Carbon or graphite foam as a heating element and system thereof
Ott, Ronald D [Knoxville, TN; McMillan, April D [Knoxville, TN; Choudhury, Ashok [Oak Ridge, TN
2004-05-04
A temperature regulator includes at least one electrically conductive carbon foam element. The foam element includes at least two locations adapted for receiving electrical connectors thereto for heating a fluid, such as engine oil. A combustion engine includes an engine block and at least one carbon foam element, the foam element extending into the engine block or disposed in thermal contact with at least one engine fluid.
Personal cooling air filtering device
Klett, James [Knoxville, TN; Conway, Bret [Denver, NC
2002-08-13
A temperature modification system for modifying the temperature of fluids includes at least one thermally conductive carbon foam element, the carbon foam element having at least one flow channel for the passage of fluids. At least one temperature modification device is provided, the temperature modification device thermally connected to the carbon foam element and adapted to modify the temperature of the carbon foam to modify the temperature of fluids flowing through the flow channels. Thermoelectric and/or thermoionic elements can preferably be used as the temperature modification device. A method for the reversible temperature modification of fluids includes the steps of providing a temperature modification system including at least one thermally conductive carbon foam element having flow channels and at least one temperature modification device, and flowing a fluid through the flow channels.
NASA Astrophysics Data System (ADS)
Ozbay, N.; Yargic, A. S.
2017-02-01
Carbon foam is sponge like carbonaceous material with low density, high conductivity and high strength; which is used in various applications such as catalyst supports, membrane separations, high thermally conductive heat sinks, energy absorption materials, high temperature thermal insulation. Coal or fossil oils are conventionally used to fabricate pitch, phenolic resin and polyurethane as carbon foam precursor. Biomass liquefaction is a developing technique to convert biomass resources into the industrial chemicals. In this study, oak tree bark was liquefied under mild conditions with different mass ratio of biomass/phenol; and the liquefaction product was used as polyol to produce porous resin foams. Obtained resin foams were carbonized at 400 °C, and then activated at 800 °C under nitrogen atmosphere. Structure evaluation of resin foams, carbonized foams and activated carbon foams from liquefied oak tree bark was investigated by using elemental analysis, x-ray diffraction, nitrogen adsorption/desorption isotherms, scanning electron microscopy, bulk density and compressive strength tests.
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Spellman, Regina L.
2006-01-01
A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0-in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at four discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.
2004-01-01
A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0- in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA version 960 for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at five discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density. As a final comparison, the model with a fine panel and fine foam mesh was executed with slightly different material properties for the RCC. For this model, the average degraded properties of the RCC were replaced with the maximum degraded properties. Similar comparisons of panel and foam responses were made for the average and maximum degraded models.
Facile synthesis and application of a carbon foam with large mesopores.
Fu, Liling; Qi, Genggeng; Sahore, Ritu; Sougrat, Rachid; DiSalvo, Francis J; Giannelis, Emmanuel P
2013-11-28
By combining elements of hard- and soft-templating, a facile synthesis method for carbon foams with large mesopores has been demonstrated. A commercial Pluronic surfactant was used as the structure-directing agent as well as the carbon precursor. No micelle swelling agent or post treatment is necessary to enlarge mesopores. As such this method requires fewer synthesis steps and is highly scalable. The as-synthesized meso-carbons showed potential applications in the fields of carbon oxide capture and lithium-sulfur batteries.
A heat transfer model for incorporating carbon foam fabrics in firefighter's garment
NASA Astrophysics Data System (ADS)
Elgafy, Ahmed; Mishra, Sarthak
2014-04-01
In the present work, a numerical study was performed to predict and investigate the performance of a thermal protection system for firefighter's garment consisting of carbon foam fabric in both the outer shell and the thermal liner elements. Several types of carbon foam with different thermal conductivity, porosity, and density were introduced to conduct a parametric study. Additionally, the thickness of the introduced carbon foam fabrics was varied to acquire optimum design. Simulation was conducted for a square planar 2D geometry of the clothing comprising of different fabric layers and a double precision pressure-based implicit solver, under transient state condition was used. The new anticipated thermal protection system was tested under harsh thermal environmental conditions that firefighters are exposed to. The parametric study showed that employing carbon foam fabric with one set of designed parameters, weight reduction of 33 % in the outer shell, 56 % in the thermal liner and a temperature reduction of 2 % at the inner edge of the garment was achieved when compared to the traditional firefighter garment model used by Song et al. (Int J Occup Saf Ergon 14:89-106, 2008). Also, carbon foam fabric with another set of designed parameters resulted in a weight reduction of 25 % in the outer shell, 28 % in the thermal liner and a temperature reduction of 6 % at the inner edge of the garment. As a result, carbon foam fabrics make the firefighter's garment more protective, durable, and lighter in weight.
Characterization of boron coated vitreous carbon foam for neutron detection
NASA Astrophysics Data System (ADS)
Lavelle, C. M.; Deacon, Ryan M.; Hussey, Daniel S.; Coplan, Michael; Clark, Charles W.
2013-11-01
Reticulated vitreous carbon (RVC) foams coated with 3-11 μm thick layers of boron carbide (B4C) are experimentally characterized for use as an active material for neutron detection. The potential advantage of this material over thin films is that it can be fabricated in any shape and its porous structure may enhance the emission surface area for ionizing charged particles following thermal neutron capture. A coated foam is also advantageous because the neutron-absorbing material is only on the surface, which is more efficient for α particle emission on a per captured neutron basis. Measurements of the B4C layer thickness of an RVC coated foam, and determination of its elemental composition, are performed using scanning electron microscopy. Neutron transmission measurements using neutron radiography are presented and α particle emission from the coated foam in response to a moderated 252Cf thermal neutron source is demonstrated.
Multifunctional Stiff Carbon Foam Derived from Bread.
Yuan, Ye; Ding, Yujie; Wang, Chunhui; Xu, Fan; Lin, Zaishan; Qin, Yuyang; Li, Ying; Yang, Minglong; He, Xiaodong; Peng, Qingyu; Li, Yibin
2016-07-06
The creation of stiff yet multifunctional three-dimensional porous carbon architecture at very low cost is still challenging. In this work, lightweight and stiff carbon foam (CF) with adjustable pore structure was prepared by using flour as the basic element via a simple fermentation and carbonization process. The compressive strength of CF exhibits a high value of 3.6 MPa whereas its density is 0.29 g/cm(3) (compressive modulus can be 121 MPa). The electromagnetic interference (EMI) shielding effectiveness measurements (specific EMI shielding effectiveness can be 78.18 dB·cm(3)·g(-1)) indicate that CF can be used as lightweight, effective shielding material. Unlike ordinary foam structure materials, the low thermal conductivity (lowest is 0.06 W/m·K) with high resistance to fire makes CF a good candidate for commercial thermal insulation material. These results demonstrate a promising method to fabricate an economical, robust carbon material for applications in industry as well as topics regarding environmental protection and improvement of energy efficiency.
Infiltrated carbon foam composites
NASA Technical Reports Server (NTRS)
Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)
2012-01-01
An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.
Fracture Mechanical Analysis of Open Cell Ceramic Foams Under Thermal Shock Loading
NASA Astrophysics Data System (ADS)
Settgast, C.; Abendroth, M.; Kuna, M.
2016-11-01
Ceramic foams made by replica techniques containing sharp-edged cavities, which are potential crack initiators and therefore have to be analyzed using fracture mechanical methods. The ceramic foams made of novel carbon bonded alumina are used as filters in metal melt filtration applications, where the filters are exposed to a thermal shock. During the casting process the filters experience a complex thermo-mechanical loading, which is difficult to measure. Modern numerical methods allow the simulation of such complex processes. As a simplified foam structure an open Kelvin cell is used as a representative volume element. A three-dimensional finite element model containing realistic sharp-edged cavities and three-dimensional sub-models along these sharp edges are used to compute the transient temperature, stress and strain fields at the Kelvin foam. The sharp edges are evaluated using fracture mechanical methods like the J-integral technique. The results of this study describe the influence of the pore size, relative density of the ceramic foam, the heat transfer and selected material parameters on the fracture mechanical behaviour.
Gamma radiation effects on polydimethylsiloxane rubber foams under different radiation conditions
NASA Astrophysics Data System (ADS)
Sui, H. L.; Liu, X. Y.; Zhong, F. C.; Li, X. Y.; Wang, L.; Ju, X.
2013-07-01
Polydimethylsiloxane rubber foams were irradiated by gamma ray under different radiation conditions designed by orthogonal design method. Compression set measurement, infrared attenuated total reflectance spectroscopy (ATR) and X-ray induced photoelectron spectroscopy (XPS) were used. Three aging factors' influence effects on the mechanical property and chemical structure were studied. It was found that among the three factors and the chosen levels, both properties were affected most by radiation dose, while radiation dose rate had no obvious influence on both properties. The stiffening of the rubber foams was caused by cross-linking reactions in the Si-CH3. At the same radiation dose, the rigidity of the foams irradiated in air was lower than that in nitrogen. When polydimethylsiloxane was irradiated at a high dose in sealed nitrogen atmosphere, carbon element distribution would be changed. Hydrocarbons produced by gamma ray in the sealed tube would make the carbon content in the skin-deep higher than that in the middle, which indicated that polydimethylsiloxane rubber foams storing in a sealed atmosphere filled with enough hydrocarbons should be helpful to extend the service life.
Pyrophoric metal-carbon foam composites and methods of making the same
Gash, Alexander E [Brentwood, CA; Satcher, Jr., Joe H.; Simpson, Randall L [Livermore, CA; Baumann, Theodore F [Discovery Bay, CA; Worsley, Marcus A [Belmont, CA
2012-05-08
A method for creating a pyrophoric material according to one embodiment includes thermally activating a carbon foam for creating micropores therein; contacting the activated carbon foam with a liquid solution comprising a metal salt for depositing metal ions in the carbon foam; and reducing the metal ions in the foam to metal particles. A pyrophoric material in yet another embodiment includes a pyrophoric metal-carbon foam composite comprising a carbon foam having micropores and mesopores and a surface area of greater than or equal to about 2000 m.sup.2/g, and metal particles in the pores of the carbon foam. Additional methods and materials are also disclosed.
Activated, coal-based carbon foam
Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw
2004-12-21
An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.; Park, Young-Keun
2004-01-01
A series of three dimensional simulations has been performed to investigate analytically the effect of insulating foam impacts on ceramic tile and reinforced carbon-carbon components of the Space Shuttle thermal protection system. The simulations employed a hybrid particle-finite element method and a parallel code developed for use in spacecraft design applications. The conclusions suggested by the numerical study are in general consistent with experiment. The results emphasize the need for additional material testing work on the dynamic mechanical response of thermal protection system materials, and additional impact experiments for use in validating computational models of impact effects.
Kongpatpanich, Kanokwan; Horike, Satoshi; Fujiwara, Yu-Ichi; Ogiwara, Naoki; Nishihara, Hirotomo; Kitagawa, Susumu
2015-09-14
Porous carbon material with a foam-like microstructure has been synthesized by direct carbonization of porous coordination polymer (PCP). In situ generation of foaming agents by chemical reactions of ligands in PCP during carbonization provides a simple way to create lightweight carbon material with a foam-like microstructure. Among several substituents investigated, the nitro group has been shown to be the key to obtain the unique foam-like microstructure, which is due to the fast kinetics of gas evolution during carbonization. Foam-like microstructural carbon materials showed higher pore volume and specific capacitance compared to a microporous carbon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbon foam/hydroxyapatite coating for carbon/carbon composites: Microstructure and biocompatibility
NASA Astrophysics Data System (ADS)
Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Shouyang; Lu, Jinhua; Li, Wei; Cao, Sheng; Wang, Bin
2013-12-01
To improve the surface biocompatibility of carbon/carbon composites, a carbon foam/hydroxyapatite coating was applied using a combination method of slurry procedure and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The biocompatibility of the carbon foam/hydroxyapatite coating was investigated by osteoblast-like MG63 cell culture tests. The results showed that the carbon foam could provide a large number of pores on the surface of carbon/carbon composites. The hydroxyapatite crystals could infiltrate into the pores and form the carbon foam/hydroxyapatite coating. The coating covered the carbon/carbon composites fully and uniformly with slice morphology. The cell response tests showed that the MG63 cells on carbon foam/hydroxyapatite coating had a better cell adhesion and cell proliferation than those on uncoated carbon/carbon composites. The carbon foam/hydroxyapatite coatings were cytocompatible and were beneficial to improve the biocompatibility. The approach presented here may be exploited for fabrication of carbon/carbon composite implant surfaces.
NASA Astrophysics Data System (ADS)
Xin, Zhaopeng; Li, Weixin; Fang, Wei; He, Xuan; Zhao, Lei; Chen, Hui; Zhang, Wanqiu; Sun, Zhimin
2017-12-01
In this work, graphene aerogel/carbon foam is prepared by in situ inducing graphene aerogels in the pores of carbon foam. This novel hierarchical porous structure possesses a higher specific surface area as the introduction of graphene aerogels in carbon foam increases the proportion of micropores thus making it a superior candidate as electrodes for supercapacitors. The characterization and comparison of various properties of carbon foam and graphene aerogels/carbon foam have been investigated systematically. The result shows that specific surface area is up to 682.8 m2/g compared with initial carbon foam which increased about 55%, and the pore distribution curve shows more pore volume at 0.3 nm for F-CF/GA. It is demonstrated that the introduction of graphene aerogels not only increases the specific surface area, but also improves the conductivity, thus resulting in the reduction of the internal resistance and the improvement of the electrochemical performance. Consequently, graphene aerogel/carbon foam shows an excellent specific capacitance of 193.1 F/g at 1 A/g which is 72% higher than that of carbon foam acted as electrodes for supercapacitors.
Series Fault Limiting Resistors for Atlas Marx Modules
1995-07-01
use Reticulated Vitreous Carbon (RVC)2 foam blocks for the series resistor element. The blocks will serve as a resistive transmission line on the...3,4. 2. Joseph Wang, (Department of Chemistry, New Mexico State University, Las Cruces NM 88003, USA), " Reticulated Vitreous Carbon -A New Versatile...0.08 Ohm-em fitting our requirements well. The process of producing RVC results in a reproducibly refined form of continuous-fiber, vitreous Carbon
Effect of blowing agents on the oxidation resistance of carbon foams prepared from molten sucrose
NASA Astrophysics Data System (ADS)
Narasimman, R.; Prabhakaran, K.
2013-06-01
We have prepared low density carbon foams from molten sucrose using aluminium nitrate and boric acid blowing agents. A comparative study of the oxidation resistance of the carbon foams prepared using the two blowing agents are reported in the present paper. Oxidation of the carbon foams was evaluated under isothermal and non-isothermal conditions in air atmosphere using thermogravimetric analysis (TGA). We have observed that the alumina produced from the aluminium nitrate blowing agent acts as a catalyst whereas the boron produced from boric acid inhibits the oxidation of the carbon foams. The oxidation resistance of carbon foams increases with boron concentration. The oxidation onset temperature for the carbon foams prepared using boric acid blowing agent was nearly 60°C higher than that prepared using aluminium nitrate blowing agent. Carbon foams prepared using aluminium nitrate blowing agent undergoes complete oxidation at temperature less than 700°C. Whereas that prepared using boric acid blowing agent leave ˜ 50 wt.% residue at 900°C. Further evidence is provided by the kinetic analysis of the TGA using Coats-Redfern (CR) equation.
Characterization of carbon nanofibre-reinforced polypropylene foams.
Antunes, M; Velasco, J I; Realinho, V; Arencón, D
2010-02-01
In this paper, carbon-nanofibre-reinforced polypropylene foams were prepared and characterized regarding their foaming behaviour, cellular structure and both thermo-mechanical as well as electrical properties. Polypropylene (PP) nanocomposites containing 5, 10 and 20 wt% of carbon nanofibres (CNF) and a chemical blowing agent were prepared by melt-mixing inside a twin-screw extruder and subsequently water-cooled and pelletized. The extruded nanocomposites were later foamed using a one-step compression-moulding process. The thermo-mechanical properties of the CNF-reinforced PP foams were studied, analyzing the influence of the carbon nanofibres on the cellular structure and subsequent thermo-mechanical behaviour of the foams. Carbon nanofibres not only seemed to act as nucleating agents, reducing the average cell size of the foams and increasing their cell density for similar expansion ratios, but also helped produce mechanically-improved foams, even reaching for the 20 wt% CNF-reinforced ones a specific modulus around 1.2 GPa x cm3/g for densities as low as 300 kg/m3. An increasingly higher electrical conductivity was assessed for both the solids as well as the foams with increasing the amount of carbon nanofibres.
Amino Acids Aided Sintering for the Formation of Highly Porous FeAl Intermetallic Alloys
Karczewski, Krzysztof; Stepniowski, Wojciech J.
2017-01-01
Fabrication of metallic foams by sintering metal powders mixed with thermally degradable compounds is of interest for numerous applications. Compounds releasing gaseous nitrogen, minimizing interactions between the formed gases and metallic foam by diluting other combustion products, were applied. Cysteine and phenylalanine, were used as gas releasing agents during the sintering of elemental Fe and Al powders in order to obtain metallic foams. Characterization was carried out by optical microscopy with image analysis, scanning electron microscopy with energy dispersive spectroscopy, and gas permeability tests. Porosity of the foams was up to 42 ± 3% and 46 ± 2% for sintering conducted with 5 wt % cysteine and phenylalanine, respectively. Chemical analyses of the formed foams revealed that the oxygen content was below 0.14 wt % and the carbon content was below 0.3 wt %. Therefore, no brittle phases could be formed that would spoil the mechanical stability of the FeAl intermetallic foams. The gas permeability tests revealed that only the foams formed in the presence of cysteine have enough interconnections between the pores, thanks to the improved air flow through the porous materials. The foams formed with cysteine can be applied as filters and industrial catalysts. PMID:28773106
Forming foam structures with carbon foam substrates
Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.
2012-11-06
The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.
46 CFR 35.40-10 - Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Steam, foam, carbon dioxide, or clean agent fire... TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-10 Steam, foam, carbon dioxide, or clean agent fire smothering apparatus—TB/ALL. Each steam, foam, carbon dioxide, or clean agent...
46 CFR 35.40-10 - Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Steam, foam, carbon dioxide, or clean agent fire... TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-10 Steam, foam, carbon dioxide, or clean agent fire smothering apparatus—TB/ALL. Each steam, foam, carbon dioxide, or clean agent...
Strength Enhancement and Application Development of Carbon Foam for Thermal Protection Systems
2004-09-01
to implementation was the inherent weakness and friability of the carbon foams. Under a MDA funded SBIR program, Ceramic Composites Inc . has...there are two approaches under consideration for utilizing carbon foams. Allcomp Inc.iii, Materials and Electrochemical Researchiv, Touchstonev...Ceramic Composites Inc . (CCI) elected to take an alternative approach to enhancing the strength of carbon foam. For our evaluation, two polymeric pre
Kim, Hong Gun; Kim, Yong Sun; Kwac, Lee Ku; Chae, Su-Hyeong; Shin, Hye Kyoung
2018-01-01
Carbon foams were prepared by carbonization of carboxymethyl cellulose (CMC)/waste artificial marble powder (WAMP) composites obtained via electron beam irradiation (EBI); these composites were prepared by mixing eco-friendly CMC with WAMP as the fillers for improved their poor mechanical strength. Gel fractions of the CMC/WAMP composites obtained at various EBI doses were investigated, and it was found that the CMC/WAMP composites obtained at an EBI dose of 80 kGy showed the highest gel fraction (95%); hence, the composite prepared at this dose was selected for preparing the carbon foam. The thermogravimetric analysis of the CMC/WAMP composites obtained at 80 kGy; showed that the addition of WAMP increased the thermal stability and carbon residues of the CMC/WAMP composites at 900 °C. SEM images showed that the cell walls of the CMC/WAMP carbon foams were thicker more than those of the CMC carbon foam. In addition, energy dispersive X-ray spectroscopy showed that the CMC/WAMP carbon foams contained small amounts of aluminum, derived from WAMP. The results confirmed that the increased WAMP content and hence increased aluminum content improved the thermal conductivity of the composites and their corresponding carbon foams. Moreover, the addition of WAMP increased the compressive strength of CMC/WAMP composites and hence the strength of their corresponding carbon foams. In conclusion, this synthesis method is encouraging, as it produces carbon foams of pore structure with good mechanical properties and thermal conductivity. PMID:29565300
Low density microcellular carbon foams and method of preparation
Arnold, C. Jr.; Aubert, J.H.; Clough, R.L.; Rand, P.B.; Sylwester, A.P.
1988-06-20
A low density, open-celled microcellular carbon foam is disclosed which is prepared by dissolving a carbonizable polymer or copolymer in a solvent, pouring the solution into a mold, cooling the solution, removing the solvent, and then carbonizing the polymer or copolymer in a high temperature oven to produce the foam. If desired, an additive can be introduced in order to produce a doped carbon foam, and the foams can be made isotropic by selection of a suitable solvent. The low density, microcellular foams produced by this process are particularly useful in the fabrication of inertial confinement fusion targets, but can also be used as catalysts, absorbents, and electrodes.
Low density microcellular carbon foams and method of preparation
Arnold, Jr., Charles; Aubert, James H.; Clough, Roger L.; Rand, Peter B.; Sylwester, Alan P.
1989-01-01
A low density, open-celled microcellular carbon foam is disclosed which is prepared by dissolving a carbonizable polymer or copolymer in a solvent, pouring the solution into a mold, cooling the solution, removing the solvent, and then carbonizing the polymer or copolymer in a high temperature oven to produce the foam. If desired, an additive can be introduced in order to produce a doped carbon foam, and the foams can be made isotropic by selection of a suitable solvent. The low density, microcellular foams produced by this process are particularly useful in the fabrication of inertial confinement fusion targets, but can also be used as catalysts, absorbents, and electrodes.
Strength Enhancement and Application Development of Carbon Foam for Thermal Management Systems
2004-01-01
STRENGTH ENHANCEMENT AND APPLICATION DEVELOPMENT OF CARBON FOAM FOR THERMAL MANAGEMENT SYSTEMS Mr. Christopher Duston Ceramic Composites, Inc ...inherent weakness and friability of the carbon foams. Ceramic Composites Inc . has demonstrated the ability to increase the compressive strength by 2½ times...250%.iv In Thermal Protection Systems (TPS) there are two approaches under consideration for utilizing carbon foams. Allcomp Inc.v, Materials and
Influence of carbon nanotubes on mechanical properties and structure of rigid polyurethane foam
NASA Astrophysics Data System (ADS)
Ciecierska, E.; Jurczyk-Kowalska, M.; Bazarnik, P.; Kulesza, M.; Lewandowska, M.; Kowalski, M.; Krauze, S.
2014-08-01
In this work, the influence of carbon nanotubes addition on foam structure and mechanical properties of rigid polyurethane foam/nanotube composites was investigated. Scanning electron microscopy was performed to reveal the foam porous structure and distribution of carbon nanotubes. To determine the mechanical properties, three point bending tests were carried out.
Electrically conductive rigid polyurethane foam
Neet, T.E.; Spieker, D.A.
1983-12-08
A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.
Electrically conductive rigid polyurethane foam
Neet, Thomas E.; Spieker, David A.
1985-03-19
A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.
Use of Carbon Nano-Fiber Foams as Strain Gauges to Detect Crack Propagation
2015-06-01
FIBER FOAMS AS STRAIN GAUGES TO DETECT CRACK PROPAGATION by Ervin N. Mercado June 2015 Thesis Advisor: Claudia C. Luhrs Co-Advisor...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE USE OF CARBON NANO-FIBER FOAMS AS STRAIN GAUGES TO DETECT CRACK PROPAGATION 5. FUNDING...using carbon nanofiber foams as strain gauge material to detect crack propagation in aluminum structures. We produced the tridimensional carbon
Klett, James W [Knoxville, TN; Cameron, Christopher Stan [Sanford, NC
2010-03-02
A carbon based foam article is made by heating the surface of a carbon foam block to a temperature above its graphitizing temperature, which is the temperature sufficient to graphitize the carbon foam. In one embodiment, the surface is heated with infrared pulses until heat is transferred from the surface into the core of the foam article such that the graphitizing temperature penetrates into the core to a desired depth below the surface. The graphitizing temperature is maintained for a time sufficient to substantially entirely graphitize the portion of the foam article from the surface to the desired depth below the surface. Thus, the foam article is an integral monolithic material that has a desired conductivity gradient with a relatively high thermal conductivity in the portion of the core that was graphitized and a relatively low thermal conductivity in the remaining portion of the foam article.
Doping of carbon foams for use in energy storage devices
Mayer, Steven T.; Pekala, Richard W.; Morrison, Robert L.; Kaschmitter, James L.
1994-01-01
A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.
A review of aqueous foam in microscale.
Anazadehsayed, Abdolhamid; Rezaee, Nastaran; Naser, Jamal; Nguyen, Anh V
2018-06-01
In recent years, significant progress has been achieved in the study of aqueous foams. Having said this, a better understanding of foam physics requires a deeper and profound study of foam elements. This paper reviews the studies in the microscale of aqueous foams. The elements of aqueous foams are interior Plateau borders, exterior Plateau borders, nodes, and films. Furthermore, these elements' contribution to the drainage of foam and hydraulic resistance are studied. The Marangoni phenomena that can happen in aqueous foams are listed as Marangoni recirculation in the transition region, Marangoni-driven flow from Plateau border towards the film in the foam fractionation process, and Marangoni flow caused by exposure of foam containing photosurfactants under UV. Then, the flow analysis of combined elements of foam such as PB-film along with Marangoni flow and PB-node are studied. Next, we contrast the behavior of foams in different conditions. These various conditions can be perturbation in the foam structure caused by injected water droplets or waves or using a non-Newtonian fluid to make the foam. Further review is about the effect of oil droplets and particles on the characteristics of foam such as drainage, stability and interfacial mobility. Copyright © 2018 Elsevier B.V. All rights reserved.
Modeled and Measured Dynamics of a Composite Beam with Periodically Varying Foam Core
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.; Cano, Roberto J.; Schiller, Noah H.; Roberts Gary D.
2012-01-01
The dynamics of a sandwich beam with carbon fiber composite facesheets and foam core with periodic variations in material properties are studied. The purpose of the study is to compare finite element predictions with experimental measurements on fabricated beam specimens. For the study, three beams were fabricated: one with a compliant foam core, a second with a stiffer core, and a third with the two cores alternating down the length of the beam to create a periodic variation in properties. This periodic variation produces a bandgap in the frequency domain where vibrational energy does not readily propagate down the length of the beam. Mode shapes and natural frequencies are compared, as well as frequency responses from point force input to velocity response at the opposite end of the beam.
Doping of carbon foams for use in energy storage devices
Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.
1994-10-25
A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.
Tailoring properties of reticulated vitreous carbon foams with tunable density
NASA Astrophysics Data System (ADS)
Smorygo, Oleg; Marukovich, Alexander; Mikutski, Vitali; Stathopoulos, Vassilis; Hryhoryeu, Siarhei; Sadykov, Vladislav
2016-06-01
Reticulated vitreous carbon (RVC) foams were manufactured by multiple replications of a polyurethane foam template structure using ethanolic solutions of phenolic resin. The aims were to create an algorithm of fine tuning the precursor foam density and ensure an open-cell reticulated porous structure in a wide density range. The precursor foams were pyrolyzed in inert atmospheres at 700°C, 1100°C and 2000°C, and RVC foams with fully open cells and tunable bulk densities within 0.09-0.42 g/cm3 were synthesized. The foams were characterized in terms of porous structure, carbon lattice parameters, mechanical properties, thermal conductivity, electric conductivity, and corrosive resistance. The reported manufacturing approach is suitable for designing the foam microstructure, including the strut design with a graded microstructure.
Engineered carbon foam for temperature control applications
NASA Astrophysics Data System (ADS)
Almajali, Mohammad Rajab
The need for advanced thermal management materials is well recognized in the electronics and communication industries. An overall reduction in size of electronic components has lead to higher power dissipation and increased the necessity for innovative cooling designs. In response, material suppliers have developed and are continuing to develop, an increasing number of light weight thermal management materials. The new carbon foam is a low density and high thermal conductivity material which has the potential to radically improve heat transfer, thereby reducing size and weight of equipment while simultaneously increasing its efficiency and capabilities. However, carbon foam exhibits low strength and low heat capacity. The present work is intended to overcome these two main drawbacks using a combinatorial approach: (i) initially, copper coating was carried out to improve the thermo-mechanical properties of carbon foam. The thermal and mechanical properties of coated foam were measured using laser flash technique and compression test, respectively. An analytical model was developed to calculate the effective thermal conductivity. It was observed that the copper-coated carbon foam with 50% porosity can attain a thermal conductivity of 180 W/mK. The results from the analytical model were in a very good agreement with experimental results. The modulus increased from 4.5 MPa to 8.6 MPa and the plateau stress increased from 54 kPa to 171 kPa. The relationships between the measured properties and the copper weight ratio were determined. The above analyses demonstrated the significance of copper coating in tailoring carbon foam properties. (ii) Numerical and experimental studies were performed to analyze the phase change behavior of wax/foam composite encapsulated in metal casing. A two-energy equation model was solved using computational fluid dynamics software (CFD). Interfacial effects at the casing-composite junction and between the wax-foam surfaces and the capillary pressure within the foam matrix were investigated. These factors lowered the heat transfer rate considerably and the melting area was reduced by more than 23%. Two samples, coated and uncoated carbon foam, were infiltrated with PCM and subjected to a uniform heat load test in a vacuum. The coated foam showed excellent performance compared to the uncoated foam. (iii) Finally, the new engineered carbon foam was used as a heat sink and heat exchanger in a thermoelectric cooler for a cooling vest application. Using carbon foam as the core material for this application, the effective transfer of heat was significantly increased while reducing the size and weight of the heat exchanger.
Carbon Dioxide and Nitrogen Infused Compressed Air Foam for Depopulation of Caged Laying Hens
Gurung, Shailesh; White, Dima; Archer, Gregory; Styles, Darrel; Zhao, Dan; Farnell, Yuhua; Byrd, James; Farnell, Morgan
2018-01-01
Simple Summary Compressed air, detergent, and water make up compressed air foam. Our laboratory has previously reported that compressed air foam may be an effective method for mass depopulation of caged layer hens. Gases, such as carbon dioxide and nitrogen, have also been used for poultry euthanasia and depopulation. The objective of this study was to produce compressed air foam infused with carbon dioxide or nitrogen to compare its efficacy against foam with air and gas inhalation methods (carbon dioxide or nitrogen) for depopulation of caged laying hens. The study showed that a carbon dioxide-air mixture or 100% nitrogen can replace air to make compressed air foam. However, the foam with carbon dioxide had poor foam quality compared to the foam with air or nitrogen. The physiological stress response of hens subjected to foam treatments with and without gas infusion did not differ significantly. Hens exposed to foam with nitrogen died earlier as compared to methods such as foam with air and carbon dioxide. The authors conclude that infusion of nitrogen into compressed air foam results in better foam quality and shortened time to death as compared to the addition of carbon dioxide. Abstract Depopulation of infected poultry flocks is a key strategy to control and contain reportable diseases. Water-based foam, carbon dioxide inhalation, and ventilation shutdown are depopulation methods available to the poultry industry. Unfortunately, these methods have limited usage in caged layer hen operations. Personnel safety and welfare of birds are equally important factors to consider during emergency depopulation procedures. We have previously reported that compressed air foam (CAF) is an alternative method for depopulation of caged layer hens. We hypothesized that infusion of gases, such as carbon dioxide (CO2) and nitrogen (N2), into the CAF would reduce physiological stress and shorten time to cessation of movement. The study had six treatments, namely a negative control, CO2 inhalation, N2 inhalation, CAF with air (CAF Air), CAF with 50% CO2 (CAF CO2), and CAF with 100% N2 (CAF N2). Four spent hens were randomly assigned to one of these treatments on each of the eight replication days. A total of 192 spent hens were used in this study. Serum corticosterone and serotonin levels were measured and compared between treatments. Time to cessation of movement of spent hens was determined using accelerometers. The addition of CO2 in CAF significantly reduced the foam quality while the addition of N2 did not. The corticosterone and serotonin levels of spent hens subjected to foam (CAF, CAF CO2, CAF N2) and gas inhalation (CO2, N2) treatments did not differ significantly. The time to cessation of movement of spent hens in the CAF N2 treatment was significantly shorter than CAF and CAF CO2 treatments but longer than the gas inhalation treatments. These data suggest that the addition of N2 is advantageous in terms of shortening time to death and improved foam quality as compared to the CAF CO2 treatment. PMID:29301340
Test and Analysis of Foam Impacting a 6x6 Inch RCC Flat Panel
NASA Technical Reports Server (NTRS)
Lessard, Wendy B.
2006-01-01
This report presents the testing and analyses of a foam projectile impacting onto thirteen 6x6 inch flat panels at a 90 degrees incidence angle. The panels tested in this investigation were fabricated of Reinforced-Carbon-Carbon material and were used to aid in the validation of an existing material model, MAT58. The computational analyses were performed using LS-DYNA, which is a physics-based, nonlinear, transient, finite element code used for analyzing material responses subjected to high impact forces and other dynamic conditions. The test results were used to validate LS-DYNA predictions and to determine the threshold of damage generated by the MAT58 cumulative damage material model. The threshold of damage parameter represents any external or internal visible RCC damage detectable by nondestructive evaluation techniques.
Properties of Polymer-Infiltrated Carbon Foams
NASA Astrophysics Data System (ADS)
Adams, W. A.; Bunning, T. J.; Farmer, B. L.; Kearns, K. M.; Anderson, D. A.; Roy, A. K.; Banerjee, T.; Jeon, H. G.
2001-03-01
There is considerable interest in extending the use-temperatures of both commodity and high performance polymers. There is also interest in improving the mechanical strength of carbon foams. Composites prepared by infiltrating carbon foam with polymers may offer significant improvements in both, the polymer helping to rigidize the foam and the foam providing thermal protection by virtue of its high thermal conductivity. The mechanical properties and thermal stability of carbon foams of various densities infiltrated with polyurethane have been studied. When used with a heat sink, the composite is able to maintain a substantial thermal gradient which provides stability of the polymer nominally above its decomposition temperature. The composite also has much improved strength properties without sacrificing tensile modulus. The composites may be very well suited for thermal management applications.
Properties of Shocked Polymers: Mbar experiments on Z and multi-scale simulations
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.
2010-03-01
Significant progress has been made over the last few years in understanding properties of matter subject to strong shocks and other extreme conditions. High-accuracy multi-Mbar experiments and first-principles theoretical studies together provide detailed insights into the physics and chemistry of high energy-density matter. While comprehensive advances have been made for pure elements like deuterium, helium, and carbon, progress has been slower for equally important, albeit more challenging, materials like molecular crystals, polymers, and foams. Hydrocarbon based polymer foams are common materials and in particular they are used in designing shock- and inertial confinement fusion experiments. Depending on their initial density, foams shock to relatively higher pressure and temperature compared to shocked dense polymers/plastics. As foams and polymers are shocked, they exhibit both structural and chemical transitions. We will present experimental and theoretical results for shocked polymers in the Mbar regime. By shock impact of magnetically launched flyer plates on poly(4-methyl-1-pentene) foams, we create multi-Mbar pressures in a dense plasma mixture of hydrogen, carbon, at temperatures of several eV. Concurrently with executing experiments, we analyze the system by multi-scale simulations, from density functional theory to continuum magneto-hydrodynamics simulations. In particular, density functional theory (DFT) molecular dynamics (MD) and classical MD simulations of the principal shock Hugoniot will be presented in detail for two hydrocarbon polymers: polyethylene (PE) and poly(4-methyl-1-pentene) (PMP).
Hydrogen Storage in Metal Hydrides
1990-08-01
TitlePage 1. Properties of Reticulated Carbon Foam 26 2. Hydrogen Storage Capacity of Various Metal Hydrides 27 iv INTRODUCTION This is the final technical...pores, and results in coating of only the surface. The substrate for the fabrication of the magnesium foam was a reticulated carbon foam. This...material is an open-pore foam composed solely of vitreous carbon . It has an exceptionally high void volume (97%) and a high surface area, combined with self
Ultralight anisotropic foams from layered aligned carbon nanotube sheets
NASA Astrophysics Data System (ADS)
Faraji, Shaghayegh; L. Stano, Kelly; Yildiz, Ozkan; Li, Ang; Zhu, Yuntian; Bradford, Philip D.
2015-10-01
In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm-3, the foam structure is over 500 times less dense than bulk graphite. Microscopy revealed that PyC coated the junctions among CNTs, and also increased CNT surface roughness. These changes in the morphology explain the transition from inelastic behavior to foam-like recovery of the layered CNT sheet structure. Mechanical and thermal properties of the foams were tuned for different applications through variation of PyC deposition duration while dynamic mechanical analysis showed no change in mechanical properties over a large temperature range. Observation of a large and linear electrical resistance change during compression of the aligned CNT/carbon (ACNT/C) foams makes strain/pressure sensors a relevant application. The foams have high oil absorption capacities, up to 275 times their own weight, which suggests they may be useful in water treatment and oil spill cleanup. Finally, the ACNT/C foam's high porosity, surface area and stability allow for demonstration of the foams as catalyst support structures.In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm-3, the foam structure is over 500 times less dense than bulk graphite. Microscopy revealed that PyC coated the junctions among CNTs, and also increased CNT surface roughness. These changes in the morphology explain the transition from inelastic behavior to foam-like recovery of the layered CNT sheet structure. Mechanical and thermal properties of the foams were tuned for different applications through variation of PyC deposition duration while dynamic mechanical analysis showed no change in mechanical properties over a large temperature range. Observation of a large and linear electrical resistance change during compression of the aligned CNT/carbon (ACNT/C) foams makes strain/pressure sensors a relevant application. The foams have high oil absorption capacities, up to 275 times their own weight, which suggests they may be useful in water treatment and oil spill cleanup. Finally, the ACNT/C foam's high porosity, surface area and stability allow for demonstration of the foams as catalyst support structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03899e
Synthesis carbon foams prepared from gelatin (CFG) for cadmium ion adsorption
NASA Astrophysics Data System (ADS)
Ulfa, M.; Ulfa, D. K.
2018-01-01
In this paper, carbon foam from gelatin (CFG) was synthesized by acid-catalyzed carbonization of gelatin solution on mild condition by the simple method. Gelatin (Ge) were used as sacrificial template and source of carbon. Sulphuric acid was used as acid catalyst. Carbon foam CFG sample were characterized by scanning electron microscope (SEM), nitrogen adsorption desorption and FTIR for knowing textural and structural properties of the sample. Carbon foam CFG sample demonstrated macro pipes-channel like with pore size that varies between 30-40 μ and surface area m 60-100 m2g-1. The carbon foams CFG sample were tested by using adsorption process for obtained their performance for decreasing Cd(II) ions from aqueous solutions. The adsorption capacities for cadmium was 46.7 mg/g obtained by using adsorbent dose 50 mg, initial concentration 50 ppm, contact time, 3 h; room temperature, stirring rate 150 rpm) which reached equilibrium at 55 min. Adsorption process fits using using Lagergren and Ho and McKay equation and measuring data
Ultralight anisotropic foams from layered aligned carbon nanotube sheets.
Faraji, Shaghayegh; Stano, Kelly L; Yildiz, Ozkan; Li, Ang; Zhu, Yuntian; Bradford, Philip D
2015-10-28
In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm(-3), the foam structure is over 500 times less dense than bulk graphite. Microscopy revealed that PyC coated the junctions among CNTs, and also increased CNT surface roughness. These changes in the morphology explain the transition from inelastic behavior to foam-like recovery of the layered CNT sheet structure. Mechanical and thermal properties of the foams were tuned for different applications through variation of PyC deposition duration while dynamic mechanical analysis showed no change in mechanical properties over a large temperature range. Observation of a large and linear electrical resistance change during compression of the aligned CNT/carbon (ACNT/C) foams makes strain/pressure sensors a relevant application. The foams have high oil absorption capacities, up to 275 times their own weight, which suggests they may be useful in water treatment and oil spill cleanup. Finally, the ACNT/C foam's high porosity, surface area and stability allow for demonstration of the foams as catalyst support structures.
Hopper, Robert W.; Pekala, Richard W.
1988-01-01
Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.
Hooper, R.W.; Pekala, R.W.
1987-04-30
Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.
Pitch-based carbon foam and composites and use thereof
Klett, James W.; Burchell, Timothy D.; Choudhury, Ashok
2006-07-04
A thermally conductive carbon foam is provided, normally having a thermal conductivity of at least 40 W/mK. The carbon foam usually has a specific thermal conductivity, defined as the thermal conductivity divided by the density, of at least about 75 Wcm.sup.3/m.degree. Kgm. The foam also has a high specific surface area, typically at least about 6,000 m.sup.2/m.sup.3. The foam is characterized by an x-ray diffraction pattern having "doublet" 100 and 101 peaks characterized by a relative peak split factor no greater than about 0.470. The foam is graphitic and exhibits substantially isotropic thermal conductivity. The foam comprises substantially ellipsoidal pores and the mean pore diameter of such pores is preferably no greater than about 340 microns. Other materials, such as phase change materials, can be impregnated in the pores in order to impart beneficial thermal properties to the foam. Heat exchange devices and evaporatively cooled heat sinks utilizing the foams are also disclosed.
Pitch-based carbon foam and composites and uses thereof
Klett, James W.; Burchell, Timothy D.; Choudhury, Ashok
2004-01-06
A thermally conductive carbon foam is provided, normally having a thermal conductivity of at least 40 W/m.multidot.K. The carbon foam usually has a specific thermal conductivity, defined as the thermal conductivity divided by the density, of at least about 75 W.multidot.cm.sup.3 /m.multidot..degree.K.multidot.gm. The foam also has a high specific surface area, typically at least about 6,000 m.sup.2 /m.sup.3. The foam is characterized by an x-ray diffraction pattern having "doublet" 100 and 101 peaks characterized by a relative peak split factor no greater than about 0.470. The foam is graphitic and exhibits substantially isotropic thermal conductivity. The foam comprises substantially ellipsoidal pores and the mean pore diameter of such pores is preferably no greater than about 340 microns. Other materials, such as phase change materials, can be impregnated in the pores in order to impart beneficial thermal properties to the foam. Heat exchange devices and evaporatively cooled heat sinks utilizing the foams are also disclosed.
NASA Technical Reports Server (NTRS)
Jones, Lisa E. (Technical Monitor); Stockwell, Alan E.
2005-01-01
LS-DYNA simulations were conducted to study the influence of model complexity on the response of a typical Reinforced Carbon-Carbon (RCC) panel to a foam impact at a location approximately midway between the ribs. A structural model comprised of Panels 10, 11, and TSeal 11 was chosen as the baseline model for the study. A simulation was conducted with foam striking Panel 10 at Location 4 at an alpha angle of 10 degrees, with an impact velocity of 1000 ft/sec. A second simulation was conducted after removing Panel 11 from the model, and a third simulation was conducted after removing both Panel 11 and T-Seal 11. All three simulations showed approximately the same response for Panel 10, and the simplified simulation model containing only Panel 10 was shown to be significantly less expensive to execute than the other two more complex models.
NASA Technical Reports Server (NTRS)
Lyle, Karen H.
2008-01-01
The Space Shuttle Columbia Accident Investigation Board recommended that NASA develop, validate, and maintain a modeling tool capable of predicting the damage threshold for debris impacts on the Space Shuttle Reinforced Carbon-Carbon (RCC) wing leading edge and nosecap assembly. The results presented in this paper are one part of a multi-level approach that supported the development of the predictive tool used to recertify the shuttle for flight following the Columbia Accident. The assessment of predictive capability was largely based on test analysis comparisons for simpler component structures. This paper provides comparisons of finite element simulations with test data for external tank foam debris impacts onto 6-in. square RCC flat panels. Both quantitative displacement and qualitative damage assessment correlations are provided. The comparisons show good agreement and provided the Space Shuttle Program with confidence in the predictive tool.
NASA Astrophysics Data System (ADS)
He, Shuijian; Chen, Wei
2014-09-01
The syntheses and capacitance performances of ultralight and flexible MnO2/carbon foam (MnO2/CF) hybrids are systematically studied. Flexible carbon foam with a low mass density of 6.2 mg cm-3 and high porosity of 99.66% is simply obtained by carbonization of commercially available and low-cost melamine resin foam. With the high porous carbon foam as framework, ultrathin MnO2 nanosheets are grown through in situ redox reaction between KMnO4 and carbon foam. The three-dimensional (3D) MnO2/CF networks exhibit highly ordered hierarchical pore structure. Attributed to the good flexibility and ultralight weight, the MnO2/CF nanomaterials can be directly fabricated into supercapacitor electrodes without any binder and conductive agents. Moreover, the pseudocapacitance of the MnO2 nanosheets is enhanced by the fast ion diffusion in the three-dimensional porous architecture and by the conductive carbon foam skeleton as well as good contact of carbon/oxide interfaces. Supercapacitor based on the MnO2/CF composite with 3.4% weight percent of MnO2 shows a high specific capacitance of 1270.5 F g-1 (92.7% of the theoretical specific capacitance of MnO2) and high energy density of 86.2 Wh kg-1. The excellent capacitance performance of the present 3D ultralight and flexible nanomaterials make them promising candidates as electrode materials for supercapacitors.
Wang, Bowen; Zhang, Weigang; Wang, Lei; Wei, Jiake; Bai, Xuedong; Liu, Jingyue; Zhang, Guanhua; Duan, Huigao
2018-07-06
Design and synthesis of integrated, interconnected porous structures are critical to the development of high-performance supercapacitors. We develop a novel and facile synthesis technic to construct three-dimensional carbon-bubble foams with hierarchical pores geometry. The carbon-bubble foams are fabricated by conformally coating, via catalytic decomposition of ethanol, a layer of carbon coating onto the surfaces of pre-formed ZnO foams and then the removal of the ZnO template by a reduction-evaporation process. Both the wall thickness and the pore size can be well tuned by adjusting the catalytic decomposition time and temperature. The as-synthesized carbon-bubble foams electrode retains 90.3% of the initial capacitance even after 70 000 continuous cycles under a high current density of 20 A g -1 , demonstrating excellent long-time electrochemical and cycling stability. The symmetric device displays rate capability retention of 81.8% with the current density increasing from 0.4 to 20 A g -1 . These achieved electrochemical performances originate from the unique structural design of the carbon-bubble foams, which provide not only abundant transport channels for electron and ion but also high active surface area accessible by the electrolyte ions.
NASA Astrophysics Data System (ADS)
Wang, Bowen; Zhang, Weigang; Wang, Lei; Wei, Jiake; Bai, Xuedong; Liu, Jingyue; Zhang, Guanhua; Duan, Huigao
2018-07-01
Design and synthesis of integrated, interconnected porous structures are critical to the development of high-performance supercapacitors. We develop a novel and facile synthesis technic to construct three-dimensional carbon-bubble foams with hierarchical pores geometry. The carbon-bubble foams are fabricated by conformally coating, via catalytic decomposition of ethanol, a layer of carbon coating onto the surfaces of pre-formed ZnO foams and then the removal of the ZnO template by a reduction-evaporation process. Both the wall thickness and the pore size can be well tuned by adjusting the catalytic decomposition time and temperature. The as-synthesized carbon-bubble foams electrode retains 90.3% of the initial capacitance even after 70 000 continuous cycles under a high current density of 20 A g‑1, demonstrating excellent long-time electrochemical and cycling stability. The symmetric device displays rate capability retention of 81.8% with the current density increasing from 0.4 to 20 A g‑1. These achieved electrochemical performances originate from the unique structural design of the carbon-bubble foams, which provide not only abundant transport channels for electron and ion but also high active surface area accessible by the electrolyte ions.
NASA Astrophysics Data System (ADS)
Alshaer, W. G.; Rady, M. A.; Nada, S. A.; Palomo Del Barrio, Elena; Sommier, Alain
2017-02-01
The present article reports on a detailed experimental investigation of using carbon foam-PCM-MWCNTs composite materials for thermal management (TM) of electronic devices subjected to pulsed power. The TM module was fabricated by infiltrating paraffin wax (RT65) as a phase change material (PCM) and multi walled carbon nanotubes (MWCNTs) as a thermal conductivity enhancer in a carbon foam as a base structure. Two carbon foam materials of low and high values of thermal conductivities, CF20 and KL1-250 (3.1 and 40 W/m K), were tested as a base structure for the TM modules. Tests were conducted at different power intensities and power cycling/loading modes. Results showed that for all power varying modes and all carbon foams, the infiltration of RT65 into carbon foam reduces the temperature of TM module and results in damping the temperature spikes height. Infiltration of MWCNTS into RT65 further improves the effectiveness of TM module. Temperature damping was more pronounced in stand-alone pulsed power cycles as compared to pulsed power spikes modes. The effectiveness of inclusion of RT65 and RT65/MWCNTs in damping the temperature spikes height is remarkable in TM modules based on KL1-250 as compared to CF-20.
Dynamics Impact Tolerance of Shuttle RCC Leading Edge Panels Using LS-DYNA
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.
2005-01-01
This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using physics-based codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which is used because of its thermal properties to protect the shuttle during reentry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of foam cylinders impacting 6- in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.
Dynamic Impact Tolerance of Shuttle RCC Leading Edge Panels using LS-DYNA
NASA Technical Reports Server (NTRS)
Fasanella, Edwin; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.
2008-01-01
This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using 'physics-based- codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which issued because of its thermal properties to protect the shuttle during re-entry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of individual foam cylinders impacting 6-in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.
Multifunctional porous solids derived from tannins
NASA Astrophysics Data System (ADS)
Celzard, Alain; Fierro, Vanessa; Pizzi, Antonio; Zhao, Weigang
2013-03-01
Tannins are extremely valuable, non toxic, wood extractives combining reactivity towards aldehydes, low cost, natural origin and easy handling. When polymerized in the presence of suitable chemicals including blowing agent, ultra lightweight rigid tannin-based foams are obtained. If pyrolyzed under inert gas, reticulated carbon foams having the same pore structure and the same density are obtained. The most remarkable features of tannin-based foams are the following: mechanical resistance similar to, or higher than, that of commercial phenolic foams, tuneable pore size and permeability, infusibility, very low thermal conductivity, cheapness, ecological character, high resistance to flame and to chemicals. Carbon foams have even better properties and are also electrically conducting. Consequently, various applications are suggested for organic foams: cores of sandwich composite panels, sound and shock absorbers and thermal insulators, whereas carbon foams can be used as porous electrodes, filters for molten metals and corrosive chemicals, catalyst supports and adsorbents.
NASA Technical Reports Server (NTRS)
Carney, Kelly; Melis, Matthew; Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan
2004-01-01
Upon the commencement of the analytical effort to characterize the impact dynamics and damage of the Space Shuttle Columbia leading edge due to External Tank insulating foam, the necessity of creating analytical descriptions of these materials became evident. To that end, material models were developed of the leading edge thermal protection system, Reinforced Carbon Carbon (RCC), and a low density polyurethane foam, BX-250. Challenges in modeling the RCC include its extreme brittleness, the differing behavior in compression and tension, and the anisotropic fabric layup. These effects were successfully included in LS-DYNA Material Model 58, *MAT_LAMINATED_ COMPOSITE_ FABRIC. The differing compression and tension behavior was modeled using the available damage parameters. Each fabric layer was given an integration point in the shell element, and was allowed to fail independently. Comparisons were made to static test data and coupon ballistic impact tests before being utilized in the full scale analysis. The foam's properties were typical of elastic automotive foams; and LS-DYNA Material Model 83, *MAT_FU_CHANG_FOAM, was successfully used to model its behavior. Material parameters defined included strain rate dependent stress-strain curves for both loading and un-loading, and for both compression and tension. This model was formulated with static test data and strain rate dependent test data, and was compared to ballistic impact tests on load-cell instrumented aluminum plates. These models were subsequently utilized in analysis of the Shuttle leading edge full scale ballistic impact tests, and are currently being used in the Return to Flight Space Shuttle re-certification effort.
NASA Astrophysics Data System (ADS)
Kang, Yeon June
In this thesis an elastic-absorption finite element model of isotropic elastic porous noise control materials is first presented as a means of investigating the effects of finite dimension and edge constraints on the sound absorption by, and transmission through, layers of acoustical foams. Methods for coupling foam finite elements with conventional acoustic and structural finite elements are also described. The foam finite element model based on the Biot theory allows for the simultaneous propagation of the three types of waves known to exist in an elastic porous material. Various sets of boundary conditions appropriate for modeling open, membrane-sealed and panel-bonded foam surfaces are formulated and described. Good agreement was achieved when finite element predictions were compared with previously established analytical results for the plane wave absorption coefficient and transmission loss in the case of wave propagation both in foam-filled waveguides and through foam-lined double panel structures of infinite lateral extent. The primary effect of the edge constraints of a foam layer was found to be an acoustical stiffening of the foam. Constraining the ends of the facing panels in foam-lined double panel systems was also found to increase the sound transmission loss significantly in the low frequency range. In addition, a theoretical multi-dimensional model for wave propagation in anisotropic elastic porous materials was developed to study the effect of anisotropy on the sound transmission of foam-lined noise control treatments. The predictions of the theoretical anisotropic model have been compared with experimental measurements for the random incidence sound transmission through double panel structure lined with polyimide foam. The predictions were made by using the measured and estimated macroscopic physical parameters of polyimide foam samples which were known to be anisotropic. It has been found that the macroscopic physical parameters in the direction normal to the face of foam layer play the principal role in determining the acoustical behavior of polyimide foam layers, although more satisfactory agreement between experimental measurements and theoretical predictions of transmission loss is obtained when the anisotropic properties are allowed in the model.
Rapid oxidation/stabilization technique for carbon foams, carbon fibers and C/C composites
Tan, Seng; Tan, Cher-Dip
2004-05-11
An enhanced method for the post processing, i.e. oxidation or stabilization, of carbon materials including, but not limited to, carbon foams, carbon fibers, dense carbon-carbon composites, carbon/ceramic and carbon/metal composites, which method requires relatively very short and more effective such processing steps. The introduction of an "oxygen spill over catalyst" into the carbon precursor by blending with the carbon starting material or exposure of the carbon precursor to such a material supplies required oxygen at the atomic level and permits oxidation/stabilization of carbon materials in a fraction of the time and with a fraction of the energy normally required to accomplish such carbon processing steps. Carbon based foams, solids, composites and fiber products made utilizing this method are also described.
NASA Astrophysics Data System (ADS)
Chye, Matthew B.
