and 0.8 mm for external fixation, INFIX and internal fixation, respectively. Plate fixation was significantly stiffer than the INFIX and external Fixator (P = 0.01) at the symphysis pubis. The INFIX device was significantly stiffer than external fixation (P = 0.017) at the symphysis pubis. There was no significant difference in SI joint displacement between any of the groups. Anterior plate fixation is stiffer than both the INFIX and external fixation in single stance pelvic fracture model. The INFIX was stiffer than external fixation for both overall axial stiffness, and stiffness at the pubic symphysis. Combined with the presumed benefit of minimizing the complications associated with external fixation, the INFIX may be a more preferable option for temporary anterior pelvic fixation in situations where external fixation may have otherwise been used.

  20. Robust biological nitrogen fixation in a model grass-bacterial association.

    PubMed

    Pankievicz, Vânia C S; do Amaral, Fernanda P; Santos, Karina F D N; Agtuca, Beverly; Xu, Youwen; Schueller, Michael J; Arisi, Ana Carolina M; Steffens, Maria B R; de Souza, Emanuel M; Pedrosa, Fábio O; Stacey, Gary; Ferrieri, Richard A

    2015-03-01

    Nitrogen-fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen-13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen-limiting conditions when inoculated with an ammonium-excreting strain of Azospirillum brasilense. (11)C-labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen-starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen-sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  1. Evaluation of double formalin--Lugol's fixation in assessing number and biomass of ciliates: an example of estimations at mesoscale in NE Atlantic.

    PubMed

    Karayanni, Hera; Christaki, Urania; Van Wambeke, France; Dalby, Andrew P

    2004-03-01

    Ciliated protozoa are potential grazers of primary and bacterial production and act as intermediaries between picoplankton and copepods and other large suspension feeders. Accurate determination of ciliate abundance and feeding mode is crucial in oceanic carbon budget estimations. However, the impact of different fixatives on the abundance and cell volume of ciliates has been investigated in only a few studies using either laboratory cultures or natural populations. Lugol's solution and formalin are the most commonly used fixatives for the preservation of ciliates samples. In the present study, the aim was to compare 0.4% Lugol's solution and 2% borated-formalin fixation and evaluate the need of counting duplicate samples each using a different fixative. For this, a large number of samples (n = 110) from the NE Atlantic was analyzed in the frame of POMME program (Multidisciplinary Mesoscale Ocean Program). We established a statistically significant relationship (p < 0.0001) between Lugol's and formalin fixed samples for both abundance (r2 = 0.50) and biomass (r2 = 0.76) of aloricate ciliates which showed that counts were higher in Lugol's solution by a factor of 2 and a non-taxon specific cell-loss in formalin. However, loricate ciliate abundance in our samples which were represented primarily by Tintinnus spp. did not show any difference between the two treatments. Abundance and biomass of mixotrophic ciliates (chloroplast-bearing cells) were for various reasons underestimated in both treatments. Our results show that unique fixation by formalin may severely underestimate ciliates abundance and biomass although their population may not alter. For this reason, Lugol's solution is best for the estimation of their abundance and biomass. However, for counts of mixotrophs and the evaluation of the ecological role of ciliates in carbon flux, double fixation is essential. Compromises regarding the fixatives have lead to severe underestimations of mixotrophs in studies

  2. Nitrogen Fixation by Anaerobes is Stimulated by Low Oxygen and Insensitive to Combined Nitrogen in Coastal Sediments

    NASA Astrophysics Data System (ADS)

    Jenkins, B. D.; Spinette, R.; Jones, A.; Puggioni, G.; Ehrlich, A.; Brown, S. M.

    2016-02-01

    Coastal sediments are typically zones of nitrogen removal via coupled nitrification-denitrification pathways. Increasingly, there are reports of nitrogen fixation in anthropogenically impacted sediments containing ample combined nitrogen. In previous work in the estuarine sediments of Narragansett Bay, we found that anaerobes related to Desulfovibrio spp. and in the Desulfuromonadales express genes for nitrogen fixation (nifH). We also determined that nitrogen fixation rates and gene expression are elevated during periods of seasonal hypoxia. Statistical modeling shows that a combination of elevated phytoplankton biomass as with a duration of hypoxia for a week or longer lead to conditions that promote nitrogen fixation as measured by acetylene reduction. Interestingly, diazotrophs closely related to those identified in Narragansett Bay are present and active in other low oxygen systems, suggesting that expansion of hypoxic events may lead to unanticipated consequences for the benthic nitrogen cycle in many ecosystems. To determine controls on diazotrophy on the organismal level, we isolated and sequenced the genomes of two Narragansett Bay members of the Desulfovibrio. We found that these organisms are insensitive to nitrate and urea, as they are missing the genes to assimilate these nitrogen sources. However, their nitrogen fixation is suppressed by increasing concentrations of ammonium, indicating that they may be sensitive to this nitrogen source in the environment. The paradox of detectable nitrogen fixation in the background of measurable ammonium in estuarine systems is a newly emergent theme and suggests that there are complex microbial interactions and/or structure to the nutrient regimes allowing for fixation.

  3. Carbon Metabolism in Spores of the Arbuscular Mycorrhizal Fungus Glomus intraradices as Revealed by Nuclear Magnetic Resonance Spectroscopy1

    PubMed Central

    Bago, Berta; Pfeffer, Philip E.; Douds, David D.; Brouillette, Janine; Bécard, Guillaume; Shachar-Hill, Yair

    1999-01-01

    Arbuscular mycorrhizal (AM) fungi are obligate symbionts that colonize the roots of over 80% of plants in all terrestrial environments. Understanding why AM fungi do not complete their life cycle under free-living conditions has significant implications for the management of one of the world's most important symbioses. We used 13C-labeled substrates and nuclear magnetic resonance spectroscopy to study carbon fluxes during spore germination and the metabolic pathways by which these fluxes occur in the AM fungus Glomus intraradices. Our results indicate that during asymbiotic growth: (a) sugars are made from stored lipids; (b) trehalose (but not lipid) is synthesized as well as degraded; (c) glucose and fructose, but not mannitol, can be taken up and utilized; (d) dark fixation of CO2 is substantial; and (e) arginine and other amino acids are synthesized. The labeling patterns are consistent with significant carbon fluxes through gluconeogenesis, the glyoxylate cycle, the tricarboxylic acid cycle, glycolysis, non-photosynthetic one-carbon metabolism, the pentose phosphate pathway, and most or all of the urea cycle. We also report the presence of an unidentified betaine-like compound. Carbon metabolism during asymbiotic growth has features in between those presented by intraradical and extraradical hyphae in the symbiotic state. PMID:10482682

  4. Pathways and mechanisms for removal of dissolved organic carbon from leaf leachate in streams

    Treesearch

    Clifford N. Dahm

    1981-01-01

    Removal of dissolved organic carbon (DOC) from water resulting from adsorption and microbial uptake was examined to determine the importance of biotic and abiotic pathways. Physical–chemical adsorption to components of the stream sediment or water and biotic assimilation associated with the microbial population was determined in recirculating chambers utilizing...

  5. Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph-mangrove interaction.

    PubMed

    Alfaro-Espinoza, Gabriela; Ullrich, Matthias S

    2015-01-01

    Mangrove forests are highly productive ecosystems but represent low nutrient environments. Nitrogen availability is one of the main factors limiting mangrove growth. Diazotrophs have been identified as key organisms that provide nitrogen to these environments. N2-fixation by such organisms was found to be higher in the mangrove roots than in surrounding rhizosphere. Moreover, previous studies showed that mangroves grew better in the presence of N2-fixers indicating a potentially mutualistic relationship. However, the molecular signals and mechanisms that govern these interactions are still poorly understood. Here we present novel insights in the interaction of a diazotroph with a mangrove species to improve our understanding of the molecular and ecophysiological relationship between these two organisms under controlled conditions. Our results showed that Marinobacterium mangrovicola is a versatile organism capable of competing with other organisms to survive for long periods in mangrove soils. N2-fixation by this bacterium was up-regulated in the presence of mangrove roots, indicating a possible beneficial interaction. The increase in N2-fixation was limited to cells of the exponential growth phase suggesting that N2-fixation differs over the bacterial growth cycle. Bacterial transformants harboring a transcriptional nifH::gusA fusion showed that M. mangrovicola successfully colonized mangrove roots and simultaneously conducted N2-fixation. The colonization process was stimulated by the lack of an external carbon source suggesting a possible mutualistic relationship. M. mangrovicola represents an interesting genetically accessible diazotroph, which colonize mangrove roots and exhibit higher N2-fixation in the presence of mangrove roots. Consequently, we propose this microorganism as a tool to study molecular interactions between N2-fixers and mangrove plants and to better understand how changes in the environment could impact these important and relatively unknown

  6. [Effectiveness comparison of flexible fixation and rigid fixation in treatment of ankle pronation-external rotation fractures with distal tibiofibular syndesmosis].

    PubMed

    Li, Yuewei; Zhang, Minghui; Li, Xiaorong; Chen, Xiaoyong; Deng, Jianlong

    2017-07-01

    To compare the effectiveness of flexible fixation and rigid fixation in the treatment of ankle pronation-external rotation fractures with distal tibiofibular syndesmosis. A retrospective analysis was made on the clinical data of 50 patients with ankle pronation-external rotation fractures and distal tibiofibular syndesmosis treated between January 2013 and December 2015. Suture-button fixation was used in 23 patients (flexible fixation group) and cortical screw fixation in 27 patients (rigid fixation group). There was no significant difference in age, gender, weight, side, fracture type, and time from trauma to surgery between 2 groups ( P >0.05). The operation time, medial clear space (MCS), tibiofibular clear space (TFCS), tibiofibular overlap (TFO), American Orthopaedic Foot and Ankle Society (AOFAS) score, and Foot and Ankle Disability Index (FADI) score were compared between 2 groups. The operation time was (83.0±9.1) minutes in the flexible fixation group and was (79.6±13.1) minutes in the rigid fixation group, showing no significant difference ( t =1.052, P =0.265). All patients achieved healing of incision by first intention. The patients were followed up 12-20 months (mean, 14 months). The X-ray films showed good healing of fracture in 2 groups. There was no screw fracture, delayed union or nounion. The fracture healing time was (12.1±2.5) months in the flexible fixation group and was (11.3±3.2) months in the rigid fixation group, showing no significant difference between 2 groups ( t =1.024, P =0.192). Reduction loss occurred after removal of screw in 2 cases of the rigid fixation group. At last follow-up, there was no significant difference in MCS, TFCS, TFO, AOFAS score and FADI score between 2 groups ( P >0.05). Suture-button fixation has similar effectiveness to screw fixation in ankle function and imaging findings, and flexible fixation has lower risk of reduction loss of distal tibiofibular syndesmosis than rigid fixation.

  7. Late Glacial Tropical Savannas in Sundaland Inferred From Stable Carbon Isotope Records of Cave Guano

    NASA Astrophysics Data System (ADS)

    Wurster, C. M.; Bird, M. I.; Bull, I.; Dungait, J.; Bryant, C. L.; Ertunç, T.; Hunt, C.; Lewis, H. A.; Paz, V.

    2008-12-01

    During the Last Glacial Period (LGP), reduced global sea level exposed the continental shelf south of Thailand to Sumatra, Java, and Borneo to form the contiguous continent of Sundaland. However, the type and extent of vegetation that existed on much of this exposed landmass during the LGP remains speculative. Extensive bird and bat guano deposits in caves throughout this region span beyond 40,000 yr BP, and contain a wealth of untapped stratigraphic palaeoenvironmental information. Stable carbon isotope ratios of insectivorous bird and bat guano contain a reliable record of the animal's diet and, through non-specific insect predation, reflect the relative abundance of major physiological pathways in plants. Various physiological pathways of carbon fixation in plants yield differing stable carbon isotope ratios. Stable carbon isotope values of C3 plants are lower than C4 vegetation due to different enzymatic discriminations of the heavy isotope through the carbon fixing pathways. In tropical locales, grasses nearly always follow the C4 photosynthetic pathway, whereas tropical rainforest uses C3 photosynthesis, providing a proxy for vegetation and therefore climate change in the past. Here we discuss four guano stable-isotope records, based on insect cuticle and n-alkane analysis, supplemented by pollen analysis. All sites suggest a C3 dominated ecosystem for the Holocene, consistent with the wet tropical forest vegetation present at all locations. Two sites from Palawan Island, Philippines, record stable carbon isotope values of guano that document a drastic change from C3 (forest) to C4 (savanna) dominated ecosystems during the Last Glacial Maximum (LGM). A third location, at Niah Great Cave, Malaysia, indicates C3-dominant vegetation throughout the record, but does display variation in stable carbon isotope values likely linked to humidity changes. A fourth location, Batu Caves in Peninsular Malaysia, also indicates open vegetation during the LGM. Vegetation

  8. Photosynthetic strategies of two Mojave Desert shrubs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinkopf, G.E.; Hartsock, T.L.; Wallace, A.

    1980-01-01

    Photosynthetic production of two Mojave Desert shrubs was measured under natural growing conditions. Measurements of photosynthesis, transpiration, resistances to water vapor flux, soil moisture potential, and tissue water potential were made. Atriplex canescens (Pursh) Nutt., a member of the C/sub 4/ biochemical carbon dioxide fixation group was highly competitive in growth rate and production during conditions of adequate soil moisture. As soil moisture conditions declined to minus 40 bars, the net photosynthetic rate of Atriplex decreased to zero. However, the C/sub 3/ shrub species Larrea tridentata (Sesse and Moc. ex DC.) Cov. was able to maintain positive net photosynthetic productionmore » during conditions of high temperature and extreme low soil moisture through the major part of the season. The comparative advantages of the C/sub 4/ versus the C/sub 3/ pathway of carbon fixation was lost between these two species as the soil moisture potential declined to minus 40 bars. Desert plants have diffferent strategies for survival, one of the strategies being the C/sub 4/ biochemical carbon fixation pathway. However, many of the plants are members of the C/sub 3/ group. In this instance, the C/sub 4/ fixation pathway does not confer an added advantage to the productivity of the species in the Mojave Desert. Species distribution based on comparative photosynthetic production is discussed« less

  9. Carbon isotopic patterns of amino acids associated with various microbial metabolic pathways and physiological conditions

    NASA Astrophysics Data System (ADS)

    Wang, P. L.; Hsiao, K. T.; Lin, L. H.

    2017-12-01

    Amino acids represent one of the most important categories of biomolecule. Their abundance and isotopic patterns have been broadly used to address issues related to biochemical processes and elemental cycling in natural environments. Previous studies have shown that various carbon assimilative pathways of microorganisms (e.g. autotrophy, heterotrophy and acetotrophy) could be distinguished by carbon isotopic patterns of amino acids. However, the taxonomic and catabolic coverage are limited in previous examination. This study aims to uncover the carbon isotopic patterns of amino acids for microorganisms remaining uncharacterized but bearing biogeochemical and ecological significance in anoxic environments. To fulfill the purpose, two anaerobic strains were isolated from riverine wetland and mud volcano in Taiwan. One strain is a sulfate reducing bacterium (related to Desulfovibrio marrakechensis), which is capable of utilizing either H2 or lactate, and the other is a methanogen (related to Methanolobus profundi), which grows solely with methyl-group compounds. Carbon isotope analyses of amino acids were performed on cells grown in exponential and stationary phase. The isotopic patterns were similar for all examined cultures, showing successive 13C depletion along synthetic pathways. No significant difference was observed for the methanogen and lactate-utilizing sulfate reducer harvested in exponential and stationary phases. In contrast, the H2-utilizing sulfate reducer harvested in stationary phase depleted and enriched 13C in aspartic acid and glycine, respectively when compared with that harvested in exponential phase. Such variations might infer the change of carbon flux during synthesis of these two amino acids in the reverse TCA cycle. In addition, the discriminant function analysis for all available data from culture studies further attests the capability of using carbon isotope patterns of amino acids in identifying microbial metabolisms.

  10. Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change

    PubMed Central

    Cardini, Ulisse; Bednarz, Vanessa N; Foster, Rachel A; Wild, Christian

    2014-01-01

    Tropical coral reefs are among the most productive and diverse ecosystems, despite being surrounded by ocean waters where nutrients are in short supply. Benthic dinitrogen (N2) fixation is a significant internal source of “new” nitrogen (N) in reef ecosystems, but related information appears to be sparse. Here, we review the current state (and gaps) of knowledge on N2 fixation associated with coral reef organisms and their ecosystems. By summarizing the existing literature, we show that benthic N2 fixation is an omnipresent process in tropical reef environments. Highest N2 fixation rates are detected in reef-associated cyanobacterial mats and sea grass meadows, clearly showing the significance of these functional groups, if present, to the input of new N in reef ecosystems. Nonetheless, key benthic organisms such as hard corals also importantly contribute to benthic N2 fixation in the reef. Given the usually high coral coverage of healthy reef systems, these results indicate that benthic symbiotic associations may be more important than previously thought. In fact, mutualisms between carbon (C) and N2 fixers have likely evolved that may enable reef communities to mitigate N limitation. We then explore the potential effects of the increasing human interferences on the process of benthic reef N2 fixation via changes in diazotrophic populations, enzymatic activities, or availability of benthic substrates favorable to these microorganisms. Current knowledge indicates positive effects of ocean acidification, warming, and deoxygenation and negative effects of increased ultraviolet radiation on the amount of N fixed in coral reefs. Eutrophication may either boost or suppress N2 fixation, depending on the nutrient becoming limiting. As N2 fixation appears to play a fundamental role in nutrient-limited reef ecosystems, these assumptions need to be expanded and confirmed by future research efforts addressing the knowledge gaps identified in this review. PMID:24967086

  11. Permanganate Fixation of Plant Cells

    PubMed Central

    Mollenhauer, Hilton H.

    1959-01-01

    In an evaluation of procedures explored to circumvent some of the problems of osmium tetroxide-fixation and methacrylate embedding of plant materials, excised segments of root tips of Zea mays were fixed for electron microscopy in potassium permanganate in the following treatment variations: unbuffered and veronal-acetate buffered solutions of 0.6, 2.0, and 5.0 per cent KMnO4 at pH 5.0, 6.0, 6.7, and 7.5, and temperatures of 2–4°C. and 22°C. After fixation the segments were dehydrated, embedded in epoxy resin, sectioned, and observed or photographed. The cells of the central region of the rootcap are described. The fixation procedures employing unbuffered solutions containing 2.0 to 5.0 per cent KMnO4 at a temperature of 22°C. gave particularly good preservation of cell structure and all membrane systems. Similar results were obtained using a solution containing 2.0 per cent KMnO4, buffered with veronal-acetate to pH 6.0, and a fixation time of 2 hours at 22°C. The fixation procedure utilizing veronal-acetate buffered, 0.6 per cent KMnO4 at 2–4°C. and pH 6.7 also gave relatively good preservation of most cellular constituents. However, preservation of the plasma membrane was not so good, nor was the intensity of staining so great, as that with the group of fixatives containing greater concentrations of KMnO4. The other fixation procedures did not give satisfactory preservation of fine structure. A comparison is made of cell structures as fixed in KMnO4 or OsO4. PMID:14423414

  12. Processing of urushiol (poison ivy) hapten by both endogenous and exogenous pathways for presentation to T cells in vitro.

    PubMed

    Kalish, R S; Wood, J A; LaPorte, A

    1994-05-01

    The antigen processing requirements for urushiol, the immunogen of poison ivy (Toxicodendron radicans), were tested by presentation of urushiol to cultured human urushiol-responsive T cells. Urushiol was added to antigen-presenting cells (APC) either before or after fixation with paraformaldehyde. Three distinct routes of antigen processing were detected. CD8+ and CD4+ T cells, which were dependent upon processing, proliferated if urushiol was added to APC before fixation, but did not proliferate when urushiol was added to APC after fixation. Processing of urushiol for presentation to CD8+ T cells was inhibited by azide, monensin, and brefeldin A. This suggests that urushiol was processed by the endogenous pathway. In contrast, presentation of urushiol to CD4+ T cells was inhibited by monensin but not by brefeldin A. This was compatible with antigen processing by the endosomal (exogenous) pathway. Finally, certain CD8+ T cells recognized urushiol in the absence of processing. These cells proliferated in response to APC incubated with urushiol after fixation. Classification of contact allergens by antigen processing pathway may predict the relative roles of CD4+ and CD8+ cells in the immunopathogensis of allergic contact dermatitis.

  13. Processing of urushiol (poison ivy) hapten by both endogenous and exogenous pathways for presentation to T cells in vitro.

    PubMed Central

    Kalish, R S; Wood, J A; LaPorte, A

    1994-01-01

    The antigen processing requirements for urushiol, the immunogen of poison ivy (Toxicodendron radicans), were tested by presentation of urushiol to cultured human urushiol-responsive T cells. Urushiol was added to antigen-presenting cells (APC) either before or after fixation with paraformaldehyde. Three distinct routes of antigen processing were detected. CD8+ and CD4+ T cells, which were dependent upon processing, proliferated if urushiol was added to APC before fixation, but did not proliferate when urushiol was added to APC after fixation. Processing of urushiol for presentation to CD8+ T cells was inhibited by azide, monensin, and brefeldin A. This suggests that urushiol was processed by the endogenous pathway. In contrast, presentation of urushiol to CD4+ T cells was inhibited by monensin but not by brefeldin A. This was compatible with antigen processing by the endosomal (exogenous) pathway. Finally, certain CD8+ T cells recognized urushiol in the absence of processing. These cells proliferated in response to APC incubated with urushiol after fixation. Classification of contact allergens by antigen processing pathway may predict the relative roles of CD4+ and CD8+ cells in the immunopathogensis of allergic contact dermatitis. Images PMID:7910172

  14. A Subconscious Interaction between Fixation and Anticipatory Pursuit

    PubMed Central

    Bal, Japjot; Heinen, Stephen J.

    2017-01-01

    Ocular smooth pursuit and fixation are typically viewed as separate systems, yet there is evidence that the brainstem fixation system inhibits pursuit. Here we present behavioral evidence that the fixation system modulates pursuit behavior outside of conscious awareness. Human observers (male and female) either pursued a small spot that translated across a screen, or fixated it as it remained stationary. As shown previously, pursuit trials potentiated the oculomotor system, producing anticipatory eye velocity on the next trial before the target moved that mimicked the stimulus-driven velocity. Randomly interleaving fixation trials reduced anticipatory pursuit, suggesting that a potentiated fixation system interacted with pursuit to suppress eye velocity in upcoming pursuit trials. The reduction was not due to passive decay of the potentiated pursuit signal because interleaving “blank” trials in which no target appeared did not reduce anticipatory pursuit. Interspersed short fixation trials reduced anticipation on long pursuit trials, suggesting that fixation potentiation was stronger than pursuit potentiation. Furthermore, adding more pursuit trials to a block did not restore anticipatory pursuit, suggesting that fixation potentiation was not overridden by certainty of an imminent pursuit trial but rather was immune to conscious intervention. To directly test whether cognition can override fixation suppression, we alternated pursuit and fixation trials to perfectly specify trial identity. Still, anticipatory pursuit did not rise above that observed with an equal number of random fixation trials. The results suggest that potentiated fixation circuitry interacts with pursuit circuitry at a subconscious level to inhibit pursuit. SIGNIFICANCE STATEMENT When an object moves, we view it with smooth pursuit eye movements. When an object is stationary, we view it with fixational eye movements. Pursuit and fixation are historically regarded as controlled by different

  15. A Subconscious Interaction between Fixation and Anticipatory Pursuit.

    PubMed

    Watamaniuk, Scott N J; Bal, Japjot; Heinen, Stephen J

    2017-11-22

    Ocular smooth pursuit and fixation are typically viewed as separate systems, yet there is evidence that the brainstem fixation system inhibits pursuit. Here we present behavioral evidence that the fixation system modulates pursuit behavior outside of conscious awareness. Human observers (male and female) either pursued a small spot that translated across a screen, or fixated it as it remained stationary. As shown previously, pursuit trials potentiated the oculomotor system, producing anticipatory eye velocity on the next trial before the target moved that mimicked the stimulus-driven velocity. Randomly interleaving fixation trials reduced anticipatory pursuit, suggesting that a potentiated fixation system interacted with pursuit to suppress eye velocity in upcoming pursuit trials. The reduction was not due to passive decay of the potentiated pursuit signal because interleaving "blank" trials in which no target appeared did not reduce anticipatory pursuit. Interspersed short fixation trials reduced anticipation on long pursuit trials, suggesting that fixation potentiation was stronger than pursuit potentiation. Furthermore, adding more pursuit trials to a block did not restore anticipatory pursuit, suggesting that fixation potentiation was not overridden by certainty of an imminent pursuit trial but rather was immune to conscious intervention. To directly test whether cognition can override fixation suppression, we alternated pursuit and fixation trials to perfectly specify trial identity. Still, anticipatory pursuit did not rise above that observed with an equal number of random fixation trials. The results suggest that potentiated fixation circuitry interacts with pursuit circuitry at a subconscious level to inhibit pursuit. SIGNIFICANCE STATEMENT When an object moves, we view it with smooth pursuit eye movements. When an object is stationary, we view it with fixational eye movements. Pursuit and fixation are historically regarded as controlled by different neural

  16. Microwave energy fixation for electron microscopy.

    PubMed Central

    Login, G. R.; Dvorak, A. M.

    1985-01-01

    We have demonstrated that microwave energy (MW) can be used in conjunction with chemical cross-linking agents in order to rapidly fix cell suspensions and tissue blocks for electron microscopy in 7-9 seconds. The optimal MW fixation method involved immersing tissues up to 1 cu cm in dilute aldehyde fixation and immediately irradiating the specimens in a conventional microwave oven for 9 seconds to 50 C. Ultrastructural preservation of samples irradiated by MW energy was comparable to that of the control samples immersed in aldehyde fixative for 2 hours at 25 C. Stereologic analysis showed that tissue blocks fixed by the MW fixation method did not cause organelles such as liver mitochondria and salivary gland granules to shrink or to swell. Potential applications for this new fixation technology include the investigation of rapid intracellular processes (eg, vesicular transport) and preservation of proteins that are difficult to demonstrate with routine fixation methods (eg, antigens and enzymes). Images Figure 4 Figure 5 Figure 2 Figure 3 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:3927740

  17. Recent advances in fixation of the craniomaxillofacial skeleton.

    PubMed

    Meslemani, Danny; Kellman, Robert M

    2012-08-01

    Fixation of the craniomaxillofacial skeleton is an evolving aspect for facial plastic, oral and maxillofacial, and plastic surgery. This review looks at the recent advances that aid in reduction and fixation of the craniomaxillofacial skeleton. More surgeons are using resorbable plates for craniomaxillofacial fixation. A single miniplate on the inferior border of the mandible may be sufficient to reduce and fixate an angle fracture. Percutaneous K-wires may assist in plating angle fractures. Intraoperative computed tomography (CT) may prove to be useful for assessing reduction and fixation. Resorbable plates are becoming increasingly popular in orthognathic surgery and facial trauma surgery. There are newer operative techniques for fixating the angle of the mandible. Also, the utilization of the intraoperative CT provides immediate feedback for accurate reduction and fixation. Prebent surgical plates save operative time, decrease errors, and provide more accurate fixation.

  18. Conversion of external fixation to open reduction and internal fixation for complex distal radius fractures.

    PubMed

    Natoli, R M; Baer, M R; Bednar, M S

    2016-05-01

    Distal radius fractures are common injuries treated in a multitude of ways. One treatment paradigm not extensively studied is initial treatment by external fixation (EF) followed by conversion to open reduction internal fixation (ORIF). Such a paradigm may be beneficial in damage control situations, when there is extensive soft tissue injury, or when appropriate personnel/hospital resources are not available for immediate internal fixation. There is no increased risk of infection when converting EF to ORIF in the treatment of complex distal radius fractures when conversion occurs early or if EF pin sites are overlapped by the definitive fixation. Using an IRB approved protocol, medical records over nine years were queried to identify patients with distal radius fractures that had undergone initial EF and were later converted to ORIF. Charts were reviewed for demographic data, injury characteristics, operative details, time to conversion from EF to ORIF, assessment of whether the EF pin sites overlapped the definitive fixation, presence of infection after ORIF, complications, and occupational therapy measurements of range of motion and strength. In total, 16 patients were identified, only one of which developed an infection following conversion to ORIF. Fisher's exact testing showed that infection did not depend on open fracture, time to conversion of one week or less, presence of EF pin sites overlapping definitive fixation, fracture classification, high energy mechanism of injury, or concomitant injury to the DRUJ. Planned staged conversion from EF to ORIF for complex distal radius fractures does not appear to result in an increased rate of infection if conversion occurs early or if the EF pin sites are overlapped by definitive fixation. This treatment paradigm may be reasonable for treating complex distal radius fractures in damage control situations, when there is extensive soft tissue injury, or when appropriate personnel/hospital resources are not available

  19. External fixation combined with delayed internal fixation in treatment of tibial plateau fractures with dislocation.

    PubMed

    Tao, Xingguang; Chen, Nong; Pan, Fugen; Cheng, Biao

    2017-10-01

    The aim of this study was to evaluate the clinical efficacy of external fixation, delayed open reduction, and internal fixation in treating tibial plateau fracture with dislocation.Clinical data of 34 patients diagnosed with tibial plateau fracture complicated with dislocation between January 2009 and May 2015 were retrospectively analyzed. Fifteen patients in group A underwent early calcaneus traction combined with open reduction and internal fixation and 19 in group B received early external fixation combined with delayed open reduction and internal fixation. Operation time, postoperative complication, bone healing time, knee joint range of motion, initial weight-bearing time, Rasmussen tibial plateau score, and knee function score (HSS) were statistically compared between 2 groups.The mean follow-up time was 18.6 months (range: 5-24 months). The mean operation time in group A was 96 minutes, significantly longer than 71 minutes in group B (P < .05). In group A, 5 cases had postoperative complications and 1 in group B (P < .05). The mean bone healing time in group A was 6.9 months (range: 5-9 months) and 6.0 months (range: 5-8 months) in group B (P > .05). In group A, initial weight-bearing time in group A was (14.0 ± 3.6) weeks, significantly differing from (12.9 ± 2.8) weeks in group B (P < 0.05). In group A, the mean knee joint range of motion was 122° (range: 95°-150°) and 135° (range: 100°-160°) in group B (P > 0.05). Rasmussen tibial plateau score in group A was slightly lower than that in group B (P > .05). The excellent rate of knee joint function in group A was 80% and 84.21% in group B (P > .05).External fixation combined with delayed open reduction and internal fixation is a safer and more efficacious therapy of tibial plateau fracture complicated with dislocation compared with early calcaneus traction and open reduction and internal fixation.

  20. An Endogenous Carbon-Sensing Pathway Triggers Increased Auxin Flux and Hypocotyl Elongation1[C][W][OA

    PubMed Central

    Lilley, Jodi L. Stewart; Gee, Christopher W.; Sairanen, Ilkka; Ljung, Karin; Nemhauser, Jennifer L.

    2012-01-01

    The local environment has a substantial impact on early seedling development. Applying excess carbon in the form of sucrose is known to alter both the timing and duration of seedling growth. Here, we show that sucrose changes growth patterns by increasing auxin levels and rootward auxin transport in Arabidopsis (Arabidopsis thaliana). Sucrose likely interacts with an endogenous carbon-sensing pathway via the PHYTOCHROME-INTERACTING FACTOR (PIF) family of transcription factors, as plants grown in elevated carbon dioxide showed the same PIF-dependent growth promotion. Overexpression of PIF5 was sufficient to suppress photosynthetic rate, enhance response to elevated carbon dioxide, and prolong seedling survival in nitrogen-limiting conditions. Thus, PIF transcription factors integrate growth with metabolic demands and thereby facilitate functional equilibrium during photomorphogenesis. PMID:23073695

  1. The coupling of glycolysis and the Rubisco-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation.

    PubMed

    Li, Ya-Han; Ou-Yang, Fan-Yu; Yang, Cheng-Han; Li, Si-Yu

    2015-01-01

    In this study, Rubisco-based engineered Escherichia coli, containing two heterologous enzymes of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoribulokinase (PrkA), has been shown to be capable of the in situ recycling of carbon dioxide (CO2) during glycolysis. Two alternative approaches have been proposed to further enhance the carbon flow from glycolysis to a Rubisco-based pathway through the non-oxidative pentose phosphate pathway (NOPPP). The first is achieved by elevating the expression of transketolase I (TktA) and the second by blocking the native oxidation-decarboxylation reaction of E. coli by deleting the zwf gene from the chromosome (designated as JB/pTA and MZB, respectively). Decreases in the CO2 yield and the CO2 evolution per unit mole of ethanol production by at least 81% and 40% are observed. It is demonstrated in this study that the production of one mole of ethanol using E. coli strain MZB, the upper limit of CO2 emission is 0.052mol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Biomechanical characteristics of fixation methods for floating pubic symphysis.

    PubMed

    Song, Wenhao; Zhou, Dongsheng; He, Yu

    2017-03-07

    Floating pubic symphysis (FPS) is a relatively rare injury caused by high-energy mechanisms. There are several fixation methods used to treat FPS, including external fixation, subcutaneous fixation, internal fixation, and percutaneous cannulated screw fixation. To choose the appropriate fixation, it is necessary to study the biomechanical performance of these different methods. The goal of this study was to compare the biomechanical characteristics of six methods by finite element analysis. A three-dimensional finite element model of FPS was simulated. Six methods were used in the FPS model, including external fixation (Ext), subcutaneous rod fixation (Sub-rod), subcutaneous plate fixation (Sub-plate), superior pectineal plate fixation (Int-sup), infrapectineal plate fixation (Int-ifa), and cannulated screw fixation (Int-scr). Compressive and rotational loads were then applied in all models. Biomechanical characteristics that were recorded and analyzed included construct stiffness, micromotion of the fracture gaps, von Mises stress, and stress distribution. The construct stiffness of the anterior pelvic ring was decreased dramatically when FPS occurred. Compressive stiffness was restored by the three internal fixation and Sub-rod methods. Unfortunately, rotational stiffness was not restored satisfactorily by the six methods. For micromotion of the fracture gaps, the displacement was reduced significantly by the Int-sup and Int-ifa methods under compression. The internal fixation methods and Sub-plate method performed well under rotation. The maximum von Mises stress of the implants was not large. For the plate-screw system, the maximum von Mises stress occurred over the region of the fracture and plate-screw joints. The maximum von Mises stress appeared on the rod-screw and screw-bone interfaces for the rod-screw system. The present study showed the biomechanical advantages of internal fixation methods for FPS from a finite element view. Superior stabilization of

  3. Fixation of displaced subcapital femoral fractures. Compression screw fixation versus double divergent pins.

    PubMed

    Christie, J; Howie, C R; Armour, P C

    1988-03-01

    One hundred and twenty-seven consecutive patients with displaced subcapital fractures of the femoral neck (Garden Grade III or IV) all under 80 years of age and independently mobile, were randomly allocated to fixation with either double divergent pins or a single sliding screw-plate device. The incidence of non-union and infection in the sliding screw-plate group was significantly higher, and we believe that when internal fixation is considered appropriate multiple pinning should be used. Mobility after treatment was disappointing in about half of the patients, and we feel that internal fixation can only be justified in patients who are physiologically well preserved and who maintain a high level of activity.

  4. Environmental forcing of nitrogen fixation in the eastern tropical and sub-tropical North Atlantic Ocean.

    PubMed

    Rijkenberg, Micha J A; Langlois, Rebecca J; Mills, Matthew M; Patey, Matthew D; Hill, Polly G; Nielsdóttir, Maria C; Compton, Tanya J; Laroche, Julie; Achterberg, Eric P

    2011-01-01

    During the winter of 2006 we measured nifH gene abundances, dinitrogen (N(2)) fixation rates and carbon fixation rates in the eastern tropical and sub-tropical North Atlantic Ocean. The dominant diazotrophic phylotypes were filamentous cyanobacteria, which may include Trichodesmium and Katagnymene, with up to 10(6) L(-1)nifH gene copies, unicellular group A cyanobacteria with up to 10(5) L(-1)nifH gene copies and gamma A proteobacteria with up to 10(4) L(-1)nifH gene copies. N(2) fixation rates were low and ranged between 0.032-1.28 nmol N L(-1) d(-1) with a mean of 0.30 ± 0.29 nmol N L(-1) d(-1) (1σ, n = 65). CO(2)-fixation rates, representing primary production, appeared to be nitrogen limited as suggested by low dissolved inorganic nitrogen to phosphate ratios (DIN:DIP) of about 2 ± 3.2 in surface waters. Nevertheless, N(2) fixation rates contributed only 0.55 ± 0.87% (range 0.03-5.24%) of the N required for primary production. Boosted regression trees analysis (BRT) showed that the distribution of the gamma A proteobacteria and filamentous cyanobacteria nifH genes was mainly predicted by the distribution of Prochlorococcus, Synechococcus, picoeukaryotes and heterotrophic bacteria. In addition, BRT indicated that multiple a-biotic environmental variables including nutrients DIN, dissolved organic nitrogen (DON) and DIP, trace metals like dissolved aluminum (DAl), as a proxy of dust inputs, dissolved iron (DFe) and Fe-binding ligands as well as oxygen and temperature influenced N(2) fixation rates and the distribution of the dominant diazotrophic phylotypes. Our results suggest that lower predicted oxygen concentrations and higher temperatures due to climate warming may increase N(2) fixation rates. However, the balance between a decreased supply of DIP and DFe from deep waters as a result of more pronounced stratification and an enhanced supply of these nutrients with a predicted increase in deposition of Saharan dust may ultimately determine the

  5. Formaldehyde substitute fixatives: effects on nucleic acid preservation.

    PubMed

    Moelans, Cathy B; Oostenrijk, Daphne; Moons, Michiel J; van Diest, Paul J

    2011-11-01

    In surgical pathology, formalin-fixed paraffin-embedded tissues are increasingly being used as a source of DNA and RNA for molecular assays in addition to histopathological evaluation. However, the commonly used formalin fixative is carcinogenic, and its crosslinking impairs DNA and RNA quality. The suitability of three new presumably less toxic, crosslinking (F-Solv) and non-crosslinking (FineFIX, RCL2) alcohol-based fixatives was tested for routine molecular pathology in comparison with neutral buffered formalin (NBF) as gold standard. Size ladder PCR, epidermal growth factor receptor sequence analysis, microsatellite instability (MSI), chromogenic (CISH), fluorescence in situ hybridisation (FISH) and qPCR were performed. The alcohol-based non-crosslinking fixatives (FineFIX and RCL2) resulted in a higher DNA yield and quality compared with crosslinking fixatives (NBF and F-Solv). Size ladder PCR resulted in a shorter amplicon size (300 bp) for both crosslinking fixatives compared with the non-crosslinking fixatives (400 bp). All four fixatives were directly applicable for MSI and epidermal growth factor receptor sequence analysis. All fixatives except F-Solv showed clear signals in CISH and FISH. RNA yield and quality were superior after non-crosslinking fixation. qPCR resulted in lower Ct values for RCL2 and FineFIX. The alcohol-based non-crosslinking fixatives performed better than crosslinking fixatives with regard to DNA and RNA yield, quality and applicability in molecular diagnostics. Given the higher yield, less starting material may be necessary, thereby increasing the applicability of biopsies for molecular studies.

