Science.gov

Sample records for carbon ion radiotherapy

  1. Particle radiotherapy with carbon ion beams

    PubMed Central

    2013-01-01

    Carbon ion radiotherapy offers superior dose conformity in the treatment of deep-seated malignant tumours compared with conventional X-ray therapy. In addition, carbon ion beams have a higher relative biological effectiveness compared with protons or X-ray beams. The algorithm of treatment planning and beam delivery system is tailored to the individual parameters of the patient. The present article reviews the available literatures for various disease sites including the head and neck, skull base, lung, liver, prostate, bone and soft tissues and pelvic recurrence of rectal cancer as well as physical and biological properties. PMID:23497542

  2. Clinical advantages of carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Tsujii, Hirohiko; Kamada, Tadashi; Baba, Masayuki; Tsuji, Hiroshi; Kato, Hirotoshi; Kato, Shingo; Yamada, Shigeru; Yasuda, Shigeo; Yanagi, Takeshi; Kato, Hiroyuki; Hara, Ryusuke; Yamamoto, Naotaka; Mizoe, Junetsu

    2008-07-01

    Carbon-ion radiotherapy (C-ion RT) possesses physical and biological advantages. It was started at NIRS in 1994 using the Heavy Ion Medical Accelerator in Chiba (HIMAC); since then more than 50 protocol studies have been conducted on almost 4000 patients with a variety of tumors. Clinical experiences have demonstrated that C-ion RT is effective in such regions as the head and neck, skull base, lung, liver, prostate, bone and soft tissues, and pelvic recurrence of rectal cancer, as well as for histological types including adenocarcinoma, adenoid cystic carcinoma, malignant melanoma and various types of sarcomas, against which photon therapy could be less effective. Furthermore, when compared with photon and proton RT, a significant reduction of overall treatment time and fractions has been accomplished without enhancing toxicities. Currently, the number of irradiation sessions per patient averages 13 fractions spread over approximately three weeks. This means that in a carbon therapy facility a larger number of patients than is possible with other modalities can be treated over the same period of time.

  3. Carbon ion radiotherapy of skull base chondrosarcomas

    SciTech Connect

    Schulz-Ertner, Daniela . E-mail: Daniela.Ertner@med.uni-heidelberg.de; Nikoghosyan, Anna; Hof, Holger; Didinger, Bernd; Combs, Stephanie E.; Jaekel, Oliver; Karger, Christian P.; Edler, Lutz; Debus, Juergen

    2007-01-01

    Purpose: To evaluate the effectiveness and toxicity of carbon ion radiotherapy in chondrosarcomas of the skull base. Patients and Methods: Between November 1998 and September 2005, 54 patients with low-grade and intermediate-grade chondrosarcomas of the skull base have been treated with carbon ion radiation therapy (RT) using the raster scan technique at the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany. All patients had gross residual tumors after surgery. Median total dose was 60 CGE (weekly fractionation 7 x 3.0 CGE). All patients were followed prospectively in regular intervals after treatment. Local control and overall survival rates were calculated using the Kaplan-Meier method. Toxicity was assessed according to the Common Terminology Criteria (CTCAE v.3.0) and Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) score. Results: Median follow-up was 33 months (range, 3-84 months). Only 2 patients developed local recurrences. The actuarial local control rates were 96.2% and 89.8% at 3 and 4 years; overall survival was 98.2%at 5 years. Only 1 patient developed a mucositis CTCAE Grade 3; the remaining patients did not develop any acute toxicities >CTCAE Grade 2. Five patients developed minor late toxicities (RTOG/EORTC Grades 1-2), including bilateral cataract (n = 1), sensory hearing loss (n = 1), a reduction of growth hormone (n = 1), and asymptomatic radiation-induced white matter changes of the adjacent temporal lobe (n = 2). Grade 3 late toxicity occurred in 1 patient (1.9%) only. Conclusions: Carbon ion RT is an effective treatment for low- and intermediate-grade chondrosarcomas of the skull base offering high local control rates with low toxicity.

  4. Carbon Ion Radiotherapy for Unresectable Retroperitoneal Sarcomas

    SciTech Connect

    Serizawa, Itsuko; Kagei, Kenji; Kamada, Tadashi; Imai, Reiko; Sugahara, Shinji; Okada, Tohru; Tsuji, Hiroshi; Ito, Hisao; Tsujii, Hirohiko

    2009-11-15

    Purpose: To evaluate the applicability of carbon ion radiotherapy (CIRT) for unresectable retroperitoneal sarcomas with regard to normal tissue morbidity and local tumor control. Methods and Materials: From May 1997 to February 2006, 24 patients (17 male and 7 female) with unresectable retroperitoneal sarcoma received CIRT. Age ranged from 16 to 77 years (median, 48.6 years). Of the patients, 16 had primary disease and 8 recurrent disease. Histologic diagnoses were as follows: malignant fibrous histiocytoma in 6, liposarcoma in 3, malignant peripheral nerve sheath tumor in 3, Ewing/primitive neuroectodermal tumor (PNET) in 2, and miscellaneous in 10 patients. The histologic grades were as follows: Grade 3 in 15, Grade 2-3 in 2, Grade 2 in 3, and unknown in 4. Clinical target volumes ranged between 57 cm{sup 3} and 1,194 cm{sup 3} (median 525 cm{sup 3}). The delivered carbon ion dose ranged from 52.8 to 73.6 GyE in 16 fixed fractions over 4 weeks. Results: The median follow-up was 36 months (range, 6-143 months). The overall survival rates at 2 and 5 years were 75% and 50%, respectively. The local control rates at 2 and 5 years were 77% and 69%. No complications of the gastrointestinal tract were encountered. No other toxicity greater than Grade 2 was observed. Conclusions: Use of CIRT is suggested to be effective and safe for retroperitoneal sarcomas. The results obtained with CIRT were a good overall survival rate and local control, notwithstanding the fact that most patients were not eligible for surgical resection and had high-grade sarcomas.

  5. A review of update clinical results of carbon ion radiotherapy.

    PubMed

    Tsujii, Hirohiko; Kamada, Tadashi

    2012-08-01

    Among various types of ion species, carbon ions are considered to have the most balanced, optimal properties in terms of possessing physically and biologically effective dose localization in the body. This is due to the fact that when compared with photon beams, carbon ion beams offer improved dose distribution, leading to the concentration of the sufficient dose within a target volume while minimizing the dose in the surrounding normal tissues. In addition, carbon ions, being heavier than protons, provide a higher biological effectiveness, which increases with depth, reaching the maximum at the end of the beam's range. This is practically an ideal property from the standpoint of cancer radiotherapy. Clinical studies have been carried out in the world to confirm the efficacy of carbon ions against a variety of tumors as well as to develop effective techniques for delivering an efficient dose to the tumor. Through clinical experiences of carbon ion radiotherapy at the National Institute of Radiological Sciences and Gesellschaft für Schwerionenforschung, a significant reduction in the overall treatment time with acceptable toxicities has been obtained in almost all types of tumors. This means that carbon ion radiotherapy has meanwhile achieved for itself a solid place in general practice. This review describes clinical results of carbon ion radiotherapy together with physical, biological and technological aspects of carbon ions.

  6. A Review of Update Clinical Results of Carbon Ion Radiotherapy

    PubMed Central

    Tsujii, Hirohiko; Kamada, Tadashi

    2012-01-01

    Among various types of ion species, carbon ions are considered to have the most balanced, optimal properties in terms of possessing physically and biologically effective dose localization in the body. This is due to the fact that when compared with photon beams, carbon ion beams offer improved dose distribution, leading to the concentration of the sufficient dose within a target volume while minimizing the dose in the surrounding normal tissues. In addition, carbon ions, being heavier than protons, provide a higher biological effectiveness, which increases with depth, reaching the maximum at the end of the beam's range. This is practically an ideal property from the standpoint of cancer radiotherapy. Clinical studies have been carried out in the world to confirm the efficacy of carbon ions against a variety of tumors as well as to develop effective techniques for delivering an efficient dose to the tumor. Through clinical experiences of carbon ion radiotherapy at the National Institute of Radiological Sciences and Gesellschaft für Schwerionenforschung, a significant reduction in the overall treatment time with acceptable toxicities has been obtained in almost all types of tumors. This means that carbon ion radiotherapy has meanwhile achieved for itself a solid place in general practice. This review describes clinical results of carbon ion radiotherapy together with physical, biological and technological aspects of carbon ions. PMID:22798685

  7. Radiotherapy with beams of carbon ions

    NASA Astrophysics Data System (ADS)

    Amaldi, Ugo; Kraft, Gerhard

    2005-08-01

    In cancer treatment, the introduction of MeV bremsstrahlung photons has been instrumental in delivering higher doses to deep-seated tumours, while reducing the doses absorbed by the surrounding healthy tissues. Beams of protons and carbon ions have a much more favourable dose-depth distribution than photons (called 'x-rays' by medical doctors) and are the new frontiers of cancer radiation therapy. Section 2 presents the status of the first form of hadrontherapy which uses beams of 200-250 MeV protons. The central part of this review is devoted to the discussion of the physical, radiobiological and clinical bases of the use of 400 MeV µ-1 carbon ions in the treatment of radio-resistant tumours. These resist irradiation with photon as well as proton beams. The following section describes the carbon ion facilities that are either running or under construction. Finally, the projects recently approved or proposed are reviewed here.

  8. Status of carbon-ion radiotherapy facilities in Japan

    NASA Astrophysics Data System (ADS)

    Kitagawa, Atsushi

    2013-05-01

    Carbon-ion radiotherapy has large physical and biological advantages, and clinical results performed by HIMAC at NIRS awaken a deep interest. Several hospital-specified facilities are recently under commissioning or construction in Japan. Carbon-ion radiotherapy is based on the advanced technology in wide various fields. In order to promote this treatment method to the daily treatment, constant cooperative efforts by public and private organizations are necessary, i.e. providing of abundant clinical data, technology transfer, personnel training, organizing of the specialists' network, and so on. The present status and future prospects in Japan are reported.

  9. [Heavy charged particles radiotherapy--mainly carbon ion beams].

    PubMed

    Yanagi, Takeshi; Tsuji, Hiroshi; Tsujii, Hirohiko

    2003-12-01

    Carbon ion beams have superior dose distribution allowing selective irradiation to the tumor while minimizing irradiation to the surrounding normal tissues. Furthermore, carbon ions produce an increased density of local energy deposition with high-energy transfer (LET) components, resulting in radiobiological advantages. Stimulated by the favorable results in fast neutrons, helium ions, and neon ions, a clinical trial of carbon ion therapy was begun at the National Institute of Radiological Sciences in 1994. Carbon ions were generated by a medically dedicated accelerator (HIMAC, Heavy Ion Medical Accelerator in Chiba, Japan), which was the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. In general, patients were selected for treatment when their tumors could not be expected to respond favorably to conventional forms of therapy. A total of 1601 patients were registered in this clinical trial so far. The normal tissue reactions were acceptable, and there were no carbon related deaths. Carbon ion radiotherapy seemed to be a clinically feasible curative treatment modality, and appears to offer improved results not only over conventional X-rays but also even over surgery in some selected carcinomas.

  10. The Emerging Role of Carbon-Ion Radiotherapy

    PubMed Central

    Ebner, Daniel K.; Kamada, Tadashi

    2016-01-01

    Carbon-ion radiotherapy (CIRT) has progressed rapidly in technological delivery, indications, and efficacy. Owing to a focused dose distribution in addition to high linear energy transfer and subsequently high relative biological effect, CIRT is uniquely able to target otherwise untreatable hypoxic and radioresistant disease while opening the door for substantially hypofractionated treatment of normal and radiosensitive disease. CIRT has increasingly garnered international attention and is nearing the tipping point for international adoption. PMID:27376030

  11. Translational Research to Improve the Efficacy of Carbon Ion Radiotherapy: Experience of Gunma University

    PubMed Central

    Oike, Takahiro; Sato, Hiro; Noda, Shin-ei; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy holds great promise for cancer therapy. Clinical data show that carbon ion radiotherapy is an effective treatment for tumors that are resistant to X-ray radiotherapy. Since 1994 in Japan, the National Institute of Radiological Sciences has been heading the development of carbon ion radiotherapy using the Heavy Ion Medical Accelerator in Chiba. The Gunma University Heavy Ion Medical Center (GHMC) was established in the year 2006 as a proof-of-principle institute for carbon ion radiotherapy with a view to facilitating the worldwide spread of compact accelerator systems. Along with the management of more than 1900 cancer patients to date, GHMC engages in translational research to improve the treatment efficacy of carbon ion radiotherapy. Research aimed at guiding patient selection is of utmost importance for making the most of carbon ion radiotherapy, which is an extremely limited medical resource. Intratumoral oxygen levels, radiation-induced cellular apoptosis, the capacity to repair DNA double-strand breaks, and the mutational status of tumor protein p53 and epidermal growth factor receptor genes are all associated with X-ray sensitivity. Assays for these factors are useful in the identification of X-ray-resistant tumors for which carbon ion radiotherapy would be beneficial. Research aimed at optimizing treatments based on carbon ion radiotherapy is also important. This includes assessment of dose fractionation, normal tissue toxicity, tumor cell motility, and bystander effects. Furthermore, the efficacy of carbon ion radiotherapy will likely be enhanced by research into combined treatment with other modalities such as chemotherapy. Several clinically available chemotherapeutic drugs (carboplatin, paclitaxel, and etoposide) and drugs at the developmental stage (Wee-1 and heat shock protein 90 inhibitors) show a sensitizing effect on tumor cells treated with carbon ions. Additionally, the efficacy of carbon ion radiotherapy can be improved by

  12. Translational Research to Improve the Efficacy of Carbon Ion Radiotherapy: Experience of Gunma University.

    PubMed

    Oike, Takahiro; Sato, Hiro; Noda, Shin-Ei; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy holds great promise for cancer therapy. Clinical data show that carbon ion radiotherapy is an effective treatment for tumors that are resistant to X-ray radiotherapy. Since 1994 in Japan, the National Institute of Radiological Sciences has been heading the development of carbon ion radiotherapy using the Heavy Ion Medical Accelerator in Chiba. The Gunma University Heavy Ion Medical Center (GHMC) was established in the year 2006 as a proof-of-principle institute for carbon ion radiotherapy with a view to facilitating the worldwide spread of compact accelerator systems. Along with the management of more than 1900 cancer patients to date, GHMC engages in translational research to improve the treatment efficacy of carbon ion radiotherapy. Research aimed at guiding patient selection is of utmost importance for making the most of carbon ion radiotherapy, which is an extremely limited medical resource. Intratumoral oxygen levels, radiation-induced cellular apoptosis, the capacity to repair DNA double-strand breaks, and the mutational status of tumor protein p53 and epidermal growth factor receptor genes are all associated with X-ray sensitivity. Assays for these factors are useful in the identification of X-ray-resistant tumors for which carbon ion radiotherapy would be beneficial. Research aimed at optimizing treatments based on carbon ion radiotherapy is also important. This includes assessment of dose fractionation, normal tissue toxicity, tumor cell motility, and bystander effects. Furthermore, the efficacy of carbon ion radiotherapy will likely be enhanced by research into combined treatment with other modalities such as chemotherapy. Several clinically available chemotherapeutic drugs (carboplatin, paclitaxel, and etoposide) and drugs at the developmental stage (Wee-1 and heat shock protein 90 inhibitors) show a sensitizing effect on tumor cells treated with carbon ions. Additionally, the efficacy of carbon ion radiotherapy can be improved by

  13. Overview of Carbon-ion Radiotherapy

    NASA Astrophysics Data System (ADS)

    Tsujii, Hirohiko

    2017-01-01

    The outcome of radiotherapy depends on potential efficiency of accelerators and their related accessories. In charged particle therapy before the 1990s, accelerators that were primarily installed for physics research had been shared, which however had limited flexibility for clinical use. Therapy-dedicated facility was first constructed at Loma Linda University for PBT in 1990 and at NIRS for CIRT in 1993. Currently, there are more than 56 facilities for PBT, 6 for CIRT, and 6 for PBT/CIRT, and even more facilities are under construction or active planning. CIRT has beneficial property for cancer therapy because, as compared with photon therapy, it offers superior dose distributions by exhibiting a Bragg peak in the body and, as compared with PBT, it has higher radiobiological effectiveness. The number of potential candidates for charged particle therapy is estimated to range from 0.018% to 0.035% of all irradiated cancer patients. In CIRT at NIRS, Japan, more than 9,000 patients have been treated with promising results in non-SCC tumors and photon-resistant types of tumors at various sites. It is of note that in CIRT a significant reduction in overall treatment time and fractions has been successfully achieved.

  14. Heavy-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Kanai, Tatsuaki

    2000-11-01

    Heavy-ion radiotherapy using high-energy carbon beams has been performed at the National Institute of Radiological Sciences, Japan. The physical frame works for heavy-ion radiotherapy are established using physical understandings of radiation physics. In order to increase the accuracy of heavy-ion radiotherapy, many physical problems should be solved. Unsolved problems, such as the depth dose distributions, range of heavy-ion in patients and heavy-ion dosimetry in the radiation therapy, are discussed. .

  15. Development of C{sup 6+} laser ion source and RFQ linac for carbon ion radiotherapy

    SciTech Connect

    Sako, T. Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-15

    A prototype C{sup 6+} injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  16. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  17. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    PubMed

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  18. Phase I/II Clinical Trial of Carbon Ion Radiotherapy for Malignant Gliomas: Combined X-Ray Radiotherapy, Chemotherapy, and Carbon Ion Radiotherapy

    SciTech Connect

    Mizoe, Jun-Etsu Tsujii, Hirohiko; Hasegawa, Azusa D.D.S.; Yanagi, Tsuyoshi; Takagi, Ryo D.D.S.; Kamada, Tadashi; Tsuji, Hiroshi; Takakura, Kintomo

    2007-10-01

    Purpose: To report the results of a Phase I/II clinical trial for patients with malignant gliomas, treated with combined X-ray radiotherapy (XRT), chemotherapy, and carbon ion radiotherapy (CRT). Methods and Materials: Between October 1994 and February 2002, 48 patients with histologically confirmed malignant gliomas (16 anaplastic astrocytoma (AA) and 32 glioblastoma multiforme (GBM) were enrolled in a Phase I/II clinical study. The treatment involved the application of 50 Gy/25 fractions/5 weeks of XRT, followed by CRT at 8 fractions/2 weeks. Nimustine hydrochloride (ACNU) were administered at a dose of 100 mg/m{sup 2} concurrently in weeks 1, 4, or 5 of XRT. The carbon ion dose was increased from 16.8 to 24.8 Gray equivalent (GyE) in 10% incremental steps (16.8, 18.4, 20.0, 22.4, and 24.8 GyE, respectively). Results: There was no Grade 3 or higher acute reaction in the brain. The late reactions included four cases of Grade 2 brain morbidity and four cases of Grade 2 brain reaction among 48 cases. The median survival time (MST) of AA patients was 35 months and that of GBM patients 17 months (p = 0.0035). The median progression-free survival and MST of GBM showed 4 and 7 months for the low-dose group, 7 and 19 months for the middle-dose group, and 14 and 26 months for the high-dose group. Conclusion: The results of combined therapy using XRT, ACNU chemotherapy, and CRT showed the potential efficacy of CRT for malignant gliomas in terms of the improved survival rate in those patients who received higher carbon doses.

  19. Carbon Ion Radiotherapy at the Gunma University Heavy Ion Medical Center: New Facility Set-up

    PubMed Central

    Ohno, Tatsuya; Kanai, Tatsuaki; Yamada, Satoru; Yusa, Ken; Tashiro, Mutsumi; Shimada, Hirofumi; Torikai, Kota; Yoshida, Yukari; Kitada, Yoko; Katoh, Hiroyuki; Ishii, Takayoshi; Nakano, Takashi

    2011-01-01

    Carbon ion radiotherapy (C-ion RT) offers superior dose conformity in the treatment of deep-seated tumors compared with conventional X-ray therapy. In addition, carbon ion beams have a higher relative biological effectiveness compared with protons or X-ray beams. C-ion RT for the first patient at Gunma University Heavy Ion Medical Center (GHMC) was initiated in March of 2010. The major specifications of the facility were determined based on the experience of clinical treatments at the National Institute of Radiological Sciences (NIRS), with the size and cost being reduced to one-third of those at NIRS. The currently indicated sites of cancer treatment at GHMC are lung, prostate, head and neck, liver, rectum, bone and soft tissue. Between March 2010 and July 2011, a total of 177 patients were treated at GHMC although a total of 100 patients was the design specification during the period in considering the optimal machine performance. In the present article, we introduce the facility set-up of GHMC, including the facility design, treatment planning systems, and clinical preparations. PMID:24213124

  20. Evaluation of hybrid depth scanning for carbon-ion radiotherapy

    SciTech Connect

    Inaniwa, Taku; Furukawa, Takuji; Kanematsu, Nobuyuki; Mori, Shinichiro; Mizushima, Kota; Sato, Shinji; Toshito, Toshiyuki; Shirai, Toshiyuki; Noda, Koji

    2012-05-15

    Purpose: In radiotherapy with a scanned carbon-ion beam, its Bragg peak is shifted along the depth direction either by inserting the range shifter plates or by changing the beam-extraction energy of a synchrotron. In the former technique (range shifter scanning: RS), the range shifter plates broaden the beam size and produce secondary fragments through nuclear reactions. In the latter technique (active-energy scanning: ES), it may take several seconds to change the beam energy depending on the synchrotron operation cycle, leading to a long treatment time. The authors propose a hybrid depth scan technique (hybrid scanning: HS), where several beam energies are used in conjunction with the range shifter plates for finer range shift. In this study, HS is evaluated from the viewpoints of dose distribution and treatment time. Methods: Assuming realistic accelerator and beam-delivery systems, the authors performed computer simulations using GEANT4 Monte Carlo code for beam modeling and a treatment planning system to evaluate HS. Three target volumes with the same dimensions of 60 x 60 x 60 mm{sup 3} were generated at depths of 45, 85, and 125 mm in water phantom, and uniform clinical dose was planned for these targets. The sizes of lateral dose falloff and the peak to plateau ratio defined as the ratio of the clinical dose averaged over the target to the clinical dose at the entrance as well as the treatment time were compared among the three depth scan techniques. Results: The sizes of lateral dose falloffs at the center of SOBP are 11.4, 8.5, and 5.9 mm for the three targets in RS, while they are 5.7, 4.8, and 4.6 mm in ES and 6.6, 5.7, and 5.0 mm in HS, respectively. The peak to plateau ratios are 1.39, 1.96, and 2.15 in RS, while they are 1.48, 2.04, and 2.19 in ES and 1.47, 2.03, and 2.18 in HS, respectively. The treatment times are 128.7, 128.6, and 128.6 s in ES, while they are 61.2, 54.6, and 47.8 s in RS and 43.2, 44.1, and 44.7 s in HS, respectively. The

  1. Experience With Carbon Ion Radiotherapy for WHO Grade 2 Diffuse Astrocytomas

    SciTech Connect

    Hasegawa, Azusa; Mizoe, Jun-Etsu; Tsujii, Hirohiko; Kamada, Tadashi; Jingu, Keiichi; Iwadate, Yasuo; Nakazato, Youichi; Matsutani, Masao; Takakura, Kintomo

    2012-05-01

    Purpose: To assess outcomes of carbon ion radiotherapy for diffuse astrocytomas in adults. Methods and Materials: Between October 1994 and February 2002, 14 patients with diffuse astrocytoma, identified as eligible for carbon ion radiotherapy, were enrolled in a phase I/II clinical trial. Carbon ion radiotherapy was administered in 24 fractions over 6 weeks. The normal tissue morbidity was monitored carefully, and the carbon ion dose was escalated from 50.4 Gy equivalent (GyE) to 55.2 GyE. Patients were divided into two groups according to their carbon ion doses: a low-dose group in which 2 patients were irradiated with 46.2 GyE and 7 patients were irradiated with 50.4 GyE, and a high-dose group in which 5 patients were irradiated with 55.2 GyE. Results: Toxicities were within acceptable limits, and none of the patients developed Grade 3 or higher acute or late reactions. The median progression-free survival (PFS) time was 18 months for the low-dose group and 91 months for the high-dose group (p = 0.0030). The median overall survival (OS) time was 28 months for the low-dose group and not reached for the high-dose group (p = 0.0208). Conclusion: High-dose group patients showed significant improvement in PFS and OS rates compared to those in the low-dose group, and both dose groups showed acceptable toxicity.