2011-12-01
Batteries and asymmetric electrochemical capacitors using nickel-based positive electrodes can provide high currents due to their defect structure and low internal resistance. Nickel-based positive electrodes, therefore, are ideal for high current applications such as power tools and electric vehicles (EVs). The positive electrodes prepared in this research are monolithic graphitic foams electrochemically impregnated with nickel oxyhydroxide active mass and select additives that enhance electrode performance. Carbon foam is a good current collector due to its light-weight, porous, and graphitic nature, which give its good electrical properties and the ability to be used as a current collector. Replacing sintered nickel current collectors in nickel-based batteries with a low cost, readily available material, carbon foam, can reduce the mass of a rechargeable battery. The goal of this research has been to contribute to fundamental science through better understanding of optimizing the deposition and formation processes of the active mass onto carbon foams as well as investigating the active mass behavior under deposition, formation, and cycling conditions. Flooded cells and a PFA sealed asymmetric capacitor have been used. The effects of carbon foam surface pretreatments and how they affect the active material/carbon foam performance are demonstrated. Also the feasibility of this positive electrode as a component in nickel-based batteries, a Ni-Zn cells and an asymmetric capacitor pouch cell, is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahzeydi, Mohammad Hosein; Parvanian, Amir Masoud; Panjepour, Masoud, E-mail: panjepour@cc.iut.ac.ir
2016-01-15
In this research, utilizing X-ray computed tomography (XCT), geometrical characterization, and pore formation mechanisms of highly porous copper foams manufactured by powder metallurgical (PM) process are investigated. Open-cell copper foams with porosity percentages of 60% and 80% and with a pore size within the range of 300–600 μm were manufactured by using potassium carbonate as a space holder agent via the Lost Carbonate Sintering (LCS) technique. XCT and SEM were also employed to investigate the three-dimensional structure of foams and to find the effect of the parameters of the space holders on the structural properties of copper foams. The resultmore » showed an excellent correlation between the structural properties of the foams including the size and shape of the pores, porosity percentage, volume percentage, particle size, and the shape of the sacrificial agent used. Also, the advanced image analysis of XCT images indicated fluctuations up to ± 10% in porosity distribution across different cross-sections of the foams. Simultaneous thermal analysis (STA: DTA–TG) was also used to study the thermal history of the powders used during the manufacturing process of the foams. The results indicated that the melting and thermal decomposition of the potassium carbonate occurred simultaneously at 920 °C and created the porous structure of the foams. By combining the STA result with the result of the tension analysis of cell walls, the mechanisms of open-pore formation were suggested. In fact, most open pores in the samples were formed due to the direct contact of potassium carbonate particles with each other in green compact. Also, it was found that the thermal decomposition of potassium carbonate particles into gaseous CO{sub 2} led to the production of gas pressure inside the closed pores, which eventually caused the creation of cracks on the cell walls and the opening of the pores in foam's structure. - Highlights: • Structural characterization of copper foam produced by LCS method is investigated by tomography images. • The ability of LCS technique to control structural features of produced foams was proved. • The mechanisms of open pores formation were presented.« less
46 CFR 35.40-10 - Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL. 35.40-10 Section 35.40-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-10 Steam, foam, carbon dioxide, or clean agent fire smothering apparatus—TB...
Optimization of Nano-Carbon Materials for Hydrogen Sorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakobson, Boris I
2013-08-02
Research undertaken has added to the understanding of several critical areas, by providing both negative answers (and therefore eliminating expensive further studies of unfeasible paths) and positive feasible options for storage. Theoretical evaluation of the early hypothesis of storage on pure carbon single wall nanotubes (SWNT) has been scrutinized with the use of comprehensive computational methods (and experimental tests by the Center partners), and demonstrated that the fundamentally weak binding energy of hydrogen is not sufficiently enhanced by the SWNT curvature or even defects, which renders carbon nanotubes not practical media. More promising direction taken was towards 3-dimensional architectures ofmore » high porosity where concurrent attraction of H2 molecule to surrounding walls of nano-scale cavities can double or even triple the binding energy and therefore make hydrogen storage feasible even at ambient or somewhat lower temperatures. An efficient computational tool has been developed for the rapid capacity assessment combining (i) carbon-foam structure generation, (ii) accurate empirical force fields, with quantum corrections for the lightweight H2, and (iii) grand canonical Monte Carlo simulation. This made it possible to suggest optimal designs for carbon nanofoams, obtainable via welding techniques from SWNT or by growth on template-zeolites. As a precursor for 3D-foams, we have investigated experimentally the synthesis of VANTA (Vertically Aligned NanoTube Arrays). This can be used for producing nano-foams. On the other hand, fluorination of VANTA did not show promising increase of hydrogen sorption in several tests and may require further investigation and improvements. Another significant result of this project was in developing a fundamental understanding of the elements of hydrogen spillover mechanisms. The benefit of developed models is the ability to foresee possible directions for further improvement of the spillover mechanism.« less
NASA Astrophysics Data System (ADS)
Faraji, Shaghayegh
Chemical vapor deposition (CVD) is a technique used to create a pyrolytic carbon (PyC) matrix around fibrous preforms in carbon/carbon (C/C) composites. Due to difficulties in producing three-dimensional carbon nanotube (CNT) assemblies, use of nanotubes in CVD fabricated CNT/C composites is limited. This dissertation describes efforts to: 1) Study the microstructure of PyC deposited on CNTs in order to understand the effect of microstructure and morphology of carbon coatings on graphitization behavior of CNT/PyC composites. This understanding helped to suggest a new approach for controlled radial growth of CNTs. 2) Evaluate the properties of CNT/PyC structures as a novel form of CNT assemblies with resilient, anisotropic and tunable properties. PyC was deposited on aligned sheets of nanotubes, drawn from spinnable CNT arras, using CVD of acetylene gas. At longer deposition times, the microstructure of PyC changed from laminar turbostratic carbon to a disordered carbon. For samples with short PyC deposition times (up to 30 minutes), deposited carbon layer rearranged during graphitization treatment and resulted in a crystalline structure where the coating and original tube walls could not be easily differentiated. In contrast, in samples with longer carbon deposition durations, carbon layers close to the surface of the coating remained disordered even after graphitization thermal treatment. Understanding the effect of PyC microstructure transition on graphitization behavior of CNT/PyC composites was used to develop a new method for controlled radial growth of CNTs. Carbon coated aligned CNT sheets were graphitized after each short (20 minutes) carbon deposition cycle. This prevented development of disorder carbon during subsequent PyC deposition cycles. Using cyclic-graphitization method, thick PyC coating layers were successfully graphitized into a crystalline structure that could not be differentiated from the original nanotube walls. This resulted into radial growth of CNTs, from 40 to 100 nm. Infiltration of PyC into stacked layered sheets of aligned CNTs produced resilient foam-like materials that exhibited complete recovery from 90% compressive strain. PyC coated the junctions between nanotubes and also increased their surface roughness. These changes were assumed to be responsible for the resiliency of the, once inelastic, assembly of nanotubes. While nanotubes' alignment resulted in anisotropic properties of the foams, variation in PyC infiltration duration was used to tune the foams' properties. Further investigation into properties of these foams showed promising results for their application as pressure/strain sensor and selective liquid absorbers for oil spill clean ups. Finally, CNT foams were used as novel substrates for growth of secondary nanotube assemblies. In order to achieve that, foams were first coated with alumina buffer layers using atomic layer deposition (ALD) method. New nanotubes were further grown inside the foams by CVD of acetylene over iron nano-particles. Super low density and highly porous structure of the foams allowed for diffusion of catalyst along with growth gasses into their bulk, which resulted in growth of secondary nanotubes throughout the thickness of the foams. The thickness of the alumina buffer layer was shown to influence CNT nucleation density and growth uniformity across the thickness of the foams. Compressive mechanical testing of the foams showed an order of magnitude increase in compression strength after secondary CNT growth.
Maruta, Michito; Matsuya, Shigeki; Nakamura, Seiji; Ishikawa, Kunio
2011-01-01
Carbonate apatite (CO(3)Ap) foam may be an ideal bone substitute as it is sidelined to cancellous bone with respect to its chemical composition and structure. However, CO(3)Ap foam fabricated using α-tricalcium phosphate foam showed limited mechanical strength. In the present study, feasibility of the fabrication of calcite which could be a precursor of CO(3)Ap was studied. Calcite foam was successfully fabricated by the so-called "ceramic foam" method using calcium hydroxide coated polyurethane foam under CO(2)+O(2) atmosphere. Then the calcite foam was immersed in Na(2)HPO(4) aqueous solution for phase transformation based on dissolution-precipitation reaction. When CaO-free calcite foam was immersed in Na(2)HPO(4) solution, low-crystalline CO(3)Ap foam with 93-96% porosity and fully interconnected porous structure was fabricated. The compressive strength of the foam was 25.6 ± 6 kPa. In light of these results, we concluded that the properties of the precursor foam were key factors for the fabrication of CO(3)Ap foams.
Properties of rigid polyurethane foams filled with milled carbon fibers
NASA Astrophysics Data System (ADS)
Yakushin, V.; Stirna, U.; Bel'kova, L.; Deme, L.; Sevastyanova, I.
2011-01-01
The effect of milled carbon fibers of two types (differing in length) on the properties of rigid polyurethane foams in the density range from 50 to 90 kg/m3 is investigated. The coefficient of thermal expansion and properties of the foams in tension and compression as functions of fiber content in them are determined. It is found that the long fibers are more efficient in improving the properties of the foams in their rise direction. The elongation at break of the foams decreases significantly with increasing fiber content.
Graphene oxide foams and their excellent adsorption ability for acetone gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yongqiang; School of Science, Tianjin University, Tianjin 300072; Zhang, Nana
2013-09-01
Graphical abstract: - Highlights: • GO and RGO foams were prepared using a simple and green method, unidirectional freeze-drying. • The porous structure of the foams can be adjusted by changing GO concentrations. • GO and RGO foams show good adsorption efficiency for acetone gas. - Abstract: Graphene oxide (GO) and reduced graphene oxide (RGO) foams were prepared using a unidirectional freeze-drying method. These porous carbon materials were characterized by thermal gravimetric analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy and scanning electron microscopy. The adsorption behavior of the two kinds of foams for acetone was studied. The result showed thatmore » the saturated adsorption efficiency of the GO foams was over 100%, and was higher than that of RGO foams and other carbon materials.« less
Pitch-based carbon foam and composites
Klett, James W.
2001-01-01
A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Pitch-based carbon foam and composites
Klett, James W.
2003-12-16
A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Pitch-based carbon foam and composites
Klett, James W.
2003-12-02
A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Pitch-based carbon foam and composites
Klett, James W.
2002-01-01
A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Evaluation of Characterization Techniques for Carbon-Carbon Composites
1992-05-01
Enhancement of Resin (50X) 51 28 Confocal Image of Reticulated , Vitreous Carbon Foam 53 29 Schemmtic Principle of Backscattered Electron Microscopy for...future. 7.2 Confocal Microscopy Both carbon - carbon composites and reticulated vitreous carbon foams were submitted to Sarastro, Inc. to evaluate...indicate 1-micron resolutions are possible; however, the depth penetration is limited even further at these parameters. Six reticulated vitreous carbon
Microcellular carbon foam and method
Simandl, R.F.; Brown, J.D.
1993-05-04
A microcellular carbon foam is characterized by a density in the range of about 30 to 1,000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m. The foam has a well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.
Porous Media Approach for Modeling Closed Cell Foam
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Sullivan, Roy M.
2006-01-01
In order to minimize boil off of the liquid oxygen and liquid hydrogen and to prevent the formation of ice on its exterior surface, the Space Shuttle External Tank (ET) is insulated using various low-density, closed-cell polymeric foams. Improved analysis methods for these foam materials are needed to predict the foam structural response and to help identify the foam fracture behavior in order to help minimize foam shedding occurrences. This presentation describes a continuum based approach to modeling the foam thermo-mechanical behavior that accounts for the cellular nature of the material and explicitly addresses the effect of the internal cell gas pressure. A porous media approach is implemented in a finite element frame work to model the mechanical behavior of the closed cell foam. The ABAQUS general purpose finite element program is used to simulate the continuum behavior of the foam. The soil mechanics element is implemented to account for the cell internal pressure and its effect on the stress and strain fields. The pressure variation inside the closed cells is calculated using the ideal gas laws. The soil mechanics element is compatible with an orthotropic materials model to capture the different behavior between the rise and in-plane directions of the foam. The porous media approach is applied to model the foam thermal strain and calculate the foam effective coefficient of thermal expansion. The calculated foam coefficients of thermal expansion were able to simulate the measured thermal strain during heat up from cryogenic temperature to room temperature in vacuum. The porous media approach was applied to an insulated substrate with one inch foam and compared to a simple elastic solution without pore pressure. The porous media approach is also applied to model the foam mechanical behavior during subscale laboratory experiments. In this test, a foam layer sprayed on a metal substrate is subjected to a temperature variation while the metal substrate is stretched to simulate the structural response of the tank during operation. The thermal expansion mismatch between the foam and the metal substrate and the thermal gradient in the foam layer causes high tensile stresses near the metal/foam interface that can lead to delamination.
Yu, Qiyong; Zhao, Yan; Dong, Anqi; Li, Ye
2018-06-12
The present study focuses on the preparation and characterization of lab-scale aluminum syntactic foams (ASFs) filled with hollow carbon spheres (HCSs). A new and original process for the fabrication of HCSs was explored. Firstly, expanded polystyrene beads with an average diameter of 6 mm and coated with carbon fibers/thermoset phenolic resin were produced by the “rolling ball” method. In the next step, the spheres were cured and post-cured, and then carbonized at 1050 °C under vacuum to form the HCSs. The porosity in the shell of the HCSs was decreased by increasing the number of impregnation⁻carbonization cycles. The aluminum syntactic foams were fabricated by casting the molten aluminum into a crucible filled with HCSs. The morphology of the hollow spheres before and after carbonization was investigated by scanning electron microscope (SEM). The compressive properties of the ASF were tested and the energy absorption capacities were calculated according to stress⁻strain curves. The results showed that the ASF filled with HCSs which had been treated by more cycles of impregnation⁻carbonization had higher energy absorption capacity. The aluminum syntactic foam absorbed 34.9 MJ/m³ (28.8 KJ/Kg) at 60% strain, which was much higher than traditional closed cell aluminum foams without particles. The HCSs have a promising future in producing a novel family of metal matrix syntactic foams.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2004-08-24
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2007-01-02
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2006-03-21
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2002-01-01
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2000-01-01
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2007-01-23
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Fabrication and Physical Evaluation of Gelatin-Coated Carbonate Apatite Foam.
Hara, Kanae; Fujisawa, Kenji; Nagai, Hirokazu; Takamaru, Natsumi; Ohe, Go; Tsuru, Kanji; Ishikawa, Kunio; Miyamoto, Youji
2016-08-23
Carbonate apatite (CO₃Ap) foam has gained much attention in recent years because of its ability to rapidly replace bone. However, its mechanical strength is extremely low for clinical use. In this study, to understand the potential of gelatin-reinforced CO₃Ap foam for bone replacement, CO₃Ap foam was reinforced with gelatin and the resulting physical characteristics were evaluated. The mechanical strength increased significantly with the gelatin reinforcement. The compressive strength of gelatin-free CO₃Ap foam was 74 kPa whereas that of the gelatin-reinforced CO₃Ap foam, fabricated using 30 mass % gelatin solution, was approximately 3 MPa. Heat treatment for crosslinking gelatin had little effect on the mechanical strength of the foam. The gelatin-reinforced foam did not maintain its shape when immersed in a saline solution as this promoted swelling of the gelatin; however, in the same conditions, the heat-treated gelatin-reinforced foam proved to be stable. It is concluded, therefore, that heat treatment is the key to the fabrication of stable gelatin-reinforced CO₃Ap foam.
Blending Novatein¯ thermoplastic protein with PLA for carbon dioxide assisted batch foaming
NASA Astrophysics Data System (ADS)
Walallavita, Anuradha; Verbeek, Casparus J. R.; Lay, Mark
2016-03-01
The convenience of polymeric foams has led to their widespread utilisation in everyday life. However, disposal of synthetic petroleum-derived foams has had a detrimental effect on the environment which needs to be addressed. This study uses a clean and sustainable approach to investigate the foaming capability of a blend of two biodegradable polymers, polylactic acid (PLA) and Novatein® Thermoplastic Protein (NTP). PLA, derived from corn starch, can successfully be foamed using a batch technique developed by the Biopolymer Network Ltd. NTP is a patented formulation of bloodmeal and chemical additives which can be extruded and injection moulded similar to other thermoplastics. However, foaming NTP is a new area of study and its interaction with blowing agents in the batch process is entirely unknown. Subcritical and supercritical carbon dioxide have been examined individually in two uniquely designed pressure vessels to foam various compositions of NTP-PLA blends. Foamed material were characterised in terms of expansion ratio, cell size, and cellular morphology in order to study how the composition of NTP-PLA affects foaming with carbon dioxide. It was found that blends with 5 wt. % NTP foamed using subcritical CO2 expanded up to 11 times due to heterogeneous nucleation. Morphology analysis using scanning electron microscopy showed that foams blown with supercritical CO2 had a finer cell structure with consistent cell size, whereas, foams blown with subcritical CO2 ranged in cell size and showed cell wall rupture. Ultimately, this research would contribute to the production of a biodegradable foam material to be used in packaging applications, thereby adding to the application potential of NTP.
Science and Engineering of Carbon Foams
2006-07-17
production process tends to vary, many processes start with a compacted, porous pre-form of pitch material. The pitch pre-form is then melted under high...Foams 1.11 Theory for thermal transport Carbon foam can be modeled in the manner of a porous media. Many of these models are based on the analysis of...intrinsic density of the solid, P is the porosity of the porous material, and R is the relative density. The value of thermal conductivity of foam with
Coupled aging effects in nanofiber-reinforced siloxane foams
Labouriau, Andrea; Robison, Tom; Geller, Drew Adam; ...
2018-01-11
Here, this study investigates the combined effects of ionizing radiation and thermal treatments on the aging of siloxane foams containing small amounts of carbon nanofibers. Our siloxane foams were exposed to accelerated aging conditions for more than two years, resulting in very low dose rates. In addition, foams were aged under compressive load to evaluate the strength of the porous microstructure. Samples were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), Mössbauer, mass spectroscopy, electron paramagnetic resonance spectroscopy (EPR), solvent swelling, imaging techniques, uniaxial compressive load testing and tearmore » testing. No significant changes in thermal stability or chemistry of the accelerated aged foam were observed, although gas evolution was detected. Changes in crystallization levels at low temperatures, microstructure, and mechanical properties were observed for foams with and without carbon nanofibers. In particular, foams aged under compressive load showed irreversible deformation of the porous microstructure. This study demonstrates that aging effects were enhanced when thermal and radiolysis were coupled together and that the addition of carbon nanofibers did not improve aging effects.« less
Coupled aging effects in nanofiber-reinforced siloxane foams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labouriau, Andrea; Robison, Tom; Geller, Drew Adam
Here, this study investigates the combined effects of ionizing radiation and thermal treatments on the aging of siloxane foams containing small amounts of carbon nanofibers. Our siloxane foams were exposed to accelerated aging conditions for more than two years, resulting in very low dose rates. In addition, foams were aged under compressive load to evaluate the strength of the porous microstructure. Samples were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), Mössbauer, mass spectroscopy, electron paramagnetic resonance spectroscopy (EPR), solvent swelling, imaging techniques, uniaxial compressive load testing and tearmore » testing. No significant changes in thermal stability or chemistry of the accelerated aged foam were observed, although gas evolution was detected. Changes in crystallization levels at low temperatures, microstructure, and mechanical properties were observed for foams with and without carbon nanofibers. In particular, foams aged under compressive load showed irreversible deformation of the porous microstructure. This study demonstrates that aging effects were enhanced when thermal and radiolysis were coupled together and that the addition of carbon nanofibers did not improve aging effects.« less
The influences of calcia silica contents to the compressive strength of the Al-7000 aluminium foam
NASA Astrophysics Data System (ADS)
Sutarno; Soepriyanto, S.; Korda, A. A.; Dirgantara, T.
2016-08-01
This experiment evaluated the effect of calcia alumina and alumina silica that formed as side products involved in metal mixture of aluminium foam. These compounds are formed from additional calcium carbonate and silica in the mixture. Calcium carbonate (CaCO3) roles as a blowing agent source of carbon dioxide (CO2). The formation of calcia alumina (CaO.Al2O3) is desired to improve the viscosity and to strengthen of cell wall of aluminium foam. However, Al-7000 aluminium foam showed a decrease tendency of compressive strength probably due to existence of alumina silica (3Al2O3.SiO2) in the metal mixture. In this case, the silica that thermally combines with alumina compound may degrade the metal mixture of aluminium foam structure.
Growth of carbon nanofibers using resol-type phenolic resin and cobalt(II) catalyst.
Kim, Taeyun; Mees, Karina; Park, Ho-Seon; Willert-Porada, Monika; Lee, Chang-Seop
2013-11-01
This study investigated carbon nanofibers (CNFs) grown on reticulated vitreous carbon (RVC) foam through catalytic deposition of ethylene. Before growing the CNFs, Co(II) on the RVC foam was expected to act as a catalyst by deposition. The preparation of the CNFs was a two-step process. The first step was preparing the RVC from polyurethane (PU) foam. Changes in weight over time were evaluated using two kinds of resol. The change in the mass and state of the sample with the change in temperature was studied during the carbonization process. The second step was to prepare the CNFs. An OH group was attached by the oxidation of the RVC foam. A change in the shape and mass of the sample was observed due to a change in nitric acid concentration and oxidation time. Then, cobalt was deposited to grow CNFs on the RVC foam. Hydrolysis helped to deposit the Co(ll) on the RVC foam. The appropriate time and temperature were investigated for the reduction process. In the last step, CNFs were prepared by the introducing ethylene gas. The resulting samples were analyzed using scanning electron microscopy, energy dispersive spectroscopy, N2-sorption, and X-ray photoelectron spectroscopy.
Hopper, Robert W.; Pekala, Richard W.
1989-01-01
Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.
Cellular structures with interconnected microchannels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaefer, Robert Shahram; Ghoniem, Nasr M.; Williams, Brian
A method for fabricating a cellular tritium breeder component includes obtaining a reticulated carbon foam skeleton comprising a network of interconnected ligaments. The foam skeleton is then melt-infiltrated with a tritium breeder material, for example, lithium zirconate or lithium titanate. The foam skeleton is then removed to define a cellular breeder component having a network of interconnected tritium purge channels. In an embodiment the ligaments of the foam skeleton are enlarged by adding carbon using chemical vapor infiltration (CVI) prior to melt-infiltration. In an embodiment the foam skeleton is coated with a refractory material, for example, tungsten, prior to meltmore » infiltration.« less
Sugiura, Yuki; Tsuru, Kanji; Ishikawa, Kunio
2017-08-01
Carbonate apatite (CO 3 Ap) foam with an interconnected porous structure is highly attractive as a scaffold for bone replacement. In this study, arbitrarily shaped CO 3 Ap foam was formed from α-tricalcium phosphate (α-TCP) foam granules via a two-step process involving treatment with acidic calcium phosphate solution followed by hydrothermal treatment with NaHCO 3 . The treatment with acidic calcium phosphate solution, which is key to fabricating arbitrarily shaped CO 3 Ap foam, enables dicalcium hydrogen phosphate dihydrate (DCPD) crystals to form on the α-TCP foam granules. The generated DCPD crystals cause the α-TCP granules to interlock with each other, inducing an α-TCP/DCPD foam. The interlocking structure containing DCPD crystals can survive hydrothermal treatment with NaHCO 3 . The arbitrarily shaped CO 3 Ap foam was fabricated from the α-TCP/DCPD foam via hydrothermal treatment at 200 °C for 24 h in the presence of a large amount of NaHCO 3 .
Blending Novatein{sup ®} thermoplastic protein with PLA for carbon dioxide assisted batch foaming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walallavita, Anuradha, E-mail: asw15@students.waikato.ac.nz; Verbeek, Casparus J. R., E-mail: jverbeek@waikato.ac.nz; Lay, Mark, E-mail: mclay@waikato.ac.nz
2016-03-09
The convenience of polymeric foams has led to their widespread utilisation in everyday life. However, disposal of synthetic petroleum-derived foams has had a detrimental effect on the environment which needs to be addressed. This study uses a clean and sustainable approach to investigate the foaming capability of a blend of two biodegradable polymers, polylactic acid (PLA) and Novatein® Thermoplastic Protein (NTP). PLA, derived from corn starch, can successfully be foamed using a batch technique developed by the Biopolymer Network Ltd. NTP is a patented formulation of bloodmeal and chemical additives which can be extruded and injection moulded similar to othermore » thermoplastics. However, foaming NTP is a new area of study and its interaction with blowing agents in the batch process is entirely unknown. Subcritical and supercritical carbon dioxide have been examined individually in two uniquely designed pressure vessels to foam various compositions of NTP-PLA blends. Foamed material were characterised in terms of expansion ratio, cell size, and cellular morphology in order to study how the composition of NTP-PLA affects foaming with carbon dioxide. It was found that blends with 5 wt. % NTP foamed using subcritical CO{sub 2} expanded up to 11 times due to heterogeneous nucleation. Morphology analysis using scanning electron microscopy showed that foams blown with supercritical CO{sub 2} had a finer cell structure with consistent cell size, whereas, foams blown with subcritical CO{sub 2} ranged in cell size and showed cell wall rupture. Ultimately, this research would contribute to the production of a biodegradable foam material to be used in packaging applications, thereby adding to the application potential of NTP.« less
Nondestructive reactivation of chemical protective garments. Final report, June 1985-July 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, K.W.; Chang, S.Y.; Klemperer, E.
In the near future, chemical protective combat uniforms may be worn by Army personnel on a continuous basis. Activated carbon, the operative component, has diminished capacity for sorbing chemical agents after it has been exposed to dirt, sweat, cigarette smoke, engine exhaust, petroleum products and numerous other elements routinely present in the battlefield environment. This report summarizes the development of two nondestructive methods for cleaning and reactivating soiled chemical protective garments. Complete reactivation was achieved when the aqueous i-propanol iodine displacement method of Manes, which removed all but pure hydrocarbon oil soils from the current overgarment Type III foam ormore » Kynol activated carbon fiber material, was applied in nonaqueous solvent. Subsequently, a nonaqueous solvent method that requires less handling was chosen in designing a truck-mounted system. It features non-agitative flow of methylene chloride and methanol around the chemical-protective garments suspended between ultrasonic transducers. Both methods restore full sorptivity to the Type III foam liner. There is a one-time 10% loss of activated carbon without any loss of sorptivity. The volatile solvents are more easily removed, and can be economically recovered. Overall features of a mobile unit have been sketched.« less
NASA Astrophysics Data System (ADS)
Rani Agrawal, Pinki; Singh, Nahar; Kumari, Saroj; Dhakate, Sanjay R.
2018-03-01
It is well proposed that micron or nano size filters requires to separate adsorbent from water after removal of adsorbate. However, even after filtration trace quantity of adsorbent remains in purified water, which deteriorates the quality of water for potability. To overcome these problems, multi walled carbon nanotube (MWCNT) loaded Carbon Foam (CF) was fabricated by a sacrificial template process. In this process, multi walled carbon nanotubes (MWCNTs) and phenolic resin mixture was used for the impregnation of the polyurethane (PU) template. Impregnated PU Foam stabilized and carbonized to get MWCNTs embedded Carbon Foam (CF). The MWCNT loaded CF (MWCNTs-CF) was used for the removal of As (V) species from water. The proposed foam efficiently removes arsenic (As (V)) from water and it can be easily separated from water after purification without any sophisticated tools. The adsorption capacity of the proposed material was found to be 90.5 μg*g-1 at optimized condition of pH, time and concentration, which is excellent in comparison to several other materials utilized for removal of As (V). Kinetic and isotherm studies reveal that the multilayer adsorption over heterogeneous surface follows pseudo second order kinetics. The adsorption phenomena were further confirmed by several characterization techniques like scanning electron microscope (SEM), x-ray diffraction (XRD) spectroscopy and x-ray photoelectron spectroscopy (XPS).
NASA Astrophysics Data System (ADS)
Sutarno, Soepriyanto, Syoni; Korda, Akhmad A.; Dirgantara, Tatacipta
2015-09-01
The physical mechanical properties of Al-7000 aluminium foam product and processing has been evaluated in this study. The characterization through the compressive testing refers to flatwise direction provided more confident result than edgewise direction. This experiment may correlate with formation of side products of calcia alumina and alumina silica that involved in metal mixture of aluminium foam. These compounds are formed from additional calcium carbonate and silica in the mixture. Calcium carbonate (CaCO3) roles as a blowing agent source of carbon dioxide (CO2). The formation of calcia alumina (CaO.Al2O3) may role to strengthen of cell wall of aluminium foam and to improve the viscosity of melting metal. The Al-7000 aluminium foam indicated a decrease of compressive strength probably due to existence of alumina silica (3Al2O3.SiO2) in the metal mixture.
Carbon foams for energy storage devices
Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.
1996-01-01
A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.
Supercapacitors based on carbon foams
Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.
1993-01-01
A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.
Fabrication and Physical Evaluation of Gelatin-Coated Carbonate Apatite Foam
Hara, Kanae; Fujisawa, Kenji; Nagai, Hirokazu; Takamaru, Natsumi; Ohe, Go; Tsuru, Kanji; Ishikawa, Kunio; Miyamoto, Youji
2016-01-01
Carbonate apatite (CO3Ap) foam has gained much attention in recent years because of its ability to rapidly replace bone. However, its mechanical strength is extremely low for clinical use. In this study, to understand the potential of gelatin-reinforced CO3Ap foam for bone replacement, CO3Ap foam was reinforced with gelatin and the resulting physical characteristics were evaluated. The mechanical strength increased significantly with the gelatin reinforcement. The compressive strength of gelatin-free CO3Ap foam was 74 kPa whereas that of the gelatin-reinforced CO3Ap foam, fabricated using 30 mass % gelatin solution, was approximately 3 MPa. Heat treatment for crosslinking gelatin had little effect on the mechanical strength of the foam. The gelatin-reinforced foam did not maintain its shape when immersed in a saline solution as this promoted swelling of the gelatin; however, in the same conditions, the heat-treated gelatin-reinforced foam proved to be stable. It is concluded, therefore, that heat treatment is the key to the fabrication of stable gelatin-reinforced CO3Ap foam. PMID:28773832
DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor
2006-03-27
The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.
NASA Astrophysics Data System (ADS)
Chuaponpat, N.; Areerat, S.
2017-11-01
This research studies the effects of foaming conditions by using liquid carbon dioxide (CO2) as a physical blowing agent on plasticized polyvinyl chloride (PVC) foam morphology. Foaming conditions were soaking time of 6, 10, and 12 h, foaming temperature of 70, 80, 90 °C for 5 s, at constant soaking temperature of -20 °C and pressure of 50 bar. Instantaneously increasing temperature was employed in this process for making foam structure. PVC foam samples were calculated percentage of shrinkage (Sh) by using density at before and after aging process at 30 °C for 12 h. When PVC samples were activated to form foam by using liquid CO2 as a physical blowing agent, it reveal bimodal foam structure with a thick bubble wall (10-20 μm). Bubble diameter of PVC foam at longer soaking time is in the range of 40-60 μm and its at shorter soaking time reveal a large bubble that is in the range of 80-120 μm. Foaming condition slightly affected to bubble density that was in the narrow range of 106-108 bubbles/cm3. PVC foam reveal reduction of density up to 65% when compare with PVC and Sh is less than 10%.
Method of casting pitch based foam
Klett, James W.
2002-01-01
A process for producing molded pitch based foam is disclosed which minimizes cracking. The process includes forming a viscous pitch foam in a container, and then transferring the viscous pitch foam from the container into a mold. The viscous pitch foam in the mold is hardened to provide a carbon foam having a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts.
Impact Testing and Simulation of a Sinusoid Foam Sandwich Energy Absorber
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L; Littell, Justin D.
2015-01-01
A sinusoidal-shaped foam sandwich energy absorber was developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research project. The energy absorber, designated the "sinusoid," consisted of hybrid carbon- Kevlar® plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical or crush direction, and a closed-cell ELFOAM(TradeMark) P200 polyisocyanurate (2.0-lb/ft3) foam core. The design goal for the energy absorber was to achieve an average floor-level acceleration of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in the design were assessed through quasi-static and dynamic crush testing of component specimens. Once the design was finalized, a 5-ft-long subfloor beam was fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorber prior to retrofit into TRACT 2. Finite element models were developed of all test articles and simulations were performed using LSDYNA ®, a commercial nonlinear explicit transient dynamic finite element code. Test analysis results are presented for the sinusoid foam sandwich energy absorber as comparisons of load-displacement and acceleration-time-history responses, as well as predicted and experimental structural deformations and progressive damage for each evaluation level (component testing through barrel section drop testing).
Modifying the morphology and properties of aligned CNT foams through secondary CNT growth.
Faraji, Shaghayegh; Stano, Kelly; Akyildiz, Halil; Yildiz, Ozkan; Jur, Jesse S; Bradford, Philip D
2018-07-20
In this work, we report for the first time, growth of secondary carbon nanotubes (CNTs) throughout a three-dimensional assembly of CNTs. The assembly of nanotubes was in the form of aligned CNT/carbon (ACNT/C) foams. These low-density CNT foams were conformally coated with an alumina buffer layer using atomic layer deposition. Chemical vapor deposition was further used to grow new CNTs. The CNT foam's extremely high porosity allowed for growth of secondary CNTs inside the bulk of the foams. Due to the heavy growth of new nanotubes, density of the foams increased more than 2.5 times. Secondary nanotubes had the same graphitic quality as the primary CNTs. Microscopy and chemical analysis revealed that the thickness of the buffer layer affected the diameter, nucleation density as well as growth uniformity across the thickness of the foams. The effects of secondary nanotubes on the compressive mechanical properties of the foams was also investigated.
2013-04-01
precipitation of calcium carbonate in structured templates including microporous polycarbonate membranes and polyethylene foams. Para- meters...polyethylene foam). Microporous polycarbonate membranes and Medium-Density PolyEthylene (MDPE) foam specimens were used as the porous organic...voids in hardened concrete. DOI:10.1520/C624-06. West Conshohocken, PA: ASTM International . www.astm.org. Bersa, L., and M. Liu. 2007. A review on
Process for producing carbon foams for energy storage devices
Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.
1998-01-01
A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.
Carbon foams for energy storage devices
Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.
1996-06-25
A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc--1.0 g/cc) electrically conductive and have high surface areas (400 m{sup 2}/g-1000 m{sup 2}/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figs.
Supercapacitors based on carbon foams
Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.
1993-11-09
A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m[sup 2]/g-1000 m[sup 2]/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figures.
Carbon Fiber Foam Composites and Methods for Making the Same
NASA Technical Reports Server (NTRS)
Atwater, Mark Andrew (Inventor); Leseman, Zayd Chad (Inventor); Phillips, Jonathan (Inventor)
2014-01-01
Exemplary embodiments provide methods and apparatus of forming fibrous carbon foams (FCFs). In one embodiment, FCFs can be formed by flowing a fuel rich gas mixture over a catalytic material and components to be encapsulated in a mold to form composite carbon fibers, each composite carbon fiber having a carbon phase grown to encapsulate the component in situ. The composite carbon fibers can be intertwined with one another to form FCFs having a geometry according to the mold.
NASA Astrophysics Data System (ADS)
Asfaw, Habtom D.; Roberts, Matthew R.; Tai, Cheuk-Wai; Younesi, Reza; Valvo, Mario; Nyholm, Leif; Edström, Kristina
2014-07-01
In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol-gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4 nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm-2 at 0.1 mA cm-2 (lowest rate) and 1.1 mA h cm-2 at 6 mA cm-2 (highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol-gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4 nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm-2 at 0.1 mA cm-2 (lowest rate) and 1.1 mA h cm-2 at 6 mA cm-2 (highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01682c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, J.T.; Holbrook, S.T.
1990-01-01
The selection of the optimum foaming agent (surfactant) for enhancing oil production by carbon dioxide flooding is based on foamability and adsorption. Measurement of adsorption on carbonate cores from New Mexico reservoirs showed large adsorption differences between three commercial, high-foaming surfactants. An ethoxylated alcohol structure was least adsorbed, 0.64 mg/cc pore volume; an ethoxylated alcohol sulfate was next, 0.74 mg/cc pore volume; the highest adsorbed was a glyceryl sulfonate, 2.30 mg/cc pore volume. Commercial application of the foaming additive involves injecting alternate slugs of surfactant solution and carbon dioxide. Surfactant concentration should be determined to allow for the adsorption above.
Foamed Cement Interactions with CO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verba, Circe; Montross, Scott; Spaulding, Richard
2017-02-02
Geologic carbon storage (GCS) is a potentially viable strategy to reduce greenhouse emissions. Understanding the risks to engineered and geologic structures associated with GCS is an important first step towards developing practices for safe and effective storage. The widespread utilization of foamed cement in wells may mean that carbon dioxide (CO 2)/brine/foamed cement reactions may occur within these GCS sites. Characterizing the difference in alteration rates as well as the physical and mechanical impact of CO 2/brine/foamed cement is an important preliminary step to ensuring offshore and onshore GCS is a prudent anthropogenic CO 2 mitigation choice.
MnO2/multiwall carbon nanotube/Ni-foam hybrid electrode for electrochemical capacitor
NASA Astrophysics Data System (ADS)
Chen, L. H.; Li, L.; Qian, W. J.; Dong, C. K.
2018-01-01
The ternary composites of manganese dioxide/multiwall carbon nanotube/Ni-foam (MnO2/MWNT/Ni-foam) for supercapacitors were fabricated via a hydrothermal method after direct growth of MWNTs on the Ni-foam. The structural properties of the electrodes were characterized by SEM and TEM. The electrode exhibited excellent electrochemical properties from the investigation based on the three-electrode setup. Low contact resistance Rs of about 0.291 Ω between MnO2/MWNT and Ni-foam was reached benefited from the direct growth structure. High capacitance of 355.1 F/g at the current density of 2 A/g was achieved, with good capacitive response at high current density. The MnO2/MWNT/Ni-foam electrode exhibits good stability performance after 2000 cycles at a current of 40 mA.
Effect of Filler Type on the Properties of Rigid Polyurethane Foams at a Cryogenic Temperature
NASA Astrophysics Data System (ADS)
Yakushin, V.; Cabulis, U.; Sevastyanova, I.
2015-09-01
The effect of filler type and mass percentage on the properties of low-density rigid polyurethane foams at a temperature of 77K was investigated. The mechanical properties of foams of density 55-90 kg/m3 filled with milled carbon fibers of average length of 100 and 60 μm and hollow glass microspheres of average diameter of 65 μm were compared. A considerable increase in the compressive elastic modulus in the foam rise direction with increasing filler content was observed. The compression strength of the foams in the parallel and perpendicular directions at the cryogenic temperature decreased upon introducing the milled carbon fibers of either type. The compression strength of the foams of density 90 kg/m3 somewhat increased only upon introducing the glass microspheres.
Electrically conductive composite material
Clough, R.L.; Sylwester, A.P.
1989-05-23
An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.
Electrically conductive composite material
Clough, R.L.; Sylwester, A.P.
1988-06-20
An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.
Electrically conductive composite material
Clough, Roger L.; Sylwester, Alan P.
1989-01-01
An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.
Microcellular carbon foam and method
Simandl, R.F.; Brown, J.D.
1993-12-07
A microcellular carbon foam is characterized by a density in the range of about 30 to 1000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.
Microcellular carbon foam and method
Simandl, Ronald F.; Brown, John D.
1994-01-01
A microcellular carbon foam characterized by a density in the range of about 30 to 1000 mg/cm.sup.3, substantially uniform distribution of cell sizes of diameters less than 100 .mu.m with a majority of the cells being of a diameter of less than about 10 .mu.m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.
Microcellular carbon foam and method
Simandl, Ronald F.; Brown, John D.
1993-01-01
A microcellular carbon foam characterized by a density in the range of about 30 to 1000 mg/cm.sup.3, substantially uniform distribution of cell sizes of diameters less than 100 .mu.m with a majority of the cells being of a diameter of less than about 10 .mu.m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.
Process for producing carbon foams for energy storage devices
Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.
1998-08-04
A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc--1.0 g/cc) electrically conductive and have high surface areas (400 m{sup 2}/g--1,000 m{sup 2}/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figs.
Structural Acoustic Prediction and Interior Noise Control Technology
NASA Technical Reports Server (NTRS)
Mathur, G. P.; Chin, C. L.; Simpson, M. A.; Lee, J. T.; Palumbo, Daniel L. (Technical Monitor)
2001-01-01
This report documents the results of Task 14, "Structural Acoustic Prediction and Interior Noise Control Technology". The task was to evaluate the performance of tuned foam elements (termed Smart Foam) both analytically and experimentally. Results taken from a three-dimensional finite element model of an active, tuned foam element are presented. Measurements of sound absorption and sound transmission loss were taken using the model. These results agree well with published data. Experimental performance data were taken in Boeing's Interior Noise Test Facility where 12 smart foam elements were applied to a 757 sidewall. Several configurations were tested. Noise reductions of 5-10 dB were achieved over the 200-800 Hz bandwidth of the controller. Accelerometers mounted on the panel provided a good reference for the controller. Configurations with far-field error microphones outperformed near-field cases.
Rodriguez, Renata P; Zaiat, Marcelo
2011-04-01
This paper analyzes the influence of carbon source and inoculum origin on the dynamics of biomass adhesion to an inert support in anaerobic reactors fed with acid mine drainage. Formic acid, lactic acid and ethanol were used as carbon sources. Two different inocula were evaluated: one taken from an UASB reactor and other from the sediment of a uranium mine. The values of average colonization rates and the maximum biomass concentration (C(max)) were inversely proportional to the number of carbon atoms in each substrate. The highest C(max) value (0.35 g TVS g(-1) foam) was observed with formic acid and anaerobic sludge as inoculum. Maximum colonization rates (v(max)) were strongly influenced by the type of inoculum when ethanol and lactic acid were used. For both carbon sources, the use of mine sediment as inoculum resulted in a v(max) of 0.013 g TVS g(-1) foam day(-1), whereas 0.024 g TVS g(-1) foam day(-1) was achieved with anaerobic sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.
Modifying the morphology and properties of aligned CNT foams through secondary CNT growth
NASA Astrophysics Data System (ADS)
Faraji, Shaghayegh; Stano, Kelly; Akyildiz, Halil; Yildiz, Ozkan; Jur, Jesse S.; Bradford, Philip D.
2018-07-01
In this work, we report for the first time, growth of secondary carbon nanotubes (CNTs) throughout a three-dimensional assembly of CNTs. The assembly of nanotubes was in the form of aligned CNT/carbon (ACNT/C) foams. These low-density CNT foams were conformally coated with an alumina buffer layer using atomic layer deposition. Chemical vapor deposition was further used to grow new CNTs. The CNT foam’s extremely high porosity allowed for growth of secondary CNTs inside the bulk of the foams. Due to the heavy growth of new nanotubes, density of the foams increased more than 2.5 times. Secondary nanotubes had the same graphitic quality as the primary CNTs. Microscopy and chemical analysis revealed that the thickness of the buffer layer affected the diameter, nucleation density as well as growth uniformity across the thickness of the foams. The effects of secondary nanotubes on the compressive mechanical properties of the foams was also investigated.
Adsorption properties of carbon dioxide enchanced oil recovery additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, J.T.; Holbrook, S.T.
1990-01-01
The selection of the optimum foaming agent (surfactant) for enhancing oil production by carbon dioxide flooding is based on foamability and adsorption. Measurements of adsorption on carbonate cores from New Mexico reservoirs showed large adsorption differences between three commercial, high-foaming surfactants. An ethoxylated alcohol structure was at least adsorbed, 0.64 mg/cc pore volume; an ethoxylated alcohol sulfate was next, 0.74 mg/cc pore volume; the highest adsorbed was a glyceryl sulfonate, 2.30 mg/cc pore volume. Commercial application of the foaming additive involves injecting alternate slugs of surfactant solution and carbon dioxide. Surfactant concentration should be determined to allow for the adsorptionmore » above. 9 refs., 27 figs., 6 tabs.« less
Structural applications of metal foams considering material and geometrical uncertainty
NASA Astrophysics Data System (ADS)
Moradi, Mohammadreza
Metal foam is a relatively new and potentially revolutionary material that allows for components to be replaced with elements capable of large energy dissipation, or components to be stiffened with elements which will generate significant supplementary energy dissipation when buckling occurs. Metal foams provide a means to explore reconfiguring steel structures to mitigate cross-section buckling in many cases and dramatically increase energy dissipation in all cases. The microstructure of metal foams consists of solid and void phases. These voids have random shape and size. Therefore, randomness ,which is introduced into metal foams during the manufacturing processes, creating more uncertainty in the behavior of metal foams compared to solid steel. Therefore, studying uncertainty in the performance metrics of structures which have metal foams is more crucial than for conventional structures. Therefore, in this study, structural application of metal foams considering material and geometrical uncertainty is presented. This study applies the Sobol' decomposition of a function of many random variables to different problem in structural mechanics. First, the Sobol' decomposition itself is reviewed and extended to cover the case in which the input random variables have Gaussian distribution. Then two examples are given for a polynomial function of 3 random variables and the collapse load of a two story frame. In the structural example, the Sobol' decomposition is used to decompose the variance of the response, the collapse load, into contributions from the individual input variables. This decomposition reveals the relative importance of the individual member yield stresses in determining the collapse load of the frame. In applying the Sobol' decomposition to this structural problem the following issues are addressed: calculation of the components of the Sobol' decomposition by Monte Carlo simulation; the effect of input distribution on the Sobol' decomposition; convergence of estimates of the Sobol' decomposition with sample size using various sampling schemes; the possibility of model reduction guided by the results of the Sobol' decomposition. For the rest of the study the different structural applications of metal foam is investigated. In the first application, it is shown that metal foams have the potential to serve as hysteric dampers in the braces of braced building frames. Using metal foams in the structural braces decreases different dynamic responses such as roof drift, base shear and maximum moment in the columns. Optimum metal foam strengths are different for different earthquakes. In order to use metal foam in the structural braces, metal foams need to have stable cyclic response which might be achievable for metal foams with high relative density. The second application is to improve strength and ductility of a steel tube by filling it with steel foam. Steel tube beams and columns are able to provide significant strength for structures. They have an efficient shape with large second moment of inertia which leads to light elements with high bending strength. Steel foams with high strength to weight ratio are used to fill the steel tube to improves its mechanical behavior. The linear eigenvalue and plastic collapse finite element (FE) analysis are performed on steel foam filled tube under pure compression and three point bending simulation. It is shown that foam improves the maximum strength and the ability of energy absorption of the steel tubes significantly. Different configurations with different volume of steel foam and composite behavior are investigated. It is demonstrated that there are some optimum configurations with more efficient behavior. If composite action between steel foam and steel increases, the strength of the element will improve due to the change of the failure mode from local buckling to yielding. Moreover, the Sobol' decomposition is used to investigate uncertainty in the strength and ductility of the composite tube, including the sensitivity of the strength to input parameters such as the foam density, tube wall thickness, steel properties etc. Monte Carlo simulation is performed on aluminum foam filled tubes under three point bending conditions. The simulation method is nonlinear finite element analysis. Results show that the steel foam properties have a greater effect on ductility of the steel foam filled tube than its strength. Moreover, flexural strength is more sensitive to steel properties than to aluminum foam properties. Finally, the properties of hypothetical structural steel foam C-channels foamed are investigated via simulations. In thin-walled structural members, stability of the walls is the primary driver of structural limit states. Moreover, having a light weight is one of the main advantages of the thin-walled structural members. Therefore, thin-walled structural members made of steel foam exhibit improved strength while maintaining their low weight. Linear eigenvalue, finite strip method (FSM) and plastic collapse FE analysis is used to evaluate the strength and ductility of steel foam C-channels under uniform compression and bending. It is found that replacing steel walls of the C-channel with steel foam walls increases the local buckling resistance and decreases the global buckling resistance of the C-channel. By using the Sobol' decomposition, an optimum configuration for the variable density steel foam C-channel can be found. For high relative density, replacing solid steel of the lips and flange elements with steel foam increases the buckling strength. On the other hand, for low relative density replacing solid steel of the lips and flange elements with steel foam deceases the buckling strength. Moreover, it is shown that buckling strength of the steel foam C-channel is sensitive to the second order Sobol' indices. In summary, it is shown in this research that the metal foams have a great potential to improve different types of structural responses, and there are many promising application for metal foam in civil structures.
Low density microcellular foams
LeMay, J.D.
1991-11-19
Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 [mu]m is produced. Also disclosed are the foams produced by the process. 8 figures.
Low density microcellular foams
LeMay, James D.
1991-01-01
Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.
NASA Astrophysics Data System (ADS)
Lee, Jungkuk; Park, Min-Sik; Kim, Ki Jae
2017-02-01
Nitrogen-doped carbon nanotubes (NCNTs) are directly grown on the surface of a three-dimensional (3D) Ni foam substrate by floating catalytic chemical vapor deposition (FCCVD). The electrochemical properties of the 3D NCNT-Ni foam are thoroughly examined as a potential electrode for non-aqueous redox flow batteries (RFBs). During synthesis, nitrogen atoms can be successfully doped onto the carbon nanotube (CNT) lattices by forming an abundance of nitrogen-based functional groups. The 3D NCNT-Ni foam electrode exhibits excellent electrochemical activities toward the redox reactions of [Fe (bpy)3]2+/3+ (in anolyte) and [Co(bpy)3]+/2+ (in catholyte), which are mainly attributed to the hierarchical 3D structure of the NCNT-Ni foam electrode and the catalytic effect of nitrogen atoms doped onto the CNTs; this leads to faster mass transfer and charge transfer during operation. As a result, the RFB cell assembled with 3D NCNT-Ni foam electrodes exhibits a high energy efficiency of 80.4% in the first cycle; this performance is maintained up to the 50th cycle without efficiency loss.
Fabrication of a Low Density Carbon Fiber Foam and Its Characterization as a Strain Gauge
Luhrs, Claudia C.; Daskam, Chris D.; Gonzalez, Edwin; Phillips, Jonathan
2014-01-01
Samples of carbon nano-fiber foam (CFF), essentially a 3D solid mat of intertwined nanofibers of pure carbon, were grown using the Constrained Formation of Fibrous Nanostructures (CoFFiN) process in a steel mold at 550 °C from a palladium particle catalysts exposed to fuel rich mixtures of ethylene and oxygen. The resulting material was studied using Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), Surface area analysis (BET), and Thermogravimetric Analysis (TGA). Transient and dynamic mechanical tests clearly demonstrated that the material is viscoelastic. Concomitant mechanical and electrical testing of samples revealed the material to have electrical properties appropriate for application as the sensing element of a strain gauge. The sample resistance versus strain values stabilize after a few compression cycles to show a perfectly linear relationship. Study of microstructure, mechanical and electrical properties of the low density samples confirm the uniqueness of the material: It is formed entirely of independent fibers of diverse diameters that interlock forming a tridimensional body that can be grown into different shapes and sizes at moderate temperatures. It regains its shape after loads are removed, is light weight, presents viscoelastic behavior, thermal stability up to 550 °C, hydrophobicity, and is electrically conductive. PMID:28788644
Asfaw, Habtom D; Roberts, Matthew R; Tai, Cheuk-Wai; Younesi, Reza; Valvo, Mario; Nyholm, Leif; Edström, Kristina
2014-08-07
In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol-gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4 nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm(-2) at 0.1 mA cm(-2) (lowest rate) and 1.1 mA h cm(-2) at 6 mA cm(-2) (highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.
Modelling the side impact of carbon fibre tubes
NASA Astrophysics Data System (ADS)
Sudharsan, Ms R.; Rolfe, B. F., Dr; Hodgson, P. D., Prof
2010-06-01
Metallic tubes have been extensively studied for their crashworthiness as they closely resemble automotive crash rails. Recently, the demand to improve fuel economy and reduce vehicle emissions has led automobile manufacturers to explore the crash properties of light weight materials such as fibre reinforced polymer composites, metallic foams and sandwich structures in order to use them as crash barriers. This paper discusses the response of carbon fibre reinforced polymer (CFRP) tubes and their failure mechanisms during side impact. The energy absorption of CFRP tubes is compared to similar Aluminium tubes. The response of the CFRP tubes during impact was modelled using Abaqus finite element software with a composite fabric material model. The material inputs were given based on standard tension and compression test results and the in-plane damage was defined based on cyclic shear tests. The failure modes and energy absorption observed during the tests were well represented by the finite element model.
Microcellular carbon foam and method
Simandl, R.F.; Brown, J.D.
1994-04-05
A microcellular carbon foam is described which is characterized by a density in the range of about 30 to 1000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.
Treatment of fly ash for use in concrete
Boxley, Chett [Park City, UT; Akash, Akash [Salt lake City, UT; Zhao, Qiang [Natick, MA
2012-05-08
A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.
Treatment of fly ash for use in concrete
Boxley, Chett; Akash, Akash; Zhao, Qiang
2013-01-08
A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.
Huang, Wenju; Dai, Kun; Zhai, Yue; Liu, Hu; Zhan, Pengfei; Gao, Jiachen; Zheng, Guoqiang; Liu, Chuntai; Shen, Changyu
2017-12-06
Flexible and lightweight carbon nanotube (CNT)/thermoplastic polyurethane (TPU) conductive foam with a novel aligned porous structure was fabricated. The density of the aligned porous material was as low as 0.123 g·cm -3 . Homogeneous dispersion of CNTs was achieved through the skeleton of the foam, and an ultralow percolation threshold of 0.0023 vol % was obtained. Compared with the disordered foam, mechanical properties of the aligned foam were enhanced and the piezoresistive stability of the flexible foam was improved significantly. The compression strength of the aligned TPU foam increases by 30.7% at the strain of 50%, and the stress of the aligned foam is 22 times that of the disordered foam at the strain of 90%. Importantly, the resistance variation of the aligned foam shows a fascinating linear characteristic under the applied strain until 77%, which would benefit the application of the foam as a desired pressure sensor. During multiple cyclic compression-release measurements, the aligned conductive CNT/TPU foam represents excellent reversibility and reproducibility in terms of resistance. This nice capability benefits from the aligned porous structure composed of ladderlike cells along the orientation direction. Simultaneously, the human motion detections, such as walk, jump, squat, etc. were demonstrated by using our flexible pressure sensor. Because of the lightweight, flexibility, high compressibility, excellent reversibility, and reproducibility of the conductive aligned foam, the present study is capable of providing new insights into the fabrication of a high-performance pressure sensor.
Multiscale Mass-Spring Models of Carbon Nanotube Foams
2010-09-06
Mesarovic et al., 2007). The study of thin structural foams (Gibson and Ashby, 1998) for cushioning (Zhang et al., 2009), energy dissipation ( Teo et al...compressible foam-like behavior under compressive cycling loads (Suhr et al., 2007; Teo et al., 2007; Tao et al., 2008; Deck et al., 2007; Cao et al., 2005). 2...and electrostatic interaction be- tween individual and bundles of carbon nanotubes (Suhr et al., 2007; Teo et al., 2007; Tao et al., 2008; Deck et al
Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.
2009-01-01
The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by the choice of constituents, varying fiber tow sizes and constituent part ratios. This structural concept provides high strength and stiffness at low density 1.06 g/cm3 in panels tested. Varieties of face sheet constructions are possible, including variations in fiber type and weave geometry. The integrated structures possible with this composite could eliminate the need for non-load-bearing thermal protection systems on top of a structural component. The back sheet can readily be integrated to substructures through the incorporation of ribs. This would eliminate weight and cost for aerospace missions.
Bonding Unidirectional Carbon Nanotube with Carbon for High Performance
2015-06-24
the longest time of 80 minutes had an aerogel -like density, with CNT packing density lower than even the as-grown CNT array. This highly porous nature...nanotube foams with ultralow densities. Unlike other routes for fabrication of CNT aerogels , foam and sponges, this processing method allows the fast
46 CFR 13.121 - Courses for tankerman endorsements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (open and closed). (vii) Rules of the Coast Guard governing operations in general and prevention of..., carbon dioxide (CO2), foam... X Halogenated hydrocarbons X Pressure-water spray system in special..., spray, fog, and flooding) X Foam (high, medium and low expansion) X Carbon dioxide (CO2) X X Halon X...