  6. Distribution and Magnitude of Dinitrogen Fixation in the Eastern Tropical North Pacific Oxygen Deficient Zone.

    NASA Astrophysics Data System (ADS)

    Selden, C.; Mulholland, M. R.; Widner, B.; Bernhardt, P. W.; Macías Tapia, A.; Jayakumar, A.

    2016-12-01

    The Eastern Tropical North Pacific Ocean (ETNP) hosts one of the world's three major open ocean oxygen deficient zones (ODZs). Hotspots for fixed nitrogen (N) loss processes, ODZs have classically been discounted as areas of significant dinitrogen (N2) fixation, the microbe-mediated reduction of N2 to ammonium (NH4+), which has historically been ascribed primarily to euphotic, nutrient-deplete tropical waters. Challenging this paradigm, active expression of nifH (the dinitrogen reductase structural gene) has recently been documented in the ETNP, Eastern Tropical South Pacific, and Arabian Sea ODZs, implying a closer coupling of fixed nitrogen input and loss processes than previously thought. Here, we report rates of N­2 fixation measured in the ETNP ODZ along vertical gradients of oxygen, light, and dissolved N concentrations. Detailed vertical profiles of N2 fixation rates and dissolved N concentrations made within the ODZ were compared with similar profiles from oxic waters outside the ODZ. In addition, different organic carbon sources were investigated as potential rate-limiting factors for N2 fixation in sub-euphotic waters. By establishing the magnitude and distribution of N­2 fixation in the ETNP ODZ, this study contributes to current understanding of N cycling in anoxic and aphotic waters, and serves to elucidate nuances in the global N budget, enabling more accurate biogeochemical modeling. Understanding these processes in present day ODZs is crucial for predicting how ongoing anthropogenic intensification of coastal ODZs will alter biogeochemical cycles in the future.

  7. [Extramedullary fixation combined with intramedullary fixation in the surgical reduction of sagittal mandibular condylar fractures].

    PubMed

    Chuanjun, Chen; Xiaoyang, Chen; Jing, Chen

    2016-10-01

    This study aimed to evaluate the clinical effect of extramedullary fixation combined with intramedullary fixation during the surgical reduction of sagittal mandibular condylar fractures. Twenty-four sagittal fractures of the mandibular condyle in18 patients were fixed by two appliances: intramedullary with one long-screw osteosynthesis or Kirschner wire and extramedullary with one micro-plate. The radiologically-recorded post-operative stability-associated com-plications included the screw/micro-plate loosening, micro-plate twisting, micro-plate fractures, and fragment rotation. The occluding relations, the maximalinter-incisal distances upon mouth opening, and the mandibular deflection upon mouth opening were evaluated based on follow-up clinical examination. Postoperative panoramic X-ray and CT scans showed good repositioning of the fragment, with no redislocation or rotation, no screw/plate loosening, and no plate-twisting or fracture. Clinical examination showed that all patients regained normal mandibular movements, ideal occlusion, and normal maximal inter-incisal distances upon mouth opening. Extramedullary fixation combined with intramedullary fixation is highly recommended for sagittal condylar fractures because of the anti-rotation effect of the fragment and the reasonable place-ment of the fixation appliances.

  8. A novel fixation system for sacroiliac dislocation fracture: internal fixation system design and biomechanics analysis.

    PubMed

    Dawei, Tian; Na, Liu; Jun, Lei; Wei, Jin; Lin, Cai

    2013-02-01

    Although there were many different types of fixation techniques for sacroiliac dislocation fracture, the treat remained challenging in posterior pelvic ring injury. The purpose of this study was to evaluate the biomechanical effects of a novel fixation system we designed. 12 human cadavers (L3-pelvic-femora) were used to compare biomechanical stability after reconstruction on the same specimens in four conditions: (1) intact, (2) cable system, (3) plate-pedicle screw system, and (4) cable system and plate-pedicle screw combination system (combination system). Biomechanical testing was performed on a material testing machine for evaluating the stiffness of the pelvic fixation construct in compression and torsion. The cable system and plate-pedicle screw system alone may be insufficient to resist vertical shearing and rotational loads; however the combination system for unstable sacroiliac dislocation fractures provided significantly greater stability than single plate-pedicle or cable fixation system. The novel fixation system for unstable sacroiliac dislocation fractures produced sufficient stability in axial compression and axial rotation test in type C pelvic ring injuries. It may also offer a better solution for sacroiliac dislocation fractures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena

    NASA Astrophysics Data System (ADS)

    Czerny, J.; Ramos, J. Barcelos E.; Riebesell, U.

    2009-04-01

    The surface ocean currently absorbs about one-fourth of the CO2 emitted to the atmosphere from human activities. As this CO2 dissolves in seawater, it reacts with seawater to form carbonic acid, increasing ocean acidity and shifting the partitioning of inorganic carbon species towards increased CO2 at the expense of CO32- concentrations. While the decrease in [CO32-] and/or increase in [H+] has been found to adversely affect many calcifying organisms, some photosynthetic organisms appear to benefit from increasing [CO2]. Among these is the cyanobacterium Trichodesmium, a predominant diazotroph (nitrogen-fixing) in large parts of the oligotrophic oceans, which responded with increased carbon and nitrogen fixation at elevated pCO2. With the mechanism underlying this CO2 stimulation still unknown, the question arises whether this is a common response of diazotrophic cyanobacteria. In this study we therefore investigate the physiological response of Nodularia spumigena, a heterocystous bloom-forming diazotroph of the Baltic Sea, to CO2-induced changes in seawater carbonate chemistry. N. spumigena reacted to seawater acidification/carbonation with reduced cell division rates and nitrogen fixation rates, accompanied by significant changes in carbon and phosphorus quota and elemental composition of the formed biomass. Possible explanations for the contrasting physiological responses of Nodularia compared to Trichodesmium may be found in the different ecological strategies of non-heterocystous (Trichodesmium) and heterocystous (Nodularia) cyanobacteria.

  10. [Safety evaluation of secondary conversion from external fixation to internal fixation for open tibia fractures].

    PubMed

    Liu, Xi; Cen, Shiqiang; Xiang, Zhou; Zhong, Gang; Yi, Min; Fang, Yue; Liu, Lei; Huang, Fuguo

    2017-06-01

    To evaluate the safety of conversion from external fixation to internal fixation for open tibia fractures. Between January 2010 and December 2014, 94 patients (98 limbs) with open tibia fractures were initially treated with external fixators at the first stage, and the clinical data were retrospectively analyzed. In 29 cases (31 limbs), the external fixators were changed to internal fixation for discomfort, pin tract response, Schantz pin loosening, delayed union or non-union after complete wound healing and normal or close to normal levels of erythrocyte sedimentation rate (ESR), C reactive protein (CRP), and the leucocyte count as well as the neutrophil ratio (trial group); in 65 cases (67 limbs), the external fixators were used as the ultimate treatment in the control group. There was no significant difference in gender, age, side of the limbs, interval from injury to the first debridement, initial pathogenic bacteria, the limbs that skin grafting or flap transferring for skin and soft tissue defect between the two groups ( P >0.05). The incidence of Gustilo type III fractures in the control group was significantly higher than that in the trial group ( P =0.000). The overall incidence of infection was calculated respectively in the two groups. The incidence of infection according to different fracture types and whether skin grafting or flap transferring was compared between the two groups. The information of the pathogenic bacteria was recorded in the infected patients, and it was compared with the results of the initial culture. The incidence of infection in the patients of the trial group using different internal fixation instruments was recorded. The overall incidences of infection for the trial and control groups were 9.7% (3/31) and 9.0% (6/67) respectively, showing no significant difference ( χ 2 =0.013, P =0.909). No infection occurred in Gustilo type I and type II patients. The incidence of infection for Gustilo type IIIA patients in the trial group and

  11. Synthetic CO2-fixation enzyme cascades immobilized on self-assembled nanostructures that enhance CO2/O2 selectivity of RubisCO.

    PubMed

    Satagopan, Sriram; Sun, Yuan; Parquette, Jon R; Tabita, F Robert

    2017-01-01

    With increasing concerns over global warming and depletion of fossil-fuel reserves, it is attractive to develop innovative strategies to assimilate CO 2 , a greenhouse gas, into usable organic carbon. Cell-free systems can be designed to operate as catalytic platforms with enzymes that offer exceptional selectivity and efficiency, without the need to support ancillary reactions of metabolic pathways operating in intact cells. Such systems are yet to be exploited for applications involving CO 2 utilization and subsequent conversion to valuable products, including biofuels. The Calvin-Benson-Bassham (CBB) cycle and the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) play a pivotal role in global CO 2 fixation. We hereby demonstrate the co-assembly of two RubisCO-associated multienzyme cascades with self-assembled synthetic amphiphilic peptide nanostructures. The immobilized enzyme cascades sequentially convert either ribose-5-phosphate (R-5-P) or glucose, a simpler substrate, to ribulose 1,5-bisphosphate (RuBP), the acceptor for incoming CO 2 in the carboxylation reaction catalyzed by RubisCO. Protection from proteolytic degradation was observed in nanostructures associated with the small dimeric form of RubisCO and ancillary enzymes. Furthermore, nanostructures associated with a larger variant of RubisCO resulted in a significant enhancement of the enzyme's selectivity towards CO 2 , without adversely affecting the catalytic activity. The ability to assemble a cascade of enzymes for CO 2 capture using self-assembling nanostructure scaffolds with functional enhancements show promise for potentially engineering entire pathways (with RubisCO or other CO 2 -fixing enzymes) to redirect carbon from industrial effluents into useful bioproducts.

  12. Application of alternative fixatives to formalin in diagnostic pathology

    PubMed Central

    Gatta, L. Benerini; Cadei, M.; Balzarini, P.; Castriciano, S.; Paroni, R.; Verzeletti, A.; Cortellini, V.; De Ferrari, F.; Grigolato, P.

    2012-01-01

    Fixation is a critical step in the preparation of tissues for histopathology. The aim of this study was to investigate the effects of different fixatives vs formalin on proteins and DNA, and to evaluate alternative fixation for morphological diagnosis and nucleic acid preservation for molecular methods. Forty tissues were fixed for 24 h with six different fixatives: the gold standard fixative formalin, the historical fixatives Bouin and Hollande, and the alternative fixatives Greenfix, UPM and CyMol. Tissues were stained (Haematoxylin-Eosin, Periodic Acid Schiff, Trichromic, Alcian-blue, High Iron Diamine stainings), and their antigenicity was determined by immunohistochemistry (performed with PAN-CK, CD31, Ki-67, S100, CD68, AML antibodies). DNA extraction, KRAS sequencing, FISH for CEP-17, and flow cytometry analysis of nuclear DNA content were applied. For cell morphology the alternative fixatives (Greenfix, UPM, CyMol) were equivalent to formalin. As expected, Hollande proved to be the best fixative for morphology. The morphology obtained with Bouin was comparable to the one with formalin. Hollande was the best fixative for histochemistry. Bouin proved to be equivalent to formalin. The alternative fixatives were equivalent to formalin, although with greater variability in haematoxylin-eosin staining. It proved the possibility to obtain immunohistochemical staining largely equivalent to that following formalin-fixation with the following fixatives: Greenfix, Hollande, UPM and CyMol. The tissues fixed in Bouin did not provide results comparable to those obtained with formalin. The DNA extracted from samples fixed with alternative fixatives was found to be suitable for molecular analysis. PMID:22688293

  13. The innovative safe fixative for histology, histopathology, and immunohistochemistry techniques: "pilot study using shellac alcoholic solution fixative".

    PubMed

    Ali Jamal, Awatif; Abd El-Aziz, Gamal Said; Hamdy, Raid Mahmoud; Al-Hayani, Abdulmonem; Al-Maghrabi, Jaudah

    2014-05-01

    The concerns over health and workplace hazards of formalin fixative, joined to its cross-linking of molecular groups that results in suboptimal immunohistochemistry, led us to search for an innovative safe fixative. Shellac is a natural material which is used as a preservative in foods and pharmaceutical industries. This study was undertaken to evaluate the fixation adequacy and staining quality of histopathological specimens fixed in the "shellac alcoholic solution" (SAS), and also to determine the validity of immunohistochemical staining of SAS-fixed material in comparison to those fixed in formalin. Fresh samples from 26 cases from various human tissues were collected at the frozen section room of King Abdulaziz University Hospital, and fixed in SAS fixative or in neutral buffered formaldehyde (NBF) for 12, 18, 24, and 48 h, and processed for paraffin sectioning. Deparaffinized sections were stained with hematoxylin and eosin (H&E) and immunostained for different antigens. The tissues fixed in SAS for >18 h showed best staining quality of H&E comparable to NBF-fixed tissues. Comparison of the immunohistochemical staining of different tissues yielded nearly equivalent readings with good positive nuclear staining quality in both fixatives. These findings support the fixation and preservation adequacy of SAS. Furthermore, it was concluded that the good staining quality obtained with SAS-fixed tissues, which was more or less comparable with the quality obtained with the formalin fixed tissues, supports the validity of this new solution as a good innovative fixative. Copyright © 2014 Wiley Periodicals, Inc.

  14. External fixation combined with delayed internal fixation in treatment of tibial plateau fractures with dislocation

    PubMed Central

    Tao, Xingguang; Chen, Nong; Pan, Fugen; Cheng, Biao

    2017-01-01

    Abstract The aim of this study was to evaluate the clinical efficacy of external fixation, delayed open reduction, and internal fixation in treating tibial plateau fracture with dislocation. Clinical data of 34 patients diagnosed with tibial plateau fracture complicated with dislocation between January 2009 and May 2015 were retrospectively analyzed. Fifteen patients in group A underwent early calcaneus traction combined with open reduction and internal fixation and 19 in group B received early external fixation combined with delayed open reduction and internal fixation. Operation time, postoperative complication, bone healing time, knee joint range of motion, initial weight-bearing time, Rasmussen tibial plateau score, and knee function score (HSS) were statistically compared between 2 groups. The mean follow-up time was 18.6 months (range: 5–24 months). The mean operation time in group A was 96 minutes, significantly longer than 71 minutes in group B (P < .05). In group A, 5 cases had postoperative complications and 1 in group B (P < .05). The mean bone healing time in group A was 6.9 months (range: 5–9 months) and 6.0 months (range: 5–8 months) in group B (P > .05). In group A, initial weight-bearing time in group A was (14.0 ± 3.6) weeks, significantly differing from (12.9 ± 2.8) weeks in group B (P < 0.05). In group A, the mean knee joint range of motion was 122° (range: 95°–150°) and 135° (range: 100°–160°) in group B (P > 0.05). Rasmussen tibial plateau score in group A was slightly lower than that in group B (P > .05). The excellent rate of knee joint function in group A was 80% and 84.21% in group B (P > .05). External fixation combined with delayed open reduction and internal fixation is a safer and more efficacious therapy of tibial plateau fracture complicated with dislocation compared with early calcaneus traction and open reduction and internal fixation. PMID:29019890

  15. Femoral Reconstruction Using External Fixation

    PubMed Central

    Palatnik, Yevgeniy; Rozbruch, S. Robert

    2011-01-01

    Background. The use of an external fixator for the purpose of distraction osteogenesis has been applied to a wide range of orthopedic problems caused by such diverse etiologies as congenital disease, metabolic conditions, infections, traumatic injuries, and congenital short stature. The purpose of this study was to analyze our experience of utilizing this method in patients undergoing a variety of orthopedic procedures of the femur. Methods. We retrospectively reviewed our experience of using external fixation for femoral reconstruction. Three subgroups were defined based on the primary reconstruction goal lengthening, deformity correction, and repair of nonunion/bone defect. Factors such as leg length discrepancy (LLD), limb alignment, and external fixation time and complications were evaluated for the entire group and the 3 subgroups. Results. There was substantial improvement in the overall LLD, femoral length discrepancy, and limb alignment as measured by mechanical axis deviation (MAD) and lateral distal femoral angle (LDFA) for the entire group as well as the subgroups. Conclusions. The Ilizarov external fixator allows for decreased surgical exposure and preservation of blood supply to bone, avoidance of bone grafting and internal fixation, and simultaneous lengthening and deformity correction, making it a very useful technique for femoral reconstruction. PMID:21991425

  16. The Path of Carbon in Photosynthesis IX. Photosynthesis, Photoreduction, and the Hydrogen-Oxygen-Carbon Dioxide Dark Reaction

    DOE R&D Accomplishments Database

    Badin, E. J.; Calvin, M.

    1950-02-01

    A comparison of the rates of fixation of Carbon 14 dioxide in algae for the processes of photosynthesis, photoreduction and the hydrogen-oxygen-carbon dioxide dark reaction has been made. For the same series of experiments, rates of incorporation of tracer carbon into the separate soluble components using the radiogram method have been determined. The mechanism of carbon dioxide uptake has been shown to occur via two distinct paths. In all cases studied, essentially the same compounds appear radioactive. The distribution with time, however, differs markedly.

  17. Weigners fixative-an alternative to formalin fixation for histology with improved preservation of nucleic acids.

    PubMed

    Klopfleisch, R; von Deetzen, M; Weiss, A Th; Weigner, J; Weigner, F; Plendl, J; Gruber, A D

    2013-01-01

    Formalin fixation and paraffin embedding (FFPE) is the standard method for tissue storage in histopathology. However, FFPE has disadvantages in terms of user health, environment, and nucleic acid integrity. Weigners fixative has been suggested as an alternative for embalming cadavers in human and veterinary anatomy. The present study tested the applicability of Weigners for histology and immunohistochemistry and the preservation of nucleic acids. To this end, a set of organs was fixed for 2 days and up to 6 months in Weigners (WFPE) or formalin. WFPE tissues from the skin, brain, lymphatic tissues, liver, and muscle had good morphologic preservation, comparable to formalin fixation. The quality of kidney and lung samples was inferior to FFPE material due to less accentuated nuclear staining and retention of proteinaceous interstitial fluids. Azan, Turnbull blue, toluidin, and immunohistochemical stainings for CD79a, cytokeratin, vimentin, and von Willebrand factor led to comparable results with both fixates. Of note, immunohistochemical detection of CD3 was possible after 6 months in WFPE but not in FFPE tissues. mRNA, miRNA, and DNA from WFPE tissues had superior quality and allowed for amplification of miRNA, 400-bp-long mRNA, and 1000-bp-long DNA fragments after 6 months of fixation in WFPE. In summary, Weigners fixative is a nonhazardous alternative to formalin, which provides a good morphologic preservation of most organs, a similar sensitivity for protein detection, and a superior preservation of nucleic acids. Weigners may therefore be a promising alternative to cryopreservation and may be embraced by people affected by formalin allergies.

  18. The Major DNA Repair Pathway after Both Proton and Carbon-Ion Radiation is NHEJ, but the HR Pathway is More Relevant in Carbon Ions

    PubMed Central

    Gerelchuluun, Ariungerel; Manabe, Eri; Ishikawa, Takaaki; Sun, Lue; Itoh, Kazuya; Sakae, Takeji; Suzuki, Kenshi; Hirayama, Ryoichi; Asaithamby, Aroumougame; Chen, David J.; Tsuboi, Koji

    2017-01-01

    The purpose of this study was to identify the roles of non-homologous end-joining (NHEJ) or homologous recombination (HR) pathways in repairing DNA double-strand breaks (DSBs) induced by exposure to high-energy protons and carbon ions (C ions) versus gamma rays in Chinese hamster cells. Two Chinese hamster cell lines, ovary AA8 and lung fibroblast V79, as well as various mutant sublines lacking DNA-PKcs (V3), X-ray repair cross-complementing protein-4 [XRCC4 (XR1), XRCC3 (irs1SF) and XRCC2 (irs1)] were exposed to gamma rays (137Cs), protons (200 MeV; 2.2 keV/μm) and C ions (290 MeV; 50 keV/μm). V3 and XR1 cells lack the NHEJ pathway, whereas irs1 and irs1SF cells lack the HR pathway. After each exposure, survival was measured using a clonogenic survival assay, in situ DSB induction was evaluated by immunocytochemical analysis of histone H2AX phosphorylation at serine 139 (γ-H2AX foci) and chromosome aberrations were examined using solid staining. The findings from this study showed that clonogenic survival clearly depended on the NHEJ and HR pathway statuses, and that the DNA-PKcs−/− cells (V3) were the most sensitive to all radiation types. While protons and γ rays yielded almost the same biological effects, C-ion exposure greatly enhanced the sensitivity of wild-type and HR-deficient cells. However, no significant enhancement of sensitivity in cell killing was seen after C-ion irradiation of NHEJ deficient cells. Decreases in the number of γ-H2AX foci after irradiation occurred more slowly in the NHEJ deficient cells. In particular, V3 cells had the highest number of residual γ-H2AX foci at 24 h after C-ion irradiation. Chromosomal aberrations were significantly higher in both the NHEJ- and HR-deficient cell lines than in wild-type cell lines in response to all radiation types. Protons and gamma rays induced the same aberration levels in each cell line, whereas C ions introduced higher but not significantly different aberration levels. Our results

  19. PHYSIOLOGY OF NITROGEN FIXATION BY BACILLUS POLYMYXA

    PubMed Central

    Grau, F. H.; Wilson, P. W.

    1962-01-01

    Grau, F. H. (University of Wisconsin, Madison) and P. W. Wilson. Physiology of nitrogen fixation by Bacillus polymyxa. J. Bacteriol. 83:490–496. 1962.—Of 17 strains of Bacillus polymyxa tested for fixation of molecular nitrogen, 15 fixed considerable quantities (30 to 150 μg N/ml). Two strains of the closely related B. macerans did not use N2, but possibly other members of this species may do so. Confirmation of fixation was obtained by showing incorporation of N15 into cell material. Both iron and molybdenum are specifically required for fixation; without the addition of these metals to the nitrogen-free medium, the growth rate and the total nitrogen fixed were reduced about 30 to 50%. No requirement for added molybdenum could be shown when ammonia was the nitrogen source, and the absence of iron caused only a slight decrease in growth. Washed-cell suspensions of B. polymyxa containing an active hydrogenase readily incorporated N15 into cell materials when provided with mannitol, glucose, or pyruvate but not when formate was the substrate. Hydrogen is a specific inhibitor of fixation, reducing both the rate and final amount of nitrogen fixed; it did not reduce growth on ammonia. Fixation was strictly anaerobic, 1% oxygen in the gas phase being sufficient to stop fixation. Arsenate is a powerful inhibitor of fixation of N2 by washed-cell suspensions of B. polymyxa, indicating that high-energy phosphate may be significant for this process. PMID:13901244

  20. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Arora, V. K.; Scinocca, J. F.; Boer, G. J.; Christian, J. R.; Denman, K. L.; Flato, G. M.; Kharin, V. V.; Lee, W. G.; Merryfield, W. J.

    2011-03-01

    The response of the second-generation Canadian earth system model (CanESM2) to historical (1850-2005) and future (2006-2100) natural and anthropogenic forcing is assessed using the newly-developed representative concentration pathways (RCPs) of greenhouse gases (GHGs) and aerosols. Allowable emissions required to achieve the future atmospheric CO2 concentration pathways, are reported for the RCP 2.6, 4.5 and 8.5 scenarios. For the historical 1850-2005 period, cumulative land plus ocean carbon uptake and, consequently, cumulative diagnosed emissions compare well with observation-based estimates. The simulated historical carbon uptake is somewhat weaker for the ocean and stronger for the land relative to their observation-based estimates. The simulated historical warming of 0.9°C compares well with the observation-based estimate of 0.76 ± 0.19°C. The RCP 2.6, 4.5 and 8.5 scenarios respectively yield warmings of 1.4, 2.3, and 4.9°C and cumulative diagnosed fossil fuel emissions of 182, 643 and 1617 Pg C over the 2006-2100 period. The simulated warming of 2.3°C over the 1850-2100 period in the RCP 2.6 scenario, with the lowest concentration of GHGs, is slightly larger than the 2°C warming target set to avoid dangerous climate change by the 2009 UN Copenhagen Accord. The results of this study suggest that limiting warming to roughly 2°C by the end of this century is unlikely since it requires an immediate ramp down of emissions followed by ongoing carbon sequestration in the second half of this century.

  1. Feature integration, attention, and fixations during visual search.

    PubMed

    Khani, Abbas; Ordikhani-Seyedlar, Mehdi

    2017-01-01

    We argue that mechanistic premises of "item-based" theories are not invalidated by the fixation-based approach. We use item-based theories to propose an account that does not advocate strict serial item processing and integrates fixations. The main focus of this account is feature integration within fixations. We also suggest that perceptual load determines the size of the fixations.

  2. Proteomic Analysis Implicates Dominant Alterations of RNA Metabolism and the Proteasome Pathway in the Cellular Response to Carbon-Ion Irradiation

    PubMed Central

    Xie, Da-Fei; Xie, Yi; Liu, Xiao-Dan; Wang, Qi; Sui, Li; Song, Man; Zhang, Hong; Zhou, Jianhua; Zhou, Ping-Kun

    2016-01-01

    Radiotherapy with heavy ions is considered advantageous compared to irradiation with photons due to the characteristics of the Braggs peak and the high linear energy transfer (LET) value. To understand the mechanisms of cellular responses to different LET values and dosages of heavy ion radiation, we analyzed the proteomic profiles of mouse embryo fibroblast MEF cells exposed to two doses from different LET values of heavy ion 12C. Total proteins were extracted from these cells and examined by Q Exactive with Liquid Chromatography (LC)—Electrospray Ionization (ESI) Tandem MS (MS/MS). Using bioinformatics approaches, differentially expressed proteins with 1.5 or 2.0-fold changes between different dosages of exposure were compared. With the higher the dosage and/or LET of ion irradiation, the worse response the cells were in terms of protein expression. For instance, compared to the control (0 Gy), 771 (20.2%) proteins in cells irradiated at 0.2 Gy of carbon-ion radiation with 12.6 keV/μm, 313 proteins (8.2%) in cells irradiated at 2 Gy of carbon-ion radiation with 12.6 keV/μm, and 243 proteins (6.4%) in cells irradiated at 2 Gy of carbon-ion radiation with 31.5 keV/μm exhibited changes of 1.5-fold or greater. Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Munich Information Center for Protein Sequences (MIPS) analysis, and BioCarta analysis all indicated that RNA metabolic processes (RNA splicing, destabilization and deadenylation) and proteasome pathways may play key roles in the cellular response to heavy-ion irradiation. Proteasome pathways ranked highest among all biological processes associated with heavy carbon-ion irradiation. In addition, network analysis revealed that cellular pathways involving proteins such as Col1a1 and Fn1 continued to respond to high dosages of heavy-ion irradiation, suggesting that these pathways still protect cells against damage. However, pathways such as those involving Ikbkg1 responded

  3. Photoassisted carbon dioxide reduction and formation of twoand three-carbon compounds. [prebiological photosynthesis

    NASA Technical Reports Server (NTRS)

    Halmann, M.; Aurian-Blajeni, B.; Bloch, S.

    1981-01-01

    The photoassisted reduction of aqueous carbon dioxide in the presence of naturally occurring minerals is investigated as a possible abiotic precursor of photosynthesis. Aqueous carbon dioxide saturated suspensions or surfaces of the minerals nontronite, bentonite, anatase, wolframite, molybdenite, minium, cinnabar and hematite were irradiated with high-pressure mercury lamps or sunlight. Chemical analyses reveal the production of formic acid, formaldehyde, methanol and methane, and the two and three-carbon compounds glyoxal (CHOCHO) and malonaldehyde (CH2(CHO)2). It is suggested that such photosynthetic reactions with visible light in the presence of semiconducting minerals may provide models for prebiological carbon and nitrogen fixation in both oxidized and reduced atmospheres.

  4. Fixation probability on clique-based graphs

    NASA Astrophysics Data System (ADS)

    Choi, Jeong-Ok; Yu, Unjong

    2018-02-01

    The fixation probability of a mutant in the evolutionary dynamics of Moran process is calculated by the Monte-Carlo method on a few families of clique-based graphs. It is shown that the complete suppression of fixation can be realized with the generalized clique-wheel graph in the limit of small wheel-clique ratio and infinite size. The family of clique-star is an amplifier, and clique-arms graph changes from amplifier to suppressor as the fitness of the mutant increases. We demonstrate that the overall structure of a graph can be more important to determine the fixation probability than the degree or the heat heterogeneity. The dependence of the fixation probability on the position of the first mutant is discussed.

  5. 21 CFR 888.3010 - Bone fixation cerclage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bone fixation cerclage. 888.3010 Section 888.3010...) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3010 Bone fixation cerclage. (a) Identification. A bone fixation cerclage is a device intended to be implanted that is made of alloys, such as...

  6. 21 CFR 888.3010 - Bone fixation cerclage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bone fixation cerclage. 888.3010 Section 888.3010...) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3010 Bone fixation cerclage. (a) Identification. A bone fixation cerclage is a device intended to be implanted that is made of alloys, such as...

  7. 21 CFR 888.3010 - Bone fixation cerclage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bone fixation cerclage. 888.3010 Section 888.3010...) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3010 Bone fixation cerclage. (a) Identification. A bone fixation cerclage is a device intended to be implanted that is made of alloys, such as...

  8. 21 CFR 888.3010 - Bone fixation cerclage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bone fixation cerclage. 888.3010 Section 888.3010...) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3010 Bone fixation cerclage. (a) Identification. A bone fixation cerclage is a device intended to be implanted that is made of alloys, such as...

  9. 21 CFR 888.3010 - Bone fixation cerclage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone fixation cerclage. 888.3010 Section 888.3010...) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3010 Bone fixation cerclage. (a) Identification. A bone fixation cerclage is a device intended to be implanted that is made of alloys, such as...

  10. Comparisons of external fixator combined with limited internal fixation and open reduction and internal fixation for Sanders type 2 calcaneal fractures: Finite element analysis and clinical outcome.

    PubMed

    Pan, M; Chai, L; Xue, F; Ding, L; Tang, G; Lv, B

    2017-07-01

    The aim of this study was to compare the biomechanical stability and clinical outcome of external fixator combined with limited internal fixation (EFLIF) and open reduction and internal fixation (ORIF) in treating Sanders type 2 calcaneal fractures. Two types of fixation systems were selected for finite element analysis and a dual cohort study. Two fixation systems were simulated to fix the fracture in a finite element model. The relative displacement and stress distribution were analysed and compared. A total of 71 consecutive patients with closed Sanders type 2 calcaneal fractures were enrolled and divided into two groups according to the treatment to which they chose: the EFLIF group and the ORIF group. The radiological and clinical outcomes were evaluated and compared. The relative displacement of the EFLIF was less than that of the plate (0.1363 mm to 0.1808 mm). The highest von Mises stress value on the plate was 33% higher than that on the EFLIF. A normal restoration of the Böhler angle was achieved in both groups. No significant difference was found in the clinical outcome on the American Orthopedic Foot and Ankle Society Ankle Hindfoot Scale, or on the Visual Analogue Scale between the two groups (p > 0.05). Wound complications were more common in those who were treated with ORIF (p = 0.028). Both EFLIF and ORIF systems were tested to 160 N without failure, showing the new construct to be mechanically safe to use. Both EFLIF and ORIF could be effective in treating Sanders type 2 calcaneal fractures. The EFLIF may be superior to ORIF in achieving biomechanical stability and less blood loss, shorter surgical time and hospital stay, and fewer wound complications. Cite this article : M. Pan, L. Chai, F. Xue, L. Ding, G. Tang, B. Lv. Comparisons of external fixator combined with limited internal fixation and open reduction and internal fixation for Sanders type 2 calcaneal fractures: Finite element analysis and clinical outcome. Bone Joint Res 2017

  11. Interpretation of Post-operative Distal Humerus Radiographs After Internal Fixation: Prediction of Later Loss of Fixation.

    PubMed

    Claessen, Femke M A P; Stoop, Nicky; Doornberg, Job N; Guitton, Thierry G; van den Bekerom, Michel P J; Ring, David

    2016-10-01

    Stable fixation of distal humerus fracture fragments is necessary for adequate healing and maintenance of reduction. The purpose of this study was to measure the reliability and accuracy of interpretation of postoperative radiographs to predict which implants will loosen or break after operative treatment of bicolumnar distal humerus fractures. We also addressed agreement among surgeons regarding which fracture fixation will loosen or break and the influence of years in independent practice, location of practice, and so forth. A total of 232 orthopedic residents and surgeons from around the world evaluated 24 anteroposterior and lateral radiographs of distal humerus fractures on a Web-based platform to predict which implants would loosen or break. Agreement among observers was measured using the multi-rater kappa measure. The sensitivity of prediction of failure of fixation of distal humerus fracture on radiographs was 63%, specificity was 53%, positive predictive value was 36%, the negative predictive value was 78%, and accuracy was 56%. There was fair interobserver agreement (κ = 0.27) regarding predictions of failure of fixation of distal humerus fracture on radiographs. Interobserver variability did not change when assessed for the various subgroups. When experienced and skilled surgeons perform fixation of type C distal humerus fracture, the immediate postoperative radiograph is not predictive of fixation failure. Reoperation based on the probability of failure might not be advisable. Diagnostic III. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  12. The relationship between nitrogen fixation and the production of HD from D2 by cell-free extracts of soya-bean nodule bacteroids

    PubMed Central

    Turner, G. L.; Bergersen, F. J.

    1969-01-01

    1. Cell-free extracts prepared from soya-bean nodule bacteroids produced HD from D2 in the presence of dithionite, an ATP-generating system and nitrogen. 2. Crude extracts of bacteroids or of Azotobacter vinelandii showed some background D2 exchange when any one of these was omitted. 3. Partial purification of bacteroid extracts diminished this background activity and gave increased D2 exchange and nitrogen fixation. 4. Although increasing pN2 stimulated both reactions, the apparent Km (N2) for nitrogen fixation was much higher than the apparent Km (N2) for D2 exchange when partially purified bacteroid extracts were used. 5. Carbon monoxide was a competitive inhibitor of nitrogen fixation by partially purified bacteroid extracts, but D2 exchange was inhibited in a non-competitive fashion. 6. These results are discussed in relation to the possible existence of enzyme-bound intermediates of nitrogen fixation. PMID:5353527

  13. Comparative Transcriptional Profiling and Preliminary Study on Heterosis Mechanism of Super-Hybrid Rice

    PubMed Central

    Song, Gui-Sheng; Zhai, Hong-Li; Peng, Yong-Gang; Zhang, Lei; Wei, Gang; Chen, Xiao-Ying; Xiao, Yu-Guo; Wang, Lili; Wu, Bin; Zhang, Yu; Feng, Xiu-Jing; Gong, Wan-Kui; Liu, Yao; Yin, Zhi-Jie; Wang, Feng; Liu, Guo-Zhen; Xu, Hong-Lin; Wei, Xiao-Li; Zhao, Xiao-Ling; Ouwerkerk, Pieter B.F.; Hankemeier, Thomas; Reijmers, Theo; van der Heijden, Rob; Wang, Mei; van der Greef, Jan; Zhu, Zhen

    2010-01-01

    Heterosis is a biological phenomenon whereby the offspring from two parents show improved and superior performance than either inbred parental lines. Hybrid rice is one of the most successful apotheoses in crops utilizing heterosis. Transcriptional profiling of F1 super-hybrid rice Liangyou-2186 and its parents by serial analysis of gene expression (SAGE) revealed 1183 differentially expressed genes (DGs), among which DGs were found significantly enriched in pathways such as photosynthesis and carbon-fixation, and most of the key genes involved in the carbon-fixation pathway exhibited up-regulated expression in F1 hybrid rice. Moreover, increased catabolic activity of corresponding enzymes and photosynthetic efficiency were also detected, which combined to indicate that carbon fixation is enhanced in F1 hybrid, and might probably be associated with the yield vigor and heterosis in super-hybrid rice. By correlating DGs with yield-related quantitative trait loci (QTL), a potential relationship between differential gene expression and phenotypic changes was also found. In addition, a regulatory network involving circadian-rhythms and light signaling pathways was also found, as previously reported in Arabidopsis, which suggest that such a network might also be related with heterosis in hybrid rice. Altogether, the present study provides another view for understanding the molecular mechanism underlying heterosis in rice. PMID:20729474

  14. Comparison of stability of different types of external fixation.

    PubMed

    Grubor, Predrag; Grubor, Milan; Asotic, Mithat

    2011-01-01

    Stabilization of fractures by external fixator is based on the mechanical connecting of the pins, screwed into the proximal and distal bone fragment. Site of fracture is left without any foreign materials, which is essential for prevention of infections. Aim of this work is to compare stability of constructs bone model-external fixators of different types (Ortofix, Mitković, Charneley and Ilizarov). Stability is estimated under compression and bending (vertical and horizontal forces of 100 kg magnitudes, with distances between pins of4 cm). The mathematical-computer software (Tower, Planet and Planet Pro) was used in the laboratory for accurate measurements of MDP "Jelsingrad" company, Banjaluka. Interfragmental motions in millimeters at the appliance of vertical and horizontal forces were 2.80/2.56 at Ortofix (uniplanar fixator), 1.57/1.56 and fixator by Mitković-M20 (uniplanar fixator with convergent oriented pins), 0.16/0.28 at Charnely's external fixator (biplanar fixator), and 4.49/0.114 mm at Ilizarov's external fixator (fixator with two proximal and two distal rings, each attached on the 6 Kirschner wires). It has confirmed that uniplanar fixation is easier and provides sufficient biomechanics circumstances in the site of fracture for bone healing, especially if the pins are oriented convergently. Ilizarov's fixator is multiplanar fixator, but its stability is dependent of tightness of wires, and provides adequate stability only in transversal plane. By other words, each fixator has its indications; selection of the fixator should be based on theirs mechanic characteristics, fracture geometry, and potential of bone healing, with permanent simplification of treatment, which has to be safe and acceptable for the patient. The main advantage of this study is Sits nature-the comparison of four most used external fixators, by the only one possible way-on the bone model. Each other way of comparison would result with much more questions than answers, due to

  15. External fixation of "intertrochanteric" fractures.

    PubMed

    Gani, Naseem Ul; Kangoo, Khursheed Ahmed; Bashir, Arshad; Muzaffer, Rahil; Bhat, Mohammad Farooq; Farooq, Munir; Badoo, Abdul Rashid; Dar, Imtiyaz Hussian; Wani, Mudassir Maqbool

    2009-10-10

    In developing countries, due to limited availability of modern anesthesia and overcrowding of the hospitals with patients who need surgery, high-risk patients with "intertrochanteric" fractures remain unsuita ble for open reduction and internal fixation.The aim of this study was to analyze the results of external fixation of "intertrochanteric" fractures in high-risk geriatric patients in a developing country.The results of 62 ambulatory high-risk geriatric patients with a mean age of 70 years (range 58-90 years) with "intertrochanteric" fractures, in whom external fixation was performed, are reported.Eight patients died during follow-up due to medical causes unrelated to the surgical procedure. So only 54 patients were available for final assessment. Procedure is simple, performed under local anesthesia, requires less time for surgery and is associated with less blood loss. Good fixation and early ambulation was achieved in most of the patients. Average time to union was 14 weeks. Thirty-one patients developed superficial pin tract infection and 28 patients had average shortening of 15 mm due to impaction and varus angulation. Functional outcome was assessed using Judet's point system. Good to excellent results were achieved in 44 patients.This study demonstrated that external fixation of "intertrochantric" fractures performed under local anesthesia offers significant advantage in ambulatory high-risk geriatric patients especially in a developing country.