  2. Clinical Outcome of Sacral Chordoma With Carbon Ion Radiotherapy Compared With Surgery

    SciTech Connect

    Nishida, Yoshihiro; Kamada, Tadashi; Imai, Reiko; Tsukushi, Satoshi; Yamada, Yoshihisa; Sugiura, Hideshi; Shido, Yoji; Wasa, Junji; Ishiguro, Naoki

    2011-01-01

    Purpose: To evaluate the efficacy, post-treatment function, toxicity, and complications of carbon ion radiotherapy (RT) for sacral chordoma compared with surgery. Methods and Materials: The records of 17 primary sacral chordoma patients treated since 1990 with surgery (n = 10) or carbon ion RT (n = 7) were retrospectively analyzed for disease-specific survival, local recurrence-free survival, complications, and functional outcome. The applied carbon ion dose ranged from 54.0 Gray equivalent (GyE) to 73.6 GyE (median 70.4). Results: The mean age at treatment was 55 years for the surgery group and 65 years for the carbon ion RT group. The median duration of follow-up was 76 months for the surgery group and 49 months for the carbon ion RT group. The local recurrence-free survival rate at 5 years was 62.5% for the surgery and 100% for the carbon ion RT group, and the disease-specific survival rate at 5 years was 85.7% and 53.3%, respectively. Urinary-anorectal function worsened in 6 patients (60%) in the surgery group, but it was unchanged in all the patients who had undergone carbon ion RT. Postoperative wound complications requiring reoperation occurred in 3 patients (30%) after surgery and in 1 patient (14%) after carbon ion RT. The functional outcome evaluated using the Musculoskeletal Tumor Society scoring system revealed 55% in the surgery group and 75% in the carbon ion RT group. Of the six factors in this scoring system, the carbon ion RT group had significantly greater scores in emotional acceptance than did the surgery group. Conclusion: Carbon ion RT results in a high local control rate and preservation of urinary-anorectal function compared with surgery.

  3. Benefit of Carbon Ion Radiotherapy in the Treatment of Radio-resistant Tumors

    SciTech Connect

    Kamada, Tadashi; Tsujii, Hirohiko; Tsuji, Hiroshi; Yanagi, Tsuyoshi; Imai, Reiko; Mizoe, Jun-etsu; Miyamoto, Tadaaki; Kato, Hirotoshi; Yamada, Shigeru; Kato, Shingo; Yoshikawa, Kyousan; Kandatsu, Susumu

    2003-08-26

    The Heavy Ion Medical Accelerator in Chiba (HIMAC) is the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. Heavy ions have superior depth-dose distribution and greater cell-killing ability. In June 1994, clinical research for the treatment of cancer was begun using carbon ions generated by HIMAC. Until August 2002, a total of 1,297 patients were enrolled in clinical trials. Most of the patients had locally advanced and/or medically inoperable tumors. Tumors radio-resistant and/or located near critical organs were also included. The clinical trials revealed that carbon ion radiotherapy provided definite local control and offered a survival advantage without unacceptable morbidity in a variety of tumors that were hard to cure by other modalities.

  4. Recent progress of a superconducting rotating-gantry for carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Iwata, Y.; Fujimoto, T.; Matsuba, S.; Fujita, T.; Sato, S.; Furukawa, T.; Hara, Y.; Mizushima, K.; Saraya, Y.; Tansho, R.; Saotome, N.; Shirai, T.; Noda, K.

    2017-09-01

    A superconducting rotating-gantry for carbon-ion radiotherapy was developed. This isocentric rotating gantry can transport carbon ions having the maximum kinetic energy of E = 430 MeV/u to an isocenter with irradiation angles of over ±180°, and is further capable of performing three-dimensional raster-scanning irradiation. By using combined-function superconducting magnets, we could design a compact rotating gantry for carbon-ion radiotherapy. Construction of the gantry structure began since early 2014, and the installation of the entire gantry system to the Heavy Ion Medical Accelerator in Chiba (HIMAC) complex was completed by the end of September, 2015. Beam tuning subsequently began since October, 2015, and carbon ions, as accelerated by the HIMAC upper synchrotron, having kinetic energies of between E = 430-48 MeV/u were successfully transported with the rotating gantry to the isocenter. The size and shape of the beam spots at the isocenter is being tuned over various combinations of the beam energies and the gantry angle. We will present the recent progress as well as the current status of the superconducting rotating-gantry.

  5. Biological dose representation for carbon-ion radiotherapy of unconventional fractionation.

    PubMed

    Kanematsu, Nobuyuki; Inaniwa, Taku

    2017-02-07

    In carbon-ion radiotherapy, single-beam delivery each day in alternate directions has been common practice for efficient operation, taking advantage of the Bragg peak and the relative biological effectiveness (RBE) for uniform dose conformation to a tumor. Treatments are usually fractionated and treatment plans are evaluated with the total RBE-weighted dose; however, this is of limited relevance to the biological effect. In this study, we reformulate the biologically effective dose (BED) to normalize the dose-fractionation and cell-repopulation effects as well as the RBE of treating radiation, based on inactivation of a reference cell line by a reference carbon-ion radiation. The BED distribution virtually represents the biological effect of a treatment regardless of radiation modality or fractionation scheme. We applied the BED formulation to simplistic model treatments and to a preclinical survey for hypofractionation based on an actual prostate cancer treatment with carbon ions. The proposed formulation was demonstrated to be practical and to give theoretical implications. For a prostate cancer treatment in 12 fractions, the distributions of BED and of RBE-weighted dose were very similar. With hypofractionation, while the RBE-weighted dose distribution varied significantly, the BED distribution was nearly invariant, implying that carbon-ion radiotherapy would be effectively insensitive to fractionation. However, treatment evaluation with such a simplistic biological dose is intrinsically limited and must be complemented in practice by clinical experience and biological experiments.

  6. Biological dose representation for carbon-ion radiotherapy of unconventional fractionation

    NASA Astrophysics Data System (ADS)

    Kanematsu, Nobuyuki; Inaniwa, Taku

    2017-02-01

    In carbon-ion radiotherapy, single-beam delivery each day in alternate directions has been common practice for efficient operation, taking advantage of the Bragg peak and the relative biological effectiveness (RBE) for uniform dose conformation to a tumor. Treatments are usually fractionated and treatment plans are evaluated with the total RBE-weighted dose; however, this is of limited relevance to the biological effect. In this study, we reformulate the biologically effective dose (BED) to normalize the dose-fractionation and cell-repopulation effects as well as the RBE of treating radiation, based on inactivation of a reference cell line by a reference carbon-ion radiation. The BED distribution virtually represents the biological effect of a treatment regardless of radiation modality or fractionation scheme. We applied the BED formulation to simplistic model treatments and to a preclinical survey for hypofractionation based on an actual prostate cancer treatment with carbon ions. The proposed formulation was demonstrated to be practical and to give theoretical implications. For a prostate cancer treatment in 12 fractions, the distributions of BED and of RBE-weighted dose were very similar. With hypofractionation, while the RBE-weighted dose distribution varied significantly, the BED distribution was nearly invariant, implying that carbon-ion radiotherapy would be effectively insensitive to fractionation. However, treatment evaluation with such a simplistic biological dose is intrinsically limited and must be complemented in practice by clinical experience and biological experiments.

  7. Five-year quality of life assessment after carbon ion radiotherapy for prostate cancer.

    PubMed

    Maruyama, Katsuya; Tsuji, Hiroshi; Nomiya, Takuma; Katoh, Hiroyuki; Ishikawa, Hitoshi; Kamada, Tadashi; Wakatsuki, Masaru; Akakura, Koichiro; Shimazaki, Jun; Aoyama, Hidefumi; Tsujii, Hirohiko

    2017-01-01

    The aim of this study was to prospectively assess 5-year health-related quality of life (HRQOL) of patients treated with carbon ion radiotherapy (C-ion RT) for clinically localized prostate cancer. A total of 417 patients received carbon ion radiotherapy at a total dose of 63-66 Gray-equivalents (GyE) in 20 fractions over 5 weeks, and neoadjuvant and adjuvant androgen deprivation therapy (ADT) were administered for intermediate and high-risk patients. A HRQOL assessment was performed at five time points (immediately before the initiation of C-ion RT, immediately after, and at 12, 36 and 60 months after completion of C-ion RT) using Functional Assessment of Cancer Therapy (FACT) questionnaires. FACT-G and FACT-P scores were significantly decreased; however, the absolute change after 60 months was minimal. The transient decreases in the Trial Outcome Index (TOI) score returned to their baseline levels. Use of ADT, presence of adverse events, and biochemical failure were related to lower scores. Scores of subdomains of FACT instruments indicated characteristic changes. The pattern of HRQOL change after C-ion RT was similar to that of other modalities. Further controlled studies focusing on a HRQOL in patients with prostate cancer are warranted.

  8. Health-related quality of life after carbon-ion radiotherapy for prostate cancer: a 3-year prospective study.

    PubMed

    Katoh, Hiroyuki; Tsuji, Hiroshi; Ishikawa, Hitoshi; Kamada, Tadashi; Wakatsuki, Masaru; Hirasawa, Naoki; Suzuki, Hiroyoshi; Akakura, Koichiro; Nakano, Takashi; Shimazaki, Jun; Tsujii, Hirohiko

    2014-04-01

    To assess 3-year health-related quality of life of patients treated with carbon ion radiotherapy for prostate cancer. A total of 213 patients received carbon-ion radiotherapy at a total dose of 66 Gy equivalent in 20 fractions over 5 weeks, and neoadjuvant and adjuvant androgen deprivation therapy were administered for high-risk patients for at least 12 months. A health-related quality of life assessment was carried out at four time-points (immediately before the initiation of carbon-ion radiotherapy, immediately after, 12 and 36 months after completion of carbon-ion radiotherapy) using Functional Assessment of Cancer Therapy General and for Prostate Cancer Patients. The evaluable response rates among all responses were more than 94%. Overall, a significant decrease in the scores of the health-related quality of life 12 months after carbon-ion radiotherapy returned to their baseline levels at 36 months. Additionally, no significant decrease was observed in the scores at any of the assessment time-points compared with their baseline scores in the group of carbon-ion radiotherapy without androgen deprivation therapy; however, the presence of morbidity and biochemical failure significantly worsened the scores, and the decreases in the scores did not improve even at 36 months after carbon-ion radiotherapy. An assessment based on a subjective scoring system shows a significant decrease in health-related quality of life at 12 months after carbon-ion radiation therapy, which tends to return to baseline levels at 36 months. The presence of morbidity and biochemical failure significantly worsen health-related quality of life scores. Further controlled studies focusing on health-related quality of life assessment in patients with prostate cancer are warranted. © 2013 The Japanese Urological Association.

  9. Carbon Ion Radiotherapy At Gunma University: Currently Indicated Cancer And Estimation Of Need

    SciTech Connect

    Ohno, Tatsuya; Nakano, Takashi; Kanai, Tatsuaki; Yamada, Satoru

    2011-06-01

    Carbon ion radiotherapy for the first patient at Gunma University Heavy Ion Medical Center (GHMC) was initiated in March of 2010. The major specifications of the facility were determined based on the experience of clinical treatments at National Institute of Radiological Sciences (NIRS). The currently indicated sites of cancer treatment at GHMC are lung, prostate, head and neck, liver, rectum, bone and soft tissue. In order to evaluate the potential need for treatment in the region including Gunma prefecture and the adjacent 4 prefectures, an estimation model was constructed based on the Japanese cancer registration system, regular structure surveys by the Cancer Societies, and published articles on each cancer type. Carbon ion RT was potentially indicated for 8,085 patients and realistically for 1,527 patients, corresponding to 10% and 2% of the newly diagnosed cancer patients in the region. Prostate cancer (541 patients) followed by lung cancer (436 patients), and liver cancer (313 patients) were the most commonly diagnosed cancers.

  10. Relative clinical effectiveness of carbon ion radiotherapy: theoretical modelling for H&N tumours

    PubMed Central

    Antonovic, Laura; Dasu, Alexandru; Furusawa, Yoshiya; Toma-Dasu, Iuliana

    2015-01-01

    Comparison of the efficiency of photon and carbon ion radiotherapy (RT) administered with the same number of fractions might be of limited clinical interest, since a wide range of fractionation patterns are used clinically today. Due to advanced photon treatment techniques, hypofractionation is becoming increasingly accepted for prostate and lung tumours, whereas patients with head and neck tumours still benefit from hyperfractionated treatments. In general, the number of fractions is considerably lower in carbon ion RT. A clinically relevant comparison would be between fractionation schedules that are optimal within each treatment modality category. In this in silico study, the relative clinical effectiveness (RCE) of carbon ions was investigated for human salivary gland tumours, assuming various radiation sensitivities related to their oxygenation. The results indicate that, for hypoxic tumours in the absence of reoxygenation, the RCE (defined as the ratio of D50 for photons to carbon ions) ranges from 3.5 to 5.7, corresponding to carbon ion treatments given in 36 and 3 fractions, respectively, and 30 fractions for photons. Assuming that interfraction local oxygenation changes take place, results for RCE are lower than that for an oxic tumour if only a few fractions of carbon ions are used. If the carbon ion treatment is given in more than 12 fractions, the RCE is larger for the hypoxic than for the well-oxygenated tumour. In conclusion, this study showed that in silico modelling enables the study of a wide range of factors in the clinical considerations and could be an important step towards individualisation of RT treatments. PMID:25858182

  11. Mucosal Malignant Melanoma of the Head and Neck Treated by Carbon Ion Radiotherapy

    SciTech Connect

    Yanagi, Takeshi Mizoe, Jun-etsu; Hasegawa, Azusa; Takagi, Ryo; Bessho, Hiroki; Onda, Takeshi; Kamada, Tadashi; Okamoto, Yoshitaka; Tsujii, Hirohiko

    2009-05-01

    Purpose: To evaluate the efficacy of carbon ion radiotherapy for mucosal malignant melanoma of the head and neck. Methods and Materials: Between 1994 and 2004, 72 patients with mucosal malignant melanoma of the head and neck were treated with carbon ion beams in three prospective studies. Total dose ranged from 52.8 GyE to 64 GyE given in 16 fixed fractions over 4 weeks. Clinical parameters including gender, age, Karnofsky index, tumor site, tumor volume, tumor status, total dose, fraction size, and treatment time were evaluated in relation to local control and overall survival. Results: The median follow-up period was 49.2 months (range, 16.8-108.5 months). Treatment toxicity was within acceptable limits, and no patients showed Grade 3 or higher toxicity in the late phase. The 5-year local control rate was 84.1%. In relation to local control, there were no significant differences in any parameters evaluated. The 5-year overall and cause-specific survival rates were 27.0% and 39.6%, respectively. For overall survival, however, tumor volume ({>=}100 mL) was found to be the most significant prognostic parameter. Of the patients who developed distant metastasis, 85% were free from local recurrence. Conclusion: Carbon ion radiotherapy is a safe and effective treatment for mucosal malignant melanoma of the head and neck in terms of high local control and acceptable toxicities. Overall survival rate was better than in those treated with conventional radiotherapy and was comparable to that with surgery.

  12. Influence of Multiple Genetic Polymorphisms on Genitourinary Morbidity After Carbon Ion Radiotherapy for Prostate Cancer

    SciTech Connect

    Suga, Tomo; Iwakawa, Mayumi; Tsuji, Hiroshi; Ishikawa, Hitoshi; Oda, Eisei; Noda, Shuhei; Otsuka, Yoshimi; Ishikawa, Atsuko; Ishikawa, Ken-Ichi; Shimazaki, Jun; Mizoe, Jun-Etsu; Tsujii, Hirohiko; Imai, Takashi

    2008-11-01

    Purpose: To investigate the genetic risk of late urinary morbidity after carbon ion radiotherapy in prostate cancer patients. Methods and Materials: A total of 197 prostate cancer patients who had undergone carbon ion radiotherapy were evaluated for urinary morbidity. The distribution of patients with dysuria was as follows: Grade 0, 165; Grade 1, 28; and Grade 2, 4 patients. The patients were divided (2:1) consecutively into the training and test sets and then categorized into control (Grade 0) and case (Grade 1 or greater) groups. First, 450 single nucleotide polymorphisms (SNPs) in 118 candidate genes were genotyped in the training set. The associations between the SNP genotypes and urinary morbidity were assessed using Fisher's exact test. Then, various combinations of the markers were tested for their ability to maximize the area under the receiver operating characteristics (AUC-ROC) curve analysis results. Finally, the test set was validated for the selected markers. Results: When the SNP markers in the SART1, ID3, EPDR1, PAH, and XRCC6 genes in the training set were subjected to AUC-ROC curve analysis, the AUC-ROC curve reached a maximum of 0.86. The AUC-ROC curve of these markers in the test set was 0.77. The SNPs in these five genes were defined as 'risk genotypes.' Approximately 90% of patients in the case group (Grade 1 or greater) had three or more risk genotypes. Conclusions: Our results have shown that patients with late urinary morbidity after carbon ion radiotherapy can be stratified according to the total number of risk genotypes they harbor.

  13. Influence of nuclear interactions in polyethylene range compensators for carbon-ion radiotherapy

    SciTech Connect

    Kanematsu, Nobuyuki Koba, Yusuke; Ogata, Risa; Himukai, Takeshi

    2014-07-15

    Purpose: A recent study revealed that polyethylene (PE) would cause extra carbon-ion attenuation per range shift by 0.45%/cm due to compositional differences in nuclear interactions. The present study aims to assess the influence of PE range compensators on tumor dose in carbon-ion radiotherapy. Methods: Carbon-ion radiation was modeled to be composed of primary carbon ions and secondary particles, for each of which the dose and the relative biological effectiveness (RBE) were estimated at a tumor depth in the middle of spread-out Bragg peak. Assuming exponential behavior for attenuation and yield of these components with depth, the PE effect on dose was calculated for clinical carbon-ion beams and was partly tested by experiment. The two-component model was integrated into a treatment-planning system and the PE effect was estimated in two clinical cases. Results: The attenuation per range shift by PE was 0.1%–0.3%/cm in dose and 0.2%–0.4%/cm in RBE-weighted dose, depending on energy and range-modulation width. This translates into reduction of RBE-weighted dose by up to 3% in extreme cases. In the treatment-planning study, however, the effect on RBE-weighted dose to tumor was typically within 1% reduction. Conclusions: The extra attenuation of primary carbon ions in PE was partly compensated by increased secondary particles for tumor dose. In practical situations, the PE range compensators would normally cause only marginal errors as compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response.

  14. Effectiveness of Carbon Ion Radiotherapy in the Treatment of Skull-Base Chordomas

    SciTech Connect

    Schulz-Ertner, Daniela . E-mail: Daniela.Ertner@med.uni-heidelberg.de; Karger, Christian P.; Feuerhake, Alexandra; Nikoghosyan, Anna; Combs, Stephanie E.; Jaekel, Oliver; Edler, Lutz; Scholz, Michael; Debus, Juergen

    2007-06-01

    Purpose: The aim of this study was to evaluate the effectiveness and toxicity of carbon ion radiotherapy in chordomas of the skull base. Methods and Materials: Between November 1998 and July 2005, a total of 96 patients with chordomas of the skull base have been treated with carbon ion radiation therapy (RT) using the raster scan technique at the Gesellschaft fuer Schwerionenforschung (GSI) in Darmstadt, Germany. All patients had gross residual tumors. Median total dose was 60 CGE (range, 60-70 CGE) delivered in 20 fractions within 3 weeks. Local control and overall survival rates were calculated using the Kaplan-Meier method. Toxicity was assessed according to the Common Terminology Criteria (CTCAE v.3.0) and the Radiation Therapy Oncology Group (RTOG) / European Organization for Research and Treatment of Cancer (EORTC) score. Results: Mean follow-up was 31 months (range, 3-91 months). Fifteen patients developed local recurrences after carbon ion RT. The actuarial local control rates were 80.6% and 70.0% at 3 and 5 years, respectively. Target doses in excess of 60 CGE and primary tumor status were associated with higher local control rates. Overall survival was 91.8% and 88.5% at 3 and 5 years, respectively. Late toxicity consisted of optic nerve neuropathy RTOG/EORTC Grade 3 in 4.1% of the patients and necrosis of a fat plomb in 1 patient. Minor temporal lobe injury (RTOG/EORTC Grade 1-2) occurred in 7 patients (7.2%). Conclusions: Carbon ion RT offers an effective treatment option for skull-base chordomas with acceptable toxicity. Doses in excess of 75 CGE with 2 CGE per fraction are likely to increase local control probability.