46 CFR 13.121 - Courses for tankerman endorsements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (open and closed). (vii) Rules of the Coast Guard governing operations in general and prevention of..., carbon dioxide (CO2), foam... X Halogenated hydrocarbons X Pressure-water spray system in special..., spray, fog, and flooding) X Foam (high, medium and low expansion) X Carbon dioxide (CO2) X X Halon X...
46 CFR 13.121 - Courses for tankerman endorsements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (open and closed). (vii) Rules of the Coast Guard governing operations in general and prevention of..., carbon dioxide (CO2), foam... X Halogenated hydrocarbons X Pressure-water spray system in special..., spray, fog, and flooding) X Foam (high, medium and low expansion) X Carbon dioxide (CO2) X X Halon X...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameli, A.; Nofar, M.; Saniei, M.
A combination of high dielectric permittivity (ε′) and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ε′ and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed inmore » an injection molding process. Electrical conductivity (σ), ε′ and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube’s arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ε′=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ε′=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications.« less
NASA Astrophysics Data System (ADS)
Huang, Ming; Mi, Rui; Liu, Hao; Li, Fei; Zhao, Xiao Li; Zhang, Wei; He, Shi Xuan; Zhang, Yu Xin
2014-12-01
Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode.
NASA Astrophysics Data System (ADS)
Lee, W. T.; Devereux, M. G.
2011-10-01
We review the differences between bubble formation in champagne and other carbonated drinks, and stout beers which contain a mixture of dissolved nitrogen and carbon dioxide. The presence of dissolved nitrogen in stout beers gives them several properties of interest to connoisseurs and physicists. These remarkable properties come at a price: stout beers do not foam spontaneously and special technology, such as the widgets used in cans, is needed to promote foaming. Nevertheless, the same mechanism, nucleation by gas pockets trapped in cellulose fibers, responsible for foaming in carbonated drinks is active in stout beers, but at an impractically slow rate. This gentle rate of bubble nucleation makes stout beers an excellent model system for investigating the nucleation of gas bubbles. The equipment needed is modest, putting such experiments within reach of undergraduate laboratories. We also consider the suggestion that a widget could be constructed by coating the inside of a beer can with cellulose fibers.
Polyurethane foam with multi walled carbon nanotubes/magnesium hybrid filler
NASA Astrophysics Data System (ADS)
Adnan, Sinar Arzuria; Zainuddin, Firuz; Zaidi, Nur Hidayah Ahmad; Akil, Hazizan Md.; Ahmad, Sahrim
2016-07-01
The purpose of this paper is to investigate the effect of multiwalled carbon nanotubes (MWCNTs)/magnesium (Mg) hybrid filler in polyurethane (PU) foams with different weight percentages (0.5 wt.% to 3.0 wt.%). The PU/MWCNTs/Mg foam composites were formed by reaction of based palm oil polyol (POP) with methylene diphenyl diisocyanate (MDI) with ratio 1:1.1 by weight. The foam properties were evaluated in density, morphology and compressive strength. The addition of 2.5 wt.% hybrid filler showed the higher density in 59.72 kg/m3 and thus contribute to the highest compressive strength at 1.76 MPa. The morphology show cell in closed structure and addition hybrid filler showed uneven structure.
Development of porous carbon foam polymer electrolyte membrane fuel cell
NASA Astrophysics Data System (ADS)
Kim, Jin; Cunningham, Nicolas
In order to prove the feasibility of using porous carbon foam material in a polymer electrolyte membrane fuel cell (PEMFC), a single PEMFC is constructed with a piece of 80PPI (pores per linear inch) Reticulated Vitreous Carbon (RVC) foam at a thickness of 3.5 mm employed in the cathode flow-field. The cell performance of such design is compared with that of a conventional fuel cell with serpentine channel design in the cathode and anode flow-fields. Experimental results show that the RVC foam fuel cell not only produces comparative power density to, but also offers interesting benefits over the conventional fuel cell. A 250 h long term test conducted on a RVC foam fuel cell shows that the durability and performance stability of the material is deemed to be acceptable. Furthermore, a parametric study is conducted on single RVC foam fuel cells. Effect of geometrical and material parameters of the RVC foam such as PPI and thickness and operating conditions such as pressure, temperature, and stoichiometric ratio of the reactant gases on the cell performance is experimentally investigated in detail. The single cell with the 80PPI RVC foam exhibits the best performance, especially if the thinnest foam (3.5 mm) is used. The cell performance improves with increasing the operating gauge pressure from 0 kPa to 80 kPa and the operating temperature from 40 °C to 60 °C, but deteriorates as it further increases to 80 °C. The cell performance improves as the stoichiometric ratio of air increases from 1.5 to 4.5; however, the improvement becomes marginal when it is raised above 3.0. On the other hand, changing the stoichiometric ratio of hydrogen does not have a significant impact on the cell performance.
Oh, Kyunghwan; Seo, Youngwook P; Hong, Soon Man; Takahara, Atsushi; Lee, Kyoung Hwan; Seo, Yongsok
2013-07-14
For the preparation of nanocomposites, we conducted environmentally benign foaming processing on polypropylene (PP) copolymer/clay nanocomposites via a batch process in an autoclave. We investigated the dispersion and the exfoliation of the nanoclay particles. Full exfoliation was achieved by the foamability of the matrix PP copolymer using supercritical carbon dioxide (sc CO2) and subcritical carbon dioxide (sub CO2). More and smaller cells were observed when the clay was blended as heterogeneous nuclei and sc CO2 was used. Small angle X-ray scattering showed that highly dispersed states (exfoliation) of the clay particles were obtained by the foaming process. Since the clay particles provided more nucleating sites for the foaming of the polymer, a well dispersed (or fully exfoliated) nanocomposite exhibited a higher cell density and a smaller cell size at the same clay particle concentration. Expansion of the adsorbed CO2 facilitated the exfoliation of the clay platelets; thus, sc CO2 at lower temperature was more efficient for uniform foaming-cell production. Fully dispersed clay platelets were, however, re-aggregated when subjected to a further melting processing. The reprocessed nanocomposites still had some exfoliated platelets as well as some aggregated intercalates. The dual role of the nanoclay particles as foaming nucleus and a crystallization nucleus was confirmed by cell growth observation and nonisothermal crystallization kinetics analysis. A low foaming temperature and a high saturation pressure were more favorable for obtaining a uniform foam. The PP copolymer was found to be foamed more easily than polypropylene. A small amount of other olefin moieties in the backbone of the polymer facilitated better foamability than the neat polypropylene.
NASA Astrophysics Data System (ADS)
Wang, Wei; Ruiz, Isaac; Lee, Ilkeun; Zaera, Francisco; Ozkan, Mihrimah; Ozkan, Cengiz S.
2015-04-01
Optimization of the electrode/electrolyte double-layer interface is a key factor for improving electrode performance of aqueous electrolyte based supercapacitors (SCs). Here, we report the improved functionality of carbon materials via a non-invasive, high-throughput, and inexpensive UV generated ozone (UV-ozone) treatment. This process allows precise tuning of the graphene and carbon nanotube hybrid foam (GM) transitionally from ultrahydrophobic to hydrophilic within 60 s. The continuous tuning of surface energy can be controlled by simply varying the UV-ozone exposure time, while the ozone-oxidized carbon nanostructure maintains its integrity. Symmetric SCs based on the UV-ozone treated GM foam demonstrated enhanced rate performance. This technique can be readily applied to other CVD-grown carbonaceous materials by taking advantage of its ease of processing, low cost, scalability, and controllability.Optimization of the electrode/electrolyte double-layer interface is a key factor for improving electrode performance of aqueous electrolyte based supercapacitors (SCs). Here, we report the improved functionality of carbon materials via a non-invasive, high-throughput, and inexpensive UV generated ozone (UV-ozone) treatment. This process allows precise tuning of the graphene and carbon nanotube hybrid foam (GM) transitionally from ultrahydrophobic to hydrophilic within 60 s. The continuous tuning of surface energy can be controlled by simply varying the UV-ozone exposure time, while the ozone-oxidized carbon nanostructure maintains its integrity. Symmetric SCs based on the UV-ozone treated GM foam demonstrated enhanced rate performance. This technique can be readily applied to other CVD-grown carbonaceous materials by taking advantage of its ease of processing, low cost, scalability, and controllability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06795a
NASA Astrophysics Data System (ADS)
Edwards, Nathaniel S.; Conley, Jerrod C.; Reichenberger, Michael A.; Nelson, Kyle A.; Tiner, Christopher N.; Hinson, Niklas J.; Ugorowski, Philip B.; Fronk, Ryan G.; McGregor, Douglas S.
2018-06-01
The propagation of electrons through several linear pore densities of reticulated vitreous carbon (RVC) foam was studied using a Frisch-grid parallel-plate ionization chamber pressurized to 1 psig of P-10 proportional gas. The operating voltages of the electrodes contained within the Frisch-grid parallel-plate ionization chamber were defined by measuring counting curves using a collimated 241Am alpha-particle source with and without a Frisch grid. RVC foam samples with linear pore densities of 5, 10, 20, 30, 45, 80, and 100 pores per linear inch were separately positioned between the cathode and anode. Pulse-height spectra and count rates from a collimated 241Am alpha-particle source positioned between the cathode and each RVC foam sample were measured and compared to a measurement without an RVC foam sample. The Frisch grid was positioned in between the RVC foam sample and the anode. The measured pulse-height spectra were indiscernible from background and resulted in negligible net count rates for all RVC foam samples. The Frisch grid parallel-plate ionization chamber measurement results indicate that electrons do not traverse the bulk of RVC foam and consequently do not produce a pulse.
Methods for making a porous nuclear fuel element
Youchison, Dennis L; Williams, Brian E; Benander, Robert E
2014-12-30
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
NASA Astrophysics Data System (ADS)
Sutarno, Nugraha, Bagja; Kusharjanto
2017-01-01
One of the most important characteristic of aluminum foam is compressive strength, which is reflected by its impact energy and Young's modulus. In the present research, optimization of calcium carbonate (CaCO3) content in the synthesized aluminum foam in order to obtain the highest compressive strength was carried out. The results of this study will be used to determine the CaCO3 content synthesis process parameter in pilot plant scale production of an aluminum foam. The experiment was performed by varying the concentration of calcium carbonate content, which was used as foaming agent, at constant alumina concentration (1.5 wt%), which was added as stabilizer, and temperature (725°C). It was found that 4 wt% CaCO3 gave the lowest relative density, which was 0.15, and the highest porosity, which was 85.29%, and compressive strength of as high as 0.26 Mpa. The pore morphology of the obtained aluminum foam at such condition was as follow: the average pore diameter was 4.42 mm, the wall thickness minimum of the pore was 83.24 µm, roundness of the pore was 0.91. Based on the fractal porosity, the compressive strength was inversely proportional to the porosity and huddled on a power law value of 2.91.
Yottha Srithep; Lih-Sheng Turng; Ronald Sabo; Craig Clemons
2012-01-01
Polyvinyl alcohol (PVOH) and its nanofibrillated cellulose (NFC) reinforced nanocomposites were produced and foamed and its properties-such as the dynamic mechanical properties, crystallization behavior, and solubility of carbon dioxide (CO2)were evaluated. PVOH was mixed with an NFC fiber suspension in water followed by casting. Transmission...
Modelling the physical properties of glasslike carbon foams
NASA Astrophysics Data System (ADS)
Letellier, M.; Macutkevic, J.; Bychanok, D.; Kuzhir, P.; Delgado-Sanchez, C.; Naguib, H.; Ghaffari Mosanenzadeh, S.; Fierro, V.; Celzard, A.
2017-07-01
In this work, model alveolar materials - carbon cellular and/or carbon reticulated foams - were produced in order to study and to model their physical properties. It was shown that very different morphologies could be obtained whereas the constituting vitreous carbon from which they were made remained exactly the same. Doing so, the physical properties of these foams were expected to depend neither on the composition nor on the carbonaceous texture but only on the porous structure, which could be tuned for the first time for having a constant pore size in a range of porosities, or a range of pore sizes at fixed porosity. The physical properties were then investigated through mechanical, acoustic, thermal and electromagnetic measurements. The results demonstrate the roles played by bulk density and cell size on all physical properties. Whereas some of the latter strongly depend on porosity and/or pore size, others are independent of pore size. It is expected that these results apply to many other kinds of rigid foams used in a broad range of different applications. The present results therefore open the route to their optimisation.
Lee, Chang-Gu; Song, Mi-Kyung; Ryu, Jae-Chun; Park, Chanhyuk; Choi, Jae-Woo; Lee, Sang-Hyup
2016-06-01
Electroplating wastewater contains various types of toxic substances, such as heavy metals, solvents, and cleaning agents. Carbon foam was used as an adsorbent for the removal of heavy metals from real industrial plating wastewater. Its sorption capacity was compared with those of a commercial ion-exchange resin (BC258) and a heavy metal adsorbent (CupriSorb™) in a batch system. The experimental carbon foam has a considerably higher sorption capacity for Cr and Cu than commercial adsorbents for acid/alkali wastewater and cyanide wastewater. Additionally, cytotoxicity test showed that the newly developed adsorbent has low cytotoxic effects on three kinds of human cells. In a pilot plant, the carbon foam had higher sorption capacity for Cr (73.64 g kg(-1)) than for Cu (14.86 g kg(-1)) and Ni (7.74 g kg(-1)) during 350 h of operation time. Oxidation pretreatments using UV/hydrogen peroxide enhance heavy metal removal from plating wastewater containing cyanide compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cardoso, Elizabeth Carvalho L.; Seixas, Marcus Vinicius S.; Wiebeck, Helio; Oliveira, René R.; Machado, Glauson Aparecido F.; Moura, Esperidiana A. B.
In Brazil, the food industry generates every year huge amounts of avian eggshell waste, an industrial byproduct containing 95% of calcium carbonate, and its disposal constitutes a serious environmental hazard. This study aims to the development of bio-foams from PBAT/PLA blends reinforced with bio-calcium carbonate from eggshells. Composites were obtained by melting extrusion process, blending PBAT/PLA (50/50) with 25% of bio-calcium carbonate, PBAT/PLA (50/45) with 25% of bio-calcium carbonate and 5 % of pre-irradiated PLA and PBAT/PLA (50/40) with 25% of bio-calcium carbonate and 10 % of pre-irradiated PLA. PLA was previously e-beam irradiated at 150kGy in air and used as compatibilizer agent. The composites were then extruded in a Rheomex 332p single special screw for foaming. Samples were submitted to Tensile and Compression tests, MFI, DSC, TGA, XRD and FEG/SEM, analyses.
High efficiency, oxidation resistant radio frequency susceptor
Besmann, Theodore M.; Klett, James W.
2004-10-26
An article and method of producing an article for converting energy from one form to another having a pitch-derived graphitic foam carbon foam substrate and a single layer coating applied to all exposed surfaces wherein the coating is either silicon carbide or carbides formed from a Group IVA metal. The article is used as fully coated carbon foam susceptors that more effectively absorb radio frequency (RF) band energy and more effectively convert the RF energy into thermal band energy or sensible heat. The essentially non-permeable coatings also serve as corrosion or oxidation resistant barriers.
Treatability of Aqueous Film-Forming Foams Used for Fire Fighting.
BIODETERIORATION, *FIRE EXTINGUISHING AGENTS, SURFACE ACTIVE SUBSTANCES, FLUORINATED HYDROCARBONS, FOAM , ACTIVATED SLUDGE PROCESS, ACTIVATED CARBON, TOXICITY, WASTE DISPOSAL, TABLES(DATA), ADSORPTION.
1995-06-01
solid body resistors have been chosen for Atlas. For the series damping resistors, reticulated vitreous carbon (RVC) foam plate resistors will be...utilized. RVC resistors are available as a foam like glassy carbon material available with various pore size, ligament density, and ligament diameter...contact louvers used at the current joint interface. This mitigates the necessity of high torque and critical alignment connections. Carbon rod style
Plasma-Spray Metal Coating On Foam
NASA Technical Reports Server (NTRS)
Cranston, J.
1994-01-01
Molds, forms, and other substrates made of foams coated with metals by plasma spraying. Foam might be ceramic, carbon, metallic, organic, or inorganic. After coat applied by plasma spraying, foam left intact or removed by acid leaching, conventional machining, water-jet cutting, or another suitable technique. Cores or vessels made of various foam materials plasma-coated with metals according to method useful as thermally insulating containers for foods, liquids, or gases, or as mandrels for making composite-material (matrix/fiber) parts, or making thermally insulating firewalls in automobiles.
Biodegradability of fluorinated fire-fighting foams in water.
Bourgeois, A; Bergendahl, J; Rangwala, A
2015-07-01
Fluorinated fire-fighting foams may be released into the environment during fire-fighting activities, raising concerns due to the potential environmental and health impacts for some fluorinated organics. The current study investigated (1) the biodegradability of three fluorinated fire-fighting foams, and (2) the applicability of current standard measures used to assess biodegradability of fluorinated fire-fighting foams. The biodegradability of three fluorinated fire-fighting foams was evaluated using a 28-day dissolved organic carbon (DOC) Die-Away Test. It was found that all three materials, diluted in water, achieved 77-96% biodegradability, meeting the criteria for "ready biodegradability". Defluorination of the fluorinated organics in the foam during biodegradation was measured using ion chromatography. It was found that the fluorine liberated was 1-2 orders of magnitude less than the estimated initial amount, indicating incomplete degradation of fluorinated organics, and incomplete CF bond breakage. Published biodegradability data may utilize biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC) metrics to quantify organics. COD and TOC of four fluorinated compounds were measured and compared to the calculated carbon content or theoretical oxygen demand. It was found that the standard dichromate-based COD test did not provide an accurate measure of fluorinated organic content. Thus published biodegradability data using COD for fluorinated organics quantification must be critically evaluated for validity. The TOC measurements correlated to an average of 91% of carbon content for the four fluorinated test substances, and TOC is recommended for use as an analytical parameter in fluorinated organics biodegradability tests. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carbon Catalyst Synthesis - Sucrose was treated directly with excess sulfuric acid sulfuric acid (9:1 mol/mol, 25°C). A carbon foam (nearly 20 fold increase in bulk volume) was immediately formed. The foam was then washed until no sulfate was dete...
46 CFR 169.567 - Portable extinguishers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Minimum size Coast Guard classification Living space and open boats 1 per 1000 cu. ft. of space Halon 1211 of 1301 21/2 pounds Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical 2 pounds Propulsion machinery space with fixed CO2 or halon system 1 Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical...
46 CFR 169.567 - Portable extinguishers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Minimum size Coast Guard classification Living space and open boats 1 per 1000 cu. ft. of space Halon 1211 of 1301 21/2 pounds Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical 2 pounds Propulsion machinery space with fixed CO2 or halon system 1 Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical...
46 CFR 169.567 - Portable extinguishers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Minimum size Coast Guard classification Living space and open boats 1 per 1000 cu. ft. of space Halon 1211 of 1301 21/2 pounds Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical 2 pounds Propulsion machinery space with fixed CO2 or halon system 1 Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical...
46 CFR 169.567 - Portable extinguishers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Minimum size Coast Guard classification Living space and open boats 1 per 1000 cu. ft. of space Halon 1211 of 1301 21/2 pounds Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical 2 pounds Propulsion machinery space with fixed CO2 or halon system 1 Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical...
Processing and Modeling of Porous Copper Using Sintering Dissolution Process
NASA Astrophysics Data System (ADS)
Salih, Mustafa Abualgasim Abdalhakam
The growth of porous metal has produced materials with improved properties as compared to non-metals and solid metals. Porous metal can be classified as either open cell or closed cell. Open cell allows a fluid media to pass through it. Closed cell is made up of adjacent sealed pores with shared cell walls. Metal foams offer higher strength to weight ratios, increased impact energy absorption, and a greater tolerance to high temperatures and adverse environmental conditions when compared to bulk materials. Copper and its alloys are examples of these, well known for high strength and good mechanical, thermal and electrical properties. In the present study, the porous Cu was made by a powder metallurgy process, using three different space holders, sodium chloride, sodium carbonate and potassium carbonate. Several different samples have been produced, using different ratios of volume fraction. The densities of the porous metals have been measured and compared to the theoretical density calculated using an equation developed for these foams. The porous structure was determined with the removal of spacer materials through sintering process. The sintering process of each spacer material depends on the melting point of the spacer material. Processing, characterization, and mechanical properties were completed. These tests include density measurements, compression tests, computed tomography (CT) and scanning electron microscopy (SEM). The captured morphological images are utilized to generate the object-oriented finite element (OOF) analysis for the porous copper. Porous copper was formed with porosities in the range of 40-66% with density ranges from 3 to 5.2 g/cm3. A study of two different methods to measure porosity was completed. OOF (Object Oriented Finite Elements) is a desktop software application for studying the relationship between the microstructure of a material and its overall mechanical, dielectric, or thermal properties using finite element models based on real or simulated micrographs. OOF provides methods for segmenting images, creating meshes and solving of complex geometries using finite element models, and visualizing 2D results.
Fractal Loop Heat Pipe Performance Comparisons of a Soda Lime Glass and Compressed Carbon Foam Wick
NASA Technical Reports Server (NTRS)
Myre, David; Silk, Eric A.
2014-01-01
This study compares heat flux performance of a Loop Heat Pipe (LHP) wick structure fabricated from compressed carbon foam with that of a wick structure fabricated from sintered soda lime glass. Each wick was used in an LHP containing a fractal based evaporator. The Fractal Loop Heat Pipe (FLHP) was designed and manufactured by Mikros Manufacturing Inc. The compressed carbon foam wick structure was manufactured by ERG Aerospace Inc., and machined to specifications comparable to that of the initial soda lime glass wick structure. Machining of the compressed foam as well as performance testing was conducted at the United States Naval Academy. Performance testing with the sintered soda lime glass wick structures was conducted at NASA Goddard Space Flight Center. Heat input for both wick structures was supplied via cartridge heaters mounted in a copper block. The copper heater block was placed in contact with the FLHP evaporator which had a circular cross-sectional area of 0.88 cm(sup 2). Twice distilled, deionized water was used as the working fluid in both sets of experiments. Thermal performance data was obtained for three different Condenser/Subcooler temperatures under degassed conditions. Both wicks demonstrated comparable heat flux performance with a maximum of 75 W/cm observed for the soda lime glass wick and 70 W /cm(sup 2) for the compressed carbon foam wick.
Method for making thin carbon foam electrodes
Pekala, Richard W.; Mayer, Steven T.; Kaschmitter, James L.; Morrison, Robert L.
1999-01-01
A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.
Park, No-Kuk; Jeong, Yong Han; Kang, Misook; Lee, Tae Jin
2018-09-01
The catalytic activity of a macro-mesoporous catalyst coated on a metal foam plate in the reforming of bio-ethanol to synthesis gas was investigated. The catalysts were prepared by coating a support with a noble metal and transition metal. The catalytic activity for the production of synthetic gas by the reforming of bio-ethanol was compared according to the support material, reaction temperature, and steam/carbon ratio. The catalysts coated on the metal foams were prepared using a template method, in which macro-pores and meso-pores were formed by mixing polymer beads. In particular, the thermodynamic equilibrium composition of bio-ethanol reforming with the reaction temperature and steam/carbon ratio to produce synthetic gas was examined using the HSC (Enthalpy-Entropy-Heat capacity) chemistry program in this study. The composition of hydrogen and carbon monoxide in the reformate gas produced by steam reforming over the Rh/Ni-Ce-Zr/Al2O3-based pellet type catalysts and metal foam catalysts that had been coated with the Rh/Al-Ce-Zr-based catalysts was investigated by experimental activity tests. The activity of the metal foam catalyst was higher than that of the pellet type catalyst.
NASA Astrophysics Data System (ADS)
Zhou, Xiaoming; Liu, Yang; Du, Chunyu; Ren, Yang; Mu, Tiansheng; Zuo, Pengjian; Yin, Geping; Ma, Yulin; Cheng, Xinqun; Gao, Yunzhi
2018-03-01
Seeking free volume around nanostructures for silicon-based anodes has been a crucial strategy to improve cycling and rate performance in the next generation Li-ion batteries. Herein, through a simple pyrolysis and in-situ polymerization approach, the low cost commercially available melamine foam as a soft template converts carbon nanotubes into highly dispersed and three-dimensionally interconnected framework with encapsulated silicon/polyaniline hierarchical nanoarchitecture. This unique core-sheath structure based on carbon nanotubes foam integrates a large number of mesoporous, thus providing well-accessible space for electrolyte wetting, whereas the carbon nanotubes matrix serves as conductive thoroughfares for electron transport. Meanwhile, the outer polyaniline coated on silicon nanoparticles provides effective space for volume expansion of silicon, further inhibiting the active material escape from the current collector. As expected, the PANI-Si@CNTs foam exhibits a high initial specific capacity of 1954 mAh g-1 and retains 727 mAh g-1 after 100 cycles at 100 mA g-1, which can be attributed to highly electrical conductivity of carbon nanotubes and protective layer of polyaniline sheath, together with three-dimensionally interconnected porous skeleton. This facile structure can pave a way for large scale synthesis of high durable silicon-based anodes or other electrode materials with huge volume expansion.
Jeong, Keuk Min; Hong, Yeo Joo; Saha, Prosenjit; Park, Seong Ho; Kim, Jin Kuk
2014-11-01
In this study, a composite has been prepared by mixing waste rubber, such as ethylene-propylene-diene-monomer and low-density poly ethylene foaming, with supercritical carbon dioxide. In order to optimise the foaming process of the waste ethylene-propylene-diene-monomer-low-density poly ethylene composite, the variations of pressure and temperature on the foamed Microcell formation were studied. As indicated in scanning electron microscope photographs, the most uniform microcellular pattern was found at 200 bar and 100 °C using 30% by weight of waste ethylene-propylene-diene-monomer. Carbon dioxide could not be dissolved uniformly during foaming owing to extensive cross-linking of the waste ethylene-propylene-diene-monomer used for the composite. As a result the presence of un-uniform microcells after foaming were observed in the composite matrix to impart inferior mechanical properties of the composite. This problem was solved with uniform foaming by increasing the cross-link density of low-density poly ethylene using 1.5 parts per hundred dicumyl peroxide that enhances composite tensile and compressive strength up to 57% and 15%, respectively. The composite has the potential to be used as a foaming mat for artificial turf. © The Author(s) 2014.
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Lerch, Bradley A.; Rogers, Patrick R.; Sparks, Scotty S.
2006-01-01
The Columbia Accident Investigation Board (CAIB) concluded that the cause of the tragic loss of the Space Shuttle Columbia and its crew was a breach in the thermal protection system on the leading edge of the left wing. The breach was initiated by a piece of insulating foam that separated from the left bipod ramp of the External Tank and struck the wing in the vicinity of the lower half of Reinforced Carbon-Carbon panel No. 8 at 81.9 seconds after launch. The CAIB conclusion has spawned numerous studies to identify the cause of and factors influencing foam shedding and foam debris liberation from the External Tank during ascent. The symposium on the Thermo-mechanics and Fracture of Space Shuttle External Tank Spray-On Foam Insulation is a collection of presentations that discuss the physics and mechanics of the ET SOFI with the objective of improving analytical and numerical methods for predicting foam thermo-mechanical and fracture behavior. This keynote presentation sets the stage for the presentations contained in this symposium by introducing the audience to the various types of SOFI applications on the Shuttle s External Tank and by discussing the various mechanisms that are believed to be the cause of foam shedding during the Shuttle s ascent to space
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.
2005-01-01
An analytical study was conducted to determine the influence of clocking angle of a foam projectile impacting a space shuttle leading edge wing panel. Four simulations were performed using LS-DYNA. The leading edge panels are fabricated of multiple layers of reinforced carbon-carbon (RCC) material. The RCC material was represented using Mat 58, which is a material property that can be used for laminated composite fabrics. Simulations were performed of a rectangular-shaped foam block, weighing 0.23-lb., impacting RCC Panel 9 on the top surface. The material properties of the foam were input using Mat 83. The impact velocity was 1,000 ft/s along the Orbiter X-axis. In two models, the foam impacted on a corner, in one model the foam impacted the panel initially on the 2-in.-long edge, and in the last model the foam impacted the panel on the 7-in.- long edge. The simulation results are presented as contour plots of first principal infinitesimal strain and time history plots of contact force and internal and kinetic energy of the foam and RCC panel.
Spin-foam models and the physical scalar product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alesci, Emanuele; Centre de Physique Theorique de Luminy, Universite de la Mediterranee, F-13288 Marseille; Noui, Karim
2008-11-15
This paper aims at clarifying the link between loop quantum gravity and spin-foam models in four dimensions. Starting from the canonical framework, we construct an operator P acting on the space of cylindrical functions Cyl({gamma}), where {gamma} is the four-simplex graph, such that its matrix elements are, up to some normalization factors, the vertex amplitude of spin-foam models. The spin-foam models we are considering are the topological model, the Barrett-Crane model, and the Engle-Pereira-Rovelli model. If one of these spin-foam models provides a covariant quantization of gravity, then the associated operator P should be the so-called ''projector'' into physical statesmore » and its matrix elements should give the physical scalar product. We discuss the possibility to extend the action of P to any cylindrical functions on the space manifold.« less
The foamed structures in numerical testing
NASA Astrophysics Data System (ADS)
John, Antoni; John, Małgorzata
2018-01-01
In the paper numerical simulation of the foamed metal structures using numerical homogenization algorithm is prescribed. From the beginning, numerical model of heterogeneous porous simplified structures of typical foamed metal, based on the FEM was built and material parameters (coefficients of elasticity matrix of the considered structure) were determined with use of numerical homogenization algorithm. During the work the different RVE models of structure were created and their properties were compared at different relative density, different numbers and the size and structure of the arrangement of voids. Finally, obtained results were used in modeling of typical elements made from foam metals structures - sandwich structure and profile filled with metal foam. Simulation were performed for different dimensions of cladding and core. Additionally, the test of influence material orientation (arrangement of voids in RVE element) on the maximum stresses and displacement during bending test was performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Rekha R.; Mondy, Lisa Ann; Noble, David R.
We are studying PMDI polyurethane with a fast catalyst, such that filling and polymerization occur simultaneously. The foam is over-packed to tw ice or more of its free rise density to reach the density of interest. Our approach is to co mbine model development closely with experiments to discover new physics, to parameterize models and to validate the models once they have been developed. The model must be able to repres ent the expansion, filling, curing, and final foam properties. PMDI is chemically blown foam, wh ere carbon dioxide is pr oduced via the reaction of water and isocyanate. Themore » isocyanate also re acts with polyol in a competing reaction, which produces the polymer. A new kinetic model is developed and implemented, which follows a simplified mathematical formalism that decouple s these two reactions. The model predicts the polymerization reaction via condensation chemis try, where vitrification and glass transition temperature evolution must be included to correctly predict this quantity. The foam gas generation kinetics are determined by tracking the molar concentration of both water and carbon dioxide. Understanding the therma l history and loads on the foam due to exothermicity and oven heating is very important to the results, since the kinetics and ma terial properties are all very sensitive to temperature. The conservation eq uations, including the e quations of motion, an energy balance, and thr ee rate equations are solved via a stabilized finite element method. We assume generalized-Newtonian rheology that is dependent on the cure, gas fraction, and temperature. The conservation equations are comb ined with a level set method to determine the location of the free surface over time. Results from the model are compared to experimental flow visualization data and post-te st CT data for the density. Seve ral geometries are investigated including a mock encapsulation part, two configur ations of a mock stru ctural part, and a bar geometry to specifically test the density model. We have found that the model predicts both average density and filling profiles well. However, it under predicts density gradients, especially in the gravity direction. Thoughts on m odel improvements are also discussed.« less
Ren, Xing W; Wang, Feng Z; Guo, Qing; Zuo, Zhao B; Fang, Qi S
2015-01-01
In China, 47.3% of state-owned coal mines are located in coal seams that are prone to spontaneous combustion. The spontaneous combustion of coal is the main cause of the generation of a large amount of carbon monoxide, which can cause serious health issues to miners. A new technique using foam-gel formation was developed to effectively control the spontaneous combustion of coal. The gel can capture more than 90% of the water in the grout and at the same time the foam can cover dangerous areas in the goaf by stacking and cooling of foam in all directions. In this study, a mechanism of foam-gel formation was introduced and the optimal proportions of additives were defined based on experiments of different foaming properties, gelling time and water loss rate as the main index parameters. The results of a field application in a coal mine promise that this new technique would effectively prevent coal oxidation in the goaf and reduce the generation of carbon monoxide.
NASA Astrophysics Data System (ADS)
Li, Jiantong; Zhang, Guangcheng; Zhang, Hongming; Fan, Xun; Zhou, Lisheng; Shang, Zhengyang; Shi, Xuetao
2018-01-01
Epoxy/functionalized multi-wall carbon nanotube (EP/F-MWCNT) microcellular foams were fabricated through a supercritical CO2 (scCO2) foaming method. MWCNTs with carboxylation treatment were disentangled by using alpha-zirconium phosphate (ZrP) assisting dispersion method and functionalized with sulfanilamide. The F-MWCNTs were redispersed in acetone for mixing with epoxy resins to prepare nanocomposites. It was found that the dispersion of MWCNTs could be improved, thus heterogeneous nucleation effect of F-MWCNTs took place effectively during the foaming process, resulting in the formation of microcellular structure with larger cell density and smaller cell size. The volume conductivity and electromagnetic interference shielding performance of foamed EP/F-MWCNT nanocomposites were studied. When the F-MWCNT addition was 5 wt%, the conductivity of the foamed EP/F-MWCNT nanocomposites was 3.02 × 10-4 S/cm and the EMI shielding effectiveness (SE) reached 20.5 dB, significantly higher than the corresponding results of nanocomposite counterparts, indicating that introducing microcellular structure in EP/F-MWCNT nanocomposites would beneficial to improve their electrical conductivity and electromagnetic interference shielding performance.
Low loading of carbon nanotubes to enhance acoustical properties of poly(ether)urethane foams
NASA Astrophysics Data System (ADS)
Basirjafari, Sedigheh; Malekfar, Rasoul; Esmaielzadeh Khadem, Siamak
2012-11-01
The aim of this paper is to fabricate a sound absorber flexible semi-open cell polymeric foam based on polyether urethane (PEU) with carboxylic functionalized multi-walled carbon nanotubes (COOH-MWCNTs) as an energy decaying filler at low loadings up to 0.20 wt. %. This paper provides the relationship between the mentioned foam microstructure via field emission scanning electron microscopy and different acoustical and non-acoustical properties of PEU/COOH-MWCNT composites. Addition of just 0.05 wt. % COOH-MWCNTs enhanced the sound absorption coefficient of the mentioned nanocomposite foam over the entire frequency range. Raman spectra revealed the better dispersion of COOH-MWCNTs in the PEU matrix leading to more stress transfer between them to cause a significant dissipation of energy.
Composite carbon foam electrode
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
1997-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.
Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pocoima, CA; Benander, Robert E [Pacoima, CA
2010-02-23
Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.
Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors
Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA
2011-03-01
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors
Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.
2013-09-03
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
2011-02-01
24 Figure 21. Stress-Strain Curve of Expanded Polystyrene Insulation Foam Samples ....................25 Figure 22. Stress-Strain Curve of...Polyisocyanruate Insulation Foam Samples ............................25 Figure 23. Stress-Strain Curve of Extruded Expanded Polystyrene Insulation Foam...for modeling (Naito et al. 2009a). Insulating foams included expanded polystyrene (EPS), extruded expanded polystyrene (XPS), and polyisocyanurate
Method for making thin carbon foam electrodes
Pekala, R.W.; Mayer, S.T.; Kaschmitter, J.L.; Morrison, R.L.
1999-08-03
A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material is disclosed. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.
Porous Foam Based Wick Structures for Loop Heat Pipes
NASA Technical Reports Server (NTRS)
Silk, Eric A.
2012-01-01
As part of an effort to identify cost efficient fabrication techniques for Loop Heat Pipe (LHP) construction, NASA Goddard Space Flight Center's Cryogenics and Fluids Branch collaborated with the U.S. Naval Academy s Aerospace Engineering Department in Spring 2012 to investigate the viability of carbon foam as a wick material within LHPs. The carbon foam was manufactured by ERG Aerospace and machined to geometric specifications at the U.S. Naval Academy s Materials, Mechanics and Structures Machine Shop. NASA GSFC s Fractal Loop Heat Pipe (developed under SBIR contract #NAS5-02112) was used as the validation LHP platform. In a horizontal orientation, the FLHP system demonstrated a heat flux of 75 Watts per square centimeter with deionized water as the working fluid. Also, no failed start-ups occurred during the 6 week performance testing period. The success of this study validated that foam can be used as a wick structure. Furthermore, given the COTS status of foam materials this study is one more step towards development of a low cost LHP.
High-power laser interaction with low-density C–Cu foams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez, F.; Colvin, J. D.; May, M. J.
2015-11-15
We study the propagation of high-power laser beams in micro-structured carbon foams by monitoring the x-ray output from deliberately introduced Cu content. In particular, we characterize this phenomenon measuring absolute time-resolved x-ray yields, time-resolved x-ray imaging, and x-ray spectroscopy. New experimental results for C–Cu foams show a faster heat front velocity than simulation that assumed homogeneous plasma. We suggest the foam micro-structure may explain this trend.
High-power laser interaction with low-density C–Cu foams
Pérez, F.; Colvin, J. D.; May, M. J.; ...
2015-11-19
Here, we study the propagation of high-power laser beams in micro-structured carbon foams by monitoring the x-ray output from deliberately introduced Cu content. In particular, we characterize this phenomenon measuring absolute time-resolved x-ray yields, time-resolved x-ray imaging, and x-ray spectroscopy. New experimental results for C–Cu foams show a faster heat front velocity than simulation that assumed homogeneous plasma. We suggest the foam micro-structure may explain this trend.
Comparison of water-based foam and carbon dioxide gas emergency depopulation methods of turkeys.
Rankin, M K; Alphin, R L; Benson, E R; Johnson, A L; Hougentogler, D P; Mohankumar, P
2013-12-01
Recommended response strategies for outbreaks of avian influenza and other highly contagious poultry diseases include surveillance, quarantine, depopulation, disposal, and decontamination. The best methods of emergency mass depopulation should maximize human health and safety while minimizing disease spread and animal welfare concerns. The goal of this project was to evaluate the effectiveness of 2 mass depopulation methods on adult tom turkeys. The methods tested were carbon dioxide gassing and water-based foam. The time to unconsciousness, motion cessation, brain death, and altered terminal cardiac activity were recorded for each bird through the use of an electroencephalogram, accelerometer, and electrocardiogram. Critical times for physiological events were extracted from sensor data and compiled in a spreadsheet for statistical analysis. A statistically significant difference was observed in time to brain death, with water-based foam resulting in faster brain death (µ = 190 s) than CO2 gas (µ = 242 s). Though not statistically significant, differences were found comparing the time to unconsciousness (foam: µ = 64 s; CO2 gas: µ = 90 s), motion cessation (foam: µ = 182 s; CO2 gas: µ = 153 s), and altered terminal cardiac activity (foam: µ = 208 s; CO2 gas µ = 242 s) between foam and CO2 depopulation treatments. The results of this study demonstrate that water-based foam can be used to effectively depopulate market size male turkeys.
Capacitor with a composite carbon foam electrode
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
1999-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.
Method for fabricating composite carbon foam
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
2001-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.
Capacitor with a composite carbon foam electrode
Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.
1999-04-27
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.
Composite carbon foam electrode
Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.
1997-05-06
Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.
Culbert, Julie A; McRae, Jacqui M; Condé, Bruna C; Schmidtke, Leigh M; Nicholson, Emily L; Smith, Paul A; Howell, Kate S; Boss, Paul K; Wilkinson, Kerry L
2017-02-22
The chemical composition (protein, polysaccharide, amino acid, and fatty acid/ethyl ester content), foaming properties, and quality of 50 Australian sparkling white wines, representing the four key production methods, that is, Méthode Traditionelle (n = 20), transfer (n = 10), Charmat (n = 10), and carbonation (n = 10), were studied. Méthode Traditionelle wines were typically rated highest in quality and were higher in alcohol and protein contents, but lower in residual sugar and total phenolics, than other sparkling wines. They also exhibited higher foam volume and stability, which might be attributable to higher protein concentrations. Bottle-fermented Méthode Traditionelle and transfer wines contained greater proportions of yeast-derived mannoproteins, whereas Charmat and carbonated wines were higher in grape-derived rhamnogalacturonans; however, total polysaccharide concentrations were not significantly different between sparkling wine styles. Free amino acids were most abundant in carbonated wines, which likely reflects production via primary fermentation only and/or the inclusion of nontraditional grape varieties. Fatty acids and their esters were not correlated with foaming properties, but octanoic and decanoic acids and their ethyl esters were present in Charmat and carbonated wines at significantly higher concentrations than in bottle-fermented wines and were negatively correlated with quality ratings. Research findings provide industry with a better understanding of the compositional factors driving the style and quality of sparkling white wine.
Low density microcellular foams
LeMay, James D.
1992-01-01
Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.
NASA Astrophysics Data System (ADS)
Fu, Yubin; Lu, Zhikai; Zai, Xuerong; Wang, Jian
2015-08-01
Electrode materials have an important effect on the property of microbial fuel cell (MFC). Carbon foam is utilized as an anode and further modified by urea to improve its performance in marine benthic microbial fuel cell (BMFC) with higher voltage and output power. The electrochemical properties of plain carbon foam (PC) and urea-modified carbon foam (UC) are measured respectively. Results show that the UC obtains better wettability after its modification and higher anti-polarization ability than the PC. A novel phenomenon has been found that the electrical potential of the modified UC anode is nearly 100 mV lower than that of the PC, reaching -570 ±10 mV ( vs. SCE), and that it also has a much higher electron transfer kinetic activity, reaching 9399.4 mW m-2, which is 566.2-fold higher than that from plain graphite anode (PG). The fuel cell containing the UC anode has the maximum power density (256.0 mW m-2) among the three different BMFCs. Urea would enhance the bacteria biofilm formation with a more diverse microbial community and maintain more electrons, leading to a lower anodic redox potential and higher power output. The paper primarily analyzes why the electrical potential of the modified anode becomes much lower than that of others after urea modification. These results can be utilized to construct a novel BMFC with higher output power and to design the conditioner of voltage booster with a higher conversion ratio. Finally, the carbon foam with a bigger pore size would be a potential anodic material in conventional MFC.
Ocean foam generation and modeling
NASA Technical Reports Server (NTRS)
Porter, R. A.; Bechis, K. P.
1976-01-01
A laboratory investigation was conducted to determine the physical and microwave properties of ocean foam. Special foam generators were designed and fabricated, using porous glass sheets, known as glass frits, as the principal element. The glass frit was sealed into a water-tight vertical box, a few centimeters from the bottom. Compressed air, applied to the lower chamber, created ocean foam from sea water lying on the frit. Foam heights of 30 cm were readily achieved, with relatively low air pressures. Special photographic techniques and analytical procedures were employed to determine foam bubble size distributions. In addition, the percentage water content of ocean foam was determined with the aid of a particulate sampling procedure. A glass frit foam generator, with pore diameters in the range 70 - 100 micrometers, produced foam with bubble distributions very similar to those found on the surface of natural ocean foam patches.
Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam.
Wang, Jing; Wang, Nannan; Liu, Xin; Ding, Jian; Xia, Xingchuan; Chen, Xueguang; Zhao, Weimin
2018-05-04
The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs) was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg₂Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process.
Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam
Wang, Jing; Wang, Nannan; Liu, Xin; Ding, Jian; Xia, Xingchuan; Chen, Xueguang; Zhao, Weimin
2018-01-01
The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs) was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg2Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process. PMID:29734700
NASA Technical Reports Server (NTRS)
Tang, Henry H.; Orndoff, Evelyne S.; Thomas, Gretchen A.
2009-01-01
This paper discusses the effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be very robust and function in the extreme lunar thermal vacuum environment for up to one hundred Extravehicular Activity (EVA) missions. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating commercial off-the-shelf (COTS) foam protection materials. It also presents the materials properties test results and impact drop test results of the various foam materials evaluated in the study. The findings from this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam properties or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.
NASA Astrophysics Data System (ADS)
Lu, Congxiang; Liu, Wen-wen; Pan, Hui; Tay, Beng Kang; Wang, Xingli; Liang, Kun; Wei, Xuezhe
2018-05-01
In this work, a three dimensional (3D) interconnected carbon network consisting of ultrathin graphite (UG) and carbon nanotubes (CNTs) on Ni foam is fabricated and employed as a novel type of substrate for mesoporous NiCo2O4 nano-needles. The successfully synthesized NiCo2O4 nano-needles/CNTs/UG on Ni foam has many advantages including facile electrolyte access and direct conducting pathways towards current collectors, which enable it to be a promising electrode material in battery-like electrochemical energy storage. Encouragingly, a high capacity of 135.1 mAh/g at the current density of 1 A/g, superior rate performance and also stable cycling for 1200 cycles at the current density of 5 A/g have been demonstrated in this novel material.
In Situ Observation of Plastic Foaming under Static Condition, Extensional Flow and Shear Flow
NASA Astrophysics Data System (ADS)
Wong, Anson Sze Tat
Traditional blowing agents (e.g., hydrochlorofluorocarbons) in plastic foaming processes has been phasing out due to environmental regulations. Plastic foaming industry is forced to employ greener alternatives (e.g., carbon dioxide, nitrogen), but their foaming processes are technologically challenging. Moreover, to improve the competitiveness of the foaming industry, it is imperative to develop a new generation of value-added plastic foams with cell structures that can be tailored to different applications. In this context, the objective of this thesis is to achieve a thorough understanding on cell nucleation and growth phenomena that determine cell structures in plastic foaming processes. The core research strategy is to develop innovative visualization systems to capture and study these phenomena. A system with accurate heating and cooling control has been developed to observe and study crystallization-induced foaming behaviors of polymers under static conditions. The cell nucleation and initial growth behavior of polymers blown with different blowing agents (nitrogen, argon and helium, and carbon dioxide-nitrogen mixtures) have also been investigated in great detail. Furthermore, two innovative systems have been developed to simulate the dynamic conditions in industrial foaming processes: one system captures a foaming process under an easily adjustable and uniform extensional strain in a high temperature and pressure environment, while the other achieves the same target, but with shear strain. Using these systems, the extensional and shear effects on bubble nucleation and initial growth processes has been investigated independently in an isolated manner, which has never been achieved previously. The effectiveness of cell nucleating agents has also been evaluated under dynamic conditions, which have led to the identification of new foaming mechanisms based on polymer-chain alignment and generation of microvoids under stress. Knowledge generated from these researches and the wide range of future studies made possible by the visualization systems will be valuable to the development of innovative plastic foaming technologies and foams.
High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode
NASA Astrophysics Data System (ADS)
Wang, Hanyu; Wang, Gongming; Ling, Yichuan; Qian, Fang; Song, Yang; Lu, Xihong; Chen, Shaowei; Tong, Yexiang; Li, Yat
2013-10-01
The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices.The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03487a
Polyimide foam for the thermal insulation and fire protection
NASA Technical Reports Server (NTRS)
Rosser, R. W. (Inventor)
1973-01-01
The preparation of chemically resistant and flame retardant foams from polyfunctional aromatic carboxylic acid derivatives and organic polyisocyanates is outlined. It was found that polyimide foams of reproducible density above 1 lb./ft. and below 6 lbs./cu ft. can be obtained by employing in the reaction of least 2% by weight of siloxane-glycol copolymer as a surfactant which acts as a specific density control agent. Polyimide foams into which reinforcing fibers such as silicon dioxide and carbon fibers may be incorporated were also produced.
Orbital foamed material extruder
NASA Technical Reports Server (NTRS)
Tucker, Dennis S. (Inventor)
2009-01-01
This invention is a process for producing foamed material in space comprising the steps of: rotating the material to simulate the force of gravity; heating the rotating material until it is molten; extruding the rotating, molten material; injecting gas into the extruded, rotating, molten material to produce molten foamed material; allowing the molten foamed material to cool to below melting temperature to produce the foamed material. The surface of the extruded foam may be heated to above melting temperature and allowed to cool to below melting temperature. The extruded foam may also be cut to predetermined length. The starting material may be metal or glass. Heating may be accomplished by electrical heating elements or by solar heating.
Morphing Carbon Nanotube Microstructures
2015-02-20
most fibrous nanoscale aerogels and foams, having n=2-3, which is attributed to 2 low connectivity between the constituent struts 7. When comparing...CNTs incidentally resembles the Young’s moduli of isotropic CNT foams 30, CNT aerogels 31, and Si aerogels 32 which scale as ~ρ3, and commonly...characteristics of ultrahigh surface area single-walled carbon nanotube aerogels . Adv. Funct. Mater. 23, 377-383 (2013). 8. R. M. German, Sintering
Process for making carbon foam
Klett, James W.
2000-01-01
The process obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Zhu, Guoyin; He, Zhi; Chen, Jun; Zhao, Jin; Feng, Xiaomiao; Ma, Yanwen; Fan, Quli; Wang, Lianhui; Huang, Wei
2014-01-21
Carbon nanotube (CNT)-graphene hybrids grown on porous Ni foam are used as substrates to immobilize MnO2 nanoflakes, thus forming three-dimensional (3D) MnO2-CNT-graphene-Ni hybrid foam. The as-prepared hybrid materials could be used as supercapacitor electrodes directly without any binder and conductive additives, and fully maintain the high conductivity and high surface-to-volume ratio of CNTs, large pseudocapacitance of MnO2 nanoflakes and high porosity provided by the framework of Ni foam. The conductivity of the 3D MnO2-CNT-graphene-Ni foam is as high as 117 S cm(-1) due to the seamless integration of MnO2 nanoflakes, CNTs, graphene and Ni foam among the 3D frameworks, which guarantee its low internal resistance (1.25 ohm) when compacted into supercapacitor devices. In aqueous electrolytes, the 3D MnO2-CNT-graphene-Ni based prototype supercapacitors show specific capacitances of ~251 F g(-1) with good cycling stability at a current density of 1.0 A g(-1). In addition, these 3D hybrids also demonstrate their potential in all-solid-state flexible supercapacitors.
Method for extruding pitch based foam
Klett, James W.
2002-01-01
A method and apparatus for extruding pitch based foam is disclosed. The method includes the steps of: forming a viscous pitch foam; passing the precursor through an extrusion tube; and subjecting the precursor in said extrusion tube to a temperature gradient which varies along the length of the extrusion tube to form an extruded carbon foam. The apparatus includes an extrusion tube having a passageway communicatively connected to a chamber in which a viscous pitch foam formed in the chamber paring through the extrusion tube, and a heating mechanism in thermal communication with the tube for heating the viscous pitch foam along the length of the tube in accordance with a predetermined temperature gradient.
Inert Welding/Brazing Gas Filters and Dryers
NASA Technical Reports Server (NTRS)
Goudy, Jerry
2009-01-01
The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heat-flux environments (150 W/sq cm) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading-edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same "pick" location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by the choice of constituents, varying fiber tow sizes and constituent part ratios. This structural concept provides high strength and stiffness at low density 1.06 g/cu cm in panels tested. Varieties of face sheet constructions are possible, including variations in fiber type and weave geometry. The integrated structures possible with this composite could eliminate the need for non-load-bearing thermal protection systems on top of a structural component. The back sheet can readily be integrated to substructures through the incorporation of ribs. This would eliminate weight and cost for aerospace missions.
CO.sub.2 utilization in electrochemical systems
Boxley, Chett; Akash, Akash; Zhao, Qiang
2013-01-22
A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.
Treatment of fly ash for use in concrete
Boxley, Chett [Park City, UT
2012-05-15
A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.
NASA Astrophysics Data System (ADS)
Sun, Yi
Cellular/foam materials found in nature such as bone, wood, and bamboo are usually functionally graded by having a non-uniform density distribution and inhomogenous composition that optimizes their global mechanical performance. Inspired by such naturally engineered products, the current study was conducted towards the development of functionally graded hybrid metal foams (FGHMF) with electrodeposited (ED) nanocrystalline coatings. First, the deformation and failure mechanisms of aluminum/copper (Al/Cu) hybrid foams were investigated using finite element analyses at different scales. The micro-scale behavior was studied based on single ligament models discretized using continuum elements and the macro-scale behavior was investigated using beam-element based finite element models of representative unit volumes consisting of multiple foam cells. With a detailed constitutive material behavior and material failure considered for both the aluminum ligament and the nano-copper coating, the numerical models were able to capture the unique behavior of Al/Cu hybrid foams, such as the typically observed sudden load drop after yielding. The numerical models indicate that such load drop is caused by the fracture of foam ligaments initiated from the rupture of the ED nano-copper coating due to its low ductility. This failure mode jeopardizes the global energy absorption capacity of hybrid foams, especially when a thick coating is applied. With the purpose of enhancing the performance of Al/Cu hybrid foams, an annealing process, which increased the ductility of the nanocrystalline copper coating by causing recovery, recrystallination and grain growth, was introduced in the manufacturing of Al/Cu hybrid foams. Quasi-static experimental results indicate that when a proper amount of annealing is applied, the ductility of the ED copper can be effectively improved and the compressive and tensile behavior of Al/Cu hybrid foams can be significantly enhanced, including better energy absorption capacity. The behavior of Al/Cu hybrid foams under high-strain-rate condition was then investigated using experiments on a split Hopkinson pressure bar. It was found that the ED nano-copper coating can also effectively enhance the energy absorption capacities of aluminum open-cell foams under high strain rate. Similar to the quasi-static behavior, a large stress drop was observed in the compressive response of Al/Cu hybrid foams under high strain rate, which was accompanied by dramatic shattering of material. It is shown that a more ductile behavior and better energy absorption performance under high strain rate condition can be also obtained by introducing an annealing process. Finally, the manufacturing process of Al/Cu hybrid foams was customized to fabricate FGHMF systems with two dimensional property gradients. The performance of these FGHMFs at both quasi-static and dynamic conditions was evaluated. Under quasi-static condition, two flexural type loading conditions were considered, namely, a three point bending condition and a cantilever beam condition. The dynamic behavior of FGHMFs was investigated by conducting drop weight tower tests on a three point bending setup. It was found that the failure mechanism of hybrid metal foams can be modified and the mechanical properties, such as stiffness and strength, and energy absorption capacities of hybrid metal foams can be optimized under both quasi-static and dynamic conditions by introducing strategically designed coating patterns. The presented novel approach and findings in this study provide valuable information on the development of high performance hybrid and functionally-graded cellular materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opachich, Y. P., E-mail: opachiyp@nv.doe.gov; Koch, J. A.; Haugh, M. J.
2016-07-15
A multi-wavelength, high contrast contact radiography system has been developed to characterize density variations in ultra-low density aerogel foams. These foams are used to generate a ramped pressure drive in materials strength experiments at the National Ignition Facility and require precision characterization in order to reduce errors in measurements. The system was used to characterize density variations in carbon and silicon based aerogels to ∼10.3% accuracy with ∼30 μm spatial resolution. The system description, performance, and measurement results collected using a 17.8 mg/cc carbon based JX–6 (C{sub 20}H{sub 30}) aerogel are discussed in this manuscript.
Design of an experiment for the production of a foamed tin sample
NASA Technical Reports Server (NTRS)
Wernimont, E.
1986-01-01
One of the major experiments in the GAS container is concerned with the experimental production of a foamed metal. A foamed metal is one that contains a significant amount of gas bubbles suspended in its solid volume. Purdue's GAS team proposes to do this with the help of a solid zinc carbonate that gives off carbon dioxide at high temperatures. Because of low energy requirements, the metal used for this experiment is tin. It is hoped that the use of near zero environment will keep the suspended bubbles more uniform than in an Earth based process, hence not depleting the physical strength of the material as greatly as is observed on Earth.