  16. Phase-contrast Hounsfield units of fixated and non-fixated soft-tissue samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willner, Marian; Fior, Gabriel; Marschner, Mathias

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissuemore » specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. In addition, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results.« less

  17. Phase-Contrast Hounsfield Units of Fixated and Non-Fixated Soft-Tissue Samples

    PubMed Central

    Willner, Marian; Fior, Gabriel; Marschner, Mathias; Birnbacher, Lorenz; Schock, Jonathan; Braun, Christian; Fingerle, Alexander A.; Noël, Peter B.; Rummeny, Ernst J.; Pfeiffer, Franz; Herzen, Julia

    2015-01-01

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissue specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. Furthermore, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results. PMID:26322638

  18. Phase-contrast Hounsfield units of fixated and non-fixated soft-tissue samples

    DOE PAGES

    Willner, Marian; Fior, Gabriel; Marschner, Mathias; ...

    2015-08-31

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissuemore » specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. In addition, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results.« less

  19. Urea Uptake and Carbon Fixation by Marine Pelagic Bacteria and Archaea during the Arctic Summer and Winter Seasons

    PubMed Central

    Connelly, Tara L.; Baer, Steven E.; Cooper, Joshua T.; Bronk, Deborah A.

    2014-01-01

    How Arctic climate change might translate into alterations of biogeochemical cycles of carbon (C) and nitrogen (N) with respect to inorganic and organic N utilization is not well understood. This study combined 15N uptake rate measurements for ammonium, nitrate, and urea with 15N- and 13C-based DNA stable-isotope probing (SIP). The objective was to identify active bacterial and archeal plankton and their role in N and C uptake during the Arctic summer and winter seasons. We hypothesized that bacteria and archaea would successfully compete for nitrate and urea during the Arctic winter but not during the summer, when phytoplankton dominate the uptake of these nitrogen sources. Samples were collected at a coastal station near Barrow, AK, during August and January. During both seasons, ammonium uptake rates were greater than those for nitrate or urea, and nitrate uptake rates remained lower than those for ammonium or urea. SIP experiments indicated a strong seasonal shift of bacterial and archaeal N utilization from ammonium during the summer to urea during the winter but did not support a similar seasonal pattern of nitrate utilization. Analysis of 16S rRNA gene sequences obtained from each SIP fraction implicated marine group I Crenarchaeota (MGIC) as well as Betaproteobacteria, Firmicutes, SAR11, and SAR324 in N uptake from urea during the winter. Similarly, 13C SIP data suggested dark carbon fixation for MGIC, as well as for several proteobacterial lineages and the Firmicutes. These data are consistent with urea-fueled nitrification by polar archaea and bacteria, which may be advantageous under dark conditions. PMID:25063662

  20. A Dynamic Pathway for Stone-Wales Bond Rotation on Carbon Nanotubes through Diamond-Like Bonds

    NASA Technical Reports Server (NTRS)

    Wei, Chen-Yu; Srivastava, Deepak; Cho, Kyeong-Jae; Menon, Madhu

    2003-01-01

    A new lower energy barrier with a two-step pathway of Stone-Wales (SW) ,ond rotation on carbon nanotubes (CNTs) is found through molecular dynamics (MD) simulations of CNTs under tension. The first step involves going over to a stable sp3-like metastable configuration with half rotated and partially tilted C-C bond. The second step involves going over to the fully rotated C-C bond with the formation of a SW defect in the nanotube. The energy barrier for this two-step dynamic pathway is significantly lower than the previously known static barrier for in-plane rotation of the C-C bond on a tensile strained (> 4%) CNT.

  1. The evolution of photosynthesis...again?

    PubMed

    Rothschild, Lynn J

    2008-08-27

    'Replaying the tape' is an intriguing 'would it happen again?' exercise. With respect to broad evolutionary innovations, such as photosynthesis, the answers are central to our search for life elsewhere. Photosynthesis permits a large planetary biomass on Earth. Specifically, oxygenic photosynthesis has allowed an oxygenated atmosphere and the evolution of large metabolically demanding creatures, including ourselves. There are at least six prerequisites for the evolution of biological carbon fixation: a carbon-based life form; the presence of inorganic carbon; the availability of reductants; the presence of light; a light-harvesting mechanism to convert the light energy into chemical energy; and carboxylating enzymes. All were present on the early Earth. To provide the evolutionary pressure, organic carbon must be a scarce resource in contrast to inorganic carbon. The probability of evolving a carboxylase is approached by creating an inventory of carbon-fixation enzymes and comparing them, leading to the conclusion that carbon fixation in general is basic to life and has arisen multiple times. Certainly, the evolutionary pressure to evolve new pathways for carbon fixation would have been present early in evolution. From knowledge about planetary systems and extraterrestrial chemistry, if organic carbon-based life occurs elsewhere, photosynthesis -- although perhaps not oxygenic photosynthesis -- would also have evolved.

  2. Fixation Release and the Bone Bandaid: A New Bone Fixation Device Paradigm

    PubMed Central

    Shayesteh Moghaddam, Narges; Jahadakbar, Ahmadreza; Amerinatanzi, Amirhesam; Skoracki, Roman; Miller, Michael; Dean, David; Elahinia, Mohammad

    2017-01-01

    The current gold standard of care for mandibular segmental defeat reconstruction is the use of Ti-6Al-4V immobilization hardware and fibular double barrel graft. This method is often successful immediately at restoring mandible function, however the highly stiff fixation hardware causes stress shielding of the grafted bone and stress concentration in the fixation device over time which can lead to fixation device failure and revision surgery. The purpose of reconstructive surgery could be to create normal stress trajectories in the mandible following engraftment. We investigate the use of a two stage mechanism which separates the immobilization/healing and regenerative phases of mandibular segmental defect treatment. The device includes the use of a very stiff, Ti-6Al-4V, releasable mechanism which assures bone healing. Therefore it could be released once the reconstructed boney tissue and any of its ligamentous attachments have completely healed. Underneath the released Ti-6Al-4V plate would be a pre-loaded nitinol (NiTi) wire-frame apparatus that facilitates the normal stress-strain trajectory through the engrafted bone after the graft is healed in place and the Ti-6Al-4V fixation device has been released. Due to the use of NiTi wires forming a netting that connects vascularized bone and possibly bone chips, bone grafts are also more likely to be incorporate rather than to resorb. We first evaluated a healthy adult mandible during normal mastication to obtain the normal stress-strain distribution. Then, we developed the finite element (FE) model of the mandibular reconstruction (in the M1-3 region) with the proposed fixation device during the healing (locked state) and post-healing (released state) periods. To recreate normal stress trajectory in the reconstructed mandible, we applied the Response Surface Methodology (RMS) to optimize the Bone Bandaid geometry (i.e., wire diameters and location). The results demonstrate that the proposed mechanism immobilizes the

  3. Viruses Inhibit CO2 Fixation in the Most Abundant Phototrophs on Earth.

    PubMed

    Puxty, Richard J; Millard, Andrew D; Evans, David J; Scanlan, David J

    2016-06-20

    Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus are the most numerous photosynthetic organisms on our planet [1, 2]. With a global population size of 3.6 × 10(27) [3], they are responsible for approximately 10% of global primary production [3, 4]. Viruses that infect Prochlorococcus and Synechococcus (cyanophages) can be readily isolated from ocean waters [5-7] and frequently outnumber their cyanobacterial hosts [8]. Ultimately, cyanophage-induced lysis of infected cells results in the release of fixed carbon into the dissolved organic matter pool [9]. What is less well known is the functioning of photosynthesis during the relatively long latent periods of many cyanophages [10, 11]. Remarkably, the genomes of many cyanophage isolates contain genes involved in photosynthetic electron transport (PET) [12-18] as well as central carbon metabolism [14, 15, 19, 20], suggesting that cyanophages may play an active role in photosynthesis. However, cyanophage-encoded gene products are hypothesized to maintain or even supplement PET for energy generation while sacrificing wasteful CO2 fixation during infection [17, 18, 20]. Yet this paradigm has not been rigorously tested. Here, we measured the ability of viral-infected Synechococcus cells to fix CO2 as well as maintain PET. We compared two cyanophage isolates that share different complements of PET and central carbon metabolism genes. We demonstrate cyanophage-dependent inhibition of CO2 fixation early in the infection cycle. In contrast, PET is maintained throughout infection. Our data suggest a generalized strategy among marine cyanophages to redirect photosynthesis to support phage development, which has important implications for estimates of global primary production. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Carbon-fiber-reinforced PEEK fixation system in the treatment of spine tumors: a preliminary report.

    PubMed

    Boriani, Stefano; Tedesco, Giuseppe; Ming, Lu; Ghermandi, Riccardo; Amichetti, Maurizio; Fossati, Piero; Krengli, Marco; Mavilla, Loredana; Gasbarrini, Alessandro

    2018-04-01

    Protocols including combination of surgery and radiotherapy are more and more frequent in the treatment of bone tumors of the spine. In metastatic disease, combination of surgery and radiotherapy is since long time accepted, as based on clinical evidence. In primary tumors, combination of surgery and radiotherapy can be considered in all the cases in which a satisfactory oncological margin cannot be achieved: high-grade malignancies, recurrent tumors, huge tumors expanding in an extracompartimental area, and when tumor-free margin requires unacceptable functional sacrifices. However, metal implants are an obstacle in the collaboration between surgeons and radiation oncologists. Carbon-fiber-reinforced polyethil-ether-ether-ketone (CFR-PEEK) composite implants could make easier and more effective the treatment as radiolucent and not interfering with ionizing radiation and accelerated particles. The purpose of this article is to report the preliminary results from a cohort of patients treated with CFR-PEEK and to evaluate the safety and the non-inferiority of the device respect the commonly used titanium implants. This study concerns an ambispective cohort series of 34 tumor patients (14 metastases and 20 primaries, most of them recurrent) submitted to thoracic and lumbar spine fixation with a CFR-PEEK composite implants. Oncologic surgery was palliative decompression and fixation in 9 cases, tumor excision in 21, and enbloc resection in 4. Data collected for this preliminary report were all intraoperative remarks, incidence of complications, changes in neurological status, local control, and survival. All the cases were followed 6-36 months (mean 13 months). Only one intraoperative screw breakage occurred out of 232 implanted screws. Pain control and neurological improvement were the early clinical results. Two sacral screws loosening were found at 9 and 12 months in multilevel constructs performed on multirecurrent tumors. Six local recurrences were early found

  5. Evaluation of functional outcome of pilon fractures managed with limited internal fixation and external fixation: A prospective clinical study.

    PubMed

    Meena, Umesh Kumar; Bansal, Mahesh Chand; Behera, Prateek; Upadhyay, Rahul; Gothwal, Gyan Chand

    2017-11-01

    The management of pilon fractures is controversial primarily due to the high rate of complications irrespective of the mode of treatment. Limited internal fixation with external fixation is associated with minimal soft tissue handling. This may reduce the chances of wound dehiscence and infection. This study was designed to evaluate the functional and clinical outcomes in patients treated with limited internal fixation combined with external fixation in pilon fractures. This study was conducted as a prospective clinical study on 56 skeletally mature patients with closed fractures with poor skin condition, and with open grade 1 and grade 2 distal tibial intra-articular fractures. All patients were treated with combined limited internal fixation and ankle spanning external fixation. All fractures in this series united with an average time period of union of 18.3weeks (ranging from 13 weeks to 30 weeks). There was no non-union in any case. There was malunion in 4 cases, varus malunion (>5 degree) in 2 cases and recurvatum in another 2 cases). Excellent to good functional results were observed in 88% cases based on the modified Ovadia and Beals score. The mean ankle dorsiflexion and planter flexion movements were 10.2±5.3 degrees and 27.4±7.2 degrees respectively. infections occurred in 6 patients which included 4 pin tract infections and 2 superficial wound infection, all 6 healed after removal of pin tract and with oral antibiotics. The technique of combined external fixation with internal fixation is safe and effective management option for intra-articular distal tibial fractures.

  6. Ocular Fixation Abnormality in Patients with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Shirama, Aya; Kanai, Chieko; Kato, Nobumasa; Kashino, Makio

    2016-01-01

    We examined the factors that influence ocular fixation control in adults with autism spectrum disorder (ASD) including sensory information, individuals' motor characteristics, and inhibitory control. The ASD group showed difficulty in maintaining fixation especially when there was no fixation target. The fixational eye movement characteristics of…

  7. Strength of surgical wire fixation. A laboratory study.

    PubMed

    Guadagni, J R; Drummond, D S

    1986-08-01

    Because of the frequent use of stainless steel wire in spinal surgery and to augment fracture fixation, several methods of securing wire fixation were tested in the laboratory to determine the relative strength of fixation. Any method of fixation stronger than the yield strength of the wire is sufficient. Square knots, knot twists, symmetric twists, and the AO loop-tuck techniques afforded acceptable resistance against tension loads, but the wire wrap and AO loop technique were unacceptable. The double symmetric twist, which is frequently used for tension banding, was barely acceptable. The symmetric twist technique was the most practical because it is strong enough, efficient in maintaining tension applied during fixation, and least likely to cause damage to the wire. To optimize the fixation strength of the symmetrical twist, at least two twists are required at a reasonably tight pitch.

  8. Comparison of the gas-liquid dual support fixation and Heitzman fixation techniques for preparing lung specimens

    PubMed Central

    Yu, Dongsheng; Qu, Weili; Xia, Haipeng; Li, Xiaofeng; Luan, Zhenfeng; Yan, Renjie; Lu, Xiaodong; Zhao, Peng

    2017-01-01

    The aim of the present study was to compare the gas-liquid dual support fixation and Heitzman fixation techniques for the preparation of lung specimens. A total of 40 fresh lung samples were surgically collected from 40 male patients with lung cancer by biopsy. Patients were recruited from the Affiliated Hospital of Qingdao University Medical College (Qingdao, China) between July 2007 and June 2014. Samples were prepared using either the gas-liquid dual support fixation method (group A; n=26) or the Heitzman fixation method (group B; n=14). High-resolution computed tomography (HRCT) scanning was performed prior to surgery and corresponding postoperative HRCT scanning was conducted for the lung specimens; the gross transverse specimen section, cord photography images and histological sections were evaluated. Morphological observations of lung specimens indicated that there were 22 cases in group A with grade I (84.6%) and 4 cases with grade II (15.4%), whereas, in group B, there were 5 cases with grade II (35.7%) and 9 cases with grade III (64.3%). Statistical analysis demonstrated that the grades of specimens between the two groups were significantly different (P<0.01). Results from imaging and histological studies found that the quality of lung specimens was superior in group A, compared with group B. In conclusion, the present study demonstrated that, compared with the Heitzman fixation method, gas-liquid dual support fixation may be a superior technique for the preparation of lung specimens. This finding may facilitate the improvement of lung HRCT and pathological studies. PMID:28673006

  9. Comparison of the gas-liquid dual support fixation and Heitzman fixation techniques for preparing lung specimens.

    PubMed

    Yu, Dongsheng; Qu, Weili; Xia, Haipeng; Li, Xiaofeng; Luan, Zhenfeng; Yan, Renjie; Lu, Xiaodong; Zhao, Peng

    2017-07-01

    The aim of the present study was to compare the gas-liquid dual support fixation and Heitzman fixation techniques for the preparation of lung specimens. A total of 40 fresh lung samples were surgically collected from 40 male patients with lung cancer by biopsy. Patients were recruited from the Affiliated Hospital of Qingdao University Medical College (Qingdao, China) between July 2007 and June 2014. Samples were prepared using either the gas-liquid dual support fixation method (group A; n=26) or the Heitzman fixation method (group B; n=14). High-resolution computed tomography (HRCT) scanning was performed prior to surgery and corresponding postoperative HRCT scanning was conducted for the lung specimens; the gross transverse specimen section, cord photography images and histological sections were evaluated. Morphological observations of lung specimens indicated that there were 22 cases in group A with grade I (84.6%) and 4 cases with grade II (15.4%), whereas, in group B, there were 5 cases with grade II (35.7%) and 9 cases with grade III (64.3%). Statistical analysis demonstrated that the grades of specimens between the two groups were significantly different (P<0.01). Results from imaging and histological studies found that the quality of lung specimens was superior in group A, compared with group B. In conclusion, the present study demonstrated that, compared with the Heitzman fixation method, gas-liquid dual support fixation may be a superior technique for the preparation of lung specimens. This finding may facilitate the improvement of lung HRCT and pathological studies.

  10. Biomechanical properties of a structurally optimized carbon-fibre/epoxy intramedullary nail for femoral shaft fracture fixation.

    PubMed

    Samiezadeh, Saeid; Fawaz, Zouheir; Bougherara, Habiba

    2016-03-01

    Intramedullary nails are the golden treatment option for diaphyseal fractures. However, their high stiffness can shield the surrounding bone from the natural physiologic load resulting in subsequent bone loss. Their stiff structure can also delay union by reducing compressive loads at the fracture site, thereby inhibiting secondary bone healing. Composite intramedullary nails have recently been introduced to address these drawbacks. The purpose of this study is to evaluate the mechanical properties of a previously developed composite IM nail made of carbon-fibre/epoxy whose structure was optimized based on fracture healing requirements using the selective stress shielding approach. Following manufacturing, the cross-section of the composite nail was examined under an optical microscope to find the porosity of the structure. Mechanical properties of the proposed composite intramedullary nail were determined using standard tension, compression, bending, and torsion tests. The failed specimens were then examined to obtain the modes of failure. The material showed high strength in tension (403.9±7.8MPa), compression (316.9±10.9MPa), bending (405.3±8.1MPa), and torsion (328.5±7.3MPa). Comparing the flexural modulus (41.1±0.9GPa) with the compressive modulus (10.0±0.2GPa) yielded that the material was significantly more flexible in compression than in bending. This customized flexibility along with the high torsional stiffness of the nail (70.7±2.0Nm(2)) has made it ideal as a fracture fixation device since this unique structure can stabilize the fracture while allowing for compression of fracture ends. Negligible moisture absorption (~0.5%) and low porosity of the laminate structure (< 3%) are other advantages of the proposed structure. The findings suggested that the carbon-fibre/epoxy intramedullary nail is flexible axially while being relatively rigid in bending and torsion and is strong enough in all types of physiologic loading, making it a potential

  11. Development of a Method to Isolate Glutamic Acid from Foodstuffs for a Precise Determination of Their Stable Carbon Isotope Ratio.

    PubMed

    Kobayashi, Kazuhiro; Tanaka, Masaharu; Yatsukawa, Yoichi; Tanabe, Soichi; Tanaka, Mitsuru; Ohkouchi, Naohiko

    2018-01-01

    Recent growing health awareness is leading to increasingly conscious decisions by consumers regarding the production and traceability of food. Stable isotopic compositions provide useful information for tracing the origin of foodstuffs and processes of food production. Plants exhibit different ratios of stable carbon isotopes (δ 13 C) because they utilized different photosynthetic (carbon fixation) pathways and grow in various environments. The origins of glutamic acid in foodstuffs can be differentiated on the basis of these photosynthetic characteristics. Here, we have developed a method to isolate glutamic acid in foodstuffs for determining the δ 13 C value by elemental analyzer-isotope-ratio mass spectrometry (EA/IRMS) without unintended isotopic fractionation. Briefly, following acid-hydrolysis, samples were defatted and passed through activated carbon and a cation-exchange column. Then, glutamic acid was isolated using preparative HPLC. This method is applicable to measuring, with a low standard deviation, the δ 13 C values of glutamic acid from foodstuffs derived from C3 and C4 plants and marine algae.

  12. [High tibial osteotomy--fixation by means of external fixation--indication, technique, complications (author's transl)].

    PubMed

    Klems, H

    1976-02-01

    High tibial osteotomy has proved its value in the treatment of gonarthrosis with or without axis deformity. The thrust of weight-bearing and other stresses is lessened on the degenerated tibial condyle and transferred to the more normal condyle. The stable fixation by means of external fixation allows early movement of the knee joint.-R-ferences to operative technique, indication, complications and after-treatment.

  13. Correction of complex equino cavo varus foot deformity in skeletally mature patients by Ilizarov external fixation versus staged external-internal fixation.

    PubMed

    Emara, Khaled; El Moatasem, El Hussein; El Shazly, Ossama

    2011-12-01

    Complex foot deformity is a multi-planar foot deformity with many etiologic factors. Different corrective procedures using Ilizarov external fixation have been described which include, soft tissue release, V-osteotomy, multiple osteotomies and triple fusion. In this study we compare the results of two groups of skeletally mature patients with complex foot deformity who were treated by two different protocols. The first group (27 patients, 29 feet) was treated by triple fusion fixed by Ilizarov external fixator until union. The second group (29 patients, 30 feet), was treated by triple fusion with initial fixation by Ilizarov external fixation until correction of the deformity was achieved clinically, and then the Ilizarov fixation was replaced by internal fixation using percutaneous screws. Both groups were compared as regard the surgical outcome and the incidence of complications. There was statistically significant difference between the two groups regarding duration of external fixation and duration of casting with shorter duration in the group 2. Also there was statistically significant difference between both groups regarding pin tract infection with less incidence in group 2. Early removal of Ilizarov external fixation after correction of the deformity and percutaneous internal fixation using 6.5 cannulated screws can shorten the duration of treatment and be more comfortable for the patient with a low risk of recurrence or infection. Copyright © 2010 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  14. Nitrogen fixation in denitrified marine waters.

    PubMed

    Fernandez, Camila; Farías, Laura; Ulloa, Osvaldo

    2011-01-01

    Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria), whereas nitrogen losses occur in oxygen-depleted intermediate waters and sediments (mostly via denitrifying and anammox bacteria). Here we report on rates of nitrogen fixation obtained during two oceanographic cruises in 2005 and 2007 in the eastern tropical South Pacific (ETSP), a region characterized by the presence of coastal upwelling and a major permanent oxygen minimum zone (OMZ). Our results show significant rates of nitrogen fixation in the water column; however, integrated rates from the surface down to 120 m varied by ∼30 fold between cruises (7.5±4.6 versus 190±82.3 µmol m(-2) d(-1)). Moreover, rates were measured down to 400 m depth in 2007, indicating that the contribution to the integrated rates of the subsurface oxygen-deficient layer was ∼5 times higher (574±294 µmol m(-2) d(-1)) than the oxic euphotic layer (48±68 µmol m(-2) d(-1)). Concurrent molecular measurements detected the dinitrogenase reductase gene nifH in surface and subsurface waters. Phylogenetic analysis of the nifH sequences showed the presence of a diverse diazotrophic community at the time of the highest measured nitrogen fixation rates. Our results thus demonstrate the occurrence of nitrogen fixation in nutrient-rich coastal upwelling systems and, importantly, within the underlying OMZ. They also suggest that nitrogen fixation is a widespread process that can sporadically provide a supplementary source of fixed nitrogen in these regions.

  15. Variable Nitrogen Fixation in Wild Populus

    PubMed Central

    Doty, Sharon L.; Sher, Andrew W.; Fleck, Neil D.; Khorasani, Mahsa; Bumgarner, Roger E.; Khan, Zareen; Ko, Andrew W. K.; Kim, Soo-Hyung; DeLuca, Thomas H.

    2016-01-01

    The microbiome of plants is diverse, and like that of animals, is important for overall health and nutrient acquisition. In legumes and actinorhizal plants, a portion of essential nitrogen (N) is obtained through symbiosis with nodule-inhabiting, N2-fixing microorganisms. However, a variety of non-nodulating plant species can also thrive in natural, low-N settings. Some of these species may rely on endophytes, microorganisms that live within plants, to fix N2 gas into usable forms. Here we report the first direct evidence of N2 fixation in the early successional wild tree, Populus trichocarpa, a non-leguminous tree, from its native riparian habitat. In order to measure N2 fixation, surface-sterilized cuttings of wild poplar were assayed using both 15N2 incorporation and the commonly used acetylene reduction assay. The 15N label was incorporated at high levels in a subset of cuttings, suggesting a high level of N-fixation. Similarly, acetylene was reduced to ethylene in some samples. The microbiota of the cuttings was highly variable, both in numbers of cultured bacteria and in genetic diversity. Our results indicated that associative N2-fixation occurred within wild poplar and that a non-uniformity in the distribution of endophytic bacteria may explain the variability in N-fixation activity. These results point to the need for molecular studies to decipher the required microbial consortia and conditions for effective endophytic N2-fixation in trees. PMID:27196608

  16. Increasing subtropical North Pacific Ocean nitrogen fixation since the Little Ice Age.

    PubMed

    Sherwood, Owen A; Guilderson, Thomas P; Batista, Fabian C; Schiff, John T; McCarthy, Matthew D

    2014-01-02

    The North Pacific subtropical gyre (NPSG) plays a major part in the export of carbon and other nutrients to the deep ocean. Primary production in the NPSG has increased in recent decades despite a reduction in nutrient supply to surface waters. It is thought that this apparent paradox can be explained by a shift in plankton community structure from mostly eukaryotes to mostly nitrogen-fixing prokaryotes. It remains uncertain, however, whether the plankton community domain shift can be linked to cyclical climate variability or a long-term global warming trend. Here we analyse records of bulk and amino-acid-specific (15)N/(14)N isotopic ratios (δ(15)N) preserved in the skeletons of long-lived deep-sea proteinaceous corals collected from the Hawaiian archipelago; these isotopic records serve as a proxy for the source of nitrogen-supported export production through time. We find that the recent increase in nitrogen fixation is the continuation of a much larger, centennial-scale trend. After a millennium of relatively minor fluctuation, δ(15)N decreases between 1850 and the present. The total shift in δ(15)N of -2 per mil over this period is comparable to the total change in global mean sedimentary δ(15)N across the Pleistocene-Holocene transition, but it is happening an order of magnitude faster. We use a steady-state model and find that the isotopic mass balance between nitrate and nitrogen fixation implies a 17 to 27 per cent increase in nitrogen fixation over this time period. A comparison with independent records suggests that the increase in nitrogen fixation might be linked to Northern Hemisphere climate change since the end of the Little Ice Age.

  17. GAFFE: a gaze-attentive fixation finding engine.

    PubMed

    Rajashekar, U; van der Linde, I; Bovik, A C; Cormack, L K

    2008-04-01

    The ability to automatically detect visually interesting regions in images has many practical applications, especially in the design of active machine vision and automatic visual surveillance systems. Analysis of the statistics of image features at observers' gaze can provide insights into the mechanisms of fixation selection in humans. Using a foveated analysis framework, we studied the statistics of four low-level local image features: luminance, contrast, and bandpass outputs of both luminance and contrast, and discovered that image patches around human fixations had, on average, higher values of each of these features than image patches selected at random. Contrast-bandpass showed the greatest difference between human and random fixations, followed by luminance-bandpass, RMS contrast, and luminance. Using these measurements, we present a new algorithm that selects image regions as likely candidates for fixation. These regions are shown to correlate well with fixations recorded from human observers.

  18. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea.

    PubMed

    Berg, Ivan A; Kockelkorn, Daniel; Buckel, Wolfgang; Fuchs, Georg

    2007-12-14

    The assimilation of carbon dioxide (CO2) into organic material is quantitatively the most important biosynthetic process. We discovered that an autotrophic member of the archaeal order Sulfolobales, Metallosphaera sedula, fixed CO2 with acetyl-coenzyme A (acetyl-CoA)/propionyl-CoA carboxylase as the key carboxylating enzyme. In this system, one acetyl-CoA and two bicarbonate molecules were reductively converted via 3-hydroxypropionate to succinyl-CoA. This intermediate was reduced to 4-hydroxybutyrate and converted into two acetyl-CoA molecules via 4-hydroxybutyryl-CoA dehydratase. The key genes of this pathway were found not only in Metallosphaera but also in Sulfolobus, Archaeoglobus, and Cenarchaeum species. Moreover, the Global Ocean Sampling database contains half as many 4-hydroxybutyryl-CoA dehydratase sequences as compared with those found for another key photosynthetic CO2-fixing enzyme, ribulose-1,5-bisphosphate carboxylase-oxygenase. This indicates the importance of this enzyme in global carbon cycling.

  19. Medial malleolar fractures: a biomechanical study of fixation techniques.

    PubMed

    Fowler, T Ty; Pugh, Kevin J; Litsky, Alan S; Taylor, Benjamin C; French, Bruce G

    2011-08-08

    Fracture fixation of the medial malleolus in rotationally unstable ankle fractures typically results in healing with current fixation methods. However, when failure occurs, pullout of the screws from tension, compression, and rotational forces is predictable. We sought to biomechanically test a relatively new technique of bicortical screw fixation for medial malleoli fractures. Also, the AO group recommends tension-band fixation of small avulsion type fractures of the medial malleolus that are unacceptable for screw fixation. A well-documented complication of this technique is prominent symptomatic implants and secondary surgery for implant removal. Replacing stainless steel 18-gauge wire with FiberWire suture could theoretically decrease symptomatic implants. Therefore, a second goal was to biomechanically compare these 2 tension-band constructs. Using a tibial Sawbones model, 2 bicortical screws were compared with 2 unicortical cancellous screws on a servohydraulic test frame in offset axial, transverse, and tension loading. Second, tension-band fixation using stainless steel wire was compared with FiberWire under tensile loads. Bicortical screw fixation was statistically the stiffest construct under tension loading conditions compared to unicortical screw fixation and tension-band techniques with FiberWire or stainless steel wire. In fact, unicortical screw fixation had only 10% of the stiffness as demonstrated in the bicortical technique. In a direct comparison, tension-band fixation using stainless steel wire was statistically stiffer than the FiberWire construct. Copyright 2011, SLACK Incorporated.

  20. The Path of Carbon in Photosynthesis VI.

    DOE R&D Accomplishments Database

    Calvin, M.

    1949-06-30

    This paper is a compilation of the essential results of our experimental work in the determination of the path of carbon in photosynthesis. There are discussions of the dark fixation of photosynthesis and methods of separation and identification including paper chromatography and radioautography. The definition of the path of carbon in photosynthesis by the distribution of radioactivity within the compounds is described.

  1. Individual Objective and Subjective Fixation Disparity in Near Vision

    PubMed Central

    Jaschinski, Wolfgang

    2017-01-01

    Binocular vision refers to the integration of images in the two eyes for improved visual performance and depth perception. One aspect of binocular vision is the fixation disparity, which is a suboptimal condition in individuals with respect to binocular eye movement control and subsequent neural processing. The objective fixation disparity refers to the vergence angle between the visual axes, which is measured with eye trackers. Subjective fixation disparity is tested with two monocular nonius lines which indicate the physical nonius separation required for perceived alignment. Subjective and objective fixation disparity represent the different physiological mechanisms of motor and sensory fusion, but the precise relation between these two is still unclear. This study measures both types of fixation disparity at viewing distances of 40, 30, and 24 cm while observers fixated a central stationary fusion target. 20 young adult subjects with normal binocular vision were tested repeatedly to investigate individual differences. For heterophoria and subjective fixation disparity, this study replicated that the binocular system does not properly adjust to near targets: outward (exo) deviations typically increase as the viewing distance is shortened. This exo proximity effect—however—was not found for objective fixation disparity, which–on the average–was zero. But individuals can have reliable outward (exo) or inward (eso) vergence errors. Cases with eso objective fixation disparity tend to have less exo states of subjective fixation disparity and heterophoria. In summary, the two types of fixation disparity seem to respond in a different way when the viewing distance is shortened. Motor and sensory fusion–as reflected by objective and subjective fixation disparity–exhibit complex interactions that may differ between individuals (eso versus exo) and vary with viewing distance (far versus near vision). PMID:28135308

  2. [Long-term efficacy of open reduction and internal fixation versus external fixation for unstable distal radius fractures: a meta-analysis].

    PubMed

    Yang, Z; Yuan, Z Z; Ma, J X; Ma, X L

    2017-11-07

    Objective: To make a systematic assessment of the Long-term efficacy of open reduction and internal fixation versus external fixation for unstable distal radius fractures. Methods: A computer-based online search of PubMed, ScienceDirect, EMBASE, BIOSIS, Springer and Cochrane Library were performed. The randomized and controlled trials of open reduction and internal fixation versus external fixation for unstable distal radius fractures were collected. The included trials were screened out strictly based on the criterion of inclusion and exclusion. The quality of included trials was evaluated. RevMan 5.0 was used for data analysis. Results: Sixteen studies involving 1 268 patients were included. There were 618 patients with open reduction and internal fixation and 650 with external fixation. The results of meta-analysis indicated that there were statistically significant differences with regard to the complications postoperatively (infection( I (2)=0%, RR =0.27, 95% CI 0.16-0.45, Z =4.92, P <0.000 01) and total complications( I (2)=0%, RR =0.71, 95% CI 0.59-0.85, Z =3.65, P =0.000 3) ), DASH scores( I (2)=37%, MD =-5.67, 95% CI -8.31--3.04, Z =4.22, P <0.000 1) and volar tilt( I (2)=78%, MD =2.29, 95% CI 0.33-4.24, Z =2.30, P =0.02)( P <0.05) at the end of follow-up period were noted. There were no statistically significant differences observed between two approaches with respect to the clinical outcomes (grip strength, flexion, extension, pronation, supination, radial deviation and ulnar deviation) and radiographic outcome(radial length) at the end of follow-up period( P <0.05). Conclusion: Both open reduction and internal fixation and external fixation are effective treatment for unstable distal radius fractures. Compared with external fixation, open reduction and internal fixation provides reduced complications postoperatively, lower DASH scores and better restoration of volar tilt for treatment of distal radius fractures.

  3. Zonal and meridional patterns of phytoplankton biomass and carbon fixation in the Equatorial Pacific Ocean, between 110°W and 140°W

    NASA Astrophysics Data System (ADS)

    Balch, W. M.; Poulton, A. J.; Drapeau, D. T.; Bowler, B. C.; Windecker, L. A.; Booth, E. S.

    2011-03-01

    Primary production (P prim) and calcification (C calc) were measured in the eastern and central Equatorial Pacific during December 2004 and September 2005, between 110°W and 140°W. The design of the field sampling allowed partitioning of P prim and total chlorophyll a (B) between large (>3 μm) and small (0.45-3 μm) phytoplankton cells. The station locations allowed discrimination of meridional and zonal patterns. The cruises coincided with a warm El Niño Southern Oscillation (ENSO) phase and ENSO-neutral phase, respectively, which proved to be the major factors relating to the patterns of productivity. Production and biomass of large phytoplankton generally covaried with that of small cells; large cells typically accounted for 20-30% of B and 20% of P prim. Elevated biomass and primary production of all size fractions were highest along the equator as well as at the convergence zone between the North Equatorial Counter Current and the South Equatorial Current. C calc by >0.4 μm cells was 2-3% of P prim by the same size fraction, for both cruises. Biomass-normalized P prim values were, on average, slightly higher during the warm-phase ENSO period, inconsistent with a "bottom-up" control mechanism (such as nutrient supply). Another source of variability along the equator was Tropical Instability Waves (TIWs). Zonal variance in integrated phytoplankton biomass (along the equator, between 110° and 140°) was almost the same as the meridional variance across it (between 4° N and 4° S). However, the zonal variance in integrated P prim was half the variance observed meridionally. The variance in integrated C calc along the equator was half that seen meridionally during the warm ENSO phase cruise whereas during the ENSO-neutral period, it was identical. No relation could be observed between the patterns of integrated carbon fixation (P prim or C calc) and integrated nutrients (nitrate, ammonium, silicate or dissolved iron). This suggests that the factors

  4. Acrylic Resin Molding Based Head Fixation Technique in Rodents.

    PubMed

    Roh, Mootaek; Lee, Kyungmin; Jang, Il-Sung; Suk, Kyoungho; Lee, Maan-Gee

    2016-01-12

    Head fixation is a technique of immobilizing animal's head by attaching a head-post on the skull for rigid clamping. Traditional head fixation requires surgical attachment of metallic frames on the skull. The attached frames are then clamped to a stationary platform resulting in immobilization of the head. However, metallic frames for head fixation have been technically difficult to design and implement in general laboratory environment. In this study, we provide a novel head fixation method. Using a custom-made head fixation bar, head mounter is constructed during implantation surgery. After the application of acrylic resin for affixing implants such as electrodes and cannula on the skull, additional resins applied on top of that to build a mold matching to the port of the fixation bar. The molded head mounter serves as a guide rails, investigators conveniently fixate the animal's head by inserting the head mounter into the port of the fixation bar. This method could be easily applicable if implantation surgery using dental acrylics is necessary and might be useful for laboratories that cannot easily fabricate CNC machined metal head-posts.

  5. Photographic fixative poisoning

    MedlinePlus

    Photographic developer poisoning; Hydroquinone poisoning; Quinone poisoning; Sulfite poisoning ... Poisonous ingredients include: Hydroquinones Quinones Sodium ... fixative can also break down (decompose) to form sulfur dioxide ...