  15. Current State Of Proton And Carbon-Ion Radiotherapy At The Hyogo Ion Beam Medical Center (HIBMC)

    SciTech Connect

    Murakami, Masao; Hishikawa, Yoshio; Demizu, Yusuke; Niwa, Yasue; Fujii, Osamu; Terashima, Kazuki; Mima, Masayuki; Miyawaki, Daisuke; Sasaki, Ryohei; Abe, Mitsuyuki

    2011-06-01

    HIBMC is the world's first facility to be able to use both proton (PRT) and carbon-ion radiotherapy (CiRT). The medically dedicated synchrotron can accelerate protons up to 230 MeV and carbon ions up to 320 MeV. From April 2001 to March 2010, the facility treated 3275 patients, with 2487 patients treated using PRT and 788 using CiRT. Particle radiotherapy was delivered to patients suffering from malignant tumors originating in the head and neck (502 patients), lungs (330), liver (539), prostate (1283), and the bone and soft tissue (130). The clinical results are as follows: (1) H and N tumors: The 2-year overall survival (OS) rates of patients with olfactory neuroblastoma, mucoepidermoid cancer, adenoid cystic cancer, adenocarcinoma, squamous cell carcinoma, and malignant melanoma was 100%, 86%, 78%, 78%, 66%, and 62%, respectively. (2) Lung cancer: For all 80 patients, the 3-year OS rate was 75%(Stage IA: 74%; Stage IB: 76%) and local control (LC) rate was 82%(IA: 87%; IB: 77%). Grade 3 pulmonary toxicity was observed in only 1 patient. These results are comparable to those obtained by surgery, and indicate proton therapy and carbon-ion therapy are safe and effective for stage I lung cancer. (3) Liver cancer: The 5-year LC rate for 429 tumor patient was 90%, and the 5-year OS rate for 364 patients was 38%. These results seem equivalent to those obtained by surgery or radio-frequency ablation. (4) Prostate cancer: In 290 patients treated by proton radiotherapy, five patients died from other disease in the median follow-up period of 62 months. Biochemical disease-free survival and OS rate at 5 years was 88.2% and 96.5%, respectively. Our proton radiotherapy showed excellent OS and biochemical disease-free survival rates with minimum late morbidities. PRT VS CiRT: From our retrospective analysis, it seems that there is no significant difference in the LC and OS rate in H and N, lung and liver cancer between PRT and CiRT.

  16. Current State Of Proton And Carbon-Ion Radiotherapy At The Hyogo Ion Beam Medical Center (HIBMC)

    NASA Astrophysics Data System (ADS)

    Murakami, Masao; Demizu, Yusuke; Niwa, Yasue; Fujii, Osamu; Terashima, Kazuki; Mima, Masayuki; Miyawaki, Daisuke; Sasaki, Ryohei; Hishikawa, Yoshio; Abe, Mitsuyuki

    2011-06-01

    HIBMC is the world's first facility to be able to use both proton (PRT) and carbon-ion radiotherapy (CiRT). The medically dedicated synchrotron can accelerate protons up to 230 MeV and carbon ions up to 320 MeV. From April 2001 to March 2010, the facility treated 3275 patients, with 2487 patients treated using PRT and 788 using CiRT. Particle radiotherapy was delivered to patients suffering from malignant tumors originating in the head and neck (502 patients), lungs (330), liver (539), prostate (1283), and the bone & soft tissue (130). The clinical results are as follows: (1) H & N tumors: The 2-year overall survival (OS) rates of patients with olfactory neuroblastoma, mucoepidermoid cancer, adenoid cystic cancer, adenocarcinoma, squamous cell carcinoma, and malignant melanoma was 100%, 86%, 78%, 78%, 66%, and 62%, respectively. (2) Lung cancer: For all 80 patients, the 3-year OS rate was 75% (Stage IA: 74%; Stage IB: 76%) and local control (LC) rate was 82% (IA: 87%; IB: 77%). Grade 3 pulmonary toxicity was observed in only 1 patient. These results are comparable to those obtained by surgery, and indicate proton therapy and carbon-ion therapy are safe and effective for stage I lung cancer. (3) Liver cancer: The 5-year LC rate for 429 tumor patient was 90%, and the 5-year OS rate for 364 patients was 38%. These results seem equivalent to those obtained by surgery or radio-frequency ablation. (4) Prostate cancer: In 290 patients treated by proton radiotherapy, five patients died from other disease in the median follow-up period of 62 months. Biochemical disease-free survival and OS rate at 5 years was 88.2% and 96.5%, respectively. Our proton radiotherapy showed excellent OS and biochemical disease-free survival rates with minimum late morbidities. PRT VS CiRT: From our retrospective analysis, it seems that there is no significant difference in the LC and OS rate in H&N, lung and liver cancer between PRT and CiRT.

  17. Surgical spacer placement prior carbon ion radiotherapy (CIRT): an effective feasible strategy to improve the treatment for sacral chordoma.

    PubMed

    Lorenzo, Cobianchi; Andrea, Peloso; Barbara, Vischioni; Denis, Panizza; Rosaria, Fiore Maria; Piero, Fossati; Viviana, Vitolo; Alberto, Iannalfi; Mario, Ciocca; Brugnatelli, Silvia; Tommaso, Dominioni; Bugada, Dario; Marcello, Maestri; Mario, Alessiani; Francesca, Valvo; Roberto, Orecchia; Paolo, Dionigi

    2016-08-09

    Sacral chordoma (SC) is a neoplasm arising from residual notochordal cells degeneration. SC is difficult to manage mainly because of anatomic location and tendency to extensive spread. Carbon ion radiotherapy (CIRT) is highly precise to selectively deliver high biological effective dose to the tumor target sparing the anatomical structure on its path even if when SC is contiguous to the intestine, and a surgical spacer might be an advantageous tool to create a distance around the target volume allowing radical curative dose delivery with a safe dose gradient to the surrounding organs. This paper describes a double approach-open and hand-assisted laparoscopic-for a silicon spacer placement in patients affected by sacral chordoma undergoing carbon ion radiotherapy. Six consecutive patients have been enrolled for surgical spacer placement-open (three) or hand-assisted (three)-prior carbon ion radiotherapy treatment in order to increase efficacy of carbon ion radiotherapy minimizing its side effects. Results showed that silicon spacer placement for SC treatment is feasible both via laparoscopic and laparotomic approach. Its use might improve CIRT safety and thus efficacy for SC treatment.

  18. Carbon ion radiotherapy for oligo-recurrent lung metastases from colorectal cancer: a feasibility study.

    PubMed

    Takahashi, Wataru; Nakajima, Mio; Yamamoto, Naoyoshi; Yamada, Shigeru; Yamashita, Hideomi; Nakagawa, Keiichi; Tsuji, Hiroshi; Kamada, Tadashi

    2014-03-01

    The purpose of this study was to evaluate the efficacy and feasibility of carbon ion radiotherapy (CIRT) for oligo-recurrent lung tumors from colorectal cancer (CRC). From May 1997 to October 2012, 34 consecutive patients with oligo-recurrent pulmonary metastases from CRC were treated with CIRT. The patients were not surgical candidates for medical reasons or patient refusal. Using a respiratory-gated technique, carbon ion therapy was delivered with curative intent using 4 coplanar beam angles. A median dose of 60 GyE (range, 44-64.8 GyE) was delivered to the planning target volume (PTV), with a median daily dose of 15 GyE (range, 3.6-44 GyE). Treatment outcome was analyzed in terms of local control rate (LCR), survival rate, and treatment-related complications. In total, 34 patients with 44 oligo-recurrent pulmonary lesions were treated with CIRT. Median follow-up period was 23.7 months. The 2- and 3-year actuarial LCRs of the treated patients were 85.4% ± 6.2% and 85.4% ± 6.2%, respectively. Overall survival was 65.1% ± 9.5% at 2 years, and 50.1% ± 10.5% at 3 years. Although survival rates were relatively worse in the subsets of patients aged<63 years or with early metastasis (< 36 months after resection of primary site), these factors were not significantly correlated with overall survival (P=0.13 and 0.19, respectively). All treatment-related complications were self-limited, without any grade 3-5 toxicity. CIRT is one of the most effective nonsurgical treatments for colorectal lung metastases, which are relatively resistant to stereotactic body radiotherapy. CIRT is considered to be the least invasive approach even in patients who have undergone repeated prior thoracic metastasectomies.

  19. Impact of Intrafractional Bowel Gas Movement on Carbon Ion Beam Dose Distribution in Pancreatic Radiotherapy

    SciTech Connect

    Kumagai, Motoki; Hara, Ryusuke; Mori, Shinichiro Yanagi, Takeshi; Asakura, Hiroshi; Kishimoto, Riwa; Kato, Hirotoshi; Yamada, Shigeru; Kandatsu, Susumu; Kamada, Tadashi

    2009-03-15

    Purpose: To assess carbon ion beam dose variation due to bowel gas movement in pancreatic radiotherapy. Methods and Materials: Ten pancreatic cancer inpatients were subject to diagnostic contrast-enhanced dynamic helical CT examination under breath-holding conditions, which included multiple-phase dynamic CT with arterial, venous, and delayed phases. The arterial-venous phase and arterial-delayed phase intervals were 35 and 145 s, respectively. A compensating bolus was designed to cover the target obtained at the arterial phase. Carbon ion dose distribution was calculated by applying the bolus to the CT data sets at the other two phases. Results: Dose conformation to the clinical target volume was degraded by beam overshoot/undershoot due to bowel gas movement. The D95 for clinical target volume was degraded from 98.2% (range, 98.0-99.1%) of the prescribed dose to 94.7% (range, 88.0-99.0%) at 145 s. Excessive dosing to normal tissues varied among tissues and was, for example, 12.2 GyE/13.1 GyE (0 s/145 s) for the cord and 38.8 GyE/39.8 GyE (0 s/145 s) for the duodenum. The magnitude of beam overshoot/undershoot was particularly exacerbated from the anterior and left directions. Conclusions: Bowel gas movement causes dosimetric variation to the target during treatment for radiotherapy. The effect of bowel gas movement varies with beam angle, with greatest influence on the anterior-posterior and left-right beams.

  20. ADC value and diffusion tensor imaging of prostate cancer: changes in carbon-ion radiotherapy.

    PubMed

    Takayama, Yukihisa; Kishimoto, Riwa; Hanaoka, Shouhei; Nonaka, Hiroi; Kandatsu, Susumu; Tsuji, Hiroshi; Tsujii, Hirohiko; Ikehira, Hiroo; Obata, Takayuki

    2008-06-01

    To assess the apparent diffusion coefficient (ADC) value and diffusion tensor image (DTI) including fractional anisotropy (FA) of the noncancerous prostate and prostate cancer before and after carbon-ion radiotherapy (CIRT). Nine patients with biopsy-proven prostate cancer underwent 1.5T magnetic resonance (MR) examinations. One patient with benign prostatic hypertrophy and one healthy volunteer were also examined as references. The changes in ADC values and DTI of the entire prostate calculated from b-values of 0 and 700 (s/mm(2)) were estimated between before and after CIRT. ADC values of prostate cancer significantly increased after CIRT by paired t-test (P < 0.01) but those of noncancerous inner gland (IG) and peripheral zone (PZ) showed no significant change. By analysis of variance, significant differences in ADC values were observed among prostate cancer and noncancerous IG and PZ before CIRT (P < 0.05). After CIRT, those significant differences had disappeared. FAs showed no significant differences in any comparisons. DTI showed changes in the direction of the main axis of the tensor in prostate cancer after CIRT. There were changes in ADC and DTI in prostate cancer after CIRT. They may be useful for monitoring prostatic structural changes under radiotherapy. 2008 Wiley-Liss, Inc

  1. Phase i study evaluating the treatment of patients with hepatocellular carcinoma (HCC) with carbon ion radiotherapy: the PROMETHEUS-01 trial.

    PubMed

    Combs, Stephanie E; Habermehl, Daniel; Ganten, Tom; Schmidt, Jan; Edler, Lutz; Burkholder, Iris; Jäkel, Oliver; Haberer, Thomas; Debus, Jürgen

    2011-02-12

    Treatment options for patients with advanced hepatocellular carcinoma (HCC) are often limited. In most cases, they are not amenable to local therapies including surgery or radiofrequency ablation. The multi-kinase inhibitor sorafenib has shown to increase overall survival in this patient group for about 3 months.Radiation therapy is a treatment alternative, however, high local doses are required for long-term local control. However, due to the relatively low radiation tolerance of liver normal tissue, even using stereotactic techniques, delivery of sufficient doses for successful local tumor control has not be achieved to date.Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE), which can be calculated between 2 and 3 depending on the HCC cell line as well as the endpoint analyzed.Japanese Data on the evaluation of carbon ion radiation therapy showed promising results for patients with HCC. In the current Phase I-PROMETHEUS-01-Study, carbon ion radiotherapy will be evaluated for patients with advanced HCC. The study will be performed as a dose-escalation study evaluating the optimal carbon ion dose with respect to toxicity and tumor control.Primary endpoint is toxicity, secondary endpoint is progression-free survival and response. The Prometheus-01 trial ist the first trial evaluating carbon ion radiotherapy delivered by intensity-modulated rasterscanning for the treatment of HCC. Within this Phase I dose escalation study, the optimal dose of carbon ion radiotherapy will be determined. NCT 01167374.

  2. Phase i study evaluating the treatment of patients with hepatocellular carcinoma (HCC) with carbon ion radiotherapy: The PROMETHEUS-01 trial

    PubMed Central

    2011-01-01

    Background Treatment options for patients with advanced hepatocellular carcinoma (HCC) are often limited. In most cases, they are not amenable to local therapies including surgery or radiofrequency ablation. The multi-kinase inhibitor sorafenib has shown to increase overall survival in this patient group for about 3 months. Radiation therapy is a treatment alternative, however, high local doses are required for long-term local control. However, due to the relatively low radiation tolerance of liver normal tissue, even using stereotactic techniques, delivery of sufficient doses for successful local tumor control has not be achieved to date. Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE), which can be calculated between 2 and 3 depending on the HCC cell line as well as the endpoint analyzed. Japanese Data on the evaluation of carbon ion radiation therapy showed promising results for patients with HCC. Methods/Design In the current Phase I-PROMETHEUS-01-Study, carbon ion radiotherapy will be evaluated for patients with advanced HCC. The study will be performed as a dose-escalation study evaluating the optimal carbon ion dose with respect to toxicity and tumor control. Primary endpoint is toxicity, secondary endpoint is progression-free survival and response. Discussion The Prometheus-01 trial ist the first trial evaluating carbon ion radiotherapy delivered by intensity-modulated rasterscanning for the treatment of HCC. Within this Phase I dose escalation study, the optimal dose of carbon ion radiotherapy will be determined. Trial registration NCT 01167374 PMID:21314962

  3. Carbon-ion radiotherapy for locally advanced cervical cancer with bladder invasion

    PubMed Central

    Shiba, Shintaro; Wakatsuki, Masaru; Kato, Shingo; Ohno, Tatsuya; Okonogi, Noriyuki; Karasawa, Kumiko; Kiyohara, Hiroki; Tsujii, Hirohiko; Nakano, Takashi; Kamada, Tadashi; Shozu, Makio

    2016-01-01

    The purpose of this study was to evaluate the efficacy and toxicities of carbon-ion radiotherapy (C-ion RT) for locally advanced cervical cancer with bladder invasion by a subset analysis of pooled data from eight prospective clinical trials at the National Institute of Radiological Sciences. Between June 1995 and January 2014, 29 patients with locally advanced cervical cancer with bladder invasion were identified. The median age was 56 years old (range 31–79 years old). The median tumor size at diagnosis on magnetic resonance imaging was 6.7 cm (range 3.5–11.0 cm). Histologically, 20 patients had squamous cell carcinoma and 9 had adenocarcinoma. C-ion RT was performed as a dose-escalation study in the initial trials. All patients received prophylactic whole-pelvic or extended-field irradiation and local boost. The total dose to the cervical tumor was 52.8–74.4 Gy (relative biological effectiveness) in 20 or 24 fractions. Weekly cisplatin (40 mg/m2/week, five cycles) was concurrently given to four patients. The median follow-up of all patients was 28.6 months (range 8.8–238.6 months). Grade 2 or higher late complications in the bladder were observed in eight patients, with seven developing vesicovaginal fistula. Six patients had Grade 2 or higher complications in the rectosigmoid colon. The 3-year overall survival rate was 47%, the 3-year local control rate was 66%, and the 3-year disease-free survival rate was 28%. In this study, C-ion RT showed favorable local control with reasonable toxicities, but the results were still unsatisfactory. We have the expectation of improvement of therapeutic effects by using C-ion RT with concurrent chemotherapy. PMID:27422932

  4. Clinical outcome and prognosis of carbon ion radiotherapy on thoracic malignant tumors

    NASA Astrophysics Data System (ADS)

    Li, Sha

    Objective To evaluate the therapeutic efficacy and side-response of high-LET carbon ion radiotherapy on thoracic malignant tumors. Methods Ten patients with pathological confirmed thoracic malignant tumors received treatment using heavy ion accelerator, which included 6 cases with non-small lung cancer, one case with small lung cancer, 2 cases with metastatic sarcomas and one case with invasive thymoma. The applied regimen included fractioned dose (5.5-6.8GyE/Fraction), one faction/day, and 7 fractions/week. The total dose ranged from 55 to 70 GyE. Results The short-term results showed that the response rate (the complete response (CR) rate +the partial response (PR) rate) was 10% at the first month, 40% at the third month and 90% at the sixth month. The overall response rate was 90% and the rate of stable disease was 10%. There was no relation between the response rate and tumor pathology (P>0.05) while significance between the response rate and the tumor volume.At median follow-up of 27 months (range, 6 to 36 months), the local control rate and free-disease rate were respectively 100% an 90% at the first year, 90% and 80% at the secondary year, 80% and 70% at the third year. The death rate due to disease progression was 20% and the non-specific death rate was 10%. Side and toxicity effects: Grade I skin effect occurred in three cases and Grade I lung effect occurred in two cases. The blood counts didn’t reach significance among pre-radiation course, peri-radiation course and post-radiation course (P>0.05). The subgoups of T cells detected in humoral immunity and cytoimmunity didn’t change between pre-radiation and post radiation(P>0.05). Conclusions Carbon ion radiotherapy is effective and safe in the management of patients with thoracic malignant tumors. There were no obvious side effects. The long term of clinical outcome and the late effect need to be further observed.

  5. Evaluation of an empirical monitor output estimation in carbon ion radiotherapy

    SciTech Connect

    Matsumura, Akihiko Yusa, Ken; Kanai, Tatsuaki; Ohno, Tatsuya; Nakano, Takashi; Mizota, Manabu

    2015-09-15

    Purpose: A conventional broad beam method is applied to carbon ion radiotherapy at Gunma University Heavy Ion Medical Center. According to this method, accelerated carbon ions are scattered by various beam line devices to form 3D dose distribution. The physical dose per monitor unit (d/MU) at the isocenter, therefore, depends on beam line parameters and should be calibrated by a measurement in clinical practice. This study aims to develop a calculation algorithm for d/MU using beam line parameters. Methods: Two major factors, the range shifter dependence and the field aperture effect, are measured via PinPoint chamber in a water phantom, which is an identical setup as that used for monitor calibration in clinical practice. An empirical monitor calibration method based on measurement results is developed using a simple algorithm utilizing a linear function and a double Gaussian pencil beam distribution to express the range shifter dependence and the field aperture effect. Results: The range shifter dependence and the field aperture effect are evaluated to have errors of 0.2% and 0.5%, respectively. The proposed method has successfully estimated d/MU with a difference of less than 1% with respect to the measurement results. Taking the measurement deviation of about 0.3% into account, this result is sufficiently accurate for clinical applications. Conclusions: An empirical procedure to estimate d/MU with a simple algorithm is established in this research. This procedure allows them to use the beam time for more treatments, quality assurances, and other research endeavors.

  6. Beam commissioning of a superconducting rotating-gantry for carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Iwata, Y.; Fujimoto, T.; Matsuba, S.; Fujita, T.; Sato, S.; Furukawa, T.; Hara, Y.; Mizushima, K.; Saraya, Y.; Tansho, R.; Saotome, N.; Shirai, T.; Noda, K.

    2016-10-01

    A superconducting rotating-gantry for carbon-ion radiotherapy was developed. This isocentric gantry can transport carbon ions having kinetic energies of between E=430 and 48 MeV/u to an isocenter over an angle of ±180°, and is further capable of performing three-dimensional raster-scanning irradiation. Construction of the entire rotating-gantry system was completed by the end of September 2015. Prior to beam commissioning, phase-space distributions of extracted carbon beams from the synchrotron were deduced by using an empirical method. In this method, phase-space distributions at the extraction channel of the synchrotron were modeled with 8 parameters, and the best parameters were determined so as to minimize a difference between the calculated and measured beam profiles by using a simplex method. Based on the phase-space distributions, beam optics through the beam-transport lines as well as the rotating gantry were designed. Since horizontal and vertical beam emittances, as extracted slowly from the synchrotron, generally differ with each other, a horizontal-vertical beam coupling would occur when the gantry rotates. Thus, the size and shape of beam spots at the isocenter should vary depending on the gantry angle. To compensate for the difference in the emittances, we employed a method to utilize multiple Coulomb scattering of the beam particles by a thin scatterer. Having compensated for the emittances and designed beam optics through the rotating gantry, beam commissioning over various combinations of gantry angles and beam energies was performed. By finely tuning the superconducting quadrupoles of the rotating gantry, we could successfully obtain the designed beam quality, which satisfies the requirements of scanning irradiation.

  7. Carbon ion radiotherapy for oligo-recurrent lung metastases from colorectal cancer: a feasibility study

    PubMed Central

    2014-01-01

    Background The purpose of this study was to evaluate the efficacy and feasibility of carbon ion radiotherapy (CIRT) for oligo-recurrent lung tumors from colorectal cancer (CRC). Methods From May 1997 to October 2012, 34 consecutive patients with oligo-recurrent pulmonary metastases from CRC were treated with CIRT. The patients were not surgical candidates for medical reasons or patient refusal. Using a respiratory-gated technique, carbon ion therapy was delivered with curative intent using 4 coplanar beam angles. A median dose of 60 GyE (range, 44–64.8 GyE) was delivered to the planning target volume (PTV), with a median daily dose of 15 GyE (range, 3.6–44 GyE). Treatment outcome was analyzed in terms of local control rate (LCR), survival rate, and treatment-related complications. Results In total, 34 patients with 44 oligo-recurrent pulmonary lesions were treated with CIRT. Median follow-up period was 23.7 months. The 2- and 3-year actuarial LCRs of the treated patients were 85.4% ± 6.2% and 85.4% ± 6.2%, respectively. Overall survival was 65.1% ± 9.5% at 2 years, and 50.1% ± 10.5% at 3 years. Although survival rates were relatively worse in the subsets of patients aged < 63 years or with early metastasis (< 36 months after resection of primary site), these factors were not significantly correlated with overall survival (P = 0.13 and 0.19, respectively). All treatment-related complications were self-limited, without any grade 3–5 toxicity. Conclusions CIRT is one of the most effective nonsurgical treatments for colorectal lung metastases, which are relatively resistant to stereotactic body radiotherapy. CIRT is considered to be the least invasive approach even in patients who have undergone repeated prior thoracic metastasectomies. PMID:24581481

  8. Influence of nuclear interactions in body tissues on tumor dose in carbon-ion radiotherapy

    SciTech Connect

    Inaniwa, T. Kanematsu, N.; Tsuji, H.; Kamada, T.