Opachich, Y.P.; Koch, J.A.; Haugh, M. J.; ...
2017-07-01
A multi wavelength, high contrast contact radiography system has been developed to characterize density variations in ultra-low density aerogel foams. These foams are used to generate a ramped pressure drive in materials strength experiments at the National Ignition Facility (NIF) and require precision characterization in order to reduce errors in measurements. The system was used to characterize density variations in carbon and silicon based aerogels to ~10.3% accuracy with ~30 μm spatial resolution. The system description, performance and measurement results collected using a 17.8 mg/cc carbon based JX–6 (C 20H 30) aerogel are discussed in this manuscript.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiti, A.; Weisgraber, T. H.; Small, W.
Cellular solids or foams are a very important class of materials with diverse applications ranging from thermal insulation and shock absorbing support cushions, to light-weight structural and floatation components, and constitute crucial components in a large number of industries including automotive, aerospace, electronics, marine, biomedical, packaging, and defense. In many of these applications the foam material is subjected to long periods of continuous stress, which can, over time, lead to a permanent change in structure and a degradation in performance. In this report we summarize our modeling efforts to date on polysiloxane foam materials that form an important component inmore » our systems. Aging of the materials was characterized by two measured quantities, i.e., compression set and load retention. Results of accelerated aging experiments were analyzed by an automated time-temperaturesuperposition (TTS) approach, which creates a master curve that can be used for long-term predictions (over decades) under ambient conditions. When comparing such master curves for traditional (stochastic) foams with those for recently 3D-printed (i.e., additively manufactured, or AM) foams, it became clear that AM foams have superior aging behavior. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material.« less
Constitutive modeling of aluminum foam and finite element implementation for crash simulations
NASA Astrophysics Data System (ADS)
Bi, Jing
In the past decades metallic foams have been increasingly used as filler materials in crashworthiness applications due to their relatively low cost and high capacity of energy absorption. Due to the destructive nature of crashes, studies on the performance of metallic foams using physical testing have been limited to examining the crushing force histories and/or folding patterns that are insufficient for crashworthiness designs. For this reason, numerical simulations, particularly nonlinear finite element (FE) analyses, play an important role in designing crashworthy foam-filled structures. An effective and numerically stable model is needed for modeling metallic foams that are porous and encounter large nonlinear deformations in crashes. In this study a new constitutive model for metallic foams is developed to overcome the deficiency of existing models in commercial FE codes such as LS-DYNA. The new constitutive model accounts for volume changes under hydrostatic compression and combines the hydrostatic pressure and von Mises stress into one yield function. The change of the compressibility of the metallic foam is handled in the constitutive model by allowing for shape changes of the yield surface in the hydrostatic pressure-von Mises stress space. The backward Euler method is adopted to integrate the constitutive equations to achieve numerical accuracy and stability. The new foam model is verified and validated by existing experimental data before used in FE simulations of crushing of foam-filled columns that have square and hexagonal cross-sections.
Lin, Tianquan; Liu, Fengxin; Xu, Feng; Bi, Hui; Du, Yahui; Tang, Yufeng; Huang, Fuqiang
2015-11-18
Flexible/stretchable devices for energy storage are essential for future wearable and flexible electronics. Electrochemical capacitors (ECs) are an important technology for supplement batteries in the energy storage and harvesting field, but they are limited by relatively low energy density. Herein, we report a superelastic foam consisting of few-layer carbon nanowalls made from natural cotton as a good scaffold to growth conductive polymer polyaniline for stretchable, lightweight, and flexible all-solid-state ECs. As-prepared superelastic bulk tubular carbon foam (surface area ∼950 m(2)/g) can withstand >90% repeated compression cycling and support >45,000 times its own weight but no damage. The flexible device has a high specific capacitance of 510 F g(-1), a specific energy of 25.5 Wh kg(-1) and a power density of 28.5 kW kg(-1) in weight of the total electrode materials and withstands 5,000 charging/discharging cycles.
Development of highly open polyhedral networks from vitreous carbon for orthopaedic applications
NASA Astrophysics Data System (ADS)
Güiza-Argüello, V.; Bayona-Becerra, M.; Cruz-Orellana, S.; Córdoba-Tuta, E.
2017-01-01
Highly open polyhedral networks were fabricated using an economical and environmentally friendly template route. Recycled cellulose foams were impregnated with a sucrose resin and then pyrolyzed in order to produce reticulated vitreous carbon foams with morphological features that closely resemble trabecular bone. Also, cell sizes ~1mm were achieved, a trait that will allow the mechanical reinforcement of such scaffolds using a biomaterial coating without compromising the pore size that favors osteoblast cell infiltration and growth (200-500µm). Moreover, initial studies showed that carbonization conditions have an effect on the mechanical properties of the synthesized foams and, therefore, such process parameters could be further evaluated towards the enhancement of the mechanical resistance of the scaffolds. The materials developed here are visualized as the porous component of a synthetic bone graft with features that could help overcome the current limitations associated with the medical treatments used for bone defect repair.
Gualandi, Chiara; White, Lisa J; Chen, Liu; Gross, Richard A; Shakesheff, Kevin M; Howdle, Steven M; Scandola, Mariastella
2010-01-01
Porous scaffolds of a random co-polymer of omega-pentadecalactone (PDL) and epsilon-caprolactone (CL) (poly(PDL-CL)), synthesized by biocatalysis, were fabricated by supercritical carbon dioxide (scCO(2)) foaming. The co-polymer, containing 31 mol.% CL units, is highly crystalline (T(m) = 82 degrees C, DeltaH(m) = 105 J g(-1)) thanks to the ability of the two monomer units to co-crystallize. The co-polymer can be successfully foamed upon homogeneous absorption of scCO(2) at T > T(m). The effect of soaking time, depressurization rate and cooling rate on scaffold porosity, pore size distribution and pore interconnectivity was investigated by micro X-ray computed tomography. Scaffolds with a porosity in the range 42-76% and an average pore size of 100-375 microm were successfully obtained by adjusting the main foaming parameters. Process conditions in the range investigated did not affect the degree of crystallinity of poly(PDL-CL) scaffolds. A preliminary study of the mechanical properties of the scaffolds revealed that poly(PDL-CL) foams may find application in the regeneration of cartilage tissue.
Analysis of Stainless Steel Sandwich Panels with a Metal Foam Care for Lightweight Fan Blade Design
NASA Technical Reports Server (NTRS)
Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.
2004-01-01
The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. Traditionally, these components have been fabricated using expensive materials such as light weight titanium alloys, polymeric composite materials and carbon-carbon composites. The present study investigates the use of P sandwich foam fan blade made up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The stiffness of the sandwich structure is increased by separating the two face sheets by a foam core. The resulting structure possesses a high stiffness while being lighter than a similar solid construction. Since the face sheets carry the applied bending loads, the sandwich architecture is a viable engineering concept. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of the sandwich structure for a fan blade application. A vibration analysis for natural frequencies and P detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of skin thickness and core volume %re presented with a comparison to a solid titanium blade.
Optimum hot electron production with low-density foams for laser fusion by fast ignition.
Lei, A L; Tanaka, K A; Kodama, R; Kumar, G R; Nagai, K; Norimatsu, T; Yabuuchi, T; Mima, K
2006-06-30
We propose a foam cone-in-shell target design aiming at optimum hot electron production for the fast ignition. A thin low-density foam is proposed to cover the inner tip of a gold cone inserted in a fuel shell. An intense laser is then focused on the foam to generate hot electrons for the fast ignition. Element experiments demonstrate increased laser energy coupling efficiency into hot electrons without increasing the electron temperature and beam divergence with foam coated targets in comparison with solid targets. This may enhance the laser energy deposition in the compressed fuel plasma.
Multifunctional Carbon Foams for Aerospace Applications
NASA Technical Reports Server (NTRS)
Rogers, D. K.; Plucinski, J.
2001-01-01
Carbon foams produced by the controlled thermal decomposition of inexpensive coal extracts exhibit a combination of structural and thermal properties that make them attractive for aerospace applications. Their thermal conductivity can be tailored between 0.5 and 100 W/mK through precursor selection/modification and heat treatment conditions; thus, they can serve in either thermal protection or heat transfer systems such as heat exchangers. Because their structure is essentially a 3D random network of graphite-like members, they also can be considered low-cost, easily fabricated replacements for multi-directional structural carbon fiber preforms. Strengths of over 4000 psi in compression are common. Their density can be designed between 0.1 and 0.8 g/cc, and they can be impregnated with a variety of matrices or used, unfilled, in sandwich structures. These foams also exhibit intriguing electrochemical properties that offer potential in high-efficiency fuel cell and battery applications, mandrels and tooling for composite manufacture, ablative performance, and fire resistance. This paper presents the results of research conducted under NASA SBIR Topic 99.04.01, General Aviation Technology, supported from Langley Research Center. The potential of foam design through precursor selection, cell size and density control, density grading, and heat treatment is demonstrated.
Properties of rigid polyurethane foams filled with glass microspheres
NASA Astrophysics Data System (ADS)
Yakushin, V.; Bel'kova, L.; Sevastyanova, I.
2012-11-01
The effect of hollow glass microspheres with a density of 125 kg/m3 on the properties of low-density (54-90 kg/m3) rigid polyurethane foams is investigated. The thermal expansion coefficient of the foams and their properties in tension and compression in relation to the content of the microspheres (0.5-5 wt.%) are determined. An increase in the characteristics of the material in compression in the foam rise direction with increasing content of filler is revealed. The limiting content of the microspheres above which the mechanical characteristics of the filled foams begin to decrease is found. The distribution of the microspheres in elements of the cellular structure of the polyurethane foams is examined.
NASA Astrophysics Data System (ADS)
Yang, Xiangwen; Lin, Zhixing; Zheng, Jingxu; Huang, Yingjuan; Chen, Bin; Mai, Yiyong; Feng, Xinliang
2016-04-01
This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window.This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window. Electronic supplementary information (ESI) available: ESI figures. See DOI: 10.1039/c6nr00468g
Properties of Syntactic Foam for Simulation of Mechanical Insults.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbard, Neal Benson; Haulenbeek, Kimberly K.; Spletzer, Matthew A.
Syntactic foam encapsulation protects sensitive components. The energy mitigated by the foam is calculated with numerical simulations. The properties of a syntactic foam consisting of a mixture of an epoxy-rubber adduct and glass microballoons are obtained from published literature and test results. The conditions and outcomes of the tests are discussed. The method for converting published properties and test results to input for finite element models is described. Simulations of the test conditions are performed to validate the inputs.
Mu, Xuemei; Du, Jingwei; Zhang, Yaxiong; Liang, Zhilin; Wang, Huan; Huang, Baoyu; Zhou, Jinyuan; Pan, Xiaojun; Zhang, Zhenxing; Xie, Erqing
2017-10-18
Rationally designed conductive hierarchical nanostructures are highly desirable for supporting pseudocapacitive materials to achieve high-performance electrodes for supercapacitors. Herein, manganese molybdate nanosheets were hydrothermally grown with graphene oxide (GO) on three-dimensional nickel foam-supported carbon nanotube structures. Under the optimal graphene oxide concentration, the obtained carbon nanotubes/reduced graphene oxide/MnMoO 4 composites (CNT/rGO/MnMoO 4 ) as binder-free supercapacitor cathodes perform with a high specific capacitance of 2374.9 F g -1 at the scan rate of 2 mV s -1 and good long-term stability (97.1% of the initial specific capacitance can be maintained after 3000 charge/discharge cycles). The asymmetric device with CNT/rGO/MnMoO 4 as the cathode electrode and the carbon nanotubes/activated carbon on nickel foam (CNT-AC) as the anode electrode can deliver an energy density of 59.4 Wh kg -1 at the power density of 1367.9 W kg -1 . These superior performances can be attributed to the synergistic effects from each component of the composite electrodes: highly pseudocapacitive MnMoO 4 nanosheets and three-dimensional conductive Ni foam/CNTs/rGO networks. These results suggest that the fabricated asymmetric supercapacitor can be a promising candidate for energy storage devices.
Cho, Yi Je; Lee, Wookjin; Park, Yong Ho
2017-01-01
The elastoplastic deformation behaviors of hollow glass microspheres/iron syntactic foam under tension were modeled using a representative volume element (RVE) approach. The three-dimensional microstructures of the iron syntactic foam with 5 wt % glass microspheres were reconstructed using the random sequential adsorption algorithm. The constitutive behavior of the elastoplasticity in the iron matrix and the elastic-brittle failure for the glass microsphere were simulated in the models. An appropriate RVE size was statistically determined by evaluating elastic modulus, Poisson’s ratio, and yield strength in terms of model sizes and boundary conditions. The model was validated by the agreement with experimental findings. The tensile deformation mechanism of the syntactic foam considering the fracture of the microspheres was then investigated. In addition, the feasibility of introducing the interfacial deboning behavior to the proposed model was briefly investigated to improve the accuracy in depicting fracture behaviors of the syntactic foam. It is thought that the modeling techniques and the model itself have major potential for applications not only in the study of hollow glass microspheres/iron syntactic foams, but also for the design of composites with a high modulus matrix and high strength reinforcement. PMID:29048346
Bio-based Polymer Foam from Soyoil
NASA Astrophysics Data System (ADS)
Bonnaillie, Laetitia M.; Wool, Richard P.
2006-03-01
The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.
NASA Astrophysics Data System (ADS)
Pham, Tung Ngoc; Samikannu, Ajaikumar; Kukkola, Jarmo; Rautio, Anne-Riikka; Pitkänen, Olli; Dombovari, Aron; Lorite, Gabriela Simone; Sipola, Teemu; Toth, Geza; Mohl, Melinda; Mikkola, Jyri-Pekka; Kordas, Krisztian
2014-11-01
In the present work electrically conductive, flexible, lightweight carbon sponge materials derived from open-pore structure melamine foams are studied and explored. Hydrophobic and hydrophilic surface properties - depending on the chosen treatment conditions - allow the separation and storage of liquid chemical compounds. Activation of the carbonaceous structures substantially increases the specific surface area from ~4 m2g-1 to ~345 m2g-1, while retaining the original three-dimensional, open-pore structure suitable for hosting, for example, Ni catalyst nanoparticles. In turn the structure is rendered suitable for hydrogenating acetone to 2-propanol and methyl isobutyl ketone as well for growing hierarchical carbon nanotube structures used as electric double-layer capacitor electrodes with specific capacitance of ~40 F/g. Mechanical stress-strain analysis indicates the materials are super-compressible (>70% volume reduction) and viscoelastic with excellent damping behavior (loss of 0.69 +/- 0.07), while piezoresistive measurements show very high gauge factors (from ~20 to 50) over a large range of deformations. The cost-effective, robust and scalable synthesis - in conjunction with their fascinating multifunctional utility - makes the demonstrated carbon foams remarkable competitors with other three-dimensional carbon materials typically based on pyrolyzed biopolymers or on covalently bonded graphene and carbon nanotube frameworks.
Pham, Tung Ngoc; Samikannu, Ajaikumar; Kukkola, Jarmo; Rautio, Anne-Riikka; Pitkänen, Olli; Dombovari, Aron; Lorite, Gabriela Simone; Sipola, Teemu; Toth, Geza; Mohl, Melinda; Mikkola, Jyri-Pekka; Kordas, Krisztian
2014-11-06
In the present work electrically conductive, flexible, lightweight carbon sponge materials derived from open-pore structure melamine foams are studied and explored. Hydrophobic and hydrophilic surface properties - depending on the chosen treatment conditions - allow the separation and storage of liquid chemical compounds. Activation of the carbonaceous structures substantially increases the specific surface area from ~4 m(2)g(-1) to ~345 m(2)g(-1), while retaining the original three-dimensional, open-pore structure suitable for hosting, for example, Ni catalyst nanoparticles. In turn the structure is rendered suitable for hydrogenating acetone to 2-propanol and methyl isobutyl ketone as well for growing hierarchical carbon nanotube structures used as electric double-layer capacitor electrodes with specific capacitance of ~40 F/g. Mechanical stress-strain analysis indicates the materials are super-compressible (>70% volume reduction) and viscoelastic with excellent damping behavior (loss of 0.69 ± 0.07), while piezoresistive measurements show very high gauge factors (from ~20 to 50) over a large range of deformations. The cost-effective, robust and scalable synthesis - in conjunction with their fascinating multifunctional utility - makes the demonstrated carbon foams remarkable competitors with other three-dimensional carbon materials typically based on pyrolyzed biopolymers or on covalently bonded graphene and carbon nanotube frameworks.
NASA Astrophysics Data System (ADS)
Mirbagheri, S. M. H.; Vali, H.; Soltani, H.
2017-01-01
In this investigation, aluminum-silicon alloy foam is developed by adding certain amounts of copper and calcium elements in A356 alloy. Addition of 4 wt.%Cu + 2 wt.%Ca to the melt changed bubbles morphology from ellipsoid to spherical by decreasing Reynolds number and increasing Bond number. Compression behavior and energy absorption of the foams are assessed before and after aging. Solid solution treatment and aging lead to the best mechanical properties with 170% enhancement in yield strength and 185% improvement in energy absorption capacity as compared to non-heat-treated foams. The metallographic observations showed that bubbles geometry and structure in the A356 + 4wt.% Cu + 2 wt.%Ca foam are more homogeneous than the A356 foam.
Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation
NASA Technical Reports Server (NTRS)
Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip
2006-01-01
The Space Shuttle External Tank is covered with rigid polymeric closed-cell foam insulation to prevent ice formation, protect the metallic tank from aerodynamic heating, and control the breakup of the tank during re-entry. The cryogenic state of the tank, as well as the ascent into a vacuum environment, places this foam under significant stress. Because the loss of the foam during ascent poses a critical risk to the shuttle orbiter, there is much interest in understanding the stress state in the foam insulation and how it may contribute to fracture and debris loss. Several foam applications on the external tank have been analyzed using finite element methods. This presentation describes the approach used to model the foam material behavior and compares analytical results to experiments.
Preparation of Three-Dimensional Graphene Foams Using Powder Metallurgy Templates.
Sha, Junwei; Gao, Caitian; Lee, Seoung-Ki; Li, Yilun; Zhao, Naiqin; Tour, James M
2016-01-26
A simple and scalable method which combines traditional powder metallurgy and chemical vapor deposition is developed for the synthesis of mesoporous free-standing 3D graphene foams. The powder metallurgy templates for 3D graphene foams (PMT-GFs) consist of particle-like carbon shells which are connected by multilayered graphene that shows high specific surface area (1080 m(2) g(-1)), good crystallization, good electrical conductivity (13.8 S cm(-1)), and a mechanically robust structure. The PMT-GFs did not break under direct flushing with DI water, and they were able to recover after being compressed. These properties indicate promising applications of PMT-GFs for fields requiring 3D carbon frameworks such as in energy-based electrodes and mechanical dampening.
The influence of low dose neutron irradiation on the thermal conductivity of Allcomp carbon foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchell, Timothy D.; Porter, Wallace D.; McDuffee, Joel Lee
Oak Ridge National Laboratory was contracted via a Work for Others Agreement with Allcomp Inc. (NFE-14-05011-MSOF: Carbon Foam for Beam Stop Applications ) to determine the influence of low irradiation dose on the thermal conductivity of Allcomp Carbon Foam. Samples (6 mm dia. x 5 mm thick) were successfully irradiated in a rabbit capsule in a hydraulic tube in the target region of the High Flux Isotope Reactor at the Oak Ridge National Laboratory. The specimens were irradiated at T irr = 747.5 C to a neutron damage dose of 0.2 dpa. There is a small dimensional and volume shrinkagemore » and the mass and density appear reduced (we would expect density to increase as volume reduces at constant mass). The small changes in density, dimensions or volume are not of concern. At 0.2 dpa the irradiation shrinkage rate difference between the glassy carbon skeleton and the CVD coating was not sufficient to cause a large enough irradiation-induced strain to create any mechanical degradation. Similarly differential thermal expansion was not a problem. It appears that only the thermal conductivity was affected by 0.2 dpa. For the intended application conditions, i.e. @ 400 C and 0 DPA (start- up) the foam thermal conductivity is about 57 W/m.K and at 700 C and 0.2 DPA (end of life) the foam thermal conductivity is approx. 30.7 W/m.K. The room temp thermal conductivity drops from 100-120 W/m.K to approximately 30 W/m.K after 0.2 dpa of neutron irradiation.« less
NASA Technical Reports Server (NTRS)
Wingard, Doug
2006-01-01
During the Space Shuttle Columbia Accident Investigation, it was determined that a large chunk of polyurethane insulating foam (= 1.67 lbs) on the External Tank (ET) came loose during Columbia's ascent on 2-1-03. The foam piece struck some of the protective Reinforced Carbon-Carbon (RCC) panels on the leading edge of Columbia's left wing in the mid-wing area. This impact damaged Columbia to the extent that upon re-entry to Earth, superheGed air approaching 3,000 F caused the vehicle to break up, killing all seven astronauts on board. A paper after the Columbia Accident Investigation highlighted thermal analysis testing performed on External Tank TPS materials (1). These materials included BX-250 (now BX-265) rigid polyurethane foam and SLA-561 Super Lightweight Ablator (highly-filled silicone rubber). The large chunk of foam from Columbia originated fiom the left bipod ramp of the ET. The foam in this ramp area was hand-sprayed over the SLA material and various fittings, allowed to dry, and manually shaved into a ramp shape. In Return-to-Flight (RTF) efforts following Columbia, the decision was made to remove the foam in the bipod ramp areas. During RTF efforts, further thermal analysis testing was performed on BX-265 foam by DSC and DMA. Flat panels of foam about 2-in. thick were sprayed on ET tank material (aluminum alloys). The DSC testing showed that foam material very close to the metal substrate cured more slowly than bulk foam material. All of the foam used on the ET is considered fully cured about 21 days after it is sprayed. The RTF culminated in the successful launch of Space Shuttle Discovery on 7-26-05. Although the flight was a success, there was another serious incident of foam loss fiom the ET during Shuttle ascent. This time, a rather large chunk of BX-265 foam (= 0.9 lbs) came loose from the liquid hydrogen (LH2) PAL ramp, although the foam did not strike the Shuttle Orbiter containing the crew. DMA testing was performed on foam samples taken fiom a simulated PAL ramp panel. It was found that the smooth rind on the foam facing the cable tray did significantly affect the properties of foam at the PAL ramp surface. The smooth rind increased the storage modulus E' of the foam as much as 20- 40% over a temperature range of -145 to 95 C. Because of foam loss fiom the PAL ramp, future Shuttle flights were grounded indefinitely to allow further testing to better understand foam properties. The decision was also made to remove foam from the LH2 PAL, ramp. Other RTF efforts prior to the launch of Discovery included
Modeling of Compositional Effects of Foam Assisted CO2 Storage Processes
NASA Astrophysics Data System (ADS)
Naderi Beni, A.; Varavei, A.; Farajzadeh, R.; Delshad, M.
2012-12-01
Foaming of carbon dioxide (CO2, e.g. from fossil-fuel power plants) has been proposed as a possible strategy to resolve the limitations of direct disposal of CO2 into (saline) aquifers. Such limitations include gravity segregation that may damage the caprock and aquifer rock property alteration as a result of geochemical interactions. Foam may also block the CO2 leakage paths, resulting in an overall storage security enhancement. In this regard, specific aspects of composition and type of gas (N2 vs. CO2) may affect the foaming properties of gas-surfactant systems. The aim of this study is to determine these effects on the foaming properties of gas-surfactant solutions. To this end, we study the physics of foam assisted CO2 storage by modeling coreflood experiments. Different options such as simplified population balance foam model and a table-look-up approach were used to couple the fluid flow and mass transport equations in a reservoir simulator. Both laboratory and numerical results show that three regions along the flow direction can be distinguished: (i) an upstream region characterized by low liquid saturation, (ii) a region downstream of the foam front where the liquid saturation is still unchanged with a value of one and (iii) a frontal region characterized by a mixing of flowing foam and liquid, exhibiting fine fingering effects. It is also shown that the extent of the fingering behavior caused by the rock heterogeneity depends on foam strength. Additionally, permeation of gas through foam films is a strong function of water salinity and appears to have significant impact on foam in CO2 storage. It further turns out that the amount of dissolved CO2 in brine can be considerable and, therefore, the effect of water solubility cannot be neglected in simulation studies. In summary, the differences in the foaming behavior of nitrogen and carbon dioxide can be explained by the differences in their physical properties of solubility in water, interfacial tension, pH effect, and wettability. Among which solubility seems to be the most critical one because (1) the amount of available CO2 for foaming will be lower due to its higher dissolution compared to N2 at similar conditions and (2) it significantly affects gas permeability coefficient and thus the foam stability.
2014-01-01
The work focuses on research related to determination of application possibility of new, ecofriendly boroorganic polyols in rigid polyurethane foams production. Polyols were obtained from hydroxypropyl urea derivatives esterified with boric acid and propylene carbonate. The influence of esterification type on properties of polyols and next on polyurethane foams properties was determined. Nitrogen and boron impacts on the foams' properties were discussed, for instance, on their physical, mechanical, and electric properties. Boron presence causes improvement of dimensional stability and thermal stability of polyurethane foams. They can be applied even at temperature 150°C. Unfortunately, introducing boron in polyurethanes foams affects deterioration of their water absorption, which increases as compared to the foams that do not contain boron. However, presence of both boron and nitrogen determines the decrease of the foams combustibility. Main impact on the decrease combustibility of the obtained foams has nitrogen presence, but in case of proper boron and nitrogen ratio their synergic activity on the combustibility decrease can be easily seen. PMID:24587721
Carbon Dioxide and Nitrogen Infused Compressed Air Foam for Depopulation of Caged Laying Hens.
Gurung, Shailesh; White, Dima; Archer, Gregory; Styles, Darrel; Zhao, Dan; Farnell, Yuhua; Byrd, James; Farnell, Morgan
2018-01-03
Depopulation of infected poultry flocks is a key strategy to control and contain reportable diseases. Water-based foam, carbon dioxide inhalation, and ventilation shutdown are depopulation methods available to the poultry industry. Unfortunately, these methods have limited usage in caged layer hen operations. Personnel safety and welfare of birds are equally important factors to consider during emergency depopulation procedures. We have previously reported that compressed air foam (CAF) is an alternative method for depopulation of caged layer hens. We hypothesized that infusion of gases, such as carbon dioxide (CO₂) and nitrogen (N₂), into the CAF would reduce physiological stress and shorten time to cessation of movement. The study had six treatments, namely a negative control, CO₂ inhalation, N₂ inhalation, CAF with air (CAF Air), CAF with 50% CO₂ (CAF CO₂), and CAF with 100% N₂ (CAF N₂). Four spent hens were randomly assigned to one of these treatments on each of the eight replication days. A total of 192 spent hens were used in this study. Serum corticosterone and serotonin levels were measured and compared between treatments. Time to cessation of movement of spent hens was determined using accelerometers. The addition of CO₂ in CAF significantly reduced the foam quality while the addition of N₂ did not. The corticosterone and serotonin levels of spent hens subjected to foam (CAF, CAF CO₂, CAF N₂) and gas inhalation (CO₂, N₂) treatments did not differ significantly. The time to cessation of movement of spent hens in the CAF N₂ treatment was significantly shorter than CAF and CAF CO₂ treatments but longer than the gas inhalation treatments. These data suggest that the addition of N₂ is advantageous in terms of shortening time to death and improved foam quality as compared to the CAF CO₂ treatment.
Composite panels based on woven sandwich-fabric preforms
NASA Astrophysics Data System (ADS)
van Vuure, Aart Willem
A new type of sandwich material was investigated, based on woven sandwich-fabric preforms. Because of the integrally woven nature of the sandwich-fabric the skin-core debonding resistance of panels and structures based on the preform is very high. As the sandwich-fabrics are produced by a large scale textile weaving process (velvet weaving or distance weaving) and already a preform of a sandwich is available, the cost of the final panel or structure can potentially stay limited. Most attention in this work is focussed on the mechanical performance of sandwich-fabric panels. The high skin-core debonding resistance was verified and also indications were found of a good damage tolerance. Both unfoamed and foamed panels were evaluated and compared with existing sandwich panels. Microstructural parameters investigated for unfoamed cores are pile length, pile density, woven pile angles, degree of pile stretching, tilt angles of the piles induced during panel production and resin content and distribution. For foamed panels it is especially the foam density which has an important influence. There appears to be a synergistic effect between piles and foam in the sandwich core, leading to very acceptable mechanical properties. For panels for (semi) structural applications, foaming is almost indispensable once the panel thickness is higher than about 15 mm. To understand the behaviour of foamed panels, attention was paid to the modelling of the mechanics of pure foam. The foam microstructure was modelled with the model of an anisotropic tetrakaidecahedron. The mechanical properties of unfoamed panels were modelled with the help of finite elements. A detailed geometrical description of the core layout was made which was incorporated into a preprocessing program for a finite element code. Attention is paid to the production of panels based on the woven preforms. A newly developed Adhesive Foil Stretching process was investigated. Also the foaming of panels was studied. A lot of attention was paid to a special application in the field of structural damping, where sandwich-fabric panels could be used as spacer in a constrained layer application. The vibrations and damping were modelled with the help of finite elements.
NASA Astrophysics Data System (ADS)
Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein
2018-05-01
The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.
NASA Astrophysics Data System (ADS)
Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein
2018-04-01
The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.
NASA Astrophysics Data System (ADS)
Yang, Chenguang; Xing, Zhe; Zhang, Mingxing; Zhao, Quan; Wang, Mouhua; Wu, Guozhong
2017-12-01
A blend of isotactic polypropylene (PP) with high-density polyethylene (HDPE) in different PP/HDPE ratios was irradiated by γ-ray to induce cross-linking and then foamed using supercritical carbon dioxide (scCO2) as a blowing agent. Radiation effect on the melting point and crystallinity were analyzed in detail. The average cell diameter and cell density were compared for PP/HDPE foams prepared under different conditions. The optimum absorbed dose for the scCO2 foaming of PP/HDPE in terms of foaming ability and cell structure was 20 kGy. Tensile measurements showed that the elongation at break and tensile strength at break of the crosslinked PP/HDPE foams were higher than the non-crosslinked ones. Of particular interest was the increase in the foaming temperature window from 4 ℃ for pristine PP to 8-12 ℃ for the radiation crosslinked PP/HDPE blends. This implies much easier handling of scCO2 foaming of crosslinked PP with the addition of HDPE.
NASA Astrophysics Data System (ADS)
Shakir, Amira Shakim Abdul; Badri, Khairiah Haji; Hua, Chia Chin
2016-11-01
An environmental-friendly blowing agent has been used to fabricate flexible polyurethane (PU) foam. Polyurethane foam was prepared from palm kernel oil-based monoester polyol (PKO-p) via prepolymerization method. Acetone has been used as solvent in this study. The developed polyurethane foam was characterized using tensile, differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TGA), optical microscope and drop shape analyzer. The mechanical properties of the PU-reference (PU-R) and PU-NaHCO3 foam was analyzed by tensile using ASTM D 3574-01. From the results, the elongation of PU- NaHCO3 shows reduction to 26.3 % compared to PU-R. The DSC showed two glass transition temperatures in all samples that belonged to the PU-R and PU-NaHCO3. TGA revealed that the incorporation of sodium hydrogen carbonate into the PU system did not show significant difference as compared to the control PU. The morphology of both PU was investigated using optical microscope. Contact angle has been measured to determine the hydrophobicity of the PU. The PU- NaHCO3 exhibited an increase in contact angle (93.1°).
NASA Technical Reports Server (NTRS)
Rodriquez, Branelle; Graf, John; Carlile, Christie; Young, GIna
2012-01-01
The National Aeronautics and Space Administration (NASA) is developing a Fine Water Mist (FWM) Portable Fire Extinguisher (PFE) for use on the International Space Station (ISS). The ISS presently uses two different types of fire extinguishers: a water foam extinguisher in the Russian Segment, and a carbon dioxide extinguisher in the United States Orbital Segments, which include Columbus and Kibo pressurized elements. Currently, there are operational concerns with the emergency breathing equipment and the carbon dioxide extinguisher. The toxicity of the carbon dioxide requires the crew members to have an oxygen supply present during a fire event, therefore inherently creating an unsafe environment. The FWM PFE extinguishes a fire without creating a hazardous breathing environment for crew members. The following paper will discuss the unique functional and performance requirements that have been levied on the FWM PFE, identify unique microgravity design considerations for liquid and gas systems, as well as discuss the NASA ISS specific fire standards that were developed to establish an acceptable portable fire extinguisher s performance.
Compressive Properties of Open-Cell Al Hybrid Foams at Different Temperatures
Liu, Jiaan; Si, Fujian; Zhu, Xianyong; Liu, Yaohui; Zhang, Jiawei; Liu, Yan; Zhang, Chengchun
2017-01-01
Hybrid Ni/Al foams were fabricated by depositing electroless Ni–P (EN) coatings on open-cell Al foam substrate to obtain enhanced mechanical properties. The microstructure, chemical components and phases of the hybrid foams were observed and analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The mechanical properties of the foams were studied by compressive tests at different temperatures. The experiment results show that the coating is mainly composed of Ni and P elements. There was neither defect at the interface nor crack in the coatings, indicating that the EN coatings had fine adhesion to the Al substrate. The compressive strengths and energy absorption capacities of the as-received foam and hybrid foams decrease with the increasing testing temperatures, but the hybrid foams exhibit a lower decrement rate than the as-received foam. This might be attributed to the different failure mechanisms at different testing temperatures, which is conformed by fractography observation. PMID:28772456
Song, Qiang; Ye, Fang; Yin, Xiaowei; Li, Wei; Li, Hejun; Liu, Yongsheng; Li, Kezhi; Xie, Keyu; Li, Xuanhua; Fu, Qiangang; Cheng, Laifei; Zhang, Litong; Wei, Bingqing
2017-08-01
Materials with an ultralow density and ultrahigh electromagnetic-interference (EMI)-shielding performance are highly desirable in fields of aerospace, portable electronics, and so on. Theoretical work predicts that 3D carbon nanotube (CNT)/graphene hybrids are one of the most promising lightweight EMI shielding materials, owing to their unique nanostructures and extraordinary electronic properties. Herein, for the first time, a lightweight, flexible, and conductive CNT-multilayered graphene edge plane (MLGEP) core-shell hybrid foam is fabricated using chemical vapor deposition. MLGEPs are seamlessly grown on the CNTs, and the hybrid foam exhibits excellent EMI shielding effectiveness which exceeds 38.4 or 47.5 dB in X-band at 1.6 mm, while the density is merely 0.0058 or 0.0089 g cm -3 , respectively, which far surpasses the best values of reported carbon-based composite materials. The grafted MLGEPs on CNTs can obviously enhance the penetration losses of microwaves in foams, leading to a greatly improved EMI shielding performance. In addition, the CNT-MLGEP hybrids also exhibit a great potential as nano-reinforcements for fabricating high-strength polymer-based composites. The results provide an alternative approach to fully explore the potentials of CNT and graphene, for developing advanced multifunctional materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.
Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented intomore » SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.« less
Modeling for Ultrasonic Health Monitoring of Foams with Embedded Sensors
NASA Technical Reports Server (NTRS)
Wang, L.; Rokhlin, S. I.; Rokhlin, Stanislav, I.
2005-01-01
In this report analytical and numerical methods are proposed to estimate the effective elastic properties of regular and random open-cell foams. The methods are based on the principle of minimum energy and on structural beam models. The analytical solutions are obtained using symbolic processing software. The microstructure of the random foam is simulated using Voronoi tessellation together with a rate-dependent random close-packing algorithm. The statistics of the geometrical properties of random foams corresponding to different packing fractions have been studied. The effects of the packing fraction on elastic properties of the foams have been investigated by decomposing the compliance into bending and axial compliance components. It is shown that the bending compliance increases and the axial compliance decreases when the packing fraction increases. Keywords: Foam; Elastic properties; Finite element; Randomness
NASA Astrophysics Data System (ADS)
Kumar, Rajeev; Kumari, Saroj; Mathur, Rakesh B.; Dhakate, Sanjay R.
2015-01-01
In the present study, nanostructuring effect of multi-walled carbon nanotubes (MWCNTs) on electrochemical properties of coal tar pitch (CTP) based carbon foam (CFoam) was investigated. The different weight fractions of MWCNTs were mixed with CTP and foam was developed from the mixture of CTP and MWCNTs by sacrificial template technique and heat treated at 1,400 and 2,500 °C in inert atmosphere. These foams were characterized by scanning electron microscopy, X-ray diffraction, and potentiostat PARSTAT for cyclic voltammetry. It was observed that, bulk density of CFoam increases with increasing MWCNTs content and decreases after certain amount. The MWCNTs influence the morphology of CFoam and increase the width of ligaments as well as surface area. During the heat treatment, stresses exerting at MWCNTs/carbon interface accelerate ordering of the graphene layer which have positive effect on the electrochemical properties of CFoam. The current density increases from 475 to 675 mA/cm2 of 1,400 °C heat treated and 95 to 210 mA/cm2 of 2,500 °C heat-treated CFoam with 1 wt% MWCNTs. The specific capacitance was decreases with increasing the scan rate from 100 to 1,000 mV/s. In case of 1 % MWCNTs content CFoam the specific capacitance at the scan rate 100 mV/s was increased from 850 to 1,250 μF/cm2 and 48 to 340 μF/cm2 of CFoam heat treated at 1,400 °C and 2,500 °C respectively. Thus, the higher value surface area and current density of MWCNTs-incorporated CFoam heat treated to 1,400 °C can be suitable for lead acid battery electrode with improved charging capability.
Reticulated vitreous carbon: a useful material for cell adhesion and tissue invasion.
Pec, M K; Reyes, R; Sánchez, E; Carballar, D; Delgado, A; Santamaría, J; Arruebo, M; Evora, C
2010-10-06
Diverse carbon materials have been used for tissue engineering and clinical implant applications with varying success. In this study, commercially available reticulated vitreous carbon (RVC) foams were tested in vitro and in vivo for compatibility with primary cell adhesion and tissue repair. Pores sizes were determined as 279 ± 98 μm. No hydroxyapatite deposition was detected after immersion of the foams in simulated body fluid. Nonetheless, RVC provided an excellent support for adhesion of mesenchymal stem cells (MSCs) as well as primary chondrocytes without any surface pre-treatment. Live cell quantification revealed neutral behaviour of the material with plastic adhered chondrocytes but moderate cytotoxicity with MSCs. Yet, rabbit implanted foams exhibited good integration in subcutaneous pockets and most importantly, total defect repair in bone. Probably due to the stiffness of the material, incompatibility with cartilage regeneration was found. Interestingly and in contrast to several other carbon materials, we observed a total lack of foreign body reactions. Our results and its outstanding porous interconnectivity and availability within a wide range of pore sizes convert RVC into an attractive candidate for tissue engineering applications in a variety of bone models and for ex vivo cell expansion for regenerative medical applications.
Novel Sessile Drop Software for Quantitative Estimation of Slag Foaming in Carbon/Slag Interactions
NASA Astrophysics Data System (ADS)
Khanna, Rita; Rahman, Mahfuzur; Leow, Richard; Sahajwalla, Veena
2007-08-01
Novel video-processing software has been developed for the sessile drop technique for a rapid and quantitative estimation of slag foaming. The data processing was carried out in two stages: the first stage involved the initial transformation of digital video/audio signals into a format compatible with computing software, and the second stage involved the computation of slag droplet volume and area of contact in a chosen video frame. Experimental results are presented on slag foaming from synthetic graphite/slag system at 1550 °C. This technique can be used for determining the extent and stability of foam as a function of time.
2014-03-01
4.31. Thermal conductivity of CNT/Carbon foam substrate 4.4.3.3 Post-growth Nickel Coating Plating CNTs/carbon foam samples with nickel provides a...will be necessary to conduct large scale synthesis of textured Ca-Co-O on the amorphous- buffered n-type oxide substrate using sol-gel spin- coating and... Conductors and Thermal Science Evan L. Thomas, Qiuhong N. Zhang, Helen Shen, Serhiy N. Leontsev, John P. Murphy, Jack L. Burke, Lyle Brunke, and
Nugroho, Aris W; Leadbeater, Garry; Davies, Ian J
2010-12-01
The authors have conducted a preliminary investigation with regard to the potential to manufacture porous titanium alloys for biomedical applications using toxic-free elemental powders, i.e., Ti, Nb, Ta, Zr, in combination with the pressurised gas bubble entrapment method and in contrast to standard processing routes that generally utilise prealloyed powder containing potentially toxic elements. Elemental powder compacts were either hot isostatic pressed (HIP-ed) at 1000°C and then foamed at 1150°C or else HIP-ed at 1100°C and foamed at 1350°C. Porous α + β alloys containing up to 45 vol% of porosity in the size range 20-200 μm were successfully produced, thus highlighting the potential of this manufacturing route. It was expected that further optimisation of the processing route would allow full development of the preferred β-Ti phase (from the point of view of elastic modulus compatibility between implant and bone) with this being the subject of future work by the authors.
Kemp, Belinda; Condé, Bruna; Jégou, Sandrine; Howell, Kate; Vasserot, Yann; Marchal, Richard
2018-02-08
The visual properties of sparkling wine including foam and bubbles are an indicator of sparkling wine quality. Foam properties, particularly foam height (FH) and foam stability (TS), are significantly influenced by the chemical composition of the wine. This review investigates our current knowledge of specific chemical compounds and, the mechanisms by which they influence the foam properties of sparkling wines. Grape and yeast proteins, amino acids, polysaccharides, phenolic compounds, organic acids, fatty acids, ethanol and sugar are examined with respect to their contribution to foam characteristics in sparkling wines made with the Traditional, Transfer, and Charmat and carbonation methods. Contradictory results have been identified that appear to be due to the analytical methods used to measure and quantify compounds and foam. Biopolymer complexes are discussed and absent knowledge with regards to thaumatin-like proteins (TLPs), polysaccharides, amino acids, oak-derived phenolic compounds and organic acids are identified. Future research is also likely to concentrate on visual analysis of sparkling wines by in-depth imaging analysis and specific sensory analysis techniques.
Foam structure :from soap froth to solid foams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraynik, Andrew Michael
2003-01-01
The properties of solid foams depend on their structure, which usually evolves in the fluid state as gas bubbles expand to form polyhedral cells. The characteristic feature of foam structure-randomly packed cells of different sizes and shapes-is examined in this article by considering soap froth. This material can be modeled as a network of minimal surfaces that divide space into polyhedral cells. The cell-level geometry of random soap froth is calculated with Brakke's Surface Evolver software. The distribution of cell volumes ranges from monodisperse to highly polydisperse. Topological and geometric properties, such as surface area and edge length, of themore » entire foam and individual cells, are discussed. The shape of struts in solid foams is related to Plateau borders in liquid foams and calculated for different volume fractions of material. The models of soap froth are used as templates to produce finite element models of open-cell foams. Three-dimensional images of open-cell foams obtained with x-ray microtomography allow virtual reconstruction of skeletal structures that compare well with the Surface Evolver simulations of soap-froth geometry.« less
46 CFR 95.05-10 - Fixed fire extinguishing systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... in special cases: (1) A fixed foam system may be used in cargo tanks. (2) A water sprinkling system.... Alternately, the Commandant may permit the installation of an approved water sprinkler system or other... is contracted for on or after November 19, 1952, a fixed carbon dioxide, foam, or water spray system...
46 CFR 95.05-10 - Fixed fire extinguishing systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... in special cases: (1) A fixed foam system may be used in cargo tanks. (2) A water sprinkling system.... Alternately, the Commandant may permit the installation of an approved water sprinkler system or other... is contracted for on or after November 19, 1952, a fixed carbon dioxide, foam, or water spray system...
46 CFR 95.05-10 - Fixed fire extinguishing systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... in special cases: (1) A fixed foam system may be used in cargo tanks. (2) A water sprinkling system.... Alternately, the Commandant may permit the installation of an approved water sprinkler system or other... is contracted for on or after November 19, 1952, a fixed carbon dioxide, foam, or water spray system...
46 CFR 95.05-10 - Fixed fire extinguishing systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... in special cases: (1) A fixed foam system may be used in cargo tanks. (2) A water sprinkling system.... Alternately, the Commandant may permit the installation of an approved water sprinkler system or other... is contracted for on or after November 19, 1952, a fixed carbon dioxide, foam, or water spray system...
Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong
2015-01-01
Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.
NASA Astrophysics Data System (ADS)
Park, Byung Hyun; Lee, Myong-Hwa; Kim, Sang Bum; Jo, Young Min
2011-02-01
A newly developed PTFE foam coating filter was developed which can be used for hot gas cleaning at temperatures up to 250 °C. The emulsion-type PTFE was coated onto a woven glass fiber using a foam coating method. The filter surface was closely examined using X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The XPS results were used to determine the binding force between the carbon and fluorine of PTFE, which imparts coating stability to the filter medium. More than 95% of the bonds of the PTFE foam coating filter were between carbon and fluorine, and this filter demonstrated excellent hydrophobic and good oleophobic properties at the same time. The contact angles of liquid droplets on the filter surface were used to predict the potential wetability of the filter against water or oil. In addition, the very low surface free energy of the filter medium, which was evaluated using the Owens-Wendt method, demonstrates a very stable surface and a high de-dusting quality.
Masikhwa, Tshifhiwa M; Madito, Moshawe J; Bello, Abdulhakeem; Dangbegnon, Julien K; Manyala, Ncholu
2017-02-15
Molybdenum disulphide which has a graphene-like single layer structure has excellent mechanical and electrical properties and unique morphology, which might be used with graphene foam as composite in supercapacitor applications. In this work, Molybdenum disulphide (MoS 2 )/graphene foam (GF) composites with different graphene foam loading were synthesized by the hydrothermal process to improve on specific capacitance of the composites. Asymmetric supercapacitor device was fabricated using the best performing MoS 2 /GF composite and activated carbon derived from expanded graphite (AEG) as positive and negative electrodes, respectively, in 6M KOH electrolyte. The asymmetric MoS 2 /GF//AEG device exhibited a maximum specific capacitance of 59Fg -1 at a current density of 1Ag -1 with maximum energy and power densities of 16Whkg -1 and 758Wkg -1 , respectively. The supercapacitor also exhibited a good cyclic stability with 95% capacitance retention over 2000 constant charge-discharge cycles. The results obtained demonstrate the potential of MoS 2 /GF//AEG as a promising material for electrochemical energy storage application. Copyright © 2016 Elsevier Inc. All rights reserved.
Detection of halogenated flame retardants in polyurethane foam by particle induced X-ray emission
NASA Astrophysics Data System (ADS)
Maley, Adam M.; Falk, Kyle A.; Hoover, Luke; Earlywine, Elly B.; Seymour, Michael D.; DeYoung, Paul A.; Blum, Arlene; Stapleton, Heather M.; Peaslee, Graham F.
2015-09-01
A novel application of particle-induced X-ray emission (PIXE) has been developed to detect the presence of chlorinated and brominated flame retardant chemicals in polyurethane foams. Traditional Gas Chromatography-Mass Spectrometry (GC-MS) methods for the detection and identification of halogenated flame retardants in foams require extensive sample preparation and data acquisition time. The elemental analysis of the halogens in polyurethane foam performed by PIXE offers the opportunity to identify the presence of halogenated flame retardants in a fraction of the time and sample preparation cost. Through comparative GC-MS and PIXE analysis of 215 foam samples, excellent agreement between the two methods was obtained. These results suggest that PIXE could be an ideal rapid screening method for the presence of chlorinated and brominated flame retardants in polyurethane foams.
NASA Technical Reports Server (NTRS)
Melis, Matthew E.; Revilock, Duane M.; Pereira, Michael J.; Lyle, Karen H.
2009-01-01
Following the tragedy of the Orbiter Columbia (STS-107) on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the space shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize reinforced carbon-carbon (RCC) along with ice and foam debris materials, which could shed on ascent and impact the orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS-DYNA (Livermore Software Technology Corp.) to predict damage by potential and actual impact events on the orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: Level 1-fundamental tests to obtain independent static and dynamic constitutive model properties of materials of interest, Level 2-subcomponent impact tests to provide highly controlled impact test data for the correlation and validation of the models, and Level 3-full-scale orbiter leading-edge impact tests to establish the final level of confidence for the analysis methodology. This report discusses the Level 2 test program conducted in the NASA Glenn Research Center (GRC) Ballistic Impact Laboratory with external tank foam impact tests on flat RCC panels, and presents the data observed. The Level 2 testing consisted of 54 impact tests in the NASA GRC Ballistic Impact Laboratory on 6- by 6-in. and 6- by 12-in. flat plates of RCC and evaluated two types of debris projectiles: BX-265 and PDL-1034 external tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile and validated the use of the foam and RCC models for use in LS-DYNA.
NASA Astrophysics Data System (ADS)
Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong
2015-05-01
Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00841g
Yu, Hongwen; Fugetsu, Bunshi
2010-05-15
A novel approach is described for establishing adsorbents for elimination of water-soluble organic dyes by using multi-walled carbon nanotubes (MWCNTs) as the adsorptive sites. Agglomerates of MWCNTs were dispersed into individual tubes (dispersed-MWCNTs) using sodium n-dodecyl itaconate mixed with 3-(N,N-dimethylmyristylammonio)-propanesulfonate as the dispersants. The resultant dispersed-MWCNTs were inserted into cavities of diatomite to form composites of diatomite/MWCNTs. These composites were finally immobilized onto the cell walls of flexible polyurethane foams (PUF) through an in situ PUF formation process to produce the foam-like CNT-based adsorbent. Ethidium bromide, acridine orange, methylene blue, eosin B, and eosin Y were chosen to represent typical water-soluble organic dyes for studying the adsorptive capabilities of the foam-like CNT-based adsorbent. For comparisons, adsorptive experiments were also carried out by using agglomerates of the sole MWCNTs as adsorbents. The foam-like CNT-based adsorbents were found to have higher adsorptive capacities than the CNT agglomerates for all five dyes; in addition, they are macro-sized, durable, flexible, hydrophilic and easy to use. Adsorption isotherms plotted based on the Langmuir equation gave linear results, suggesting that the foam-like CNT-based adsorbent functioned in the Langmuir adsorption manner. The foam-like CNT-based adsorbents are reusable after regeneration with aqueous ethanol solution. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Luo, Liu; Chung, Sheng-Heng; Chang, Chi-Hao; ...
2017-07-06
A high-loading sulfur cathode is critical for establishing rechargeable lithium–sulfur (Li–S) batteries with the anticipated high energy density. However, its fabrication as well as realizing high electrochemical utilization and stability with high-loading sulfur cathodes is a daunting challenge. Here, we present a new pie-like electrode that consists of an electrocatalytic nickel-foam as a “filling” to adsorb and store polysulfide catholytes and an outer carbon shell as a “crust” for facilitating high-loading sulfur cathodes with superior electrochemical and structural stabilities. The inner electrocatalytic nickel-foam is configured to adsorb polysulfides and facilitate their redox reactions. The intertwined carbon shell assists to shieldmore » the polysulfides within the cathode region of the cell. Both the nickel-foam and the carbon shell have high conductivity and porous space, which serve simultaneously as interconnected current collectors to enhance the redox kinetics and as polysulfide reservoirs to confine the active material. The effectiveness of such a pie-like structure in improving the electrochemical efficiency enables the cathode to host an ultrahigh sulfur loading of 40 mg cm -2 and attain a high areal capacity of over 40 mA h cm -2 at a low electrolyte/sulfur (E/S) ratio of 7. The enhanced cyclability is reflected in a high reversible areal capacity approaching 30 mA h cm -2 at C/5 rate after 100 cycles and excellent rate capability up to 2C rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Liu; Chung, Sheng-Heng; Chang, Chi-Hao
A high-loading sulfur cathode is critical for establishing rechargeable lithium–sulfur (Li–S) batteries with the anticipated high energy density. However, its fabrication as well as realizing high electrochemical utilization and stability with high-loading sulfur cathodes is a daunting challenge. Here, we present a new pie-like electrode that consists of an electrocatalytic nickel-foam as a “filling” to adsorb and store polysulfide catholytes and an outer carbon shell as a “crust” for facilitating high-loading sulfur cathodes with superior electrochemical and structural stabilities. The inner electrocatalytic nickel-foam is configured to adsorb polysulfides and facilitate their redox reactions. The intertwined carbon shell assists to shieldmore » the polysulfides within the cathode region of the cell. Both the nickel-foam and the carbon shell have high conductivity and porous space, which serve simultaneously as interconnected current collectors to enhance the redox kinetics and as polysulfide reservoirs to confine the active material. The effectiveness of such a pie-like structure in improving the electrochemical efficiency enables the cathode to host an ultrahigh sulfur loading of 40 mg cm -2 and attain a high areal capacity of over 40 mA h cm -2 at a low electrolyte/sulfur (E/S) ratio of 7. The enhanced cyclability is reflected in a high reversible areal capacity approaching 30 mA h cm -2 at C/5 rate after 100 cycles and excellent rate capability up to 2C rate.« less
NASA Astrophysics Data System (ADS)
Nguyen, B. V.; Challagulla, K. S.; Venkatesh, T. A.; Hadjiloizi, D. A.; Georgiades, A. V.
2016-12-01
Unit-cell based finite element models are developed to completely characterize the role of porosity distribution and porosity volume fraction in determining the elastic, dielectric and piezoelectric properties as well as relevant figures of merit of 3-3 type piezoelectric foam structures. Eight classes of foam structures which represent structures with different types and degrees of uniformity of porosity distribution are identified; a Base structure (Class I), two H-type foam structures (Classes II, and III), a Cross-type foam structure (Class IV) and four Line-type foam structures (Classes V, VI, VII, and VIII). Three geometric factors that influence the electromechanical properties are identified: (i) the number of pores per face, pore size and the distance between the pores; (ii) pore orientation with respect to poling direction; (iii) the overall symmetry of the pore distribution with respect to the center of the face of the unit cell. To assess the suitability of these structures for such applications as hydrophones, bone implants, medical imaging and diagnostic devices, five figures of merit are determined via the developed finite element model; the piezoelectric coupling constant (K t ), the acoustic impedance (Z), the piezoelectric charge coefficient (d h ), the hydrostatic voltage coefficient (g h ), and the hydrostatic figure of merit (d h g h ). At high material volume fractions, foams with non-uniform Line-type porosity (Classes V and VII) where the pores are preferentially distributed perpendicular to poling direction, are found to exhibit the best combination of desirable piezoelectric figures of merit. For example, at about 50% volume fraction, the d h , g h , and d h g h figures of merit are 55%, 1600% and 2500% higher, respectively, for Classes V and VII of Line-like foam structures compared with the Base structure.
Advances in cryogenic foam insulations.
NASA Technical Reports Server (NTRS)
Lemons, C. R.; Salmassy, O. K.; Watts, C. R.
1971-01-01
Description of a discretely oriented thread-reinforced polyurethane foam thermal insulation system for liquid hydrogen fuel tanks. The 3-D foam and glass liner composite is designed to be adhesively bonded to the inside surface of the tank wall and to be in direct contact with liquid hydrogen. All elements of this insulation composite are capable of sustaining the loads and environmental conditions imposed by testing under simulated Space Shuttle vehicle requirements at temperatures between -423 and +350 F.