  6. Comparative Study of Intramedullary Hammertoe Fixation.

    PubMed

    Obrador, Caterina; Losa-Iglesias, Marta; Becerro-de-Bengoa-Vallejo, Ricardo; Kabbash, Christina A

    2018-04-01

    Temporary Kirschner wire fixation (K-wire) is a widely used, low-cost fixation method for the correction of hammertoe deformity. Reported complications associated with K-wires prompted the development of new implants over the past decade. However, there is a lack of literature on comparative studies analyzing functional outcomes using validated questionnaires. The purpose of this study was to analyze functional outcomes in patients who had undergone proximal interphalangeal joint fusion using 2 types of intramedullary implant, the Smart Toe and the TenFuse, and to compare them with the outcomes in patients treated with standard K-wire fixation. A retrospective review of operative hammertoe correction by a single surgeon was performed in 96 patients followed for more than 12 months. Functional outcome was assessed using the Foot Function Index (FFI), the Short Form 36 (SF-36), and the 10-point visual analog scale (VAS) validated questionnaires. Complications and fusion rates were also evaluated. Several patients in the study underwent corrections in different toes; thus, a total of 186 toes were included in the study. From these, 65 toes (34.9%) were treated with K-wire fixation, 94 (50.5%) with Smart Toe titanium implant, and 27 (14.5%) with TenFuse allograft implant. No statistically significant differences in functional outcome and incidence of complications were observed among the 3 fixation groups, although the 2 intramedullary implants were associated with greater fusion rates and patient satisfaction. Breakage of the Smart Toe implant was significantly higher than that of the other fixations, with 10.6% of implants breaking within the first year postoperatively. SF-36 and VAS scores decreased 12 months after surgery for the 3 types of fixation, with no statistically significant differences observed. The use of Smart Toe and TenFuse implants provided operative outcomes comparable to those obtained using a K-wire fixation and slightly better patient

  7. Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway

    NASA Astrophysics Data System (ADS)

    Li, Hao; Shang, Jian; Shi, Jingu; Zhao, Kun; Zhang, Lizhi

    2016-01-01

    Under the pressure of a fossil fuels shortage and global climate change, solar ammonia synthesis and the need to develop N2 fixation under mild conditions is becoming more urgent need; however, their intrinsic mechanisms still remain unclear. Herein, we demonstrate that the kinetic inertia of N2 can be overcome using oxygen vacancies (OVs) of BiOCl as the catalytic centers to create lower energy molecular steps, which are amendable for the solar light driven N-N triple bond cleavage via a proton-assisted electron transfer pathway. Moreover, the distinct structures of OVs on different BiOCl facets strongly determine the N2 fixation pathways by influencing both the adsorption structure and the activation level of N2. The fixation of terminal end-on bound N2 on the OVs of BiOCl {001} facets follows an asymmetric distal mode by selectively generating NH3, while the reduction of side-on bridging N2 on the OVs of BiOCl {010} facets is more energetically favorable in a symmetric alternating mode to produce N2H4 as the main intermediate.Under the pressure of a fossil fuels shortage and global climate change, solar ammonia synthesis and the need to develop N2 fixation under mild conditions is becoming more urgent need; however, their intrinsic mechanisms still remain unclear. Herein, we demonstrate that the kinetic inertia of N2 can be overcome using oxygen vacancies (OVs) of BiOCl as the catalytic centers to create lower energy molecular steps, which are amendable for the solar light driven N-N triple bond cleavage via a proton-assisted electron transfer pathway. Moreover, the distinct structures of OVs on different BiOCl facets strongly determine the N2 fixation pathways by influencing both the adsorption structure and the activation level of N2. The fixation of terminal end-on bound N2 on the OVs of BiOCl {001} facets follows an asymmetric distal mode by selectively generating NH3, while the reduction of side-on bridging N2 on the OVs of BiOCl {010} facets is more

  8. Contribution of dinitrogen fixation to bacterial and primary productivity in the Gulf of Aqaba (Red Sea)

    NASA Astrophysics Data System (ADS)

    Rahav, E.; Herut, B.; Mulholland, M. R.; Voß, B.; Stazic, D.; Steglich, C.; Hess, W. R.; Berman-Frank, I.

    2013-06-01

    We evaluated the seasonal contribution of heterotrophic and autotrophic diazotrophy to the total dinitrogen (N2) fixation in a representative pelagic station in the northern Gulf of Aqaba in early spring when the water column was mixed and during summer under full thermal stratification. N2 fixation rates were low during the mixed period (˜ 0.1 nmol N L-1 d-1) and were significantly coupled with both primary and bacterial productivity. During the stratified period N2 fixation rates were four-fold higher (˜ 0.4 nmol N L-1 d-1) and were significantly correlated solely with bacterial productivity. Furthermore, while experimental enrichment of seawater by phosphorus (P) enhanced bacterial productivity and N2 fixation rates during both seasons primary productivity was stimulated by P only in the early spring. Metatranscriptomic analyses from the stratified period identified the major diazotrophic contributors as related to heterotrophic prokaryotes from the Euryarchaeota and Desulfobacterales (Deltaproteobacteria) or Chlorobiales (Chlorobia). Moreover, during this season, experimental amendments to seawater applying a combination of the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and a mixture of amino acids increased both bacterial productivity and N2 fixation rates. Our findings from the northern Gulf of Aqaba indicate a~shift in the diazotrophic community from phototrophic and heterotrophic populations, including small blooms of the cyanobacterium Trichodesmium, in winter/early spring, to predominantly heterotrophic diazotrophs in summer that may be both P and carbon limited as the additions of P and amino acids illustrated.

  9. Comparison of Monolateral External Fixation and Internal Fixation for Skeletal Stabilisation in the Management of Small Tibial Bone Defects following Successful Treatment of Chronic Osteomyelitis.

    PubMed

    Wang, Yicun; Jiang, Hui; Deng, Zhantao; Jin, Jiewen; Meng, Jia; Wang, Jun; Zhao, Jianning; Sun, Guojing; Qian, Hongbo

    2017-01-01

    To compare the salvage rate and complication between internal fixation and external fixation in patients with small bone defects caused by chronic infectious osteomyelitis debridement. 125 patients with chronic infectious osteomyelitis of tibia fracture who underwent multiple irrigation, debridement procedure, and local/systemic antibiotics were enrolled. Bone defects, which were less than 4 cm, were treated with bone grafting using either internal fixation or monolateral external fixation. 12-month follow-up was conducted with an interval of 3 months to evaluate union of bone defect. Patients who underwent monolateral external fixation had higher body mass index and fasting blood glucose, longer time since injury, and larger bone defect compared with internal fixation. No significant difference was observed in incidence of complications (23.5% versus 19.3%), surgery time (156 ± 23 minutes versus 162 ± 21 minutes), and time to union (11.1 ± 3.0 months versus 10.9 ± 3.1 months) between external fixation and internal fixation. Internal fixation had no significant influence on the occurrence of postoperation complications after multivariate adjustment when compared with external fixation. Furthermore, patients who underwent internal fixation experienced higher level of daily living scales and lower level of anxiety. It was relatively safe to use internal fixation for stabilization in osteomyelitis patients whose bone defects were less than 4 cm and infection was well controlled.

  10. Laboratory investigation of inorganic carbon uptake by cryoconite debris from Werenskioldbreen, Svalbard

    NASA Astrophysics Data System (ADS)

    Stibal, Marek; Tranter, Martyn

    2007-12-01

    Laboratory experiments were undertaken to determine the inorganic carbon uptake rate and the interactions between photosynthesis and water chemistry, particularly pH and nutrient concentrations, for cryoconite debris from Werenskioldbreen, a well-researched Svalbard glacier. Microorganisms in cryoconite debris took up inorganic carbon at rates between 0.6 and 15 μg C L-1 h-1 and fixed it as organic carbon. Cyanobacterial photosynthesis (75-93%) was the main process responsible for inorganic carbon fixation, while heterotrophic uptake (6-15%) only accounted for a minor part. The microbes in cryoconite debris were active shortly after melt and fixed carbon as long as there were favorable conditions. They were not truly psychrophilic: their physiological optimum temperature was higher than is prevalent in cryoconite holes. The pH was also a factor affecting photosynthesis in the cryoconite slurry. The highest dissolved inorganic carbon (DIC) uptake rates per liter of slurry occurred at pH ˜7, and there was a significant correlation between the initial pH and DIC fixation on a per cell basis, showing increasing DIC uptake rates when pH increased from ˜5.5 to 9. Inorganic carbon fixation resulted in an increased pH in solution. However, the microbes were able to photosynthesize in a wide range of pH from ˜4 to ˜10. The average C:N:P molar ratios in solution were ˜350:75:1. Unlike nitrogen, phosphorus concentrations decreased with increasing carbon uptake, and when the rate approached ˜15 μg C L-1 h-1, all available dissolved phosphorus was utilized within 6 h. Hence phosphorus is probably biolimiting in this system.

  11. An effective fixative for glucocorticoid receptors in fetal tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koga, T.; Kurisu, K.

    1982-01-01

    As a preliminary study in an autoradiographic study of glucocorticoid (GC) receptor localization in orofacial tissues of mouse fetuses, a search was made to determine the most effective fixative for preservation of the GC-receptor complex. Twelve-day-old mouse fetuses were administered tritiated triamcinolone acetonide (/sup 3/H-TAC) intraamniotically and subsequently processed by one of the following three procedures: freeze-drying, prefixation with Karnovsky's fixative, or the catechin fixative (Karnovsky's fixative containing 1% D-catechin) and postfixation with osmium tetroxide. Light microscopic autoradiography and liquid scintillation counting of the specimens revealed that the catechin fixative gave the best results for fixation of the steroid-receptor complexmore » and preservation of tissue structure. Light and electron microscopic autoradiographic studies of the time course of the localization of /sup 3/H-TAC in palatal shelves supported the catechin fixative as being the most effective in preservation of GC-receptor or ligand complexes.« less

  12. Biochemical Approaches to Improved Nitrogen Fixation

    USDA-ARS?s Scientific Manuscript database

    Improving symbiotic nitrogen fixation by legumes has emerged again as an important topic on the world scene due to the energy crisis and lack of access to nitrogen fertilizer in developing countries. We have taken a biochemical genomics approach to improving symbiotic nitrogen fixation in legumes. L...

  13. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.

    PubMed

    Li, Jie; Li, Hao; Zhan, Guangming; Zhang, Lizhi

    2017-01-17

    Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO 2 , SrTiO 3 , (Ga 1-x Zn x )(N 1-x O x ), CdS, and g-C 3 N 4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N 2 . This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of

  14. 13C-MFA delineates the photomixotrophic metabolism of Synechocystis sp. PCC 6803 under light- and carbon-sufficient conditions.

    PubMed

    You, Le; Berla, Bert; He, Lian; Pakrasi, Himadri B; Tang, Yinjie J

    2014-05-01

    The central carbon metabolism of cyanobacteria is under debate. For over 50 years, the lack of α-ketoglutarate dehydrogenase has led to the belief that cyanobacteria have an incomplete TCA cycle. Recent in vitro enzymatic experiments suggest that this cycle may in fact be closed. The current study employed (13) C isotopomers to delineate pathways in the cyanobacterium Synechocystis sp. PCC 6803. By tracing the incorporation of supplemented glutamate into the downstream metabolites in the TCA cycle, we observed a direct in vivo transformation of α-ketoglutarate to succinate. Additionally, isotopic tracing of glyoxylate did not show a functional glyoxylate shunt and glyoxylate was used for glycine synthesis. The photomixotrophic carbon metabolism was then profiled with (13) C-MFA under light and carbon-sufficient conditions. We observed that: (i) the in vivo flux through the TCA cycle reactions (α-ketoglutarate → succinate) was minimal (<2%); (ii) the flux ratio of CO2 fixation was six times higher than that of glucose utilization; (iii) the relative flux through the oxidative pentose phosphate pathway was low (<2%); (iv) high flux through malic enzyme served as a main route for pyruvate synthesis. Our results improve the understanding of the versatile metabolism in cyanobacteria and shed light on their application for photo-biorefineries. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Comparison of Monolateral External Fixation and Internal Fixation for Skeletal Stabilisation in the Management of Small Tibial Bone Defects following Successful Treatment of Chronic Osteomyelitis

    PubMed Central

    Wang, Yicun; Jiang, Hui; Deng, Zhantao; Meng, Jia; Wang, Jun

    2017-01-01

    Background To compare the salvage rate and complication between internal fixation and external fixation in patients with small bone defects caused by chronic infectious osteomyelitis debridement. Methods 125 patients with chronic infectious osteomyelitis of tibia fracture who underwent multiple irrigation, debridement procedure, and local/systemic antibiotics were enrolled. Bone defects, which were less than 4 cm, were treated with bone grafting using either internal fixation or monolateral external fixation. 12-month follow-up was conducted with an interval of 3 months to evaluate union of bone defect. Results Patients who underwent monolateral external fixation had higher body mass index and fasting blood glucose, longer time since injury, and larger bone defect compared with internal fixation. No significant difference was observed in incidence of complications (23.5% versus 19.3%), surgery time (156 ± 23 minutes versus 162 ± 21 minutes), and time to union (11.1 ± 3.0 months versus 10.9 ± 3.1 months) between external fixation and internal fixation. Internal fixation had no significant influence on the occurrence of postoperation complications after multivariate adjustment when compared with external fixation. Furthermore, patients who underwent internal fixation experienced higher level of daily living scales and lower level of anxiety. Conclusions It was relatively safe to use internal fixation for stabilization in osteomyelitis patients whose bone defects were less than 4 cm and infection was well controlled. PMID:29333448

  16. Internal Versus External Fixation of Charcot Midfoot Deformity Realignment.

    PubMed

    Lee, Daniel J; Schaffer, Joseph; Chen, Tien; Oh, Irvin

    2016-07-01

    Internal and external fixation techniques have been described for realignment and arthrodesis of Charcot midfoot deformity. There currently is no consensus on the optimal method of surgical reconstruction. This systematic review compared the clinical results of surgical realignment with internal and external fixation, specifically in regard to return to functional ambulation, ulcer occurrence, nonunion, extremity amputation, unplanned further surgery, deep infection, wound healing problems, peri- or intraoperative fractures, and total cases with any complication. A search of multiple databases for all relevant articles published from January 1, 1990, to March 22, 2014, was performed. A logistic regression model evaluated each of the outcomes and its association with the type of fixation method. The odds of returning to functional ambulation were 25% higher for internal fixation (odds ratio [OR], 1.259). Internal fixation had a 42% reduced rate of ulcer occurrence (OR, 0.578). External fixation was 8 times more likely to develop radiographic nonunion than internal fixation (OR, 8.2). Internal fixation resulted in a 1.5-fold increase in extremity amputation (OR, 1.488), a 2-fold increase in deep infection (OR, 2.068), a 3.4-fold increase in wound healing complications (OR, 3.405), and a 1.5-fold increase in the total number of cases experiencing any complication (OR, 1.525). This was associated with a 20% increase in the need for unplanned further surgery with internal fixation (OR, 1.221). Although internal fixation may decrease the risk of nonunion and increase return to functional ambulation, it had a higher rate of overall complications than external fixation for realignment and arthrodesis of Charcot midfoot deformity. [Orthopedics. 2016; 39(4):e595-e601.]. Copyright 2016, SLACK Incorporated.

  17. Emerging Fixation Technique to Prevent Pectus Bar Displacement: Needlescope-Assisted 3-Point Fixation.

    PubMed

    Yoo, Gyeol; Rha, Eun Young; Jeong, Jin Yong; Lee, Jongho; Sim, Sung Bo; Jo, Keon Hyon

    2016-01-01

    Bar flipping displacement is one of the most common complications after the Nuss procedure for pectus excavatum. We evaluated the results of a modified Nuss procedure with needlescope-assisted bar fixation. The records of 41 patients with pectus excavatum who underwent single pectus bar insertion with the Nuss procedure between July 2011 and August 2014 were retrospectively reviewed. The patients were divided into two groups: those who did not undergo 3-point fixation (group A) and those who did undergo 3-point fixation (group B). There were 36 male patients and 5 female patients with a mean age of 10.7 ± 8.3 years (range: 3-36 years). The postoperative Haller index (HI) (2.61 ± 0.42) was significantly lower than the preoperative HI (3.91 ± 1.07; p < 0.01). The angle of the initial bar position was 5.59 ± 7.37 degrees in group A and 8.52 ± 9.61 degrees in group B, with no significant difference between the groups (p > 0.05). The rate of reoperation to correct bar displacement was lower in group B (3.3%) than in group A (9.1%). Needlescope-assisted 3-point fixation of the bar was performed without an additional skin incision and showed a low rate of reoperation to correct displacement of the pectus bar. Georg Thieme Verlag KG Stuttgart · New York.

  18. Fixation Characteristics of Severe Amblyopia Subtypes: Which One is Worse?

    PubMed

    Koylu, Mehmet Talay; Ozge, Gokhan; Kucukevcilioglu, Murat; Mutlu, Fatih Mehmet; Ceylan, Osman Melih; Akıncıoglu, Dorukcan; Ayyıldız, Onder

    2017-01-01

    To determine differences in macular sensitivity and fixation patterns in different subtypes of severe amblyopia. This case-control study enrolled a total of 73 male adults, including 18 with pure strabismic severe amblyopia, 19 with pure anisometropic severe amblyopia, 18 with mixed (strabismic plus anizometropic) severe amblyopia, and 18 healthy controls. MP-1 microperimetry was used to evaluate macular sensitivity, location of fixation, and stability of fixation. Mean macular sensitivity, stability of fixation, and location of fixation were significantly worse in all amblyopia subtypes when compared with healthy controls. Intergroup comparisons between amblyopia subtypes revealed that mean macular sensitivity, stability of fixation, and location of fixation were significantly worse in pure strabismic and mixed amblyopic eyes when compared with pure anisometropic amblyopic eyes. Strabismus seems to be a worse prognostic factor in severe amblyopia than anisometropia in terms of fixation characteristics and retinal sensitivity.

  19. Unfixing Design Fixation: From Cause to Computer Simulation

    ERIC Educational Resources Information Center

    Dong, Andy; Sarkar, Somwrita

    2011-01-01

    This paper argues that design fixation, in part, entails fixation at the level of meta-representation, the representation of the relation between a representation and its reference. In this paper, we present a mathematical model that mimics the idea of how fixation can occur at the meta-representation level. In this model, new abstract concepts…

  20. Plate fixation or intramedullary fixation for midshaft clavicle fractures: a systematic review and meta-analysis of randomized controlled trials and observational studies.

    PubMed

    Houwert, Roderick M; Smeeing, Diederik P J; Ahmed Ali, Usama; Hietbrink, Falco; Kruyt, Moyo C; van der Meijden, Olivier A

    2016-07-01

    The last decade has shown a shift toward operative treatment of a subset of midshaft clavicle fractures. However, it is unclear whether there are differences between plate fixation and intramedullary fixation regarding complications and functional outcome. The aim of this systematic review and meta-analysis was to compare plate fixation and intramedullary fixation for midshaft clavicle fractures. The Medline, Embase, and Cochrane databases were searched for both randomized controlled trials and observational studies. The methodologic quality of all included studies was assessed using the Methodological Index for Non-Randomized Studies. Twenty studies were included. Ten of the 20 included studies used a fracture classification. Seven of these studies reported exclusion of patients with comminuted fractures. No difference in the total re-intervention rate was found (odds ratio [OR], 1.21; 95% confidence interval [CI], 0.71 to 2.04). Major re-interventions occurred more often after plate fixation (OR, 1.88; 95% CI, 1.02 to 3.46). The mean implant removal rates were 38% after plate fixation and 73% after intramedullary fixation. Re-fracture after implant removal occurred more often after plate fixation (OR, 3.42; 95% CI, 1.12 to 10.42). The Constant-Murley scores showed no differences at both short term (mean difference, -1.18; 95% CI, -13.41 to 11.05) and long term (mean difference, 0.15; 95% CI, -1.57 to 1.87). No differences were observed regarding nonunion (OR, 1.50; 95% CI, 0.82 to 2.75). The rate of infections showed no differences when outlier studies were excluded (OR, 1.54; 95% CI, 0.88 to 2.69). Major re-intervention and re-fracture after implant removal occurred more frequently after plate fixation of non-comminuted, displaced midshaft clavicle fractures. No differences in terms of function and nonunion between plate fixation and intramedullary fixation were observed. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by

  1. Fixation Probability in a Haploid-Diploid Population.

    PubMed

    Bessho, Kazuhiro; Otto, Sarah P

    2017-01-01

    Classical population genetic theory generally assumes either a fully haploid or fully diploid life cycle. However, many organisms exhibit more complex life cycles, with both free-living haploid and diploid stages. Here we ask what the probability of fixation is for selected alleles in organisms with haploid-diploid life cycles. We develop a genetic model that considers the population dynamics using both the Moran model and Wright-Fisher model. Applying a branching process approximation, we obtain an accurate fixation probability assuming that the population is large and the net effect of the mutation is beneficial. We also find the diffusion approximation for the fixation probability, which is accurate even in small populations and for deleterious alleles, as long as selection is weak. These fixation probabilities from branching process and diffusion approximations are similar when selection is weak for beneficial mutations that are not fully recessive. In many cases, particularly when one phase predominates, the fixation probability differs substantially for haploid-diploid organisms compared to either fully haploid or diploid species. Copyright © 2017 by the Genetics Society of America.

  2. Fixation Probability in a Haploid-Diploid Population

    PubMed Central

    Bessho, Kazuhiro; Otto, Sarah P.

    2017-01-01

    Classical population genetic theory generally assumes either a fully haploid or fully diploid life cycle. However, many organisms exhibit more complex life cycles, with both free-living haploid and diploid stages. Here we ask what the probability of fixation is for selected alleles in organisms with haploid-diploid life cycles. We develop a genetic model that considers the population dynamics using both the Moran model and Wright–Fisher model. Applying a branching process approximation, we obtain an accurate fixation probability assuming that the population is large and the net effect of the mutation is beneficial. We also find the diffusion approximation for the fixation probability, which is accurate even in small populations and for deleterious alleles, as long as selection is weak. These fixation probabilities from branching process and diffusion approximations are similar when selection is weak for beneficial mutations that are not fully recessive. In many cases, particularly when one phase predominates, the fixation probability differs substantially for haploid-diploid organisms compared to either fully haploid or diploid species. PMID:27866168

  3. Strength analysis of clavicle fracture fixation devices and fixation techniques using finite element analysis with musculoskeletal force input.

    PubMed

    Marie, Cronskär

    2015-08-01

    In the cases, when clavicle fractures are treated with a fixation plate, opinions are divided about the best position of the plate, type of plate and type of screw units. Results from biomechanical studies of clavicle fixation devices are contradictory, probably partly because of simplified and varying load cases used in different studies. The anatomy of the shoulder region is complex, which makes it difficult and expensive to perform realistic experimental tests; hence, reliable simulation is an important complement to experimental tests. In this study, a method for finite element simulations of stresses in the clavicle plate and bone is used, in which muscle and ligament force data are imported from a multibody musculoskeletal model. The stress distribution in two different commercial plates, superior and anterior plating position and fixation including using a lag screw in the fracture gap or not, was compared. Looking at the clavicle fixation from a mechanical point of view, the results indicate that it is a major benefit to use a lag screw to fixate the fracture. The anterior plating position resulted in lower stresses in the plate, and the anatomically shaped plate is more stress resistant and stable than a regular reconstruction plate.

  4. Use of Resorbable Fixation System in Pediatric Facial Fractures.

    PubMed

    Wong, Frankie K; Adams, Saleigh; Hudson, Donald A; Ozaki, Wayne

    2017-05-01

    Resorbable fixation system (RFS) is an alternative to titanium in open reduction and internal fixation of pediatric facial fractures. This study retrospectively reviewed all medical records in a major metropolitan pediatric hospital in Cape Town, South Africa from September 2010 through May 2014. Inclusion criteria were children under the age of 13 with facial fractures who have undergone open reduction and internal fixation using RFS. Intraoperative and postoperative complications were reviewed. A total of 21 patients were included in this study. Twelve were males and 9 were females. Good dental occlusion was achieved in all patients and there were no complications intraoperatively. Three patients developed postoperative implanted-related complications: all 3 patients developed malocclusions and 1 developed an additional sterile abscess over the right zygomatic bone. For the latter, incision and drainage was performed and the problem resolved without additional operations. Resorbable fixation system is an alternative to titanium products in the setting of pediatric facial fractures without complications involving delayed union or malunion. The combination of intermaxillary fixation and RFS is not needed postoperatively for adequate fixation of mandible fractures. Resorbable fixation system is able to provide adequate internal fixation when both low-stress and high-stress craniofacial fractures occur simultaneously.

  5. Tension band suture fixation for olecranon fractures.

    PubMed

    Phadnis, Joideep; Watts, Adam C

    2017-10-01

    Olecranon fractures are common and often require surgical treatment when displaced. Traditional methods of stabilization using tension band wire fixation and plate fixation achieve adequate union and function but are associated with a high rate of re-operation and wound problems because of prominent metalwork. The purpose of the present article is to describe an all suture technique for fixation of simple olecranon fractures that maintains inter-fragmentary compression, provides bony union and reduces the rate of re-operation caused by prominent metalwork.

  6. Sporicidal activity of chemical and physical tissue fixation methods.

    PubMed Central

    Vardaxis, N J; Hoogeveen, M M; Boon, M E; Hair, C G

    1997-01-01

    AIMS: The effects of alcohol based fixation and microwave stimulated alcohol fixation were investigated on spores of Bacillus stearothermophilus and Bacillus subtilis (var. niger). METHODS: Spores were exposed to 10% formalin, or different concentrations of various alcohol containing fixatives (Kryofix/Spuitfix). Adequate controls were also set up in conjunction with the test solutions. The spores were immersed with and without adjunctive microwave stimulation in the various solutions tested. Possible surviving spores were recovered in revival broth and after incubation, and Gram staining viable counts were performed. RESULTS: Alcohol based fixatives did not have a sporicidal effect on B stearothermophilus or B subtilis (var. niger) spores, and microwave stimulated alcohol fixation at 450 W and up to 75 degrees C did not have a sporicidal effect. CONCLUSIONS: When alcohol based fixatives are used for fixation, precautions should be taken with the material thus treated, as it may contain viable spores or other pathogens, which are destroyed after 24 hours of formalin treatment. Of the physicochemical methods tested involving microwaving, none was successful in eliminating viable spores from the test material. PMID:9215128

  7. External fixation of “intertrochanteric” fractures

    PubMed Central

    Gani, Naseem ul; Kangoo, Khursheed Ahmed; Bashir, Arshad; Muzaffer, Rahil; Bhat, Mohammad Farooq; Farooq, Munir; Badoo, Abdul Rashid; Dar, Imtiyaz Hussian; Wani, Mudassir Maqbool

    2009-01-01

    In developing countries, due to limited availability of modern anesthesia and overcrowding of the hospitals with patients who need surgery, high-risk patients with “intertrochanteric” fractures remain unsuita ble for open reduction and internal fixation. The aim of this study was to analyze the results of external fixation of “intertrochanteric” fractures in high-risk geriatric patients in a developing country. The results of 62 ambulatory high-risk geriatric patients with a mean age of 70 years (range 58–90 years) with “intertrochanteric” fractures, in whom external fixation was performed, are reported. Eight patients died during follow-up due to medical causes unrelated to the surgical procedure. So only 54 patients were available for final assessment. Procedure is simple, performed under local anesthesia, requires less time for surgery and is associated with less blood loss. Good fixation and early ambulation was achieved in most of the patients. Average time to union was 14 weeks. Thirty-one patients developed superficial pin tract infection and 28 patients had average shortening of 15 mm due to impaction and varus angulation. Functional outcome was assessed using Judet's point system. Good to excellent results were achieved in 44 patients. This study demonstrated that external fixation of “intertrochantric” fractures performed under local anesthesia offers significant advantage in ambulatory high-risk geriatric patients especially in a developing country. PMID:21808680

  8. Titanium-based zeolitic imidazolate framework for chemical fixation of carbon dioxide

    EPA Science Inventory

    A titanium-based zeolitic imidazolate framework (Ti-ZIF) with high surface area and porous morphology was synthesized and itsefficacy was demonstrated in the synthesis of cyclic carbonates from epoxides and carbon dioxide.

  9. Short-term outcomes of arthroscopic TightRope® fixation are better than hook plate fixation in acute unstable acromioclavicular joint dislocations.

    PubMed

    Bin Abd Razak, Hamid Rahmatullah; Yeo, Eng-Meng Nicholas; Yeo, William; Lie, Tijauw-Tjoen Denny

    2018-07-01

    The aim of this study was to compare the short-term outcomes of arthroscopic TightRope ® fixation with that of hook plate fixation in patients with acute unstable acromioclavicular joint dislocations. We conducted a prospective case-control study of twenty-six patients with an acute ACJ dislocation who underwent surgical repair with either an arthroscopic TightRope ® fixation or a hook plate from 2013 to 2016. Clinical and radiological data were collected prospectively. Clinical outcomes were evaluated using the Constant Score, the University of California at Los Angeles (UCLA) Shoulder Score, Oxford Shoulder Score as well as the visual analogue scale. Radiological outcomes were assessed with the coracoclavicular distance (CCD). Sixteen patients underwent arthroscopic TightRope ® fixation, while 10 patients underwent hook plate fixation. There were no significant differences in the preoperative variables except for the mean UCLA 4b infraspinatus score (TightRope ® 2.8 vs. hook plate 3.8; p = 0.030). Duration of surgery was significantly longer in the TightRope ® group. At 1 year post-operatively, the TightRope ® group had a significantly better Constant Score and CCD with no complications. All patients with hook plate fixation had to undergo a second procedure for removal of implant, and 3 patients had complications. Arthroscopic TightRope ® fixation is a good option for the treatment of acute unstable ACJ dislocations. It has better short-term clinical and radiological outcomes as well as lesser complications when compared to hook plate fixation. Therapeutic, Level III.

  10. Carbon assimilation in Eucalyptus urophylla grown under high atmospheric CO2 concentrations: A proteomics perspective.

    PubMed

    Santos, Bruna Marques Dos; Balbuena, Tiago Santana

    2017-01-06

    Photosynthetic organisms may be drastically affected by the future climate projections of a considerable increase in CO 2 concentrations. Growth under a high concentration of CO 2 could stimulate carbon assimilation-especially in C3-type plants. We used a proteomics approach to test the hypothesis of an increase in the abundance of the enzymes involved in carbon assimilation in Eucalyptus urophylla plants grown under conditions of high atmospheric CO 2 . Our strategy allowed the profiling of all Calvin-Benson cycle enzymes and associated protein species. Among the 816 isolated proteins, those involved in carbon fixation were found to be the most abundant ones. An increase in the abundance of six key enzymes out of the eleven core enzymes involved in carbon fixation was detected in plants grown at a high CO 2 concentration. Proteome changes were corroborated by the detection of a decrease in the stomatal aperture and in the vascular bundle area in Eucalyptus urophylla plantlets grown in an environment of high atmospheric CO 2 . Our proteomics approach indicates a positive metabolic response regarding carbon fixation in a CO 2 -enriched atmosphere. The slight but significant increase in the abundance of the Calvin enzymes suggests that stomatal closure did not prevent an increase in the carbon assimilation rates. The sample enrichment strategy and data analysis used here enabled the identification of all enzymes and most protein isoforms involved in the Calvin-Benson-Bessham cycle in Eucalyptus urophylla. Upon growth in CO 2 -enriched chambers, Eucalyptus urophylla plantlets responded by reducing the vascular bundle area and stomatal aperture size and by increasing the abundance of six of the eleven core enzymes involved in carbon fixation. Our proteome approach provides an estimate on how a commercially important C3-type plant would respond to an increase in CO 2 concentrations. Additionally, confirmation at the protein level of the predicted genes involved in

  11. Alterations in hepatic one-carbon metabolism and related pathways following a high-fat dietary intervention.

    PubMed

    Rubio-Aliaga, Isabel; Roos, Baukje de; Sailer, Manuela; McLoughlin, Gerard A; Boekschoten, Mark V; van Erk, Marjan; Bachmair, Eva-Maria; van Schothorst, Evert M; Keijer, Jaap; Coort, Susan L; Evelo, Chris; Gibney, Michael J; Daniel, Hannelore; Muller, Michael; Kleemann, Robert; Brennan, Lorraine

    2011-04-27

    Obesity frequently leads to insulin resistance and the development of hepatic steatosis. To characterize the molecular changes that promote hepatic steatosis, transcriptomics, proteomics, and metabolomics technologies were applied to liver samples from C57BL/6J mice obtained from two independent intervention trials. After 12 wk of high-fat feeding the animals became obese, hyperglycemic, and insulin resistant, had elevated levels of blood cholesterol and VLDL, and developed hepatic steatosis. Nutrigenomic analysis revealed alterations of key metabolites and enzyme transcript levels of hepatic one-carbon metabolism and related pathways. The hepatic oxidative capacity and the lipid milieu were significantly altered, which may play a key role in the development of insulin resistance. Additionally, high choline levels were observed after the high-fat diet. Previous studies have linked choline levels with insulin resistance and hepatic steatosis in conjunction with changes of certain metabolites and enzyme levels of one-carbon metabolism. The present results suggest that the coupling of high levels of choline and low levels of methionine plays an important role in the development of insulin resistance and liver steatosis. In conclusion, the complexities of the alterations induced by high-fat feeding are multifactorial, indicating that the interplay between several metabolic pathways is responsible for the pathological consequences.

  12. Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata.

    PubMed

    Zavřel, Tomáš; Szabó, Milán; Tamburic, Bojan; Evenhuis, Christian; Kuzhiumparambil, Unnikrishnan; Literáková, Petra; Larkum, Anthony W D; Raven, John A; Červený, Jan; Ralph, Peter J

    2018-04-01

    This study describes the impacts of inorganic carbon limitation on the photosynthetic efficiency and operation of photosynthetic electron transport pathways in the biofuel-candidate microalga Nannochloropsis oculata. Using a combination of highly-controlled cultivation setup (photobioreactor), variable chlorophyll a fluorescence and transient spectroscopy methods (electrochromic shift (ECS) and P 700 redox kinetics), we showed that net photosynthesis and effective quantum yield of Photosystem II (PSII) decreased in N. oculata under carbon limitation. This was accompanied by a transient increase in total proton motive force and energy-dependent non-photochemical quenching as well as slightly elevated respiration. On the other hand, under carbon limitation the rapid increase in proton motive force (PMF, estimated from the total ECS signal) was also accompanied by reduced conductivity of ATP synthase to protons (estimated from the rate of ECS decay in dark after actinic illumination). This indicates that the slow operation of ATP synthase results in the transient build-up of PMF, which leads to the activation of fast energy dissipation mechanisms such as energy-dependent non-photochemical quenching. N. oculata also increased content of lipids under carbon limitation, which compensated for reduced NAPDH consumption during decreased CO 2 fixation. The integrated knowledge of the underlying energetic regulation of photosynthetic processes attained with a combination of biophysical methods may be used to identify photo-physiological signatures of the onset of carbon limitation in microalgal cultivation systems, as well as to potentially identify microalgal strains that can better acclimate to carbon limitation. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Enzymology of the Wood–Ljungdahl Pathway of Acetogenesis

    PubMed Central

    Ragsdale, Stephen W.

    2011-01-01

    The biochemistry of acetogenesis is reviewed. The microbes that catalyze the reactions that are central to acetogenesis are described and the focus is on the enzymology of the process. These microbes play a key role in the global carbon cycle, producing over 10 trillion kilograms of acetic acid annually. Acetogens have the ability to anaerobically convert carbon dioxide and CO into acetyl-CoA by the Wood–Ljungdahl pathway, which is linked to energy conservation. They also can convert the six carbons of glucose stoichiometrically into 3 mol of acetate using this pathway. Acetogens and other anaerobic microbes (e.g., sulfate reducers and methanogens) use the Wood–Ljungdahl pathway for cell carbon synthesis. Important enzymes in this pathway that are covered in this review are pyruvate ferredoxin oxidoreductase, CO dehydrogenase/acetyl-CoA synthase, a corrinoid iron-sulfur protein, a methyltransferase, and the enzymes involved in the conversion of carbon dioxide to methyl-tetrahydrofolate. PMID:18378591

  14. Stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture: a comparative finite element study.

    PubMed

    Huang, Xiaowei; Zhi, Zhongzheng; Yu, Baoqing; Chen, Fancheng

    2015-11-25

    The purpose of this study is to compare the stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture. A three-dimensional (3D) finite element model of the medial tibial plateau fracture (Schatzker type IV fracture) was created. An axial force of 2500 N with a distribution of 60% to the medial compartment was applied to simulate the axial compressive load on an adult knee during single-limb stance. The equivalent von Mises stress, displacement of the model relative to the distal tibia, and displacement of the implants were used as the output measures. The mean stress value of the plate-screw fixation system was 18.78 MPa, which was significantly (P < 0.001) smaller than that of the screw fixation system. The maximal value of displacement (sum) in the plate-screw fixation system was 2.46 mm, which was lower than that in the screw fixation system (3.91 mm). The peak stress value of the triangular fragment in the plate-screw fixation system model was 42.04 MPa, which was higher than that in the screw fixation model (24.18 MPa). But the mean stress of the triangular fractured fragment in the screw fixation model was significantly higher in terms of equivalent von Mises stress (EVMS), x-axis, and z-axis (P < 0.001). This study demonstrated that the load transmission mechanism between plate-screw fixation system and screw fixation system was different and the stability provided by the plate-screw fixation system was superior to the screw fixation system.

  15. Novel Anterior Plating Technique for Patella Fracture Fixation.

    PubMed

    Siljander, Matthew P; Vara, Alexander D; Koueiter, Denise M; Wiater, Brett P; Wiater, Patrick J

    2017-07-01

    Patella fracture fixation remains a significant challenge for orthopedic surgeons. Although tension band fixation allows for reliable osseous union, especially in simple fracture patterns, it still presents several problems. Plate fixation of patella fractures is a method that allows for more rigid stabilization and earlier mobilization. At the authors' level 1 trauma center, one fellowship-trained trauma surgeon has transitioned to using a novel anterior, low-profile mesh plate construct for all types of patella fractures. This construct allows for stable fixation, osseous union, and neutralization of the inferior pole for even the most comminuted of patella fractures. [Orthopedics. 2017; 40(4):e739-e743.]. Copyright 2017, SLACK Incorporated.

  16. A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation.

    PubMed

    Pislariu, Catalina I; Murray, Jeremy D; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; Benedito, Vagner A; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S; Chen, Rujin; Udvardi, Michael K

    2012-08-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.