    2015-12-15

    Purpose: In carbon-ion radiotherapy treatment planning, the planar integrated dose (PID) measured in water is applied to the patient dose calculation with density scaling using the stopping power ratio. Since body tissues are chemically different from water, this dose calculation can be subject to errors, particularly due to differences in inelastic nuclear interactions. In recent studies, the authors proposed and validated a PID correction method for these errors. In the present study, the authors used this correction method to assess the influence of these nuclear interactions in body tissues on tumor dose in various clinical cases. Methods: Using 10–20 cases each of prostate, head and neck (HN), bone and soft tissue (BS), lung, liver, pancreas, and uterine neoplasms, the authors first used treatment plans for carbon-ion radiotherapy without nuclear interaction correction to derive uncorrected dose distributions. The authors then compared these distributions with recalculated distributions using the nuclear interaction correction (corrected dose distributions). Results: Median (25%/75% quartiles) differences between the target mean uncorrected doses and corrected doses were 0.2% (0.1%/0.2%), 0.0% (0.0%/0.0%), −0.3% (−0.4%/−0.2%), −0.1% (−0.2%/−0.1%), −0.1% (−0.2%/0.0%), −0.4% (−0.5%/−0.1%), and −0.3% (−0.4%/0.0%) for the prostate, HN, BS, lung, liver, pancreas, and uterine cases, respectively. The largest difference of −1.6% in target mean and −2.5% at maximum were observed in a uterine case. Conclusions: For most clinical cases, dose calculation errors due to the water nonequivalence of the tissues in nuclear interactions would be marginal compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response. In some extreme cases, however, these errors can be substantial. Accordingly, this correction method should be routinely applied to treatment planning in clinical practice.

  9. Outcomes of visual acuity in carbon ion radiotherapy: Analysis of dose-volume histograms and prognostic factors

    SciTech Connect

    Hasegawa, Azusa . E-mail: azusa@nirs.go.jp; Mizoe, Jun-etsu; Mizota, Atsushi; Tsujii, Hirohiko

    2006-02-01

    Purpose: To analyze the tolerance dose for retention of visual acuity in patients with head-and-neck tumors treated with carbon ion radiotherapy. Methods and Materials: From June 1994 to March 2000, 163 patients with tumors in the head and neck or skull base region were treated with carbon ion radiotherapy. Analysis was performed on 54 optic nerves (ONs) corresponding to 30 patients whose ONs had been included in the irradiated volume. These patients showed no evidence of visual impairment due to other factors and had a follow-up period of >4 years. All patients had been informed of the possibility of visual impairment before treatment. We evaluated the dose-complication probability and the prognostic factors for the retention of visual acuity in carbon ion radiotherapy, using dose-volume histograms and multivariate analysis. Results: The median age of 30 patients (14 men, 16 women) was 57.2 years. Median prescribed total dose was 56.0 gray equivalents (GyE) at 3.0-4.0 GyE per fraction per day (range, 48-64 GyE; 16-18 fractions; 4-6 weeks). Of 54 ONs that were analyzed, 35 had been irradiated with <57 GyE (maximum dose [D{sub max}]) resulting in no visual loss. Conversely, 11 of the 19 ONs (58%) irradiated with >57 GyE (D{sub max}) suffered a decrease of visual acuity. In all of these cases, the ONs had been involved in the tumor before carbon ion radiotherapy. In the multivariate analysis, a dose of 20% of the volume of the ON (D{sub 2}) was significantly associated with visual loss. Conclusions: The occurrence of visual loss seems to be correlated with a delivery of >60 GyE to 20% of the volume of the ON.

  10. Dose-volume histogram analysis of brainstem necrosis in head and neck tumors treated using carbon-ion radiotherapy.

    PubMed

    Shirai, Katsuyuki; Fukata, Kyohei; Adachi, Akiko; Saitoh, Jun-Ichi; Musha, Atsushi; Abe, Takanori; Kanai, Tatsuaki; Kobayashi, Daijiro; Shigeta, Yuka; Yokoo, Satoshi; Chikamatsu, Kazuaki; Ohno, Tatsuya; Nakano, Takashi

    2017-08-31

    We aimed to evaluate the relationship between brainstem necrosis and dose-volume histograms in patients with head and neck tumors after carbon-ion radiotherapy. We evaluated 85 patients with head and neck tumors who underwent carbon-ion radiotherapy and were followed-up for ≥12months. Brainstem necrosis was evaluated using the Common Terminology Criteria for Adverse Events (version 4.0). The median follow-up was 24months, and four patients developed grade 1 brainstem necrosis, with 2-year and 3-year cumulative rates of 2.8% and 6.5%, respectively. Receiver operating characteristic curve analysis revealed the following significant cut-off values: a maximum brainstem dose of 48Gy (relative biological effectiveness [RBE]), D1cm(3) of 27Gy (RBE), V40Gy (RBE) of 0.1cm(3), V30Gy (RBE) of 0.7cm(3), and V20Gy (RBE) of 1.4cm(3). Multivariate analysis revealed that V30Gy (RBE) was most significantly associated with brainstem necrosis. The 2-year cumulative rates were 33% and 0% for V30Gy (RBE) of ≥0.7cm(3) and <0.7cm(3), respectively (p<0.001). The present study indicated that the dose constraints might help minimize brainstem necrosis after carbon-ion radiotherapy. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Comparing the dosimetric impact of interfractional anatomical changes in photon, proton and carbon ion radiotherapy for pancreatic cancer patients.

    PubMed

    Houweling, Antonetta C; Crama, Koen; Visser, Jorrit; Fukata, Kyohei; Rasch, Coen R N; Ohno, Tatsuya; Bel, Arjan; van der Horst, Astrid

    2017-04-21

    Radiotherapy using charged particles is characterized by a low dose to the surrounding healthy organs, while delivering a high dose to the tumor. However, interfractional anatomical changes can greatly affect the robustness of particle therapy. Therefore, we compared the dosimetric impact of interfractional anatomical changes (i.e. body contour differences and gastrointestinal gas volume changes) in photon, proton and carbon ion therapy for pancreatic cancer patients. In this retrospective planning study, photon, proton and carbon ion treatment plans were created for 9 patients. Fraction dose calculations were performed using daily cone-beam CT (CBCT) images. To this end, the planning CT was deformably registered to each CBCT; gastrointestinal gas volumes were delineated on the CBCTs and copied to the deformed CT. Fraction doses were accumulated rigidly. To compare planned and accumulated dose, dose-volume histogram (DVH) parameters of the planned and accumulated dose of the different radiotherapy modalities were determined for the internal gross tumor volume, internal clinical target volume (iCTV) and organs-at-risk (OARs; duodenum, stomach, kidneys, liver and spinal cord). Photon plans were highly robust against interfractional anatomical changes. The difference between the planned and accumulated DVH parameters for the photon plans was less than 0.5% for the target and OARs. In both proton and carbon ion therapy, however, coverage of the iCTV was considerably reduced for the accumulated dose compared with the planned dose. The near-minimum dose ([Formula: see text]) of the iCTV reduced with 8% for proton therapy and with 10% for carbon ion therapy. The DVH parameters of the OARs differed less than 3% for both particle modalities. Fractionated radiotherapy using photons is highly robust against interfractional anatomical changes. In proton and carbon ion therapy, such changes can severely reduce the dose coverage of the target.

  12. Comparing the dosimetric impact of interfractional anatomical changes in photon, proton and carbon ion radiotherapy for pancreatic cancer patients

    NASA Astrophysics Data System (ADS)

    Houweling, Antonetta C.; Crama, Koen; Visser, Jorrit; Fukata, Kyohei; Rasch, Coen R. N.; Ohno, Tatsuya; Bel, Arjan; van der Horst, Astrid

    2017-04-01

    Radiotherapy using charged particles is characterized by a low dose to the surrounding healthy organs, while delivering a high dose to the tumor. However, interfractional anatomical changes can greatly affect the robustness of particle therapy. Therefore, we compared the dosimetric impact of interfractional anatomical changes (i.e. body contour differences and gastrointestinal gas volume changes) in photon, proton and carbon ion therapy for pancreatic cancer patients. In this retrospective planning study, photon, proton and carbon ion treatment plans were created for 9 patients. Fraction dose calculations were performed using daily cone-beam CT (CBCT) images. To this end, the planning CT was deformably registered to each CBCT; gastrointestinal gas volumes were delineated on the CBCTs and copied to the deformed CT. Fraction doses were accumulated rigidly. To compare planned and accumulated dose, dose-volume histogram (DVH) parameters of the planned and accumulated dose of the different radiotherapy modalities were determined for the internal gross tumor volume, internal clinical target volume (iCTV) and organs-at-risk (OARs; duodenum, stomach, kidneys, liver and spinal cord). Photon plans were highly robust against interfractional anatomical changes. The difference between the planned and accumulated DVH parameters for the photon plans was less than 0.5% for the target and OARs. In both proton and carbon ion therapy, however, coverage of the iCTV was considerably reduced for the accumulated dose compared with the planned dose. The near-minimum dose ({{D}98 % } ) of the iCTV reduced with 8% for proton therapy and with 10% for carbon ion therapy. The DVH parameters of the OARs differed less than 3% for both particle modalities. Fractionated radiotherapy using photons is highly robust against interfractional anatomical changes. In proton and carbon ion therapy, such changes can severely reduce the dose coverage of the target.

  13. Effect of Carbon Ion Radiotherapy for Sacral Chordoma: Results of Phase I-II and Phase II Clinical Trials

    SciTech Connect

    Imai, Reiko; Kamada, Tadashi; Tsuji, Hiroshi; Sugawara, Shinji; Serizawa, Itsuko; Tsujii, Hirohiko; Tatezaki, Shin-ichiro

    2010-08-01

    Purpose: To summarize the results of treatment for sacral chordoma in Phase I-II and Phase II carbon ion radiotherapy trials for bone and soft-tissue sarcomas. Patients and Methods: We performed a retrospective analysis of 38 patients with medically unresectable sacral chordomas treated with the Heavy Ion Medical Accelerator in Chiba, Japan between 1996 and 2003. Of the 38 patients, 30 had not received previous treatment and 8 had locally recurrent tumor after previous resection. The applied carbon ion dose was 52.8-73.6 Gray equivalents (median, 70.4) in a total of 16 fixed fractions within 4 weeks. Results: The median patient age was 66 years. The cranial tumor extension was S2 or greater in 31 patients. The median clinical target volume was 523 cm{sup 3}. The median follow-up period was 80 months. The 5-year overall survival rate was 86%, and the 5-year local control rate was 89%. After treatment, 27 of 30 patients with primary tumor remained ambulatory with or without supportive devices. Two patients experienced severe skin or soft-tissue complications requiring skin grafts. Conclusion: Carbon ion radiotherapy appears effective and safe in the treatment of patients with sacral chordoma and offers a promising alternative to surgery.

  14. Phase I/II trial evaluating carbon ion radiotherapy for the treatment of recurrent rectal cancer: the PANDORA-01 trial.

    PubMed

    Combs, Stephanie E; Kieser, Meinhard; Habermehl, Daniel; Weitz, Jürgen; Jäger, Dirk; Fossati, Piero; Orrechia, Roberto; Engenhart-Cabillic, Rita; Pötter, Richard; Dosanjh, Manjit; Jäkel, Oliver; Büchler, Markus W; Debus, Jürgen

    2012-04-03

    Treatment standard for patients with rectal cancer depends on the initial staging and includes surgical resection, radiotherapy as well as chemotherapy. For stage II and III tumors, radiochemotherapy should be performed in addition to surgery, preferentially as preoperative radiochemotherapy or as short-course hypofractionated radiation. Advances in surgical approaches, especially the establishment of the total mesorectal excision (TME) in combination with sophisticated radiation and chemotherapy have reduced local recurrence rates to only few percent. However, due to the high incidence of rectal cancer, still a high absolute number of patients present with recurrent rectal carcinomas, and effective treatment is therefore needed.Carbon ions offer physical and biological advantages. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increase relative biological effectiveness (RBE), which can be calculated between 2 and 5 depending on the cell line as well as the endpoint analyzed.Japanese data on the treatment of patients with recurrent rectal cancer previously not treated with radiation therapy have shown local control rates of carbon ion treatment superior to those of surgery. Therefore, this treatment concept should also be evaluated for recurrences after radiotherapy, when dose application using conventional photons is limited. Moreover, these patients are likely to benefit from the enhanced biological efficacy of carbon ions. In the current Phase I/II-PANDORA-01-Study the recommended dose of carbon ion radiotherapy for recurrent rectal cancer will be determined in the Phase I part, and feasibilty and progression-free survival will be assessed in the Phase II part of the study.Within the Phase I part, increasing doses from 12 × 3 Gy E to 18 × 3 Gy E will be applied.The primary endpoint in the Phase

  15. Dose escalation study of carbon ion radiotherapy for locally advanced carcinoma of the uterine cervix

    SciTech Connect

    Kato, Shingo . E-mail: s.kato@nirs.go.jp; Ohno, Tatsuya; Tsujii, Hirohiko; Nakano, Takashi; Mizoe, Jun-etsu; Kamada, Tadashi; Miyamoto, Tadaaki; Tsuji, Hiroshi; Kato, Hirotoshi; Yamada, Shigeru; Kandatsu, Susumu; Yoshikawa, Kyosan; Ezawa, Hidefumi; Suzuki, Michiya

    2006-06-01

    Purpose: To evaluate the toxicity and efficacy of carbon ion radiotherapy (CIRT) for locally advanced cervical cancer by two phase I/II clinical trials. Methods and Materials: Between June 1995 and January 2000, 44 patients were treated with CIRT. Thirty patients had Stage IIIB disease, and 14 patients had Stage IVA disease. Median tumor size was 6.5 cm (range, 4.2-11.0 cm). The treatment consisted of 16 fractions of whole pelvic irradiation and 8 fractions of local boost. In the first study, the total dose ranged from 52.8 to 72.0 gray equivalents (GyE) (2.2-3.0 GyE per fraction). In the second study, the whole pelvic dose was fixed at 44.8 GyE, and an additional 24.0 or 28.0 GyE was given to the cervical tumor (total dose, 68.8 or 72.8 GyE). Results: No patient developed severe acute toxicity. In contrast, 8 patients developed major late gastrointestinal complications. The doses resulting in major complications were {>=}60 GyE. All patients with major complications were surgically salvaged. The 5-year local control rate for patients in the first and second studies was 45% and 79%, respectively. When treated with {>=}62.4 GyE, the local control was favorable even for the patients with stage IVA disease (69%) or for those with tumors {>=}6.0 cm (64%). Conclusions: In CIRT for advanced cervical cancer, the dose to the intestines should be limited to <60 GyE to avoid major complications. Although the number of patients in this study was small, the results support continued investigation to confirm therapeutic efficacy.

  16. Clinical Indications for Carbon Ion Radiotherapy and Radiation Therapy with Other Heavier Ions

    NASA Astrophysics Data System (ADS)

    Combs, Stephanie E.

    A number of studies have shown excellent and convincing clinical results for various indications after treatment with ions heavier than protons. These include skull base chordomas and chondrosarcomas, hepatocellular carcinomas, recurrent rectal cancer, high-risk meningiomas, or soft-tissue and bone sarcomas. This chapter outlines these trials and provides a medical rationale for their choice before they are discussed in depth in subsequent chapters.

  17. Measurement of neutron ambient dose equivalent in carbon-ion radiotherapy with an active scanned delivery system.

    PubMed

    Yonai, S; Furukawa, T; Inaniwa, T

    2014-10-01

    In ion beam radiotherapy, secondary neutrons contribute to an undesired dose outside the target volume, and consequently the increase of secondary cancer risk is a growing concern. In this study, neutron ambient dose equivalents in carbon-ion radiotherapy (CIRT) with an active beam delivery system were measured with a rem meter, WENDI-II, at National Institute of Radiological Sciences. When the same irradiation target was assumed, the measured neutron dose with an active beam was at most ∼15 % of that with a passive beam. This percentage became smaller as larger distances from the iso-centre. Also, when using an active beam delivery system, the neutron dose per treatment dose in CIRT was comparable with that in proton radiotherapy. Finally, it was experimentally demonstrated that the use of an active scanned beam in CIRT can greatly reduce the secondary neutron dose. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Salvage surgery for local recurrence after carbon ion radiotherapy for patients with lung cancer.

    PubMed

    Mizobuchi, Teruaki; Yamamoto, Naoyoshi; Nakajima, Mio; Baba, Masayuki; Miyoshi, Kentaro; Nakayama, Haruhiko; Watanabe, Syun-Ichi; Katoh, Ryoichi; Kohno, Tadasu; Kamiyoshihara, Mitsuhiro; Nishio, Wataru; Kamada, Tadashi; Fujisawa, Takehiko; Yoshino, Ichiro

    2016-05-01

    Carbon ion radiotherapy (CIRT) has been expected to be an alternative for surgery for early-stage non-small-cell lung cancer (NSCLC) and adopted as the second-best choice even in operable patients although local recurrence after CIRT is sometimes experienced. The purpose of this study was to investigate the demographic data, perioperative courses and therapeutic outcomes of patients who underwent salvage resection for local recurrence after CIRT. From November 1994 to February 2012, CIRT was applied for 602 c-T1/T2/T3N0M0 NSCLC lesions of 599 patients at the National Institute of Radiological Science. A total of 95 (16%) patients were diagnosed as having local recurrence, of whom 12 underwent salvage surgeries. The medical records were retrospectively reviewed. There were 7 men and 5 women (mean age, 63 ± 7.4 years). The clinical stages upon initial presentation with NSCLC were as follows: 4 IA, 7 IB and 1 IIB. All the patients were operable, but refused surgery and underwent CIRT. The median progression-free survival time after CIRT was 20 months (range, 7.1-77 months), and salvage surgery was performed at a median of 24 months (range, 9-78 months) after CIRT. All surgeries were successfully performed without any significant CIRT-related adhesions during the surgery, resulting in no mortality or Clavien-Dindo grade 3-4 postoperative complications. However, the distribution of pathological stages was as follows: 4 IA, 3 IB, 2 IIB, 2 IIIA and 1 IV, which included 6 upstages from the clinical stages before CIRT. The Kaplan-Meier estimate of overall survival after the salvage surgery showed that the 3-year survival rate was 82%. The dose intensity of CIRT spared the hilum of the lungs and parietal pleura, none of the patients developed adhesions outside of the radiation field, such that the salvage surgeries for local recurrence after CIRT were safe and feasible. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio

  19. Prospective observational study of carbon-ion radiotherapy for non-squamous cell carcinoma of the head and neck.

    PubMed

    Shirai, Katsuyuki; Saitoh, Jun-Ichi; Musha, Atsushi; Abe, Takanori; Kobayashi, Daijiro; Takahashi, Takeo; Tamaki, Tomoaki; Kawamura, Hidemasa; Takayasu, Yukihiro; Shino, Masato; Toyoda, Minoru; Takahashi, Katsumasa; Hirato, Junko; Yokoo, Satoshi; Chikamatsu, Kazuaki; Ohno, Tatsuya; Nakano, Tatsuya

    2017-10-01

    To evaluate the efficacy and safety of carbon-ion radiotherapy for non-squamous cell carcinoma of the head and neck, 35 patients were enrolled in this prospective study. The primary end-point was the 3-year local control rate, and the secondary end-points included the 3-year overall survival rate and adverse events. Acute and late adverse events were evaluated according to the Common Terminology Criteria for Adverse Events, version 4.0. The median follow-up time for all patients was 39 months. Thirty-two and three patients received 64.0 Gy (relative biological effectiveness) and 57.6 Gy (relative biological effectiveness) in 16 fractions, respectively. Adenoid cystic carcinoma was dominant (60%). Four patients had local recurrence and five patients died. The 3-year local control and overall survival rates were 93% and 88%, respectively. Acute grade 2-3 radiation mucositis (65%) and dermatitis (31%) was common, which improved immediately with conservative therapy. Late mucositis of grade 2, grade 3, and grade 4 were observed in 11, one, and no patients, respectively. There were no adverse events of grade 5. Carbon-ion radiotherapy achieved excellent local control and overall survival rates for non-squamous cell carcinoma. However, the late mucosal adverse events were not rare, and meticulous treatment planning is required. Trial registration no. UMIN000007886. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  20. Phase I/II Trial Evaluating Carbon Ion Radiotherapy for Salvaging Treatment of Locally Recurrent Nasopharyngeal Carcinoma

    PubMed Central

    Kong, Lin; Hu, Jiyi; Guan, Xiyin; Gao, Jing; Lu, Rong; Lu, Jiade J.

    2016-01-01

    Background: Radiation therapy is the mainstay strategy for the treatment of nasopharyngeal cancer (NPC). Intensity-modulated X-ray therapy (IMXT) alone is the current standard for stage I and II NPC. For stage III and IV A/B diseases, concurrent chemotherapy should be provided in addition to IMXT. However, optimal treatment for locally recurrent NPC after previous definitive dose of radiotherapy is lacking. Various techniques including brachytherapy, IMXT, stereotactic radiosurgery or radiotherapy (SRS or SBRT) have been used in the management of locally recurrent NPC. Due to the inherent limitation of these techniques, i.e., limited range of irradiation or over-irradiation to surrounding normal tissues, moderate efficacy has been observed at the cost of severe toxicities. Carbon ion radiotherapy (CIRT) offers potential physical and biological advantages over photon and proton radiotherapy. Due to the inverted dose profile of particle beams and their greater energy deposition within the Bragg peak, precise dose delivery to the target volume(s) without exposing the surrounding organs at risk to extra doses is possible. In addition, CIRT provides an increased relative biological effectiveness (RBE) as compared to photon and proton radiotherapy. Such advantages may translate to improved outcomes after irradiation in terms of disease control in radio-resistant and previously treated, recurrent malignancies. It is therefore reasonable to postulate that recurrent NPC after high-dose radiotherapy could be more resistant to re-irradiation using photons. Reports on the treatment of radio-resistant malignancies in the head and neck region such as melanoma, sarcoma, and adenoid cystic carcinoma (ACC) have demonstrated superior local control rates from CIRT as compared to photon irradiation. Thus patients with recurrent NPC are likely to benefit from the enhanced biological effectiveness of carbon ions. As effective retreatment strategy is lacking for locally recurrent NPC

  1. Phase I/II Trial Evaluating Carbon Ion Radiotherapy for Salvaging Treatment of Locally Recurrent Nasopharyngeal Carcinoma.