Gonzalez Viejo, Claudia; Fuentes, Sigfredo; Torrico, Damir D; Howell, Kate; Dunshea, Frank R
2018-05-01
Sensory attributes of beer are directly linked to perceived foam-related parameters and beer color. The aim of this study was to develop an objective predictive model using machine learning modeling to assess the intensity levels of sensory descriptors in beer using the physical measurements of color and foam-related parameters. A robotic pourer (RoboBEER), was used to obtain 15 color and foam-related parameters from 22 different commercial beer samples. A sensory session using quantitative descriptive analysis (QDA ® ) with trained panelists was conducted to assess the intensity of 10 beer descriptors. Results showed that the principal component analysis explained 64% of data variability with correlations found between foam-related descriptors from sensory and RoboBEER such as the positive and significant correlation between carbon dioxide and carbonation mouthfeel (R = 0.62), correlation of viscosity to sensory, and maximum volume of foam and total lifetime of foam (R = 0.75, R = 0.77, respectively). Using the RoboBEER parameters as inputs, an artificial neural network (ANN) regression model showed high correlation (R = 0.91) to predict the intensity levels of 10 related sensory descriptors such as yeast, grains and hops aromas, hops flavor, bitter, sour and sweet tastes, viscosity, carbonation, and astringency. This paper is a novel approach for food science using machine modeling techniques that could contribute significantly to rapid screenings of food and brewage products for the food industry and the implementation of Artificial Intelligence (AI). The use of RoboBEER to assess beer quality showed to be a reliable, objective, accurate, and less time-consuming method to predict sensory descriptors compared to trained sensory panels. Hence, this method could be useful as a rapid screening procedure to evaluate beer quality at the end of the production line for industry applications. © 2018 Institute of Food Technologists®.
Three-Dimensional Rebar Graphene.
Sha, Junwei; Salvatierra, Rodrigo V; Dong, Pei; Li, Yilun; Lee, Seoung-Ki; Wang, Tuo; Zhang, Chenhao; Zhang, Jibo; Ji, Yongsung; Ajayan, Pulickel M; Lou, Jun; Zhao, Naiqin; Tour, James M
2017-03-01
Free-standing robust three-dimensional (3D) rebar graphene foams (GFs) were developed by a powder metallurgy template method with multiwalled carbon nanotubes (MWCNTs) as a reinforcing bar, sintered Ni skeletons as a template and catalyst, and sucrose as a solid carbon source. As a reinforcement and bridge between different graphene sheets and carbon shells, MWCNTs improved the thermostability, storage modulus (290.1 kPa) and conductivity (21.82 S cm -1 ) of 3D GF resulting in a high porosity and structurally stable 3D rebar GF. The 3D rebar GF can support >3150× the foam's weight with no irreversible height change, and shows only a ∼25% irreversible height change after loading >8500× the foam's weight. The 3D rebar GF also shows stable performance as a highly porous electrode in lithium ion capacitors (LICs) with an energy density of 32 Wh kg -1 . After 500 cycles of testing at a high current density of 6.50 mA cm -2 , the LIC shows 78% energy density retention. These properties indicate promising applications with 3D rebar GFs in devices requiring stable mechanical and electrochemical properties.
Scalable synthesis and energy applications of defect engineeered nano materials
NASA Astrophysics Data System (ADS)
Karakaya, Mehmet
Nanomaterials and nanotechnologies have attracted a great deal of attention in a few decades due to their novel physical properties such as, high aspect ratio, surface morphology, impurities, etc. which lead to unique chemical, optical and electronic properties. The awareness of importance of nanomaterials has motivated researchers to develop nanomaterial growth techniques to further control nanostructures properties such as, size, surface morphology, etc. that may alter their fundamental behavior. Carbon nanotubes (CNTs) are one of the most promising materials with their rigidity, strength, elasticity and electric conductivity for future applications. Despite their excellent properties explored by the abundant research works, there is big challenge to introduce them into the macroscopic world for practical applications. This thesis first gives a brief overview of the CNTs, it will then go on mechanical and oil absorption properties of macro-scale CNT assemblies, then following CNT energy storage applications and finally fundamental studies of defect introduced graphene systems. Chapter Two focuses on helically coiled carbon nanotube (HCNT) foams in compression. Similarly to other foams, HCNT foams exhibit preconditioning effects in response to cyclic loading; however, their fundamental deformation mechanisms are unique. Bulk HCNT foams exhibit super-compressibility and recover more than 90% of large compressive strains (up to 80%). When subjected to striker impacts, HCNT foams mitigate impact stresses more effectively compared to other CNT foams comprised of non-helical CNTs (~50% improvement). The unique mechanical properties we revealed demonstrate that the HCNT foams are ideally suited for applications in packaging, impact protection, and vibration mitigation. The third chapter describes a simple method for the scalable synthesis of three-dimensional, elastic, and recyclable multi-walled carbon nanotube (MWCNT) based light weight bucky-aerogels (BAGs) that are capable of efficiently absorbing non-polar solvents and separating oil-in-water emulsions. Furthermore, BAGs exhibit resilience to impact by recovering more than 70% of the deformation. The energy dissipated by BAGs at 80% compressive strain is in the order of 500 kJm-3, which is nearly 50 times more than the energy dissipated by commercial foams with similar densities. In the forth chapter, we demonstrate the synthesis of high-surface area, polymer-modified carbon nanotube (or helically coiled carbon nanotube (HCNT)) "paper" electrodes for high-power, high-energy density supercapacitors using simple fabrication methods. The use of conductive, high surface area carbon nanomaterials allows for the utilization of low-cost, non-conductive polymers containing reversible redox groups with higher charge capacity, such as sulfonated lignin. Compared to electrodes containing only helically coiled carbon nanotubes (80 Fg-1), paper electrodes fabricated with redox polymers show an increase in electrode capacitance to over 600 Fg -1 along with an increase in charge capacity from 20 mA hrg -1 to 80 mA hrg-1. Chapter Five presents a scalable roll-to-roll (R2R) spray coating process for synthesizing randomly oriented multi-walled carbon nanotubes electrodes on Al foils. The coin and jellyroll type supercapacitors comprised such electrodes yield high power densities (~700 mW/cm3) and energy densities (1 mW h/cm3) on par with Li-ion thin film batteries. These devices exhibit excellent cycle stability with no loss in performance over more than a thousand cycles. In the sixth chapter, we have indicated a methodology for both increasing and decreasing the electrochemical capacitance of Few Layer Graphene based nano-graphites through a combination of argon and hydrogen-based plasma processing. In addition to the utility for charge storage, our work contributes to understanding and controlling the charge storage characteristics. In the final chapter, we have investigated a nitrogen-doped graphene. We demonstrate through Raman spectroscopy, nonlinear optical and ultrafast spectroscopy, and density functional theory that the graphitic dopant configuration is stable in graphene and does not significantly alter electron--electron or electron--phonon scattering, that is otherwise present in doped graphene, by preserving the crystal coherence length (La)..
Plastic Foam Withstands Greater Temperatures And Pressures
NASA Technical Reports Server (NTRS)
Cranston, John A.; Macarthur, Doug
1993-01-01
Improved plastic foam suitable for use in foam-core laminated composite parts and in tooling for making fiber/matrix-composite parts. Stronger at high temperatures, more thermally and dimensionally stable, machinable, resistant to chemical degradation, and less expensive. Compatible with variety of matrix resins. Made of polyisocyanurate blown with carbon dioxide and has density of 12 to 15 pounds per cubic feet. Does not contibute to depletion of ozone from atmosphere. Improved foam used in cores of composite panels in such diverse products as aircraft, automobiles, railroad cars, boats, and sporting equipment like surfboards, skis, and skateboards. Also used in thermally stable flotation devices in submersible vehicles. Machined into mandrels upon which filaments wound to make shells.
High temperature surface effects of He + implantation in ICF fusion first wall materials
NASA Astrophysics Data System (ADS)
Zenobia, Samuel J.; Radel, R. F.; Cipiti, B. B.; Kulcinski, Gerald L.
2009-06-01
The first wall armor of the inertial confinement fusion reactor chambers must withstand high temperatures and significant radiation damage from target debris and neutrons. The resilience of multiple materials to one component of the target debris has been investigated using energetic (20-40 keV) helium ions generated in the inertial electrostatic confinement device at the University of Wisconsin. The materials studied include: single-crystalline, and polycrystalline tungsten, tungsten-coated tantalum-carbide 'foams', tungsten-rhenium alloy, silicon carbide, carbon-carbon velvet, and tungsten-coated carbon-carbon velvet. Steady-state irradiation temperatures ranged from 750 to 1250 °C with helium fluences between 5 × 10 17 and 1 × 10 20 He +/cm 2. The crystalline, rhenium alloyed, carbide foam, and powder metallurgical tungsten specimens each experienced extensive pore formation after He + irradiation. Flaking and pore formation occurred on silicon carbide samples. Individual fibers of carbon-carbon velvet specimens sustained erosion and corrugation, in addition to the roughening and rupturing of tungsten coatings after helium ion implantation.
NASA Astrophysics Data System (ADS)
Patil, Umakant M.; Ghorpade, Ravindra V.; Nam, Min Sik; Nalawade, Archana C.; Lee, Sangrae; Han, Haksoo; Jun, Seong Chan
2016-10-01
The current paper describes enhanced electrochemical capacitive performance of chemically grown Cobalt hydroxide (Co(OH)2) nanorods (NRs) decorated porous three dimensional graphitic carbon foam (Co(OH)2/3D GCF) as a supercapacitor electrode. Freestanding 3D porous GCF is prepared by carbonizing, high internal phase emulsion (HIPE) polymerized styrene and divinylbenzene. The PolyHIPE was sulfonated and carbonized at temperature up to 850 °C to obtain graphitic 3D carbon foam with high surface area (389 m2 g-1) having open voids (14 μm) interconnected by windows (4 μm) in monolithic form. Moreover, entangled Co(OH)2 NRs are anchored on 3D GCF electrodes by using a facile chemical bath deposition (CBD) method. The wide porous structure with high specific surface area (520 m2 g-1) access offered by the interconnected 3D GCF along with Co(OH)2 NRs morphology, displays ultrahigh specific capacitance, specific energy and power. The Co(OH)2/3D GCF electrode exhibits maximum specific capacitance about ~1235 F g-1 at ~1 A g-1 charge-discharge current density, in 1 M aqueous KOH solution. These results endorse potential applicability of Co(OH)2/3D GCF electrode in supercapacitors and signifies that, the porous GCF is a proficient 3D freestanding framework for loading pseudocapacitive nanostructured materials.
Investigations in Producing Porous NiAl by Combustion Synthesis
NASA Astrophysics Data System (ADS)
Zhong, Songming
In recent years, nickel aluminide (NiAl) intermetallic foam, which combines the advantages of nickel-based alloy and metallic foam, has attracted great attention due to its extraordinary properties. In this present work, nickel aluminide (NiAl) foam has been reactively processed from elemental powder (nickel and aluminium) with different types and percentage of volume of a foaming agent (TiH2 or CaCO3), using a combustion synthesis (CS) approach. Most of the previous research has focused on producing close-cell NiAl intermetallic foam; however, this paper presents a new combustion synthesis process to fabricate a hybrid open-cell and close-cell NiAl intermetallic foam. Mixed elemental powder was compacted at moderate pressure generating closed and open porosity with green compact; as a result, part of the liberated gas could escape from the sample, which resulted in producing open-cell pores, in addition, closed cell pores in the product. The effect of foaming agent type and volume percentage on the product is discussed. An increase in volume percentage of TiH2 was found to have beneficial effects on increasing porosity; however, with the increase of volume percentage of CaCO3, there is a big drop in porosity because the low viscosity under high temperature makes more liberated gas escape and pores collapse. According to XRD and EDX analysis, despite the present of multiple phases in samples, NiAl was still the major phase. Hardness measurement shows that high hardness value was obtained at sample of low grain size, hardness value increases with decreasing grain size.
Fabrication of porous titanium scaffold materials by a fugitive filler method.
Hong, T F; Guo, Z X; Yang, R
2008-12-01
A clean powder metallurgy route was developed here to produce Ti foams, using a fugitive polymeric filler, polypropylene carbonate (PPC), to create porosities in a metal-polymer compact at the pre-processing stage. The as-produced foams were studied by scanning electron microscopy (SEM), LECO combustion analyses and X-ray diffraction (XRD). Compression tests were performed to assess their mechanical properties. The results show that titanium foams with open pores can be successfully produced by the method. The compressive strength and modulus of the foams decrease with an increasing level of porosity and can be tailored to those of the human bones. After alkali treatment and soaking in a simulated body fluid (SBF) for 3 days, a thin apatite layer was formed along the Ti foam surfaces, which provides favourable bioactive conditions for bone bonding and growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opachich, Y.P.; Koch, J.A.; Haugh, M. J.
A multi wavelength, high contrast contact radiography system has been developed to characterize density variations in ultra-low density aerogel foams. These foams are used to generate a ramped pressure drive in materials strength experiments at the National Ignition Facility (NIF) and require precision characterization in order to reduce errors in measurements. The system was used to characterize density variations in carbon and silicon based aerogels to ~10.3% accuracy with ~30 μm spatial resolution. The system description, performance and measurement results collected using a 17.8 mg/cc carbon based JX–6 (C 20H 30) aerogel are discussed in this manuscript.
Kumar, Surender; Ghosh, Somnath; Munichandraiah, N; Vasan, H N
2013-06-14
A porous carbon foam (CF) electrode modified with a reduced graphene oxide-Ag (rGO-Ag) nanocomposite has been fabricated to purify water. It can perform as an antibacterial device by killing pathogenic microbes with the aid of a 1.5 V battery, with very little power consumption. The device is recycled ten times with good performance for long term usage. It is shown that the device may be implemented as a fast water purifier to deactivate the pathogens in drinking water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dohoon; Lee, Jinwoo; Kim, Jungbae
2005-12-05
We fabricated a highly sensitive and fast glucose biosensor by simply immobilizing glucose oxidase in mesocellular carbon foam. Due to its unique structure, the MSU-F-C enabled high enzyme loading without serious mass transfer limitation, resulting in high catalytic efficiency. As a result, the glucose biosensor fabricated with MSU-F-C/GOx showed a high sensitivity and fast response. Given these results and the inherent electrical conductivity, we anticipate that MSU-F-C will make a useful matrix for enzyme immobilization in various biocatalytic and electrobiocatalytic applications.
Selenide isotope generator for the Galileo Mission: SIG thermal insulation evaluaion tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
Since the SIG program required the use of very high performance thermal insulation materials in rather severe thermal and environmental conditions, a thorough screening and testing program was performed. Several types of materials were included in the preliminary survey. Most promising were oxide and carbonaceous fibrous insulations, oxide and carbonaceous foamed materials, and multilayer materials with both powder and cloth spacers. The latter were only viable for the vacuum option. In all, over one hundred materials from more than sixty manufacturers were evaluated from literature and manufacturers' data. The list was pared to eighteen candidates in seven basic types, i.e.,more » fibrous microporous SiO/sub 2/, fibrous SiO/sub 2//Al/sub 2/O/sub 3/, fibrous ZrO/sub 2/, fibrous carbon, foamed SiO/sub 2/, foamed carbon, and multilayer. Test results are presented.« less
Numerical modelling of closed-cell aluminium foam under dynamic loading
NASA Astrophysics Data System (ADS)
Hazell, Paul; Kader, M. A.; Islam, M. A.; Escobedo, J. P.; Saadatfar, M.
2015-06-01
Closed-cell aluminium foams are extensively used in aerospace and automobile industries. The understanding of their behaviour under impact loading conditions is extremely important since impact problems are directly related to design of these engineering structures. This research investigates the response of a closed-cell aluminium foam (CYMAT) subjected to dynamic loading using the finite element software ABAQUS/explicit. The aim of this research is to numerically investigate the material and structural properties of closed-cell aluminium foam under impact loading conditions with interest in shock propagation and its effects on cell wall deformation. A μ-CT based 3D foam geometry is developed to simulate the local cell collapse behaviours. A number of numerical techniques are applied for modelling the crush behaviour of aluminium foam to obtain the more accurate results. The simulation results are compared with experimental data. Comparison of the results shows a good correlation between the experimental results and numerical predictions.
Microcellular foaming of arabinoxylan and PEGylated arabinoxylan with supercritical CO2.
Härdelin, Linda; Ström, Anna; Di Maio, Ernesto; Iannace, Salvatore; Larsson, Anette
2018-02-01
In this study, arabinoxylan extracted from barley husks was reacted with polyethylene glycol (PEG) of various molecular weights to introduce an internal plasticizer into the polymer matrix. A successful PEGylation reaction was identified using FTIR and elemental analysis. Thermal and mechanical properties were studied using dynamic mechanical analysis, which revealed that the attachment of PEG chains reduced the glass transition temperature by up to 25°C. Foaming experiments were conducted under different test conditions in a batch foaming process with supercritical CO 2 in a thermoregulated and pressurized cylinder. The foams were evaluated using SEM by studying the morphology of the samples foamed at different temperatures. The unmodified arabinoxylan sample was found to produce the best foam morphology, though the PEGylated samples could be produced at lower temperatures than could the unmodified arabinoxylan. This was interpreted as due to the decrease in the glass transition temperature. Copyright © 2017. Published by Elsevier Ltd.
Deployment, Foam Rigidization, and Structural Characterization of Inflatable Thin-Film Booms
NASA Technical Reports Server (NTRS)
Schnell, Andrew R.; Leigh, Larry M., Jr.; Tinker, Michael L.; McConnaughey, Paul R. (Technical Monitor)
2002-01-01
Detailed investigation of the construction, packaging/deployment, foam rigidization, and structural characterization of polyimide film inflatable booms is described. These structures have considerable potential for use in space with solar concentrators, solar sails, space power systems including solar arrays, and other future missions. Numerous thin-film booms or struts were successfully constructed, inflated, injected with foam, and rigidized. Both solid-section and annular test articles were fabricated, using Kapton polyimide film, various adhesives, Styrofoam end plugs, and polyurethane pressurized foam. Numerous inflation/deployment experiments were conducted and compared to computer simulations using the MSC/DYTRAN code. Finite element models were developed for several foam-rigidized struts and compared to model test results. Several problems encountered in the construction, deployment, and foam injection/rigidization process are described. Areas of difficulty included inadequate adhesive strength, cracking of the film arid leakage, excessive bending of the structure during deployment, problems with foam distribution and curing properties, and control of foam leakage following injection into the structure. Many of these problems were overcome in the course of the research.
Alzobaidi, Shehab; Da, Chang; Tran, Vu; Prodanović, Maša; Johnston, Keith P
2017-02-15
Ultralow water content carbon dioxide-in-water (C/W) foams with gas phase volume fractions (ϕ) above 0.95 (that is <0.05 water) tend to be inherently unstable given that the large capillary pressures that cause the lamellar films to thin. Herein, we demonstrate that these C/W foams may be stabilized with viscoelastic aqueous phases formed with a single zwitterionic surfactant at a concentration of only 1% (w/v) in DI water and over a wide range of salinity. Moreover, they are stable with a foam quality ϕ up to 0.98 even for temperatures up to 120°C. The properties of aqueous viscoelastic solutions and foams containing these solutions are examined for a series of zwitterionic amidopropylcarbobetaines, R-ONHC 3 H 6 N(CH 3 ) 2 CH 2 CO 2 , where R is varied from C 12 - 14 (coco) to C 18 (oleyl) to C 22 (erucyl). For the surfactants with long C 18 and C 22 tails, the relaxation times from complex rheology indicate the presence of viscoelastic wormlike micelles over a wide range in salinity and pH, given the high surfactant packing fraction. The apparent viscosities of these ultralow water content foams reached more than 120cP with stabilities more than 30-fold over those for foams formed with the non-viscoelastic C 12 - 14 surfactant. At 90°C, the foam morphology was composed of ∼35μm diameter bubbles with a polyhedral texture. The apparent foam viscosity typically increased with ϕ and then dropped at ϕ values higher than 0.95-0.98. The Ostwald ripening rate was slower for foams with viscoelastic versus non-viscoelastic lamellae as shown by optical microscopy, as a consequence of slower lamellar drainage rates. The ability to achieve high stabilities for ultralow water content C/W foams over a wide temperature range is of interest in various technologies including polymer and materials science, CO 2 enhanced oil recovery, CO 2 sequestration (by greater control of the CO 2 flow patterns), and possibly even hydraulic fracturing with minimal use of water to reduce the requirements for wastewater disposal. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Sharudin, Rahida Wati; Ajib, Norshawalina Muhamad; Yusoff, Marina; Ahmad, Mohd Aizad
2017-12-01
Thermoplastic elastomer SEBS foams were prepared by using carbon dioxide (CO2) as a blowing agent and the process is classified as physical foaming method. During the foaming process, the diffusivity of CO2 need to be controlled since it is one of the parameter that will affect the final cellular structure of the foam. Conventionally, the rate of CO2 diffusion was measured experimentally by using a highly sensitive device called magnetic suspension balance (MSB). Besides, this expensive MSB machine is not easily available and measurement of CO2 diffusivity is quite complicated as well as time consuming process. Thus, to overcome these limitations, a computational method was introduced. Particle Swarm Optimization (PSO) is a part of Swarm Intelligence system which acts as a beneficial optimization tool where it can solve most of nonlinear complications. PSO model was developed for predicting the optimum foaming temperature and CO2 diffusion rate in SEBS foam. Results obtained by PSO model are compared with experimental results for CO2 diffusivity at various foaming temperature. It is shown that predicted optimum foaming temperature at 154.6 °C was not represented the best temperature for foaming as the cellular structure of SEBS foamed at corresponding temperature consisted pores with unstable dimension and the structure was not visibly perceived due to foam shrinkage. The predictions were not agreed well with experimental result when single parameter of CO2 diffusivity is considered in PSO model because it is not the only factor that affected the controllability of foam shrinkage. The modification on the PSO model by considering CO2 solubility and rigidity of SEBS as additional parameters needs to be done for obtaining the optimum temperature for SEBS foaming. Hence stable SEBS foam could be prepared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilsen, Michael K.; Lu, Wei-Yang; Scherzinger, William M.
Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model wasmore » developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.« less
Development of the International Space Station Fine Water Mist Portable Fire Extinguisher
NASA Technical Reports Server (NTRS)
Rodriquez, Branelle; Young, GIna
2013-01-01
The National Aeronautics and Space Administration (NASA) is developing a Fine Water Mist (FWM) Portable Fire Extinguisher (PFE) for use on the International Space Station (ISS). The ISS presently uses two different types of fire extinguishers: a water foam extinguisher in the Russian Segments, and a carbon dioxide extinguisher in the United States Orbital Segments, which include Columbus and Kibo pressurized elements. Currently, there are operational and compatibility concerns with the emergency breathing equipment and the carbon dioxide extinguisher. ISS emergency response breathing equipment does not filter carbon dioxide; therefore, crew members are required to have an oxygen supply present during a fire event since the carbon dioxide PFE creates an unsafe breathing environment. The ISS program recommended a nontoxic fire extinguisher to mitigate this operational risk. The FWM PFE can extinguish a fire without creating a hazardous breathing environment for crewmembers. This paper will discuss the unique functional and performance requirements that have been levied on the FWM PFE, identify unique microgravity design considerations for liquid and gas systems, and discuss the NASA ISS specific fire standards that were developed to establish an acceptable portable fire extinguisher s performance.
NASA Technical Reports Server (NTRS)
Bernhard, R. J.; Bolton, J. S.; Gardner, B.; Mickol, J.; Mollo, C.; Bruer, C.
1986-01-01
Progress was made in the following areas: development of a numerical/empirical noise source identification procedure using bondary element techniques; identification of structure-borne noise paths using structural intensity and finite element methods; development of a design optimization numerical procedure to be used to study active noise control in three-dimensional geometries; measurement of dynamic properties of acoustical foams and incorporation of these properties in models governing three-dimensional wave propagation in foams; and structure-borne sound path identification by use of the Wigner distribution.
The kinetics of polyurethane structural foam formation: Foaming and polymerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Rekha R.; Mondy, Lisa A.; Long, Kevin N.
We are developing kinetic models to understand the manufacturing of polymeric foams, which evolve from low viscosity Newtonian liquids, to bubbly liquids, finally producing solid foam. Closed-form kinetics are formulated and parameterized for PMDI-10, a fast curing polyurethane, including polymerization and foaming. PMDI- 10 is chemically blown, where water and isocyanate react to form carbon dioxide. The isocyanate reacts with polyol in a competing reaction, producing polymer. Our approach is unique, though it builds on our previous work and the polymerization literature. This kinetic model follows a simplified mathematical formalism that decouples foaming and curing, including an evolving glass transitionmore » temperature to represent vitrification. This approach is based on IR, DSC, and volume evolution data, where we observed that the isocyanate is always in excess and does not affect the kinetics. Finally, the kinetics are suitable for implementation into a computational fluid dynamics framework, which will be explored in subsequent papers.« less
The kinetics of polyurethane structural foam formation: Foaming and polymerization
Rao, Rekha R.; Mondy, Lisa A.; Long, Kevin N.; ...
2017-02-15
We are developing kinetic models to understand the manufacturing of polymeric foams, which evolve from low viscosity Newtonian liquids, to bubbly liquids, finally producing solid foam. Closed-form kinetics are formulated and parameterized for PMDI-10, a fast curing polyurethane, including polymerization and foaming. PMDI- 10 is chemically blown, where water and isocyanate react to form carbon dioxide. The isocyanate reacts with polyol in a competing reaction, producing polymer. Our approach is unique, though it builds on our previous work and the polymerization literature. This kinetic model follows a simplified mathematical formalism that decouples foaming and curing, including an evolving glass transitionmore » temperature to represent vitrification. This approach is based on IR, DSC, and volume evolution data, where we observed that the isocyanate is always in excess and does not affect the kinetics. Finally, the kinetics are suitable for implementation into a computational fluid dynamics framework, which will be explored in subsequent papers.« less
Yuan, Haoran; Dong, Ge; Li, Denian; Deng, Lifang; Cheng, Peng; Chen, Yong
2018-09-15
Anode design is highly significant for microbial fuel cells, since it simultaneously serves as the scaffold for electroactive microorganisms and as a medium for electron migration. In this study, a stiff 3D carbon foam with surface anchored nitrogen-containing carbon nanoparticles was facilely constructed via in-situ polyaniline coating of carbonized steamed cake prior to the carbonization process. The resultant product was determined to be an excellent freestanding anode that enabled the microbial fuel cell to deliver a maximum power density of up to 1307 mW/m 2 , which significantly outperformed its non-coated counterpart, the widely used commercial carbon felt. Further investigations revealed that the overall performance enhancement was associated with the open porosity, enlarged electroactive surface, increased biocompatibility, and decreased electric resistance of the anode scaffold. This promising anode material would offer a green and economical option for fabricating high-performance microbial fuel cell-based devices towards various ends. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Mandal, Ajay
2017-10-01
Application of foam in upstream petroleum industry specifically in enhanced oil recovery (EOR) has gained significant interest in recent years. In view of this, an attempt has been paid to design the suitable foaming agents (foamer) by evaluating the influence of three surfactants, five nanoparticles and several additives. Experimental investigations have been carried out in order to examine the mechanism of foam generation in presence of sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB) and polysorbate 80 (Tween 80) as anionic, cationic and nonionic surfactants by using the CO2 as gaseous component. It has been found that ionic surfactants show the higher foam life compared to nonionic surfactant. Out of different nano particles used, namely alumina (Al2O3) zirconium oxide (ZrO2), calcium carbonate (CaCO3), boron nitride (BN) and silica (SiO2), boron nitride shows the maximum improvement of foam stability. The foam stability of surfactant-nanoparticles foam is further increased by addition of different additives viz. polymer, alcohol and alkali. The results show that, the designed foaming solution have nearly 2.5 times higher half-decay time (t1/2) compared to the simple surfactant system. Finally, it has been found that gas injection rate plays an important role in obtaining a uniform and stabilized foam.
NASA Astrophysics Data System (ADS)
He, Shuijian; Hou, Haoqing; Chen, Wei
2015-04-01
3D porous and self-supported carbon hybrids are promising electrode materials for supercapacitor application attributed to their prominent properties such as binder-free electrode fabrication process, excellent electric conductivity and high power density etc. We present here a facile chemical vapor deposition method to fabricate a novel 3D flexible carbon hybrid nanostructure by growing a monolayer of nitrogen-doped carbon nanotubes on the skeleton of carbon foam (N-CNTs/CF) with Fe nanoparticle as catalyst. With such 3D porous, flexible and ultralight carbon nanostructure as binder-free electrode material, large surface area is available and fast ionic transport is facilitated. Moreover, the carbon-based network can provide excellent electronic conductivity. The electrochemical studies demonstrate that the supercapacitor constructed from the N-CNTs/CF hybrid exhibit high power density of 69.3 kW kg-1 and good stability with capacitance retention ration above 95% after cycled at 50 A g-1 for 5000 cycles. Therefore, the prepared porous N-CNTs/CF nanostructure is expected to be a type of excellent electrode material for electrical double layer capacitors.
A Numerical Modeling Framework for Cohesive Sediment Transport Driven by Waves and Tidal Currents
2012-09-30
for sediment transport. The successful extension to multi-dimensions is benefited from an open-source CFD package, OpenFOAM (www.openfoam.org). This...linz.at/Drupal/), which couples the fluid solver OpenFOAM with the Discrete Element Model (DEM) solver LIGGGHTS (an improved LAMMPS for granular flow
Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Billings, Marcus D.
2001-01-01
The nonlinear, transient dynamic finite element code, MSC.Dytran, was used to simulate an impact test of an energy absorbing Earth Entry Vehicle (EEV) that will impact without a parachute. EEVOs are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEVOs cellular structure. Pre-test analytical predictions were compared with the test results from a bungee accelerator. The model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAM1 model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for cellular impact.
NASA Astrophysics Data System (ADS)
Seo, Ja-Ye; Lee, Ki-Yong; Shim, Do-Sik
2018-01-01
This paper describes the fabrication of lightweight metal foams using the directed energy deposition (DED) method. DED is a highly flexible additive manufacturing process wherein a metal powder mixed with a foaming agent is sprayed while a high-power laser is used to simultaneously melt the powder mixture into layered metal foams. In this study, a mixture of a carbon steel material (P21 powder) and a widely used foaming agent, ZrH2, is used to fabricate metal foams. The effects of various process parameters, such as the laser power, powder feed rate, powder gas flow rate, and scanning speed, on the deposition characteristics (porosity, pore size, and pore distribution) are investigated. The synthesized metal foams exhibit porosities of 10% or lower, and a mean pore area of 7 × 105 μm2. It is observed that the degree of foaming increases in proportion to the laser power to a certain extent. The results also show that the powder feed rate has the most pronounced effect on the porosity of the metal foams, while the powder gas flow rate is the most suitable parameter for adjusting the size of the pores formed within the foams. Further, the scanning speed, which determines the amounts of energy and powder delivered, has a significant effect on the height of the deposits as well as on the properties of the foams. Thus, during the DED process for fabricating metal foams, the pore size and distribution and hence the foam porosity can be tailored by varying the individual process parameters. These findings should be useful as reference data for the design of processes for fabricating porous metallic materials that meet the specific requirements for specialized parts.
Cyanide toxicity from the thermal degradation of rigid polyurethane foam.
Bell, R H; Stemmer, K L; Barkley, W; Hollingsworth, L D
1979-09-01
Thermal degradation products (tdp) from a model, rigid polyurethane foam were collected in such a manner as to eliminate carbon monoxide and other gases with low boiling points. The effects in rats resulting from intratracheal intubation (I.T.) of the tdp are discussed. Cyanide was found to be a major factor associated with severe toxic responses of the experimental rats.
Zhang, Liying; Gurao, Manish; Yang, King H.; King, Albert I.
2011-01-01
Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou’s impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou’s impact device, has not been fully characterized. The foam used in Marmarou’s device was tested at seven strain rates ranging from quasi-static to dynamic (0.014 ~ 42.86 s−1) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam. PMID:21459114
Zhang, Liying; Gurao, Manish; Yang, King H; King, Albert I
2011-05-15
Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou's impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou's impact device, has not been fully characterized. The foam used in Marmarou's device was tested at seven strain rates ranging from quasi-static to dynamic (0.014-42.86 s⁻¹) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Erryani, Aprilia; Lestari, Franciska Pramuji; Annur, Dhyah; Kartika, Ika
2018-05-01
The role of blowing agent in the manufacture of porous metal alloys is very important to produce the desired pore. The thermal stability and speed of foam formation have an effect on the resulting pore structure. In porous metal alloys, uniformity of size and pore deployment are the main determinants of the resulting alloys. The coating process of calcium carbonate (CaCO3) has been done using Sodium trisilicate solution by sol-gel method. Foaming agent was pretreated by coating SiO2 passive layer on the surface of CaCO3. This coating aims to produce a more stable blowing agent so that the foaming process can produce a more uniform pore size. The microstructure of the SiO2 passive was observed using Scanning Electron Microscope (SEM) equipped by Energy Dispersive X-Ray Spectrometer (EDS) mapping. The results showed coating CaCO3 using sodium trisilicate was successfully done creating a passive layer of SiO2 on the surface of CaCO3. By the coating process, the thermal stability of coated CaCO3 increased compared to uncoated CaCO3.
NASA Astrophysics Data System (ADS)
Liang, Hui; Li, Chenwei; Chen, Tao; Cui, Liang; Han, Jingrui; Peng, Zhi; Liu, Jingquan
2018-02-01
Because of the urgent need for renewable resources, oxygen reduction reaction (ORR) has been widely studied. Finding efficient and low cost non-precious metal catalyst is increasingly critical. In this study, melamine foam is used as template to obtain porous sulfur and nitrogen-codoped graphene/carbon foam with uniformly distributed cobalt sulfide nanoparticles (Co1-xS/SNG/CF) which is prepared by a simple infiltration-drying-sulfuration method. It is noteworthy that melamine foam not only works as a three-dimensional support skeleton, but also provides a nitrogen source without any environmental pollution. Such Co1-xS/SNG/CF catalyst shows excellent oxygen reduction catalytic performance with an onset potential of only 0.99 V, which is the same as that of Pt/C catalyst (Eonset = 0.99 V). Furthermore, the stability and methanol tolerance of Co1-xS/SNG/CF are more outstanding than those of Pt/C catalyst. Our work manifests a facile method to prepare S and N-codoped 3D graphene network decorated with Co1-xS nanoparticles, which may be utilized as potential alternative to the expensive Pt/C catalysts toward ORR.
NASA Astrophysics Data System (ADS)
Chen, Jiajia; Shi, Xiaowen; Zhan, Yingfei; Qiu, Xiaodan; Du, Yumin; Deng, Hongbing
2017-03-01
Chitosan (CS)/rectorite (REC)/carbon nanotubes (CNTs) composite foams with good mechanical properties were successfully fabricated by unidirectional freeze-casting technique. The morphology of the foam showed the well-ordered porous three-dimensional layers and horizontal stratum landform-like structure. The holes on the layers looked like the wings of butterfly. Additionally, the X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy results indicated the successful addition of CNTs and REC. The intercalated REC with CS chains was confirmed by small-angle X-ray diffraction. The surface structure of the foams was also analyzed by Raman spectroscopy. The adsorption experiments showed that when the mass ratio of CS to REC was 10:1 and CNTs content was 20%, the composite foam performed best in adsorbing low concentration methyl orange, and the largest adsorption capacity was 41.65 mg/g.
Deformation of Polymer Composites in Force Protection Systems
NASA Astrophysics Data System (ADS)
Nazarian, Oshin
Systems used for protecting personnel, vehicles and infrastructure from ballistic and blast threats derive their performance from a combination of the intrinsic properties of the constituent materials and the way in which the materials are arranged and attached to one another. The present work addresses outstanding issues in both the intrinsic properties of high-performance fiber composites and the consequences of how such composites are integrated into force protection systems. One aim is to develop a constitutive model for the large-strain intralaminar shear deformation of an ultra-high molecular weight polyethylene (UHMWPE) fiber-reinforced composite. To this end, an analytical model based on a binary representation of the constituent phases is developed and validated using finite element analyses. The model is assessed through comparisons with experimental measurements on cross-ply composite specimens in the +/-45° orientation. The hardening behavior and the limiting tensile strain are attributable to rotations of fibers in the plastic domain and the effects of these rotations on the internal stress state. The model is further assessed through quasi-static punch experiments and dynamic impact tests using metal foam projectiles. The finite element model based on this model accurately captures both the back-face deflection-time history and the final plate profile (especially the changes caused by fiber pull-in). A separate analytical framework for describing the accelerations caused by head impact during, for example, the secondary collision of a vehicle occupant with the cabin interior during an external event is also presented. The severity of impact, characterized by the Head Injury Criterion (HIC), is used to assess the efficacy of crushable foams in mitigating head injury. The framework is used to identify the optimal foam strength that minimizes the HIC for prescribed mass and velocity, subject to constraints on foam thickness. The predictive capability of the model is evaluated through comparisons with a series of experimental measurements from impacts of an instrumented headform onto several commercial foams. Additional comparisons are made with the results of finite element simulations. An analytical model for the planar impact of a cylindrical mass on a foam is also developed. This model sets a theoretical bound for the reduction in HIC by utilizing a "plate-on-foam" design. Experimental results of impact tests on foams coupled with stiff composite plates are presented, with comparisons to the theoretical limits predicted by the analytical model. Design maps are developed from the analytical models, illustrating the variations in the HIC with foam strength and impact velocity.
Foam-PVDF smart skin for active control of sound
NASA Astrophysics Data System (ADS)
Fuller, Chris R.; Guigou, Cathy; Gentry, C. A.
1996-05-01
This work is concerned with the development and testing of a foam-PVDF smart skin designed for active noise control. The smart skin is designed to reduce sound by the action of the passive absorption of the foam (which is effective at higher frequencies) and the active input of an embedded PVDF element driven by an oscillating electrical input (which is effective at lower frequencies). It is primarily developed to be used in an aircraft fuselage in order to reduce interior noise associated with turbulent boundary layer excitation. The device consists of cylindrically curved sections of PVDF piezoelectric film embedded in partially reticulated polyurethane acoustic foam. The active PVDF layer was configured to behave in a linear sense as well as to couple the predominantly in-plane strain due to the piezoelectric effect and the vertical motion that is needed to accelerate fluid particles and hence radiate sound away from the foam surface. For performance testing, the foam-PVDF element was mounted near the surface of an oscillating rigid piston mounted in a baffle in an anechoic chamber. A far-field and a near-field microphone were considered as an error sensor and compared in terms of their efficiency to control the far-field sound radiation. A feedforward LMS controller was used to minimize the error sensor signal under broadband excitation (0 - 1.6 kHz). The potential of the smart foam-PVDF skin for globally reducing sound radiation is demonstrated as more than 20 dB attenuation is obtained over the studied frequency band. The device thus has the potential of simultaneously controlling low and high frequency sound in a very thin compact arrangement.
Patil, Umakant M.; Ghorpade, Ravindra V.; Nam, Min Sik; Nalawade, Archana C.; Lee, Sangrae; Han, Haksoo; Jun, Seong Chan
2016-01-01
The current paper describes enhanced electrochemical capacitive performance of chemically grown Cobalt hydroxide (Co(OH)2) nanorods (NRs) decorated porous three dimensional graphitic carbon foam (Co(OH)2/3D GCF) as a supercapacitor electrode. Freestanding 3D porous GCF is prepared by carbonizing, high internal phase emulsion (HIPE) polymerized styrene and divinylbenzene. The PolyHIPE was sulfonated and carbonized at temperature up to 850 °C to obtain graphitic 3D carbon foam with high surface area (389 m2 g−1) having open voids (14 μm) interconnected by windows (4 μm) in monolithic form. Moreover, entangled Co(OH)2 NRs are anchored on 3D GCF electrodes by using a facile chemical bath deposition (CBD) method. The wide porous structure with high specific surface area (520 m2 g−1) access offered by the interconnected 3D GCF along with Co(OH)2 NRs morphology, displays ultrahigh specific capacitance, specific energy and power. The Co(OH)2/3D GCF electrode exhibits maximum specific capacitance about ~1235 F g−1 at ~1 A g−1 charge-discharge current density, in 1 M aqueous KOH solution. These results endorse potential applicability of Co(OH)2/3D GCF electrode in supercapacitors and signifies that, the porous GCF is a proficient 3D freestanding framework for loading pseudocapacitive nanostructured materials. PMID:27762284
Depopulation of Caged Layer Hens with a Compressed Air Foam System
Gurung, Shailesh; Hoffman, John; Stringfellow, Kendre; Abi-Ghanem, Daad; Zhao, Dan; Caldwell, David; Lee, Jason; Styles, Darrel; Berghman, Luc; Byrd, James; Farnell, Yuhua; Archer, Gregory
2018-01-01
Simple Summary Reportable diseases, such as avian influenza, spread rapidly among poultry, resulting in the death of a large number of birds. Once such a disease has been diagnosed at a farm, infected and susceptible birds are rapidly killed to prevent the spread of the disease. The methods to eliminate infected caged laying hens are limited. An experiment was conducted to study the effectiveness of foam made from compressed air, water, and soap to kill laying hens in cages. The study found that stress levels of the hens killed using compressed air foam in cages to be similar to the hens killed by carbon dioxide or the negative control. Hens exposed to carbon dioxide died earlier as compared to the foam methods. The authors conclude that application of compressed air foam in cages is an alternative to methods such as gas inhalation and ventilation shutdown to rapidly and humanely kill laying hens during epidemics. Abstract During the 2014–2015 US highly pathogenic avian influenza (HPAI) outbreak, 50.4 million commercial layers and turkeys were affected, resulting in economic losses of $3.3 billion. Rapid depopulation of infected poultry is vital to contain and eradicate reportable diseases like HPAI. The hypothesis of the experiment was that a compressed air foam (CAF) system may be used as an alternative to carbon dioxide (CO2) inhalation for depopulating caged layer hens. The objective of this study was to evaluate corticosterone (CORT) and time to cessation of movement (COM) of hens subjected to CAF, CO2 inhalation, and negative control (NEG) treatments. In Experiment 1, two independent trials were conducted using young and spent hens. Experiment 1 consisted of five treatments: NEG, CO2 added to a chamber, a CO2 pre-charged chamber, CAF in cages, and CAF in a chamber. In Experiment 2, only spent hens were randomly assigned to three treatments: CAF in cages, CO2 added to a chamber, and aspirated foam. Serum CORT levels of young hens were not significantly different among the CAF in cages, CAF in a chamber, NEG control, and CO2 inhalation treatments. However, spent hens subjected to the CAF in a chamber had significantly higher CORT levels than birds in the rest of the treatments. Times to COM of spent hens subjected to CAF in cages and aspirated foam were significantly greater than of birds exposed to the CO2 in a chamber treatment. These data suggest that applying CAF in cages is a viable alternative for layer hen depopulation during a reportable disease outbreak. PMID:29324639
Humidifier for fuel cell using high conductivity carbon foam
Klett, James W.; Stinton, David P.
2006-12-12
A method and apparatus of supplying humid air to a fuel cell is disclosed. The extremely high thermal conductivity of some graphite foams lends itself to enhance significantly the ability to humidify supply air for a fuel cell. By utilizing a high conductivity pitch-derived graphite foam, thermal conductivity being as high as 187 W/m.dot.K, the heat from the heat source is more efficiently transferred to the water for evaporation, thus the system does not cool significantly due to the evaporation of the water and, consequently, the air reaches a higher humidity ratio.
Measurements and empirical model of the acoustic properties of reticulated vitreous carbon.
Muehleisena, Ralph T; Beamer, C Walter; Tinianov, Brandon D
2005-02-01
Reticulated vitreous carbon (RVC) is a highly porous, rigid, open cell carbon foam structure with a high melting point, good chemical inertness, and low bulk thermal conductivity. For the proper design of acoustic devices such as acoustic absorbers and thermoacoustic stacks and regenerators utilizing RVC, the acoustic properties of RVC must be known. From knowledge of the complex characteristic impedance and wave number most other acoustic properties can be computed. In this investigation, the four-microphone transfer matrix measurement method is used to measure the complex characteristic impedance and wave number for 60 to 300 pore-per-inch RVC foams with flow resistivities from 1759 to 10,782 Pa s m(-2) in the frequency range of 330 Hz-2 kHz. The data are found to be poorly predicted by the fibrous material empirical model developed by Delany and Bazley, the open cell plastic foam empirical model developed by Qunli, or the Johnson-Allard microstructural model. A new empirical power law model is developed and is shown to provide good predictions of the acoustic properties over the frequency range of measurement. Uncertainty estimates for the constants of the model are also computed.
Measurements and empirical model of the acoustic properties of reticulated vitreous carbon
NASA Astrophysics Data System (ADS)
Muehleisen, Ralph T.; Beamer, C. Walter; Tinianov, Brandon D.
2005-02-01
Reticulated vitreous carbon (RVC) is a highly porous, rigid, open cell carbon foam structure with a high melting point, good chemical inertness, and low bulk thermal conductivity. For the proper design of acoustic devices such as acoustic absorbers and thermoacoustic stacks and regenerators utilizing RVC, the acoustic properties of RVC must be known. From knowledge of the complex characteristic impedance and wave number most other acoustic properties can be computed. In this investigation, the four-microphone transfer matrix measurement method is used to measure the complex characteristic impedance and wave number for 60 to 300 pore-per-inch RVC foams with flow resistivities from 1759 to 10 782 Pa s m-2 in the frequency range of 330 Hz-2 kHz. The data are found to be poorly predicted by the fibrous material empirical model developed by Delany and Bazley, the open cell plastic foam empirical model developed by Qunli, or the Johnson-Allard microstructural model. A new empirical power law model is developed and is shown to provide good predictions of the acoustic properties over the frequency range of measurement. Uncertainty estimates for the constants of the model are also computed. .
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Sullivan, Roy M.; Lerch, Bradley A.
2006-01-01
A micromechanics model has been constructed to study the mechanical behavior of spray-on foam insulation (SOFI) for the external tank. The model was constructed using finite elements representing the fundamental repeating unit of the SOFI microstructure. The details of the micromechanics model were based on cell observations and measured average cell dimensions discerned from photomicrographs. The unit cell model is an elongated Kelvin model (fourteen-sided polyhedron with 8 hexagonal and six quadrilateral faces), which will pack to a 100% density. The cell faces and cell edges are modeled using three-dimensional 20-node brick elements. Only one-eighth of the cell is modeled due to symmetry. By exercising the model and correlating the results with the macro-mechanical foam behavior obtained through material characterization testing, the intrinsic stiffness and Poisson s Ratio of the polymeric cell walls and edges are determined as a function of temperature. The model is then exercised to study the unique and complex temperature-dependent mechanical behavior as well as the fracture initiation and propagation at the microscopic unit cell level.
Benefits of polidocanol endovenous microfoam (Varithena®) compared with physician-compounded foams
Carugo, Dario; Ankrett, Dyan N; Zhao, Xuefeng; Zhang, Xunli; Hill, Martyn; O’Byrne, Vincent; Hoad, James; Arif, Mehreen; Wright, David DI
2015-01-01
Objective To compare foam bubble size and bubble size distribution, stability, and degradation rate of commercially available polidocanol endovenous microfoam (Varithena®) and physician-compounded foams using a number of laboratory tests. Methods Foam properties of polidocanol endovenous microfoam and physician-compounded foams were measured and compared using a glass-plate method and a Sympatec QICPIC image analysis method to measure bubble size and bubble size distribution, Turbiscan™ LAB for foam half time and drainage and a novel biomimetic vein model to measure foam stability. Physician-compounded foams composed of polidocanol and room air, CO2, or mixtures of oxygen and carbon dioxide (O2:CO2) were generated by different methods. Results Polidocanol endovenous microfoam was found to have a narrow bubble size distribution with no large (>500 µm) bubbles. Physician-compounded foams made with the Tessari method had broader bubble size distribution and large bubbles, which have an impact on foam stability. Polidocanol endovenous microfoam had a lower degradation rate than any physician-compounded foams, including foams made using room air (p < 0.035). The same result was obtained at different liquid to gas ratios (1:4 and 1:7) for physician-compounded foams. In all tests performed, CO2 foams were the least stable and different O2:CO2 mixtures had intermediate performance. In the biomimetic vein model, polidocanol endovenous microfoam had the slowest degradation rate and longest calculated dwell time, which represents the length of time the foam is in contact with the vein, almost twice that of physician-compounded foams using room air and eight times better than physician-compounded foams prepared using equivalent gas mixes. Conclusion Bubble size, bubble size distribution and stability of various sclerosing foam formulations show that polidocanol endovenous microfoam results in better overall performance compared with physician-compounded foams. Polidocanol endovenous microfoam offers better stability and cohesive properties in a biomimetic vein model compared to physician-compounded foams. Polidocanol endovenous microfoam, which is indicated in the United States for treatment of great saphenous vein system incompetence, provides clinicians with a consistent product with enhanced handling properties. PMID:26036246
Benefits of polidocanol endovenous microfoam (Varithena®) compared with physician-compounded foams.
Carugo, Dario; Ankrett, Dyan N; Zhao, Xuefeng; Zhang, Xunli; Hill, Martyn; O'Byrne, Vincent; Hoad, James; Arif, Mehreen; Wright, David D I; Lewis, Andrew L
2016-05-01
To compare foam bubble size and bubble size distribution, stability, and degradation rate of commercially available polidocanol endovenous microfoam (Varithena®) and physician-compounded foams using a number of laboratory tests. Foam properties of polidocanol endovenous microfoam and physician-compounded foams were measured and compared using a glass-plate method and a Sympatec QICPIC image analysis method to measure bubble size and bubble size distribution, Turbiscan™ LAB for foam half time and drainage and a novel biomimetic vein model to measure foam stability. Physician-compounded foams composed of polidocanol and room air, CO2, or mixtures of oxygen and carbon dioxide (O2:CO2) were generated by different methods. Polidocanol endovenous microfoam was found to have a narrow bubble size distribution with no large (>500 µm) bubbles. Physician-compounded foams made with the Tessari method had broader bubble size distribution and large bubbles, which have an impact on foam stability. Polidocanol endovenous microfoam had a lower degradation rate than any physician-compounded foams, including foams made using room air (p < 0.035). The same result was obtained at different liquid to gas ratios (1:4 and 1:7) for physician-compounded foams. In all tests performed, CO2 foams were the least stable and different O2:CO2 mixtures had intermediate performance. In the biomimetic vein model, polidocanol endovenous microfoam had the slowest degradation rate and longest calculated dwell time, which represents the length of time the foam is in contact with the vein, almost twice that of physician-compounded foams using room air and eight times better than physician-compounded foams prepared using equivalent gas mixes. Bubble size, bubble size distribution and stability of various sclerosing foam formulations show that polidocanol endovenous microfoam results in better overall performance compared with physician-compounded foams. Polidocanol endovenous microfoam offers better stability and cohesive properties in a biomimetic vein model compared to physician-compounded foams. Polidocanol endovenous microfoam, which is indicated in the United States for treatment of great saphenous vein system incompetence, provides clinicians with a consistent product with enhanced handling properties. © The Author(s) 2015.
Quasi-Uniform High Speed Foam Crush Testing Using a Guided Drop Mass Impact
NASA Technical Reports Server (NTRS)
Jones, Lisa E. (Technical Monitor); Kellas, Sotiris
2004-01-01
A relatively simple method for measuring the dynamic crush response of foam materials at various loading rates is described. The method utilizes a drop mass impact configuration with mass and impact velocity selected such that the crush speed remains approximately uniform during the entire sample crushing event. Instrumentation, data acquisition, and data processing techniques are presented, and limitations of the test method are discussed. The objective of the test method is to produce input data for dynamic finite element modeling involving crash and energy absorption characteristics of foam materials.
Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.
SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.
Active control of transmission loss with smart foams.
Kundu, Abhishek; Berry, Alain
2011-02-01
Smart foams combine the complimentary advantages of passive foam material and spatially distributed piezoelectric actuator embedded in it for active noise control applications. In this paper, the problem of improving the transmission loss of smart foams using active control strategies has been investigated both numerically and experimentally inside a waveguide under the condition of plane wave propagation. The finite element simulation of a coupled noise control system has been undertaken with three different smart foam designs and their effectiveness in cancelling the transmitted wave downstream of the smart foam have been studied. The simulation results provide insight into the physical phenomenon of active noise cancellation and explain the impact of the smart foam designs on the optimal active control results. Experimental studies aimed at implementing the real-time control for transmission loss optimization have been performed using the classical single input/single output filtered-reference least mean squares algorithm. The active control results with broadband and single frequency primary source inputs demonstrate a good improvement in the transmission loss of the smart foams. The study gives a comparative description of the transmission and absorption control problems in light of the modification of the vibration response of the piezoelectric actuator under active control.
Effect of cell-size on the energy absorption features of closed-cell aluminium foams
NASA Astrophysics Data System (ADS)
Nammi, S. K.; Edwards, G.; Shirvani, H.
2016-11-01
The effect of cell-size on the compressive response and energy absorption features of closed-cell aluminium (Al) foam were investigated by finite element method. Micromechanical models were constructed with a repeating unit-cell (RUC) which was sectioned from tetrakaidecahedra structure. Using this RUC, three Al foam models with different cell-sizes (large, medium and small) and all of same density, were built. These three different cell-size pieces of foam occupy the same volume and their domains contained 8, 27 and 64 RUCs respectively. However, the smaller cell-size foam has larger surface area to volume ratio compared to other two. Mechanical behaviour was modelled under uniaxial loading. All three aggregates (3D arrays of RUCs) of different cell-sizes showed an elastic region at the initial stage, then followed by a plateau, and finally, a densification region. The smaller cell size foam exhibited a higher peak-stress and a greater densification strain comparing other two cell-sizes investigated. It was demonstrated that energy absorption capabilities of smaller cell-size foams was higher compared to the larger cell-sizes examined.
2011-01-01
Sands T, Xu X, Fisher T. Dendrimer -assisted controlled growth of carbon nanotubes for enhanced thermal interface conductance. Nanotechnology 2007;18...surfaces. Rev Sci Instrum 2006;77(9):095105-1–3. [11] Allaoui A, Hoa S, Evesque P, Bai J. Electronic transport in carbon nanotube tangles under compression
Sound transmission loss of composite sandwich panels
NASA Astrophysics Data System (ADS)
Zhou, Ran
Light composite sandwich panels are increasingly used in automobiles, ships and aircraft, because of the advantages they offer of high strength-to-weight ratios. However, the acoustical properties of these light and stiff structures can be less desirable than those of equivalent metal panels. These undesirable properties can lead to high interior noise levels. A number of researchers have studied the acoustical properties of honeycomb and foam sandwich panels. Not much work, however, has been carried out on foam-filled honeycomb sandwich panels. In this dissertation, governing equations for the forced vibration of asymmetric sandwich panels are developed. An analytical expression for modal densities of symmetric sandwich panels is derived from a sixth-order governing equation. A boundary element analysis model for the sound transmission loss of symmetric sandwich panels is proposed. Measurements of the modal density, total loss factor, radiation loss factor, and sound transmission loss of foam-filled honeycomb sandwich panels with different configurations and thicknesses are presented. Comparisons between the predicted sound transmission loss values obtained from wave impedance analysis, statistical energy analysis, boundary element analysis, and experimental values are presented. The wave impedance analysis model provides accurate predictions of sound transmission loss for the thin foam-filled honeycomb sandwich panels at frequencies above their first resonance frequencies. The predictions from the statistical energy analysis model are in better agreement with the experimental transmission loss values of the sandwich panels when the measured radiation loss factor values near coincidence are used instead of the theoretical values for single-layer panels. The proposed boundary element analysis model provides more accurate predictions of sound transmission loss for the thick foam-filled honeycomb sandwich panels than either the wave impedance analysis model or the statistical energy analysis model.