  17. Carbon-nitrogen interactions in idealized simulations with JSBACH (version 3.10)

    NASA Astrophysics Data System (ADS)

    Goll, Daniel S.; Winkler, Alexander J.; Raddatz, Thomas; Dong, Ning; Prentice, Ian Colin; Ciais, Philippe; Brovkin, Victor

    2017-05-01

    Recent advances in the representation of soil carbon decomposition and carbon-nitrogen interactions implemented previously into separate versions of the land surface scheme JSBACH are here combined in a single version, which is set to be used in the upcoming 6th phase of coupled model intercomparison project (CMIP6).Here we demonstrate that the new version of JSBACH is able to reproduce the spatial variability in the reactive nitrogen-loss pathways as derived from a compilation of δ15N data (R = 0. 76, root mean square error (RMSE) = 0. 2, Taylor score = 0. 83). The inclusion of carbon-nitrogen interactions leads to a moderate reduction (-10 %) of the carbon-concentration feedback (βL) and has a negligible effect on the sensitivity of the land carbon cycle to warming (γL) compared to the same version of the model without carbon-nitrogen interactions in idealized simulations (1 % increase in atmospheric carbon dioxide per year). In line with evidence from elevated carbon dioxide manipulation experiments, pronounced nitrogen scarcity is alleviated by (1) the accumulation of nitrogen due to enhanced nitrogen inputs by biological nitrogen fixation and reduced losses by leaching and volatilization. Warming stimulated turnover of organic nitrogen further counteracts scarcity.The strengths of the land carbon feedbacks of the recent version of JSBACH, with βL = 0. 61 Pg ppm-1 and γL = -27. 5 Pg °C-1, are 34 and 53 % less than the averages of CMIP5 models, although the CMIP5 version of JSBACH simulated βL and γL, which are 59 and 42 % higher than multi-model average. These changes are primarily due to the new decomposition model, indicating the importance of soil organic matter decomposition for land carbon feedbacks.

  18. Early Fixation of Calcaneus Fractures.

    PubMed

    Swords, Michael P; Penny, Phillip

    2017-03-01

    The treatment of calcaneus fractures is controversial. Historically, most operatively treated fractures have been approached with a lateral extensile incision requiring delay in operative treatment until swelling has improved. There is a current trend and interest in small incision approaches allowing, and in some cases requiring, earlier operative fixation. Clinical scenarios amenable to consideration for early fixation are reviewed. The sinus tarsi surgical approach and reduction techniques are outlined in detail. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. External fixation techniques for distal radius fractures.

    PubMed

    Capo, John T; Swan, Kenneth G; Tan, Virak

    2006-04-01

    Fractures of the distal radius are common injuries. Low-energy or high-energy mechanisms may be involved. Unstable distal radius fractures present a challenge to the treating orthopaedic surgeon. External fixation is a valuable instrument for fracture reduction and stabilization. Limited open incisions, early range of motion, and treatment of complex wounds are a few of the benefits of external fixation. Fixators may be spanning or nonbridging and may be used alone or in combination with other stabilization methods to obtain and maintain distal radius fracture reduction. Augmentation with percutaneous wires allows for optimal fracture stabilization with physiologic alignment of the wrist. Moderate distraction at the carpus does not induce postoperative stiffness. The distal radioulnar joint must be assessed and may need to be stabilized. Complications of external fixation are usually minor, but must be anticipated and treated early. Level V (expert opinion).

  20. The effect of hubs and shortcuts on fixation time in evolutionary graphs

    NASA Astrophysics Data System (ADS)

    Askari, Marziyeh; Moradi Miraghaei, Zeinab; Aghababaei Samani, Keivan

    2017-07-01

    How can a new species (like a gene, an idea, or a strategy) take over the whole of a population? This process, which is called fixation, is considerably affected by the structure of the population. There are two key quantities to quantify the fixation process, namely fixation probability and fixation time. Fixation probability has been vastly studied in recent years, but fixation time has not been completely explored, yet. This is because the discovery of a relationship between fixation time and network structure is quite challenging. In this paper we investigate this relationship for a number of well-known complex networks. We show that the existence of a few high-degree nodes (hubs) in the network results in a longer fixation time, while the existence of a few short-cuts decreases the fixation time. Furthermore we investigate the effect of network parameters, such as connection probability, on fixation time. We show that by increasing the density of edges, fixation time decreases for all types of studied networks. Finally, we survey the effect of rewiring probability in a Watts-Strogatz network on fixation time.

  1. Intramedullary nail fixation of non-traditional fractures: Clavicle, forearm, fibula.

    PubMed

    Dehghan, Niloofar; Schemitsch, Emil H

    2017-06-01

    Locked intramedullary fixation is a well-established technique for managing long-bone fractures. While intramedullary nail fixation of diaphyseal fractures in the femur, tibia, and humerus is well established, the same is not true for other fractures. Surgical fixations of clavicle, forearm and ankle are traditionally treated with plate and screw fixation. In some cases, fixation with an intramedullary device is possible, and may be advantageous. However, there is however a concern regarding a lack of rotational stability and fracture shortening. While new generation of locked intramedullary devices for fractures of clavicle, forearm and fibula are recently available, the outcomes are not as reliable as fixation with plates and screws. Further research in this area is warranted with high quality comparative studies, to investigate the outcomes and indication of these fractures treated with intramedullary nail devices compared to intramedullary nail fixation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Complex carbon cycling processes and pathways in a tropical coastal marine environment (Saco do Mamangua, RJ - Brazil)

    NASA Astrophysics Data System (ADS)

    Giorgioni, M.; Jovane, L.; Millo, C.; Sawakuchi, H. O.; Bertassoli, D. J., Jr.; Gamba Romano, R.; Pellizari, V.; Castillo Franco, D.; Krusche, A. V.

    2016-12-01

    The Saco do Mamangua is a narrow and elongated gulf located along the southeastern coast of Brazil, in the state of Rio de Janeiro (RJ). It is surrounded by high relieves, which form a peculiar environment called riá, with little river input and limited water exchange with the Atlantic Ocean. These features make the Saco do Mamangua an ideal environment to study sedimentary carbon cycling under well-constrained boundary conditions in order to investigate if tropical coastal environments serve dominantly as potential carbon sinks or sources. In this work we integrate geochemical data from marine sediments and pore waters in the Saco do Mamangua with mapping of benthic microbial communities, in order to unravel the biogeochemical carbon cycling linked to the production of biogenic methane. Our results reveal that carbon cycling occurs in two parallel pathways. The Saco do Mamangua receives organic carbon both by surface runoff and by primary production in the water column. A large part of this organic carbon is buried within the sediment resulting in the production of biogenic methane, which gives rise to methane seepages at the sea floor. These methane seeps sustain methanotrophic microbial communities in the sediment pore water, but also escapes into the atmosphere by ebullition. Consequently, the sediments of Saco do Mamangua acts simultaneously as carbon sink and carbon source. Future work will allow us to accurately quantify the actual carbon fluxes and calculate the net carbon balance in the local environment.

  3. Lanthanide Complexes with Multidentate Oxime Ligands as Single-Molecule Magnets and Atmospheric Carbon Dioxide Fixation Systems.

    PubMed

    Hołyńska, Małgorzata; Clérac, Rodolphe; Rouzières, Mathieu

    2015-09-14

    The synthesis, structure, and magnetic properties of five lanthanide complexes with multidentate oxime ligands are described. Complexes 1 and 2 (1: [La2 (pop)2 (acac)4 (CH3 OH)], 2: [Dy2 (pop)(acac)5 ]) are synthesized from the 2-hydroxyimino-N-[1-(2-pyridyl)ethylidene]propanohydrazone (Hpop) ligand, while 3, 4, and 5 (3: [Dy2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.85 CH3 CN⋅1.58 H2 O; 4: [Tb2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.52 CH3 CN⋅1.71 H2 O; 5: [La6 (CO3 )2 (naphthsao)5 (naphthsaoH)0.5 (acac)8 (CO3 )0.5 (CH3 OH)2.76 H5.5 (H2 O)1.24 ]⋅2.39 CH3 CN⋅0.12 H2 O) contain 1-(1-hydroxynaphthalen-2-yl)-ethanone oxime (naphthsaoH2 ). In 1-4, dinuclear [Ln2 ] complexes crystallize, whereas hexanuclear La(III) complex 5 is formed after fixation of atmospheric carbon dioxide. Dy(III) -based complexes 2 and 3 display single-molecule-magnet properties with energy barriers of 27 and 98 K, respectively. The presence of a broad and unsymmetrical relaxation mode observed in the ac susceptibility data for 3 suggest two different dynamics of the magnetization which might be a consequence of independent relaxation processes of the two different Dy(3+) ions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Inorganic carbon fixation by chemosynthetic ectosymbionts and nutritional transfers to the hydrothermal vent host-shrimp Rimicaris exoculata

    PubMed Central

    Ponsard, Julie; Cambon-Bonavita, Marie-Anne; Zbinden, Magali; Lepoint, Gilles; Joassin, André; Corbari, Laure; Shillito, Bruce; Durand, Lucile; Cueff-Gauchard, Valérie; Compère, Philippe

    2013-01-01

    The shrimp Rimicaris exoculata dominates several hydrothermal vent ecosystems of the Mid-Atlantic Ridge and is thought to be a primary consumer harbouring a chemoautotrophic bacterial community in its gill chamber. The aim of the present study was to test current hypotheses concerning the epibiont's chemoautotrophy, and the mutualistic character of this association. In-vivo experiments were carried out in a pressurised aquarium with isotope-labelled inorganic carbon (NaH13CO3 and NaH14CO3) in the presence of two different electron donors (Na2S2O3 and Fe2+) and with radiolabelled organic compounds (14C-acetate and 3H-lysine) chosen as potential bacterial substrates and/or metabolic by-products in experiments mimicking transfer of small biomolecules from epibionts to host. The bacterial epibionts were found to assimilate inorganic carbon by chemoautotrophy, but many of them (thick filaments of epsilonproteobacteria) appeared versatile and able to switch between electron donors, including organic compounds (heterotrophic acetate and lysine uptake). At least some of them (thin filamentous gammaproteobacteria) also seem capable of internal energy storage that could supply chemosynthetic metabolism for hours under conditions of electron donor deprivation. As direct nutritional transfer from bacteria to host was detected, the association appears as true mutualism. Import of soluble bacterial products occurs by permeation across the gill chamber integument, rather than via the digestive tract. This first demonstration of such capabilities in a decapod crustacean supports the previously discarded hypothesis of transtegumental absorption of dissolved organic matter or carbon as a common nutritional pathway. PMID:22914596

  5. Linking FRRF Derived Photophysiology with Carbon-based Primary Productivity: Insights from Concepts of Cellular Energy Allocation

    NASA Astrophysics Data System (ADS)

    Schuback, N.; Schallenberg, C.; Duckham, C.; Flecken, M.; Maldonado, M. T.; Tortell, P. D.

    2016-02-01

    Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation in photosystem II (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides important physiological insight into phytoplankton photosynthesis, and is critical for the application of FRRF as a primary productivity measurement tool. We present data from a series of experiments during which we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific. Our results show significant variability of the derived conversion factor (Ve:C/nPSII), with highest values observed under conditions of excess excitation pressure at the level of photosystem II, caused by high light and/or low iron. Our results will be discussed in the context of metabolic plasticity, which evolved in phytoplankton to simultaneously maximize growth and provide photoprotection under fluctuating light and limiting nutrient availabilities. Because the derived conversion factor is associated with conditions of excess light, it correlates with the expression of non-photochemical quenching (NPQ) in the pigment antenna, also derived from FRRF measurements. Our results demonstrate a significant correlation between NPQ and the conversion factor Ve:C/nPSII, and the potential of this relationship to improve FRRF-based estimates of phytoplankton carbon fixation rates is discussed.

  6. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  7. Fixation of silicone stents in the subglottic trachea: preventing stent migration using a fixation apparatus.

    PubMed

    Miwa, Keisuke; Takamori, Shinzo; Hayashi, Akihiro; Fukunaga, Mari; Shirouzu, Kazuo

    2004-12-01

    Silicone stents are widely used to treat benign or malignant airway stenosis. However, since straight silicone stents placed into the subglottic trachea to treat stenosis display a high risk of migration, novel approaches are required. The present report outlines our method of external fixation for silicone stents in the subglottic trachea. This technique utilizes a fixation apparatus, is readily performed, and may help to overcome the hesitation seen in placing silicone stents for subglottic tracheal stenosis.

  8. Iron deficiency increases growth and nitrogen-fixation rates of phosphorus-deficient marine cyanobacteria.

    PubMed

    Garcia, Nathan S; Fu, Feixue; Sedwick, Peter N; Hutchins, David A

    2015-01-01

    Marine dinitrogen (N2)-fixing cyanobacteria have large impacts on global biogeochemistry as they fix carbon dioxide (CO2) and fertilize oligotrophic ocean waters with new nitrogen. Iron (Fe) and phosphorus (P) are the two most important limiting nutrients for marine biological N2 fixation, and their availabilities vary between major ocean basins and regions. A long-standing question concerns the ability of two globally dominant N2-fixing cyanobacteria, unicellular Crocosphaera and filamentous Trichodesmium, to maintain relatively high N2-fixation rates in these regimes where both Fe and P are typically scarce. We show that under P-deficient conditions, cultures of these two cyanobacteria are able to grow and fix N2 faster when Fe deficient than when Fe replete. In addition, growth affinities relative to P increase while minimum concentrations of P that support growth decrease at low Fe concentrations. In Crocosphaera, this effect is accompanied by a reduction in cell sizes and elemental quotas. Relatively high growth rates of these two biogeochemically critical cyanobacteria in low-P, low-Fe environments such as those that characterize much of the oligotrophic ocean challenge the common assumption that low Fe levels can have only negative effects on marine primary producers. The closely interdependent influence of Fe and P on N2-fixing cyanobacteria suggests that even subtle shifts in their supply ratio in the past, present and future oceans could have large consequences for global carbon and nitrogen cycles.

  9. Intramedullary nail fixation versus locking plate fixation for adults with a fracture of the distal tibia: the UK FixDT RCT.

    PubMed

    Costa, Matthew L; Achten, Juul; Hennings, Susie; Boota, Nafisa; Griffin, James; Petrou, Stavros; Maredza, Mandy; Dritsaki, Melina; Wood, Thomas; Masters, James; Pallister, Ian; Lamb, Sarah E; Parsons, Nick R

    2018-05-01

    The best treatment for fractures of the distal tibia remains controversial. Most of these fractures require surgical fixation, but the outcomes are unpredictable and complications are common. To assess disability, quality of life, complications and resource use in patients treated with intramedullary (IM) nail fixation versus locking plate fixation in the 12 months following a fracture of the distal tibia. This was a multicentre randomised trial. The trial was conducted in 28 UK acute trauma centres from April 2013 to final follow-up in February 2017. In total, 321 adult patients were recruited. Participants were excluded if they had open fractures, fractures involving the ankle joint, contraindication to nailing or inability to complete questionnaires. IM nail fixation ( n  = 161), in which a metal rod is inserted into the hollow centre of the tibia, versus locking plate fixation ( n  = 160), in which a plate is attached to the surface of the tibia with fixed-angle screws. The primary outcome measure was the Disability Rating Index (DRI) score, which ranges from 0 points (no disability) to 100 points (complete disability), at 6 months with a minimum clinically important difference of 8 points. The DRI score was also collected at 3 and 12 months. The secondary outcomes were the Olerud-Molander Ankle Score (OMAS), quality of life as measured using EuroQol-5 Dimensions (EQ-5D), complications such as infection, and further surgery. Resource use was collected to inform the health economic evaluation. Participants had a mean age of 45 years (standard deviation 16.2 years), were predominantly male (61%, 197/321) and had experienced traumatic injury after a fall (69%, 223/321). There was no statistically significant difference in DRI score at 6 months [IM nail fixation group, mean 29.8 points, 95% confidence interval (CI) 26.1 to 33.7 points; locking plate group, mean 33.8 points, 95% CI 29.7 to 37.9 points; adjusted difference, 4.0 points, 95% CI -1.0 to 9

  10. CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane.

    PubMed

    Khadka, Nimesh; Dean, Dennis R; Smith, Dayle; Hoffman, Brian M; Raugei, Simone; Seefeldt, Lance C

    2016-09-06

    The reduction of N2 to NH3 by Mo-dependent nitrogenase at its active-site metal cluster FeMo-cofactor utilizes reductive elimination of Fe-bound hydrides with obligatory loss of H2 to activate the enzyme for binding/reduction of N2. Earlier work showed that wild-type nitrogenase and a nitrogenase with amino acid substitutions in the MoFe protein near FeMo-cofactor can catalytically reduce CO2 by two or eight electrons/protons to carbon monoxide (CO) and methane (CH4) at low rates. Here, it is demonstrated that nitrogenase preferentially reduces CO2 by two electrons/protons to formate (HCOO(-)) at rates >10 times higher than rates of CO2 reduction to CO and CH4. Quantum mechanical calculations on the doubly reduced FeMo-cofactor with a Fe-bound hydride and S-bound proton (E2(2H) state) favor a direct reaction of CO2 with the hydride ("direct hydride transfer" reaction pathway), with facile hydride transfer to CO2 yielding formate. In contrast, a significant barrier is observed for reaction of Fe-bound CO2 with the hydride ("associative" reaction pathway), which leads to CO and CH4. Remarkably, in the direct hydride transfer pathway, the Fe-H behaves as a hydridic hydrogen, whereas in the associative pathway it acts as a protic hydrogen. MoFe proteins with amino acid substitutions near FeMo-cofactor (α-70(Val→Ala), α-195(His→Gln)) are found to significantly alter the distribution of products between formate and CO/CH4.

  11. Investigation of the medical applications of the unique biocarbons developed by NASA. [compatibility of percutaneous prosthetic carbon devices

    NASA Technical Reports Server (NTRS)

    Mooney, V.

    1973-01-01

    The biocompatibility of percutaneous endoskeletal fixation devices made from carbon compounds, and their applications are considered. The clinical application of these carbons to solve human problems is demonstrated and the nature of myoelectric simulation by carbon implants is studied.

  12. 21 CFR 872.4880 - Intraosseous fixation screw or wire.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraosseous fixation screw or wire. 872.4880... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4880 Intraosseous fixation screw or wire. (a) Identification. An intraosseous fixation screw or wire is a metal device intended to be inserted...

  13. 21 CFR 872.4880 - Intraosseous fixation screw or wire.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intraosseous fixation screw or wire. 872.4880... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4880 Intraosseous fixation screw or wire. (a) Identification. An intraosseous fixation screw or wire is a metal device intended to be inserted...

  14. Path of Carbon in Photosynthesis III.

    DOE R&D Accomplishments Database

    Benson, A. A.; Calvin, M.

    1948-06-01

    Although the overall reaction of photosynthesis can be specified with some degree of certainty (CO{sub 2} + H{sub 2}O + light {yields} sugars + possibly other reduced substances), the intermediates through which the carbon passes during the course of this reduction have, until now, been largely a matter of conjecture. The availability of isotopic carbon, that is, a method of labeling the carbon dioxide, provides the possibility of some very direct experiments designed to recognize these intermediates and, perhaps, help to understand the complex sequence and interplay of reactions which must constitute the photochemical process itself. The general design of such experiments is an obvious one, namely the exposure of the green plant to radioactive carbon dioxide and light under a variety of conditions and for continually decreasing lengths of time, followed by the identification of the compounds into which the radioactive carbon is incorporated under each condition and time period. From such data it is clear that in principle, at least, it should be possible to establish the sequence of compounds in time through which the carbon passes on its path from carbon dioxide to the final products. In the course of shortening the photosynthetic times, one times, one ultimately arrives at the condition of exposing the plants to the radioactive carbon dioxide with a zero illumination time, that is, in the dark. Actually, in the work the systematic order of events was reversed, and they have begun by studying first the dark fixation and then the shorter photosynthetic times. The results of the beginnings of this sort of a systematic investigation are given in Table I which includes three sets of experiments, namely a dark fixation experiment and two photosynthetic experiments, one of 30 seconds duration and the other of 60 seconds duration.

  15. Shared and divergent pathways for flower abscission are triggered by gibberellic acid and carbon starvation in seedless Vitis vinifera L.

    PubMed

    Domingos, Sara; Fino, Joana; Cardoso, Vânia; Sánchez, Claudia; Ramalho, José C; Larcher, Roberto; Paulo, Octávio S; Oliveira, Cristina M; Goulao, Luis F

    2016-02-01

    Abscission is a highly coordinated developmental process by which plants control vegetative and reproductive organs load. Aiming at get new insights on flower abscission regulation, changes in the global transcriptome, metabolome and physiology were analyzed in 'Thompson Seedless' grapevine (Vitis vinifera L.) inflorescences, using gibberellic acid (GAc) spraying and shading as abscission stimuli, applied at bloom. Natural flower drop rates increased from 63.1% in non-treated vines to 83% and 99% in response to GAc and shade treatments, respectively. Both treatments had a broad effect on inflorescences metabolism. Specific impacts from shade included photosynthesis inhibition, associated nutritional stress, carbon/nitrogen imbalance and cell division repression, whereas GAc spraying induced energetic metabolism simultaneously with induction of nucleotide biosynthesis and carbon metabolism, therefore, disclosing alternative mechanisms to regulate abscission. Regarding secondary metabolism, changes in flavonoid metabolism were the most represented metabolic pathways in the samples collected following GAc treatment while phenylpropanoid and stilbenoid related pathways were predominantly affected in the inflorescences by the shade treatment. However, both GAc and shade treated inflorescences revealed also shared pathways, that involved the regulation of putrescine catabolism, the repression of gibberellin biosynthesis, the induction of auxin biosynthesis and the activation of ethylene signaling pathways and antioxidant mechanisms, although often the quantitative changes occurred on specific transcripts and metabolites of the pathways. Globally, the results suggest that chemical and environmental cues induced contrasting effects on inflorescence metabolism, triggering flower abscission by different mechanisms and pinpointing the participation of novel abscission regulators. Grapevine showed to be considered a valid model to study molecular pathways of flower abscission

  16. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light.

    PubMed

    Kusakabe, Tamami; Tatsuke, Tsuneyuki; Tsuruno, Keigo; Hirokawa, Yasutaka; Atsumi, Shota; Liao, James C; Hanai, Taizo

    2013-11-01

    Production of alternate fuels or chemicals directly from solar energy and carbon dioxide using engineered cyanobacteria is an attractive method to reduce petroleum dependency and minimize carbon emissions. Here, we constructed a synthetic pathway composed of acetyl-CoA acetyl transferase (encoded by thl), acetoacetyl-CoA transferase (encoded by atoAD), acetoacetate decarboxylase (encoded by adc) and secondary alcohol dehydrogenase (encoded by adh) in Synechococcus elongatus strain PCC 7942 to produce isopropanol. The enzyme-coding genes, heterogeneously originating from Clostridium acetobutylicum ATCC 824 (thl and adc), Escherichia coli K-12 MG1655 (atoAD) and Clostridium beijerinckii (adh), were integrated into the S. elongatus genome. Under the optimized production conditions, the engineered cyanobacteria produced 26.5 mg/L of isopropanol after 9 days. © 2013 Published by Elsevier Inc.

  17. Acromioclavicular joint dislocation: a Dog Bone button fixation alone versus Dog Bone button fixation augmented with acromioclavicular repair-a finite element analysis study.

    PubMed

    Sumanont, Sermsak; Nopamassiri, Supachoke; Boonrod, Artit; Apiwatanakul, Punyawat; Boonrod, Arunnit; Phornphutkul, Chanakarn

    2018-03-20

    Suspension suture button fixation was frequently used to treat acromioclavicular joint (ACJ) dislocation. However, there were many studies reporting about complications and residual horizontal instability after fixation. Our study compared the stability of ACJ after fixation between coracoclavicular (CC) fixation alone and CC fixation combined with ACJ repair by using finite element analysis (FEA). A finite element model was created by using CT images from the normal shoulder. The model 1 was CC fixation with suture button alone, and the model 2 was CC fixation with suture button combined with ACJ repair. Three different forces (50, 100, 200 N) applied to the model in three planes; inferior, anterior and posterior direction load to the acromion. The von Mises stress of the implants and deformation at ACJs was recorded. The ACJ repair in the model 2 could reduce the peak stress on the implant after applying the loading forces to the acromion which the ACJ repair could reduce the peak stress of the FiberWire at suture button about 90% when compared to model 1. And, the ACJ repair could reduce the deformation of the ACJ after applying the loading forces to the acromion in both vertical and horizontal planes. This FEA supports that the high-grade injuries of the ACJ should be treated with CC fixation combined with ACJ repair because this technique provides excellent stability in both vertical and horizontal planes and reduces stress to the suture button.

  18. A Numerical Study of the Effect of Periodic Nutrient Supply on Pathways of Carbon in a Coastal Upwelling Regime

    NASA Technical Reports Server (NTRS)

    Carr, Mary-Elena

    1998-01-01

    A size-based ecosystem model was modified to include periodic upwelling events and used to evaluate the effect of episodic nutrient supply on the standing stock, carbon uptake, and carbon flow into mesozooplankton grazing and sinking flux in a coastal upwelling regime. Two ecosystem configurations were compared: a single food chain made up of net phytoplankton and mesozooplankton (one autotroph and one heterotroph, A1H1), and three interconnected food chains plus bacteria (three autotrophs and four heterotrophs, A3H4). The carbon pathways in the A1H1 simulations were under stronger physical control than those of the A3H4 runs, where the small size classes are not affected by frequent upwelling events. In the more complex food web simulations, the microbial pathway determines the total carbon uptake and grazing rates, and regenerated nitrogen accounts for more than half of the total primary production for periods of 20 days or longer between events. By contrast, new production, export of carbon through sinking and mesozooplankton grazing are more important in the A1H1 simulations. In the A3H4 simulations, the turnover time scale of the autotroph biomass increases as the period between upwelling events increases, because of the larger contribution of slow-growing net phytoplankton. The upwelling period was characterized for three upwelling sites from the alongshore wind speed measured by the NASA Scatterometer (NSCAT) and the corresponding model output compared with literature data. This validation exercise for three upwelling sites and a downstream embayment suggests that standing stock, carbon uptake and size fractionation were best supported by the A3H4 simulations, while the simulated sinking fluxes are not distinguishable in the two configurations.

  19. Temporary Iliac Fixation to Salvage an Acute L4 Chance Fracture: Following Pedicle Screw Fixation for Adolescent Idiopathic Scoliosis.

    PubMed

    Kato, So; Lewis, Stephen J

    2017-03-01

    A case report. The aim of this study was to describe a technique of temporary distal fixation to the ilium to salvage an acute L4 fracture following a T3-L4 kyphoscoliosis correction. Pedicle fracture is a possible complication in pedicle screw fixation for scoliosis, which may lead to postoperative instability, resulting in loss of fixation and pseudoarthrosis. This report highlights the salvage treatment of a chance fracture that occurred in the lower instrumented vertebra following deformity correction for adolescent idiopathic scoliosis (AIS) without sacrificing further distal motion segments. A retrospective chart and radiograph review of a 13-year-old female who underwent surgical treatment for correction of AIS was performed. Following a T3-L4 correction with apical posterior column releases, an L4 Chance fracture with loss of distal fixation occurred on post-op day 3. Following an unsuccessful salvage with an infralaminar hook, a second revision was performed replacing the hook and adding bilateral temporary fixation to the ilium connected to the distal ends of the main rods through side-to-side connectors. The temporary fixation was removed 6 months later with successful healing of the fracture maintenance of the scoliosis correction at 2-year follow-up. Temporary extension of the construct to the ilium was successfully utilized in this case to salvage an acute L4 Chance fracture that occurred following a T3 to L4 construct for kyphoscoliosis. With this technique, successful reduction and healing of the fracture occurred with maintenance of the deformity correction without the need to fuse further distal segments. 4.

  20. [Case-control study on effects of external fixation combined with limited internal fixation for the treatment of Pilon fractures of Rüedi-Allgower type III].

    PubMed

    Duan, Da-Peng; You, Wu-Lin; Ji, Le; Zhang, Yong-Tao; Dang, Xiao-Qian; Wang, Kun-Zheng

    2014-01-01

    To analyze the effects of three surgical operations in the treatment of Pilon fracture of Rüedi-Allgower type III, and put forward the best therapeutic method. The clinical data of 33 patients with Pilon fracture who received surgical operations (plaster immobilization group, 10 cases; distal tibia anatomical plate group, 11 cases; external fixation with limited internal fixation group, 12 cases) from October 2009 to January 2012 were analyzed. There were 5 males and 5 females, ranging in age from 24 to 61 years in the plaster immobilization group. There were 7 males and 4 females, ranging in age from 21 to 64 years in the distal tibia anatomical plate group. There were 7 males and 5 females, ranging in age from 23 to 67 years in the external fixation with limited internal fixation group. The Ankle X-ray of Pilon fracture after operation, ankle score, early and late complications were collected. Bourne system was used to evaluate ankle joint function. After 8 months to 3 years follow-up, it was found that three kinds of treatment had significant differences in the outcomes and complications (P < 0.05): the external fixation with limited internal fixation group got the best results. The number of anatomic reduction cases in the external fixation with limited internal fixation group (7 cases) and the distal tibia anatomical plate group (8 cases) was more than the plaster immobilization group (2 cases). According to the ankle score, 8 patients got an excellent result, 3 good and 1 poor in the limited internal fixation group ,which was better than those of distal tibia anatomical plate group (5 excellent, 4 good and 2 poor) and the plaster immobilization group (3 excellent, 4 good and 3 poor). The number of early and late complications in the external fixation with limited internal fixation group was more than those in the plaster immobilization group and the distal tibia anatomical plate group (P< 0.05). Treatment of external fixation with limited internal fixation

  1. 21 CFR 888.3020 - Intramedullary fixation rod.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intramedullary fixation rod. 888.3020 Section 888.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3020 Intramedullary fixation rod. (a...

  2. 21 CFR 888.3020 - Intramedullary fixation rod.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intramedullary fixation rod. 888.3020 Section 888.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3020 Intramedullary fixation rod. (a...

  3. 21 CFR 888.3020 - Intramedullary fixation rod.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intramedullary fixation rod. 888.3020 Section 888.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3020 Intramedullary fixation rod. (a...

  4. 21 CFR 888.3020 - Intramedullary fixation rod.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intramedullary fixation rod. 888.3020 Section 888.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3020 Intramedullary fixation rod. (a...

  5. 21 CFR 888.3020 - Intramedullary fixation rod.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intramedullary fixation rod. 888.3020 Section 888.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3020 Intramedullary fixation rod. (a...

  6. Miniplate fixation of Le Fort I osteotomies.

    PubMed

    Rosen, H M

    1986-12-01

    The use of rigid, internal, three-dimensional fixation using vitallium bone plates in 28 consecutive Le Fort I osteotomies is presented. A minimum follow-up period of 6 months was required for inclusion in this patient group. Maxillary movements included advancements (17), intrusions (9), lengthenings (5), and retrusions (2). The majority of maxillae were moved in more than one plane of space. Technical details, complications, and relapse potential are discussed. Advantages of rigid plate fixation include marked reductions in the length of intermaxillary fixation with light training elastics only. Immediate postoperative airway problems are thereby eliminated. Six months of follow-up would appear to indicate a low potential for osseous relapse when compared to wire osteosynthesis, regardless of the direction of maxillary movement. The major disadvantage is the decreased ability of postoperative orthodontics to move dento-osseous segments if skeletal occlusal disharmony persists postoperatively. For this reason, close attention to preoperative planning and operative technique is critical for the success of this fixation method.

  7. The Glycerate and Phosphorylated Pathways of Serine Synthesis in Plants: The Branches of Plant Glycolysis Linking Carbon and Nitrogen Metabolism.

    PubMed

    Igamberdiev, Abir U; Kleczkowski, Leszek A

    2018-01-01

    Serine metabolism in plants has been studied mostly in relation to photorespiration where serine is formed from two molecules of glycine. However, two other pathways of serine formation operate in plants and represent the branches of glycolysis diverging at the level of 3-phosphoglyceric acid. One branch (the glycerate - serine pathway) is initiated in the cytosol and involves glycerate formation from 3-phosphoglycerate, while the other (the phosphorylated serine pathway) operates in plastids and forms phosphohydroxypyruvate as an intermediate. Serine formed in these pathways becomes a precursor of glycine, formate and glycolate accumulating in stress conditions. The pathways can be linked to GABA shunt via transamination reactions and via participation of the same reductase for both glyoxylate and succinic semialdehyde. In this review paper we present a hypothesis of the regulation of redox balance in stressed plant cells via participation of the reactions associated with glycerate and phosphorylated serine pathways. We consider these pathways as important processes linking carbon and nitrogen metabolism and maintaining cellular redox and energy levels in stress conditions.

  8. First Comparative Analysis of the Community Structures and Carbon Metabolic Pathways of the Bacteria Associated with Alvinocaris longirostris in a Hydrothermal Vent of Okinawa Trough.

    PubMed

    Sun, Qing-Lei; Zeng, Zhi-Gang; Chen, Shuai; Sun, Li

    2016-01-01

    Alvinocaris longirostris is a species of shrimp existing in the hydrothermal fields of Okinawa Trough. To date the structure and function of the microbial community associated with A. longirostris are essentially unknown. In this study, by employment of the techniques of high through-put sequencing and clone library construction and analysis, we compared for the first time the community structures and metabolic profiles of microbes associated with the gill and gut of A. longirostris in a hydrothermal field of Okinawa Trough. Fourteen phyla were detected in the gill and gut communities, of which 11 phyla were shared by both tissues. Proteobacteria made up a substantial proportion in both tissues, while Firmicutes was abundant only in gut. Although gill and gut communities were similar in bacterial diversities, the bacterial community structures in these two tissues were significantly different. Further, we discovered for the first time the existence in the gill and gut communities of A. longirostris the genes (cbbM and aclB) encoding the key enzymes of Calvin-Benson-Bassham (CBB) cycle and the reductive tricarboxylic acid (rTCA) cycle, and that both cbbM and aclB were significantly more abundant in gill than in gut. Taken together, these results provide the first evidence that at least two carbon fixation pathways are present in both the gill and the gut communities of A. longirostris, and that the communities in different tissues likely differ in autotrophic productivity.

  9. Study of Superbase-Based Deep Eutectic Solvents as the Catalyst in the Chemical Fixation of CO2 into Cyclic Carbonates under Mild Conditions

    PubMed Central

    García-Argüelles, Sara; Iglesias, Marta; Del Monte, Francisco

    2017-01-01

    Superbases have shown high performance as catalysts in the chemical fixation of CO2 to epoxides. The proposed reaction mechanism typically assumes the formation of a superbase, the CO2 adduct as the intermediate, most likely because of the well-known affinity between superbases and CO2, i.e., superbases have actually proven quite effective for CO2 absorption. In this latter use, concerns about the chemical stability upon successive absorption-desorption cycles also merits attention when using superbases as catalysts. In this work, 1H NMR spectroscopy was used to get further insights about (1) whether a superbase, the CO2 adduct, is formed as an intermediate and (2) the chemical stability of the catalyst after reaction. For this purpose, we proposed as a model system the chemical fixation of CO2 to epichlorohydrin (EP) using a deep eutectic solvent (DES) composed of a superbase, e.g., 2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidine (TBD) or 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine (DBU), as a hydrogen acceptor and an alcohol as a hydrogen bond donor, e.g., benzyl alcohol (BA), ethylene glycol (EG), and methyldiethanolamine (MDEA), as the catalyst. The resulting carbonate was obtained with yields above 90% and selectivities approaching 100% after only two hours of reaction in pseudo-mild reaction conditions, e.g., 1.2 bars and 100 °C, and after 20 h if the reaction conditions of choice were even milder, e.g., 1.2 bars and 50 °C. These results were in agreement with previous works using bifunctional catalytic systems composed of a superbase and a hydrogen bond donor (HBD) also reporting good yields and selectivities, thus confirming the suitability of our choice to perform this study. PMID:28773128

  10. MapMaker and PathTracer for tracking carbon in genome-scale metabolic models

    PubMed Central

    Tervo, Christopher J.; Reed, Jennifer L.

    2016-01-01

    Constraint-based reconstruction and analysis (COBRA) modeling results can be difficult to interpret given the large numbers of reactions in genome-scale models. While paths in metabolic networks can be found, existing methods are not easily combined with constraint-based approaches. To address this limitation, two tools (MapMaker and PathTracer) were developed to find paths (including cycles) between metabolites, where each step transfers carbon from reactant to product. MapMaker predicts carbon transfer maps (CTMs) between metabolites using only information on molecular formulae and reaction stoichiometry, effectively determining which reactants and products share carbon atoms. MapMaker correctly assigned CTMs for over 97% of the 2,251 reactions in an Escherichia coli metabolic model (iJO1366). Using CTMs as inputs, PathTracer finds paths between two metabolites. PathTracer was applied to iJO1366 to investigate the importance of using CTMs and COBRA constraints when enumerating paths, to find active and high flux paths in flux balance analysis (FBA) solutions, to identify paths for putrescine utilization, and to elucidate a potential CO2 fixation pathway in E. coli. These results illustrate how MapMaker and PathTracer can be used in combination with constraint-based models to identify feasible, active, and high flux paths between metabolites. PMID:26771089

  11. Fixation orientation in ankle fractures with syndesmosis injury.

    PubMed

    Nimick, Craig J; Collman, David R; Lagaay, Pieter

    2013-01-01

    Accurate reduction of the syndesmosis has been shown to be an important prognostic factor for functional outcome in ankle injuries that disrupt the syndesmosis. The purpose of the present case series was to assess the fixation orientation and the position of the fibula within the tibial incisura after open reduction and internal fixation of ankle fractures with syndesmosis injury. Computed tomography was used to assess the accuracy of the reduction. Twelve patients were included in the present case series. A ratio representing the relationship between the tibia and fibula and the orientation of the syndesmotic fixation was measured preoperatively and postoperatively and compared with the uninjured contralateral ankle, representing the patient's normal anatomy. The measurements were accomplished electronically to one tenth of 1 mm using Stentor Intelligent Informatics, I-site, version 3.3.1 (Phillips Electronics; Andover, MA). Posteriorly oriented syndesmotic fixation caused posterior translation of the fibula with respect to the tibia and anteriorly oriented syndesmotic fixation caused anterior translation. Copyright © 2013. Published by Elsevier Inc.