    PubMed

    Kong, Lin; Hu, Jiyi; Guan, Xiyin; Gao, Jing; Lu, Rong; Lu, Jiade J

    2016-01-01

    Radiation therapy is the mainstay strategy for the treatment of nasopharyngeal cancer (NPC). Intensity-modulated X-ray therapy (IMXT) alone is the current standard for stage I and II NPC. For stage III and IV A/B diseases, concurrent chemotherapy should be provided in addition to IMXT. However, optimal treatment for locally recurrent NPC after previous definitive dose of radiotherapy is lacking. Various techniques including brachytherapy, IMXT, stereotactic radiosurgery or radiotherapy (SRS or SBRT) have been used in the management of locally recurrent NPC. Due to the inherent limitation of these techniques, i.e., limited range of irradiation or over-irradiation to surrounding normal tissues, moderate efficacy has been observed at the cost of severe toxicities. Carbon ion radiotherapy (CIRT) offers potential physical and biological advantages over photon and proton radiotherapy. Due to the inverted dose profile of particle beams and their greater energy deposition within the Bragg peak, precise dose delivery to the target volume(s) without exposing the surrounding organs at risk to extra doses is possible. In addition, CIRT provides an increased relative biological effectiveness (RBE) as compared to photon and proton radiotherapy. Such advantages may translate to improved outcomes after irradiation in terms of disease control in radio-resistant and previously treated, recurrent malignancies. It is therefore reasonable to postulate that recurrent NPC after high-dose radiotherapy could be more resistant to re-irradiation using photons. Reports on the treatment of radio-resistant malignancies in the head and neck region such as melanoma, sarcoma, and adenoid cystic carcinoma (ACC) have demonstrated superior local control rates from CIRT as compared to photon irradiation. Thus patients with recurrent NPC are likely to benefit from the enhanced biological effectiveness of carbon ions. As effective retreatment strategy is lacking for locally recurrent NPC, carbon ion

  2. Quantification of the Relative Biological Effectiveness for Ion Beam Radiotherapy: Direct Experimental Comparison of Proton and Carbon Ion Beams and a Novel Approach for Treatment Planning

    SciTech Connect

    Elsaesser, Thilo; Weyrather, Wilma K.; Friedrich, Thomas; Durante, Marco; Iancu, Gheorghe; Kraemer, Michael; Kragl, Gabriele; Brons, Stephan; Winter, Marcus; Weber, Klaus-Josef; Scholz, Michael

    2010-11-15

    Purpose: To present the first direct experimental in vitro comparison of the biological effectiveness of range-equivalent protons and carbon ion beams for Chinese hamster ovary cells exposed in a three-dimensional phantom using a pencil beam scanning technique and to compare the experimental data with a novel biophysical model. Methods and Materials: Cell survival was measured in the phantom after irradiation with two opposing fields, thus mimicking the typical patient treatment scenario. The novel biophysical model represents a substantial extension of the local effect model, previously used for treatment planning in carbon ion therapy for more than 400 patients, and potentially can be used to predict effectiveness of all ion species relevant for radiotherapy. A key feature of the new approach is the more sophisticated consideration of spatially correlated damage induced by ion irradiation. Results: The experimental data obtained for Chinese hamster ovary cells clearly demonstrate that higher cell killing is achieved in the target region with carbon ions as compared with protons when the effects in the entrance channel are comparable. The model predictions demonstrate agreement with these experimental data and with data obtained with helium ions under similar conditions. Good agreement is also achieved with relative biological effectiveness values reported in the literature for other cell lines for monoenergetic proton, helium, and carbon ions. Conclusion: Both the experimental data and the new modeling approach are supportive of the advantages of carbon ions as compared with protons for treatment-like field configurations. Because the model predicts the effectiveness for several ion species with similar accuracy, it represents a powerful tool for further optimization and utilization of the potential of ion beams in tumor therapy.

  3. Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research, with an Emphasis on DNA Damage/Repair.

    PubMed

    Mohamad, Osama; Sishc, Brock J; Saha, Janapriya; Pompos, Arnold; Rahimi, Asal; Story, Michael D; Davis, Anthony J; Kim, D W Nathan

    2017-06-09

    Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.

  4. Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research, with an Emphasis on DNA Damage/Repair

    PubMed Central

    Mohamad, Osama; Sishc, Brock J.; Saha, Janapriya; Pompos, Arnold; Rahimi, Asal; Story, Michael D.; Davis, Anthony J.; Kim, D.W. Nathan

    2017-01-01

    Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT. PMID:28598362

  5. Systematic review and meta-analysis of radiotherapy in various head and neck cancers: comparing photons, carbon-ions and protons.

    PubMed

    Ramaekers, Bram L T; Pijls-Johannesma, Madelon; Joore, Manuela A; van den Ende, Piet; Langendijk, Johannes A; Lambin, Philippe; Kessels, Alfons G H; Grutters, Janneke P C

    2011-05-01

    To synthesize and compare available evidence considering the effectiveness of carbon-ion, proton and photon radiotherapy for head and neck cancer. A systematic review and meta-analyses were performed to retrieve evidence on tumor control, survival and late treatment toxicity for carbon-ion, proton and the best available photon radiotherapy. In total 86 observational studies (74 photon, 5 carbon-ion and 7 proton) and eight comparative in-silico studies were included. For mucosal malignant melanomas, 5-year survival was significantly higher after carbon-ion therapy compared to conventional photon therapy (44% versus 25%; P-value 0.007). Also, 5-year local control after proton therapy was significantly higher for paranasal and sinonasal cancer compared to intensity modulated photon therapy (88% versus 66%; P-value 0.035). No other statistically significant differences were observed. Although poorly reported, toxicity tended to be less frequent in carbon-ion and proton studies compared to photons. In-silico studies showed a lower dose to the organs at risk, independently of the tumor site. For carbon-ion therapy, the increased survival in mucosal malignant melanomas might suggest an advantage in treating relatively radio-resistant tumors. Except for paranasal and sinonasal cancer, survival and tumor control for proton therapy were generally similar to the best available photon radiotherapy. In agreement with included in-silico studies, limited available clinical data indicates that toxicity tends to be lower for proton compared to photon radiotherapy. Since the overall quantity and quality of data regarding carbon-ion and proton therapy is poor, we recommend the construction of an international particle therapy register to facilitate definitive comparisons. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Carbon Ion Radiotherapy for Peripheral Stage I Non-Small Cell Lung Cancer

    NASA Astrophysics Data System (ADS)

    Kamada, Tadashi; Yamamoto, Naoyoshi; Baba, Masayuki

    The National Institute of Radiological Sciences in Chiba, Japan (NIRS) has the highest number of patients with lung cancer treated with carbon ion beams in the world. This report describes the techniques and clinical trials that have been undertaken at NIRS and preliminary results of a current study on single-fraction irradiation. The data are compared to recent results for the treatment of peripheral stage I lung cancer from the literature.

  7. A numerical method to optimise the spatial dose distribution in carbon ion radiotherapy planning.

    PubMed

    Grzanka, L; Korcyl, M; Olko, P; Waligorski, M P R

    2015-09-01

    The authors describe a numerical algorithm to optimise the entrance spectra of a composition of pristine carbon ion beams which delivers a pre-assumed dose-depth profile over a given depth range within the spread-out Bragg peak. The physical beam transport model is based on tabularised data generated using the SHIELD-HIT10A Monte-Carlo code. Depth-dose profile optimisation is achieved by minimising the deviation from the pre-assumed profile evaluated on a regular grid of points over a given depth range. This multi-dimensional minimisation problem is solved using the L-BFGS-B algorithm, with parallel processing support. Another multi-dimensional interpolation algorithm is used to calculate at given beam depths the cumulative energy-fluence spectra for primary and secondary ions in the optimised beam composition. Knowledge of such energy-fluence spectra for each ion is required by the mixed-field calculation of Katz's cellular Track Structure Theory (TST) that predicts the resulting depth-survival profile. The optimisation algorithm and the TST mixed-field calculation are essential tools in the development of a one-dimensional kernel of a carbon ion therapy planning system. All codes used in the work are generally accessible within the libamtrack open source platform.

  8. Genetic Analysis of T Cell Lymphomas in Carbon Ion-Irradiated Mice Reveals Frequent Interstitial Chromosome Deletions: Implications for Second Cancer Induction in Normal Tissues during Carbon Ion Radiotherapy

    PubMed Central

    Blyth, Benjamin J.; Kakinuma, Shizuko; Sunaoshi, Masaaki; Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Ogawa, Kanae; Shirakami, Ayana; Shang, Yi; Tsuruoka, Chizuru; Nishimura, Mayumi; Shimada, Yoshiya

    2015-01-01

    Monitoring mice exposed to carbon ion radiotherapy provides an indirect method to evaluate the potential for second cancer induction in normal tissues outside the radiotherapy target volume, since such estimates are not yet possible from historical patient data. Here, male and female B6C3F1 mice were given single or fractionated whole-body exposure(s) to a monoenergetic carbon ion radiotherapy beam at the Heavy Ion Medical Accelerator in Chiba, Japan, matching the radiation quality delivered to the normal tissue ahead of the tumour volume (average linear energy transfer = 13 keV.μm-1) during patient radiotherapy protocols. The mice were monitored for the remainder of their lifespan, and a large number of T cell lymphomas that arose in these mice were analysed alongside those arising following an equivalent dose of 137Cs gamma ray-irradiation. Using genome-wide DNA copy number analysis to identify genomic loci involved in radiation-induced lymphomagenesis and subsequent detailed analysis of Notch1, Ikzf1, Pten, Trp53 and Bcl11b genes, we compared the genetic profile of the carbon ion- and gamma ray-induced tumours. The canonical set of genes previously associated with radiation-induced T cell lymphoma was identified in both radiation groups. While the pattern of disruption of the various pathways was somewhat different between the radiation types, most notably Pten mutation frequency and loss of heterozygosity flanking Bcl11b, the most striking finding was the observation of large interstitial deletions at various sites across the genome in carbon ion-induced tumours, which were only seen infrequently in the gamma ray-induced tumours analysed. If such large interstitial chromosomal deletions are a characteristic lesion of carbon ion irradiation, even when using the low linear energy transfer radiation to which normal tissues are exposed in radiotherapy patients, understanding the dose-response and tissue specificity of such DNA damage could prove key to assessing

  9. Genetic Analysis of T Cell Lymphomas in Carbon Ion-Irradiated Mice Reveals Frequent Interstitial Chromosome Deletions: Implications for Second Cancer Induction in Normal Tissues during Carbon Ion Radiotherapy.

    PubMed

    Blyth, Benjamin J; Kakinuma, Shizuko; Sunaoshi, Masaaki; Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Ogawa, Kanae; Shirakami, Ayana; Shang, Yi; Tsuruoka, Chizuru; Nishimura, Mayumi; Shimada, Yoshiya

    2015-01-01

    Monitoring mice exposed to carbon ion radiotherapy provides an indirect method to evaluate the potential for second cancer induction in normal tissues outside the radiotherapy target volume, since such estimates are not yet possible from historical patient data. Here, male and female B6C3F1 mice were given single or fractionated whole-body exposure(s) to a monoenergetic carbon ion radiotherapy beam at the Heavy Ion Medical Accelerator in Chiba, Japan, matching the radiation quality delivered to the normal tissue ahead of the tumour volume (average linear energy transfer = 13 keV x μm(-1)) during patient radiotherapy protocols. The mice were monitored for the remainder of their lifespan, and a large number of T cell lymphomas that arose in these mice were analysed alongside those arising following an equivalent dose of 137Cs gamma ray-irradiation. Using genome-wide DNA copy number analysis to identify genomic loci involved in radiation-induced lymphomagenesis and subsequent detailed analysis of Notch1, Ikzf1, Pten, Trp53 and Bcl11b genes, we compared the genetic profile of the carbon ion- and gamma ray-induced tumours. The canonical set of genes previously associated with radiation-induced T cell lymphoma was identified in both radiation groups. While the pattern of disruption of the various pathways was somewhat different between the radiation types, most notably Pten mutation frequency and loss of heterozygosity flanking Bcl11b, the most striking finding was the observation of large interstitial deletions at various sites across the genome in carbon ion-induced tumours, which were only seen infrequently in the gamma ray-induced tumours analysed. If such large interstitial chromosomal deletions are a characteristic lesion of carbon ion irradiation, even when using the low linear energy transfer radiation to which normal tissues are exposed in radiotherapy patients, understanding the dose-response and tissue specificity of such DNA damage could prove key to

  10. Development of NIRS pencil beam scanning system for carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Hara, Y.; Mizushima, K.; Saotome, N.; Tansho, R.; Saraya, Y.; Inaniwa, T.; Mori, S.; Iwata, Y.; Shirai, T.; Noda, K.

    2017-09-01

    At Heavy Ion Medical Accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences (NIRS), more than 9000 patients have been successfully treated by carbon ion beams since 1994. The successful results of treatments have led us to construct a new treatment facility equipped with a three-dimensional pencil beam scanning irradiation system, which is one of sophisticated techniques for cancer therapy with high energetic ion beam. This new facility comprises two treatment rooms having fixed beam lines and one treatment room having rotating gantry line. The challenge of this project is to realize treatment of a moving target by scanning irradiation. Thus, to realize this, the development of the fast scanning system is one of the most important issues in this project. After intense commissioning and quality assurance tests, the treatment with scanned ion beam was started in May 2011. After treatment of static target starts, we have developed related technologies. As a result, we can start treatment of moving target and treatment without range shifter plates since 2015. In this paper, the developments of the scanning irradiation system are described.

  11. Effective particle energies for stopping power calculation in radiotherapy treatment planning with protons and helium, carbon, and oxygen ions

    NASA Astrophysics Data System (ADS)

    Inaniwa, T.; Kanematsu, N.

    2016-10-01

    The stopping power ratio (SPR) of body tissues relative to water depends on the particle energy. For simplicity, however, most analytical dose planning systems do not account for SPR variation with particle energy along the beam’s path, but rather assume a constant energy for SPR estimation. The range error due to this simplification could be indispensable depending on the particle species and the assumed energy. This error can be minimized by assuming a suitable energy referred to as an ‘effective energy’ in SPR estimation. To date, however, the effective energy has never been investigated for realistic patient geometries. We investigated the effective energies for proton, helium-, carbon-, and oxygen-ion radiotherapy using volumetric models of the reference male and female phantoms provided by the International Commission on Radiological Protection (ICRP). The range errors were estimated by comparing the particle ranges calculated when particle energy variations were and were not considered. The effective energies per nucleon for protons and helium, carbon, and oxygen ions were 70 MeV, 70 MeV, 131 MeV, and 156 MeV, respectively. Using the determined effective energies, the range errors were reduced to  ⩽0.3 mm for respective particle species. For SPR estimation of multiple particle species, an effective energy of 100 MeV is recommended, with which the range error is  ⩽0.5 mm for all particle species.

  12. Evaluation of plastic materials for range shifting, range compensation, and solid-phantom dosimetry in carbon-ion radiotherapy

    SciTech Connect

    Kanematsu, Nobuyuki; Koba, Yusuke; Ogata, Risa

    2013-04-15

    Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. In dosimetry, solid phantoms are often used for convenience. These materials should ideally be equivalent to water. In this study, the authors evaluated dosimetric water equivalence of four common plastics, high-density polyethylene (HDPE), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polyoxymethylene (POM). Methods: Using the Bethe formula for energy loss, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, the authors calculated the effective densities of the plastics for these interactions. The authors experimentally measured variation of the Bragg peak of carbon-ion beams by insertion of HDPE, PMMA, and POM, which were compared with analytical model calculations. Results: The theoretical calculation resulted in slightly reduced multiple scattering and severely increased nuclear interactions for HDPE, compared to water and the other plastics. The increase in attenuation of carbon ions for 20-cm range shift was experimentally measured to be 8.9% for HDPE, 2.5% for PMMA, and 0.0% for POM while PET was theoretically estimated to be in between PMMA and POM. The agreement between the measurements and the calculations was about 1% or better. Conclusions: For carbon-ion beams, POM was dosimetrically indistinguishable from water and the best of the plastics examined in this study. The poorest was HDPE, which would reduce the Bragg peak by 0.45% per cm range shift, although with marginal superiority for reduced multiple scattering. Between the two clear plastics, PET would be superior to PMMA in dosimetric water equivalence.

  13. Evaluation of plastic materials for range shifting, range compensation, and solid-phantom dosimetry in carbon-ion radiotherapy.

    PubMed

    Kanematsu, Nobuyuki; Koba, Yusuke; Ogata, Risa

    2013-04-01

    Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. In dosimetry, solid phantoms are often used for convenience. These materials should ideally be equivalent to water. In this study, the authors evaluated dosimetric water equivalence of four common plastics, high-density polyethylene (HDPE), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polyoxymethylene (POM). Using the Bethe formula for energy loss, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, the authors calculated the effective densities of the plastics for these interactions. The authors experimentally measured variation of the Bragg peak of carbon-ion beams by insertion of HDPE, PMMA, and POM, which were compared with analytical model calculations. The theoretical calculation resulted in slightly reduced multiple scattering and severely increased nuclear interactions for HDPE, compared to water and the other plastics. The increase in attenuation of carbon ions for 20-cm range shift was experimentally measured to be 8.9% for HDPE, 2.5% for PMMA, and 0.0% for POM while PET was theoretically estimated to be in between PMMA and POM. The agreement between the measurements and the calculations was about 1% or better. For carbon-ion beams, POM was dosimetrically indistinguishable from water and the best of the plastics examined in this study. The poorest was HDPE, which would reduce the Bragg peak by 0.45% per cm range shift, although with marginal superiority for reduced multiple scattering. Between the two clear plastics, PET would be superior to PMMA in dosimetric water equivalence.

  14. Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: identification of the main source and reduction in the secondary neutron dose.

    PubMed

    Yonai, Shunsuke; Matsufuji, Naruhiro; Kanai, Tatsuaki

    2009-10-01

    Recent successful results in passive carbon-ion radiotherapy allow the patient to live for a longer time and allow younger patients to receive the radiotherapy. Undesired radiation exposure in normal tissues far from the target volume is considerably lower than that close to the treatment target, but it is considered to be non-negligible in the estimation of the secondary cancer risk. Therefore, it is very important to reduce the undesired secondary neutron exposure in passive carbon-ion radiotherapy without influencing the clinical beam. In this study, the source components in which the secondary neutrons are produced during passive carbon-ion radiotherapy were identified and the method to reduce the secondary neutron dose effectively based on the identification of the main sources without influencing the clinical beam was investigated. A Monte Carlo study with the PHITS code was performed by assuming the beamline at the Heavy-Ion Medical Accelerator in Chiba (HIMAC). At first, the authors investigated the main sources of secondary neutrons in passive carbon-ion radiotherapy. Next, they investigated the reduction in the neutron dose with various modifications of the beamline device that is the most dominant in the neutron production. Finally, they investigated the use of an additional shield for the patient. It was shown that the main source is the secondary neutrons produced in the four-leaf collimator (FLC) used as a precollimator at HIAMC, of which contribution in the total neutron ambient dose equivalent is more than 70%. The investigations showed that the modification of the FLC can reduce the neutron dose at positions close to the beam axis by 70% and the FLC is very useful not only for the collimation of the primary beam but also the reduction in the secondary neutrons. Also, an additional shield for the patient is very effective to reduce the neutron dose at positions farther than 50 cm from the beam axis. Finally, they showed that the neutron dose can be

  15. Risk factors for neovascular glaucoma after carbon ion radiotherapy of choroidal melanoma using dose-volume histogram analysis

    SciTech Connect

    Hirasawa, Naoki . E-mail: naoki_h@nirs.go.jp; Tsuji, Hiroshi; Ishikawa, Hitoshi; Koyama-Ito, Hiroko; Kamada, Tadashi; Mizoe, Jun-Etsu; Ito, Yoshiyuki; Naganawa, Shinji; Ohnishi, Yoshitaka; Tsujii, Hirohiko

    2007-02-01

    Purpose: To determine the risk factors for neovascular glaucoma (NVG) after carbon ion radiotherapy (C-ion RT) of choroidal melanoma. Methods and Materials: A total of 55 patients with choroidal melanoma were treated between 2001 and 2005 with C-ion RT based on computed tomography treatment planning. All patients had a tumor of large size or one located close to the optic disk. Univariate and multivariate analyses were performed to identify the risk factors of NVG for the following parameters; gender, age, dose-volumes of the iris-ciliary body and the wall of eyeball, and irradiation of the optic disk (ODI). Results: Neovascular glaucoma occurred in 23 patients and the 3-year cumulative NVG rate was 42.6 {+-} 6.8% (standard error), but enucleation from NVG was performed in only three eyes. Multivariate analysis revealed that the significant risk factors for NVG were V50{sub IC} (volume irradiated {>=}50 GyE to iris-ciliary body) (p = 0.002) and ODI (p = 0.036). The 3-year NVG rate for patients with V50{sub IC} {>=}0.127 mL and those with V50{sub IC} <0.127 mL were 71.4 {+-} 8.5% and 11.5 {+-} 6.3%, respectively. The corresponding rate for the patients with and without ODI were 62.9 {+-} 10.4% and 28.4 {+-} 8.0%, respectively. Conclusion: Dose-volume histogram analysis with computed tomography indicated that V50{sub IC} and ODI were independent risk factors for NVG. An irradiation system that can reduce the dose to both the anterior segment and the optic disk might be worth adopting to investigate whether or not incidence of NVG can be decreased with it.

  16. Combining Carbon Ion Radiotherapy and Local Injection of {alpha}-Galactosylceramide-Pulsed Dendritic Cells Inhibits Lung Metastases in an In Vivo Murine Model

    SciTech Connect

    Ohkubo, Yu; Iwakawa, Mayumi; Seino, Ken-Ichiro; Nakawatari, Miyako; Wada, Haruka; Kamijuku, Hajime; Nakamura, Etsuko; Nakano, Takashi; Imai, Takashi

    2010-12-01

    Purpose: Our previous report indicated that carbon ion beam irradiation upregulated membrane-associated immunogenic molecules, underlining the potential clinical application of radioimmunotherapy. The antimetastatic efficacy of local combination therapy of carbon ion radiotherapy and immunotherapy was examined by use of an in vivo murine model. Methods and Materials: Tumors of mouse squamous cell carcinoma (NR-S1) cells inoculated in the legs of C3H/HeSlc mice were locally irradiated with a single 6-Gy dose of carbon ions (290 MeV/nucleon, 6-cm spread-out Bragg peak). Thirty-six hours after irradiation, {alpha}-galactosylceramide-pulsed dendritic cells (DCs) were injected into the leg tumor. We investigated the effects on distant lung metastases by counting the numbers of lung tumor colonies, making pathologic observations, and assessing immunohistochemistry. Results: The mice with no treatment (control) presented with 168 {+-} 53.8 metastatic nodules in the lungs, whereas the mice that received the combination therapy of carbon ion irradiation and DCs presented with 2.6 {+-} 1.9 (P = 0.009) at 2 weeks after irradiation. Immunohistochemistry showed that intracellular adhesion molecule 1, which activates DCs, increased from 6 h to 36 h after irradiation in the local tumors of the carbon ion-irradiated group. The expression of S100A8 in lung tissue, a marker of the lung pre-metastatic phase, was decreased only in the group with a combination of carbon ions and DCs. Conclusions: The combination of carbon ion radiotherapy with the injection of {alpha}-galactosylceramide-pulsed DCs into the primary tumor effectively inhibited distant lung metastases.