Comparison of water-based foam and inert-gas mass emergency depopulation methods.
Alphin, R L; Rankin, M K; Johnson, K J; Benson, E R
2010-03-01
Current control strategies for avian influenza (AI) and other highly contagious poultry diseases include surveillance, quarantine, depopulation, disposal, and decontamination. Selection of the best method of emergency mass depopulation involves maximizing human health and safety while minimizing disease spread and animal welfare concerns. Proper selection must ensure that the method is compatible with the species, age, housing type, and disposal options. No one single method is appropriate for all situations. Gassing is one of the accepted methods for euthanatizing poultry. Whole-house, partial-house, or containerized gassing procedures are currently used. The use of water-based foam was developed for emergency mass depopulation and was conditionally approved by the United States Department of Agriculture in 2006. Research has been done comparing these different methods; parameters such as time to brain death, consistency of time to brain death, and pretreatment and posttreatment corticosterone stress levels were considered. In Europe, the use of foam with carbon dioxide is preferred over conventional water-based foam. A recent experiment comparing CO2 gas, foam with CO2 gas, and foam without CO2 gas depopulation methods was conducted with the use of electroencephalometry results. Foam was as consistent as CO2 gassing and more consistent than argon-CO2 gassing. There were no statistically significant differences between foam methods.
Shrinkage deformation of cement foam concrete
NASA Astrophysics Data System (ADS)
Kudyakov, A. I.; Steshenko, A. B.
2015-01-01
The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.
Boundary element analyses for sound transmission loss of panels.
Zhou, Ran; Crocker, Malcolm J
2010-02-01
The sound transmission characteristics of an aluminum panel and two composite sandwich panels were investigated by using two boundary element analyses. The effect of air loading on the structural behavior of the panels is included in one boundary element analysis, by using a light-fluid approximation for the eigenmode series to evaluate the structural response. In the other boundary element analysis, the air loading is treated as an added mass. The effect of the modal energy loss factor on the sound transmission loss of the panels was investigated. Both boundary element analyses were used to study the sound transmission loss of symmetric sandwich panels excited by a random incidence acoustic field. A classical wave impedance analysis was also used to make sound transmission loss predictions for the two foam-filled honeycomb sandwich panels. Comparisons between predictions of sound transmission loss for the two foam-filled honeycomb sandwich panels excited by a random incidence acoustic field obtained from the wave impedance analysis, the two boundary element analyses, and experimental measurements are presented.
Characterization of a microbial fuel cell with reticulated carbon foam electrodes.
Lepage, Guillaume; Albernaz, Fabio Ovenhausen; Perrier, Gérard; Merlin, Gérard
2012-11-01
A microbial fuel cell with open-pore reticulated vitreous carbon electrodes is studied to assess the suitability of this material in a batch mode, in the perspective of flow-through reactors for wastewater treatment with electricity generation. The cell shows good stability and fair robustness in regards to substrate cycles. A power density of 40 W/m(3) is reached. The cell efficiency is mainly limited by cathodic transfers, representing 85% of the global overpotential in open circuit. Through impedance spectrocopy, equivalent circuit modeling reveals the complex nature of the bioelectrochemical phenomena. The global electrical behavior of the cell seems to result in the addition of three anodic and two cathodic distinct phenomena. On the cathode side, the Warburg element in the model is related to the diffusion of oxygen. Warburg resistance and time are respectively 2.99 kΩ cm(2) and 16.4s, similar to those published elsewhere. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Jong Bae; Sohn, Il
2018-02-01
The effect of the initial FeO content and CaO:SiO2 ratio (CaO mass pct/SiO2 mass pct) on the reduction smelting of FeO with carbon flake addition is investigated in the CaO-MgOsatd.-SiO2-FeO slag system at 1823 K (1550 °C). Carbon rapidly reacted with FeO in the molten slag, causing both foaming and compositional changes in the slag. As FeO is reduced, the MgO saturation is modified, and solid precipitants, including MgO and other complex oxides, were observed, which significantly affected the slag properties, including the viscosity and foaming behavior. The solid-phase fraction and viscosity were estimated from changes in the measured FeO content over time using the thermochemical software FactSage. The iron recovery, which is distinguished from the amount of reduced Fe droplets, showed opposite behavior to the measured maximum foaming height and modified foaming index. According to the FeO mass transfer coefficient considering slag foaming at various initial FeO contents and CaO:SiO2 ratios, the reduction rate was optimal at higher initial FeO contents and a CaO:SiO2 ratio of 2.0, which did not correspond to the optimal iron recovery at an initial FeO content of 44 mass pct and above and a CaO:SiO2 ratio of 1.2. The results showed that slag foaming may increase the reduction kinetics, but the slag composition needs to be optimized for greater iron recovery.
Study on shape recovery speed of SMP, SMP composite, and SMP foam
NASA Astrophysics Data System (ADS)
Wu, Xuelian; Liu, Yanju; Leng, Jinsong
2008-03-01
Shape memory polymer (SMP) receives increasing attention along with its derivants - SMP composite and SMP foam in recent years. In this paper, after fabricating thermoset styrene-based SMP, SMP/carbon black (CB) composite and SMP foam, we studied their shape recovery speed in bending. Different from those reported in the literature, we propose a new approach, i.e., using infrared light, for actuating SMP materials for shape recovery. The results show that SMP, SMP/CB composite and SMP foam can recover to their original shape perfectly in a wide temperature range. Shape recovery speed of SMP composite is not uniform during the overall recovery process, and it is the same trend with SMP but not prominent with SMP foam. Repeatability of shape recovery speed for styrene-based SMP and SMP/CB composite are similarly stable and the former is the better, but it is so worse for SMP foam. Temperature-dependent of shape recovery speed test for styrene-based SMP and SMP/CB composite reveal that higher temperature increases their shape recovery speed.
Mechanically Robust, Ultraelastic Hierarchical Foam with Tunable Properties via 3D Printing
Chen, Qiyi; Cao, Peng-Fei; Advincula, Rigoberto C.
2018-04-11
We present a mechanically robust, ultraelastic foam with controlled multiscale architectures and tunable mechanical/conductive performance is fabricated via 3D printing. Hierarchical porosity, including both macro- and microscaled pores, are produced by the combination of direct ink writing (DIW), acid etching, and phase inversion. The thixotropic inks in DIW are formulated by a simple one-pot process to disperse duo nanoparticles (nanoclay and silica nanoparticles) in a polyurethane suspension. The resulting lightweight foam exhibits tailorable mechanical strength, unprecedented elasticity (standing over 1000 compression cycles), and remarkable robustness (rapidly and fully recover after a load more than 20 000 times of its ownmore » weight). Surface coating of carbon nanotubes yields a conductive elastic foam that can be used as piezoresistivity sensor with high sensitivity. For the first time, this strategy achieves 3D printing of elastic foam with controlled multilevel 3D structures and mechanical/conductive properties. In conclusion, the facile ink preparation method can be utilized to fabricate foams of various materials with desirable performance via 3D printing.« less
Mechanically Robust, Ultraelastic Hierarchical Foam with Tunable Properties via 3D Printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qiyi; Cao, Peng-Fei; Advincula, Rigoberto C.
We present a mechanically robust, ultraelastic foam with controlled multiscale architectures and tunable mechanical/conductive performance is fabricated via 3D printing. Hierarchical porosity, including both macro- and microscaled pores, are produced by the combination of direct ink writing (DIW), acid etching, and phase inversion. The thixotropic inks in DIW are formulated by a simple one-pot process to disperse duo nanoparticles (nanoclay and silica nanoparticles) in a polyurethane suspension. The resulting lightweight foam exhibits tailorable mechanical strength, unprecedented elasticity (standing over 1000 compression cycles), and remarkable robustness (rapidly and fully recover after a load more than 20 000 times of its ownmore » weight). Surface coating of carbon nanotubes yields a conductive elastic foam that can be used as piezoresistivity sensor with high sensitivity. For the first time, this strategy achieves 3D printing of elastic foam with controlled multilevel 3D structures and mechanical/conductive properties. In conclusion, the facile ink preparation method can be utilized to fabricate foams of various materials with desirable performance via 3D printing.« less
A finite element/level set model of polyurethane foam expansion and polymerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Rekha R.; Long, Kevin Nicholas; Roberts, Christine Cardinal
Polyurethane foams are used widely for encapsulation and structural purposes because they are inexpensive, straightforward to process, amenable to a wide range of density variations (1 lb/ft3 - 50 lb/ft3), and able to fill complex molds quickly and effectively. Computational model of the filling and curing process are needed to reduce defects such as voids, out-of-specification density, density gradients, foam decomposition from high temperatures due to exotherms, and incomplete filling. This paper details the development of a computational fluid dynamics model of a moderate density PMDI structural foam, PMDI-10. PMDI is an isocyanate-based polyurethane foam, which is chemically blown withmore » water. The polyol reacts with isocyanate to produces the polymer. PMDI- 10 is catalyzed giving it a short pot life: it foams and polymerizes to a solid within 5 minutes during normal processing. To achieve a higher density, the foam is over-packed to twice or more of its free rise density of 10 lb/ft3. The goal for modeling is to represent the expansion, filling of molds, and the polymerization of the foam. This will be used to reduce defects, optimize the mold design, troubleshoot the processed, and predict the final foam properties. A homogenized continuum model foaming and curing was developed based on reaction kinetics, documented in a recent paper; it uses a simplified mathematical formalism that decouples these two reactions. The chemo-rheology of PMDI is measured experimentally and fit to a generalized- Newtonian viscosity model that is dependent on the extent of cure, gas fraction, and temperature. The conservation equations, including the equations of motion, an energy balance, and three rate equations are solved via a stabilized finite element method. The equations are combined with a level set method to determine the location of the foam-gas interface as it evolves to fill the mold. Understanding the thermal history and loads on the foam due to exothermicity and oven curing is very important to the results, since the kinetics, viscosity, and other material properties are all sensitive to temperature. Results from the model are compared to experimental flow visualization data and post-test X-ray computed tomography (CT) data for the density. Several geometries are investigated including two configurations of a mock structural part and a bar geometry to specifically test the density model. We have found that the model predicts both average density and filling profiles well. However, it under predicts density gradients, especially in the gravity direction. Further model improvements are also discussed for future work.« less
Numerical-experimental investigation of PE/EVA foam injection molded parts
NASA Astrophysics Data System (ADS)
Spina, Roberto
The main objective of the presented work is to propose a robust framework to test foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of a new foam material based on numerical and experimental results. The research purpose is to assess parameters influencing several aspects, such as foam morphology and compression behavior, using useful suggestions from finite element analysis. The investigated polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the numerical models and the parameters of the injection molding process.
[Modified polyurethane foam as a local hemostatic agent after dental extractions].
Selten, M H A; Broekema, F I; Zuidema, J; van Oeveren, W; Bos, R R M
2013-01-01
In this split mouth experiment, the feasibility ofpolyurethane foam as a local hemostatic agent after dental extractions was studied. Ten healthy patients underwent 2 extractions ofa dental element in 1 treatment session. The 10 patients were subsequently randomly divided in a gelatin group and a collagen group. In the gelatin group, a polyurethane foam (PU) was applied in 1 extraction socket, while in the other socket a commercially available gelatin foam was applied. In the collagen group, a PU was applied in 1 socket, and a collagen wadding in the other. All hemostats were removed after 2 minutes, after which the degree of coagulation was measured using a thrombin/antithrombin test and a fibrinogen test. This study suggests that polyurethane foam has hemostatic capacity. Large scale clinical research is needed to confirm this finding, and should indicate whether this hemostatic capacity is clinically relevant.
Synthesis, Microstructure and Properties of Nickel Aluminide Foams
NASA Technical Reports Server (NTRS)
Dunand, David C.
2003-01-01
Two Ph.D. students were involved in the project: Mr. Christopher Schuh (part-time, graduated in Spring 2001) and Ms. Andrea Hodge (full-time, graduated Summer 2002). One post-doctoral fellow, Dr. Heeman Choe, worked full-time on the project from July to December 2002. A new process to aluminize and chromize nickel foams was created. A kinetic aluminization model was developed. Creep testing was conducted on the foams. A finite-element model and a simplified analytical model for foam creep were produced. Four articles were written: one is published, two are accepted for publication, and one is in preparation. Ms. Hodge spent four months at NASA Glenn Research Center (9-12/2001 and 2-3/2002) under the supervision of Dr. Nathal. She conducted research on NiAl foam fabrication, mechanical testing and numerical modeling. She gave a talk at the ASM annual conference in November 2001 and presented her results at NASA in December 2001.
Fire Control Agent Effectiveness for Hazardous Chemical Fires: Carbon Disulfide.
1981-01-01
Fires..................................... 46 12. AFFF Fire Control Data for Carbon Disulfide Fires............................. 47 13. Extinguishment...Disulfide and Hexane Fires ....... 67 22. Comparison of AFFF Fire Control Times for Carbon Disulfide and Hexane Fires ................... 68 23. Comparison of...Data .............. 27 2. Summary of Fluoroprotein Foam Fire Test Data ....... 28 3. Summary of AFFF Fire Test Data ..................... 29 4. Summary
Structural assessment of metal foam using combined NDE and FEA
NASA Astrophysics Data System (ADS)
Ghosn, Louis J.; Abdul-Aziz, Ali; Young, Philippe G.; Rauser, Richard W.
2005-05-01
Metal foams are expected to find use in structural applications where weight is of particular concern, such as space vehicles, rotorcraft blades, car bodies or portable electronic devices. The obvious structural application of metal foam is for light weight sandwich panels, made up of thin solid face sheets and a metallic foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by a light weight foam core. The resulting high-stiffness structure is lighter than that constructed only out of the solid metal material. Since the face sheets carry the applied in-plane and bending loads, the sandwich architecture is a viable engineering concept. However, the metal foam core must resist transverse shear loads and compressive loads while remaining integral with the face sheets. Challenges relating to the fabrication and testing of these metal foam panels remain due to some mechanical properties falling short of their theoretical potential. Theoretical mechanical properties are based on an idealized foam microstructure and assumed cell geometry. But the actual testing is performed on as fabricated foam microstructure. Hence in this study, a high fidelity finite element analysis is conducted on as fabricated metal foam microstructures, to compare the calculated mechanical properties with the idealized theory. The high fidelity geometric models for the FEA are generated using series of 2D CT scans of the foam structure to reconstruct the 3D metal foam geometry. The metal foam material is an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. Tensile, compressive, and shear mechanical properties are deduced from the FEA model and compared with the theoretical values. The combined NDE/FEA provided insight in the variability of the mechanical properties compared to idealized theory.
Conducting nanotubes or nanostructures based composites, method of making them and applications
NASA Technical Reports Server (NTRS)
Gupta, Mool C. (Inventor); Yang, Yonglai (Inventor); Dudley, Kenneth L. (Inventor); Lawrence, Roland W. (Inventor)
2013-01-01
An electromagnetic interference (EMI) shielding material includes a matrix of a dielectric or partially conducting polymer, such as foamed polystyrene, with carbon nanotubes or other nanostructures dispersed therein in sufficient concentration to make the material electrically conducting. The composite is formed by dispersing the nanotube material in a solvent in which the dielectric or partially conducting polymer is soluble and mixing the resulting suspension with the dielectric or partially conducting polymer. A foaming agent can be added to produce a lightweight foamed material. An organometallic compound can be added to enhance the conductivity further by decomposition into a metal phase.
NASA Technical Reports Server (NTRS)
Noever, David A.; Sibille, Laurent; Smith, David; Cronise, Raymond
1998-01-01
There is a current lack of environmentally acceptable foams to insulate Long-Duration Human Spaceflight Missions, including the experimental Express Rack for the Space Station. A recent 60-day manned test in a sealed chamber at Johnson Space Center (JSC) was nearly aborted, because of persistently high formaldehyde concentrations in the chamber. Subsequent investigation showed that the source was melamine foam (used extensively for acoustic insulation). The thermal and acoustic potential for melamine-foam substitutes is evaluated for scale-up to a silica-based foam and aerogel, which is environmentally benign for long duration space flight. These features will be discussed in reference to an aerogel prototype to: 1) assemble material strength data for various formulated aerogels, both silica and organic carbon aerogels; 2) assemble the aerogel into panels of mylar/vacuum-encapsulated rigid boards which can be molded in various shapes and rigidities; and 3) describe a process for space applications for formaldehyde-free, long duration thermal and acoustic insulators.
Extraordinarily Stretchable All-Carbon Collaborative Nanoarchitectures for Epidermal Sensors.
Cai, Yichen; Shen, Jie; Dai, Ziyang; Zang, Xiaoxian; Dong, Qiuchun; Guan, Guofeng; Li, Lain-Jong; Huang, Wei; Dong, Xiaochen
2017-08-01
Multifunctional microelectronic components featuring large stretchability, high sensitivity, high signal-to-noise ratio (SNR), and broad sensing range have attracted a huge surge of interest with the fast developing epidermal electronic systems. Here, the epidermal sensors based on all-carbon collaborative percolation network are demonstrated, which consist 3D graphene foam and carbon nanotubes (CNTs) obtained by two-step chemical vapor deposition processes. The nanoscaled CNT networks largely enhance the stretchability and SNR of the 3D microarchitectural graphene foams, endowing the strain sensor with a gauge factor as high as 35, a wide reliable sensing range up to 85%, and excellent cyclic stability (>5000 cycles). The flexible and reversible strain sensor can be easily mounted on human skin as a wearable electronic device for real-time and high accuracy detecting of electrophysiological stimuli and even for acoustic vibration recognition. The rationally designed all-carbon nanoarchitectures are scalable, low cost, and promising in practical applications requiring extraordinary stretchability and ultrahigh SNRs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sun, Rui; Xiao, Heng
2016-04-01
With the growth of available computational resource, CFD-DEM (computational fluid dynamics-discrete element method) becomes an increasingly promising and feasible approach for the study of sediment transport. Several existing CFD-DEM solvers are applied in chemical engineering and mining industry. However, a robust CFD-DEM solver for the simulation of sediment transport is still desirable. In this work, the development of a three-dimensional, massively parallel, and open-source CFD-DEM solver SediFoam is detailed. This solver is built based on open-source solvers OpenFOAM and LAMMPS. OpenFOAM is a CFD toolbox that can perform three-dimensional fluid flow simulations on unstructured meshes; LAMMPS is a massively parallel DEM solver for molecular dynamics. Several validation tests of SediFoam are performed using cases of a wide range of complexities. The results obtained in the present simulations are consistent with those in the literature, which demonstrates the capability of SediFoam for sediment transport applications. In addition to the validation test, the parallel efficiency of SediFoam is studied to test the performance of the code for large-scale and complex simulations. The parallel efficiency tests show that the scalability of SediFoam is satisfactory in the simulations using up to O(107) particles.
von Konigslow, Kier; Park, Chul B; Thompson, Russell B
2018-06-06
A variant of the Sanchez-Lacombe equation of state is applied to several polymers, blowing agents, and saturated mixtures of interest to the polymer foaming industry. These are low-density polyethylene-carbon dioxide and polylactide-carbon dioxide saturated mixtures as well as polystyrene-carbon dioxide-dimethyl ether and polystyrene-carbon dioxide-nitrogen ternary saturated mixtures. Good agreement is achieved between theoretically predicted and experimentally determined solubilities, both for binary and ternary mixtures. Acceptable agreement with swelling ratios is found with no free parameters. Up-to-date pure component Sanchez-Lacombe characteristic parameters are provided for carbon dioxide, dimethyl ether, low-density polyethylene, nitrogen, polylactide, linear and branched polypropylene, and polystyrene. Pure fluid low-density polyethylene and nitrogen parameters exhibit more moderate success while still providing acceptable quantitative estimations. Mixture estimations are found to have more moderate success where pure components are not as well represented. The Sanchez-Lacombe equation of state is found to correctly predict the anomalous reversal of solubility temperature dependence for low critical point fluids through the observation of this behaviour in polystyrene nitrogen mixtures.
Demonstration of neutron detection utilizing open cell foam and noble gas scintillation
NASA Astrophysics Data System (ADS)
Lavelle, C. M.; Coplan, M.; Miller, E. C.; Thompson, Alan K.; Kowler, A. L.; Vest, Robert E.; Yue, A. T.; Koeth, T.; Al-Sheikhly, M.; Clark, Charles W.
2015-03-01
We present results demonstrating neutron detection via a closely spaced converter structure coupled to low pressure noble gas scintillation instrumented by a single photo-multiplier tube (PMT). The converter is dispersed throughout the gas volume using a reticulated vitreous carbon foam coated with boron carbide (B4C). A calibrated cold neutron beam is used to measure the neutron detection properties, using a thin film of enriched 10B as a reference standard. Monte Carlo computations of the ion energy deposition are discussed, including treatment of the foam random network. Results from this study indicate that the foam shadows a significant portion of the scintillation light from the PMT. The high scintillation yield of Xe appears to overcome the light loss, facilitating neutron detection and presenting interesting opportunities for neutron detector design.
Demonstration of neutron detection utilizing open cell foam and noble gas scintillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavelle, C. M., E-mail: christopher.lavelle@jhuapl.edu; Miller, E. C.; Coplan, M.
2015-03-02
We present results demonstrating neutron detection via a closely spaced converter structure coupled to low pressure noble gas scintillation instrumented by a single photo-multiplier tube (PMT). The converter is dispersed throughout the gas volume using a reticulated vitreous carbon foam coated with boron carbide (B{sub 4}C). A calibrated cold neutron beam is used to measure the neutron detection properties, using a thin film of enriched {sup 10}B as a reference standard. Monte Carlo computations of the ion energy deposition are discussed, including treatment of the foam random network. Results from this study indicate that the foam shadows a significant portionmore » of the scintillation light from the PMT. The high scintillation yield of Xe appears to overcome the light loss, facilitating neutron detection and presenting interesting opportunities for neutron detector design.« less
Flexible Foam Protection Materials for Portable Life Support System Packaging Study
NASA Technical Reports Server (NTRS)
Tang,Henry H.; Dillon, Paul A.; Thomas, Gretchen A.
2009-01-01
This paper discusses the phase I effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be robust to consistently perform over several Extravehicular Activity (EVA) missions in the extreme lunar thermal vacuum environment. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating some commercial off-the-shelf (COTS) foam material candidates. It also presents the mechanical properties and impact drop tests results of the foam material candidates. The results of this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.
A combined NDE/FEA approach to evaluate the structural response of a metal foam
NASA Astrophysics Data System (ADS)
Ghosn, Louis J.; Abdul-Aziz, Ali; Raj, Sai V.; Rauser, Richard W.
2007-04-01
Metal foams are expected to find use in structural applications where weight is of particular concern, such as space vehicles, rotorcraft blades, car bodies or portable electronic devices. The obvious structural application of metal foam is for light weight sandwich panels, made up of thin solid face sheets and a metallic foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by a light weight metal foam core. The resulting high-stiffness structure is lighter than that constructed only out of the solid metal material. Since the face sheets carry the applied in-plane and bending loads, the sandwich architecture is a viable engineering concept. However, the metal foam core must resist transverse shear loads and compressive loads while remaining integral with the face sheets. Challenges relating to the fabrication and testing of these metal foam panels remain due to some mechanical properties falling short of their theoretical potential. Theoretical mechanical properties are based on an idealized foam microstructure and assumed cell geometry. But the actual testing is performed on as fabricated foam microstructure. Hence in this study, a detailed three dimensional foam structure is generated using series of 2D Computer Tomography (CT) scans. The series of the 2D images are assembled to construct a high precision solid model capturing all the fine details within the metal foam as detected by the CT scanning technique. Moreover, a finite element analysis is then performed on as fabricated metal foam microstructures, to calculate the foam mechanical properties with the idealized theory. The metal foam material is an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. Tensile and compressive mechanical properties are deduced from the FEA model and compared with the theoretical values for three different foam densities. The combined NDE/FEA provided insight in the variability of the mechanical properties compared to idealized theory.
Electrical connection structure for a superconductor element
Lallouet, Nicolas; Maguire, James
2010-05-04
The invention relates to an electrical connection structure for a superconductor element cooled by a cryogenic fluid and connected to an electrical bushing, which bushing passes successively through an enclosure at an intermediate temperature between ambient temperature and the temperature of the cryogenic fluid, and an enclosure at ambient temperature, said bushing projecting outside the ambient temperature enclosure. According to the invention, said intermediate enclosure is filled at least in part with a solid material of low thermal conductivity, such as a polyurethane foam or a cellular glass foam. The invention is applicable to connecting a superconductor cable at cryogenic temperature to a device for equipment at ambient temperature.
Hangai, Yoshihiko; Kamada, Hiroto; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro
2014-01-01
Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%–78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT) observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE) analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis. PMID:28788573
Hangai, Yoshihiko; Kamada, Hiroto; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro
2014-03-21
Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%-78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT) observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE) analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.
Designing safer composite helmets to reduce rotational accelerations during oblique impacts.
Mosleh, Yasmine; Cajka, Martin; Depreitere, Bart; Vander Sloten, Jos; Ivens, Jan
2018-05-01
Oblique impact is the most common accident situation that occupants in traffic accidents or athletes in professional sports experience. During oblique impact, the human head is subjected to a combination of linear and rotational accelerations. Rotational movement is known to be responsible for traumatic brain injuries. In this article, composite foam with a column/matrix composite configuration is proposed for head protection applications to replace single-layer uniform foam, to better attenuate rotational movement of the head during oblique impacts. The ability of composite foam in the mitigation of rotational head movement is studied by performing finite element (FE) simulations of oblique impact on flat and helmet shape specimens. The performance of composite foam with respect to parameters such as compliance of the matrix foam and the number, size and cross-sectional shape of the foam columns is explored in detail, and subsequently an optimized structure is proposed. The simulation results show that using composite foam instead of single-layer foam, the rotational acceleration and velocity of the headform can be significantly reduced. The parametric study indicates that using a more compliant matrix foam and by increasing the number of columns in the composite foam configuration, the rotation can be further mitigated. This was confirmed by experimental results. The simulation results were also analyzed based on global head injury criteria such as head injury criterion, rotational injury criterion, brain injury criterion and generalized acceleration model for brain injury threshold which further confirmed the superior performance of composite foam versus single-layer homogeneous expanded polystyrene foam. The findings of simulations give invaluable information for design of protective helmets or, for instance, headliners for the automotive industry.
NASA Astrophysics Data System (ADS)
Sugimoto, Futoshi
Foam separation of high concentration chromium in leather tanning wastewater was investigated using casein protein as a foaming reagent5mL of5w/v% ammonium acetate buffer was added to the sample chromium water. After adjusting the pH to 9.0,4g/L concentrations of casein and gelatin solution were added to recovery the coagulating flocs of chromium resulting foam separation. The sample water containing chromium flocs was incased in reactor, then mixed with distilled water and 1mL of ethanol to sum 200mL total. The foam separation was performed at time intervals of 3min with an air flow rate of 300mL/min. With casein reagent, the removal rate of chromium was not influenced by the presence of NaCl, however, the rate decreased tendency using with the use of gelatin. The proposed method, utilizing 4g/L of casein solution with water, was not influenced by the presence of calcium (<34mM), magnesium (<1mM), carbonate (<0.5mM), bicarbonate (<1.2mM) nor sulfate (<350mM) ions, and is ideal for foam separation in chromium concentrations of about 100mgCr/L.
Periodic processes in vapor phase biofiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, W.M.; Irvine, R.L.
1998-07-01
Most industrial processes and environmental remediation activities generate large volumes of air contaminated with low concentrations of volatile organic compounds. Carbon adsorption is the most widely used conventional treatment technology, but it has many drawbacks including secondary waste streams and excessive regeneration costs. Biofiltration, a microbial-based treatment technology, removes and biodegrades contaminants from a wide variety of waste streams without the disadvantages of carbon adsorption. In biofiltration, contaminated air flows through a packed bed containing microorganisms which convert contaminants primarily into carbon dioxide, water, and biomass. This paper describes how periodically operated, controlled unsteady state conditions were imposed on biofiltersmore » which used a new polyurethane foam medium that couples high porosity, suitable pore size, and low density with an ability to sorb water. The potential benefits associated with the controlled, unsteady-state operation of biofilters containing this new polyurethane foam medium are described herein. An example system treating a toluene contaminated waste gas is presented.« less
Sargianis, James; Kim, Hyung-ick; Suhr, Jonghwan
2012-01-01
Carbon fiber-synthetic foam core sandwich composites are widely used for many structural applications due to their superior mechanical performance and low weight. Unfortunately these structures typically have very poor acoustic performance. There is increasingly growing demand in mitigating this noise issue in sandwich composite structures. This study shows that marrying carbon fiber composites with natural cork in a sandwich structure provides a synergistic effect yielding a noise-free sandwich composite structure without the sacrifice of mechanical performance or weight. Moreover the cork-core sandwich composites boast a 250% improvement in damping performance, providing increased durability and lifetime operation. Additionally as the world seeks environmentally friendly materials, the harvesting of cork is a natural, renewable process which reduces subsequent carbon footprints. Such a transition from synthetic foam cores to natural cork cores could provide unprecedented improvements in acoustic and vibrational performance in applications such as aircraft cabins or wind turbine blades.
Pyrolytic-carbon coating in carbon nanotube foams for better performance in supercapacitors
NASA Astrophysics Data System (ADS)
He, Nanfei; Yildiz, Ozkan; Pan, Qin; Zhu, Jiadeng; Zhang, Xiangwu; Bradford, Philip D.; Gao, Wei
2017-03-01
Nowadays, the wide-spread adoption of supercapacitors has been hindered by their inferior energy density to that of batteries. Here we report the use of our pyrolytic-carbon-coated carbon nanotube foams as lightweight, compressible, porous, and highly conductive current collectors in supercapacitors, which are infiltrated with chemically-reduced graphene oxide and later compressed via mechanical and capillary forces to generate the active electrodes. The pyrolytic carbon coatings, introduced by chemical vapor infiltration, wrap around the CNT junctions and increase the surface roughness. When active materials are infiltrated, the pyrolytic-carbon coatings help prevent the π-stacking, enlarge the accessible surface area, and increase the electrical conductivity of the scaffold. Our best-performing device offers 48% and 57% higher gravimetric energy and power density, 14% and 23% higher volumetric energy and power density, respectively, and two times higher knee frequency, than the device with commercial current collectors, while the "true-performance metrics" are strictly followed in our measurements. We have further clarified the solution resistance, charge transfer resistance/capacitance, double-layer capacitance, and Warburg resistance in our system via comprehensive impedance analysis, which will shed light on the design and optimization of similar systems.
Gordonia (nocardia) amarae foaming due to biosurfactant production.
Pagilla, K R; Sood, A; Kim, H
2002-01-01
Gordonia amarae, a filamentous actinomycete, commonly found in foaming activated sludge wastewater treatment plants was investigated for its biosurfactant production capability. Soluble acetate and paringly soluble hexadecane were used as carbon sources for G. amarae growth and biosurfactant production in laboratory scale batch reactors. The lowest surface tension (critical micelle concentration, CMC) of the cell-free culture broth was 55 dynes/cm when 1,900 mg/L acetate was used as the sole carbon source. The lowest surface tension was less than 40 dynes/cm when either 1% (v/v) hexadecane or a mixture of 1% (v/v) hexadecane and 0.5% (w/v) acetate was used as the carbon source. The maximum biomass concentration (the stationary phase) was achieved after 4 days when acetate was used along with hexadecane, whereas it took about 8 days to achieve the stationary phase with hexadecane alone. The maximum biosurfactant production was 3 x CMC with hexadecane as the sole carbon source, and it was 5 x CMC with the mixture of hexadecane and acetate. Longer term growth studies (approximately 35 days of culture growth) indicated that G. amarae produces biosurfactant in order to solubilize hexadecane, and that adding acetate improves its biosurfactant production by providing readily degradable substrate for initial biomass growth. This research confirms that the foaming problems in activated sludge containing G. amarae in the activated sludge are due to the biosurfactant production by G. amarae when hydrophobic substrates such as hexadecane are present.
Development of steel foam processing methods and characterization of metal foam
NASA Astrophysics Data System (ADS)
Park, Chanman
2000-10-01
Steel foam was synthesized by a powder metallurgical route, resulting in densities less than half that of steel. Process parameters for foam synthesis were investigated, and two standard powder formulations were selected consisting of Fe-2.5% C and 0.2 wt% foaming agent (either MgCO3 or SrCO3). Compression tests were performed on annealed and pre-annealed foam samples of different density to determine mechanical response and energy absorption behavior. The stress-strain response was strongly affected by annealing, which reduced the carbon content and converted much of the pearlitic structure to ferrite. Different powder blending methods and melting times were employed and the effects on the geometric structure of steel foam were examined. Dispersion of the foaming agent affected the pore size distribution of the expanded foams. With increasing melt time, pores coalesced, leading to the eventual collapse of the foam. Inserting interlayer membranes in the powder compacts inhibited coalescence of pores and produced foams with more uniform cell size and distribution. The closed-cell foam samples exhibited anisotropy in compression, a phenomenon that was caused primarily by the ellipsoidal cell shapes within the foam. Yield strengths were 3x higher in the transverse direction than in the longitudinal direction. Yield strength also showed a power-law dependence on relative density (n ≅ 1.8). Compressive strain was highly localized and occurred in discrete bands that extended transverse to the loading direction. The yield strength of foam samples showed stronger strain rate dependence at higher strain rates. The increased strain rate dependence was attributed to microinertial hardening. Energy absorption was also observed to increase with strain rate. Measurements of cell wall curvature showed that an increased mean curvature correlated with a reduced yield strength, and foam strengths generally fell below predictions of Gibson-Ashby theory. Morphological defects reduced yield strength and altered the dependence on density. Microstructural analysis was performed on a porous Mg and AZ31 Mg alloy synthesized by the GASAR process. The pore distribution depended on the distance from the chill end of ingots. TEM observations revealed apparent gas tracks neat the pores and ternary intermetallic phases in the alloy.
1989-09-01
material, reticulated vitreous carbon , that consists of an open-cell, rigid carbon "foam." This material was developed in the mid- 1970’s as a filter...These halides are excellent emitters of photoelectrons. 33 About 90 percent of the volume of reticulated vitreous carbon is void. Thus an electrical...for fluids and as a scaffold for work at high temperatures or with corrosive agents. A relatively fine mesh of vitreous carbon , perhaps about four
Demonstration of x-ray fluorescence imaging of a high-energy-density plasma.
MacDonald, M J; Keiter, P A; Montgomery, D S; Biener, M M; Fein, J R; Fournier, K B; Gamboa, E J; Klein, S R; Kuranz, C C; LeFevre, H J; Manuel, M J-E; Streit, J; Wan, W C; Drake, R P
2014-11-01
Experiments at the Trident Laser Facility have successfully demonstrated the use of x-ray fluorescence imaging (XRFI) to diagnose shocked carbonized resorcinol formaldehyde (CRF) foams doped with Ti. One laser beam created a shock wave in the doped foam. A second laser beam produced a flux of vanadium He-α x-rays, which in turn induced Ti K-shell fluorescence within the foam. Spectrally resolved 1D imaging of the x-ray fluorescence provided shock location and compression measurements. Additionally, experiments using a collimator demonstrated that one can probe specific regions within a target. These results show that XRFI is a capable alternative to path-integrated measurements for diagnosing hydrodynamic experiments at high energy density.
Wu, Chun; Cai, Junjie; Zhang, Qiaobao; Zhou, Xiang; Zhu, Ying; Shen, Pei Kang; Zhang, Kaili
2015-12-09
Nickel foam supported hierarchical mesoporous Zn-Ni-Co ternary oxide (ZNCO) nanowire arrays are synthesized by a simple two-step approach including a hydrothermal method and subsequent calcination process and directly utilized for supercapacitive investigation for the first time. The nickel foam supported hierarchical mesoporous ZNCO nanowire arrays possess an ultrahigh specific capacitance value of 2481.8 F g(-1) at 1 A g(-1) and excellent rate capability of about 91.9% capacitance retention at 5 A g(-1). More importantly, an asymmetric supercapacitor with a high energy density (35.6 Wh kg(-1)) and remarkable cycle stability performance (94% capacitance retention over 3000 cycles) is assembled successfully by employing the ZNCO electrode as positive electrode and activated carbon as negative electrode. The remarkable electrochemical behaviors demonstrate that the nickel foam supported hierarchical mesoporous ZNCO nanowire array electrodes are highly desirable for application as advanced supercapacitor electrodes.
Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion.
Ren, Huaying; Tang, Miao; Guan, Baolu; Wang, Kexin; Yang, Jiawei; Wang, Feifan; Wang, Mingzhan; Shan, Jingyuan; Chen, Zhaolong; Wei, Di; Peng, Hailin; Liu, Zhongfan
2017-10-01
Efficient solar-thermal energy conversion is essential for the harvesting and transformation of abundant solar energy, leading to the exploration and design of efficient solar-thermal materials. Carbon-based materials, especially graphene, have the advantages of broadband absorption and excellent photothermal properties, and hold promise for solar-thermal energy conversion. However, to date, graphene-based solar-thermal materials with superior omnidirectional light harvesting performances remain elusive. Herein, hierarchical graphene foam (h-G foam) with continuous porosity grown via plasma-enhanced chemical vapor deposition is reported, showing dramatic enhancement of broadband and omnidirectional absorption of sunlight, which thereby can enable a considerable elevation of temperature. Used as a heating material, the external solar-thermal energy conversion efficiency of the h-G foam impressively reaches up to ≈93.4%, and the solar-vapor conversion efficiency exceeds 90% for seawater desalination with high endurance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Rabeeh, Bakr Mohamed
Great efforts aiming towards the synthesis and the development of structural composite materials. Direct metal oxidation, DIMOX introduced for hybrid composite processing. However, oxidation temperatures around 1100°C lead to the formation of porous ceramic materials. To utilize this porosity intentionally for foam production, a new approach based on synergetic effect of alloying elements, DIMOX and semisolid (rheocsting) processing is developed. A semisolid reaction, rheocasting is introduced to control porosity shape and size. Aluminum alloy 6xxx (automobile scrap pistons) is recycled for this objective and DIMOX at 1100°C for 30 min, then rheocasting, at 750°C for 30 minutes. The effect of α-Fe powder, Mg powder, and Boric acid powder established for the objective of a hybrid structural metal matrix composite in bulk foam matrix. The kinetic of formation of hybrid metal matrix foam composite is introduced. Microstructural and mechanical characterization established for high performance Aluminum foam hybrid composite materials.
Mines, Levi W. D.; Park, Jae Hong; Mudunkotuwa, Imali A.; Anthony, T. Renée; Grassian, Vicki H.; Peters, Thomas M.
2017-01-01
Porous polyurethane foam was evaluated to replace the eight nylon meshes used as a substrate to collect nanoparticles in the Nanoparticle Respiratory Deposition (NRD) sampler. Cylindrical (25-mm diameter by 40-mm deep) foam with 110 pores per inch was housed in a 25-mm-diameter conductive polypropylene cassette cowl compatible with the NRD sampler. Pristine foam and nylon meshes were evaluated for metals content via elemental analysis. The size-selective collection efficiency of the foam was evaluated using salt (NaCl) and metal fume aerosols in independent tests. Collection efficiencies were compared to the nanoparticulate matter (NPM) criterion and a semi-empirical model for foam. Changes in collection efficiency and pressure drop of the foam and nylon meshes were measured after loading with metal fume particles as measures of substrate performance. Substantially less titanium was found in the foam (0.173 μg sampler−1) compared to the nylon mesh (125 μg sampler−1), improving the detection capabilities of the NRD sampler for titanium dioxide particles. The foam collection efficiency was similar to that of the nylon meshes and the NPM criterion (R2 = 0.98, for NaCl), although the semi-empirical model underestimated the experimental efficiency (R2 = 0.38). The pressure drop across the foam was 8% that of the nylon meshes when pristine and changed minimally with metal fume loading (~ 19 mg). In contrast, the pores of the nylon meshes clogged after loading with ~ 1 mg metal fume. These results indicate that foam is a suitable substrate to collect metal (except for cadmium) nanoparticles in the NRD sampler. PMID:28867869
Caputo, M P; Benson, E R; Pritchett, E M; Hougentogler, D P; Jain, P; Patil, C; Johnson, A L; Alphin, R L
2012-12-01
The mass depopulation of production birds remains an effective means of controlling fast-moving, highly infectious diseases such as avian influenza and virulent Newcastle disease. Two experiments were performed to compare the physiological responses of White Pekin commercial ducks during foam depopulation and CO(2) gas depopulation. Both experiment 1 (5 to 9 wk of age) and 2 (8 to 14 wk of age) used electroencephalogram, electrocardiogram, and accelerometer to monitor and evaluate the difference in time to unconsciousness, motion cessation, brain death, altered terminal cardiac activity, duration of bradycardia, and elapsed time from onset of bradycardia to onset of unconsciousness between foam and CO(2) gas. Experiment 2 also added a third treatment, foam + atropine injection, to evaluate the effect of suppressing bradycardia. Experiment 1 resulted in significantly shorter times for all 6 physiological points for CO(2) gas compared with foam, whereas experiment 2 found that there were no significant differences between foam and CO(2) gas for these physiological points except brain death, in which CO(2) was significantly faster than foam and duration of bradycardia, which was shorter for CO(2). Experiment 2 also determined there was a significant positive correlation between duration of bradycardia and time to unconsciousness, motion cessation, brain death, and altered terminal cardiac activity. The time to unconsciousness, motion cessation, brain death, and altered terminal cardiac activity was significantly faster for the treatment foam + atropine injection compared with foam. Both experiments showed that bradycardia can occur as a result of either submersion in foam or exposure to CO(2) gas. The duration of bradycardia has a significant impact on the time it takes White Pekin ducks to reach unconsciousness and death during depopulation.
Use of Aqueous Foam to Reduce Shoulder-Launched Rocket Noise Level: Feasibility Investigation.
1981-07-01
1 tj~ * UNCLASSIFIED SECUflITY CLASSIFICATION OF THIS PAGE (**en Dese Entered) REPORT DOCUMENTATION PAGE BEFORE COOTRUTIONS I. REPORT NUMBER 2. GOVT...necessar and identify by block number) Military Operations in Urban Terrain (MOUT) Program noise signature reduction aqueous foam 20. ABSTRACT...Military Operations in Urban Terrain (MOUT) Program, a U.S. Marine Corps exploratory development effort under Naval Materiel Command Program Element
Macro-Fiber Composite Based Transduction
2016-03-01
displacements, resonance frequencies, and acoustic performance. In addition to the experimental work, ATILA++ finite element models were developed and...done free flooded and with a simulated air backing made from a foam core (a weight was suspended below the device for negative buoyancy). Figure 13 and...Layer Ring -- 80000 100.000 100000 ~ Figure 15 shows the TVR and phase of the MFC cylinder in-water with an air backing ( foam core). The wide
RANS Simulations using OpenFOAM Software
2016-01-01
Averaged Navier- Stokes (RANS) simulations is described and illustrated by applying the simpleFoam solver to two case studies; two dimensional flow...to run in parallel over large processor arrays. The purpose of this report is to illustrate and test the use of the steady-state Reynolds Averaged ...Group in the Maritime Platforms Division he has been simulating fluid flow around ships and submarines using finite element codes, Lagrangian vortex
RGO/Au NPs/N-doped CNTs supported on nickel foam as an anode for enzymatic biofuel cells.
Zhang, He; Zhang, Lingling; Han, Yujie; Yu, You; Xu, Miao; Zhang, Xueping; Huang, Liang; Dong, Shaojun
2017-11-15
In this study, three-dimensional reduced graphene oxide/Au NPs/nitrogen-doped carbon nanotubes (RGO/Au NPs/N-doped CNTs) assembly supported on nickel foam was utilized as an anode for enzymatic biofuel cells (EBFCs). 3D RGO/Au NPs was obtained by electrodepositing reduced graphene oxide on nickel foam (Ni foam), while Au NPs were co-deposited during the process. Afterwards, nitrogen doped CNTs (N-CNTs) were allowed to grow seamlessly on the surfaces of 3D RGO/Au NPs via a simple chemical vapor deposition (CVD) process. In this nanostructure, Au NPs co-deposition and nitrogen doping offer more active sites for bioelectrocatalysis. Additionally, N-CNTs were demonstrated providing high specific surface area for enzyme immobilization and facilitating the electron transfer between glucose oxidase (GOx) and electrode. The resulting bioanode achieved efficient glucose oxidation with high current densities of 7.02mAcm -2 (0.3V vs. Ag/AgCl). Coupling with a Pt cathode, the fabricated glucose/air biofuel cell exhibited an open-circuit potential of 0.32V and generated a maximum power density 235µWcm -2 at 0.15V. This novel electrode substrate achieved high performance in current density at bioelectrochemical systems and could be useful for further exploiting the application of three dimensional carbon-based nanomaterials in EBFCs. Copyright © 2017 Elsevier B.V. All rights reserved.
Monte Carlo simulation of random, porous (foam) structures for neutron detection
NASA Astrophysics Data System (ADS)
Reichenberger, Michael A.; Fronk, Ryan G.; Shultis, J. Kenneth; Roberts, Jeremy A.; Edwards, Nathaniel S.; Stevenson, Sarah R.; Tiner, Christopher N.; McGregor, Douglas S.
2017-01-01
Porous media incorporating highly neutron-sensitive materials are of interest for use in the development of neutron detectors. Previous studies have shown experimentally the feasibility of 6LiF-saturated, multi-layered detectors; however, the random geometry of porous materials has limited the effectiveness of simulation efforts. The results of scatterless neutron transport and subsequent charged reaction product ion energy deposition are reported here using a novel Monte Carlo method and compared to results obtained by MCNP6. This new Dynamic Path Generation (DPG) Monte Carlo method was developed in order to overcome the complexities of modeling a random porous geometry in MCNP6. The DPG method is then applied to determine the optimal coating thickness for 10B4C-coated reticulated vitreous-carbon (RVC) foams. The optimal coating thickness for 4.1275 cm-thick 10B4C-coated reticulated vitreous carbon foams with porosities of 5, 10, 20, 30, 45, and 80 pores per inch (PPI) were determined for ionizing gas pressures of 1.0 and 2.8 atm. A simulated, maximum, intrinsic thermal-neutron detection efficiency of 62.8±0.25% was predicted for an 80 PPI RVC foam with a 0.2 μm thick coating of 10B4C, for a lower level discriminator setting of 75 keV and an argon pressure of 2.8 atm.
3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response
Maiti, A.; Small, W.; Lewicki, J.; ...
2016-04-27
3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curvesmore » predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. As a result, this indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.« less
3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiti, A.; Small, W.; Lewicki, J.
3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curvesmore » predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. As a result, this indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.« less
3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response
NASA Astrophysics Data System (ADS)
Maiti, A.; Small, W.; Lewicki, J. P.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.
2016-04-01
3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.
3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response
Maiti, A.; Small, W.; Lewicki, J. P.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.
2016-01-01
3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance. PMID:27117858
Foam model of planetary formation
NASA Astrophysics Data System (ADS)
Andreev, Y.; Potashko, O.
The Analysis of 2637 terrestrial minerals shows presence of characteristic element and isotope structure for each ore irrespective of its site. The model of processes geo-nuclear syntheses elements is offered due to avalanche merge of nucleus which simply explains these laws. Main assumption: nucleus, atoms, connections, ores and minerals were formed in volume of the modern Earth at an early stage of its evolution from uniform proto-substance. Substantive provisions of the model: 1)The most part of nucleus of atoms of all chemical elements of the Earth's crust were formed on the mechanism of avalanche chain merge practically in one stage (in geological scales) in a course of correlated(in scales of a planet) process with allocation of a plenty of heat. 2) Atoms of chemical elements were generated during cooling a planet with preservation of a relative spatial arrangement of nucleus. 3) Chemical compounds have arisen at cooling a surface of a planet and were accompanied by reorganizations (hashing) macro- and geo-scale. 4) Mineral formations are consequence of correlated behaviour of chemical compounds on microscopic scales during phase transition from gaseous or liquid to a firm condition. 5) Synthesis of chemical elements in deep layers of the Earth occurs till now. "Foaming'' instead of "Big Bang" The physical space is continual gas-fluid environment consist of super fluid foam. The continuity, keeping and uniqueness of proto-substance are postulated. Scenario: primary singularity-> droplets(proto-galaxies) droplets(proto-stars)-> droplets(proto-planets)-> droplets(proto- satellites)-> droplets. Proto-planet substance->proton+electron as 1st generation disintegration result of primary foam. Nuclei or nucleonic crystals are the 2nd generation in result of cascade merge of protons into conglomerates. The theory has applied to the analysis of samples of native copper deposit from Rafalovka's ore deposit in Ukraine. The abundance of elements by use of the roentgen fluorescent microanalysis has been made. Changes of a parity of elements are described by nuclear synthesis reactions: 16O+47Ti, 23Na+40Ca, 24Mg+39K, 31P+32S-> 63Cu; 16O+49Ti, 23Na+42Ca, 26Mg+39K, 31P+34S-> 65Cu Dramatical change of isotope parities of 56Fe and 57Fe in the sites of space carried on 3 millimetres. The content of 57Fe is greater then 56Fe in Cu granule.
Iglio, Rossella; Mariani, Stefano; Robbiano, Valentina; Strambini, Lucanos; Barillaro, Giuseppe
2018-04-25
Low-cost piezoresistive strain/pressure sensors with large working range, at the same time able to reliably detect ultralow strain (≤0.1%) and pressure (≤1 Pa), are one of the challenges that have still to be overcome for flexible piezoresistive materials toward personalized health-monitoring applications. In this work, we report on unprecedented, simultaneous detection of ultrasmall strain (0.1%, i.e., 10 μm displacement over 10 mm) and subtle pressure (20 Pa, i.e., a force of only 2 mN over an area of 1 cm 2 ) in compression mode, coupled with a large working range (i.e., up to 60% for strain-6 mm in displacement-and 50 kPa for pressure) using piezoresistive, flexible three-dimensional (3D) macroporous polydimethylsiloxane (pPDMS) foams decorated with pristine multiwalled carbon nanotubes (CNTs). pPDMS/CNT foams with pore size up to 500 μm (i.e., twice the size of those of commonly used foams, at least) and porosity of 77%, decorated with a nanostructured surface network of CNTs at densities ranging from 7.5 to 37 mg/cm 3 are prepared using a low-cost and scalable process, through replica molding of sacrificial sugar templates and subsequent drop-casting of CNT ink. A thorough characterization shows that piezoresistive properties of the foams can be finely tuned by controlling the CNT density and reach an optimum at a CNT density of 25 mg/cm 3 , for which a maximum change of the material resistivity (e.g., ρ 0 /ρ 50 = 4 at 50% strain) is achieved under compression. Further static and dynamic characterization of the pPDMS/CNT foams with 25 mg/cm 3 of CNTs highlights that detection limits for strain and pressure are 0.03% (3 μm displacement over 10 mm) and 6 Pa (0.6 mN over an area of 1 cm 2 ), respectively; moreover, good stability and limited hysteresis are apparent by cycling the foams with 255 compression-release cycles over the strain range of 0-60%, at different strain rates up to 10 mm/min. Our results on piezoresistive, flexible pPDMS/CNT foams pave the way toward breakthrough applications for personalized health care, though not limited to these, which have not been fully addressed to date with flexible strain/stress sensors.
Refractory Ceramic Foams for Novel Applications
NASA Technical Reports Server (NTRS)
Stackpoole, M.
2008-01-01
Workers at NASA Ames Research center are endeavoring to develop durable, oxidation-resistant, foam thermal protection systems (TPSs) that would be suitable for covering large exterior spacecraft surfaces, would have low to moderate densities, and would have temperature capabilities comparable to those of carbon-based TPSs [reusable at 3,000 F (.1,650 C)] with application of suitable coatings. These foams may also be useful for repairing TPSs while in orbit. Moreover, on Earth as well as in outer space, these foams might be useful as catalyst supports and filters. Preceramic polymers are obvious candidates for use in making the foams in question. The use of these polymers offers advantages over processing routes followed in making conventional ceramics. Among the advantages are the ability to plastically form parts, the ability to form pyrolized ceramic materials at lower temperatures, and the ability to form high-purity microstructures having properties that can be tailored to satisfy requirements. Heretofore, preceramic polymers have been used mostly in the production of such low-dimensional products as fibers because the loss of volatiles during pyrolysis of the polymers leads to porosity and large shrinkage (in excess of 30 percent). In addition, efforts to form bulk structures from preceramic polymers have resulted in severe cracking during pyrolysis. However, because the foams in question would consist of networks of thin struts (in contradistinction to nonporous dense solids), these foams are ideal candidates for processing along a preceramic-polymer route.
46 CFR 34.05-5 - Fire-extinguishing systems-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Officer in Charge, Marine Inspection. (1) Dry cargo compartments. A carbon dioxide or water spray system... subparagraph. (3) Lamp and paint lockers and similar spaces. A carbon dioxide or water spray system must be..., inert gas, foam or water spray system must be installed for the protection of all pumprooms. (5...
46 CFR 34.05-5 - Fire-extinguishing systems-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Officer in Charge, Marine Inspection. (1) Dry cargo compartments. A carbon dioxide or water spray system... subparagraph. (3) Lamp and paint lockers and similar spaces. A carbon dioxide or water spray system must be..., inert gas, foam or water spray system must be installed for the protection of all pumprooms. (5...
External Tank (ET) Foam Thermal/Structural Analysis Project
NASA Technical Reports Server (NTRS)
Moore, David F.; Ungar, Eugene K.; Chang, Li C.; Malroy, Eric T.; Stephan, Ryan A.
2008-01-01
An independent study was performed to assess the pre-launch thermally induced stresses in the Space Shuttle External Tank Bipod closeout and Ice/Frost ramps (IFRs). Finite element models with various levels of detail were built that included the three types of foam (BX-265, NCFI 24-124, and PDL 1034) and the underlying structure and bracketry. Temperature profiles generated by the thermal analyses were input to the structural models to calculate the stress levels. An area of high stress in the Bipod closeout was found along the aluminum tank wall near the phenolic insulator and along the phenolic insulator itself. This area of high stress might be prone to cracking and possible delamination. There is a small region of slightly increased stress in the NCFI 24-124 foam near its joint with the Bipod closeout BX-265 foam. The calculated stresses in the NCFI 24-124 acreage foam are highest at the NCFI 24-124/PDL 1034/tank wall interface under the LO2 and LH2 IFRs. The highest calculated stresses in the LH2 NCFI 24-124 foam are higher than in similar locations in the LO2 IFR. This finding is consistent with the dissection results of IFRs on ET-120.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Quoc; Hirasaki, George; Johnston, Keith
2015-02-05
We explored cationic, nonionic and zwitterionic surfactants to identify candidates that have the potential to satisfy all the key requirements for CO 2 foams in EOR. We have examined the formation, texture, rheology and stability of CO 2 foams as a function of the surfactant structure and formulation variables including temperature, pressure, water/CO 2 ratio, surfactant concentration, salinity and concentration of oil. Furthermore, the partitioning of surfactants between oil and water as well as CO 2 and water was examined in conjunction with adsorption measurements on limestone by the Hirasaki lab to develop strategies to optimize the transport of surfactantsmore » in reservoirs.« less
Validation of a Polyimide Foam Model for Use in Transmission Loss Applications
NASA Technical Reports Server (NTRS)
Hong, Kwanwoo; Bolton, J. Stuart; Cano, Roberto J.; Weiser, Erik S.; Jensen, Brian J.; Silcox, Rich; Howerton, Brian M.; Maxon, John; Wang, Tongan; Lorenzi, Tyler
2010-01-01
The work described in this paper was focused on the use of a new polyimide foam in a double wall sound transmission loss application. Recall that polyimide foams are functionally attractive, compared to polyurethane foams, for example, owing to their fire resistance. The foam considered here was found to have a flow resistivity that was too high for conventional acoustical applications, and as a result, it was processed by partial crushing to lower the flow resistivity into an acceptable range. Procedures for measuring the flow resistivity and Young s modulus of the material have been described, as was an inverse characterization procedure for estimating the remaining Biot parameters based on standing wave tube measurements of transmission loss and absorption coefficient. The inverse characterization was performed using a finite element model implementation of the Biot poro-elastic material theory. Those parameters were then used to predict the sound transmission loss of a double panel system lined with polyimide foam, and the predictions were compared with full-scale transmission loss measurements. The agreement between the two was reasonable, especially in the high and low frequency limits; however, it was found that the SEA model resulted in an under-prediction of the transmission loss in the mid-frequency range. Nonetheless, it was concluded that the performance of polyimide foam could be predicted using conventional poro-elastic material models and that polyimide foam may offer an attractive alternative to other double wall linings in certain situations: e.g., when fire resistance is a key issue. Future work will concentrate on reducing the density of the foam to values similar to those used in current aircraft sidewall treatments, and developing procedures to improve the performance of the foam in transmission loss applications.