  12. Nitric oxide-fixation by non-symbiotic haemoglobin proteins in Arabidopsis thaliana under N-limited conditions.

    PubMed

    Kuruthukulangarakoola, Gitto Thomas; Zhang, Jiangli; Albert, Andreas; Winkler, Barbro; Lang, Hans; Buegger, Franz; Gaupels, Frank; Heller, Werner; Michalke, Bernhard; Sarioglu, Hakan; Schnitzler, Jörg-Peter; Hebelstrup, Kim Henrik; Durner, Jörg; Lindermayr, Christian

    2017-01-01

    Nitric oxide (NO) is an important signalling molecule that is involved in many different physiological processes in plants. Here, we report about a NO-fixing mechanism in Arabidopsis, which allows the fixation of atmospheric NO into nitrogen metabolism. We fumigated Arabidopsis plants cultivated in soil or as hydroponic cultures during the whole growing period with up to 3 ppmv of NO gas. Transcriptomic, proteomic and metabolomic analyses were used to identify non-symbiotic haemoglobin proteins as key components of the NO-fixing process. Overexpressing non-symbiotic haemoglobin 1 or 2 genes resulted in fourfold higher nitrate levels in these plants compared with NO-treated wild-type. Correspondingly, rosettes size and weight, vegetative shoot thickness and seed yield were 25, 40, 30, and 50% higher, respectively, than in wild-type plants. Fumigation with 250 ppbv 15 NO confirmed the importance of non-symbiotic haemoglobin 1 and 2 for the NO-fixation pathway, and we calculated a daily uptake for non-symbiotic haemoglobin 2 overexpressing plants of 250 mg N/kg dry weight. This mechanism is probably important under conditions with limited N supply via the soil. Moreover, the plant-based NO uptake lowers the concentration of insanitary atmospheric NOx, and in this context, NO-fixation can be beneficial to air quality. © 2016 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  13. Efficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli.

    PubMed

    Roger, Magali; Brown, Fraser; Gabrielli, William; Sargent, Frank

    2018-01-08

    Hydrogen-dependent reduction of carbon dioxide to formic acid offers a promising route to greenhouse gas sequestration, carbon abatement technologies, hydrogen transport and storage, and the sustainable generation of renewable chemical feedstocks [1]. The most common approach to performing direct hydrogenation of CO 2 to formate is to use chemical catalysts in homogeneous or heterogeneous reactions [2]. An alternative approach is to use the ability of living organisms to perform this reaction biologically. However, although CO 2 fixation pathways are widely distributed in nature, only a few enzymes have been described that have the ability to perform the direct hydrogenation of CO 2 [3-5]. The formate hydrogenlyase (FHL) enzyme from Escherichia coli normally oxidizes formic acid to carbon dioxide and couples that reaction directly to the reduction of protons to molecular hydrogen [6]. In this work, the reverse reaction of FHL is unlocked. It is established that FHL can operate as a highly efficient hydrogen-dependent carbon dioxide reductase when gaseous CO 2 and H 2 are placed under pressure (up to 10 bar). Using intact whole cells, the pressurized system was observed to rapidly convert 100% of gaseous CO 2 to formic acid, and >500 mM formate was observed to accumulate in solution. Harnessing the reverse reaction has the potential to allow the versatile E. coli system to be employed as an exciting new carbon capture technology or as a cell factory dedicated to formic acid production, which is a commodity in itself as well as a feedstock for the synthesis of other valued chemicals. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Fractures of the capitellum--a comparison of two fixation methods.

    PubMed

    Poynton, A R; Kelly, I P; O'Rourke, S K

    1998-06-01

    Isolated capitellar fractures are rare, accounting for only 1 per cent of all elbow fractures (Bryan and Morrey, The Elbow and its Disorders, 1985). Many different fixation methods have been described but no series has compared these treatment modalities because of the rarity of these fractures. This paper compares the outcome of two types of fixation of type I capitellar fractures. Group one (n = 6) had open reduction and Kirschner wire fixation while group two (n = 6) had open reduction and Herbert screw fixation. Both groups were compared clinically, functionally and radiographically. We found that Herbert screw fixation enabled earlier mobilization and a better functional outcome.

  15. Visual-Vestibular Conflict Detection Depends on Fixation.

    PubMed

    Garzorz, Isabelle T; MacNeilage, Paul R

    2017-09-25

    Visual and vestibular signals are the primary sources of sensory information for self-motion. Conflict among these signals can be seriously debilitating, resulting in vertigo [1], inappropriate postural responses [2], and motion, simulator, or cyber sickness [3-8]. Despite this significance, the mechanisms mediating conflict detection are poorly understood. Here we model conflict detection simply as crossmodal discrimination with benchmark performance limited by variabilities of the signals being compared. In a series of psychophysical experiments conducted in a virtual reality motion simulator, we measure these variabilities and assess conflict detection relative to this benchmark. We also examine the impact of eye movements on visual-vestibular conflict detection. In one condition, observers fixate a point that is stationary in the simulated visual environment by rotating the eyes opposite head rotation, thereby nulling retinal image motion. In another condition, eye movement is artificially minimized via fixation of a head-fixed fixation point, thereby maximizing retinal image motion. Visual-vestibular integration performance is also measured, similar to previous studies [9-12]. We observe that there is a tradeoff between integration and conflict detection that is mediated by eye movements. Minimizing eye movements by fixating a head-fixed target leads to optimal integration but highly impaired conflict detection. Minimizing retinal motion by fixating a scene-fixed target improves conflict detection at the cost of impaired integration performance. The common tendency to fixate scene-fixed targets during self-motion [13] may indicate that conflict detection is typically a higher priority than the increase in precision of self-motion estimation that is obtained through integration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Nodule-enhanced expression of a sucrose phosphate synthase gene member (MsSPSA) has a role in carbon and nitrogen metabolism in the nodules of alfalfa (Medicago sativa L.)

    PubMed Central

    Aleman, Lorenzo; Ortega, Jose Luis; Martinez-Grimes, Martha; Seger, Mark; Holguin, Francisco Omar; Uribe, Diana J.; Garcia-Ibilcieta, David

    2013-01-01

    Sucrose phosphate synthase (SPS) catalyzes the first step in the synthesis of sucrose in photosynthetic tissues. We characterized the expression of three different isoforms of SPS belonging to two different SPS gene families in alfalfa (Medicago sativa L.), a previously identified SPS (MsSPSA) and two novel isoforms belonging to class B (MsSPSB and MsSPSB3). While MsSPSA showed nodule-enhanced expression, both MsSPSB genes exhibited leaf-enhanced expression. Alfalfa leaf and nodule SPS enzymes showed differences in chromatographic and electrophoretic migration and differences in Vmax and allosteric regulation. The root nodules in legume plants are a strong sink for photosynthates with its need for ATP, reducing power and carbon skeletons for dinitrogen fixation and ammonia assimilation. The expression of genes encoding SPS and other key enzymes in sucrose metabolism, sucrose phosphate phosphatase and sucrose synthase, was analyzed in the leaves and nodules of plants inoculated with Sinorhizobium meliloti. Based on the expression pattern of these genes, the properties of the SPS isoforms and the concentration of starch and soluble sugars in nodules induced by a wild type and a nitrogen fixation deficient strain, we propose that SPS has an important role in the control of carbon flux into different metabolic pathways in the symbiotic nodules. PMID:19898977

  17. Fracture healing using degradable magnesium fixation plates and screws.

    PubMed

    Chaya, Amy; Yoshizawa, Sayuri; Verdelis, Kostas; Noorani, Sabrina; Costello, Bernard J; Sfeir, Charles

    2015-02-01

    Internal bone fixation devices made with permanent metals are associated with numerous long-term complications and may require removal. We hypothesized that fixation devices made with degradable magnesium alloys could provide an ideal combination of strength and degradation, facilitating fracture fixation and healing while eliminating the need for implant removal surgery. Fixation plates and screws were machined from 99.9% pure magnesium and compared with titanium devices in a rabbit ulnar fracture model. Magnesium device degradation and the effect on fracture healing and bone formation were assessed after 4 weeks. Fracture healing with magnesium device fixation was compared with that of titanium devices using qualitative histologic analysis and quantitative histomorphometry. Micro-computed tomography showed device degradation after 4 weeks in vivo. In addition, 2-dimensional micro-computed tomography slices and histologic staining showed that magnesium degradation did not inhibit fracture healing or bone formation. Histomorphology showed no difference in bone-bridging fractures fixed with magnesium and titanium devices. Interestingly, abundant new bone was formed around magnesium devices, suggesting a connection between magnesium degradation and bone formation. Our results show potential for magnesium fixation devices in a loaded fracture environment. Furthermore, these results suggest that magnesium fixation devices may enhance fracture healing by encouraging localized new bone formation. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  18. 21 CFR 888.3040 - Smooth or threaded metallic bone fixation fastener.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Smooth or threaded metallic bone fixation fastener... metallic bone fixation fastener. (a) Identification. A smooth or threaded metallic bone fixation fastener..., slotted head on the end. It may be used for fixation of bone fractures, for bone reconstructions, as a...

  19. 21 CFR 888.3040 - Smooth or threaded metallic bone fixation fastener.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Smooth or threaded metallic bone fixation fastener... metallic bone fixation fastener. (a) Identification. A smooth or threaded metallic bone fixation fastener..., slotted head on the end. It may be used for fixation of bone fractures, for bone reconstructions, as a...

  20. 21 CFR 888.3040 - Smooth or threaded metallic bone fixation fastener.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Smooth or threaded metallic bone fixation fastener... metallic bone fixation fastener. (a) Identification. A smooth or threaded metallic bone fixation fastener..., slotted head on the end. It may be used for fixation of bone fractures, for bone reconstructions, as a...

  1. 21 CFR 888.3040 - Smooth or threaded metallic bone fixation fastener.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Smooth or threaded metallic bone fixation fastener... metallic bone fixation fastener. (a) Identification. A smooth or threaded metallic bone fixation fastener..., slotted head on the end. It may be used for fixation of bone fractures, for bone reconstructions, as a...

  2. 21 CFR 888.3040 - Smooth or threaded metallic bone fixation fastener.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Smooth or threaded metallic bone fixation fastener... metallic bone fixation fastener. (a) Identification. A smooth or threaded metallic bone fixation fastener..., slotted head on the end. It may be used for fixation of bone fractures, for bone reconstructions, as a...

  3. Complications associated with operative fixation of acute midshaft clavicle fractures.

    PubMed

    Asadollahi, Saeed; Hau, Raphael C; Page, Richard S; Richardson, Martin; Edwards, Elton R

    2016-06-01

    The aim of this study was to review the complication rate and profile associated with surgical fixation of acute midshaft clavicle fracture in a large cohort of patients treated in a level I trauma centre. We identified all patients who underwent surgical treatment of acute midshaft clavicle fracture between 2002 and 2010. The study group consisted of 138 fractures (134 patients) and included 107 men (78%) and 31 women (22%); the median age of 35 years (interquartile range (IQR) 24-45). The most common mechanism of injury was a road traffic accident (78%). Sixty percent (n=83) had an injury severity score of ≥15 indicating major trauma. The most common fracture type (75%) was simple or wedge comminuted (2B1) according to the Edinburgh classification. The median interval between the injury and operation was 3 days (IQR 1-6). Plate fixation was performed in 110 fractures (80%) and intramedullary fixation was performed in 28 fractures (20%). There were 85 men and 25 women in the plate fixation group with median age of 35 years (IQR 25-45) There were 22 men and six women in the intramedullary fixation group with median age of 31 years (IQR 24-42 years). Statistical analysis was performed using independent sample t test, Mann Whitney test, and Chi square test. Significant P-value was <0.05. The overall incidence of complication was 14.5% (n=20). The overall nonunion rate was 6%. Postoperative wound infection occurred in 3.6% of cases. The incidence of complication associated with plate fixation was 10% (11 of 110 cases) compared to 32% associated with intramedullary fixation (nine of 28 cases; P=0.003). Thirty-five percent of complications were related to inadequate surgical technique and were potentially avoidable. Symptomatic hardware requiring removal occurred in 23% (n=31) of patients. Symptomatic metalware was more frequent after plate fixation compared to intramedullary fixation (26% vs 7%, P=0.03). Intramedullary fixation of midshaft clavicle fracture is

  4. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat

    NASA Technical Reports Server (NTRS)

    Canfield, Donald E.; Des Marais, David J.

    1993-01-01

    Complete budgets for carbon and oxygen have been constructed for cyanobacterial mats dominated by Microcoleus chthonoplastes from the evaporating ponds of a salt works. We infer from the data the various sinks for O2 as well as the sources of carbon for primary production. Although seasonal variability exists, a major percentage of the O2 produced during the day did not diffuse out of the mat but was used within the mat to oxidize both organic carbon and the sulfide produced by sulfate reduction. At night, most of the O2 that diffused into the mat was used to oxidize sulfide, with O2 respiration of minor importance. During the day, the internal mat processes of sulfate reduction and O2 respiration generated as much or more inorganic carbon (DIC) for primary production as diffusion into the mat. Oxygenic photosynthesis was the most important process of carbon fixation. At night, the DIC lost from the mat was mostly from sulfate reduction. Elemental fluxes across the mat/brine interface indicated that carbon with an oxidation state of greater than zero was taken up by the mat during the day and liberated from the mat at night. Overall, carbon with an average oxidation state of near zero accumulated in the mat. Both carbon fixation and carbon oxidation rates varied with temperature by a similar amount.

  5. [Results of femoral lengthening over an intramedullary nail and external fixator].

    PubMed

    Jasiewicz, Barbara; Kacki, Wojciech; Tesiorowski, Maciej; Potaczek, Tomasz

    2008-01-01

    Current techniques of operative limb lengthening usually are based on distraction osteogenesis. One of the techniques is limb lengthening over an intramedullary nail. The goal of this study is to evaluate the results of femoral lengthening over an intramedullary nail. Between 1999 and 200619 femoral "over nail" lengthenings were performed. There were 7 males and 12 females. Mean patients' age at surgery was 15.8 years, and mean initial femoral shortening was 5.1 cm. Operative technique consisted of one-stage implantation of intramedullary nail and external fixator. Ilizarov apparatus was used in 9 patients, monolateral fixator in 10 cases--ORTHOFIX in 9 patients, Wagner fixator--in 1 patient. Intramedullary nail was locked proximally with screws or Schanz pins from external fixator. After distraction phase, external fixator was removed and distal locking screws were applied. Evaluation criteria: obtained lengthening, time of external fixator, treatment time, healing index, external fixation index, range of motion in hip and knee joints and complications according to Paley. The mean lengthening was 4.6 cm, and mean distraction time was 66.6 days. Mean time of external fixation was 115.5 days, and external fixation index was 26.2 days for centimeter. Healing index was 36.9 days for centimeter. In cases with monolateral fixator, healing index did not differ with the whole group. During treatment 18 complications occurred, for a rate of 0.9 complication per segment. Lengthening over an intramedullary nail reduces the time of external fixator. Over nail femoral lengthening can prevent axis deviation following regenerate bending. Complication rate is similar to lengthenings with the classic Ilizarov technique. There are no differences in the treatment time in relation to the type of external fixator.

  6. Quantification of net carbon flux from plastic greenhouse vegetable cultivation: a full carbon cycle analysis.

    PubMed

    Wang, Yan; Xu, Hao; Wu, Xu; Zhu, Yimei; Gu, Baojing; Niu, Xiaoyin; Liu, Anqin; Peng, Changhui; Ge, Ying; Chang, Jie

    2011-05-01

    Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha(-1) yr(-1) for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Rerouting Carbon Flux To Enhance Photosynthetic Productivity

    PubMed Central

    Ducat, Daniel C.; Avelar-Rivas, J. Abraham; Way, Jeffrey C.

    2012-01-01

    The bioindustrial production of fuels, chemicals, and therapeutics typically relies upon carbohydrate inputs derived from agricultural plants, resulting in the entanglement of food and chemical commodity markets. We demonstrate the efficient production of sucrose from a cyanobacterial species, Synechococcus elongatus, heterologously expressing a symporter of protons and sucrose (cscB). cscB-expressing cyanobacteria export sucrose irreversibly to concentrations of >10 mM without culture toxicity. Moreover, sucrose-exporting cyanobacteria exhibit increased biomass production rates relative to wild-type strains, accompanied by enhanced photosystem II activity, carbon fixation, and chlorophyll content. The genetic modification of sucrose biosynthesis pathways to minimize competing glucose- or sucrose-consuming reactions can further improve sucrose production, allowing the export of sucrose at rates of up to 36.1 mg liter−1 h illumination−1. This rate of production exceeds that of previous reports of targeted, photobiological production from microbes. Engineered S. elongatus produces sucrose in sufficient quantities (up to ∼80% of total biomass) such that it may be a viable alternative to sugar synthesis from terrestrial plants, including sugarcane. PMID:22307292

  8. Rerouting Carbon Flux To Enhance Photosynthetic Productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducat, DC; Avelar-Rivas, JA; Way, JC

    2012-03-23

    The bioindustrial production of fuels, chemicals, and therapeutics typically relies upon carbohydrate inputs derived from agricultural plants, resulting in the entanglement of food and chemical commodity markets. We demonstrate the efficient production of sucrose from a cyanobacterial species, Synechococcus elongatus, heterologously expressing a symporter of protons and sucrose (cscB). cscB-expressing cyanobacteria export sucrose irreversibly to concentrations of >10 mM without culture toxicity. Moreover, sucrose-exporting cyanobacteria exhibit increased biomass production rates relative to wild-type strains, accompanied by enhanced photosystem II activity, carbon fixation, and chlorophyll content. The genetic modification of sucrose biosynthesis pathways to minimize competing glucose-or sucrose-consuming reactions can furthermore » improve sucrose production, allowing the export of sucrose at rates of up to 36.1 mg liter(-1) h illumination(-1). This rate of production exceeds that of previous reports of targeted, photobiological production from microbes. Engineered S. elongatus produces sucrose in sufficient quantities (up to similar to 80% of total biomass) such that it may be a viable alternative to sugar synthesis from terrestrial plants, including sugarcane.« less

  9. Influence of Calcium Carbonate on Cobalt Phytoavailability in Fluvo-aquic Soil

    NASA Astrophysics Data System (ADS)

    Wang, Mengyuan; Liu, Borui; Ma, Yufei; Xue, Qianhui; Huang, Qing

    2017-12-01

    In order to study the efficacy of calcium carbonate for cobalt (Co) fixation, as well as its influence on chemical speciation of Co in fluvo-aquic soil, pakchoies were planted in the soil with different quantities of exogenous Co and calcium carbonate. Co concentrations in the mature plant shoots were analyzed, and the chemical speciation of Co were detected with the Tessier five-step sequential extraction. The results showed that the Co concentration in plants tended to decrease first and then get higher with the concentration of calcium carbonate increasing (0-12g/kg) in soil (P < 0.05). The proportion of Co in the exchangeable form in the soil followed the similar tendency (P < 0.05), which might transform from the exchangeable form into the carbonate-associated and organic-associated forms. A regression analysis showed that when the concentrations of calcium carbonate were in the range of 5.0 to 7.5 g/kg, Co concentration in the plant reached to the lowest point, while the proportion of Co in the exchangeable form reached the minimum. In conclusion, to get the optimum effect, the dosage of calcium carbonate should be kept in the range of 5.0 to 7.5 g/kg when it is applied to Co fixation.

  10. Early Comparative Outcomes of Carbon Fiber Reinforced Polymer Plate in the Fixation of Distal Femur Fractures.

    PubMed

    Mitchell, Phillip M; Lee, Adam K; Collinge, Cory A; Ziran, Bruce H; Hartley, Kate G; Jahangir, A Alex

    2018-05-16

    To evaluate the early clinical results of distal femur fractures treated with carbon fiber reinforced - polyetheretherketone (CFR-PEEK) plates compared to stainless steel (SS) lateral locking plates. Retrospective comparative cohort study SETTING:: ACS Level I trauma center. Twenty-two patients (11 SS, 11 CFR-PEEK) with closed distal femur fractures treated by a single surgeon over a 6-year period. Nonunion, hardware failure, reoperation, time to full weight bearing, and time ` union were assessed. The CFR-PEEK cohort was on average older (71 vs. 57 years, p=0.03) and more likely to have diabetes (p=0.02). Nonunion was diagnosed in 4/11 (36%) patients in the SS group and 1/11 (9%) patients in the CFR-PEEK group (p=0.12). Hardware failure occurred in two SS patients (18%) compared to none in the CFR-PEEK group (p=0.14). Time to full weight bearing was similar between groups occurring at 9.9 weeks and 12.4 weeks in the CFR-PEEK and SS groups, respectively (p=0.23). Time to radiographic union averaged 12.4 weeks in the SS group and 18.7 weeks in the CFR-PEEK group (p=0.26). There were 4 reoperations in the SS group and one in the CFR-PEEK group (p=0.12). CFR-PEEK plates show encouraging short-term results in the treatment of distal femur fractures with a comparable nonunion, reoperation, and hardware failure rates to those treated with SS plates. This data suggests CFR-PEEK plates may be a viable alternative to SS plates in fixation of these fractures. Level III.

  11. Improper tube fixation causing a leaky cuff.

    PubMed

    Gupta, Babita; Farooque, Kamran; Jain, Divya; Kapoor, Rakesh

    2010-04-01

    Leaking endotracheal tube cuffs are common problems in intensive care units. We report a case wherein the inflation tube was damaged by the adhesive plaster used for tube fixation and resulted in leaking endotracheal tube cuff. We also give some suggestions regarding the tube fixation and some remedial measures for damaged inflation system.

  12. Public Figure Fixation: Cautionary Findings for Mental Health Practitioners.

    PubMed

    Pathé, Michele T; Lowry, Timothy J; Haworth, Debbie J; Winterbourne, Paul; Day, Leanne

    2016-09-01

    Research in western nations has found that pathologically fixated individuals pose a risk of serious harm to public figures, and that many of these fixated persons are mentally ill and require treatment. Over the past decade, integrated fixated threat assessment agencies have been established in western Europe and Australia to specifically assess and manage this group. The current study examines 400 consecutive referrals to a fixated threat assessment center in Queensland, Australia, with a particular focus on the mental health and risk profile of those who engage in inappropriate contact with public office holders. It considers the high proportion of delusional disorders in this cohort, and their identification and management by psychiatric services. The authors conclude with a discussion of the mental health response to this group and impediments to mitigating the risks posed by fixated persons. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Fixation Strategies For Retinal Immunohistochemistry

    PubMed Central

    Stradleigh, Tyler W.; Ishida, Andrew T.

    2015-01-01

    Immunohistochemical and ex vivo anatomical studies have provided many glimpses of the variety, distribution, and signaling components of vertebrate retinal neurons. The beauty of numerous images published to date, and the qualitative and quantitative information they provide, indicate that these approaches are fundamentally useful. However, obtaining these images entailed tissue handling and exposure to chemical solutions that differ from normal extracellular fluid in composition, temperature, and osmolarity. Because the differences are large enough to alter intercellular and intracellular signaling in neurons, and because retinae are susceptible to crush, shear, and fray, it is natural to wonder if immunohistochemical and anatomical methods disturb or damage the cells they are designed to examine. Tissue fixation is typically incorporated to guard against this damage and is therefore critically important to the quality and significance of the harvested data. Here, we describe mechanisms of fixation; advantages and disadvantages of using formaldehyde and glutaraldehyde as fixatives during immunohistochemistry; and modifications of widely used protocols that have recently been found to improve cell shape preservation and immunostaining patterns, especially in proximal retinal neurons. PMID:25892361

  14. Changes in biomolecular profile in a single nucleolus during cell fixation.

    PubMed

    Kuzmin, Andrey N; Pliss, Artem; Prasad, Paras N

    2014-11-04

    Fixation of biological sample is an essential technique applied in order to "freeze" in time the intracellular molecular content. However, fixation induces changes of the cellular molecular structure, which mask physiological distribution of biomolecules and bias interpretation of results. Accurate, sensitive, and comprehensive characterization of changes in biomolecular composition, occurring during fixation, is crucial for proper analysis of experimental data. Here we apply biomolecular component analysis for Raman spectra measured in the same nucleoli of HeLa cells before and after fixation by either formaldehyde solution or by chilled ethanol. It is found that fixation in formaldehyde does not strongly affect the Raman spectra of nucleolar biomolecular components, but may significantly decrease the nucleolar RNA concentration. At the same time, ethanol fixation leads to a proportional increase (up to 40%) in concentrations of nucleolar proteins and RNA, most likely due to cell shrinkage occurring in the presence of coagulant fixative. Ethanol fixation also triggers changes in composition of nucleolar proteome, as indicated by an overall reduction of the α-helical structure of proteins and increase in the concentration of proteins containing the β-sheet conformation. We conclude that cross-linking fixation is a more appropriate protocol for mapping of proteins in situ. At the same time, ethanol fixation is preferential for studies of RNA-containing macromolecules. We supplemented our quantitative Raman spectroscopic measurements with mapping of the protein and lipid macromolecular groups in live and fixed cells using coherent anti-Stokes Raman scattering nonlinear optical imaging.

  15. Hot topics and controversies in arthroplasty: cementless femoral fixation in elderly patients.

    PubMed

    Dutton, Andrew; Rubash, Harry E

    2008-01-01

    Cementless femoral fixation has been established as the gold standard for hip arthroplasty in young patients because of its exceptional longevity. Because older Americans are living longer and staying active, cementless femoral fixation for hip arthroplasty should be considered in all patients who have good bone quality. Numerous studies have shown excellent results using cementless fixation for hip arthroplasty in elderly patients. Histologic analysis, radiographic review, and dual-energy x-ray absorptiometry have shown solid osseointegration for biologic fixation and minimal bone loss. Cementless fixation provides superb functional outcomes with results comparable to those achieved using cemented fixation for hip arthroplasty. Additional advantages of cementless femoral fixation include shorter surgical times and substantial savings in health care costs.

  16. Design and Optimization of Resorbable Silk Internal Fixation Devices

    NASA Astrophysics Data System (ADS)

    Haas, Dylan S.

    Limitations of current material options for internal fracture fixation devices have resulted in a large gap between user needs and hardware function. Metal systems offer robust mechanical strength and ease of implantation but require secondary surgery for removal and/or result in long-term complications (infection, palpability, sensitivity, etc.). Current resorbable devices eliminate the need for second surgery and long-term complications but are still associated with negative host response as well as limited functionality and more difficult implantation. There is a definitive need for orthopedic hardware that is mechanically capable of immediate fracture stabilization and fracture fixation during healing, can safely biodegrade while allowing complete bone remodeling, can be resterilized for reuse, and is easily implantable (self-tapping). Previous work investigated the use of silk protein to produce resorbable orthopedic hardware for non- load bearing fracture fixation. In this study, silk orthopedic hardware was further investigated and optimized in order to better understand the ability of silk as a fracture fixation system and more closely meet the unfulfilled market needs. Solvent-based and aqueous-based silk processing formulations were cross-linked with methanol to induce beta sheet structure, dried, autoclaved and then machined to the desired device/geometry. Silk hardware was evaluated for dry, hydrated and fatigued (cyclic) mechanical properties, in vitro degradation, resterilization, functionalization with osteoinductive molecules and implantation technique for fracture fixation. Mechanical strength showed minor improvements from previous results, but remains comparable to current resorbable fixation systems with the advantages of self-tapping ability for ease of implantation, full degradation in 10 months, ability to be resterilized and reused, and ability to release molecules for osteoinudction. In vivo assessment confirmed biocompatibility, showed

  17. N2 fixation as a dominant new N source in the western tropical South Pacific Ocean (OUTPACE cruise)

    NASA Astrophysics Data System (ADS)

    Caffin, Mathieu; Moutin, Thierry; Foster, Rachel Ann; Bouruet-Aubertot, Pascale; Michelangelo Doglioli, Andrea; Berthelot, Hugo; Guieu, Cécile; Grosso, Olivier; Helias-Nunige, Sandra; Leblond, Nathalie; Gimenez, Audrey; Petrenko, Anne Alexandra; de Verneil, Alain; Bonnet, Sophie

    2018-05-01

    We performed nitrogen (N) budgets in the photic layer of three contrasting stations representing different trophic conditions in the western tropical South Pacific (WTSP) Ocean during austral summer conditions (February-March 2015). Using a Lagrangian strategy, we sampled the same water mass for the entire duration of each long-duration (5 days) station, allowing us to consider only vertical exchanges for the budgets. We quantified all major vertical N fluxes both entering (N2 fixation, nitrate turbulent diffusion, atmospheric deposition) and leaving the photic layer (particulate N export). The three stations were characterized by a strong nitracline and contrasted deep chlorophyll maximum depths, which were lower in the oligotrophic Melanesian archipelago (MA, stations LD A and LD B) than in the ultra-oligotrophic waters of the South Pacific Gyre (SPG, station LD C). N2 fixation rates were extremely high at both LD A (593 ± 51 µmol N m-2 d-1) and LD B (706 ± 302 µmol N m-2 d-1), and the diazotroph community was dominated by Trichodesmium. N2 fixation rates were lower (59 ± 16 µmol N m-2 d-1) at LD C, and the diazotroph community was dominated by unicellular N2-fixing cyanobacteria (UCYN). At all stations, N2 fixation was the major source of new N (> 90 %) before atmospheric deposition and upward nitrate fluxes induced by turbulence. N2 fixation contributed circa 13-18 % of primary production in the MA region and 3 % in the SPG water and sustained nearly all new primary production at all stations. The e ratio (e ratio = particulate carbon export / primary production) was maximum at LD A (9.7 %) and was higher than the e ratio in most studied oligotrophic regions (< 5 %), indicating a high efficiency of the WTSP to export carbon relative to primary production. The direct export of diazotrophs assessed by qPCR of the nifH gene in sediment traps represented up to 30.6 % of the PC export at LD A, while their contribution was 5 and < 0.1 % at LD B and LD C

  18. Carbohydrate Partitioning and the Capacity of Apparent Nitrogen Fixation of Soybean Plants Grown Outdoors

    PubMed Central

    Millhollon, Eddie P.; Williams, Larry E.

    1986-01-01

    Patterns of leaf carbohydrate partitioning and nodule activity in soybean plants grown under natural conditions and the irradiance level required to produce sufficient carbohydrate to obtain maximum rates of apparent N2-fixation (acetylene reduction) were measured. Soybean plants, grown outdoors, maintained constant levels of leaf soluble sugars while leaf starch pools varied diurnally. When root temperature was kept at 25°C and shoot temperature was allowed to vary with ambient temperature, the plants maintained constant rates of apparent N2-fixation and root+nodule respiration. Results from a second experiment, in which the entire plant was kept at 25°C, were similar to those of the first experiment. Shoot carbon exchange rate of plants from the second experiment was light saturated at photosynthetic photon flux densities between 400 and 600 micromoles per square meter per second. When plants were subjected to an extended 40-hour dark period to deplete carbohydrate reserves, apparent N2-fixation was unaffected during the first 10 hours of darkness, decreased rapidly between 10 and 16 hours, and plateaued at one-third the initial level thereafter. After the extended dark period, plants were exposed to photosynthetic photon flux density from 200 to 1000 micromoles per square meter per second for 10 hours. Photosynthetic photon flux densities of 200 micromoles per square meter per second and greater resulted in maximum leaf soluble sugar content and nodule activity. Leaf starch content increased with irradiance levels up to 600 micromoles per square meter per second with no further increase at higher irradiance levels. Results presented here indicate that maximum nodule activity occurs at irradiance levels that do not saturate the plant's photosynthetic apparatus. This response would allow for maximum N2-fixation to occur in a nodulated legume during periods of inclement weather. PMID:16664789

  19. Symphyseal internal rod fixation versus standard plate fixation for open book pelvic ring injuries: a biomechanical study.

    PubMed

    Osterhoff, G; Tiziani, S; Hafner, C; Ferguson, S J; Simmen, H-P; Werner, C M L

    2016-04-01

    This study investigates the biomechanical stability of a novel technique for symphyseal internal rod fixation (SYMFIX) using a multiaxial spinal screw-rod implant that allows for direct reduction and can be performed percutaneously and compares it to standard internal plate fixation of the symphysis. Standard plate fixation (PLATE, n = 6) and the SYMFIX (n = 6) were tested on pelvic composite models with a simulated open book injury using a universal testing machine. On a previously described testing setup, 500 consecutive cyclic loadings were applied with sinusoidal resulting forces of 200 N. Displacement under loading was measured using an optoelectronic camera system and construct rigidity was calculated as a function of load and displacement. The rigidity of the PLATE construct was 122.8 N/mm (95 % CI: 110.7-134.8), rigidity of the SYMFIX construct 119.3 N/mm (95 % CI: 105.8-132.7). Displacement in the symphyseal area was mean 0.007 mm (95 % CI: 0.003-0.012) in the PLATE group and 0.021 mm (95 % CI: 0.011-0.031) in the SYMFIX group. Displacement in the sacroiliac joint area was mean 0.156 mm (95 % CI: 0.051-0.261) in the PLATE group and 0.120 mm (95 % CI: 0.039-0.201) in the SYMFIX group. In comparison to standard internal plate fixation for the stabilization of open book pelvic ring injuries, symphyseal internal rod fixation using a multiaxial spinal screw-rod implant in vitro shows a similar rigidity and comparable low degrees of displacement.

  20. Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A

    PubMed Central

    2010-01-01

    Background The archaeon, Methanosarcina acetivorans strain C2A forms methane, a potent greenhouse gas, from a variety of one-carbon substrates and acetate. Whereas the biochemical pathways leading to methane formation are well understood, little is known about the expression of the many of the genes that encode proteins needed for carbon flow, electron transfer and/or energy conservation. Quantitative transcript analysis was performed on twenty gene clusters encompassing over one hundred genes in M. acetivorans that encode enzymes/proteins with known or potential roles in substrate conversion to methane. Results The expression of many seemingly "redundant" genes/gene clusters establish substrate dependent control of approximately seventy genes for methane production by the pathways for methanol and acetate utilization. These include genes for soluble-type and membrane-type heterodisulfide reductases (hdr), hydrogenases including genes for a vht-type F420 non-reducing hydrogenase, molybdenum-type (fmd) as well as tungsten-type (fwd) formylmethanofuran dehydrogenases, genes for rnf and mrp-type electron transfer complexes, for acetate uptake, plus multiple genes for aha- and atp-type ATP synthesis complexes. Analysis of promoters for seven gene clusters reveal UTR leaders of 51-137 nucleotides in length, raising the possibility of both transcriptional and translational levels of control. Conclusions The above findings establish the differential and coordinated expression of two major gene families in M. acetivorans in response to carbon/energy supply. Furthermore, the quantitative mRNA measurements demonstrate the dynamic range for modulating transcript abundance. Since many of these gene clusters in M. acetivorans are also present in other Methanosarcina species including M. mazei, and in M. barkeri, these findings provide a basis for predicting related control in these environmentally significant methanogens. PMID:20178638

  1. Rigid fixation of facial fractures in children.

    PubMed

    Koltai, P J; Rabkin, D; Hoehn, J

    1995-01-01

    This article presents a retrospective analysis of a selective use of rigid fixation among 62 children with facial fractures, treated at a Level I trauma center over a 5-year period (1986-1991). There were 21 mandible fractures, 11 orbital fractures, 11 zygomaticomalar complex fractures, 7 nasal fractures, 5 maxillary fractures, 3 pan-facial fractures, 2 nasal-orbital-ethmoidal complex fractures, and 2 frontal sinus fractures. Only 18 children had rigid fixation of their injuries. Complications of Le Fort upper facial fractures repaired with rigid fixation involved perioperative sinusitis; one case required oral antibiotics, the other ethmoidectomy and maxillary antrostomy. One child with a Le Fort fracture had delayed exposure of a zygomaticomalar buttress plate, which required surgical removal. Permanent enophthalmos occurred in two children with Le Fort fractures. The authors conclude that traditional conservative management is appropriate in most cases. However, in children aged 13 and older with mandible fractures and children with complex mid- and upper facial fractures, a judicious use of rigid fixation has advantages over the traditional techniques.

  2. Antigen Masking During Fixation and Embedding, Dissected

    PubMed Central

    Scalia, Carla Rossana; Boi, Giovanna; Bolognesi, Maddalena Maria; Riva, Lorella; Manzoni, Marco; DeSmedt, Linde; Bosisio, Francesca Maria; Ronchi, Susanna; Leone, Biagio Eugenio; Cattoretti, Giorgio

    2016-01-01

    Antigen masking in routinely processed tissue is a poorly understood process caused by multiple factors. We sought to dissect the effect on antigenicity of each step of processing by using frozen sections as proxies of the whole tissue. An equivalent extent of antigen masking occurs across variable fixation times at room temperature. Most antigens benefit from longer fixation times (>24 hr) for optimal detection after antigen retrieval (AR; for example, Ki-67, bcl-2, ER). The transfer to a graded alcohol series results in an enhanced staining effect, reproduced by treating the sections with detergents, possibly because of a better access of the polymeric immunohistochemical detection system to tissue structures. A second round of masking occurs upon entering the clearing agent, mostly at the paraffin embedding step. This may depend on the non-freezable water removal. AR fully reverses the masking due both to the fixation time and the paraffin embedding. AR itself destroys some epitopes which do not survive routine processing. Processed frozen sections are a tool to investigate fixation and processing requirements for antigens in routine specimens. PMID:27798289

  3. In‐loop flow [11C]CO2 fixation and radiosynthesis of N,N′‐[11C]dibenzylurea

    PubMed Central

    Downey, Joseph; Bongarzone, Salvatore; Hader, Stefan

    2017-01-01

    Cyclotron‐produced carbon‐11 is a highly valuable radionuclide for the production of positron emission tomography (PET) radiotracers. It is typically produced as relatively unreactive carbon‐11 carbon dioxide ([11C]CO2), which is most commonly converted into a more reactive precursor for synthesis of PET radiotracers. The development of [11C]CO2 fixation methods has more recently enabled the direct radiolabelling of a diverse array of structures directly from [11C]CO2, and the advantages afforded by the use of a loop‐based system used in 11C‐methylation and 11C‐carboxylation reactions inspired us to apply the [11C]CO2 fixation “in‐loop.” In this work, we developed and investigated a new ethylene tetrafluoroethylene (ETFE) loop‐based [11C]CO2 fixation method, enabling the fast and efficient, direct‐from‐cyclotron, in‐loop trapping of [11C]CO2 using mixed DBU/amine solutions. An optimised protocol was integrated into a proof‐of‐concept in‐loop flow radiosynthesis of N,N′‐[11C]dibenzylurea. This reaction exhibited an average 78% trapping efficiency and a crude radiochemical purity of 83% (determined by radio‐HPLC), giving an overall nonisolated radiochemical yield of 72% (decay‐corrected) within just 3 minutes from end of bombardment. This proof‐of‐concept reaction has demonstrated that efficient [11C]CO2 fixation can be achieved in a low‐volume (150 μL) ETFE loop and that this can be easily integrated into a rapid in‐loop flow radiosynthesis of carbon‐11–labelled products. This new in‐loop methodology will allow fast radiolabelling reactions to be performed using cheap/disposable ETFE tubing setup (ideal for good manufacturing practice production) thereby contributing to the widespread usage of [11C]CO2 trapping/fixation reactions for the production of PET radiotracers. PMID:28977686

  4. Influence of light, temperature and salinity on dissolved organic carbon exudation rates in Zostera marina L.

    EPA Science Inventory

    Seagrass carbon budgets provide valuable insight on the minimum requirements needed to maintain this valuable resource. Carbon budgets are a balance between C fixation, storage and loss rates, most of which are well characterized. However, relatively few measurements of dissolv...