  17. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Ammazzalorso, F.; Bednarz, T.; Jelen, U.

    2014-03-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  18. Review on heavy ion radiotherapy facilities and related ion sources (invited)a)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.; Drentje, A. G.

    2010-02-01

    Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four facilities for heavy ion radiotherapy in operation, and several new facilities are under construction or being planned. The most common requests for ion sources are a long lifetime and good stability and reproducibility. Sufficient intensity has been achieved by electron cyclotron resonance ion sources at the present facilities.

  19. Review on heavy ion radiotherapy facilities and related ion sources (invited)

    SciTech Connect

    Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.

    2010-02-15

    Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four facilities for heavy ion radiotherapy in operation, and several new facilities are under construction or being planned. The most common requests for ion sources are a long lifetime and good stability and reproducibility. Sufficient intensity has been achieved by electron cyclotron resonance ion sources at the present facilities.

  20. [Particle therapy: carbon ions].

    PubMed

    Pommier, Pascal; Hu, Yi; Baron, Marie-Hélène; Chapet, Olivier; Balosso, Jacques

    2010-07-01

    Carbon ion therapy is an innovative radiation therapy. It has been first proposed in the forties by Robert Wilson, however the first dedicated centres for human care have been build up only recently in Japan and Germany. The interest of carbon ion is twofold: 1) the very sharp targeting of the tumour with the so called spread out Bragg peak that delivers most of the beam energy in the tumour and nothing beyond it, sparing very efficiently the healthy tissues; 2) the higher relative biological efficiency compared to X rays or protons, able to kill radioresistant tumour cells. Both properties make carbon ions the elective therapy for non resectable radioresistant tumours loco-regionally threatening. The technical and clinical experience accumulated during the recent decades is summarized in this paper along with a detailed presentation of the elective indications. A short comparison between conventional radiotherapy and hadrontherapy is proposed for the indications which are considered as priority for carbon ions.

  1. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, Kevin M.; Doyle, Barney L.

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  2. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  3. Carbon-ion radiotherapy for locally advanced or unfavorably located choroidal melanoma: A Phase I/II dose-escalation study

    SciTech Connect

    Tsuji, Hiroshi . E-mail: h_tsuji@nirs.go.jp; Ishikawa, Hitoshi; Yanagi, Takeshi; Hirasawa, Naoki; Kamada, Tadashi; Mizoe, Jun-Etsu; Kanai, Tatsuaki; Tsujii, Hirohiko; Ohnishi, Yoshitaka

    2007-03-01

    Purpose: To evaluate the applicability of carbon ion beams for the treatment of choroidal melanoma with regard to normal tissue morbidity and local tumor control. Methods and Materials: Between January 2001 and February 2006, 59 patients with locally advanced or unfavorably located choroidal melanoma were enrolled in a Phase I/II clinical trial of carbon-ion radiotherapy at the National Institute of Radiologic Sciences. The primary endpoint of this study was normal tissue morbidity, and secondary endpoints were local tumor control and patient survival. Of the 59 subjects enrolled, 57 were followed >6 months and analyzed. Results: Twenty-three patients (40%) developed neovascular glaucoma, and three underwent enucleation for eye pain due to elevated intraocular pressure. Incidence of neovascular glaucoma was dependent on tumor size and site. Five patients had died at analysis, three of distant metastasis and two of concurrent disease. All but one patient, who developed marginal recurrence, were controlled locally. Six patients developed distant metastasis, five in the liver and one in the lung. Three-year overall survival, disease-free survival, and local control rates were 88.2%, 84.8%, and 97.4%, respectively. No apparent dose-response relationship was observed in either tumor control or normal tissue morbidity at the dose range applied. Conclusion: Carbon-ion radiotherapy can be applied to choroidal melanoma with an acceptable morbidity and sufficient antitumor effect, even with tumors of unfavorable size or site.

  4. A preliminary Monte Carlo study for the treatment head of a carbon-ion radiotherapy facility using TOPAS

    NASA Astrophysics Data System (ADS)

    Liu, Hongdong; Zhang, Lian; Chen, Zhi; Liu, Xinguo; Dai, Zhongying; Li, Qiang; Xu, Xie George

    2017-09-01

    In medical physics it is desirable to have a Monte Carlo code that is less complex, reliable yet flexible for dose verification, optimization, and component design. TOPAS is a newly developed Monte Carlo simulation tool which combines extensive radiation physics libraries available in Geant4 code, easyto-use geometry and support for visualization. Although TOPAS has been widely tested and verified in simulations of proton therapy, there has been no reported application for carbon ion therapy. To evaluate the feasibility and accuracy of TOPAS simulations for carbon ion therapy, a licensed TOPAS code (version 3_0_p1) was used to carry out a dosimetric study of therapeutic carbon ions. Results of depth dose profile based on different physics models have been obtained and compared with the measurements. It is found that the G4QMD model is at least as accurate as the TOPAS default BIC physics model for carbon ions, but when the energy is increased to relatively high levels such as 400 MeV/u, the G4QMD model shows preferable performance. Also, simulations of special components used in the treatment head at the Institute of Modern Physics facility was conducted to investigate the Spread-Out dose distribution in water. The physical dose in water of SOBP was found to be consistent with the aim of the 6 cm ridge filter.

  5. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan

    NASA Astrophysics Data System (ADS)

    Inaniwa, Taku; Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Kanai, Tatsuaki; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2015-04-01

    At the National Institute of Radiological Sciences (NIRS), more than 8,000 patients have been treated for various tumors with carbon-ion (C-ion) radiotherapy in the past 20 years based on a radiobiologically defined clinical-dose system. Through clinical experience, including extensive dose escalation studies, optimum dose-fractionation protocols have been established for respective tumors, which may be considered as the standards in C-ion radiotherapy. Although the therapeutic appropriateness of the clinical-dose system has been widely demonstrated by clinical results, the system incorporates several oversimplifications such as dose-independent relative biological effectiveness (RBE), empirical nuclear fragmentation model, and use of dose-averaged linear energy transfer to represent the spectrum of particles. We took the opportunity to update the clinical-dose system at the time we started clinical treatment with pencil beam scanning, a new beam delivery method, in 2011. The requirements for the updated system were to correct the oversimplifications made in the original system, while harmonizing with the original system to maintain the established dose-fractionation protocols. In the updated system, the radiation quality of the therapeutic C-ion beam was derived with Monte Carlo simulations, and its biological effectiveness was predicted with a theoretical model. We selected the most used C-ion beam with αr = 0.764 Gy-1 and β = 0.0615 Gy-2 as reference radiation for RBE. The C-equivalent biological dose distribution is designed to allow the prescribed survival of tumor cells of the human salivary gland (HSG) in entire spread-out Bragg peak (SOBP) region, with consideration to the dose dependence of the RBE. This C-equivalent biological dose distribution is scaled to a clinical dose distribution to harmonize with our clinical experiences with C-ion radiotherapy. Treatment plans were made with the original and the updated clinical-dose systems, and both

  6. Historical aspects of heavy ion radiotherapy

    SciTech Connect

    Raju, M.R.

    1995-03-01

    This paper presents historical developments of heavy-ion radiotherapy including discussion of HILAC and HIMAC and discussion of cooperation between Japan and the United States, along with personal reflections.

  7. Results of heavy ion radiotherapy

    SciTech Connect

    Castro, J.R.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues. Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists.

  8. L-[METHYL-{sup 11}C] Methionine Positron Emission Tomography for Target Delineation in Malignant Gliomas: Impact on Results of Carbon Ion Radiotherapy

    SciTech Connect

    Mahasittiwat, Pawinee; Mizoe, Jun-etsu Hasegawa, Azusa; Ishikawa, Hiroyuki; Yoshikawa, Kyosan; Mizuno, Hideyuki; Yanagi, Takeshi; Takagi, Ryou D.D.S.; Pattaranutaporn, Pittayapoom; Tsujii, Hirohiko

    2008-02-01

    Purpose: To assess the importance of {sup 11}C-methionine (MET)-positron emission tomography (PET) for clinical target volume (CTV) delineation. Methods and Materials: This retrospective study analyzed 16 patients with malignant glioma (4 patients, anaplastic astrocytoma; 12 patients, glioblastoma multiforme) treated with surgery and carbon ion radiotherapy from April 2002 to Nov 2005. The MET-PET target volume was compared with gross tumor volume and CTV, defined by using computed tomography/magnetic resonance imaging (MRI). Correlations with treatment results were evaluated between positive and negative extended volumes (EVs) of the MET-PET target for CTV. Results: Mean volumes of the MET-PET targets, CTV1 (defined by means of high-intensity volume on T2-weighted MRI), and CTV2 (defined by means of contrast-enhancement volume on T1-weighted MRI) were 6.35, 264.7, and 117.7 cm{sup 3}, respectively. Mean EVs of MET-PET targets for CTV1 and CTV2 were 0.6 and 2.2 cm{sup 3}, respectively. The MET-PET target volumes were included in CTV1 and CTV2 in 13 (81.3%) and 11 patients (68.8%), respectively. Patients with a negative EV for CTV1 had significantly greater survival rate (p = 0.0069), regional control (p = 0.0047), and distant control time (p = 0.0267) than those with a positive EV. Distant control time also was better in patients with a negative EV for CTV2 than those with a positive EV (p = 0.0401). Conclusions: For patients with malignant gliomas, MET-PET has a possibility to be a predictor of outcome in carbon ion radiotherapy. Direct use of MET-PET fused to planning computed tomography will be useful and yield favorable results for the therapy.

  9. More Ions for Radiotherapy: About Treatment Planning and Track Simulations

    NASA Astrophysics Data System (ADS)

    Krämer, M.

    2017-03-01

    In the recent years, irradiation with swift light ions - from protons up to oxygen -has become an established method in tumour radiotherapy.A prerequisite for successful treatment is the sufficient knowledge of physical and radiobiological processes down to the microscopic or even nanoscopic scale. This report summarizes recent developments. In particular the application of ions other than protons and carbon will be addressed, as well as modelling approaches on the nanoscale.

  10. Treatment outcomes of particle radiotherapy using protons or carbon ions as a single-modality therapy for adenoid cystic carcinoma of the head and neck.

    PubMed

    Takagi, Masaru; Demizu, Yusuke; Hashimoto, Naoki; Mima, Masayuki; Terashima, Kazuki; Fujii, Osamu; Jin, Dongcun; Niwa, Yasue; Morimoto, Koichi; Akagi, Takashi; Daimon, Takashi; Sasaki, Ryohei; Hishikawa, Yoshio; Abe, Mitsuyuki; Murakami, Masao; Fuwa, Nobukazu

    2014-12-01

    The aim of this study was to retrospectively analyse the outcomes of cases of adenoid cystic carcinomas (ACCs) of the head and neck that were treated at a single institution with particle therapy consisting of either protons or carbon ions. Between February 2002 and March 2012, 80 patients were treated with proton therapy (PT) or carbon ion therapy (CIT) alone. PT and CIT were employed in 40 (50%) patients each, and more than half of the patients received 65.0 GyE in 26 fractions (n=47, 59%). The median duration of follow-up was 38 months (range, 6-115 months). For all patients, the 5-year for overall survival (OS) rate, progression-free survival (PFS) rate, and local control (LC) rate were 63%, 39%, and 75%, respectively. No significant differences between PT and CIT were observed. The 5-year LC rates for T4 and inoperable cases were 66% and 68%, respectively. Twenty-one patients (26%) experienced grade 3 or greater late toxicities, including three patients who developed grade 5 bleeding from nasopharyngeal ulcers. Particle radiotherapy for ACC achieves favourable LC, and its efficacy in inoperable or T4 cases is promising. There were no significant differences between PT and CIT in terms of OS, PFS and LC. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. SU-E-T-495: Influence of Reduced Target-To-Nozzle Distance On Secondary Neutron Dose Equivalent in Proton and Carbon Ion Radiotherapy

    SciTech Connect

    Sheng, Y; Shahnazi, K; Wang, W; Moyers, M; Deng, Y; Huang, Z; Liu, X

    2015-06-15

    Purpose: Ion beams have an unavoidable lateral spread due to nuclear interactions interacting with the air and monitoring systems. To minimize this spread, the distance between the nozzle and the patient should be kept as small as possible.The purpose of this work was to determine the impact of the target-to-nozzle distance reduction on the secondary neutron dose equivalent in proton and carbon ion radiotherapy. Methods: In this study, abdominal and head phantoms were scanned with our CT scanner. Cubical targets with side lengths of 3 cm to 10 cm and 1 cm to 5 cm were drawn in the abdominal and head phantoms respectively. Two intensity-modulated plans were made for each phantom and ion. The first of these plans placed the target at the isocenter while the other shifted the phantom 30 cm towards the nozzle. The plans at both phantom locations were optimized to provide identical dose coverage to the PTVs.Secondary neutron dose equivalent at 50 cm lateral to the center of target. Results: The neutron dose equivalent was higher for the larger field size from 0.25µSv per Gy (RBE) to 72µSv per Gy (RBE). The neutron dose equivalent was smaller when the phantom was placed at the upstream target location versus at the isocenter location by 8.9% to 10.4% and 11.0% to 22.1% for proton plans of the abdominal and head phantoms respectively. Differences for carbon plans with different target-to-nozzle locations were less than 3% for both phantoms. Conclusion: A reduction of target-to-nozzle distance can lead to benefits for proton radiotherapy. In this study, a reduction of secondary neutron dose equivalent was found for proton plans with a smaller target-to-nozzle distance. A greater impact was found for a head phantom with a smaller field size; however, a reduction of the target-to-nozzle distance had little effect for carbon therapy.

  12. Effects of beam interruption time on tumor control probability in single-fractionated carbon-ion radiotherapy for non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Inaniwa, T.; Kanematsu, N.; Suzuki, M.; Hawkins, R. B.

    2015-05-01

    Carbon-ion radiotherapy treatment plans are designed on the assumption that the beams are delivered instantaneously, irrespective of actual dose-delivery time structure in a treatment session. As the beam lines are fixed in the vertical and horizontal directions at our facility, beam delivery is interrupted in multi-field treatment due to the necessity of patient repositioning within the fields. Single-fractionated treatment for non-small cell lung cancer (NSCLC) is such a case, in which four treatment fields in multiple directions are delivered in one session with patient repositioning during the session. The purpose of this study was to investigate the effects of the period of dose delivery, including interruptions due to patient repositioning, on tumor control probability (TCP) of NSCLC. All clinical doses were weighted by relative biological effectiveness (RBE) evaluated for instantaneous irradiation. The rate equations defined in the microdosimetric kinetic model (MKM) for primary lesions induced in DNA were applied to the single-fractionated treatment of NSCLC. Treatment plans were made for an NSCLC case for various prescribed doses ranging from 25 to 50 Gy (RBE), on the assumption of instantaneous beam delivery. These plans were recalculated by varying the interruption time τ ranging from 0 to 120 min between the second and third fields for continuous irradiations of 3 min per field based on the MKM. The curative doses that would result in a TCP of 90% were deduced for the respective interruption times. The curative dose was 34.5 Gy (RBE) for instantaneous irradiation and 36.6 Gy (RBE), 39.2 Gy (RBE), 41.2 Gy (RBE), 43.3 Gy (RBE) and 44.4 Gy (RBE) for τ = 0 min, 15 min, 30 min, 60 min and 120 min, respectively. The realistic biological effectiveness of therapeutic carbon-ion beam decreased with increasing interruption time. These data suggest that the curative dose can increase by 20% or more compared to the planned dose if the

  13. TOPICAL REVIEW Dosimetry for ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Karger, Christian P.; Jäkel, Oliver; Palmans, Hugo; Kanai, Tatsuaki

    2010-11-01

    Recently, ion beam radiotherapy (including protons as well as heavier ions) gained considerable interest. Although ion beam radiotherapy requires dose prescription in terms of iso-effective dose (referring to an iso-effective photon dose), absorbed dose is still required as an operative quantity to control beam delivery, to characterize the beam dosimetrically and to verify dose delivery. This paper reviews current methods and standards to determine absorbed dose to water in ion beam radiotherapy, including (i) the detectors used to measure absorbed dose, (ii) dosimetry under reference conditions and (iii) dosimetry under non-reference conditions. Due to the LET dependence of the response of films and solid-state detectors, dosimetric measurements are mostly based on ion chambers. While a primary standard for ion beam radiotherapy still remains to be established, ion chamber dosimetry under reference conditions is based on similar protocols as for photons and electrons although the involved uncertainty is larger than for photon beams. For non-reference conditions, dose measurements in tissue-equivalent materials may also be necessary. Regarding the atomic numbers of the composites of tissue-equivalent phantoms, special requirements have to be fulfilled for ion beams. Methods for calibrating the beam monitor depend on whether passive or active beam delivery techniques are used. QA measurements are comparable to conventional radiotherapy; however, dose verification is usually single field rather than treatment plan based. Dose verification for active beam delivery techniques requires the use of multi-channel dosimetry systems to check the compliance of measured and calculated dose for a representative sample of measurement points. Although methods for ion beam dosimetry have been established, there is still room for developments. This includes improvement of the dosimetric accuracy as well as development of more efficient measurement techniques.

  14. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams

    PubMed Central

    Niklas, Martin; Zimmermann, Ferdinand; Chaudhri, Naved; Krunic, Damir; Tessonnier, Thomas; Ferrari, Alfredo; Parodi, Katia; Jäkel, Oliver; Debus, Jürgen; Haberer, Thomas; Abdollahi, Amir

    2016-01-01

    The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break (DSB) formation and repair kinetic. The size and the number of residual nuclear γ-H2AX foci increased as a function of linear energy transfer (LET) and RBE, reminiscent of enhanced DNA-damage complexity and accumulation of non-repairable DSB. These data confirm the high relevance of complex DSB formation as a central determinant of cell fate and reliable biological surrogates for cell survival/RBE. The multi-scale simulation, physical and radiobiological characterization of novel clinical quality beams presented here constitutes a first step towards development of high precision biologically individualized radiotherapy. PMID:27494855

  15. Carbon Beam Radio-Therapy and Research Activities at HIMAC

    NASA Astrophysics Data System (ADS)

    Kanazawa, Mitsutaka

    2007-05-01

    Radio-therapy with carbon ion beam has been carried out since 1994 at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences). Now, many types of tumors can be treated with carbon beam with excellent local controls of the tumors. Stimulated with good clinical results, requirement of the dedicated compact facility for carbon beam radio-therapy is increased. To realize this requirement, design study of the facility and the R&D's of the key components in this design are promoted by NIRS. According successful results of these activities, the dedicated compact facility will be realized in Gunma University. In this facility, the established irradiation method is expected to use, which is passive irradiation method with wobbler magnets and ridge filter. In this presentation, above R&D's will be presented together with clinical results and basic research activities at HIMAC.

  16. Calculation method using Clarkson integration for the physical dose at the center of the spread-out Bragg peak in carbon-ion radiotherapy

    SciTech Connect

    Tajiri, Minoru; Maeda, Takamasa; Isobe, Yoshiharu; Kuroiwa, Toshitaka; Tanimoto, Katsuyuki; Shibayama, Koichi; Koba, Yusuke; Fukuda, Shigekazu

    2013-07-15

    Purpose: In broad-beam carbon-ion radiotherapy performed using the heavy-ion medical accelerator in Chiba, the number of monitor units is determined by measuring the physical dose at the center of the spread-out Bragg peak (SOBP) for the treatment beam. The total measurement time increases as the number of treatment beams increases, which hinders the treatment of an increased number of patients. Hence, Kusano et al.[Jpn. J. Med. Phys. 23(Suppl. 2), 65-68 (2003)] proposed a method to calculate the physical dose at the center of the SOBP for a treatment beam. Based on a recent study, the authors here propose a more accurate calculation method.Methods: The authors measured the physical dose at the center of the SOBP while varying the circular field size and range-shifter thickness. The authors obtained the physical dose at the center of the SOBP for an irregularly shaped beam using Clarkson integration based on these measurements.Results: The difference between the calculated and measured physical doses at the center of the SOBP varied with a change in the central angle of the sector segment. The differences between the calculated and measured physical doses at the center of the SOBP were within {+-}1% for all irregularly shaped beams that were used to validate the calculation method.Conclusions: The accuracy of the proposed method depends on both the number of angular intervals used for Clarkson integration and the fineness of the basic data used for calculations: sampling numbers for the field size and thickness of the range shifter. If those parameters are properly chosen, the authors can obtain a calculated monitor unit number with high accuracy sufficient for clinical applications.

  17. Phase I/II trial evaluating concurrent carbon-ion radiotherapy plus chemotherapy for salvage treatment of locally recurrent nasopharyngeal carcinoma.