Structure, properties, and surfactant adsorption behavior of fly ash carbon
NASA Astrophysics Data System (ADS)
Kulaots, Indrek
The objective of this research was to suggest methods by which certain problems associated with use of coal fly ash as a pozzolanic agent in concrete mixtures could be alleviated, guided by a better characterization of fly ash properties. A sample suite of eighty fly ashes was gathered from utilities across the world (mainly US-based) and included ashes from coals ranging in rank from bituminous to lignite. The widely used foam index test is used to characterize ashes with respect to their propensity to adsorb surfactants (called Air Entraining Admixtures or AEAs) used to impart freeze-thaw resistance to concrete. In ash-containing concrete mixtures, AEAs are adsorbed from the polar concrete-water solution onto non-polar unburned carbon surfaces in the ash. The AEA uptake by fly ashes only crudely correlates with the amount of carbon in the fly ash, because carbon surface area, accessibility and polarity all play a role in determining adsorption capacities. Fly ash carbon particle size distribution is also a key factor. Fine carbon particles in fly ash fractions of <106mum are responsible for about 90% of surfactant adsorption capacity. Surfactant adsorption on fly ash carbon is, in the foam index test, a dynamic process. The time of the test (typically <10 minutes) is not long enough to permit penetration of small porosity by the relatively large AEA molecules, and only the most readily available adsorption surface near the geometrical surface of the carbon particles is utilized. The nature of the foam index test was also examined, and it is recommended that a more standardized test procedure based upon pure reagents be adopted for examining the nature of fly ashes. Several possible reagents were identified. Room temperature fly ash ozonation is a powerful technique that allows increasing fly ash surface polarity in a relatively short time and thus is very effective for decreasing the AEA uptake capacity. Depending on the ozone input concentration, sample amount and contact time, surfactant uptake capacity decreases by a factor of two or more following reaction of only 0--1g O3/kg-ash, bringing many ashes into compliance with AEA uptake requirements.
Nanocellular thermoplastic foam and process for making the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lingbo; Costeux, Stephane; Patankar, Kshitish A.
Prepare a thermoplastic polymer foam having a porosity of 70% or more and at least one of: (i) an average cell size of 200 nanometers or less; and (ii) a nucleation density of at least 1.times.1015 effective nucleation sites per cubic centimeter of foamable polymer composition not including blowing agent using a foamable polymer composition containing a thermoplastic polymer selected from styrenic polymer and (meth)acrylic polymers, a blowing agent comprising at least 20 mole-percent carbon dioxide based on moles of blowing agent and an additive having a Total Hansen Solubility Parameter that differs from that of carbon dioxide by lessmore » than 2 and that is present at a concentration of 0.01 to 1.5 weight parts per hundred weight parts thermoplastic polymer.« less
Cultivation of animal cells in a reticulated vitreous carbon foam.
Kent, B L; Mutharasan, R
1992-02-01
A reticulated vitreous carbon foam (RVCF) was used as a surface to cultivate a model anchorage-dependent animal cell line, 3T6 (mouse embryo fibroblast). This fixed-surface bioreactor provided a low-shear, chemically-inert, and reusable environment for cell growth. An external medium recirculation loop allowed aeration, nutrient monitoring, and medium replacement without disturbing the cells. Optimal flow rates for the attachment and growth phases were determined. Growth rates comparable to static (T-flask and petri dish) cultures and agitated microcarrier cultures were achieved with appropriately high medium recirculation rates. Metabolic parameters were shown to be useful indicators of cell mass, although specific glucose consumption rates were considerably higher for cultures in the RVCF reactor. Oxygen supply was shown to be the most likely limiting factor for scaleup.
NASA Astrophysics Data System (ADS)
Sliseris, J.; Yan, L.; Kasal, B.
2017-09-01
Numerical methods for simulating hollow and foam-filled flax-fabric-reinforced epoxy tubular energy absorbers subjected to lateral crashing are presented. The crashing characteristics, such as the progressive failure, load-displacement response, absorbed energy, peak load, and failure modes, of the tubes were simulated and calculated numerically. A 3D nonlinear finite-element model that allows for the plasticity of materials using an isotropic hardening model with strain rate dependence and failure is proposed. An explicit finite-element solver is used to address the lateral crashing of the tubes considering large displacements and strains, plasticity, and damage. The experimental nonlinear crashing load vs. displacement data are successfully described by using the finite-element model proposed. The simulated peak loads and absorbed energy of the tubes are also in good agreement with experimental results.
Parameters estimation of sandwich beam model with rigid polyurethane foam core
NASA Astrophysics Data System (ADS)
Barbieri, Nilson; Barbieri, Renato; Winikes, Luiz Carlos
2010-02-01
In this work, the physical parameters of sandwich beams made with the association of hot-rolled steel, Polyurethane rigid foam and High Impact Polystyrene, used for the assembly of household refrigerators and food freezers are estimated using measured and numeric frequency response functions (FRFs). The mathematical models are obtained using the finite element method (FEM) and the Timoshenko beam theory. The physical parameters are estimated using the amplitude correlation coefficient and genetic algorithm (GA). The experimental data are obtained using the impact hammer and four accelerometers displaced along the sample (cantilevered beam). The parameters estimated are Young's modulus and the loss factor of the Polyurethane rigid foam and the High Impact Polystyrene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corona, Edmundo; Song, Bo
This memo concerns the transmission of mechanical signals through silicone foam pads in a compression Kolsky bar set-up. The results of numerical simulations for four levels of pad pre-compression and two striker velocities were compared directly to test measurements to assess the delity of the simulations. The nite element model simulated the Kolsky tests in their entirety and used the hyperelastic `hyperfoam' model for the silicone foam pads. Calibration of the hyperfoam model was deduced from quasi-static compression data. It was necessary, however, to augment the material model by adding sti ness proportional damping in order to generate results thatmore » resembled the experimental measurements. Based on the results presented here, it is important to account for the dynamic behavior of polymeric foams in numerical simulations that involve high loading rates.« less
Stress analysis of composite wind turbine blade by finite element method
NASA Astrophysics Data System (ADS)
Yeh, Meng-Kao; Wang, Chen-Hsu
2017-10-01
In this study, the finite element analysis software ANSYS was used to analyze the composite wind turbine blade. The wind turbine blade model used is adopted from the 5 MW model of US National Renewable Energy Laboratory (NREL). The wind turbine blade is a sandwich structure, comprising outermost carbon fiber cloth/epoxy composites, the inner glass fiber/vinylester layers, and PVC foam core, together with stiffeners. The wind pressure is converted into the load on the blade structure. The stress distribution and deformation of wind turbine blade were obtained by considering different pitch angles and at different angular positions. The Tsai-Hill criterion was used to determine the failure of wind turbine blade. The results show that at the 0° pitch angle, the wind turbine blade is subjected to the largest combined load and therefore the stress is the largest; with the increasing pitch angle, the load gradually decreases and the stress is also smaller. The stress and displacement are the greatest when the wind blade is located at 120° angular position from its highest vertex.
Cao, Xuecheng; Sun, Zhihui; Zheng, Xiangjun; Jin, Chao; Tian, Jinhua; Li, Xiaowei; Yang, Ruizhi
2018-02-09
Carbon is usually used as cathode material for Li-O 2 batteries. However, the discharge product, such as Li 2 O 2 and LiO 2 , could react with carbon to form an insulating lithium carbonate layer, resulting in cathode passivation and capacity fading. To solve this problem, the development of non-carbon cathodes is highly desirable. Herein, we successfully synthesized MnCo 2 O 4 (MCO) nanoparticles anchored on porous MoO 2 nanosheets that are grown on Ni foam (current collector) (MCO/MoO 2 @Ni), acting as a carbon- and binder-free cathode for Li-O 2 batteries, in an attempt to improve the electrical conductivity, electrocatalytic activity, and durability. This MCO/MoO 2 @Ni electrode delivers excellent cyclability (more than 400 cycles) and rate performance (voltage gap of 0.75 V at 5000 mA g -1 ). Notably, the battery with this electrode exhibits a high energy efficiency (higher than 85 %). The advanced electrochemical performance of MCO/MoO 2 @Ni can be attributed to its high electrical conductivity, excellent stability, and outstanding electrocatalytic activity. This work offers a new strategy to fabricate high-performance Li-O 2 batteries with non-carbon cathode materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Elhag, Amro S; Da, Chang; Chen, Yunshen; Mukherjee, Nayan; Noguera, Jose A; Alzobaidi, Shehab; Reddy, Prathima P; AlSumaiti, Ali M; Hirasaki, George J; Biswal, Sibani L; Nguyen, Quoc P; Johnston, Keith P
2018-07-15
The viscosity and stability of CO 2 /water foams at elevated temperature can be increased significantly with highly viscoelastic aqueous lamellae. The slow thinning of these viscoelastic lamellae leads to greater foam stability upon slowing down Ostwald ripening and coalescence. In the aqueous phase, the viscoelasticity may be increased by increasing the surfactant tail length to form more entangled micelles even at high temperatures and salinity. Systematic measurements of the steady state shear viscosity of aqueous solutions of the diamine surfactant (C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 ) were conducted at varying surfactant concentrations and salinity to determine the parameters for formation of entangled wormlike micelles. The apparent viscosity and stability of CO 2 /water foams were compared for systems with viscoelastic entangled micellar aqueous phases relative to those with much less viscous spherical micelles. We demonstrated for the first time stable CO 2 /water foams at temperatures up to 120 °C and CO 2 volumetric fractions up to 0.98 with a single diamine surfactant, C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 . The foam stability was increased by increasing the packing parameter of the surfactant with a long tail and methyl substitution on the amine to form entangled viscoelastic wormlike micelles in the aqueous phase. The foam was more viscous and stable compared to foams with spherical micelles in the aqueous lamellae as seen with C 12-14 N(EO) 2 and C 16-18 N(EO)C 3 N(EO) 2 . Copyright © 2018. Published by Elsevier Inc.
Carbon nanotube-containing structures, methods of making, and processes using same
Wang, Yong [Richland, WA; Chin, Ya-Huei [Richland, WA; Gao, Yufei [Blue Bell, PA; Aardahl, Christopher L [Richland, WA; Stewart, Terri L [Richland, WA
2006-03-14
Carbon nanotube structures are disclosed in which nanotubes are disposed over a porous support such as a foam, felt, mesh, or membrane. Techniques of making these structures are also disclosed. In some of these techniques, a support is pretreated with a templated surfactant composition to assist with the formation of a nanotube layer.
Carbon Nanotube-Containing Structures, Methods Of Making, And Processes Using Same
Wang, Yong; Chin, Ya-Huei; Gao, Yufei; Aardahl, Christopher L.; Stewart, Terri L.
2004-11-30
Carbon nanotube structures are disclosed in which nanotubes are disposed over a porous support such as a foam, felt, mesh, or membrane. Techniques of making these structures are also disclosed. In some of these techniques, a support is pretreated with a templated surfactant composition to assist with the formation of a nanotube layer.
Development of Polyimide Foam for Aircraft Sidewall Applications
NASA Technical Reports Server (NTRS)
Silcox, Richard; Cano, Roberto J.; Howerton, Brian M.; Bolton, J. Stuart; Kim, Nicholas N.
2013-01-01
In this paper, the use of polyimide foam as a lining in double panel applications is considered. It is being investigated here as a replacement for aircraft grade glass fiber and has a number of attractive functional attributes, not the least of which is its high fire resistance. The test configuration studied here consisted of two 1mm (0.04 in.) thick, flat aluminum panels separated by 12.7 cm (5.0 in.) with a 7.6 cm (3.0 in.) thick layer of foam centered in that space. Random incidence transmission loss measurements were conducted on this buildup, and conventional poro-elastic models were used to predict the performance of the lining material. Results from two densities of foam are considered. The Biot parameters of the foam were determined by a combination of direct measurement (for density, flow resistivity and Young s modulus) and inverse characterization procedures (for porosity, tortuosity, viscous and thermal characteristic length, Poisson s ratio and loss factor). The inverse characterization procedure involved matching normal incidence standing wave tube measurements of absorption coefficient and transmission loss of the isolated foam with finite element predictions. When the foam parameters determined in this way were used to predict the performance of the complete double panel system, reasonable agreement was obtained between the measured transmission loss and predictions made using a commercial statistical energy analysis code.
Landsman, T L; Touchet, T; Hasan, S M; Smith, C; Russell, B; Rivera, J; Maitland, D J; Cosgriff-Hernandez, E
2017-01-01
Uncontrolled hemorrhage accounts for more than 30% of trauma deaths worldwide. Current hemostatic devices focus primarily on time to hemostasis, but prevention of bacterial infection is also critical for improving survival rates. In this study, we sought to improve on current devices used for hemorrhage control by combining the large volume-filling capabilities and rapid clotting of shape memory polymer (SMP) foams with the swelling capacity of hydrogels. In addition, a hydrogel composition was selected that readily complexes with elemental iodine to impart bactericidal properties to the device. The focus of this work was to verify that the advantages of each respective material (SMP foam and hydrogel) are retained when combined in a composite device. The iodine-doped hydrogel demonstrated an 80% reduction in bacteria viability when cultured with a high bioburden of Staphylococcus aureus. Hydrogel coating of the SMP foam increased fluid uptake by 19× over the uncoated SMP foam. The composite device retained the shape memory behavior of the foam with more than 15× volume expansion after being submerged in 37°C water for 15 min. Finally, the expansion force of the composite was tested to assess potential tissue damage within the wound during device expansion. Expansion forces did not exceed 0.6N, making tissue damage during device expansion unlikely, even when the expanded device diameter is substantially larger than the target wound site. Overall, the enhanced fluid uptake and bactericidal properties of the shape memory foam composite indicate its strong potential as a hemostatic agent to treat non-compressible wounds. No hemostatic device currently used in civilian and combat trauma situations satisfies all the desired criteria for an optimal hemostatic wound dressing. The research presented here sought to improve on current devices by combining the large volume-filling capabilities and rapid clotting of shape memory polymer (SMP) foams with the swelling capacity of hydrogels. In addition, a hydrogel composition was selected that readily complexes with elemental iodine to impart bactericidal properties to the device. The focus of this work was to verify that the advantages of each respective material are retained when combined into a composite device. This research opens the door to generating novel composites with a focus on both hemostasis, as well as wound healing and microbial prevention. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Johnsen, David L; Emamipour, Hamidreza; Guest, Jeremy S; Rood, Mark J
2016-02-02
A life-cycle assessment (LCA) and cost analysis are presented comparing the environmental and economic impacts of using regenerative thermal oxidizer (RTO), granular activated carbon (GAC), and activated carbon fiber cloth (ACFC) systems to treat gaseous emissions from sheet-foam production. The ACFC system has the lowest operational energy consumption (i.e., 19.2, 8.7, and 3.4 TJ/year at a full-scale facility for RTO, GAC, and ACFC systems, respectively). The GAC system has the smallest environmental impacts across most impact categories for the use of electricity from select states in the United States that produce sheet foam. Monte Carlo simulations indicate the GAC and ACFC systems perform similarly (within one standard deviation) for seven of nine environmental impact categories considered and have lower impacts than the RTO for every category for the use of natural gas to produce electricity. The GAC and ACFC systems recover adequate isobutane to pay for themselves through chemical-consumption offsets, whereas the net present value of the RTO is $4.1 M (20 years, $0.001/m(3) treated). The adsorption systems are more environmentally and economically competitive than the RTO due to recovered isobutane for the production process and are recommended for resource recovery from (and treatment of) sheet-foam-production exhaust gas. Research targets for these adsorption systems should focus on increasing adsorptive capacity and saturation of GAC systems and decreasing electricity and N2 consumption of ACFC systems.
Study on Thermal Conductivities of Aromatic Polyimide Aerogels.
Feng, Junzong; Wang, Xin; Jiang, Yonggang; Du, Dongxuan; Feng, Jian
2016-05-25
Polyimide aerogels for low density thermal insulation materials were produced by 4,4'-diaminodiphenyl ether and 3,3',4,4'-biphenyltetracarboxylic dianhydride, cross-linked with 1,3,5-triaminophenoxybenzene. The densities of obtained polyimide aerogels are between 0.081 and 0.141 g cm(-3), and the specific surface areas are between 288 and 322 m(2) g(-1). The thermal conductivities were measured by a Hot Disk thermal constant analyzer. The value of the measured thermal conductivity under carbon dioxide atmosphere is lower than that under nitrogen atmosphere. Under pressure of 5 Pa at -130 °C, the thermal conductivity is the lowest, which is 8.42 mW (m K)(-1). The polyimide aerogels have lower conductivity [30.80 mW (m K)(-1)], compared to the value for other organic foams (polyurethane foam, phenolic foam, and polystyrene foam) with similar apparent densities under ambient pressure at 25 °C. The results indicate that polyimide aerogel is an ideal insulation material for aerospace and other applications.
Liquefaction processes and systems and liquefaction process intermediate compositions
Schmidt, Andrew J.; Hart, Todd R.; Billing, Justin M.; Maupin, Gary D.; Hallen, Richard T.; Anderson, Daniel B.
2014-07-12
Liquefaction processes are provided that can include: providing a biomass slurry solution having a temperature of at least 300.degree. C. at a pressure of at least 2000 psig; cooling the solution to a temperature of less than 150.degree. C.; and depressurizing the solution to release carbon dioxide from the solution and form at least part of a bio-oil foam. Liquefaction processes are also provided that can include: filtering the biomass slurry to remove particulates; and cooling and depressurizing the filtered solution to form the bio-oil foam. Liquefaction systems are provided that can include: a heated biomass slurry reaction zone maintained above 300.degree. C. and at least 2000 psig and in continuous fluid communication with a flash cooling/depressurization zone maintained below 150.degree. C. and between about 125 psig and about atmospheric pressure. Liquefaction systems are also provided that can include a foam/liquid separation system. Liquefaction process intermediate compositions are provided that can include a bio-oil foam phase separated from an aqueous biomass solids solution.
NASA Astrophysics Data System (ADS)
Lu, X. Y.; Qiu, T.; Wang, X. F.; Zhang, M.; Gao, X. L.; Li, R. X.; Lu, X.; Weng, J.
2012-12-01
In this paper, the foam-like composite scaffolds composed of hydroxyapatite (HA) and carbon nanotubes (CNTs) were prepared by a new method, where a polymer impregnating method was used for porous HA-based scaffold and a chemical vapor deposition (CVD) method was used for the growth of CNTs from the HA-based scaffold. The process produces the CNTs/HA scaffolds that have a foam-like structure with better mechanical property, better microstructure and a high degree of interconnection. A favorable pore size with big pores of 1-2 mm and small pores of 20-300 μm for osteoconduction and bone ingrowth is presented in these scaffolds. About 2 wt% multi-walled CNTs with the diameter of 60-100 nm are observed to be in situ grown from deficient nano-HA crystallites. Magnetic measurement exhibits these scaffolds are superparamagnetic with a saturation magnetization of 1.14 emu g-1 at a room temperature, benefiting the scaffolds to take up growth factors in vivo, stem cell or other bioactive molecules easily. This new type of CNTs/HA scaffolds is expected to have a promising applications in bone tissue engineering, targeted drug delivery system and other biomedical fields.
NASA Astrophysics Data System (ADS)
Veerasubramani, Ganesh Kumar; Krishnamoorthy, Karthikeyan; Kim, Sang Jae
2016-02-01
Herein, we are successfully prepared cobalt molybdate (CoMoO4) grown on nickel foam as a binder free electrode by hydrothermal approach for supercapacitors and improved their electrochemical performances using potassium ferricyanide (K3Fe(CN)6) as redox additive. The formation of CoMoO4 on Ni foam with high crystallinity is confirmed using XRD, Raman, and XPS measurements. The nanoplate arrays (NPAs) of CoMoO4 are uniformly grown on Ni foam which is confirmed by FE-SEM analysis. The prepared binder-free CoMoO4 NPAs achieved maximum areal capacity of 227 μAh cm-2 with KOH electrolyte at 2.5 mA cm-2. This achieved areal capacity is further improved about three times using the addition of K3Fe(CN)6 as redox additive. The increased electrochemical performances of CoMoO4 NPAs on Ni foam electrode via redox additive are discussed in detail and the mechanism has been explored. Moreover, the assembled CoMoO4 NPAs on Ni foam//activated carbon asymmetric supercapacitor device with an extended operating voltage window of 1.5 V exhibits an excellent performances such as high energy density and cyclic stability. The overall performances of binder-free CoMoO4 NPAs on Ni foam with redox additives suggesting their potential use as positive electrode material for high performance supercapacitors.
NASA Astrophysics Data System (ADS)
Leroy, Pierre
The objective of this thesis is to conduct a thorough numerical and experimental analysis of the smart foam concept, in order to highlight the physical mechanisms and the technological limitations for the control of acoustic absorption. A smart foam is made of an absorbing material with an embedded actuator able to complete the lack of effectiveness of this material in the low frequencies (<500Hz). In this study, the absorbing material is a melamine foam and the actuator is a piezoelectric film of PVDF. A 3D finite element model coupling poroelastic, acoustic, elastic and piezoelectric fields is proposed. The model uses volume and surface quadratic elements. The improved formulation (u,p) is used. An orthotropic porous element is proposed. The power balance in the porous media is established. This model is a powerful and general tool allowing the modeling of all hybrid configurations using poroelastic and piezoelectric fields. Three smart foams prototypes have been built with the aim of validating the numerical model and setting up experimental active control. The comparison of numerical calculations and experimental measurements shows the validity of the model for passive aspects, transducer behaviors and also for control configuration. The active control of acoustic absorption is carried out in normal incidence with the assumption of plane wave in the frequency range [0-1500Hz]. The criterion of minimization is the reflected pressure measured by an unidirectional microphone. Three control cases were tested: off line control with a sum of pure tones, adaptive control with the nFX-LMS algorithm for a pure tone and for a random broad band noise. The results reveal the possibility of absorbing a pressure of 1.Pa at 1.00Hz with 100V and a broad band noise of 94dB with a hundred Vrms starting from 250Hz. These results have been obtained with a mean foam thickness of 4cm. The control ability of the prototypes is directly connected to the acoustic flow. An important limitation for the broad band control comes from the high distortion level through the system in the low and high frequency range (<500Hz, > 1500Hz). The use of the numerical model, supplemented by an analytical study made it possible to clarify the action mode and the dissipation mechanisms in smart foams. The PVDF moves with the same phase and amplitude of the residual incidental pressure which is not dissipated in the foam. Viscous effect dissipation is then very weak in the low frequencies and becomes more important in the high frequencies. The wave which was not been dissipated in the porous material is transmitted by the PVDF in the back cavity. The outlooks of this study are on the one hand, the improvement of the model and the prototypes and on the other hand, the widening of the field of research to the control of the acoustic transmission and the acoustic radiation of surfaces. The model could be improved by integrating viscoelastic elements able to account for the behavior of the adhesive layer between the PVDF and foam. A modelisation of electro-elastomers materials would also have to be implemented in the code. This new type of actuator could make it possible to exceed the PVDF displacement limitations. Finally it would be interesting for the industrial integration prospects to seek configurations able to maximize acoustic absorption and to limit the transmission and the radiation of surfaces at the same time.
NASA Astrophysics Data System (ADS)
Khan, Irfan; Costeux, Stephane; Adrian, David; Cristancho, Diego
2013-11-01
Due to environmental regulations carbon-dioxide (CO2) is increasingly being used to replace traditional blowing agents in thermoplastic foams. CO2 is dissolved in the polymer matrix under supercritical conditions. In order to predict the effect of process parameters on foam properties using numerical modeling, the P-V-T relationship of the blowing agents should accurately be represented at the supercritical state. Previous studies in the area of foam modeling have all used ideal gas equation of state to predict the behavior of the blowing agent. In this work the Peng-Robinson equation of state is being used to model the blowing agent during its diffusion into the growing bubble. The model is based on the popular ``Influence Volume Approach,'' which assumes a growing boundary layer with depleted blowing agent surrounds each bubble. Classical nucleation theory is used to predict the rate of nucleation of bubbles. By solving the mass balance, momentum balance and species conservation equations for each bubble, the model is capable of predicting average bubble size, bubble size distribution and bulk porosity. The effect of the improved model on the bubble growth and foam properties are discussed.
NASA Astrophysics Data System (ADS)
Wong, Anson; Wijnands, Stephan F. L.; Kuboki, Takashi; Park, Chul B.
2013-08-01
The foaming behaviors of high-density polypropylene-nanoclay composites with intercalated and exfoliated nanoclay particles blown with carbon dioxide were examined via in situ observation of the foaming processes in a high-temperature/high-pressure view-cell. The intercalated nanoclay particles were 300-600 nm in length and 50-200 nm in thickness, while the exfoliated nanoclay particles were 100-200 nm in length and 1 nm in thickness. Contrary to common belief, it was discovered that intercalated nanoclay yielded higher cell density than exfoliated nanoclay despite its lower particle density. This was attributed to the higher tensile stresses generated around the larger and stiffer intercalated nanoclay particles, which led to increase in supersaturation level for cell nucleation. Also, the coupling agent used to exfoliate nanoclay would increase the affinity between polymer and surface of nanoclay particles. Consequently, the critical work needed for cell nucleation would be increased; pre-existing microvoids, which could act as seeds for cell nucleation, were also less likely to exist. Meanwhile, exfoliated nanoclay had better cell stabilization ability to prevent cell coalescence and cell coarsening. This investigation clarifies the roles of nanoclay in plastic foaming processes and provides guidance for the advancement of polymer nanocomposite foaming technology.
Ao, T.; Harding, E. C.; Bailey, J. E.; ...
2016-01-13
Experiments on the Sandia Z pulsed-power accelerator demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (> 20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH 2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm 3, andmore » temperature of 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data is composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Furthermore, these spectra provide detailed information on three target locations: the laser spot, the unshocked foam, and the shocked foam.« less
NASA Technical Reports Server (NTRS)
Leigh, Larry, Jr.
2002-01-01
Inflated cylindrical struts constructed of kapton polyimide film and rigidized with foam have considerable practical application and potential for use as components of inflatable concentrator assemblies, antenna structures and space power systems, Because of their importance, it is of great interest to characterize the dynamic behavior of these components and structures both experimentally and analytically. It is very helpful to take a building-block approach to modeling and understanding inflatable assemblies by first investigating in detail the behavior of the components such as the struts. The foam material used for rigidization of such cylinders has varying modulus, which is a function of different factors, such as density of the foam. Thus, the primary motivation of the tests and analytical modeling efforts was to determine and understand the response of foam-rigidized cylinders for different densities, sizes, and construction methods, In recent years, inflatable structures have been the subject of renewed interest for space applications such as communications antennae, solar thermal propulsion, and space solar power. A major advantage of using inflatable structures in space is that they are extremely lightweight. This makes inflatables a perfect match for solar thermal propulsion because of the low thrust levels available. An obvious second advantage is on-orbit deployability and subsequent space savings in launch configuration. It can be seen that inflatable cylindrical struts and torus are critical components of structural assemblies. In view of this importance, structural dynamic and static behaviors of typical rigidized polyimide struts are investigated in this paper. The paper will focus on the finite element models that were used to model the behavior of the complete solar collector structure, and the results that they provided, as compared to test data.
Test and Analysis Correlation of Form Impact onto Space Shuttle Wing Leading Edge RCC Panel 8
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan; Melis, Matthew; Carney, Kelly
2004-01-01
Soon after the Columbia Accident Investigation Board (CAIB) began their study of the space shuttle Columbia accident, "physics-based" analyses using LS-DYNA were applied to characterize the expected damage to the Reinforced Carbon-Carbon (RCC) leading edge from high-speed foam impacts. Forensic evidence quickly led CAIB investigators to concentrate on the left wing leading edge RCC panels. This paper will concentrate on the test of the left-wing RCC panel 8 conducted at Southwest Research Institute (SwRI) and the correlation with an LS-DYNA analysis. The successful correlation of the LS-DYNA model has resulted in the use of LS-DYNA as a predictive tool for characterizing the threshold of damage for impacts of various debris such as foam, ice, and ablators onto the RCC leading edge for shuttle return-to-flight.
Li, Huixiang; Wang, Yi; Ye, Daixin; Luo, Juan; Su, Biquan; Zhang, Song; Kong, Jilie
2014-09-01
A multi-walled carbon nanotubes (MWNTs) bridged mesocellular graphene foam (MGF) nanocomposite (MWNTs/MGF) modified glassy carbon electrode was fabricated and successfully used for simultaneous determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (TRP). Comparing with pure MGF, MWNTs or MWNTs/GS (graphene sheets), MWNTs/MGF displayed higher catalytic activity and selectivity toward the oxidation of AA, DA, UA and TRP. Under the optimal conditions, MWCNs/MGF/GCE can simultaneously detect AA, DA, UA and TRP with high selectivity and sensitivity. The detection limits were 18.28 µmol L(-1), 0.06 µmol L(-1), 0.93 µmol L(-1) and 0.87 µmol L(-1), respectively. Moreover, the modified electrode exhibited excellent stability and reproducibility. Copyright © 2014. Published by Elsevier B.V.
Olsen, Peter C.; Gordon, N. Ross; Simmons, Kevin L.
1993-01-01
The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an "authentic lung tissue" or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.
Olsen, P.C.; Gordon, N.R.; Simmons, K.L.
1993-11-30
The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an ``authentic lung tissue`` or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.
Migliardini, Fortunato; De Luca, Viviana; Carginale, Vincenzo; Rossi, Mosè; Corbo, Pasquale; Supuran, Claudiu T; Capasso, Clemente
2014-02-01
The biomimetic approach represents an interesting strategy for carbon dioxide (CO2) capture, offering advantages over other methods, due to its specificity for CO2 and its eco-compatibility, as it allows concentration of CO2 from other gases, and its conversion to water soluble ions. This approach uses microorganisms capable of fixing CO2 through metabolic pathways or via the use of an enzyme, such as carbonic anhydrase (CA, EC 4.2.1.1). Recently, our group cloned and purified a novel bacterial α-CA, named SspCA, from the thermophilic bacteria, Sulfurihydrogenibium yellowstonense YO3AOP1 living in hot springs at temperatures of up to 110 °C. This enzyme showed an exceptional thermal stability, retaining its high catalytic activity for the CO2 hydration reaction even after being heated at 70 °C for several hours. In the present paper, the SspCA was immobilized within a polyurethane (PU) foam. The immobilized enzyme was found to be catalytically active and showed a long-term stability. A bioreactor containing the "PU-immobilized enzyme" (PU-SspCA) as shredded foam was used for experimental tests aimed to verify the CO2 capture capability in conditions close to those of a power plant application. In this bioreactor, a gas phase, containing CO2, was put into contact with a liquid phase under conditions, where CO2 contained in the gas phase was absorbed and efficiently converted into bicarbonate by the extremo-α-CA.
Investigation of compression behavior of PE/EVA foam injection molded parts
NASA Astrophysics Data System (ADS)
Spina, Roberto
2017-10-01
The main objective of the presented work is to evaluate the compression behavior of a polymeric foam blend by using a robust framework for the testing sequence of foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of new matrix material. The research purpose is to assess parameters influencing compression behavior and give useful suggestions for the implementation of a finite element analysis. The polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the injection molding process for two specimen types.
Numerical Simulation of Ballistic Impact of Layered Aluminum Nitride Ceramic
2015-09-01
tile(s) Aluminum nitride (AlN) 163 a Polymer layers Polyurethane foam 18 b Backing metal Aluminum 6061-T6 (Al) 23 c Projectile Tungsten heavy alloy...larger (a factor of 3.8) than the most dense polyurethane foam of the available constitutive models. Default options for element failure were imposed in...AlN), a polycrystalline ceramic. The total thickness of the tile(s) is 38.1 mm in all cases. A thin polyurethane laminate separates neighboring tiles
Zhu, Liangliang; Fu Tan, Chuan; Gao, Minmin; Ho, Ghim Wei
2015-12-16
A macroporous carbon network combined with mesoporous catalyst immobilization by a template method gives a metal-oxide-organic framework (MoOF) foam microreactor that readily soaks up pollutants and localizes solar energy in itself, leading to effective degradation of water pollutants (e.g., methyl orange (MO) and also hydrogen generation. The cleaned-up water can be removed from the microreactor simply by compression, and the microreactor used repeatedly. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biomechanical evaluation of CIBOR spine interbody fusion device.
Chong, Alexander C M; Harrer, Seth W; Heggeness, Michael H; Wooley, Paul H
2017-07-01
The CIBOR PEEK spinal interbody fusion device is an anterior lumbar interbody fusion construct with a hollow center designed to accommodate an osteoinductive carbon foam insert to promote bony ingrowth to induce fusion where rigid stabilization is needed. Three different sizes of the device were investigated. Part-I: implants were tested under axial compression and rotation using polyurethane foam blocks. Part-II: simulated 2-legged stance using cadaveric specimen using the L5-S1 lumbar spine segment. Part-III: a survey feedback form was used to investigate two orthopedic surgeons concern regarding the implant. In Part-I, the subsidence hysteresis under axial compression loading was found to be statistical significant difference between these three implant sizes. It was noted that the implants had migration as rotation applied, and the amount of subsidence was a factor of the axial compression loads applied. In Part-II, a minor subsidence and carbon foam debris were observed when compared to each implant size. Poor contact surface of the implant with the end plates of the L5 or S1 vertebrae from the anterior view under maximum loads was observed; however, the implant seemed to be stable. Each surgeon has their own subjective opinion about the CIBOR implant. Two out of the three different sizes of the device (medium and large sizes) provided appropriate rigid stabilization at the physiological loads. Neither orthopedic surgeon was 100% satisfied with overall performance of the implant, but felt potential improvement could be made. This study indicates an option for operative treatment of spine interbody fusion, as the CIBOR spine interbody fusion device has a hollow center. This hollow center is designed to accommodate a carbon foam insert to promote bony ingrowth. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1157-1168, 2017. © 2016 Wiley Periodicals, Inc.
Ignitability of Diesel Fuel with an Inclusion of Ultrafine Carbon Particles
NASA Astrophysics Data System (ADS)
Krivosheev, P. N.; Leshchevich, V. V.; Shimchenko, S. Yu.; Shushkov, S. V.; Penyazkov, O. G.
2017-11-01
Nanosize carbon fuel additions were synthesized by the action of an electric discharge on a diesel fuel. Depending on the discharge regime, variously shaped carbon particles, including planar graphitized ones, were formed in the fuel. Ignitability of the produced samples was assessed by the method of initiation of a foamed fuel sample by a lowcurrent electric arc. The modified fuel showed the improvement of the ignition characteristics in the presence of a nanodispersed solid phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Xiaodong; Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, New Jersey 08903; Wang, Yang
This work was driven by the need to understand the electromagnetic interference (EMI) shielding effectiveness (SE) of light weight, flexible, and high performance graphene composite foams, but as EMI SE of a material depends on its electrical conductivity, dielectric permittivity, and magnetic permeability, the investigation of these three properties also became a priority. In this paper, we first present a continuum theory to determine these three electromagnetic properties, and then use the obtained properties to evaluate the EMI SE of the foam. A two-scale composite model is conceived to evaluate these three properties, with the large one being the skeleton-voidmore » composite and the small one being the graphene-polymer composite that serves as the skeleton of the foam. To evaluate the properties of the skeleton, the effective-medium approach is taken as the starting point. Subsequently, the effect of an imperfect interface and the contributions of electron tunneling to the interfacial conductivity and Maxwell-Wagner-Sillars polarization mechanism to the dielectric constant are also implemented. The derived skeleton properties are then utilized on the large scale to determine the three properties of the composite foam at a given porosity. Then a uniform plane electromagnetic wave is considered to evaluate the EMI SE of the foam. It is demonstrated that the electrical conductivity, dielectric constant, and EMI SE of the foam calculated from the developed theory are in general agreement with the reported experimental data of graphene/PDMS composite foams. The theory is further proven to be valid for the EMI SE of solid graphene/epoxy and solid carbon nanotube/epoxy nanocomposites. It is also shown that, among the three electromagnetic properties, electrical conductivity has the strongest influence on the EMI shielding effectiveness.« less
Gelcasting polymeric precursors for producing net-shaped graphites
Klett, James W.; Janney, Mark A.
2002-01-01
The present invention discloses a method for molding complex and intricately shaped high density monolithic carbon, carbon-carbon, graphite, and thermoplastic composites using gelcasting technology. The method comprising a polymeric carbon precursor, a solvent, a dispersant, an anti-foaming agent, a monomer system, and an initiator system. The components are combined to form a suspension which is poured into a mold and heat-treated to form a thermoplastic part. The thermoplastic part can then be further densified and heat-treated to produce a high density carbon or graphite composite. The present invention also discloses the products derived from this method.
NASA Astrophysics Data System (ADS)
Lafrance, Maxime
During the past few decades, aluminum foam research has focused on the improvement of properties. These properties include pore structure and process reproducibility. High energy absorption capacity, lightweight and high stiffness to weight ratio are some of the properties that make these foams desirable for a number of diverse applications. The use of a transient liquid phase and melting point depressant was studied in order to improve aluminum foam manufactured through the powder metallurgy process and to create reactive Stabilisation. The transient liquid phase reacts with aluminum and helps encapsulate higher levels of hydrogen, simultaneously reducing the difference between the melting point of the alloy and the gas release temperature of the blowing agent (TiH2). A large difference is known to adversely affect foam properties. The study of pure aluminum foam formation was undertaken to understand the basic foaming mechanisms related to crack formations under in-situ conditions. Elemental zinc powder at various concentrations (Al-10wt%Zn, Al-33wt%Zn and Al-50wt%Zn) was added to produce a transient liquid phase. Subsequently, an Al-12wt%Si pre-alloyed powder was added to the Al-Zn mixture in order to further reduce the melting point of the alloy and to increase the amount of transient liquid phase available (Al-3.59wtSi-9.6%Zn and Al-2.4wt%Si-9.7wt%Zn). The mechanical properties of each system at optimal foaming conditions were assessed and compared. It was determined that pure aluminum foam crack formation could be suppressed at higher heating rates, improving the structure through the nucleation of uniform pores. The Al-10wt%Zn foams generated superior pore properties, post maximum expansion stability and mechanical properties at lower temperatures, compared to pure aluminum. The Al-Si-Zn foams revealed remarkable stability and pore structure at very low temperatures (640 to 660°C). Overall, the Al-10wt%Zn and Al-3.59wt%Si-9.6wt%Zn foams offer superior properties compared to pure aluminum.
Gamma-irradiated cross-linked LDPE foams: Characteristics and properties
NASA Astrophysics Data System (ADS)
Cardoso, E. C. L.; Scagliusi, S. R.; Parra, D. F.; Lugão, A. B.
2013-03-01
Foamed polymers are future materials, as they are increasingly considered "green materials" due to their interesting properties at very low consumption of raw materials. They can be used to improve appearance of insulation structures, thermal and acoustic insulation, core materials for sandwich panels, fabrication of furniture and flotation materials or to reduce costs involving materials. Low-density polyethylene is widely used because of its excellent properties, such as softness, elasticity, processibility and insulation. In general, cross-linking is often applied to improve the thermal and mechanical properties of polyethylene products, due to the formation of a three-dimensional network. In particular for the production of PE foams, cross-linking is applied prior the expansion to control bubble formation, cell characteristics and final properties of the foam. However, the usual production process of PE foams is a process in which a gaseous blowing agent is injected into a melted thermoplastic polymer, under pressure, to form a solution between blowing agent and melted polymer. An extrusion system is provided for foaming the polymer, supplied to an extruder and moving through a rotating screw. The pressure must be high enough to keep the gas blowing agent (or foaming agent) in the solution with the melt. The foaming agent is then diffused and dissolved in the molten material to form a single-phase solution. In the present work carbon dioxide was used as the bowing agent, a chemically stable and non-toxic gas, with good diffusion coefficient; gas pressure used varied within a 20-40 bar range. Some requirements for physical foaming are required, as low friction heat generation, homogeneous melt temperature distribution, melt temperature at die exit just above crystallization temperature (die) and high melt strength during expansion. This work studied foams properties gamma-irradiated within 0, 10, 15, 20, 25, and 30 kGy, from a LDPE exhibiting 2.6 g/10 min Melt Index. Accomplished tests: DSC, gel-fraction, swelling ratio in various solvents, rheological measurements, infra-red spectroscopy and melt strength. It was verified that within a given radiation dose range; the material exhibited an optimization in viscoelastic properties, providing the desired melt strength range for obtaining foams.
Fact Sheet: Final Air Toxics Standards for Area Sources in Seven Industry Sectors
This fact sheet discusses national emission standards for acrylic and modacrylic fibers production, carbon black production, chemical manufacturing: chromium compounds, flexible polyurethane foam production and fabrication, lead acid battery manufacturing,
Determination of elastomeric foam parameters for simulations of complex loading.
Petre, M T; Erdemir, A; Cavanagh, P R
2006-08-01
Finite element (FE) analysis has shown promise for the evaluation of elastomeric foam personal protection devices. Although appropriate representation of foam materials is necessary in order to obtain realistic simulation results, material definitions used in the literature vary widely and often fail to account for the multi-mode loading experienced by these devices. This study aims to provide a library of elastomeric foam material parameters that can be used in FE simulations of complex loading scenarios. Twelve foam materials used in footwear were tested in uni-axial compression, simple shear and volumetric compression. For each material, parameters for a common compressible hyperelastic material model used in FE analysis were determined using: (a) compression; (b) compression and shear data; and (c) data from all three tests. Material parameters and Drucker stability limits for the best fits are provided with their associated errors. The material model was able to reproduce deformation modes for which data was provided during parameter determination but was unable to predict behavior in other deformation modes. Simulation results were found to be highly dependent on the extent of the test data used to determine the parameters in the material definition. This finding calls into question the many published results of simulations of complex loading that use foam material parameters obtained from a single mode of testing. The library of foam parameters developed here presents associated errors in three deformation modes that should provide for a more informed selection of material parameters.
NASA Astrophysics Data System (ADS)
Iaccarino Idelson, A.; Pannuzi, S.; Brunetto, A.; Galanti, G.; Giovannone, C.; Massa, V.; Serino, C.; Vischetti, F.
2017-05-01
Rare and precious window elements from the Paleochristian Basilica of Saint Sabina in Rome, made of plaster gypsum with translucent selenite used as glass for light transmission, were discovered by Antonio Muñoz during the restoration of the building at the beginning of the 20th c. Originally standing within the stone window frame, were then mounted on wood planks with screws for holding together the scattered fragments. The surfaces were covered with grime and the selenite elements were blinded by the wooden supports. During the recent conservation treatment at ISCR, traces of Egyptian blue on the internal surfaces were detected. Cleaning with laser allowed their conservation and the removal of gypsum deposits from the fragile selenite. 3-D scanning was performed for milling, out of polystyrene blocks, the counterforms that were needed for turning the artifacts upside down. After cleaning and re-assembling of the fragments, a new 3-D scan was performed to obtain a complete model of the artifacts that was used to define the best orientation of the windows, both for exhibition purposes and for the distribution of the weight-related stresses. Following a project based on 3-D modeling, exhibition stands were produced with a core material milled out of PET foam, reinforced with outer skins made with carbon fiber adhered under vacuum to the core material with epoxy resin. The new exhibition stands, very light and rigid, permit all-round appreciation of the artifacts and allow the light to shine through the selenite elements.
NASA Astrophysics Data System (ADS)
Tsang, Alpha C. H.; Kwok, Holly Y. H.; Leung, Dennis Y. C.
2017-05-01
This manuscript presents the methodology of the production of 2D and 3D graphene based material, and their applications in fuel cell, supercapacitor, and photovoltic in recent years. Due to the uniqueness and attractive properties of graphene nanosheets, a large number of techniques have been developed for raw graphene preparation, from a chemical method to a physical deposition of carbon vapor under extreme conditions. A variety of graphene based materials were also prepared from raw graphene or graphene oxide, including the metal loaded, metal oxides loaded, to the foreign elements doped graphene. Both two-dimensional (2D) to three-dimensional (3D) structured graphene were covered. These materials included the bulk or template hybrid composite, containing graphene hydrogel, graphene aerogel, or graphene foam and its derived products. They were widely used in green energy device research, which exhibited strong activity, and developed some special usage in recent research.
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Nemeth, Michael P.; Hilburger, Mark W.
2004-01-01
A technology review and assessment of modeling and analysis efforts underway in support of a safe return to flight of the thermal protection system (TPS) for the Space Shuttle external tank (ET) are summarized. This review and assessment effort focuses on the structural modeling and analysis practices employed for ET TPS foam design and analysis and on identifying analysis capabilities needed in the short-term and long-term. The current understanding of the relationship between complex flight environments and ET TPS foam failure modes are reviewed as they relate to modeling and analysis. A literature review on modeling and analysis of TPS foam material systems is also presented. Finally, a review of modeling and analysis tools employed in the Space Shuttle Program is presented for the ET TPS acreage and close-out foam regions. This review includes existing simplified engineering analysis tools are well as finite element analysis procedures.
Effect of Microstructural Parameters on the Relative Densities of Metal Foams
NASA Technical Reports Server (NTRS)
Raj, S. V.; Kerr, Jacob A.
2010-01-01
A detailed quantitative microstructural analyses of primarily open cell FeCrAlY and 314 stainless steel metal foams with different relative densities and pores per inch (p.p.i.) were undertaken in the present investigation to determine the effect of microstructural parameters on the relative densities of metal foams. Several elements of the microstructure, such as longitudinal and transverse cell sizes, cell areas and perimeters, ligament dimensions, cell shapes and volume fractions of closed and open cells, were measured. The cross-sections of the foam ligaments showed a large number of shrinkage cavities, and their circularity factors and average sizes were determined. The volume fractions of closed cells increased linearly with increasing relative density. In contrast, the volume fractions of the open cells and ligaments decreased with increasing relative density. The relative densities and p.p.i. were not significantly dependent on cell size, cell perimeter and ligament dimensions within the limits of experimental scatter. A phenomenological model is proposed to rationalize the present microstructural observations.
Normalized stiffness ratios for mechanical characterization of isotropic acoustic foams.
Sahraoui, Sohbi; Brouard, Bruno; Benyahia, Lazhar; Parmentier, Damien; Geslain, Alan
2013-12-01
This paper presents a method for the mechanical characterization of isotropic foams at low frequency. The objective of this study is to determine the Young's modulus, the Poisson's ratio, and the loss factor of commercially available foam plates. The method is applied on porous samples having square and circular sections. The main idea of this work is to perform quasi-static compression tests of a single foam sample followed by two juxtaposed samples having the same dimensions. The load and displacement measurements lead to a direct extraction of the elastic constants by means of normalized stiffness and normalized stiffness ratio which depend on Poisson's ratio and shape factor. The normalized stiffness is calculated by the finite element method for different Poisson ratios. The no-slip boundary conditions imposed by the loading rigid plates create interfaces with a complex strain distribution. Beforehand, compression tests were performed by means of a standard tensile machine in order to determine the appropriate pre-compression rate for quasi-static tests.
Heavy metals, metalloids and other hazardous elements in marine plastic litter.
Turner, Andrew
2016-10-15
Plastics, foams and ropes collected from beaches in SW England have been analysed for As, Ba, Br, Cd, Cl, Cr, Cu, Hg, Ni, Pb, Sb, Se, Sn and Zn by field-portable-x-ray fluorescence spectrometry. High concentrations of Cl in foams that were not PVC-based were attributed to the presence of chlorinated flame retardants. Likewise, high concentrations of Br among both foams and plastics were attributed to the presence of brominated flame retardants. Regarding heavy metals and metalloids, Cd and Pb were of greatest concern from an environmental perspective. Lead was encountered in plastics, foams and ropes and up to concentrations of 17,500μgg(-1) due to its historical use in stabilisers, colourants and catalysts in the plastics industry. Detectable Cd was restricted to plastics, where its concentration often exceeded 1000μgg(-1); its occurrence is attributed to the use of both Cd-based stabilisers and colourants in a variety of products. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szecsody, James E.; Truex, Michael J.; Zhong, Lirong
2010-01-04
This laboratory-scale investigation is focused on decreasing mobility of uranium in subsurface contaminated sediments in the vadose zone by in situ geochemical manipulation at low water content. This geochemical manipulation of the sediment surface phases included reduction, pH change (acidic and alkaline), and additions of chemicals (phosphate, ferric iron) to form specific precipitates. Reactants were advected into 1-D columns packed with Hanford 200 area U-contaminated sediment as a reactive gas (for CO2, NH3, H2S, SO2), with a 0.1% water content mist (for NaOH, Fe(III), HCl, PO4) and with a 1% water content foam (for PO4). Uranium is present in themore » sediment in multiple phases that include (in decreasing mobility): aqueous U(VI) complexes, adsorbed U, reduced U(IV) precipitates, rind-carbonates, total carbonates, oxides, silicates, phosphates, and in vanadate minerals. Geochemical changes were evaluated in the ability to change the mixture of surface U phases to less mobile forms, as defined by a series of liquid extractions that dissolve progressively less soluble phases. Although liquid extractions provide some useful information as to the generalized uranium surface phases (and are considered operational definitions of extracted phases), positive identification (by x-ray diffraction, electron microprobe, other techniques) was also used to positively identify U phases and effects of treatment. Some of the changes in U mobility directly involve U phases, whereas other changes result in precipitate coatings on U surface phases. The long-term implication of the U surface phase changes to alter U mass mobility in the vadose zone was then investigated using simulations of 1-D infiltration and downward migration of six U phases to the water table. In terms of the short-term decrease in U mobility (in decreasing order), NH3, NaOH mist, CO2, HCl mist, and Fe(III) mist showed 20% to 35% change in U surface phases. Phosphate addition (mist or foam advected) showed inconsistent change in aqueous and adsorbed U, but significant coating (likely phosphates) on U-carbonates. The two reductive gas treatments (H2S and SO2) showed little change. For long-term decrease in U reduction, mineral phases created that had low solubility (phosphates, silicates) were desired, so NH3, phosphates (mist and foam delivered), and NaOH mist showed the greatest formation of these minerals. In addition, simulations showed the greatest decrease in U mass transport time to reach groundwater (and concentration) for these silicate/phosphate minerals. Advection of reactive gasses was the easiest to implement at the laboratory scale (and presumably field scale). Both mist and foam advection show promise and need further development, but current implementation move reactants shorter distances relative to reactive gasses. Overall, the ammonia and carbon dioxide gas had the greatest overall geochemical performance and ability to implement at field scale. Corresponding mist-delivered technologies (NaOH mist for ammonia and HCl mist for carbon dioxide) performed as well or better geochemically, but are not as easily upscaled. Phosphate delivery by mist was rated slightly higher than by foam delivery simply due to the complexity of foam injection and unknown effect of U mobility by the presence of the surfactant.« less
Keshavarz, Alireza; Zilouei, Hamid; Abdolmaleki, Amir; Asadinezhad, Ahmad
2015-07-01
A surface modification method was carried out to enhance the light crude oil sorption capacity of polyurethane foam (PUF) through immobilization of multi-walled carbon nanotube (MWCNT) on the foam surface at various concentrations. The developed sorbent was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and tensile elongation test. The results obtained from thermogravimetric and tensile elongation tests showed the improvement of thermal and mechanical resistance of surface-modified foam. The experimental data also revealed that the immobilization of MWCNT on PUF surface enhanced the sorption capacity of light crude oil and reduced water sorption. The highest oil removal capacity was obtained for 1 wt% MWCNT on PUF surface which was 21.44% enhancement in light crude oil sorption compared to the blank PUF. The reusability of surface modified PUF was determined through four cycles of chemical regeneration using petroleum ether. The adsorption of light crude oil with 30 g initial mass showed that 85.45% of the initial oil sorption capacity of this modified sorbent was remained after four regeneration cycles. Equilibrium isotherms for adsorption of oil were analyzed by the Freundlich, Langmuir, Temkin, and Redlich-Peterson models through linear and non-linear regression methods. Results of equilibrium revealed that Langmuir isotherm is the best fitting model and non-linear method is a more accurate way to predict the parameters involved in the isotherms. The overall findings suggested the promising potentials of the developed sorbent in order to be efficiently used in large-scale oil spill cleanup. Copyright © 2015 Elsevier Ltd. All rights reserved.
A pulsed mode electrolytic drug delivery device
NASA Astrophysics Data System (ADS)
Yi, Ying; Buttner, Ulrich; Carreno, Armando A. A.; Conchouso, David; Foulds, Ian G.
2015-10-01
This paper reports the design of a proof-of-concept drug delivery device that is actuated using the bubbles formed during electrolysis. The device uses a platinum (Pt) coated nickel (Ni) metal foam and a solid drug in reservoir (SDR) approach to improve the device’s performance. This electrochemically-driven pump has many features that are unlike conventional drug delivery devices: it is capable of pumping periodically and being refilled automatically; it features drug release control; and it enables targeted delivery. Pt-coated metal foam is used as a catalytic reforming element, which reduces the period of each delivery cycle. Two methods were used for fabricating the Pt-coated metal: sputtering and electroplating. Of these two methods, the sputtered Pt-coated metal foam has a higher pumping rate; it also has a comparable recombination rate when compared to the electroplated Pt-coated metal foam. The only drawback of this catalytic reformer is that it consumes nickel scaffold. Considering long-term applications, the electroplated Pt metal foam was selected for drug delivery, where a controlled drug release rate of 2.2 μg ± 0.3 μg per actuation pulse was achieved using 4 mW of power.
Acoustic and vibrational damping in porous solids.
Göransson, Peter
2006-01-15
A porous solid may be characterized as an elastic-viscoelastic and acoustic-viscoacoustic medium. For a flexible, open cell porous foam, the transport of energy is carried both through the sound pressure waves propagating through the fluid in the pores, and through the elastic stress waves carried through the solid frame of the material. For a given situation, the balance between energy dissipated through vibration of the solid frame, changes in the acoustic pressure and the coupling between the waves varies with the topological arrangement, choice of material properties, interfacial conditions, etc. Engineering of foams, i.e. designs built on systematic and continuous relationships between polymer chemistry, processing, micro-structure, is still a vision for the future. However, using state-of-the-art simulation techniques, multiple layer arrangements of foams may be tuned to provide acoustic and vibrational damping at a low-weight penalty. In this paper, Biot's modelling of porous foams is briefly reviewed from an acoustics and vibrations perspective with a focus on the energy dissipation mechanisms. Engineered foams will be discussed in terms of results from simulations performed using finite element solutions. A layered vehicle-type structure is used as an example.