  5. Paraformaldehyde fixation of neutrophils for immunolabeling of granule antigens in cryoultrasections.

    PubMed

    Elliott, E; Dennison, C; Fortgens, P H; Travis, J

    1995-10-01

    Paraformaldehyde (PFA) fixation was optimized to facilitate the immobilization and labeling of multiple granule antigens, using short fixation regimens and cryoultramicrotomy of unembedded neutrophils (PMNs). In the optimal protocol, extraction of azurophil granule antigens (especially of the abundant elastase) was obviated by manipulating the polymeric state of PFA, and hence its rate of cross-linking, by altering its concentration and pH in a multistep process. Primary fixation conditions used (4% PFA, pH 8.0, 5 min) favor fixative penetration and rapid cross-linking. Stable cross-linking of the antigen was achieved in a secondary fixation step using conditions that favor larger, more cross-linking polymeric forms of PFA (8% PFA, pH 7.2, 15 min). Immobilization of granule antigens was enhanced by flotation of cut sections on fixative (8% PFA, pH 8.0) before labeling and by using post-labeling fixation with 1% glutaraldehyde. The optimized protocol facilitated immobilization and immunolabeling of elastase, myeloperoxidase, lactoferrin, and cathepsin D in highly hydrated, unembedded PMNs.

  6. Denitrification and Nitrogen Fixation in Alaskan Continental Shelf Sediments

    PubMed Central

    Haines, John R.; Atlas, Ronald M.; Griffiths, Robert P.; Morita, Richard Y.

    1981-01-01

    Rates of nitrogen fixation and denitrification were measured in Alaskan continental shelf sediments. In some regions, rates of nitrogen fixation and denitrification appeared to be equal; in other areas, rates were significantly different. Potential rates of denitrification were found to be limited primarily by the available nitrate substrate. Major regional differences in rates of denitrification were not statistically significant, but significant differences were found for nitrogen fixation rates in different regions of the Alaskan continental shelf. Estimated net losses of nitrogen from Bering Sea sediments were calculated as 1.8 × 1012 g of N/yr. Experimental exposure of continental shelf sediments to petroleum hydrocarbons reduced rates of nitrogen fixation and denitrification in some cases but not others. Long-term exposure was necessary before a reduction in nitrogen fixation rates was observed; unamended rates of denitrification but not potential denitrification rates (NO3− added) were depressed after exposure to hydrocarbons. PMID:16345716

  7. Regulation of Multiple Carbon Monoxide Consumption Pathways in Anaerobic Bacteria

    PubMed Central

    Techtmann, Stephen M.; Colman, Albert S.; Murphy, Michael B.; Schackwitz, Wendy S.; Goodwin, Lynne A.; Robb, Frank T.

    2011-01-01

    Carbon monoxide (CO), well known as a toxic gas, is increasingly recognized as a key metabolite and signaling molecule. Microbial utilization of CO is quite common, evidenced by the rapid escalation in description of new species of CO-utilizing bacteria and archaea. Carbon monoxide dehydrogenase (CODH), the protein complex that enables anaerobic CO-utilization, has been well-characterized from an increasing number of microorganisms, however the regulation of multiple CO-related gene clusters in single isolates remains unexplored. Many species are extraordinarily resistant to high CO concentrations, thriving under pure CO at more than one atmosphere. We hypothesized that, in strains that can grow exclusively on CO, both carbon acquisition via the CODH/acetyl CoA synthase complex and energy conservation via a CODH-linked hydrogenase must be differentially regulated in response to the availability of CO. The CO-sensing transcriptional activator, CooA is present in most CO-oxidizing bacteria. Here we present a genomic and phylogenetic survey of CODH operons and cooA genes found in CooA-containing bacteria. Two distinct groups of CooA homologs were found: one clade (CooA-1) is found in the majority of CooA-containing bacteria, whereas the other clade (CooA-2) is found only in genomes that encode multiple CODH clusters, suggesting that the CooA-2 might be important for cross-regulation of competing CODH operons. Recombinant CooA-1 and CooA-2 regulators from the prototypical CO-utilizing bacterium Carboxydothermus hydrogenoformans were purified, and promoter binding analyses revealed that CooA-1 specifically regulates the hydrogenase-linked CODH, whereas CooA-2 is able to regulate both the hydrogenase-linked CODH and the CODH/ACS operons. These studies point to the ability of dual CooA homologs to partition CO into divergent CO-utilizing pathways resulting in efficient consumption of a single limiting growth substrate available across a wide range of concentrations. PMID

  8. External fixation of tibial pilon fractures and fracture healing.

    PubMed

    Ristiniemi, Jukka

    2007-06-01

    Distal tibial fractures are rare and difficult to treat because the bones are subcutaneous. External fixation is commonly used, but the method often results in delayed union. The aim of the present study was to find out the factors that affect fracture union in tibial pilon fractures. For this purpose, prospective data collection of tibial pilon fractures was carried out in 1998-2004, resulting in 159 fractures, of which 83 were treated with external fixation. Additionally, 23 open tibial fractures with significant > 3 cm bone defect that were treated with a staged method in 2000-2004 were retrospectively evaluated. The specific questions to be answered were: What are the risk factors for delayed union associated with two-ring hybrid external fixation? Does human recombinant BMP-7 accelerate healing? What is the role of temporary ankle-spanning external fixation? What is the healing potential of distal tibial bone loss treated with a staged method using antibiotic beads and subsequent autogenous cancellous grafting compared to other locations of the tibia? The following risk factors for delayed healing after external fixation were identified: post-reduction fracture gap of >3 mm and fixation of the associated fibula fracture. Fracture displacement could be better controlled with initial temporary external fixation than with early definitive fixation, but it had no significant effect on healing time, functional outcome or complication rate. Osteoinduction with rhBMP-7 was found to accelerate fracture healing and to shorten the sick leave. A staged method using antibiotic beads and subsequent autogenous cancellous grafting proved to be effective in the treatment of tibial bone loss. Healing potential of the bone loss in distal tibia was at least equally good as in other locations of the tibia.

  9. FIXATION OF FISH TISSUES. IN: THE LABORATORY FISH.

    EPA Science Inventory

    This chapter deals with the fixation of fish tissues and whole fish. Traditionally, fixation has been applied to animal tissues mainly for histological or pathological studies. Development of new molecular and immunologic tools now allows tissue and cellular localization of nucle...

  10. Tropical Dominance of N2 Fixation in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Marconi, Dario; Sigman, Daniel M.; Casciotti, Karen L.; Campbell, Ethan C.; Alexandra Weigand, M.; Fawcett, Sarah E.; Knapp, Angela N.; Rafter, Patrick A.; Ward, Bess B.; Haug, Gerald H.

    2017-10-01

    To investigate the controls on N2 fixation and the role of the Atlantic in the global ocean's fixed nitrogen (N) budget, Atlantic N2 fixation is calculated by combining meridional nitrate fluxes across World Ocean Circulation Experiment sections with observed nitrate 15N/14N differences between northward and southward transported nitrate. N2 fixation inputs of 27.1 ± 4.3 Tg N/yr and 3.0 ± 0.5 Tg N/yr are estimated north of 11°S and 24°N, respectively. That is, 90% of the N2 fixation in the Atlantic north of 11°S occurs south of 24°N in a region with upwelling that imports phosphorus (P) in excess of N relative to phytoplankton requirements. This suggests that, under the modern iron-rich conditions of the equatorial and North Atlantic, N2 fixation occurs predominantly in response to P-bearing, N-poor conditions. We estimate a N2 fixation rate of 30.5 ± 4.9 Tg N/yr north of 30°S, implying only 3 Tg N/yr between 30° and 11°S, despite evidence of P-bearing, N-poor surface waters in this region as well; this is consistent with iron limitation of N2 fixation in the South Atlantic. Since the ocean flows through the Atlantic surface in <2,500 years, similar to the residence time of oceanic fixed N, Atlantic N2 fixation can stabilize the N-to-P ratio of the global ocean. However, the calculated rate of Atlantic N2 fixation is a small fraction of global ocean estimates for either N2 fixation or fixed N loss. This suggests that, in the modern ocean, an approximate balance between N loss and N2 fixation is achieved within the combined Indian and Pacific basins.

  11. The impact of simulated chronic nitrogen deposition on the biomass and N₂-fixation activity of two boreal feather moss-cyanobacteria associations.

    PubMed

    Gundale, Michael J; Bach, Lisbet H; Nordin, Annika

    2013-01-01

    Bryophytes achieve substantial biomass and play several key functional roles in boreal forests that can influence how carbon (C) and nitrogen (N) cycling respond to atmospheric deposition of reactive nitrogen (Nr). They associate with cyanobacteria that fix atmospheric N₂, and downregulation of this process may offset anthropogenic Nr inputs to boreal systems. Bryophytes also promote soil C accumulation by thermally insulating soils, and changes in their biomass influence soil C dynamics. Using a unique large-scale (0.1 ha forested plots), long-term experiment (16 years) in northern Sweden where we simulated anthropogenic Nr deposition, we measured the biomass and N₂-fixation response of two bryophyte species, the feather mosses Hylocomium splendens and Pleurozium schreberi. Our data show that the biomass declined for both species; however, N₂-fixation rates per unit mass and per unit area declined only for H. splendens. The low and high treatments resulted in a 29% and 54% reduction in total feather moss biomass, and a 58% and 97% reduction in total N₂-fixation rate per unit area, respectively. These results help to quantify the sensitivity of feather moss biomass and N₂ fixation to chronic Nr deposition, which is relevant for modelling ecosystem C and N balances in boreal ecosystems.

  12. Nitrogen Cycling in Seagrass Beds Dominated by Thalassia testudinum and Halodule wrightii: the Role of Nitrogen Fixation and Ammonium Oxidation in Regulating Ammonium Availability

    NASA Astrophysics Data System (ADS)

    Capps, R.; Caffrey, J. M.; Hester, C.

    2016-02-01

    Seagrass meadows provide key ecosystem services including nursery and foraging grounds, storm and erosion buffers, biodiversity enhancers and global carbon and nutrient cycling. Nitrogen concentrations are often very low in coastal waters and sediments, which may limit primary productivity. Biological nitrogen fixation is a microbial process that converts dinitrogen to ammonium, which is readily taken up by seagrasses. In the oxygenated rhizospheres, diazotrophs provide the plant with ammonium and use root exudates as an energy source. Nitrogen fixation rates and nutrient concentrations differ between seagrass species and substrate types. Thalassia testudinum has a higher biomass and is a climax species than Halodule wrightii, which is a pioneer species. Nitrogen fixation rates are relatively consistent in Thalassia testudinum dominated sediments. However, it is relatively variable in sediments occupied by Halodule wrightii. Nitrogen fixation rates are higher in bare substrate compared to areas with Thalassia testudinum, which may be due to T. testudinum's greater efficiency in nutrient retention because it is a climax species. We hypothesize that seasonal shifts in nitrogen fixation will coincide with seasonal shifts in seagrass biomass due to higher nutrient requirements during peak growth and lower requirements during senescence and dormancy. The ratio of porewater ammonium to phosphate suggests that seagrass growth may be nitrogen limited as does nitrogen demand, estimated from gross primary productivity. Significant rates of ammonium oxidation in both surface and rhizosphere sediments contribute to this imbalance. Thus, nitrogen fixation may be critical in supporting plant growth.

  13. Biomechanical Evaluation of All-Polyethylene Pegged Bony Ingrowth Glenoid Fixation Techniques on Implant Micromotion.

    PubMed

    Wiater, Brett P; Moravek, James E; Kurdziel, Michael D; Baker, Kevin C; Wiater, J Michael

    2016-01-01

    Newer glenoid components that allow for hybrid cement fixation via traditional cementation of peripheral pegs and bony ingrowth into an interference-fit central peg introduce the possibility of long-term biological fixation. However, little biomechanical work has been done on the initial stability of these components and the various fixation options. We conducted a study in which all-polyethylene glenoid components with a centrally fluted peg were implanted in polyurethane blocks with interference-fit, hybrid cement, and fully cemented fixation (5 per fixation group). Biomechanical evaluation of glenoid loosening, according to ASTM Standard F-2028-12, subjected the glenoids to 50,000 cycles of rim loading, and glenoid component motion was recorded with 2 differential variable reluctance transducers fixed to each glenoid prosthesis. Fully cemented fixation exhibited significantly less mean distraction in comparison with interference-fit fixation (P < .001) and hybrid cement fixation (P < .001). Hybrid cement fixation exhibited significantly less distraction (P < .001), more compression (P < .001), and no significant difference in glenoid translation (P = .793) in comparison with interference-fit fixation. Fully cemented fixation exhibited the most resistance to glenoid motion in comparison with hybrid cement fixation and interference-fit fixation. However, hybrid cement fixation and interference-fit fixation exhibited equivocal motion. Given these results, cementation of peripheral pegs may confer no additional initial stability over that provided by uncemented interference-fit fixation.

  14. A MicroRNA-Mediated Insulin Signaling Pathway Regulates the Toxicity of Multi-Walled Carbon Nanotubes in Nematode Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Zhao, Yunli; Yang, Junnian; Wang, Dayong

    2016-03-01

    The underlying mechanisms for functions of microRNAs (miRNAs) in regulating toxicity of nanomaterials are largely unclear. Using Illumina HiSeqTM 2000 sequencing technique, we obtained the dysregulated mRNA profiling in multi-walled carbon nanotubes (MWCNTs) exposed nematodes. Some dysregulated genes encode insulin signaling pathway. Genetic experiments confirmed the functions of these dysregulated genes in regulating MWCNTs toxicity. In the insulin signaling pathway, DAF-2/insulin receptor regulated MWCNTs toxicity by suppressing function of DAF-16/FOXO transcription factor. Moreover, we raised a miRNAs-mRNAs network involved in the control of MWCNTs toxicity. In this network, mir-355 might regulate MWCNTs toxicity by inhibiting functions of its targeted gene of daf-2, suggesting that mir-355 may regulate functions of the entire insulin signaling pathway by acting as an upregulator of DAF-2, the initiator of insulin signaling pathway, in MWCNTs exposed nematodes. Our results provides highlight on understanding the crucial role of miRNAs in regulating toxicity of nanomaterials in organisms.

  15. [Comparison study on locking compress plate external fixator and standard external fixator for treatment of tibial open fractures].

    PubMed

    Wu, Gang; Luo, Xiaozhong; Tan, Lun; Lin, Xu; Wu, Chao; Guo, Yong; Zhong, Zewei

    2013-11-01

    To compare the clinical results of locking compress plate (LCP) as an external fixator and standard external fixator for treatment of tibial open fractures. Between May 2009 and June 2012, 59 patients with tibial open fractures were treated with LCP as an external fixator in 36 patients (group A), and with standard external fixator in 23 patients (group B). There was no significant difference in gender, age, cause of injury, affected side, type of fracture, location, and interval between injury and surgery between 2 groups (P > 0.05). The time of fracture healing and incision healing, the time of partial weight-bearing, the range of motion (ROM) of knee and ankle, and complications were compared between 2 groups. The incidence of pin-track infection in group A (0) was significantly lower than that in group B (21.7%) (P=0.007). No significant difference was found in the incidence of superficial infection and deep infection of incision, and the time of incision healing between 2 groups (P > 0.05). Deep vein thrombosis occurred in 5 cases of group A and 2 cases of group B, showing no significant difference (Chi(2)=0.036, P=0.085). All patients were followed up 15.2 months on average (range, 9-28 months) in group A, and 18.6 months on average (range, 9-47 months) in group B. The malunion rate and nonunion rate showed no significant difference between groups A and B (0 versus 13.0% and 0 versus 8.7%, P > 0.05); the delayed union rate of group A (2.8%) was significantly lower than that of group B (21.7%) (Chi(2)=5.573, P=0.018). Group A had shorter time of fracture healing, quicker partial weight-bearing, greater ROM of the knee and ankle than group B (P < 0.05). The LCP external fixator can obtain reliable fixation in treating tibial open fracture, and has good patients' compliance, so it is helpful to do functional exercise, improve fracture healing and function recovery, and reduce the complication incidence.

  16. [Case-control study on T-shaped locking internal fixation and external fixation for the treatment of dorsal Barton's fracture].

    PubMed

    Chen, Huan-qing; Wen, Xi-le; Li, Yang-ming; Wen, Cong-you

    2015-06-01

    To compare clinical effect of T-shaped locking internal fixation and external fixation in treating dorsal Barton's fracture,and investigate selective strategy of internal fixation. From January 2008 to January 2013, 100 patients with dorsal Barton's fracture were randomly divided into two groups. In treatment group, there were 30 males and 20 females with an average age of (33.8±3.6) years old;30 cases were type B, 20 cases were type C;and treated with T-shaped locking internal fixation. In control group, there were 32 male and 18 females with an average age of (32.9±3.4) years old; 29 cases were type B, 21 cases were type C; and treated with external fixation. Volar tilt, ulnar deviation and radial height at 3 months after operation were detected and compared between two groups. Mechara functional evaluation were used to evaluate postoperative clinical effects. Clinical cure time, postoperative complications,joint mobility and function score were recorded and compared between two groups. In treatment group,volar tilt was (11.9±2.7)°, ulnar deviation was (20.8+ 2.9)°,and radial height was (10.9±1.8) mm; while volar tilt was (9.1±1.6)°, ulnar deviation was (17.1±2.9)°, and radial height was (8.1±1.5) mm in control group. Treatment group was better than control group in volar tilt, ulnar deviation and radial height. Clinical cure time in treatment group was(12.0±2.3) weeks, shorter than control group (18.0±4.1) weeks. The incidence of complications in treatment group was lower than control group. According to Mehara functional evaluation,20 cases got excellent results, 25 good, 3 moderate and 2 poor in treatment group; 16 cases got excellent results, 14 good, 10 moderate and 10 poor in control group. Treatment group was better than control group in clinical effects. T-shaped locking internal fixation with postoperative functional exercise for the treatment of dorsal Barton's fracture fits for biomechanics demands,and has advantages of stable fixation

  17. Outcomes of proximal humeral fracture fixation with locked CFR-PEEK plating.

    PubMed

    Katthagen, Jan Christoph; Ellwein, Alexander; Lutz, Olga; Voigt, Christine; Lill, Helmut

    2017-04-01

    To investigate the outcomes of proximal humeral fracture (PHF) fixation with a novel carbon-fiber-reinforced (CFR)-PEEK plate and to compare results with outcomes after conventional locked titanium plating. Twenty-one patients (7 male, 14 female) with operative treatment of unilateral displaced PHFs (mean age, 66.8 ± 9.9 years) with a novel CRF-PEEK plate were prospectively enrolled. Patients were followed up clinically (Constant Score, Simple Shoulder Test and Simple Shoulder Value) and radiologically 3 months postoperative and again clinically 12 months postoperative. Implant-related complications were evaluated after 3 and 12 months. Results at 1-year follow-up were compared with results of 21 patients (7 male, 14 female; mean age, 67.4 ± 9.7 years) with conventional titanium locked plating by matched case-control analysis. All functional outcomes improved after CFR-PEEK plating (p < 0.05). Twelve months postoperatively, the mean age- and gender-related Constant Score was 99.8 ± 21.2%. All fractures healed by the 3-month follow-up without evidence of secondary screw perforation, fragment displacement or loss of fixation. There were no significant differences between the functional outcomes of patients with the CF-PEEK plate and patients with locked titanium plating (p > 0.05). Patients with locked titanium plating were significantly more likely to require revision surgery related to articular screw perforations (p = 0.048). Fracture fixation of displaced PHFs with a novel CFR-PEEK plate resulted in good to excellent 1-year functional outcomes which were similar to outcomes of conventional locked titanium plating. The stiffer locked titanium plating was associated with a higher risk of articular screw perforations than the more elastic CFR-PEEK plate.

  18. Biological Nitrogen Fixation In Tropical Dry Forests Of Costa Rica

    NASA Astrophysics Data System (ADS)

    Gei, M. G.; Powers, J. S.

    2012-12-01

    Evidence suggests that tropical dry forests (TDF) are not nitrogen (N) deficient. This evidence includes: high losses of gaseous nitrogen during the rainy season, high ecosystem soil N stocks and high N concentrations in leaves and litterfall. Its been commonly hypothesized that biological nitrogen fixation is responsible for the high availability of N in tropical soils. However, the magnitude of this flux has rarely if ever been measured in tropical dry forests. Because of the high cost of fixing N and the ubiquity of N fixing legume trees in the TDF, at the individual tree level symbiotic fixation should be a strategy down-regulated by the plant. Our main goal was to determine the rates of and controls over symbiotic N fixation. We hypothesized that legume tree species employ a facultative strategy of nitrogen fixation and that this process responds to changes in light availability, soil moisture and nutrient supply. We tested this hypothesis both on naturally established trees in a forest and under controlled conditions in a shade house by estimating the quantities of N fixed annually using the 15N natural abundance method, counting nodules, and quantifying (field) or manipulating (shade house) the variation in important environmental variables (soil nutrients, soil moisture, and light). We found that in both in our shade house experiment and in the forest, nodulation varied among different legume species. For both settings, the 15N natural abundance approach successfully detected differences in nitrogen fixation among species. The legume species that we studied were able to regulate fixation depending on the environmental conditions. They showed to have different strategies of nitrogen fixation that follow a gradient of facultative to obligate fixation. Our data suggest that there exists a continuum of nitrogen fixation strategies among species. Any efforts to define tropical legume trees as a functional group need to incorporate this variation.

  19. Mini-Fragment Fixation Is Equivalent to Bicortical Screw Fixation for Horizontal Medial Malleolus Fractures.

    PubMed

    Wegner, Adam M; Wolinsky, Philip R; Robbins, Michael A; Garcia, Tanya C; Amanatullah, Derek F

    2018-05-01

    Horizontal fractures of the medial malleolus occur through application of valgus or abduction force through the ankle that creates a tension failure of the medial malleolus. The authors hypothesize that mini-fragment T-plates may offer improved fixation, but the optimal fixation construct for these fractures remains unclear. Forty synthetic distal tibiae with identical osteotomies were randomized into 4 fixation constructs: (1) two parallel unicortical cancellous screws; (2) two parallel bicortical cortical screws; (3) a contoured mini-fragment T-plate with 2 unicortical screws in the fragment and 2 bicortical screws in the shaft; and (4) a contoured mini-fragment T-plate with 2 bicortical screws in the fragment and 2 unicortical screws in the shaft. Specimens were subjected to offset axial tension loading on a servohydraulic testing system and tracked using high-resolution video. Failure was defined as 2 mm of articular displacement. Analysis of variance followed by a Tukey-Kramer post hoc test was used to assess for differences between groups, with significance defined as P<.05. The mean stiffness (±SD) values of both mini-fragment T-plate constructs (239±83 N/mm and 190±37 N/mm) and the bicortical screw construct (240±17 N/mm) were not statistically different. The mean stiffness values of both mini-fragment T-plate constructs and the bicortical screw construct were higher than that of a parallel unicortical screw construct (102±20 N/mm). Contoured T-plate constructs provide stiffer initial fixation than a unicortical cancellous screw construct. The T-plate is biomechanically equivalent to a bicortical screw construct, but may be superior in capturing small fragments of bone. [Orthopedics. 2018; 41(3):e395-e399.]. Copyright 2018, SLACK Incorporated.

  20. A Novel Fixation System for Acetabular Quadrilateral Plate Fracture: A Comparative Biomechanical Study

    PubMed Central

    Zha, Guo-Chun; Sun, Jun-Ying; Dong, Sheng-Jie; Zhang, Wen; Luo, Zong-Ping

    2015-01-01

    This study aims to assess the biomechanical properties of a novel fixation system (named AFRIF) and to compare it with other five different fixation techniques for quadrilateral plate fractures. This in vitro biomechanical experiment has shown that the multidirectional titanium fixation (MTF) and pelvic brim long screws fixation (PBSF) provided the strongest fixation for quadrilateral plate fracture; the better biomechanical performance of the AFRIF compared with the T-shaped plate fixation (TPF), L-shaped plate fixation (LPF), and H-shaped plate fixation (HPF); AFRIF gives reasonable stability of treatment for quadrilateral plate fracture and may offer a better solution for comminuted quadrilateral plate fractures or free floating medial wall fracture and be reliable in preventing protrusion of femoral head. PMID:25802849

  1. Biomechanical Comparison of External Fixation and Compression Screws for Transverse Tarsal Joint Arthrodesis.

    PubMed

    Latt, L Daniel; Glisson, Richard R; Adams, Samuel B; Schuh, Reinhard; Narron, John A; Easley, Mark E

    2015-10-01

    Transverse tarsal joint arthrodesis is commonly performed in the operative treatment of hindfoot arthritis and acquired flatfoot deformity. While fixation is typically achieved using screws, failure to obtain and maintain joint compression sometimes occurs, potentially leading to nonunion. External fixation is an alternate method of achieving arthrodesis site compression and has the advantage of allowing postoperative compression adjustment when necessary. However, its performance relative to standard screw fixation has not been quantified in this application. We hypothesized that external fixation could provide transverse tarsal joint compression exceeding that possible with screw fixation. Transverse tarsal joint fixation was performed sequentially, first with a circular external fixator and then with compression screws, on 9 fresh-frozen cadaveric legs. The external fixator was attached in abutting rings fixed to the tibia and the hindfoot and a third anterior ring parallel to the hindfoot ring using transverse wires and half-pins in the tibial diaphysis, calcaneus, and metatarsals. Screw fixation comprised two 4.3 mm headless compression screws traversing the talonavicular joint and 1 across the calcaneocuboid joint. Compressive forces generated during incremental fixator foot ring displacement to 20 mm and incremental screw tightening were measured using a custom-fabricated instrumented miniature external fixator spanning the transverse tarsal joint. The maximum compressive force generated by the external fixator averaged 186% of that produced by the screws (range, 104%-391%). Fixator compression surpassed that obtainable with screws at 12 mm of ring displacement and decreased when the tibial ring was detached. No correlation was found between bone density and the compressive force achievable by either fusion method. The compression across the transverse tarsal joint that can be obtained with a circular external fixator including a tibial ring exceeds that

  2. An Examination of the Carbon Isotope Effects Associated with Amino Acid Biosynthesis

    NASA Astrophysics Data System (ADS)

    Scott, James H.; O'Brien, Diane M.; Emerson, David; Sun, Henry; McDonald, Gene D.; Salgado, Antonio; Fogel, Marilyn L.

    2006-12-01

    Stable carbon isotope ratios (δ13C) were determined for alanine, proline, phenylalanine, valine, leucine, isoleucine, aspartate (aspartic acid and asparagine), glutamate (glutamic acid and glutamine), lysine, serine, glycine, and threonine from metabolically diverse microorganisms. The microorganisms examined included fermenting bacteria, organotrophic, chemolithotrophic, phototrophic, methylotrophic, methanogenic, acetogenic, acetotrophic, and naturally occurring cryptoendolithic communities from the Dry Valleys of Antarctica. Here we demonstrated that reactions involved in amino acid biosynthesis can be used to distinguish amino acids formed by life from those formed by nonbiological processes. The unique patterns of δ13C imprinted by life on amino acids produced a biological bias. We also showed that, by applying discriminant function analysis to the δ13C value of a pool of amino acids formed by biological activity, it was possible to identify key aspects of intermediary carbon metabolism in the microbial world. In fact, microorganisms examined in this study could be placed within one of three metabolic groups: (1) heterotrophs that grow by oxidizing compounds containing three or more carbon-to-carbon bonds (fermenters and organotrophs), (2) autotrophs that grow by taking up carbon dioxide (chemolitotrophs and phototrophs), and (3) acetoclastic microbes that grow by assimilation of formaldehyde or acetate (methylotrophs, methanogens, acetogens, and acetotrophs). Furthermore, we demonstrated that cryptoendolithic communities from Antarctica grouped most closely with the autotrophs, which indicates that the dominant metabolic pathways in these communities are likely those utilized for CO2 fixation. We propose that this technique can be used to determine the dominant metabolic types in a community and reveal the overall flow of carbon in a complex ecosystem.

  3. Gaze shifts and fixations dominate gaze behavior of walking cats

    PubMed Central

    Rivers, Trevor J.; Sirota, Mikhail G.; Guttentag, Andrew I.; Ogorodnikov, Dmitri A.; Shah, Neet A.; Beloozerova, Irina N.

    2014-01-01

    Vision is important for locomotion in complex environments. How it is used to guide stepping is not well understood. We used an eye search coil technique combined with an active marker-based head recording system to characterize the gaze patterns of cats walking over terrains of different complexity: (1) on a flat surface in the dark when no visual information was available, (2) on the flat surface in light when visual information was available but not required, (3) along the highly structured but regular and familiar surface of a horizontal ladder, a task for which visual guidance of stepping was required, and (4) along a pathway cluttered with many small stones, an irregularly structured surface that was new each day. Three cats walked in a 2.5 m corridor, and 958 passages were analyzed. Gaze activity during the time when the gaze was directed at the walking surface was subdivided into four behaviors based on speed of gaze movement along the surface: gaze shift (fast movement), gaze fixation (no movement), constant gaze (movement at the body’s speed), and slow gaze (the remainder). We found that gaze shifts and fixations dominated the cats’ gaze behavior during all locomotor tasks, jointly occupying 62–84% of the time when the gaze was directed at the surface. As visual complexity of the surface and demand on visual guidance of stepping increased, cats spent more time looking at the surface, looked closer to them, and switched between gaze behaviors more often. During both visually guided locomotor tasks, gaze behaviors predominantly followed a repeated cycle of forward gaze shift followed by fixation. We call this behavior “gaze stepping”. Each gaze shift took gaze to a site approximately 75–80 cm in front of the cat, which the cat reached in 0.7–1.2 s and 1.1–1.6 strides. Constant gaze occupied only 5–21% of the time cats spent looking at the walking surface. PMID:24973656

  4. Hydroxyl-Exchanged Nanoporous Ionic Copolymer toward Low-Temperature Cycloaddition of Atmospheric Carbon Dioxide into Carbonates.

    PubMed

    Guo, Zengjing; Cai, Xiaochun; Xie, Jingyan; Wang, Xiaochen; Zhou, Yu; Wang, Jun

    2016-05-25

    An ionic copolymer catalyst with nanopores, large surface area, high ionic density, and superior basicity was prepared via the radical copolymerization of amino-functionalized ionic liquid bromide and divinylbenzene, followed with a hydroxyl exchange for removing bromonium. Evaluated in chemical fixation of CO2 with epoxides into cyclic carbonates in the absence of any solvent and basic additive, the nanoporous copolymer catalyst showed high and stable activity, superior to various control catalysts including the halogen-containing analogue. Further, high yields were obtained over a wide scope of substrates including aliphatic long carbon-chain alkyl epoxides and internal epoxide, even under atmospheric pressure and less than 100 °C for the majority of the substrates. On the basis of in situ Fourier transform infrared (FT-IR) investigation and density functional theory (DFT) calculation for the reaction intermediates, we proposed a possible reaction mechanism accounting for the superior catalytic activity of the ionic copolymer. The specifically prepared ionic copolymer material of this work features highly stable, noncorrosive, and sustainable catalysis and, thus, may be a new possibility for efficient chemical fixation of CO2 since it is an environmentally friendly, metal-free solid catalyst.

  5. Biometric recognition via fixation density maps

    NASA Astrophysics Data System (ADS)

    Rigas, Ioannis; Komogortsev, Oleg V.

    2014-05-01

    This work introduces and evaluates a novel eye movement-driven biometric approach that employs eye fixation density maps for person identification. The proposed feature offers a dynamic representation of the biometric identity, storing rich information regarding the behavioral and physical eye movement characteristics of the individuals. The innate ability of fixation density maps to capture the spatial layout of the eye movements in conjunction with their probabilistic nature makes them a particularly suitable option as an eye movement biometrical trait in cases when free-viewing stimuli is presented. In order to demonstrate the effectiveness of the proposed approach, the method is evaluated on three different datasets containing a wide gamut of stimuli types, such as static images, video and text segments. The obtained results indicate a minimum EER (Equal Error Rate) of 18.3 %, revealing the perspectives on the utilization of fixation density maps as an enhancing biometrical cue during identification scenarios in dynamic visual environments.

  6. Fixation strength analysis of cup to bone material using finite element simulation

    NASA Astrophysics Data System (ADS)

    Anwar, Iwan Budiwan; Saputra, Eko; Ismail, Rifky; Jamari, J.; van der Heide, Emile

    2016-04-01

    Fixation of acetabular cup to bone material is an important initial stability for artificial hip joint. In general, the fixation in cement less-type acetabular cup uses press-fit and screw methods. These methods can be applied alone or together. Based on literature survey, the additional screw inside of cup is effective; however, it has little effect in whole fixation. Therefore, an acetabular cup with good fixation, easy manufacture and easy installation is required. This paper is aiming at evaluating and proposing a new cup fixation design. To prove the strength of the present cup fixation design, the finite element simulation of three dimensional cup with new fixation design was performed. The present cup design was examined with twist axial and radial rotation. Results showed that the proposed cup design was better than the general version.

  7. Two Pathways of Glutamate Fermentation by Anaerobic Bacteria

    PubMed Central

    Buckel, Wolfgang; Barker, H. A.

    1974-01-01

    Two pathways are involved in the fermentation of glutamate to acetate, butyrate, carbon dioxide, and ammonia—the methylaspartate and the hydroxyglutarate pathways which are used by Clostridium tetanomorphum and Peptococcus aerogenes, respectively. Although these pathways give rise to the same products, they are easily distinguished by different labeling patterns of the butyrate when [4-14C]glutamate is used as substrate. Schmidt degradation of the radioactive butyrate from C. tetanomorphum yielded equally labeled propionate and carbon dioxide, whereas nearly all the radioactivity of the butyrate from P. aerogenes was recovered in the corresponding propionate. This procedure was used as a test for the pathway of glutamate fermentation by 15 strains (9 species) of anaerobic bacteria. The labeling patterns of the butyrate indicate that glutamate is fermented via the methylaspartate pathway by C. tetani, C. cochlearium, and C. saccarobutyricum, and via the hydroxyglutarate pathway by Acidaminococcus fermentans, C. microsporum, Fusobacterium nucleatum, and F. fusiformis. Enzymes specific for each pathway were assayed in crude extracts of the above organisms. 3-Methylaspartase was found only in clostridia which use the methylaspartate pathway, including Clostridium SB4 and C. sticklandii, which probably degrade glutamate to acetate and carbon dioxide by using a second amino acid as hydrogen acceptor. High levels of 2-hydroxyglutarate dehydrogenase were found exclusively in organisms that use the hydroxyglutarate pathway. The data indicate that only two pathways are involved in the fermentation of glutamate by the bacteria analyzed. The methylaspartate pathway appears to be used only by species of Clostridium, whereas the hydroxyglutarate pathway is used by representatives of several genera. PMID:4813895

  8. 21 CFR 888.3050 - Spinal interlaminal fixation orthosis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Spinal interlaminal fixation orthosis. 888.3050 Section 888.3050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3050 Spinal interlaminal fixation...

  9. 21 CFR 888.3050 - Spinal interlaminal fixation orthosis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Spinal interlaminal fixation orthosis. 888.3050 Section 888.3050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3050 Spinal interlaminal fixation...

  10. 21 CFR 888.3050 - Spinal interlaminal fixation orthosis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Spinal interlaminal fixation orthosis. 888.3050 Section 888.3050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3050 Spinal interlaminal fixation...

  11. Genome Sequencing of Sulfolobus sp. A20 from Costa Rica and Comparative Analyses of the Putative Pathways of Carbon, Nitrogen, and Sulfur Metabolism in Various Sulfolobus Strains.