    PubMed

    Kong, Lin; Gao, Jing; Hu, Jiyi; Hu, Weixu; Guan, Xiyin; Lu, Rong; Lu, Jiade J

    2016-12-22

    After definitive chemoradiotherapy for non-metastatic nasopharyngeal carcinoma (NPC), more than 10% of patients will experience a local recurrence. Salvage treatments present significant challenges for locally recurrent NPC. Surgery, stereotactic ablative body radiotherapy, and brachytherapy have been used to treat locally recurrent NPC. However, only patients with small-volume tumors can benefit from these treatments. Re-irradiation with X-ray-based intensity-modulated radiotherapy (IMXT) has been more widely used for salvage treatment of locally recurrent NPC with a large tumor burden, but over-irradiation to the surrounding normal tissues has been shown to cause frequent and severe toxicities. Furthermore, locally recurrent NPC represents a clinical entity that is more radio-resistant than its primary counterpart. Due to the inherent physical advantages of heavy-particle therapy, precise dose delivery to the target volume(s), without exposing the surrounding organs at risk to extra doses, is highly feasible with carbon-ion radiotherapy (CIRT). In addition, CIRT is a high linear energy transfer (LET) radiation and provides an increased relative biological effectiveness compared with photon and proton radiotherapy. Our prior work showed that CIRT alone to 57.5 GyE (gray equivalent), at 2.5 GyE per daily fraction, was well tolerated in patients who were previously treated for NPC with a definitive dose of IMXT. The short-term response rates at 3-6 months were also acceptable. However, no patients were treated with concurrent chemotherapy. Whether the addition of concurrent chemotherapy to CIRT can benefit locally recurrent NPC patients over CIRT alone has never been addressed. It is possible that the benefits of high-LET CIRT may make radiosensitizing chemotherapy unnecessary. We therefore implemented a phase I/II clinical trial to address these questions and present our methodology and results. The maximal tolerated dose (MTD) of re-treatment using raster

  18. Dose prescription in carbon ion radiotherapy: a planning study to compare NIRS and LEM approaches with a clinically-oriented strategy

    NASA Astrophysics Data System (ADS)

    Fossati, Piero; Molinelli, Silvia; Matsufuji, Naruhiru; Ciocca, Mario; Mirandola, Alfredo; Mairani, Andrea; Mizoe, Junetsu; Hasegawa, Azusa; Imai, Reiko; Kamada, Tadashi; Orecchia, Roberto; Tsujii, Hirohiko

    2012-11-01

    In carbon ion radiotherapy there is an urgent clinical need to develop objective tools for the conversion of relative biological effectiveness (RBE)-weighted doses based on different models. In this work we introduce a clinically oriented method to compare NIRS-based and LEM-based GyE systems, minimizing differences in physical dose distributions between treatment plans. Carbon ion plans were optimized on target volumes of cubic and spherical shapes, for RBE-weighted dose prescription levels ranging from 3.6 to 4.4 GyE. Plans were calculated for target sizes from 4 to 12 cm defining three beam geometries: single beam, opposed beam and orthogonal beam configurations. The two treatment planning systems currently employed in clinical practice were used, providing the NIRS-based and LEM-based GyE calculations. Physical dose distributions of NIRS-based and LEM-based treatment plans were compared. LEM-based prescription doses that minimize differences in physical dose distributions between the two systems were found. These doses were compared with the mean RBE-weighted dose obtained with a Monte Carlo code (FLUKA) interfaced with LEM I. In the investigated dose range, LEM-based RBE-weighted prescription doses, that minimize differences with NIRS plans, should be higher than NIRS reported prescription doses. The optimal dose depends on target size, shape and position, number of beams and dose level. The opposed beam configuration resulted in the smallest average prescription dose difference (0.45 ± 0.09 GyE). The second approach of recalculating NIRS RBE-weighted dose with a Monte Carlo code interfaced with LEM resulted in no significant difference with the results obtained from the planning study. The delivery of a voxel by voxel iso-effective plan, if different RBE models are employed, is not feasible; it is however possible to minimize differences in a treatment plan with the simple approach presented here. Dose prescription ultimately represents a clinical task under

  19. Phase I/II trial of definitive carbon ion radiotherapy for prostate cancer: evaluation of shortening of treatment period to 3 weeks

    PubMed Central

    Nomiya, T; Tsuji, H; Maruyama, K; Toyama, S; Suzuki, H; Akakura, K; Shimazaki, J; Nemoto, K; Kamada, T; Tsujii, H

    2014-01-01

    Background: The purpose of this study was to evaluate the feasibility of a new shortened 3-week treatment schedule of carbon ion radiotherapy (CIRT) for prostate cancer. Methods: Beginning in May 2010, patients with T1b–T3bN0M0, histologically proven prostate adenocarcinoma were enrolled in the phase II trial of CIRT. Patients received 51.6 GyE in 12 fractions over 3 weeks (protocol 1002). The primary end point was defined as the incidence of late adverse events that were evaluated based on the Common Terminology Criteria for Adverse Events version 4.0. Biochemical failure was determined using the Phoenix definition (nadir +2.0 ng ml−1). Results: Forty-six patients were enrolled, and all patients were included in the analysis. The number of low-, intermediate-, and high-risk patients was 12 (26%), 9 (20%), and 25 (54%), respectively. The median follow-up period of surviving patients was 32.3 months. Two patients had intercurrent death without recurrence, and the remaining 44 patients were alive at the time of this analysis. In the analysis of late toxicities, grade 1 (G1) rectal haemorrhage was observed in 3 (7%) patients. The incidence of G1 haematuria was observed in 6 (13%) patients, and G1 urinary frequency was observed in 17 (37%) patients. No ⩾G2 late toxicities were observed. In the analysis of acute toxicities, 2 (4%) patients showed G2 urinary frequency, and no other G2 acute toxicities were observed. Conclusions: The new shortened CIRT schedule over 3 weeks was considered as feasible. The analysis of long-term outcome is warranted. PMID:24722181

  20. The future of heavy ion radiotherapy

    SciTech Connect

    Jäkel, Oliver; Karger, Christian P.; Debus, Jürgen

    2008-12-15

    Currently, there is an increasing interest in heavy ion radiotherapy (RT) and a number of new facilities are being installed in Europe and Japan. This development is accompanied by intensive technical, physical, and clinical research. The authors identify six research fields where progress is likely and propose a thesis on the expected achievements for each of the fields: (1) Synchrotrons with active energy variation and three-dimensional beam scanning will be the standard in ion beam RT. (2) Common standards for precise measurement, prescription, and reporting of dose will be available. (3) Intensity-modulated particle therapy will be state-of-the-art. (4) Time-adaptive treatments of moving targets will be feasible. (5) Therapeutic effectiveness of heavy ions will be known for the most important indications while cost effectiveness will remain to be shown. (6) The potential of high-linear energy transfer radiation will be known. The rationale for each of these theses is described.

  1. The future of heavy ion radiotherapy.

    PubMed

    Jäkel, Oliver; Karger, Christian P; Debus, Jürgen

    2008-12-01

    Currently, there is an increasing interest in heavy ion radiotherapy (RT) and a number of new facilities are being installed in Europe and Japan. This development is accompanied by intensive technical, physical, and clinical research. The authors identify six research fields where progress is likely and propose a thesis on the expected achievements for each of the fields: (1) Synchrotrons with active energy variation and three-dimensional beam scanning will be the standard in ion beam RT. (2) Common standards for precise measurement, prescription, and reporting of dose will be available. (3) Intensity-modulated particle therapy will be state-of-the-art. (4) Time-adaptive treatments of moving targets will be feasible. (5) Therapeutic effectiveness of heavy ions will be known for the most important indications while cost effectiveness will remain to be shown. (6) The potential of high-linear energy transfer radiation will be known. The rationale for each of these theses is described.

  2. Development of heavy-ion radiotherapy technology with HIMAC

    NASA Astrophysics Data System (ADS)

    Noda, Koji

    2016-09-01

    Since 1994, HIMAC has carried out clinical studies and treatments for more than 9000 cancer patients with carbon-ion beams. During the first decade of the HIMAC study, a single beam-wobbling method, adopted as the HIMAC beam-delivery technique, was improved for treatments of moving tumors and for obtaining more conformal dose distribution. During the second decade, a pencil-beam 3D scanning method has been developed toward an “adaptive cancer treatment” for treatments of both static and moving tumors. A new treatment research facility was constructed with HIMAC in order to verify the developed 3D scanning technology through a clinical study that has been successfully conducted since 2011. As the next stage, a compact heavy-ion rotating gantry with a superconducting technology has been developed for the more accurate and shorter-course treatments. The twenty-year development of the heavy-ion radiotherapy technologies including accelerator technologies with HIMAC is reviewed.

  3. Significant impact of biochemical recurrence on overall mortality in patients with high-risk prostate cancer after carbon-ion radiotherapy combined with androgen deprivation therapy.

    PubMed

    Kasuya, Goro; Ishikawa, Hitoshi; Tsuji, Hiroshi; Nomiya, Takuma; Makishima, Hirokazu; Kamada, Tadashi; Akakura, Koichiro; Suzuki, Hiroyoshi; Shimazaki, Jun; Haruyama, Yasuo; Kobashi, Gen; Tsujii, Hirohiko

    2016-10-15

    Whether biochemical recurrence (BR) is a significant predictive factor of mortality after definitive radiation therapy for prostate cancer remains unknown. The aim of the current study was to investigate the relation between BR and overall mortality (OAM) in high-risk prostate cancer patients who were treated with carbon-ion radiotherapy (CIRT) and had long-term follow-up in 2 prospective trials. In the 2 phase 2 clinical trials, which involved 466 prostate cancer patients who received 63.0 to 66.0 Gy of CIRT (relative biological effect) in 20 fractions between 2000 and 2007, 324 patients who were deemed to be at high risk on the basis of the modified D'Amico classification criteria and received CIRT along with androgen-deprivation therapy (ADT) were examined. The OAM rate was adjusted for the ADT duration, and multivariate analyses using a Cox proportional hazards model were performed for OAM with BR as a time-dependent covariate. The median follow-up period was 107.4 months, and the 5- and 10-year OAM rates after adjustments for the ADT duration were 7.0% (95% confidence interval [CI], 4.0%-9.4%) and 23.9% (95% CI, 16.4%-26.2%), respectively. A multivariate analysis revealed that the presence of BR (hazard ratio, 2.82; 95% Cl, 1.57-5.08; P = .001) was one of the predictive factors for OAM. On the other hand, the duration of ADT had no impact on OAM. BR after CIRT combined with ADT is an independent predictive factor for OAM in high-risk prostate cancer patients. The results of this study could be applied to other high-dose radiation therapies. Cancer 2016;122:3225-31. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2016 The

  4. Recent progress and future plans of heavy-ion cancer radiotherapy with HIMAC

    NASA Astrophysics Data System (ADS)

    Noda, K.; Furukawa, T.; Fujimoto, T.; Hara, Y.; Inaniwa, T.; Iwata, Y.; Katagiri, K.; Kanematsu, N.; Mizushima, K.; Mori, S.; Saotome, N.; Saraya, Y.; Sato, S.; Shirai, T.; Takada, M.; Takei, Y.; Tansyo, R.; Yonai, S.

    2017-09-01

    The HIMAC clinical study has been conducted with a carbon-ion beam since June 1994. Since 2006, as a new treatment research project, NIRS has developed both the accelerator and beam-delivery technologies for the sophisticated heavy-ion radiotherapy, which brings a pencil-beam 3D rescanning technology for both the static and moving-tumor treatments. In this technology, the depth-scanning technique was improved to the full-energy depth scanning by realizing a variable-energy operation of the HIMAC synchrotron itself. At present, a heavy-ion rotating gantry has been developed with the superconducting technology and is in a beam-commissioning stage. As a future plan, we just start a study of a multi-ions irradiation for more sophisticated LET-painting and a design study of a superconducting synchrotron for more compact heavy-ion radiotherapy facility.

  5. Implementation of a triple Gaussian beam model with subdivision and redefinition against density heterogeneities in treatment planning for scanned carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Inaniwa, T.; Kanematsu, N.; Hara, Y.; Furukawa, T.; Fukahori, M.; Nakao, M.; Shirai, T.

    2014-09-01

    Challenging issues in treatment planning for scanned carbon-ion (C-ion) therapy are (i) accurate calculation of dose distribution, including the contribution of large angle-scattered fragments, (ii) reduction in the memory space required to store the dose kernel of individual pencil beams and (iii) shortening of computation time for dose optimization and calculation. To calculate the dose contribution from fragments, we modeled the transverse dose profile of the scanned C-ion beam with the superposition of three Gaussian distributions. The development of pencil beams belonging to the first Gaussian component was calculated analytically based on the Fermi-Eyges theory, while those belonging to the second and third components were transported empirically using the measured beam widths in a water phantom. To reduce the memory space for the kernels, we stored doses only in the regions of interest considered in the dose optimization. For the final dose calculation within the patient’s whole body, we applied a pencil beam redefinition algorithm. With these techniques, the triple Gaussian beam model can be applied not only to final dose calculation but also to dose optimization in treatment planning for scanned C-ion therapy. To verify the model, we made treatment plans for a homogeneous water phantom and a heterogeneous head phantom. The planned doses agreed with the measurements within ±2% of the target dose in both phantoms, except for the doses at the periphery of the target with a high dose gradient. To estimate the memory space and computation time reduction with these techniques, we made a treatment plan for a bone sarcoma case with a target volume of 1.94 l. The memory space for the kernel and the computation time for final dose calculation were reduced to 1/22 and 1/100 of those without the techniques, respectively. Computation with the triple Gaussian beam model using the proposed techniques is rapid, accurate and applicable to dose optimization and

  6. Biophysical models in ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Scholz, Michael; Elsässer, Thilo

    One major rationale for the application of heavy ion beams in tumor therapy is their increased relative biological effectiveness (RBE) in the Bragg peak region. For dose prescription, the increased effectiveness has to be taken into account in treatment planning. Hence, the complex dependencies of RBE on the dose level, biological endpoint, position in the field etc. require biophysical models, which have to fulfill two important criteria: simplicity and quantitative precision. Simplicity means that the number of free parameters should be kept at a minimum. Due to the lack of precise quantitative data, at least at present, this requirement is incompatible with approaches aiming at the molecular modeling of the whole chain of production, processing and repair of biological damages. Quantitative precision is required since steep gradients in the dose response curves are observed for most tumor and normal tissues; thus, even small uncertainties in the estimation of the biologically effective dose can transform into large uncertainties in the clinical outcome. The paper will give a general introduction into the field, followed by a description of a specific model, the so called 'Local Effect Model' (LEM). This model has been successfully applied within treatment planning in the GSI pilot project for carbon ion tumor therapy over almost 10 years now. The model is based on the knowledge of charged particle track structure in combination with the response of the cells or tissues under consideration to conventional photon radiation. The model is compared to other approaches developed for the calculation of the biological effects of high-LET radiation. Furthermore, recent improvements of the model are described. Due to the quantitative precision, besides applications in tumor therapy the LEM seems to be adequate for the calculation of stochastic radiation effects, i.e. in the framework of radiation protection. Examples for the calculation of cell transformation are

  7. Ions and carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Gyulai, József; Tapasztó, Levente; Endre Horváth, Zsolt; Nemes-Incze, Péter; Osváth, Zoltán; Péter Biró, László

    2013-06-01

    First experiments on swift ion irradiation of highly oriented pyrolythic graphite led to formation of carbon nanotubes (CNT) at the cascade eruption points. CNT length was in the micron range, which corresponded to an explosive crystallization of the carbon plume with about sound velocity. Multiplicity of CNT walls depended on cascade density: single wall CNTs were formed for approx. 200 MeV Xe ions, while multiwall CNTs for Kr, Ne ions of similar energy. Ion beam created defects were clearly visible on scanning tunneling microscopy (STM) images with atomic resolution. Second part of the paper deals with results of ion irradiation to sensitize CNT-s to reach, e.g. gas sensing properties using mainly changes in electrical conductivity of the bunch of CNTs. A third part of the paper contains some results on irradiated graphene. A new nanolithography technique of graphene used STM as a tool for nanostructuring graphene with crystallographic orientation control and line width of the order of few nanometers. The process enables to produce few nm wide stripes with precise crystallographic orientation.

  8. Temporal Lobe Reactions After Radiotherapy With Carbon Ions: Incidence and Estimation of the Relative Biological Effectiveness by the Local Effect Model

    SciTech Connect

    Schlampp, Ingmar; Karger, Christian P.; Jaekel, Oliver; Scholz, Michael; Didinger, Bernd; Nikoghosyan, Anna; Hoess, Angelika; Kraemer, Michael; Edler, Lutz; Debus, Juergen; Schulz-Ertner, Daniela

    2011-07-01

    Purpose: To identify predictors for the development of temporal lobe reactions (TLR) after carbon ion radiation therapy (RT) for radiation-resistant tumors in the central nervous system and to evaluate the predictions of the local effect model (LEM) used for calculation of the biologically effective dose. Methods and Materials: This retrospective study reports the TLR rates in patients with skull base chordomas and chondrosarcomas irradiated with carbon ions at GSI, Darmstadt, Germany, in the years 2002 and 2003. Calculation of the relative biological effectiveness and dose optimization of treatment plans were performed on the basis of the LEM. Clinical examinations and magnetic resonance imaging (MRI) were performed at 3, 6, and 12 months after RT and annually thereafter. Local contrast medium enhancement in temporal lobes, as detected on MRI, was regarded as radiation-induced TLR. Dose-volume histograms of 118 temporal lobes in 59 patients were analyzed, and 16 therapy-associated and 2 patient-associated factors were statistically evaluated for their predictive value for the occurrence of TLR. Results: Median follow-up was 2.5 years (range, 0.3--6.6 years). Age and maximum dose applied to at least 1 cm{sup 3} of the temporal lobe (D{sub max,V-1cm}3, maximum dose in the remaining temporal lobe volume, excluding the volume 1 cm{sup 3} with the highest dose) were found to be the most important predictors for TLR. Dose response curves of D{sub max,V-1cm}3 were calculated. The biologically equivalent tolerance doses for the 5% and 50% probabilities to develop TLR were 68.8 {+-} 3.3 Gy equivalents (GyE) and 87.3 {+-} 2.8 GyE, respectively. Conclusions: D{sub max,V-1cm}3 is predictive for radiation-induced TLR. The tolerance doses obtained seem to be consistent with published data for highly conformal photon and proton irradiations. We could not detect any clinically relevant deviations between clinical findings and expectations based on predictions of the LEM.

  9. A validated tumor control probability model based on a meta-analysis of low, intermediate, and high-risk prostate cancer patients treated by photon, proton, or carbon-ion radiotherapy

    SciTech Connect

    Walsh, Seán; Roelofs, Erik; Lambin, Philippe; Kuess, Peter; Georg, Dietmar; Jones, Bleddyn; Verhaegen, Frank

    2016-02-15

    Purpose: A fully heterogeneous population averaged mechanistic tumor control probability (TCP) model is appropriate for the analysis of external beam radiotherapy (EBRT). This has been accomplished for EBRT photon treatment of intermediate-risk prostate cancer. Extending the TCP model for low and high-risk patients would be beneficial in terms of overall decision making. Furthermore, different radiation treatment modalities such as protons and carbon-ions are becoming increasingly available. Consequently, there is a need for a complete TCP model. Methods: A TCP model was fitted and validated to a primary endpoint of 5-year biological no evidence of disease clinical outcome data obtained from a review of the literature for low, intermediate, and high-risk prostate cancer patients (5218 patients fitted, 1088 patients validated), treated by photons, protons, or carbon-ions. The review followed the preferred reporting item for systematic reviews and meta-analyses statement. Treatment regimens include standard fractionation and hypofractionation treatments. Residual analysis and goodness of fit statistics were applied. Results: The TCP model achieves a good level of fit overall, linear regression results in a p-value of <0.000 01 with an adjusted-weighted-R{sup 2} value of 0.77 and a weighted root mean squared error (wRMSE) of 1.2%, to the fitted clinical outcome data. Validation of the model utilizing three independent datasets obtained from the literature resulted in an adjusted-weighted-R{sup 2} value of 0.78 and a wRMSE of less than 1.8%, to the validation clinical outcome data. The weighted mean absolute residual across the entire dataset is found to be 5.4%. Conclusions: This TCP model fitted and validated to clinical outcome data, appears to be an appropriate model for the inclusion of all clinical prostate cancer risk categories, and allows evaluation of current EBRT modalities with regard to tumor control prediction.

  10. NOTE: Biological dose calculation with Monte Carlo physics simulation for heavy-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Kase, Yuki; Kanematsu, Nobuyuki; Kanai, Tatsuaki; Matsufuji, Naruhiro

    2006-12-01

    Treatment planning of heavy-ion radiotherapy involves predictive calculation of not only the physical dose but also the biological dose in a patient body. The biological dose is defined as the product of the physical dose and the relative biological effectiveness (RBE). In carbon-ion radiotherapy at National Institute of Radiological Sciences, the RBE value has been defined as the ratio of the 10% survival dose of 200 kVp x-rays to that of the radiation of interest for in vitro human salivary gland tumour cells. In this note, the physical and biological dose distributions of a typical therapeutic carbon-ion beam are calculated using the GEANT4 Monte Carlo simulation toolkit in comparison with those with the biological dose estimate system based on the one-dimensional beam model currently used in treatment planning. The results differed between the GEANT4 simulation and the one-dimensional beam model, indicating the physical limitations in the beam model. This study demonstrates that the Monte Carlo physics simulation technique can be applied to improve the accuracy of the biological dose distribution in treatment planning of heavy-ion radiotherapy.

  11. Ion recombination correction in carbon ion beams.

    PubMed

    Rossomme, S; Hopfgartner, J; Lee, N D; Delor, A; Thomas, R A S; Romano, F; Fukumura, A; Vynckier, S; Palmans, H

    2016-07-01

    In this work, ion recombination is studied as a function of energy and depth in carbon ion beams. Measurements were performed in three different passively scattered carbon ion beams with energies of 62 MeV/n, 135 MeV/n, and 290 MeV/n using various types of plane-parallel ionization chambers. Experimental results were compared with two analytical models for initial recombination. One model is generally used for photon beams and the other model, developed by Jaffé, takes into account the ionization density along the ion track. An investigation was carried out to ascertain the effect on the ion recombination correction with varying ionization chamber orientation with respect to the direction of the ion tracks. The variation of the ion recombination correction factors as a function of depth was studied for a Markus ionization chamber in the 62 MeV/n nonmodulated carbon ion beam. This variation can be related to the depth distribution of linear energy transfer. Results show that the theory for photon beams is not applicable to carbon ion beams. On the other hand, by optimizing the value of the ionization density and the initial mean-square radius, good agreement is found between Jaffé's theory and the experimental results. As predicted by Jaffé's theory, the results confirm that ion recombination corrections strongly decrease with an increasing angle between the ion tracks and the electric field lines. For the Markus ionization chamber, the variation of the ion recombination correction factor with depth was modeled adequately by a sigmoid function, which is approximately constant in the plateau and strongly increasing in the Bragg peak region to values of up to 1.06. Except in the distal edge region, all experimental results are accurately described by Jaffé's theory. Experimental results confirm that ion recombination in the investigated carbon ion beams is dominated by initial recombination. Ion recombination corrections are found to be significant and cannot be

  12. Carbon-carbon grid for ion engines

    NASA Technical Reports Server (NTRS)

    Garner, Charles E. (Inventor)

    1995-01-01

    A method and apparatus of manufacturing a grid member for use in an ion discharge apparatus provides a woven carbon fiber in a matrix of carbon. The carbon fibers are orientated to provide a negatibe coefficient of thermal expansion for at least a portion of the grid member's operative range of use.

  13. Carbon-carbon grid for ion engines

    NASA Technical Reports Server (NTRS)

    Garner, Charles E. (Inventor)

    1993-01-01

    A method and apparatus of manufacturing a grid member for use in an ion discharge apparatus provides a woven carbon fiber in a matrix of carbon. The carbon fibers are orientated to provide a negatibe coefficient of thermal expansion for at least a portion of the grid member's operative range of use.

  14. Ion beams in radiotherapy - from tracks to treatment planning

    NASA Astrophysics Data System (ADS)

    Krämer, M.; Scifoni, E.; Wälzlein, C.; Durante, M.

    2012-07-01

    Several dozen clinical sites around the world apply beams of fast light ions for radiotherapeutical purposes. Thus there is a vested interest in the various physical and radiobiological processes governing the interaction of ion beams with matter, specifically living systems. We discuss the various modelling steps which lead from basic interactions to the application in actual patient treatment planning. The nano- and microscopic scale is covered by sample calculations with our TRAX code. On the macroscopic scale we feature the TRiP98 treatment planning system, which was clinically used in GSI's radiotherapy pilot project.