NASA Astrophysics Data System (ADS)
Xiao, Wenya; Huang, Zhixiong; Ding, Jie
2017-12-01
In this work, kaolin powder and glass fiber fabric were added to PF in order to improve its thermal stability and mechanical property. Micro-structures of carbonized PF with kaolin powder were inspected by scanning electron microscopy (SEM) to demonstrate the filler’s pinning effect. SEM results illustrated modified PF had well morphology after high-temperature heat treatment. The Fourier transform infrared spectrometer (FTIR) test was carried out and found that kaolin powder only physically dispersed in PF. The compression test and thermal weight loss test were done on two groups of modified PF (Group A: add powder and fabric; Group B: add powder only). Results showed that all modified PF were better than pure PF, while foams with powder and fabric showed better mechanical characteristic and thermal stability compared with foams with powder only.
NASA Astrophysics Data System (ADS)
Jeong, Tae-Gyung; Chun, Jinyong; Cho, Byung-Won; Lee, Jinwoo; Kim, Yong-Tae
2017-02-01
The porous carbon matrix is widely recognized to be a promising sulfur reservoir to improve the cycle life by suppressing the polysulfide dissolution in lithium sulfur batteries (LSB). Herein, we synthesized mesocellular carbon foam (MSUF-C) with bimodal mesopore (4 and 30 nm) and large pore volume (1.72 cm2/g) using MSUF silica as a template and employed it as both the sulfur reservoir and the conductive agent in the sulfur cathode. Sulfur was uniformly infiltrated into MSUF-C pores by a chemical solution deposition method (MSUF-C/S CSD) and the amount of sulfur loading was achieved as high as 73% thanks to the large pore volume with the CSD approach. MSUF-C/S CSD showed a high capacity (889 mAh/g after 100 cycles at 0.2 C), an improved rate capability (879 mAh/g at 1C and 420 mAh/g at 2C), and a good capacity retention with a fade rate of 0.16% per cycle over 100 cycles.
Jeong, Tae-Gyung; Chun, Jinyong; Cho, Byung-Won; Lee, Jinwoo; Kim, Yong-Tae
2017-01-01
The porous carbon matrix is widely recognized to be a promising sulfur reservoir to improve the cycle life by suppressing the polysulfide dissolution in lithium sulfur batteries (LSB). Herein, we synthesized mesocellular carbon foam (MSUF-C) with bimodal mesopore (4 and 30 nm) and large pore volume (1.72 cm2/g) using MSUF silica as a template and employed it as both the sulfur reservoir and the conductive agent in the sulfur cathode. Sulfur was uniformly infiltrated into MSUF-C pores by a chemical solution deposition method (MSUF-C/S CSD) and the amount of sulfur loading was achieved as high as 73% thanks to the large pore volume with the CSD approach. MSUF-C/S CSD showed a high capacity (889 mAh/g after 100 cycles at 0.2 C), an improved rate capability (879 mAh/g at 1C and 420 mAh/g at 2C), and a good capacity retention with a fade rate of 0.16% per cycle over 100 cycles. PMID:28165041
NASA Astrophysics Data System (ADS)
Jiang, Hongmei; Yang, Lu; Deng, Wenfang; Tan, Yueming; Xie, Qingji
2017-09-01
Herein, a macroporous graphitic carbon foam (MGCF) electrode decorated with polydopamine (PDA) is used as a high-performance anode for microbial fuel cell (MFC) applications. The MGCF is facilely prepared by pyrolysis of a powder mixture comprising maltose, nickel nitrate, and ammonia chloride, without using solid porous template. The MGCF is coated with PDA by self-polymerization of dopamine in a basic solution. The MGCF can provide a large surface area for bacterial attachment, and PDA coated on the MGCF electrode can further promote bacterial adhesion resulting from the improved hydrophility, so the MGCF-PDA electrode as an anode in a MFC can show ultrahigh bacterial loading capacity. Moreover, the electrochemical oxidation of flavins at the MGCF-PDA electrode is greatly accelerated, so the extracellular electron transfer mediated by flavins is improved. As a result, the MFC equipped with a MGCF-PDA anode can show a maximum power density of 1735 mW cm-2, which is 6.7 times that of a MFC equipped with a commercial carbon felt anode, indicating a promising anode for MFC applications.
Presidential Green Chemistry Challenge: 1996 Greener Reaction Conditions Award
Presidential Green Chemistry Challenge 1996 award winner, Dow Chemical Company, developed a process to manufacture polystyrene foam sheet packaging that uses carbon dioxide (CO2) as a blowing agent, eliminating CFC-12 and HCFC-22.
2012-10-29
up to 40%. Approach: Our approach was to work with conventional composite systems manufactured through the traditional prepreg and autoclave...structural porosity at MNM scales could be introduced into the matrix, the carbon fiber reinforcement, and during prepreg lamination processing, without...areas, including fibers. Furthermore, investigate prepreg thickness and resin content effects on the thermomechanical performance of laminated
Frank, Patrick; George, Serena DeBeer; Anxolabéhère-Mallart, Elodie; Hedman, Britt; Hodgson, Keith O
2006-11-27
Sulfur K-edge X-ray absorption spectroscopy (XAS) was used to characterize the approximately 0.1% sulfur found both in native reticulated vitreous carbon (RVC) foam and in RVC oxidatively modified using 0.2 M KMnO4 in 2 M H2SO4. Sulfur valences and functional groups were assessed using K-edge XAS spectral curve-fitting and employing explicit sulfur compounds as models. For native RVC, these were episulfide (approximately 3%), thianthrene (approximately 9%), disulfide (approximately 10%), sulfenate ester (approximately 12%), benzothiophene (approximately 24%), N,N'-thiobisphthalimide (approximately 30%), alkyl sulfonate (approximately 1.2%), alkyl sulfate monoester (approximately 6%), and sulfate dianion (approximately 6%). Permanganate oxidation of RVC diminished sulfenic sulfur to approximately 9%, thianthrenic sulfur to approximately 7%, and sulfate dianion to approximately 1% but increased sulfate monoester to approximately 12%, and newly produced sulfone (approximately 2%) and sulfate diester (approximately 5%). A simple thermodynamic model was derived that allows proportionate functional group comparisons despite differing (approximately +/-15%) total sulfur contents between RVC batches. The limits of accuracy in the XAS curve-fitting analysis are discussed in terms of microenvironments and extended structures in RVC carbon that cannot be exactly modeled by small molecules. Sulfate esters cover approximately 0.15% of the RVC surface, increasing to approximately 0.51% following permanganate/sulfuric acid treatment. The detection of episulfide directly corroborates a proposed mechanism for the migration of elemental sulfur through carbon.
NASA Astrophysics Data System (ADS)
Salvo, C.; Aguilar, C.; Lascano, S.; Pérez, L.; López, M.; Mangalaraja, R. V.
2018-05-01
The copper foam is an interesting field of research because of its several advantages as an engineering material. Powder metallurgy presents an alternative route to obtain a porous structure with high strength to weight ratio and functional properties. The viability of processing copper foam separately with two different space-holders such as ammonium hydrogen carbonate (NH4HCO3) and sodium chloride (NaCl) of 50 vol% was studied. The green compacts obtained under 200 MPa were sintered at different cycles for the complete removal of space-holder. The sintered foams were characterized by optical microscopy (OM), scanning electron microscopy (SEM) and uniaxial testing machine (UTM) to study their structural features and compressive strength, respectively. The results showed that NaCl particles were the best alternative to obtain a porous structure, hence two different sizes (1 and 0.01 μm) of alumina (Al2O3) particles with 2, 4 and 6 vol% were used to fabricate copper foams. As a result, a bimodal structure consisting of macro and micropores with a highly interconnected porosity was achieved. In addition, the smaller size alumina particles promoted a higher density of pores, however, the compressive strength was reduced for the higher volume fraction of alumina particles.
Liang, Caiyun; Wang, Zhenfeng; Wu, Lina; Zhang, Xiaochen; Wang, Huan; Wang, Zhijiang
2017-09-06
A novel light but strong SiC foam with hierarchical porous architecture was fabricated by using dough as raw material via carbonization followed by carbothermal reduction with silicon source. A significant synergistic effect is achieved by embedding meso- and nanopores in a microsized porous skeleton, which endows the SiC foam with high-performance electromagnetic interference (EMI) shielding, thermal insulation, and mechanical properties. The microsized skeleton withstands high stress. The meso- and nanosized pores enhance multiple reflection of the incident electromagnetic waves and elongate the path of heat transfer. For the hierarchical porous SiC foam with 72.8% porosity, EMI shielding can be higher than 20 dB, and specific EMI effectiveness exceeds 24.8 dB·cm 3 ·g -1 at a frequency of 11 GHz at 25-600 °C, which is 3 times higher than that of dense SiC ceramic. The thermal conductivity reaches as low as 0.02 W·m -1 ·K -1 , which is comparable to that of aerogel. The compressive strength is as high as 9.8 MPa. Given the chemical and high-temperature stability of SiC, the fabricated SiC foam is a promising candidate for modern aircraft and automobile applications.
Synthesis and characterization of Ti-Ta-Nb-Mn foams.
Aguilar, C; Guerra, C; Lascano, S; Guzman, D; Rojas, P A; Thirumurugan, M; Bejar, L; Medina, A
2016-01-01
The unprecedented increase in human life expectancy have produced profound changes in the prevailing patterns of disease, like the observed increased in degenerative disc diseases, which cause degradation of the bones. Ti-Nb-Ta alloys are promising materials to replace the damaged bone due to their excellent mechanical and corrosion resistance properties. In general metallic foams are widely used for medical application due to their lower elastic moduli compare to bulk materials. In this work we studied the synthesis of 34Nb-29Ta-xMn (x: 2, 4 and 6 wt.% Mn) alloy foams (50% v/v) using ammonium hydrogen carbonate as a space holder. Alloys were produced through mechanical alloying in a planetary mill for 50h. Green compacts were obtained by applying 430 MPa pressure. To remove the space holder from the matrix the green compacts were heated to 180 °C for 1.5h and after sintered at 1300 °C for 3h. Foams were characterized by x-ray diffraction, scanning, transmission electron microscopy and optical microscopy. The elastic modulus of the foam was measured as ~30 GPa, and the values are almost equal to the values predicted using various theoretical models. Copyright © 2015 Elsevier B.V. All rights reserved.
Foam adsorption as an ex situ capture step for surfactants produced by fermentation.
Anic, Iva; Nath, Arijit; Franco, Pedro; Wichmann, Rolf
2017-09-20
In this report, a method for a simultaneous production and separation of a microbially synthesized rhamnolipid biosurfactant is presented. During the aerobic cultivation of flagella-free Pseudomonas putida EM383 in a 3.1L stirred tank reactor on glucose as a sole carbon source, rhamnolipids are produced and excreted into the fermentation liquid. Here, a strategy for biosurfactant capture from rhamnolipid enriched fermentation foam using hydrophobic-hydrophobic interaction was investigated. Five adsorbents were tested independently for the application of this capture technique and the best performing adsorbent was tested in a fermentation process. Cell-containing foam was allowed to flow out of the fermentor through the off-gas line and an adsorption packed bed. Foam was observed to collapse instantly, while the resultant liquid flow-through, which was largely devoid of the target biosurfactant, eluted towards the outlet channel of the packed bed column and was subsequently pumped back into the fermentor. After 48h of simultaneous fermentation and ex situ adsorption of rhamnolipids from the foam, 90% out of 5.5g of total rhamnolipids produced were found in ethanol eluate of the adsorbent material, indicating the suitability of this material for ex situ rhamnolipid capture from fermentation processes. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Knudsen, Erik; Arakere, Nagaraj K.
2006-01-01
Foam; a cellular material, is found all around us. Bone and cork are examples of biological cell materials. Many forms of man-made foam have found practical applications as insulating materials. NASA uses the BX-265 foam insulation material on the external tank (ET) for the Space Shuttle. This is a type of Spray-on Foam Insulation (SOFI), similar to the material used to insulate attics in residential construction. This foam material is a good insulator and is very lightweight, making it suitable for space applications. Breakup of segments of this foam insulation on the shuttle ET impacting the shuttle thermal protection tiles during liftoff is believed to have caused the space shuttle Columbia failure during re-entry. NASA engineers are very interested in understanding the processes that govern the breakup/fracture of this complex material from the shuttle ET. The foam is anisotropic in nature and the required stress and fracture mechanics analysis must include the effects of the direction dependence on material properties. Material testing at NASA MSFC has indicated that the foam can be modeled as a transversely isotropic material. As a first step toward understanding the fracture mechanics of this material, we present a general theoretical and numerical framework for computing stress intensity factors (SIFs), under mixed-mode loading conditions, taking into account the material anisotropy. We present mode I SIFs for middle tension - M(T) - test specimens, using 3D finite element stress analysis (ANSYS) and FRANC3D fracture analysis software, developed by the Cornel1 Fracture Group. Mode I SIF values are presented for a range of foam material orientations. Also, NASA has recorded the failure load for various M(T) specimens. For a linear analysis, the mode I SIF will scale with the far-field load. This allows us to numerically estimate the mode I fracture toughness for this material. The results represent a quantitative basis for evaluating the strength and fracture properties of anisotropic foam insulation material.
Explosively driven low-density foams and powders
Viecelli, James A [Orinda, CA; Wood, Lowell L [Simi Valley, CA; Ishikawa, Muriel Y [Livermore, CA; Nuckolls, John H [Danville, CA; Pagoria, Phillip F [Livermore, CA
2010-05-04
Hollow RX-08HD cylindrical charges were loaded with boron and PTFE, in the form of low-bulk density powders or powders dispersed in a rigid foam matrix. Each charge was initiated by a Comp B booster at one end, producing a detonation wave propagating down the length of the cylinder, crushing the foam or bulk powder and collapsing the void spaces. The PdV work done in crushing the material heated it to high temperatures, expelling it in a high velocity fluid jet. In the case of boron particles supported in foam, framing camera photos, temperature measurements, and aluminum witness plates suggest that the boron was completely vaporized by the crush wave and that the boron vapor turbulently mixed with and burned in the surrounding air. In the case of PTFE powder, X-ray photoelectron spectroscopy of residues recovered from fragments of a granite target slab suggest that heating was sufficient to dissociate the PTFE to carbon vapor and molecular fluorine which reacted with the quartz and aluminum silicates in the granite to form aluminum oxide and mineral fluoride compounds.
The methods of receiving coal water suspension and its use as the modifying additive in concrete
NASA Astrophysics Data System (ADS)
Buyantuyev, S. L.; Urkhanova, L. A.; Lkhasaranov, S. A.; Stebenkova, Y. Y.; Khmelev, A. B.; Kondratenko, A. S.
2017-01-01
Results of research of the coal water suspension (CWS) from a cake received in the electrodigit ways in the fluid environment and gas are given in article and also the possibilities of its use as the modifying additive in concrete are considered. Use of a coal cake is perspective as it is a withdrawal of the coal and concentrating enterprises and has extremely low cost. Methods of receiving CWS and possibility of formation of carbon nanomaterials (CNM) are given in their structure. Research and the analysis of a microstructure of a surface of exemplars before electrodigit processing, their element structure, dependence of durability of a cement stone on a look and quantity of an additive of CWS is conducted. For modification of cement the carbon nanomaterials received from the following exemplars of water coal suspensions were used: foams from a cake from a scrubber of the plasma modular reactor, coal water suspension from a cake from electrodigit installation. The product which can find further application for a power engineering as fuel for combustion, and also in structural materials science, in particular, as the modifying additive in concrete allows to receive these methods.
Elasto-Plastic Behavior of Aluminum Foams Subjected to Compression Loading
NASA Astrophysics Data System (ADS)
Silva, H. M.; Carvalho, C. D.; Peixinho, N. R.
2017-05-01
The non-linear behavior of uniform-size cellular foams made of aluminum is investigated when subjected to compressive loads while comparing numerical results obtained in the Finite Element Method software (FEM) ANSYS workbench and ANSYS Mechanical APDL (ANSYS Parametric Design Language). The numerical model is built on AUTODESK INVENTOR, being imported into ANSYS and solved by the Newton-Raphson iterative method. The most similar conditions were used in ANSYS mechanical and ANSYS workbench, as possible. The obtained numerical results and the differences between the two programs are presented and discussed
Composite monocoque frame for a mountain bicycle: Testing and calculation
NASA Astrophysics Data System (ADS)
Castejón, L.; Miravete, A.; Ullod, J.; Larrodé, E.
1994-05-01
The present paper shows the way in which a monocoque frame of a mountain bicycle made of carbon fiber and kevlar laminate, a poliurethane foam core and different metallic stiffeners were analyzed. The study was performed in two parts, namely, a first part in which the bicycle was tested considering several static and dynamic cases and a second part carried out by using the F.E.M., from which vibration frequencies and modes were obtained, as well as the foam optimization to be used in the core. It was also possible to compare the results obtained in both parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canbazoglu, F. M.; Fan, B.; Kargar, A.
2016-08-15
The relative influence of the capillary, Marangoni, and hydrophobic forces in mediating the evaporation of water from carbon foam based porous media, in response to incident solar radiation, are investigated. It is indicated that inducing hydrophilic interactions on the surface, through nitric acid treatment of the foams, has a similar effect to reduced pore diameter and the ensuing capillary forces. The efficiency of water evaporation may be parameterized through the Capillary number (Ca), with a lower Ca being preferred. The proposed study is of much relevance to efficient solar energy utilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodanovic, Masa; Johnston, Keith P.
We have successfully created ultra dry carbon-dioxide-in-water and nitrogen-in-water foams (with water content down to 2-5% range), that are remarkably stable at high temperatures (up to 120 deg, C) and pressures (up to 3000psi) and viscous enough (100-200 cP tunable range) to carry proppant. Two generations of these ultra-dry foams have been developed; they are stabilized either with a synergy of surfactants and nanoparticle, or just with viscoelastic surfactants that viscosify the aqueous phase. Not only does this reduce water utilization and disposal, but it minimizes fluid blocking of hydrocarbon production. Further, the most recent development shows successful use ofmore » environmentally friendly surfactants at high temperature and pressure. We pay special attention to the role of nanoparticles in stabilization of the foams, specifically for high salinity brines. The preliminary numerical simulation for which shows they open wider fractures with shorter half-length and require less clean-up due to minimal water use. We also tested the stability and sand carrying properties of these foams at high pressure, room temperature conditions in sapphire cell. We performed on a preliminary numerical investigation of applicability for improved oil recovery applications. The applicability was evaluated by running multiphase flow injection simulations in a case-study oil reservoir. The results of this research thus expand the options available to operators for hydraulic fracturing and can simplify the design and field implementation of foamed fracturing fluids.« less
Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model.
Pan, Douxing; Wang, Chao; Wang, Tzu-Chiang; Yao, Yugui
2017-09-26
Because of the combined advantages of both porous materials and two-dimensional (2D) graphene sheets, superior mechanical properties of three-dimensional (3D) graphene foams have received much attention from material scientists and energy engineers. Here, a 2D mesoscopic graphene model (Modell. Simul. Mater. Sci. Eng. 2011, 19, 054003), was expanded into a 3D bonded graphene foam system by utilizing physical cross-links and van der Waals forces acting among different mesoscopic graphene flakes by considering the debonding behavior, to evaluate the uniaxial tension behavior and fracture mode based on in situ SEM tensile testing (Carbon 2015, 85, 299). We reasonably reproduced a multipeak stress-strain relationship including its obvious yielding plateau and a ductile fracture mode near 45° plane from the tensile direction including the corresponding fracture morphology. Then, a power scaling law of tensile elastic modulus with mass density and an anisotropic strain-dependent Poisson's ratio were both deduced. The mesoscopic physical mechanism of tensile deformation was clearly revealed through the local stress state and evolution of mesostructure. The fracture feature of bonded graphene foam and its thermodynamic state were directly navigated to the tearing pattern of mesoscopic graphene flakes. This study provides an effective way to understand the mesoscopic physical nature of 3D graphene foams, and hence it may contribute to the multiscale computations of micro/meso/macromechanical performances and optimal design of advanced graphene-foam-based materials.
46 CFR Appendix B to Subpart C of... - Substance Technical Guidelines, Benzene
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Extinguishing media: Carbon dioxide, dry chemical, or foam. (5) Special fire fighting procedures: Do not use a... ignited by open flames or sparks at locations remote from the site at which benzene is handled. (7...
46 CFR Appendix B to Subpart C to... - Substance Technical Guidelines, Benzene
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Extinguishing media: Carbon dioxide, dry chemical, or foam. (5) Special fire fighting procedures: Do not use a... ignited by open flames or sparks at locations remote from the site at which benzene is handled. (7...
46 CFR Appendix B to Subpart C of... - Substance Technical Guidelines, Benzene
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Extinguishing media: Carbon dioxide, dry chemical, or foam. (5) Special fire fighting procedures: Do not use a... ignited by open flames or sparks at locations remote from the site at which benzene is handled. (7...
An adsorption of carbon dioxide on activated carbon controlled by temperature swing adsorption
NASA Astrophysics Data System (ADS)
Tomas, Korinek; Karel, Frana
2017-09-01
This work deals with a method of capturing carbon dioxide (CO2) in indoor air. Temperature Swing Adsorption (TSA) on solid adsorbent was chosen for CO2 capture. Commercial activated carbon (AC) in form of extruded pellets was used as a solid adsorbent. There was constructed a simple device to testing effectiveness of CO2 capture in a fixed bed with AC. The TSA cycle was also simulated using the open-source software OpenFOAM. There was a good agreement between results obtained from numerical simulations and experimental data for adsorption process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleksandrov, V. V.; Bolkhovitinov, E. A.; Volkov, G. S., E-mail: volkov@triniti.ru
The implosion dynamics of a pinch with a highly inhomogeneous initial axial distribution of the load mass was studied experimentally. A cascade array consisting of a double nested tungsten wire array and a coaxial inner cylindrical shell located symmetrically with respect to the high-voltage electrodes was used as a load of the Angara-5-1 high-current generator. The cylindrical foam shell was half as long as the cathode− anode gap, and its diameter was equal to the diameter of the inner wire array. It is shown experimentally that two stages are typical of the implosion dynamics of such a load: the formationmore » of two separate pinches formed as a result of implosion of the wire array near the cathode and anode and the subsequent implosion of the central part of the load containing the cylindrical foam shell. The conditions are determined at which the implosion of the central part of the pinch with the foam cylinder is preceded by intense irradiation of the foam with the soft X-ray (SXR) emission generated by the near-electrode pinches and converting it into the plasma state. Using such a load, which models the main elements of the scheme of a dynamic hohlraum for inertial confinement fusion, it is possible to increase the efficiency of interaction between the outer accelerated plasma sheath and the inner foam shell by preionizing the foam with the SXR emission of the near-electrode pinches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verba, Circe; Montross, Scott; Spaulding, Richard
Geologic carbon storage (GCS) is a potentially viable strategy to reduce greenhouse emissions. Understanding the risks to engineered and geologic structures associated with GCS is an important first step towards developing practices for safe and effective storage. The widespread utilization of foamed cement in wells may mean that carbon dioxide (CO 2)/brine/foamed cement reactions may occur within these GCS sites. Characterizing the difference in alteration rates as well as the physical and mechanical impact of CO 2/brine/foamed cement is an important preliminary step to ensuring offshore and onshore GCS is a prudent anthropogenic CO 2 mitigation choice. In a typicalmore » oil and gas well, cement is placed in the annulus between the steel casing and formation rock for both zonal isolation and casing support. The cement must have sufficient strength to secure the casing in the hole and withstand the stress of drilling, perforating, and fracturing (e.g. API, 1997, 2010 Worldwide Cementing Practices). As such, measuring the mechanical and properties of cement is an important step in predicting cement behavior under applied downhole stresses (Nelson, 2006). Zonal isolation is the prevention of fluids migrating to different zones outside of the casing and is strongly impacted by the permeability of the wellbore cement (Nelson, 2006). Zonal isolation depends on both the mechanical behavior and permeability (a physical property) of the cement (Mueller and Eid, 2006; Nelson, 2006). Long-term integrity of cement depends on the mechanical properties of the cement sheath, such as Young’s Modulus (Griffith et al., 2004). The cement sheath’s ability to withstand the stresses from changes in pressure and temperature is predominantly determined by the mechanical properties, including Young’s modulus, Poisson’s ratio, and tensile strength. Any geochemical alteration may impact both the mechanical and physical properties of the cement, thus ultimately impacting the structural integrity of the wellbore. In this study, atmospheric foamed cements were generated using a neat cement and three foam qualities (volume of entrained gas in the cement) - 10%, 20%, and 30 % gas volume. The samples were immersed in a 0.25 M NaCl brine followed by the injection of supercritical CO 2 at 28.9 MPa and 50°C. Petrophysical properties were examined for representative samples using computed tomography (CT) and scanning electron microscopy (SEM). CT scanning of representative samples across the range of reacted cements revealed macroscopic changes in structure due to brine/CO 2/cement interactions. The high foam quality samples resulted in more CO 2-saturated brine infiltrating radially deeper into the cement and thus were more susceptible to alteration. After 56 days of exposure, the 30% foam quality sample had the most reaction resulting in an alteration depth of 8.35 ± 0.13 mm with a calculated 34.6 ± 0.2% reacted area and 5.76 ± 0.2% reacted pore space area. The neat sample on the other hand, had a reaction depth of 0.31 ± 0.13 mm with a calculated 0.15 ± 0.08% reacted area and 0.57 ± 0.05% reacted pore area. Physical measurements of the exposed samples were consistent with this degree of alteration having 47.02% porosity and the highest permeability of 0.041 mD. These results indicate that the greater surface area provided by the increase of pore space in the higher quality foam coupled with carbonate diffusion reactions enabled greater alteration.« less
Polyurethane foams obtained from residues of PET manufacturing and modified with carbon nanotubes
NASA Astrophysics Data System (ADS)
Stiebra, L.; Cabulis, U.; Knite, M.
2016-04-01
In this work we report the preparation of rigid microcellular polyurethane/carbon nanotube nanocomposites with different CNT loadings (0.09-0.46%) and various isocyanate indexes (110-260). Water was used as a blowing agent for samples. Density of all obtained samples - 200 ± 10 kg/m3. Electrical properties, as well as heat conductivity, cellular structure and mechanical properties of these nanocomposites were investigated.
Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.
2014-11-07
We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images showmore » that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.« less
Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes.
López-Oyama, A B; Silva-Molina, R A; Ruíz-García, J; Gámez-Corrales, R; Guirado-López, R A
2014-11-07
We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH-MWCNT). Our MWCNTs have average diameters of ~2 nm, lengths of approximately 100-300 nm, and a hydroxyl surface coverage θ~0.1. When deposited on the air/water interface the OH-MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO-LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH-MWCNTs might have promising applications.
Capodici, Marco; Di Bella, Gaetano; Nicosia, Salvatore; Torregrossa, Michele
2015-02-01
A bench-scale MBR unit was operated, under stressing condition, with the aim of stimulating the onset of foaming in the activated sludge. Possible synergies between synthetic surfactants in the wastewater and biological surfactants (Extra-Cellular Polymeric Substances, EPSs) were investigated by changing C/N ratio. The growth of filamentous bacteria was also discussed. The MBR unit provided satisfactory overall carbon removal overall efficiencies: in particular, synthetic surfactants were removed with efficiency higher than 90% and 95% for non-ionic and ionic surfactants, respectively. Lab investigation suggested also the importance to reduce synthetic surfactants presence entering into mixed liquor: otherwise, their presence can significantly worsen the natural foaming caused by biological surfactants (EPSs) produced by bacteria. Finally, a new analytic method based on "ink test" has been proposed as a useful tool to achieve a valuation of EPSs bound fraction. Copyright © 2014 Elsevier Ltd. All rights reserved.
Treatment of diseases due to infections and old age using anti-foaming agents.
Reinemann, Peter Joachim
2003-06-01
The biochemical changes taking place in the organism in the course of ageing and infectious processes result in substantial catabolic processes during which a variety of gases are created (in addition to carbon dioxide and nitrogen, depending on the conditions, methane, ammonia, hydrogen sulphide, mercaptan, etc. are also created) in addition to peptides and low molecular organic compounds. These gases are dispersed in the extra-cellular space and in the capillary system of blood and lymph in the form of micro-foam. The accompanied disturbance in the ability to flow considerably impairs the immune defence system which is inseparably connected to the transport of catabolic products. Any resulting diseases can be alleviated or even removed by the application of a simple physical-chemical principle. Anti-foaming agents (solutions, all types of dispersions, micro-emulsions) based on polydimethylsiloxane but also based on fatty acid esters (preferably unsaturated fatty acids) are proposed for treatment purposes.
Wilson, Glenn R.; Salyer, Ival O.; Ball, III, George L.
1976-07-13
By mixing one part of a prepolymer containing a polyamine partially polymerized with an organic epoxide and subsequently reacted with a fatty acid containing from 8 to 32 carbon atoms, and then reacting this prepolymer mixture with 3 parts of an organic epoxide, a composition was obtained which made a gas frothable, shear-stable, room temperature curing, low density foam. A particularly advantageous prepolymer was prepared using a polyamine selected from the group consisting of diethylenetriamine, triethylenetetramine, and tetraethylenepentamine, partially polymerized with an organic epoxide having an average molecular weight of about 350 and having an epoxide equivalent of 185 to 192, and reacted with 2-10 weight percent linoleic acid. When one part of this prepolymer was reacted with about three parts of epoxy, and frothed by whipping in air or nitrogen an epoxy foam was produced which could be troweled onto surfaces and into corners or crevices, and subsequently cured, at near ambient temperature, to a strong dimensionally stable foam product.
Calibrating the Abaqus Crushable Foam Material Model using UNM Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schembri, Philip E.; Lewis, Matthew W.
Triaxial test data from the University of New Mexico and uniaxial test data from W-14 is used to calibrate the Abaqus crushable foam material model to represent the syntactic foam comprised of APO-BMI matrix and carbon microballoons used in the W76. The material model is an elasto-plasticity model in which the yield strength depends on pressure. Both the elastic properties and the yield stress are estimated by fitting a line to the elastic region of each test response. The model parameters are fit to the data (in a non-rigorous way) to provide both a conservative and not-conservative material model. Themore » model is verified to perform as intended by comparing the values of pressure and shear stress at yield, as well as the shear and volumetric stress-strain response, to the test data.« less
Piezoelectric nanoparticle-polymer composite foams.
McCall, William R; Kim, Kanguk; Heath, Cory; La Pierre, Gina; Sirbuly, Donald J
2014-11-26
Piezoelectric polymer composite foams are synthesized using different sugar-templating strategies. By incorporating sugar grains directly into polydimethylsiloxane mixtures containing barium titanate nanoparticles and carbon nanotubes, followed by removal of the sugar after polymer curing, highly compliant materials with excellent piezoelectric properties can be fabricated. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio which gave an upper bound on the porosity of 73% and a lower bound on the elastic coefficient of 32 kPa. The electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs, giving piezoelectric coefficient values of ∼112 pC/N and a power output of ∼18 mW/cm3 under a load of 10 N for the highest porosity samples. These novel materials should find exciting use in a variety of applications including energy scavenging platforms, biosensors, and acoustic actuators.
46 CFR 25.30-10 - Hand-portable fire extinguishers and semi-portable fire-extinguishing systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
....30-10(C): Table 25.30-10(C) Classification Foam, liters (gallons) Carbon dioxide, kilograms (pounds... tampering or use when broken) are not intact, the boarding officer or marine inspector will inspect such...
46 CFR 25.30-10 - Hand-portable fire extinguishers and semi-portable fire-extinguishing systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
....30-10(C): Table 25.30-10(c) Classification Foam, liters (gallons) Carbon dioxide, kilograms (pounds... tampering or use when broken) are not intact, the boarding officer or marine inspector will inspect such...
46 CFR 25.30-10 - Hand-portable fire extinguishers and semi-portable fire-extinguishing systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
....30-10(C): Table 25.30-10(c) Classification Foam, liters (gallons) Carbon dioxide, kilograms (pounds... tampering or use when broken) are not intact, the boarding officer or marine inspector will inspect such...
46 CFR 25.30-10 - Hand-portable fire extinguishers and semi-portable fire-extinguishing systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
....30-10(C): Table 25.30-10(c) Classification Foam,liters (gallons) Carbon dioxide, kilograms (pounds... tampering or use when broken) are not intact, the boarding officer or marine inspector will inspect such...
46 CFR 25.30-10 - Hand-portable fire extinguishers and semi-portable fire-extinguishing systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
....30-10(C): Table 25.30-10(c) Classification Foam,liters (gallons) Carbon dioxide, kilograms (pounds... tampering or use when broken) are not intact, the boarding officer or marine inspector will inspect such...
Removing CO2 and moisture from air
NASA Technical Reports Server (NTRS)
Tepper, E. H.
1977-01-01
Foamed-aluminum blocks act as passive heat exchanger to improve efficiency. Improved closed-cycle atmospheric scrubber, level of carbon dioxide, and water vapor are reduced without affecting temperature of airstream. Exchangers draw impurities from air without additional heaters of auxillary equipment.
Foam Experiment Hardware are Flown on Microgravity Rocket MAXUS 4
NASA Astrophysics Data System (ADS)
Lockowandt, C.; Löth, K.; Jansson, O.; Holm, P.; Lundin, M.; Schneider, H.; Larsson, B.
2002-01-01
The Foam module was developed by Swedish Space Corporation and was used for performing foam experiments on the sounding rocket MAXUS 4 launched from Esrange 29 April 2001. The development and launch of the module has been financed by ESA. Four different foam experiments were performed, two aqueous foams by Doctor Michele Adler from LPMDI, University of Marne la Vallée, Paris and two non aqueous foams by Doctor Bengt Kronberg from YKI, Institute for Surface Chemistry, Stockholm. The foam was generated in four separate foam systems and monitored in microgravity with CCD cameras. The purpose of the experiment was to generate and study the foam in microgravity. Due to loss of gravity there is no drainage in the foam and the reactions in the foam can be studied without drainage. Four solutions with various stabilities were investigated. The aqueous solutions contained water, SDS (Sodium Dodecyl Sulphate) and dodecanol. The organic solutions contained ethylene glycol a cationic surfactant, cetyl trimethyl ammonium bromide (CTAB) and decanol. Carbon dioxide was used to generate the aqueous foam and nitrogen was used to generate the organic foam. The experiment system comprised four complete independent systems with injection unit, experiment chamber and gas system. The main part in the experiment system is the experiment chamber where the foam is generated and monitored. The chamber inner dimensions are 50x50x50 mm and it has front and back wall made of glass. The front window is used for monitoring the foam and the back window is used for back illumination. The front glass has etched crosses on the inside as reference points. In the bottom of the cell is a glass frit and at the top is a gas in/outlet. The foam was generated by injecting the experiment liquid in a glass frit in the bottom of the experiment chamber. Simultaneously gas was blown through the glass frit and a small amount of foam was generated. This procedure was performed at 10 bar. Then the pressure was lowered in the experiment chamber to approximately 0,1 bar to expand the foam to a dry foam that filled the experiment chamber. The foam was regenerated during flight by pressurise the cell and repeat the foam generation procedures. The module had 4 individual experiment chambers for the four different solutions. The four experiment chambers were controlled individually with individual experiment parameters and procedures. The gas system comprise on/off valves and adjustable valves to control the pressure and the gas flow and liquid flow during foam generation. The gas system can be divided in four sections, each section serving one experiment chamber. The sections are partly connected in two pairs with common inlet and outlet. The two pairs are supplied with a 1l gas bottle each filled to a pressure of 40 bar and a pressure regulator lowering the pressure from 40 bar to 10 bar. Two sections are connected to the same outlet. The gas outlets from the experiment chambers are connected to two symmetrical placed outlets on the outer structure with diffusers not to disturb the g-levels. The foam in each experiment chamber was monitored with one tomography camera and one overview camera (8 CCD cameras in total). The tomography camera is placed on a translation table which makes it possible to move it in the depth direction of the experiment chamber. The video signal from the 8 CCD cameras were stored onboard with two DV recorders. Two video signals were also transmitted to ground for real time evaluation and operation of the experiment. Which camera signal that was transmitted to ground could be selected with telecommands. With help of the tomography system it was possible to take sequences of images of the foam at different depths in the foam. This sequences of images are used for constructing a 3-D model of the foam after flight. The overview camera has a fixed position and a field of view that covers the total experiment chamber. This camera is used for monitoring the generation of foam and the overall behaviour of the foam. The experiment was performed successfully with foam generation in all 4 experiment chambers. Foam was also regenerated during flight with telecommands. The experiment data is under evaluation.
Recommendations for tool-handle material choice based on finite element analysis.
Harih, Gregor; Dolšak, Bojan
2014-05-01
Huge areas of work are still done manually and require the usages of different powered and non-powered hand tools. In order to increase the user performance, satisfaction, and lower the risk of acute and cumulative trauma disorders, several researchers have investigated the sizes and shapes of tool-handles. However, only a few authors have investigated tool-handles' materials for further optimising them. Therefore, as presented in this paper, we have utilised a finite-element method for simulating human fingertip whilst grasping tool-handles. We modelled and simulated steel and ethylene propylene diene monomer (EPDM) rubber as homogeneous tool-handle materials and two composites consisting of EPDM rubber and EPDM foam, and also EPDM rubber and PU foam. The simulated finger force was set to obtain characteristic contact pressures of 20 kPa, 40 kPa, 80 kPa, and 100 kPa. Numerical tests have shown that EPDM rubber lowers the contact pressure just slightly. On the other hand, both composites showed significant reduction in contact pressure that could lower the risks of acute and cumulative trauma disorders which are pressure-dependent. Based on the results, it is also evident that a composite containing PU foam with a more evident and flat plateau deformed less at lower strain rates and deformed more when the plateau was reached, in comparison to the composite with EPDM foam. It was shown that hyper-elastic foam materials, which take into account the non-linear behaviour of fingertip soft tissue, can lower the contact pressure whilst maintaining low deformation rate of the tool-handle material for maintaining sufficient rate of stability of the hand tool in the hands. Lower contact pressure also lowers the risk of acute and cumulative trauma disorders, and increases comfort whilst maintaining performance. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Design of Fiber Reinforced Foam Sandwich Panels for Large Ares V Structural Applications
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.; Hopkins, Dale A.
2010-01-01
The preliminary design of three major structural components within NASA's Ares V heavy lift vehicle using a novel fiber reinforced foam composite sandwich panel concept is presented. The Ares V payload shroud, interstage, and core intertank are designed for minimum mass using this panel concept, which consists of integral composite webs separated by structural foam between two composite facesheets. The HyperSizer structural sizing software, in conjunction with NASTRAN finite element analyses, is used. However, since HyperSizer does not currently include a panel concept for fiber reinforced foam, the sizing was performed using two separate approaches. In the first, the panel core is treated as an effective (homogenized) material, whose properties are provided by the vendor. In the second approach, the panel is treated as a blade stiffened sandwich panel, with the mass of the foam added after completion of the panel sizing. Details of the sizing for each of the three Ares V components are given, and it is demonstrated that the two panel sizing approaches are in reasonable agreement for thinner panel designs, but as the panel thickness increases, the blade stiffened sandwich panel approach yields heavier panel designs. This is due to the effects of local buckling, which are not considered in the effective core property approach.
Foam on Tile Impact Modeling for the STS-107 Investigation
NASA Technical Reports Server (NTRS)
Stellingwerf, R. F.; Robinson, J. H.; Richardson, S.; Evans, S. W.; Stallworth, R.; Hovater, M.
2004-01-01
Following the breakup of the Space Shuttle Columbia during reentry a NASA/Contractor investigation team was formed to examine the probable damage inflicted on Orbiter Thermal Protection System elements by impact of External Tank insulating foam projectiles. The authors formed a working subgroup within the larger team to apply the Smooth Particle Hydrodynamics code SPHC to the damage estimation problem. Numerical models of the Orbiter's tiles and of the Tank's foam were constructed and used as inputs into the code. Material properties needed to properly model the tiles and foam were obtained from other working subgroups who performed tests on these items for this purpose. Two- and three-dimensional models of the tiles were constructed, including the glass outer layer, the main body of LI-900 insulation, the densified lower layer of LI-900, the Nomex felt mounting layer, and the Aluminum 2024 vehicle skin. A model for the BX-250 foam including porous compression, elastic rebound, and surface erosion was developed. Code results for the tile damage and foam behavior were extensively validated through comparison with Southwest Research Institute foam-on-tile impact experiments carried out in 1999. These tests involved small projectiles striking individual tiles and small tile arrays. Following code and model validation we simulated impacts of larger foam projectiles on the examples of tile systems used on the Orbiter. Results for impacts on the main landing gear door are presented in this paper, including effects of impacts at several angles, and of rapidly rotating projectiles. General results suggest that foam impacts on tiles at about 500 mph could cause appreciable damage if the impact angle is greater than about 20 degrees. Some variations of the foam properties, such as increased brittleness or increased density could increase damage in some cases. Rotation up to 17 rps failed to increase the damage for the two cases considered. This does not rule out other cases in which the rotational energy might lead to an increase in tile damage, but suggests that in most cases rotation will not be an important factor.
Effect of Impact Location on the Response of Shuttle Wing Leading Edge Panel 9
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Spellman, Regina L.; Hardy, Robin C.; Fasanella, Edwin L.; Jackson, Karen E.
2005-01-01
The objective of this paper is to compare the results of several simulations performed to determine the worst-case location for a foam impact on the Space Shuttle wing leading edge. The simulations were performed using the commercial non-linear transient dynamic finite element code, LS-DYNA. These simulations represent the first in a series of parametric studies performed to support the selection of the worst-case impact scenario. Panel 9 was selected for this study to enable comparisons with previous simulations performed during the Columbia Accident Investigation. The projectile for this study is a 5.5-in cube of typical external tank foam weighing 0.23 lb. Seven locations spanning the panel surface were impacted with the foam cube. For each of these cases, the foam was traveling at 1000 ft/s directly aft, along the orbiter X-axis. Results compared from the parametric studies included strains, contact forces, and material energies for various simulations. The results show that the worst case impact location was on the top surface, near the apex.
46 CFR 28.825 - Excess fire detection and protection equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
...” “CARBON DIOXIDE FIRE SYSTEM” or “FOAM FIRE SYSTEM”, as the case may be; (v) Instructions for the operation... be locked, a key to the space or enclosure shall be in a break-glass-type box conspicuously located...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondy, Lisa Ann; Rao, Rekha Ranjana; Shelden, Bion
We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane foam, PMDI. The polyurethane of interest is chemically blown, where carbon dioxide is produced via the reaction of water, the blowing agent, and isocyanate. The isocyanate also reacts with polyol in a competing reaction, which produces the polymer. Here we detail the experiments needed to populate a processing model and provide parameters for the model based on these experiments. The model entails solving the conservation equations, including the equations of motion, an energy balance, and two rate equations for the polymerization and foaming reactions,more » following a simplified mathematical formalism that decouples these two reactions. Parameters for the polymerization kinetics model are reported based on infrared spectrophotometry. Parameters describing the gas generating reaction are reported based on measurements of volume, temperature and pressure evolution with time. A foam rheology model is proposed and parameters determined through steady-shear and oscillatory tests. Heat of reaction and heat capacity are determined through differential scanning calorimetry. Thermal conductivity of the foam as a function of density is measured using a transient method based on the theory of the transient plane source technique. Finally, density variations of the resulting solid foam in several simple geometries are directly measured by sectioning and sampling mass, as well as through x-ray computed tomography. These density measurements will be useful for model validation once the complete model is implemented in an engineering code.« less
Fluid-structure coupling for wind turbine blade analysis using OpenFOAM
NASA Astrophysics Data System (ADS)
Dose, Bastian; Herraez, Ivan; Peinke, Joachim
2015-11-01
Modern wind turbine rotor blades are designed increasingly large and flexible. This structural flexibility represents a problem for the field of Computational Fluid Dynamics (CFD), which is used for accurate load calculations and detailed investigations of rotor aerodynamics. As the blade geometries within CFD simulations are considered stiff, the effect of blade deformation caused by aerodynamic loads cannot be captured by the common CFD approach. Coupling the flow solver with a structural solver can overcome this restriction and enables the investigation of flexible wind turbine blades. For this purpose, a new Finite Element (FE) solver was implemented into the open source CFD code OpenFOAM. Using a beam element formulation based on the Geometrically Exact Beam Theory (GEBT), the structural model can capture geometric non-linearities such as large deformations. Coupled with CFD solvers of the OpenFOAM package, the new framework represents a powerful tool for aerodynamic investigations. In this work, we investigated the aerodynamic performance of a state of the art wind turbine. For different wind speeds, aerodynamic key parameters are evaluated and compared for both, rigid and flexible blade geometries. The present work is funded within the framework of the joint project Smart Blades (0325601D) by the German Federal Ministry for Economic Affairs and Energy (BMWi) under decision of the German Federal Parliament.
Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.
2016-09-28
We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer obtained spatially resolved measurements of Ti K-α emission. Density profiles were measured from K-α intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-α spectra to spectra from CRETIN simulations. This work shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.
NASA Technical Reports Server (NTRS)
Bernhard, R. J.; Bolton, J. S.
1988-01-01
The objectives are: measurement of dynamic properties of acoustical foams and incorporation of these properties in models governing three-dimensional wave propagation in foams; tests to measure sound transmission paths in the HP137 Jetstream 3; and formulation of a finite element energy model. In addition, the effort to develop a numerical/empirical noise source identification technique was completed. The investigation of a design optimization technique for active noise control was also completed. Monthly progress reports which detail the progress made toward each of the objectives are summarized.
Extrusion Process by Finite Volume Method Using OpenFoam Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matos Martins, Marcelo; Tonini Button, Sergio; Divo Bressan, Jose
The computational codes are very important tools to solve engineering problems. In the analysis of metal forming process, such as extrusion, this is not different because the computational codes allow analyzing the process with reduced cost. Traditionally, the Finite Element Method is used to solve solid mechanic problems, however, the Finite Volume Method (FVM) have been gaining force in this field of applications. This paper presents the velocity field and friction coefficient variation results, obtained by numerical simulation using the OpenFoam Software and the FVM to solve an aluminum direct cold extrusion process.
Repair of oxidation protection coatings on carbon-carbon using preceramic polymers
NASA Technical Reports Server (NTRS)
Schwab, Stuart T.; Graef, Renee C.
1991-01-01
The paper describes a field-applicable technique for the repair of damage to SiC protective coatings on carbon/carbon composites, using commercial preceramic polymers, such as perhydropolysilazane developed by the Southwest Research Institute and several commercial polymers (NICALON, PS110, PS116, PS117, NCP-200, and PHPS were tested). After being applied on the damaged panel and oxidized at 1400 C, these polymers form either SiC or Si3N4 (or a mixture of both). It was found that impact damaged carbon/carbon specimens repaired with perhydropolysilazane exhibit substantial oxidation resistance. Many of the other tested preceramic polymer were found to be unsuitable for the purpose of repair due to either low ceramic yield, foaming, or intumescence.
NASA Astrophysics Data System (ADS)
MacAvoy, S. E.; Mucha, S.; Williamson, G.
2017-12-01
While green roofs have well understood benefits for retaining runoff, there is less of a consensus regarding the potential for retaining and absorbing nutrients or suspended solids from roof runoff that would otherwise travel to waterways. Additionally, there are numerous designs, materials and maintenance plans associated with "green" roofs/surfaces that may greatly impact not only their hydrological benefit but also their pollution mitigation potential. Here we examine the NO3, NH4, total organic carbon (TOC), total phosphorus (TP) and total suspended solids (TSS) retention potential from planted and unplanted foam roofs and traditional soil roofs. Direct precipitation, untreated runoff and throughflow from the different roof types were collected for 3 to 11 rain events over a year (depending on roof). Unplanted and traditional roofs reduced TSS by 80% or better relative to runoff. Traditional roofs showed 50% lower TP than runoff or other roof types. TOC was higher than direct precipitation for all treatments, although there were no differences among the treatments themselves. Taken as averages over the 11 events, NO3 and NH4 concentrations were highly variable for runoff and treatments and significant differences were not detected. Preliminary analysis suggests there were no differences between performance of traditional versus foam-based roofs, although a greater sample size is required to be definitive.
NASA Astrophysics Data System (ADS)
Ryan, Shannon; Christiansen, Eric L.
2013-02-01
A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.
Song, Rong-Bin; Zhao, Cui-E; Jiang, Li-Ping; Abdel-Halim, Essam Sayed; Zhang, Jian-Rong; Zhu, Jun-Jie
2016-06-29
Promoting the performance of microbial fuel cells (MFCs) relies heavily on the structure design and composition tailoring of electrode materials. In this work, three-dimensional (3D) macroporous graphene foams incorporated with intercalated spacer of multiwalled carbon nanotubes (MWCNTs) and bacterial anchor of Fe3O4 nanospheres (named as G/MWCNTs/Fe3O4 foams) were first synthesized and used as anodes for Shewanella-inoculated microbial fuel cells (MFCs). Thanks to the macroporous structure of 3D graphene foams, the expanded electrode surface by MWCNTs spacing, as well as the high affinity of Fe3O4 nanospheres toward Shewanella oneidensis MR-1, the anode exhibited high bacterial loading capability. In addition to spacing graphene nanosheets for accommodating bacterial cells, MWCNTs paved a smoother way for electron transport in the electrode substrate of MFCs. Meanwhile, the embedded bioaffinity Fe3O4 nanospheres capable of preserving the bacterial metabolic activity provided guarantee for the long-term durability of the MFCs. With these merits, the constructed MFC possessed significantly higher power output and stronger stability than that with conventional graphite rod anode.
Green waste cooking oil-based rigid polyurethane foam
NASA Astrophysics Data System (ADS)
Enderus, N. F.; Tahir, S. M.
2017-11-01
Polyurethane is a versatile polymer traditionally prepared using petroleum-based raw material. Petroleum, however, is a non-renewable material and polyurethane produced was found to be non-biodegradable. In quest for a more environmentally friendly alternative, wastecooking oil, a highly abundant domestic waste with easily derivatized structure, is a viable candidate to replace petroleum. In this study,an investigation to determine physical and chemical properties of rigid polyurethane (PU) foam from waste cooking oil (WCO) was carried out. WCO was first adsorbed by using coconut husk activated carbon adsorbent prior to be used for polyol synthesis. The purified WCO was then used to synthesize polyol via transesterification reaction to yield alcohol groups in the WCO chains structure. Finally, the WCO-based polyol was used to prepare rigid PU foam. The optimum formulation for PU formation was found to be 90 polyol: 60 glycerol: 54 water: 40 diethanolamine: 23 diisocyanate. The rigid PU foam has density of 208.4 kg/m3 with maximum compressive strength and capability to receive load at 0.03 MPa and 0.09 kN, respectively. WCO-based PU can potentially be used to replace petroleum-based PU as house construction materials such as insulation panels.
Transmission loss characteristics of aircraft sidewall systems to control cabin interior noise
NASA Astrophysics Data System (ADS)
Yesil, Oktay; Serati, Paul M.; Hofbeck, Eric V.; Glover, Billy M.
We have explored the possibility of using new, light weight, and acoustically effective materials on aircraft interiors to control noise. The sidewall system elements were evaluated for increased TL in the laboratory. Measured TL for a given configuration, relative to a baseline, was used as an indication of the TL change to be expected for modifications. Test data were in good agreement with the predicted levels. The TL contributions due to all sidewall components were important for interior cabin noise control. Polyimide foam insulation was inferior to fiberglass in the mid-frequency range; however, foam was a better performer at high frequencies. Fiberglass/polyimide foam composite blankets, with less weight, provided noise reductions similar to fiberglass. 'Premium' fiberglass was slightly better performer than the standard fiberglass. Solid fiberglass interior trim panel provided adequate noise performance. Production-type trim attachment design could be improved to control flanking path for sound transmission.
Material Model Evaluation of a Composite Honeycomb Energy Absorber
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.
2012-01-01
A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.
Development, testing, and numerical modeling of a foam sandwich biocomposite
NASA Astrophysics Data System (ADS)
Chachra, Ricky
This study develops a novel sandwich composite material using plant based materials for potential use in nonstructural building applications. The face sheets comprise woven hemp fabric and a sap based epoxy, while the core comprises castor oil based foam with waste rice hulls as reinforcement. Mechanical properties of the individual materials are tested in uniaxial compression and tension for the foam and hemp, respectively. The sandwich composite is tested in 3 point bending. Flexural results are compared to a finite element model developed in the commercial software Abaqus, and the validated model is then used to investigate alternate sandwich geometries. Sandwich model responses are compared to existing standards for nonstructural building panels, showing that the novel material is roughly half the strength of equally thick drywall. When space limitations are not an issue, a double thickness sandwich biocomposite is found to be a structurally acceptable replacement for standard gypsum drywall.
Code of Federal Regulations, 2010 CFR
2010-07-01
... added to assist foaming by generating gas beyond that resulting from the isocyanate-water reaction..., material safety data sheets, or engineering calculations. High-pressure mixhead means a mixhead where.... Isocyanate means a reactive chemical grouping composed of a nitrogen atom bonded to a carbon atom bonded to...
46 CFR 132.210 - Classification.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Classification. 132.210 Section 132.210 Shipping COAST... Portable and Semiportable Fire Extinguishers § 132.210 Classification. (a) Each portable fire extinguisher... Classification Type Size Halon 1211, 1301, and 1211-1301 mixtures kgs. (lbs.) Foam, liters (gallons) Carbon...
46 CFR 132.210 - Classification.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Classification. 132.210 Section 132.210 Shipping COAST... Portable and Semiportable Fire Extinguishers § 132.210 Classification. (a) Each portable fire extinguisher... Classification Type Size Halon 1211, 1301, and 1211-1301 mixtures kgs. (lbs.) Foam, liters (gallons) Carbon...
46 CFR 132.210 - Classification.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Classification. 132.210 Section 132.210 Shipping COAST... Portable and Semiportable Fire Extinguishers § 132.210 Classification. (a) Each portable fire extinguisher... Classification Type Size Halon 1211, 1301, and 1211-1301 mixtures kgs. (lbs.) Foam, liters (gallons) Carbon...
46 CFR 132.210 - Classification.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Classification. 132.210 Section 132.210 Shipping COAST... Portable and Semiportable Fire Extinguishers § 132.210 Classification. (a) Each portable fire extinguisher... Classification Type Size Halon 1211, 1301, and 1211-1301 mixtures kgs. (lbs.) Foam, liters (gallons) Carbon...
46 CFR 132.210 - Classification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Classification. 132.210 Section 132.210 Shipping COAST... Portable and Semiportable Fire Extinguishers § 132.210 Classification. (a) Each portable fire extinguisher... Classification Type Size Halon 1211, 1301, and 1211-1301 mixtures kgs. (lbs.) Foam, liters (gallons) Carbon...
Aquagel electrode separator for use in batteries and supercapacitors
Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.
1995-01-01
An electrode separator for electrochemical energy storage devices, such as a high energy density capacitor incorporating a variety of carbon foam electrodes. The separator is derived from an aquagel of resorcinol-formaldehyde and related polymers and containing ionically conducting electrolyte in the pores thereof.
A NEW RENEWABLE POLYMER FROM BIO-OIL - PHASE I
The vast majority of today’s polymers, plastics, foams, synthetic fibers, adhesives, and coatings are made from oil, which is non-renewable, non-biodegradable, depends in large part on foreign sources, is highly sensitive to regional conflicts, and has a large carbon foo...