    PubMed

    Dai, Xin; Wang, Haina; Zhang, Zhenfeng; Li, Kuan; Zhang, Xiaoling; Mora-López, Marielos; Jiang, Chengying; Liu, Chang; Wang, Li; Zhu, Yaxin; Hernández-Ascencio, Walter; Dong, Zhiyang; Huang, Li

    2016-01-01

    The genome of Sulfolobus sp. A20 isolated from a hot spring in Costa Rica was sequenced. This circular genome of the strain is 2,688,317 bp in size and 34.8% in G+C content, and contains 2591 open reading frames (ORFs). Strain A20 shares ~95.6% identity at the 16S rRNA gene sequence level and <30% DNA-DNA hybridization (DDH) values with the most closely related known Sulfolobus species (i.e., Sulfolobus islandicus and Sulfolobus solfataricus ), suggesting that it represents a novel Sulfolobus species. Comparison of the genome of strain A20 with those of the type strains of S. solfataricus, Sulfolobus acidocaldarius, S. islandicus , and Sulfolobus tokodaii , which were isolated from geographically separated areas, identified 1801 genes conserved among all Sulfolobus species analyzed (core genes). Comparative genome analyses show that central carbon metabolism in Sulfolobus is highly conserved, and enzymes involved in the Entner-Doudoroff pathway, the tricarboxylic acid cycle and the CO 2 fixation pathways are predominantly encoded by the core genes. All Sulfolobus species encode genes required for the conversion of ammonium into glutamate/glutamine. Some Sulfolobus strains have gained the ability to utilize additional nitrogen source such as nitrate (i.e., S. islandicus strain REY15A, LAL14/1, M14.25, and M16.27) or urea (i.e., S. islandicus HEV10/4, S. tokodaii strain7, and S. metallicus DSM 6482). The strategies for sulfur metabolism are most diverse and least understood. S. tokodaii encodes sulfur oxygenase/reductase (SOR), whereas both S. islandicus and S. solfataricus contain genes for sulfur reductase (SRE). However, neither SOR nor SRE genes exist in the genome of strain A20, raising the possibility that an unknown pathway for the utilization of elemental sulfur may be present in the strain. The ability of Sulfolobus to utilize nitrate or sulfur is encoded by a gene cluster flanked by IS elements or their remnants. These clusters appear to have become fixed

  12. Genome Sequencing of Sulfolobus sp. A20 from Costa Rica and Comparative Analyses of the Putative Pathways of Carbon, Nitrogen, and Sulfur Metabolism in Various Sulfolobus Strains

    PubMed Central

    Dai, Xin; Wang, Haina; Zhang, Zhenfeng; Li, Kuan; Zhang, Xiaoling; Mora-López, Marielos; Jiang, Chengying; Liu, Chang; Wang, Li; Zhu, Yaxin; Hernández-Ascencio, Walter; Dong, Zhiyang; Huang, Li

    2016-01-01

    The genome of Sulfolobus sp. A20 isolated from a hot spring in Costa Rica was sequenced. This circular genome of the strain is 2,688,317 bp in size and 34.8% in G+C content, and contains 2591 open reading frames (ORFs). Strain A20 shares ~95.6% identity at the 16S rRNA gene sequence level and <30% DNA-DNA hybridization (DDH) values with the most closely related known Sulfolobus species (i.e., Sulfolobus islandicus and Sulfolobus solfataricus), suggesting that it represents a novel Sulfolobus species. Comparison of the genome of strain A20 with those of the type strains of S. solfataricus, Sulfolobus acidocaldarius, S. islandicus, and Sulfolobus tokodaii, which were isolated from geographically separated areas, identified 1801 genes conserved among all Sulfolobus species analyzed (core genes). Comparative genome analyses show that central carbon metabolism in Sulfolobus is highly conserved, and enzymes involved in the Entner-Doudoroff pathway, the tricarboxylic acid cycle and the CO2 fixation pathways are predominantly encoded by the core genes. All Sulfolobus species encode genes required for the conversion of ammonium into glutamate/glutamine. Some Sulfolobus strains have gained the ability to utilize additional nitrogen source such as nitrate (i.e., S. islandicus strain REY15A, LAL14/1, M14.25, and M16.27) or urea (i.e., S. islandicus HEV10/4, S. tokodaii strain7, and S. metallicus DSM 6482). The strategies for sulfur metabolism are most diverse and least understood. S. tokodaii encodes sulfur oxygenase/reductase (SOR), whereas both S. islandicus and S. solfataricus contain genes for sulfur reductase (SRE). However, neither SOR nor SRE genes exist in the genome of strain A20, raising the possibility that an unknown pathway for the utilization of elemental sulfur may be present in the strain. The ability of Sulfolobus to utilize nitrate or sulfur is encoded by a gene cluster flanked by IS elements or their remnants. These clusters appear to have become fixed at a

  13. Intracellular degradation of functionalized carbon nanotube/iron oxide hybrids is modulated by iron via Nrf2 pathway

    PubMed Central

    Elgrabli, Dan; Dachraoui, Walid; Marmier, Hélène de; Ménard-Moyon, Cécilia; Bégin, Dominique; Bégin-Colin, Sylvie; Bianco, Alberto; Alloyeau, Damien; Gazeau, Florence

    2017-01-01

    The in vivo fate and biodegradability of carbon nanotubes is still a matter of debate despite tremendous applications. In this paper we describe a molecular pathway by which macrophages degrade functionalized multi-walled carbon nanotubes (CNTs) designed for biomedical applications and containing, or not, iron oxide nanoparticles in their inner cavity. Electron microscopy and Raman spectroscopy show that intracellularly-induced structural damages appear more rapidly for iron-free CNTs in comparison to iron-loaded ones, suggesting a role of iron in the degradation mechanism. By comparing the molecular responses of macrophages derived from THP1 monocytes to both types of CNTs, we highlight a molecular mechanism regulated by Nrf2/Bach1 signaling pathways to induce CNT degradation via NOX2 complex activation and O2•−, H2O2 and OH• production. CNT exposure activates an oxidative stress-dependent production of iron via Nrf2 nuclear translocation, Ferritin H and Heme oxygenase 1 translation. Conversely, Bach1 was translocated to the nucleus of cells exposed to iron-loaded CNTs to recycle embedded iron. Our results provide new information on the role of oxidative stress, iron metabolism and Nrf2-mediated host defence for regulating CNT fate in macrophages. PMID:28120861

  14. Diversity of Total Bacterial Communities and Chemoautotrophic Populations in Sulfur-Rich Sediments of Shallow-Water Hydrothermal Vents off Kueishan Island, Taiwan.

    PubMed

    Wang, Li; Cheung, Man Kit; Liu, Rulong; Wong, Chong Kim; Kwan, Hoi Shan; Hwang, Jiang-Shiou

    2017-04-01

    Shallow-water hydrothermal vents (HTVs) are an ecologically important habitat with a geographic origin similar to that of deep-sea HTVs. Studies on shallow-water HTVs have not only facilitated understanding of the influences of vents on local ecosystems but also helped to extend the knowledge on deep-sea vents. In this study, the diversity of bacterial communities in the sediments of shallow-water HTVs off Kueishan Island, Taiwan, was investigated by examining the 16S ribosomal RNA gene as well as key functional genes involved in chemoautotrophic carbon fixation (aclB, cbbL and cbbM). In the vent area, Sulfurovum and Sulfurimonas of Epsilonproteobacteria appeared to dominate the benthic bacterial community. Results of aclB gene analysis also suggested involvement of these bacteria in carbon fixation using the reductive tricarboxylic acid (rTCA) cycle. Analysis of the cbbM gene showed that Alphaproteobacterial members such as the purple non-sulfur bacteria were the major chemoautotrophic bacteria involving in carbon fixation via the Calvin-Benson-Bassham (CBB) cycle. However, they only accounted for <2% of the total bacterial community in the vent area. These findings suggest that the rTCA cycle is the major chemoautotrophic carbon fixation pathway in sediments of the shallow-water HTVs off Kueishan Island.

  15. The role of mass transport pathway in wormholelike mesoporous carbon for supercapacitors.

    PubMed

    Liang, Yeru; Liang, Fengxue; Li, Zhenghui; Wu, Dingcai; Yan, Fangyu; Li, Siyu; Fu, Ruowen

    2010-09-28

    In the present paper, we demonstrate the importance of the role of a mass transport pathway (MTP) in wormholelike mesoporous carbon (WMC) through studying the ion diffusion behaviors within two different wormholelike mesopore networks with and without MTP. Our results reveal that the introduction of MTP is very helpful in improving ion diffusion properties. The as-prepared WMC with a MTP of ca. 9.7 nm exhibits notably better electric double layer performance as compared to the conventional WMC without a MTP. For example, even at the quick sweep rate of 50 mV s(-1), the surface specific capacitance of the former is 21.6 microF cm(-2), which is almost 4 times as high as that of the latter (5.5 microF cm(-2)).

  16. Crystal Engineering of an nbo Topology Metal-Organic Framework for Chemical Fixation of CO₂ under Ambient Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wen-Yang; Chen, Yao; Niu, Youhong

    Crystal engineering of the nbo metal–organic framework (MOF) platform MOF-505 with a custom-designed azamacrocycle ligand (1,4,7,10-tetrazazcyclododecane-N,N',N'',N'''-tetra-p-methylbenzoic acid) leads to a high density of well-oriented Lewis active sites within the cuboctahedral cage in MMCF-2, [Cu₂(Cu-tactmb)(H₂O)₃(NO₃)₂]. This MOF demonstrates high catalytic activity for the chemical fixation of CO₂ into cyclic carbonates at room temperature under 1 atm pressure.

  17. Characterization of carbon dioxide concentrating chemolithotrophic bacterium Serratia sp. ISTD04 for production of biodiesel.

    PubMed

    Kumar, Manish; Morya, Raj; Gnansounou, Edgard; Larroche, Christian; Thakur, Indu Shekhar

    2017-11-01

    Proteomics and metabolomics analysis has become a powerful tool for characterization of microbial ability for fixation of Carbon dioxide. Bacterial community of palaeoproterozoic metasediments was enriched in the shake flask culture in the presence of NaHCO 3 . One of the isolate showed resistance to NaHCO 3 (100mM) and was identified as Serratia sp. ISTD04 by 16S rRNA sequence analysis. Carbon dioxide fixing ability of the bacterium was established by carbonic anhydrase enzyme assay along with proteomic analysis by LC-MS/MS. In proteomic analysis 96 proteins were identified out of these 6 protein involved in carbon dioxide fixation, 11 in fatty acid metabolism, indicating the carbon dioxide fixing potency of bacterium along with production of biofuel. GC-MS analysis revealed that hydrocarbons and FAMEs produced by bacteria within the range of C 13 -C 24 and C 11 -C 19 respectively. Presence of 59% saturated and 41% unsaturated organic compounds, make it a better fuel composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The Role of Personality and Team-Based Product Dissection on Fixation Effects

    ERIC Educational Resources Information Center

    Toh, Christine; Miller, Scarlett; Kremer, Gül E. Okudan

    2013-01-01

    Design fixation has been found to be complex in its definition and expression, but it plays an important role in design idea generation. Identifying the factors that influence fixation is crucial in understanding how to enhance the design process and reduce the negative effects of fixation. One way to potentially mitigate fixation is through…

  19. Environmental and biogeochemical controls on N2 fixation in ombrotrophic peatlands

    NASA Astrophysics Data System (ADS)

    Zivkovic, T.; Moore, T. R.

    2017-12-01

    Northern peatlands have low atmospheric nitrogen (N) inputs and acquire N mostly via biological, microbially-driven N2-fixation. Little is known about rates and controls on N2-fixation in ombrotrophic bogs. We conducted two studies to test environmental and biogeochemical controls on N2-fixation. First, we used acetylene reduction assay (ARA) calibrated with 15N2 tracer to measure N2-fixation rates in three species of Sphagnum mosses along a hydrological gradient (beaver pond, hollow and hummock in bog margin and in bog) at Mer Bleue bog from June-October 2013 and May - November 2014. We tested the following controls: moisture availability, temperature, and PAR. The largest ARA rates throughout both seasons occurred in the pond in floating Sphagnum cuspidatum mats (50.3 ± 12.9 μmol m-2 d-1 Mean ± SE), which were up to 2.5 times larger than the rates found in the driest hummock site. There was a significant seasonal peak in both years in July and early August that coincided with the peak of the air temperature. In fact, 45% of the variance of N2 fixation rates over the two field seasons was explained by rain events, water table fluctuations and the surface peat temperature (multiple regression analysis, n = 539). Our results highlight the potential impact of climate change, namely negative effects due to potential droughts and positive effect of warming, on N2 fixation patterns in ombrotrophic peatlands. Secondly, we tested stoichiometric controls (Sphagnum tissue N and phosphorous (P) ratio) of N2-fixation. In a controlled environment, we selected eight study sites along a latitudinal gradient from temperate, boreal to subarctic zone in eastern Canada. We found that decreasing N:P ratio corresponded to increasing N2-fixation. N:P explained 65% of the variance in N2-fixation in hollows but only 20% in hummocks. Changes in neither N or P concentration alone explained the increase in N2-fixation better than N:P ratio. We interpret that the difference between

  20. Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products.

    PubMed

    Yu, Jian

    2018-06-09

    With rapid technology progress and cost reduction, clean hydrogen from water electrolysis driven by renewable powers becomes a potential feedstock for CO 2 fixation by hydrogen-oxidizing bacteria. Cupriavidus necator (formally Ralstonia eutropha), a representative member of the lithoautotrophic prokaryotes, is a promising producer of polyhydroxyalkanoates and single cell proteins. This paper reviews the fundamental properties of the hydrogen-oxidizing bacterium, the metabolic activities under limitation of individual gases and nutrients, and the value-added products from CO 2 , including the products with large potential markets. Gas fermentation and bioreactor safety are discussed for achieving high cell density and high productivity of desired products under chemolithotrophic conditions. The review also updates the recent research activities in metabolic engineering of C. necator to produce novel metabolites from CO 2 .

  1. Cosmetic arm lengthening with monorail fixator.

    PubMed

    Agrawal, Hemendra Kumar; Singh, Balvinder; Garg, Mohit; Khatkar, Vipin; Batra, Sumit; Sharma, Vinod Kumar

    2015-01-01

    Upper limb length discrepancy is a rare occurrence. Humerus shortening may need specialized treatment to restore the functional and cosmetic status of upper limb. We report a case of humerus lengthening of 9 cm with a monorail external fixator and the result was observed during a 2-year follow-up. Humerus lengthening needs specialized focus as it is not only a cosmetic issue but also a functional demand. The monorail unilateral fixator is more functional and cosmetically acceptable, and thus becomes an effective treatment option.

  2. The impact of simulated chronic nitrogen deposition on the biomass and N2-fixation activity of two boreal feather moss–cyanobacteria associations

    PubMed Central

    Gundale, Michael J.; Bach, Lisbet H.; Nordin, Annika

    2013-01-01

    Bryophytes achieve substantial biomass and play several key functional roles in boreal forests that can influence how carbon (C) and nitrogen (N) cycling respond to atmospheric deposition of reactive nitrogen (Nr). They associate with cyanobacteria that fix atmospheric N2, and downregulation of this process may offset anthropogenic Nr inputs to boreal systems. Bryophytes also promote soil C accumulation by thermally insulating soils, and changes in their biomass influence soil C dynamics. Using a unique large-scale (0.1 ha forested plots), long-term experiment (16 years) in northern Sweden where we simulated anthropogenic Nr deposition, we measured the biomass and N2-fixation response of two bryophyte species, the feather mosses Hylocomium splendens and Pleurozium schreberi. Our data show that the biomass declined for both species; however, N2-fixation rates per unit mass and per unit area declined only for H. splendens. The low and high treatments resulted in a 29% and 54% reduction in total feather moss biomass, and a 58% and 97% reduction in total N2-fixation rate per unit area, respectively. These results help to quantify the sensitivity of feather moss biomass and N2 fixation to chronic Nr deposition, which is relevant for modelling ecosystem C and N balances in boreal ecosystems. PMID:24196519

  3. Maxillomandibular Fixation by Plastic Surgeons: Cost Analysis and Utilization of Resources.

    PubMed

    Farber, Scott J; Snyder-Warwick, Alison K; Skolnick, Gary B; Woo, Albert S; Patel, Kamlesh B

    2016-09-01

    Maxillomandibular fixation (MMF) can be performed using various techniques. Two common approaches used are arch bars and bone screws. Arch bars are the gold standard and inexpensive, but often require increased procedure time. Bone screws with wire fixation is a popular alternative, but more expensive than arch bars. The differences in costs of care, complications, and operative times between these 2 techniques are analyzed. A chart review was conducted on patients treated over the last 12 years at our institution. Forty-four patients with CPT code 21453 (closed reduction of mandible fracture with interdental fixation) with an isolated mandible fracture were used in our data collection. The operating room (OR) costs, procedure duration, and complications for these patients were analyzed. Operative times were significantly shorter for patients treated with bone screws (P < 0.002). The costs for one trip to the OR for either method of fixation did not show any significant differences (P < 0.840). More patients with arch bar fixation (62%) required a second trip to the OR for removal in comparison to those with screw fixation (31%) (P < 0.068). This additional trip to the OR added significant cost. There were no differences in patient complications between these 2 fixation techniques. The MMF with bone screws represents an attractive alternative to fixation with arch bars in appropriate scenarios. Screw fixation offers reduced costs, fewer trips to the OR, and decreased operative duration without a difference in complications. Cost savings were noted most significantly in a decreased need for secondary procedures in patients who were treated with MMF screws. Screw fixation offers potential for reducing the costs of care in treating patients with minimally displaced or favorable mandible fractures.

  4. Molybdenum and Phosphorus Interact to Constrain Asymbiotic Nitrogen Fixation in Tropical Forests

    PubMed Central

    Wurzburger, Nina; Bellenger, Jean Philippe; Kraepiel, Anne M. L.; Hedin, Lars O.

    2012-01-01

    Biological di-nitrogen fixation (N2) is the dominant natural source of new nitrogen to land ecosystems. Phosphorus (P) is thought to limit N2 fixation in many tropical soils, yet both molybdenum (Mo) and P are crucial for the nitrogenase reaction (which catalyzes N2 conversion to ammonia) and cell growth. We have limited understanding of how and when fixation is constrained by these nutrients in nature. Here we show in tropical forests of lowland Panama that the limiting element on asymbiotic N2 fixation shifts along a broad landscape gradient in soil P, where Mo limits fixation in P-rich soils while Mo and P co-limit in P-poor soils. In no circumstance did P alone limit fixation. We provide and experimentally test a mechanism that explains how Mo and P can interact to constrain asymbiotic N2 fixation. Fixation is uniformly favored in surface organic soil horizons - a niche characterized by exceedingly low levels of available Mo relative to P. We show that soil organic matter acts to reduce molybdate over phosphate bioavailability, which, in turn, promotes Mo limitation in sites where P is sufficient. Our findings show that asymbiotic N2 fixation is constrained by the relative availability and dynamics of Mo and P in soils. This conceptual framework can explain shifts in limitation status across broad landscape gradients in soil fertility and implies that fixation depends on Mo and P in ways that are more complex than previously thought. PMID:22470462

  5. Biomechanical characterization of double-bundle femoral press-fit fixation techniques.

    PubMed

    Ettinger, M; Haasper, C; Hankemeier, S; Hurschler, C; Breitmeier, D; Krettek, C; Jagodzinski, M

    2011-03-01

    Press-fit fixation of patellar tendon bone anterior cruciate ligament autografts is an interesting technique because no hardware is necessary. To date, no biomechanical data exist describing an implant-free double-bundle press-fit procedure. The purpose of this study was to characterize the biomechanical properties of three double-bundle press-fit fixations. In a controlled laboratory study, the patellar-, quadriceps- and hamstring tendons of 10 human cadavers (age: 49.2 ± 18.5 years) were used. An inside out press-fit fixation with a knot in the semitendinosus and gracilis tendons (SG) combined with an additional bone block, with two quadriceps tendon bone block grafts (QU) was compared with press-fit fixation of two bone patellar tendon bone block (PT) grafts in 30 porcine femora. Constructs were cyclically stretched and then loaded until failure. Maximum load to failure, stiffness and elongation during failure testing and cyclical loading were investigated. The maximum load to failure was 703 ± 136 N for SG fixation, 632 ± 130 N for QU and 656 ± 127 N for PT fixation. Stiffness of the constructs averaged 138 ± 26 N/mm for SG, 159 ± 74 N/mm for QU, and 154 ± 50 N/mm for PT fixation. Elongation during initial cyclical loading was 1.2 ± 1.4 mm for SG, 2.0 ± 1.4 mm for QU, and 1.0 ± 0.6 mm for PT (significantly larger for PT and QU between the first 5 cycles compared with cycles 15-20th, P < 0.01). All investigated double-bundle fixation techniques were equal in terms of maximum load to failure, stiffness, and elongation. Unlike with single-bundle press-fit fixation techniques that have been published, no difference was observed between pure tendon combined with an additional bone block and tendon bone grafts. All techniques exhibited larger elongation during initial cyclical loading. All three press-fit fixation techniques that were investigated exhibit comparable biomechanical properties. Preconditioning of the constructs

  6. Metagenomic analysis of carbon cycling and biogenic methane formation in terrestrial serpentinizing fluid springs

    NASA Astrophysics Data System (ADS)

    Woycheese, K. M.; Meyer-Dombard, D. R.; Cardace, D.; Arcilla, C. A.; Ono, S.

    2016-12-01

    The products of serpentinization are proposed to support a hydrogen-driven microbial biosphere in ultrabasic, highly reducing fluids. Shotgun metagenomic analysis of microbial communities collected from terrestrial serpentinizing springs in the Philippines and Turkey suggest that mutualistic relationships may help microbial communities thrive in highly oligotrophic environments. Understanding how these relationships affect production of methane in the deep subsurface is critical to applications such as carbon sequestration and natural gas production. There is conflicting evidence regarding whether methane and C2-C6 alkanes in serpentinizing ecosystems are produced abiogenically or through biotic reactions such as methanogenesis1, 2. While geochemical analysis of methane from serpentinizing ecosystems has previously indicated abiogenic and/or mixed formation3, 4, methanogens have been detected in an increasing number of investigations2. Here, putative metabolisms were identified via assembly and annotation of metagenomic sequence data from the Philippines and Turkey. At both sites, hydrogenotrophic methanogenesis and homoacetogenesis were identified as the principal autotrophic carbon fixation pathways. Heterotrophic acetogenesis and acetoclastic methanogenesis were also detected in sequence data. Other heterotrophic metabolic pathways identified included sulfate reduction, methanotrophy, and biodegradation of aromatic carbon compounds. Many of these metabolic pathways have been shown to be favorable under conditions typical of serpentinizing habitats5. Metagenomic analysis strongly suggests that at least some of the methane originating from these serpentinizing ecosystems may be biologically derived. Ongoing work will further clarify the mechanisms of methane formation by examining the clumped isotopologue ratios of dissolved methane in serpentinizing fluids. 1. Wang et al. (2015). Science. 348. doi: 10.1126/science.aaa4326 2. Kohl et al. (2016). JGR. Biogeosci

  7. Low rates of nitrogen fixation in eastern tropical South Pacific surface waters

    PubMed Central

    Knapp, Angela N.; Casciotti, Karen L.; Berelson, William M.; Prokopenko, Maria G.; Capone, Douglas G.

    2016-01-01

    An extensive region of the Eastern Tropical South Pacific (ETSP) Ocean has surface waters that are nitrate-poor yet phosphate-rich. It has been proposed that this distribution of surface nutrients provides a geochemical niche favorable for N2 fixation, the primary source of nitrogen to the ocean. Here, we present results from two cruises to the ETSP where rates of N2 fixation and its contribution to export production were determined with a suite of geochemical and biological measurements. N2 fixation was only detectable using nitrogen isotopic mass balances at two of six stations, and rates ranged from 0 to 23 µmol N m−2 d−1 based on sediment trap fluxes. Whereas the fractional importance of N2 fixation did not change, the N2-fixation rates at these two stations were several-fold higher when scaled to other productivity metrics. Regardless of the choice of productivity metric these N2-fixation rates are low compared with other oligotrophic locations, and the nitrogen isotope budgets indicate that N2 fixation supports no more than 20% of export production regionally. Although euphotic zone-integrated short-term N2-fixation rates were higher, up to 100 µmol N m−2 d−1, and detected N2 fixation at all six stations, studies of nitrogenase gene abundance and expression from the same cruises align with the geochemical data and together indicate that N2 fixation is a minor source of new nitrogen to surface waters of the ETSP. This finding is consistent with the hypothesis that, despite a relative abundance of phosphate, iron may limit N2 fixation in the ETSP. PMID:26976587

  8. Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass Heterosis in Maize Hybrids.

    PubMed

    Ko, Dae Kwan; Rohozinski, Dominica; Song, Qingxin; Taylor, Samuel H; Juenger, Thomas E; Harmon, Frank G; Chen, Z Jeffrey

    2016-07-01

    Heterosis has been widely used in agriculture, but the molecular mechanism for this remains largely elusive. In Arabidopsis hybrids and allopolyploids, increased photosynthetic and metabolic activities are linked to altered expression of circadian clock regulators, including CIRCADIAN CLOCK ASSOCIATED1 (CCA1). It is unknown whether a similar mechanism mediates heterosis in maize hybrids. Here we report that higher levels of carbon fixation and starch accumulation in the maize hybrids are associated with altered temporal gene expression. Two maize CCA1 homologs, ZmCCA1a and ZmCCA1b, are diurnally up-regulated in the hybrids. Expressing ZmCCA1 complements the cca1 mutant phenotype in Arabidopsis, and overexpressing ZmCCA1b disrupts circadian rhythms and biomass heterosis. Furthermore, overexpressing ZmCCA1b in maize reduced chlorophyll content and plant height. Reduced height stems from reduced node elongation but not total node number in both greenhouse and field conditions. Phenotypes are less severe in the field than in the greenhouse, suggesting that enhanced light and/or metabolic activities in the field can compensate for altered circadian regulation in growth vigor. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis reveals a temporal shift of ZmCCA1-binding targets to the early morning in the hybrids, suggesting that activation of morning-phased genes in the hybrids promotes photosynthesis and growth vigor. This temporal shift of ZmCCA1-binding targets correlated with nonadditive and additive gene expression in early and late stages of seedling development. These results could guide breeding better hybrid crops to meet the growing demand in food and bioenergy.

  9. Intramedullary Fixation of Midshaft Clavicle Fractures.

    PubMed

    Fritz, Erik M; van der Meijden, Olivier A; Hussain, Zaamin B; Pogorzelski, Jonas; Millett, Peter J

    2017-08-01

    Clavicle fractures are among the most common fractures occurring in the general population, and the vast majority are localized in the midshaft portion of the bone. Management of midshaft clavicle fractures remains controversial. Although many can be managed nonoperatively, certain patient populations and fracture patterns, such as completely displaced and shortened fractures, are at risk of less optimal outcomes with nonoperative management; surgical intervention should be considered in such cases. The purpose of this article is to demonstrate our technique of midshaft clavicle fixation using minimally invasive intramedullary fixation.

  10. Synthesizing the Use of Carbon Isotope (14C and 13C) Approaches to Understand Rates and Pathways for Permafrost C Mobilization and Mineralization

    NASA Astrophysics Data System (ADS)

    Estop-Aragones, C.; Olefeldt, D.; Schuur, E.

    2015-12-01

    To better understand the permafrost carbon (C) feedback it is important to synthesize our current knowledge, and knowledge gaps, of how permafrost thaw can cause in situ mineralization or downstream mobilization of aged soil organic carbon (SOC) and the rate of this release. This potential loss of old SOC may occur via gaseous flux of CO2 and CH4 exchanged between soil and the atmosphere and via waterborne flux as DOC, POC (and their subsequent decomposition and release to the atmosphere). Carbon isotope (14C and 13C) approaches have been used to estimate both rates and pathways for permafrost C mobilization and mineralization. Radiocarbon (14C) has been used to estimate the contribution of aged C to overall respiration or waterborne C export. We aim to contrast results from radiocarbon studies, in order to assess differences between ecosystems (contrasting wet and dry ecosystems), thaw histories (active layer deepening or thermokarst landforms), greenhouse gas considered (CO2 and CH4) and seasons. We propose to also contrast methodologies used for assessing the contribution of aged C to overall C balance, and include studies using 13C data. Biological fractionation of 13C during both uptake and decomposition has been taken advantage of both in order to aid the interpretation of 14C data and on its own to assess sources and mineralization pathways. For example, 13C data has been used to differentiate between CH4 production pathways, and the relative contribution of anaerobic CO2 production to overall respiration. Overall, carbon isotope research is proving highly valuable for our understanding of permafrost C dynamics following thaw, and there is a current need to synthesize the available literature.

  11. Two-stage open reduction and internal fixation versus limited internal fixation combined with external fixation: a meta-analysis of postoperative complications in patients with severe Pilon fractures.

    PubMed

    Cui, Xueliang; Chen, Hui; Rui, Yunfeng; Niu, Yang; Li, He

    2018-01-01

    Objectives Two-stage open reduction and internal fixation (ORIF) and limited internal fixation combined with external fixation (LIFEF) are two widely used methods to treat Pilon injury. However, which method is superior to the other remains controversial. This meta-analysis was performed to quantitatively compare two-stage ORIF and LIFEF and clarify which method is better with respect to postoperative complications in the treatment of tibial Pilon fractures. Methods We conducted a meta-analysis to quantitatively compare the postoperative complications between two-stage ORIF and LIFEF. Eight studies involving 360 fractures in 359 patients were included in the meta-analysis. Results The two-stage ORIF group had a significantly lower risk of superficial infection, nonunion, and bone healing problems than the LIFEF group. However, no significant differences in deep infection, delayed union, malunion, arthritis symptoms, or chronic osteomyelitis were found between the two groups. Conclusion Two-stage ORIF was associated with a lower risk of postoperative complications with respect to superficial infection, nonunion, and bone healing problems than LIFEF for tibial Pilon fractures. Level of evidence 2.

  12. Monitoring CO[subscript 2] Fixation Using GC-MS Detection of a [superscript 13]C-Label

    ERIC Educational Resources Information Center

    Hammond, Daniel G.; Bridgham, April; Reichert, Kara; Magers, Martin

    2010-01-01

    Much of our understanding of metabolic pathways has resulted from the use of chemical and isotopic labels. In this experiment, a heavy isotope of carbon, [superscript 13]C, is used to label the product of the well-known RuBisCO enzymatic reaction. This is a key reaction in photosynthesis that converts inorganic carbon to organic carbon; a process…

  13. Free flap reconstructions of tibial fractures complicated after internal fixation.

    PubMed

    Nieminen, H; Kuokkanen, H; Tukiainen, E; Asko-Seljavaara, S

    1995-04-01

    The cases of 15 patients are presented where microvascular soft-tissue reconstructions became necessary after internal fixation of tibial fractures. Primarily, seven of the fractures were closed. Eleven fractures had originally been treated by open reduction and internal fixation using plates and screws, and four by intramedullary nailing. All of the patients suffered from postoperative complications leading to exposure of the bone or fixation material. The internal fixation material was removed and radical revision of dead and infected tissue was carried out in all cases. Soft tissue reconstruction was performed using a free microvascular muscle flap (11 latissimus dorsi, three rectus abdominis, and one gracilis). In eight cases the nonunion of the fracture indicated external fixation. The microvascular reconstruction was successful in all 15 patients. In one case the recurrence of deep infection finally indicated a below-knee amputation. In another case, chronic infection with fistulation recurred postoperatively. After a mean follow-up of 26 months the soft tissue coverage was good in all the remaining 13 cases. All the fractures united. Microvascular free muscle flap reconstruction of the leg is regarded as a reliable method for salvaging legs with large soft-tissue defects or defects in the distal leg. If after internal fixation of the tibial fracture the osteosynthesis material or fracture is exposed, reconstruction of the soft-tissue can successfully be performed by free flap transfer. By radical revision, external fixation, bone grafting, and a free flap the healing of the fracture can be achieved.

  14. Fixation Times in Deme Structured, Finite Populations with Rare Migration

    NASA Astrophysics Data System (ADS)

    Hauert, Christoph; Chen, Yu-Ting; Imhof, Lorens A.

    2014-08-01

    Population structure affects both the outcome and the speed of evolutionary dynamics. Here we consider a finite population that is divided into subpopulations called demes. The dynamics within the demes are stochastic and frequency-dependent. Individuals can adopt one of two strategic types, or . The fitness of each individual is determined by interactions with other individuals in the same deme. With small probability, proportional to fitness, individuals migrate to other demes. The outcome of these dynamics has been studied earlier by analyzing the fixation probability of a single mutant in an otherwise homogeneous population. These results give only a partial picture of the dynamics, because the time when fixation occurs can be exceedingly large. In this paper, we study the impact of deme structures on the speed of evolution. We derive analytical approximations of fixation times in the limit of rare migration and rare mutation. In this limit, the conditional fixation time of a single mutant in a population is the same as that of a single in an population. For the prisoner's dilemma game, simulation results fit very well with our analytical predictions and demonstrate that fixation takes place in a moderate amount of time as compared to the expected waiting time until a mutant successfully invades and fixates. The simulations also confirm that the conditional fixation time of a single cooperator is indeed the same as that of a single defector.

  15. The Fixation of Nitrogen.

    ERIC Educational Resources Information Center

    Andrew, S. P. S.

    1978-01-01

    Discusses the fixation of atmospheric nitrogen in the form of ammonia as one of the foundations of modern chemical industry. The article describes ammonia production and synthesis, purifying the hydrogen-nitrogen mix, nitric acid production, and its commericial plant. (HM)

  16. Calibration and standardization of microwave ovens for fixation of brain and peripheral nerve tissue.

    PubMed

    Login, G R; Leonard, J B; Dvorak, A M

    1998-06-01

    Rapid and reproducible fixation of brain and peripheral nerve tissue for light and electron microscopy studies can be done in a microwave oven. In this review we report a standardized nomenclature for diverse fixation techniques that use microwave heating: (1) microwave stabilization, (2) fast and ultrafast primary microwave-chemical fixation, (3) microwave irradiation followed by chemical fixation, (4) primary chemical fixation followed by microwave irradiation, and (5) microwave fixation used in various combinations with freeze fixation. All of these methods are well suited to fix brain tissue for light microscopy. Fast primary microwave-chemical fixation is best for immunoelectron microscopy studies. We also review how the physical characteristics of the microwave frequency and the dimensions of microwave oven cavities can compromise microwave fixation results. A microwave oven can be calibrated for fixation when the following parameters are standardized: irradiation time; water load volume, initial temperature, and placement within the oven; fixative composition, volume, and initial temperature; and specimen container shape and placement within the oven. Using two recently developed calibration tools, the neon bulb array and the agar-saline-Giemsa tissue phantom, we report a simple calibration protocol that identifies regions within a microwave oven for uniform microwave fixation. Copyright 1998 Academic Press.

  17. Measuring the effect of multiple eye fixations on memory for visual attributes.

    PubMed

    Palmer, J; Ames, C T

    1992-09-01

    Because of limited peripheral vision, many visual tasks depend on multiple eye fixations. Good performance in such tasks demonstrates that some memory must survive from one fixation to the next. One factor that must influence performance is the degree to which multiple eye fixations interfere with the critical memories. In the present study, the amount of interference was measured by comparing visual discriminations based on multiple fixations to visual discriminations based on a single fixation. The procedure resembled partial report, but used a discrimination measure. In the prototype study, two lines were presented, followed by a single line and a cue. The cue pointed toward one of the positions of the first two lines. Observers were required to judge if the single line in the second display was longer or shorter than the cued line of the first display. These judgments were used to estimate a length threshold. The critical manipulation was to instruct observers either to maintain fixation between the lines of the first display or to fixate each line in sequence. The results showed an advantage for multiple fixations despite the intervening eye movements. In fact, thresholds for the multiple-fixation condition were nearly as good as those in a control condition where the lines were foveally viewed without eye movements. Thus, eye movements had little or no interfering effect in this task. Additional studies generalized the procedure and the stimuli. In conclusion, information about a variety of size and shape attributes was remembered with essentially no interference across eye fixations.

  18. The Role of Minimally Invasive Plate Osteosynthesis in Rib Fixation: A Review

    PubMed Central

    Bemelman, Michael; van Baal, Mark; Yuan, Jian Zhang; Leenen, Luke

    2016-01-01

    More than a century ago, the first scientific report was published about fracture fixation with plates. During the 1950’s, open reduction and plate fixation for fractures were standardized by the founders of Arbeitsgemeinschaft für osteosynthesefragen/Association for the Study of Internal Fixation. Since the introduction of plate fixation for fractures, several plates and screws have been developed, all with their own characteristics. To accomplice more fracture stability, it was thought the bigger the plate, the better. The counter side was a compromised blood supply of the bone, often resulting in bone necrosis and ultimately delayed or non-union. With the search and development of new materials and techniques for fracture fixation, less invasive procedures have become increasingly popular. This resulted in the minimally invasive plate osteosynthesis (MIPO) technique for fracture fixation. With the MIPO technique, procedures could be performed with smaller incisions and thus with less soft tissue damage and a better preserved blood supply. The last 5 years rib fixation has become increasingly popular, rising evidence has become available suggesting that surgical rib fixation improves outcome of patients with a flail chest or isolated rib fractures. Many surgical approaches for rib fixation have been described in the old literature, however, most of these techniques are obscure nowadays. Currently mostly large incisions with considerable surgical insult are used to stabilize rib fractures. We think that MIPO deserves a place in the surgical treatment of rib fractures. We present the aspects of diagnosis, preoperative planning and operative techniques in regard to MIPO rib fixation. PMID:26889439

  19. Fractures of the proximal fifth metatarsal: percutaneous bicortical fixation.

    PubMed

    Mahajan, Vivek; Chung, Hyun Wook; Suh, Jin Soo

    2011-06-01

    Displaced intraarticular zone I and displaced zone II fractures of the proximal fifth metatarsal bone are frequently complicated by delayed nonunion due to a vascular watershed. Many complications have been reported with the commonly used intramedullary screw fixation for these fractures. The optimal surgical procedure for these fractures has not been determined. All these observations led us to evaluate the effectiveness of percutaneous bicortical screw fixation for treating these fractures. Twenty-three fractures were operatively treated by bicortical screw fixation. All the fractures were evaluated both clinically and radiologically for the healing. All the patients were followed at 2 or 3 week intervals till fracture union. The patients were followed for an average of 22.5 months. Twenty-three fractures healed uneventfully following bicortical fixation, with a mean healing time of 6.3 weeks (range, 4 to 10 weeks). The average American Orthopaedic Foot & Ankle Society (AOFAS) score was 94 (range, 90 to 99). All the patients reported no pain at rest or during athletic activity. We removed the implant in all cases at a mean of 23.2 weeks (range, 18 to 32 weeks). There was no refracture in any of our cases. The current study shows the effectiveness of bicortical screw fixation for displaced intraarticular zone I fractures and displaced zone II fractures. We recommend it as one of the useful techniques for fixation of displaced zone I and II fractures.

  20. Are watershed and lacustrine controls on planktonic N2 fixation hierarchically structured?

    PubMed

    Scott, J Thad; Doyle, Robert D; Prochnow, Shane J; White, Joseph D

    2008-04-01

    N2 fixation can be an important source of N to limnetic ecosystems and can influence the structure of phytoplankton communities. However, watershed-scale conditions that favor N2 fixation in lakes and reservoirs have not been well studied. We measured N2 fixation and lacustrine variables monthly over a 19-month period in Waco Reservoir, Texas, USA, and linked these data with nutrient-loading estimates from a physically based watershed model. Readily available topographic, soil, land cover, effluent discharge, and climate data were used in the Soil and Water Assessment Tool (SWAT) to derive watershed nutrient-loading estimates. Categorical and regression tree (CART) analysis revealed that lacustrine and watershed correlates of N2 fixation were hierarchically structured. Lacustrine conditions showed greater predictive capability temporally. For instance, low NO3(-) concentration (<25 microg N/L) and high water temperatures (>27 degrees C) in the reservoir were correlated with the initiation of N2 fixation seasonally. When lacustrine conditions were favorable for N2 fixation, watershed conditions appeared to influence spatial patterns of N2 fixation within the reservoir. For example, spatially explicit patterns of N2 fixation were correlated with the ratio of N:P in nutrient loadings and the N loading rate, which were driven by anthropogenic activity in the watershed and periods of low stream flow, respectively. Although N2 fixation contributed <5% of the annual N load to the reservoir, 37% of the N load was derived from atmospheric N2 fixation during summertime when stream flow in the watershed was low. This study provides evidence that watershed anthropogenic activity can exert control on planktonic N2 fixation, but that temporality is controlled by lacustrine conditions. Furthermore, this study also supports suggestions that reduced inflows may increase the propensity of N2-fixing cyanobacterial blooms in receiving waters of anthropogenically modified landscapes.