  15. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Experimental verification of therapeutic doses for the superficially-placed tumor radiotherapy with heavy ions at HIRFL

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Guo; Li, Qiang; Wu, Qing-Feng; Tao, Jia-Jun; Jin, Xiao-Dong

    2009-02-01

    Up to now, clinical trials of heavy-ion radiotherapy for superficially placed tumors have been carried out for six times and over 60 selected patients have been treated with 80-100 MeV/u carbon ions supplied by the Heavy Ion Research Facility in Lanzhou (HIRFL) at the Institute of Modern Physics, Chinese Academy of Sciences since November, 2006. A passive irradiation system and a dose optimization method for radiotherapy with carbon-ion beams have been developed. Experimental verification of longitudinally therapeutic dose distributions was conducted under the condition of simulating patient treatment in the therapy terminal at HIRFL. The measured depth-dose distributions basically coincide with the expected ones. These results indicate that the irradiation system and the dose optimization method are effective in the ongoing carbon-ion radiotherapy for shallow-seated tumors at HIRFL.

  16. Carbon Ion Therapy for Early-Stage Non-Small-Cell Lung Cancer

    PubMed Central

    Demizu, Yusuke; Fujii, Osamu; Iwata, Hiromitsu; Fuwa, Nobukazu

    2014-01-01

    Carbon ion therapy is a type of radiotherapies that can deliver high-dose radiation to a tumor while minimizing the dose delivered to the organs at risk; this profile differs from that of photon radiotherapy. Moreover, carbon ions are classified as high-linear energy transfer radiation and are expected to be effective for even photon-resistant tumors. Recently, high-precision radiotherapy modalities such as stereotactic body radiotherapy (SBRT), proton therapy, and carbon ion therapy have been used for patients with early-stage non-small-cell lung cancer, and the results are promising, as, for carbon ion therapy, local control and overall survival rates at 5 years are 80–90% and 40–50%, respectively. Carbon ion therapy may be theoretically superior to SBRT and proton therapy, but the literature that is currently available does not show a statistically significant difference among these treatments. Carbon ion therapy demonstrates a better dose distribution than both SBRT and proton therapy in most cases of early-stage lung cancer. Therefore, carbon ion therapy may be safer for treating patients with adverse conditions such as large tumors, central tumors, and poor pulmonary function. Furthermore, carbon ion therapy may also be suitable for dose escalation and hypofractionation. PMID:25295269

  17. Microdosimetry of proton and carbon ions

    SciTech Connect

    Liamsuwan, Thiansin; Hultqvist, Martha; Lindborg, Lennart; Nikjoo, Hooshang; Uehara, Shuzo

    2014-08-15

    carbon ion beams. The results are useful for characterizing ion beams of practical importance for biophysical modeling of radiation-induced DNA damage response and repair in the depth profiles of protons and carbon ions used in radiotherapy.

  18. Microdosimetry of proton and carbon ions.

    PubMed

    Liamsuwan, Thiansin; Hultqvist, Martha; Lindborg, Lennart; Uehara, Shuzo; Nikjoo, Hooshang

    2014-08-01

    the depth profiles of protons and carbon ions used in radiotherapy.

  19. Multiply charged carbon-ion production for medical application

    SciTech Connect

    Kitagawa, A.; Muramatsu, M.; Sasaki, N.; Takasugi, W.; Wakaisami, S.; Biri, S.; Drentje, A. G.

    2008-02-15

    Over 3000 cancer patients have already been treated by the heavy-ion medical accelerator in Chiba at the National Institute of Radiological Sciences since 1994. The clinical results have clearly verified the effectiveness and safety of heavy-ion radiotherapy. The most important result has been to establish that the carbon ion is one of the most effective radiations for radiotherapy. The ion source is required to realize a stable beam with the same conditions for daily operation. However, the deposition of carbon ions on the wall of the plasma chamber is normally unavoidable. This causes an ''anti-wall-coating effect,'' i.e., a decreasing of the beam, especially for the higher charge-state ions due to the surface material of the wall. The ion source must be required to produce a sufficiently intense beam under the bad condition. Other problems were solved by improvements and maintenance, and thus we obtained enough reproducibility and stability along with decreased failures. We summarize our over 13 years of experience, and show the scope for further developments.

  20. Ion Deposited Carbon Coatings.

    DTIC Science & Technology

    1983-07-01

    G 6. 673 2 460 10-" N m’ kg-’ Avogadro constant ------------------- NA 6. 022 169 6. 6 ION kmol -, Boltzmann constant --------------- k 1...II I I .. . . . . .. . . . . .. .-- NASA SP-7012 THE INTERNATIONAL SYSTEM OF UNITS PHYSICAL CONSTANTS and CONVERSION FACTORS SECOND REVISION E. A...values of physical constants expressed in SI units, and tables of numerical factors for converting miscellaneous units to SI units. It was first published

  1. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    SciTech Connect

    Saunders, W.M.; Char, D.H.; Quivey, J.M.; Castro, J.R.; Chen, G.T.Y.; Collier, J.M.; Cartigny, A.; Blakely, E.A.; Lyman, J.T.; Zink, S.R.

    1985-02-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons.

  2. High-resolution fluence verification for treatment plan specific QA in ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Martišíková, Mária; Brons, Stephan; Hesse, Bernd M.; Jäkel, Oliver

    2013-03-01

    Ion beam radiotherapy exploits the finite range of ion beams and the increased dose deposition of ions toward the end of their range in material. This results in high dose conformation to the target region, which can be further increased using scanning ion beams. The standard method for patient-plan verification in ion beam therapy is ionization chamber dosimetry. The spatial resolution of this method is given by the distance between the chambers (typically 1 cm). However, steep dose gradients created by scanning ion beams call for more information and improved spatial resolution. Here we propose a clinically applicable method, supplementary to standard patient-plan verification. It is based on ion fluence measurements in the entrance region with high spatial resolution in the plane perpendicular to the beam, separately for each energy slice. In this paper the usability of the RID256 L amorphous silicon flat-panel detector for the measurements proposed is demonstrated for carbon ion beams. The detector provides sufficient spatial resolution for this kind of measurement (pixel pitch 0.8 mm). The experiments were performed at the Heidelberg Ion-Beam Therapy Center in Germany. This facility is equipped with a synchrotron capable of accelerating ions from protons up to oxygen to energies between 48 and 430 MeV u-1. Beam application is based on beam scanning technology. The measured signal corresponding to single energy slices was translated to ion fluence on a pixel-by-pixel basis, using calibration, which is dependent on energy and ion type. To quantify the agreement of the fluence distributions measured with those planned, a gamma-index criterion was used. In the patient field investigated excellent agreement was found between the two distributions. At least 95% of the slices contained more than 96% of points agreeing with our criteria. Due to the high spatial resolution, this method is especially valuable for measurements of strongly inhomogeneous fluence

  3. Bringing the heavy: carbon ion therapy in the radiobiological and clinical context.

    PubMed

    Schlaff, Cody D; Krauze, Andra; Belard, Arnaud; O'Connell, John J; Camphausen, Kevin A

    2014-03-28

    Radiotherapy for the treatment of cancer is undergoing an evolution, shifting to the use of heavier ion species. For a plethora of malignancies, current radiotherapy using photons or protons yields marginal benefits in local control and survival. One hypothesis is that these malignancies have acquired, or are inherently radioresistant to low LET radiation. In the last decade, carbon ion radiotherapy facilities have slowly been constructed in Europe and Asia, demonstrating favorable results for many of the malignancies that do poorly with conventional radiotherapy. However, from a radiobiological perspective, much of how this modality works in overcoming radioresistance, and extending local control and survival are not yet fully understood. In this review, we will explain from a radiobiological perspective how carbon ion radiotherapy can overcome the classical and recently postulated contributors of radioresistance (α/β ratio, hypoxia, cell proliferation, the tumor microenvironment and metabolism, and cancer stem cells). Furthermore, we will make recommendations on the important factors to consider, such as anatomical location, in the future design and implementation of clinical trials. With the existing data available we believe that the expansion of carbon ion facilities into the United States is warranted.

  4. Bringing the heavy: carbon ion therapy in the radiobiological and clinical context

    PubMed Central

    2014-01-01

    Radiotherapy for the treatment of cancer is undergoing an evolution, shifting to the use of heavier ion species. For a plethora of malignancies, current radiotherapy using photons or protons yields marginal benefits in local control and survival. One hypothesis is that these malignancies have acquired, or are inherently radioresistant to low LET radiation. In the last decade, carbon ion radiotherapy facilities have slowly been constructed in Europe and Asia, demonstrating favorable results for many of the malignancies that do poorly with conventional radiotherapy. However, from a radiobiological perspective, much of how this modality works in overcoming radioresistance, and extending local control and survival are not yet fully understood. In this review, we will explain from a radiobiological perspective how carbon ion radiotherapy can overcome the classical and recently postulated contributors of radioresistance (α/β ratio, hypoxia, cell proliferation, the tumor microenvironment and metabolism, and cancer stem cells). Furthermore, we will make recommendations on the important factors to consider, such as anatomical location, in the future design and implementation of clinical trials. With the existing data available we believe that the expansion of carbon ion facilities into the United States is warranted. PMID:24679134

  5. The compact electron cyclotron resonance ion source KeiGM for the carbon ion therapy facility at Gunma Universitya)

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Drentje, A. G.; Hojo, S.; Ueda, T.; Miyazaki, H.; Yusa, K.; Tashiro, M.; Torikai, K.; Sakama, M.; Kanai, T.; Yamada, S.

    2010-02-01

    A high-energy carbon-ion radiotherapy facility is under construction at Gunma University Heavy Ion Medical Centre (GHMC). Its design was based on a study of the heavy ion radiotherapy at the National Institute of Radiological Sciences (NIRS) in order to reduce the size and construction cost of the facility. A compact electron cyclotron resonance ion source (ECRIS) for Gunma University, called KeiGM, was installed in 2008. It is almost a copy of the prototype ECRIS Kei2 which was developed by NIRS; meanwhile this prototype produced over 1 e mA of C4+ using C2H2 gas (660 W and 40 kV). The beam intensity of C4+ was 600 e μA with CH4 gas (250 W and 30 kV). The beam intensity satisfies the required value of 300 e μA.

  6. Enhanced life ion source for germanium and carbon ion implantation

    SciTech Connect

    Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei

    2012-11-06

    Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

  7. The CNAO dose delivery system for modulated scanning ion beam radiotherapy.

    PubMed

    Giordanengo, S; Garella, M A; Marchetto, F; Bourhaleb, F; Ciocca, M; Mirandola, A; Monaco, V; Hosseini, M A; Peroni, C; Sacchi, R; Cirio, R; Donetti, M

    2015-01-01

    This paper describes the system for the dose delivery currently used at the Centro Nazionale di Adroterapia Oncologica (CNAO) for ion beam modulated scanning radiotherapy. CNAO Foundation, Istituto Nazionale di Fisica Nucleare and University of Torino have designed, built, and commissioned a dose delivery system (DDS) to monitor and guide ion beams accelerated by a dedicated synchrotron and to distribute the dose with a full 3D scanning technique. Protons and carbon ions are provided for a wide range of energies in order to cover a sizable span of treatment depths. The target volume, segmented in several layers orthogonally to the beam direction, is irradiated by thousands of pencil beams which must be steered and held to the prescribed positions until the prescribed number of particles has been delivered. For the CNAO beam lines, these operations are performed by the DDS. The main components of this system are two independent beam monitoring detectors, called BOX1 and BOX2, interfaced with two control systems performing the tasks of real-time fast and slow control, and connected to the scanning magnets and the beam chopper. As a reaction to any condition leading to a potential hazard, a DDS interlock signal is sent to the patient interlock system which immediately stops the irradiation. The essential tasks and operations performed by the DDS are described following the data flow from the treatment planning system through the end of the treatment delivery. The ability of the DDS to guarantee a safe and accurate treatment was validated during the commissioning phase by means of checks of the charge collection efficiency, gain uniformity of the chambers, and 2D dose distribution homogeneity and stability. A high level of reliability and robustness has been proven by three years of system activity needing rarely more than regular maintenance and working with 100% uptime. Four identical and independent DDS devices have been tested showing comparable performances and

  8. The CNAO dose delivery system for modulated scanning ion beam radiotherapy

    SciTech Connect

    Giordanengo, S.; Marchetto, F.; Garella, M. A.; Donetti, M.; Bourhaleb, F.; Monaco, V.; Hosseini, M. A.; Peroni, C.; Sacchi, R.; Cirio, R.; Ciocca, M.; Mirandola, A.

    2015-01-15

    Purpose: This paper describes the system for the dose delivery currently used at the Centro Nazionale di Adroterapia Oncologica (CNAO) for ion beam modulated scanning radiotherapy. Methods: CNAO Foundation, Istituto Nazionale di Fisica Nucleare and University of Torino have designed, built, and commissioned a dose delivery system (DDS) to monitor and guide ion beams accelerated by a dedicated synchrotron and to distribute the dose with a full 3D scanning technique. Protons and carbon ions are provided for a wide range of energies in order to cover a sizable span of treatment depths. The target volume, segmented in several layers orthogonally to the beam direction, is irradiated by thousands of pencil beams which must be steered and held to the prescribed positions until the prescribed number of particles has been delivered. For the CNAO beam lines, these operations are performed by the DDS. The main components of this system are two independent beam monitoring detectors, called BOX1 and BOX2, interfaced with two control systems performing the tasks of real-time fast and slow control, and connected to the scanning magnets and the beam chopper. As a reaction to any condition leading to a potential hazard, a DDS interlock signal is sent to the patient interlock system which immediately stops the irradiation. The essential tasks and operations performed by the DDS are described following the data flow from the treatment planning system through the end of the treatment delivery. Results: The ability of the DDS to guarantee a safe and accurate treatment was validated during the commissioning phase by means of checks of the charge collection efficiency, gain uniformity of the chambers, and 2D dose distribution homogeneity and stability. A high level of reliability and robustness has been proven by three years of system activity needing rarely more than regular maintenance and working with 100% uptime. Four identical and independent DDS devices have been tested showing

  9. Erythrocyte Stiffness during Morphological Remodeling Induced by Carbon Ion Radiation

    PubMed Central

    Zhang, Baoping; Liu, Bin; Zhang, Hong; Wang, Jizeng

    2014-01-01

    The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new

  10. Carbon Multicharged Ion Generation from Laser Plasma

    NASA Astrophysics Data System (ADS)

    Balki, Oguzhan; Elsayed-Ali, Hani E.

    2014-10-01

    Multicharged ions (MCI) have potential uses in different areas such as microelectronics and medical physics. Carbon MCI therapy for cancer treatment is considered due to its localized energy delivery to hard-to-reach tumors at a minimal damage to surrounding tissues. We use a Q-switched Nd:YAG laser with 40 ns pulse width operated at 1064 nm to ablate a graphite target in ultrahigh vacuum. A time-of-flight energy analyzer followed by a Faraday cup is used to characterize the carbon MCI extracted from the laser plasma. The MCI charge state and energy distribution are obtained. With increase in the laser fluence, the ion charge states and ion energy are increased. Carbon MCI up to C+6 are observed along with carbon clusters. When an acceleration voltage is applied between the carbon target and a grounded mesh, ion extraction is observed to increase with the applied voltage. National Science Foundation.

  11. Cancer stem cells: The potential of carbon ion beam radiation and new radiosensitizers (Review).

    PubMed

    Baek, Sung-Jae; Ishii, Hideshi; Tamari, Keisuke; Hayashi, Kazuhiko; Nishida, Naohiro; Konno, Masamitsu; Kawamoto, Koichi; Koseki, Jun; Fukusumi, Takahito; Hasegawa, Shinichiro; Ogawa, Hisataka; Hamabe, Atsushi; Miyo, Masaaki; Noguchi, Kozo; Seo, Yuji; Doki, Yuichiro; Mori, Masaki; Ogawa, Kazuhiko

    2015-11-01

    Cancer stem cells (CSCs) are a small population of cells in cancer with stem-like properties such as cell proliferation, multiple differentiation and tumor initiation capacities. CSCs are therapy-resistant and cause cancer metastasis and recurrence. One key issue in cancer therapy is how to target and eliminate CSCs, in order to cure cancer completely without relapse and metastasis. To target CSCs, many cell surface markers, DNAs and microRNAs are considered as CSC markers. To date, the majority of the reported markers are not very specific to CSCs and are also present in non-CSCs. However, the combination of several markers is quite valuable for identifying and targeting CSCs, although more specific identification methods are needed. While CSCs are considered as critical therapeutic targets, useful treatment methods remain to be established. Epigenetic gene regulators, microRNAs, are associated with tumor initiation and progression. MicroRNAs have been recently considered as promising therapeutic targets, which can alter the therapeutic resistance of CSCs through epigenetic modification. Moreover, carbon ion beam radiotherapy is a promising treatment for CSCs. Evidence indicates that the carbon ion beam is more effective against CSCs than the conventional X-ray beam. Combination therapies of radiosensitizing microRNAs and carbon ion beam radiotherapy may be a promising cancer strategy. This review focuses on the identification and treatment resistance of CSCs and the potential of microRNAs as new radiosensitizers and carbon ion beam radiotherapy as a promising therapeutic strategy against CSCs.

  12. Mitotic catastrophe is a putative mechanism underlying the weak correlation between sensitivity to carbon ions and cisplatin

    PubMed Central

    Kobayashi, Daijiro; Oike, Takahiro; Shibata, Atsushi; Niimi, Atsuko; Kubota, Yoshiki; Sakai, Makoto; Amornwhichet, Napapat; Yoshimoto, Yuya; Hagiwara, Yoshihiko; Kimura, Yuka; Hirota, Yuka; Sato, Hiro; Isono, Mayu; Yoshida, Yukari; Kohno, Takashi; Ohno, Tatsuya; Nakano, Takashi

    2017-01-01

    In cancer therapy today, carbon ion radiotherapy is used mainly as monotherapy, whereas cisplatin is used concomitantly with X-ray radiotherapy. The effectiveness of concomitant carbon ions and cisplatin is unclear. To obtain the information on the mechanisms potentially shared between carbon ions or X-rays and cisplatin, we assessed the correlation of sensitivity to the single treatments. In 20 human cancer cell lines, sensitivity to X-rays strongly correlated with sensitivity to cisplatin, indicating the presence of potentially shared target mechanisms. Interestingly, the correlation of sensitivity to carbon ions and cisplatin was much weaker than that of sensitivity to X-rays and cisplatin, indicating the presence of potentially different target mechanisms between carbon ions and cisplatin. Assessment of clonogenic cell death by 4′,6-diamidino-2-phenylindole dihydrochloride staining showed that mitotic catastrophe was more efficiently induced by carbon ions than by the same physical dose of X-rays, while apoptosis and senescence were not. These data indicate that the correlation of sensitivity to carbon ions and cisplatin is weaker than that of sensitivity to X-rays and cisplatin, which are helpful as biological basis to understand the potentially shared mechanism among these treatments. Further investigation is mandatory to elucidate the clinical efficacy of carbon ions and cisplatin combination. PMID:28091564

  13. Particle radiotherapy for prostate cancer.

    PubMed

    Shioyama, Yoshiyuki; Tsuji, Hiroshi; Suefuji, Hiroaki; Sinoto, Makoto; Matsunobu, Akira; Toyama, Shingo; Nakamura, Katsumasa; Kudo, Sho

    2015-01-01

    Recent advances in external beam radiotherapy have allowed us to deliver higher doses to the tumors while decreasing doses to the surrounding tissues. Dose escalation using high-precision radiotherapy has improved the treatment outcomes of prostate cancer. Intensity-modulated radiation therapy has been widely used throughout the world as the most advanced form of photon radiotherapy. In contrast, particle radiotherapy has also been under development, and has been used as an effective and non-invasive radiation modality for prostate and other cancers. Among the particles used in such treatments, protons and carbon ions have the physical advantage that the dose can be focused on the tumor with only minimal exposure of the surrounding normal tissues. Furthermore, carbon ions also have radiobiological advantages that include higher killing effects on intrinsic radio-resistant tumors, hypoxic tumor cells and tumor cells in the G0 or S phase. However, the degree of clinical benefit derived from these theoretical advantages in the treatment of prostate cancer has not been adequately determined. The present article reviews the available literature on the use of particle radiotherapy for prostate cancer as well as the literature on the physical and radiobiological properties of this treatment, and discusses the role and the relative merits of particle radiotherapy compared with current photon-based radiotherapy, with a focus on proton beam therapy and carbon ion radiotherapy.

  14. Novel carbon-ion fuel cells

    SciTech Connect

    Cocks, F.H.; LaViers, H.

    1995-10-03

    This report details acitvities by the Duke University Department of Mechanical Engineering and Material Science on the Novel Carbon-Ion Fuel Cells for the Department of Energy Advanced Coal Research Program grant for the third quarter of 1995.

  15. Enhanced lithium ion storage in nanoimprinted carbon

    SciTech Connect

    Wang, Peiqi; Chen, Qian Nataly; Li, Jiangyu; Xie, Shuhong; Liu, Xiaoyan

    2015-07-27

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  16. [Radiotherapy of carcinoma of the salivary glands].

    PubMed

    Servagi-Vernat, S; Tochet, F

    2016-09-01

    Indication, doses, and technique of radiotherapy for salivary glands carcinoma are presented, and the contribution of neutrons and carbon ions. The recommendations for delineation of the target volumes and organs at risk are detailed.

  17. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks

    NASA Astrophysics Data System (ADS)

    Reinhart, Anna Merle; Spindeldreier, Claudia Katharina; Jakubek, Jan; Martišíková, Mária

    2017-06-01

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, even small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live, non-invasive monitoring system of the beam delivery within the patient is therefore highly desirable, and could improve patient treatment. We present a novel three-dimensional method for imaging the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack—a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximization. We demonstrate the applicability of the new method in the irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of {226} MeV u-1. The beam image in the phantom is reconstructed from a set of nine discrete detector positions between {-80}^\\circ and {50}^\\circ from the beam axis. Furthermore, we demonstrate the potential to visualize inhomogeneities by irradiating a PMMA phantom with an air gap as well as bone and adipose tissue surrogate inserts. We successfully reconstructed a three-dimensional image of the treatment beam in the phantom from single secondary ion tracks. The beam image corresponds well to the beam direction and energy. In addition, cylindrical inhomogeneities with a diameter of {2.85} cm and density differences down to {0.3} g cm-3 to the surrounding material are clearly visualized. This novel three-dimensional method to image a therapeutic carbon ion beam in the irradiated object does not interfere with the treatment and requires knowledge only of single secondary ion tracks. Even with detectors with only a small angular coverage, the three-dimensional reconstruction of the fragmentation points presented in this work was found to be feasible.

  18. Mechanical Design of Carbon Ion Optics

    NASA Technical Reports Server (NTRS)

    Haag, Thomas

    2005-01-01

    Carbon Ion Optics are expected to provide much longer thruster life due to their resistance to sputter erosion. There are a number of different forms of carbon that have been used for fabricating ion thruster optics. The mechanical behavior of carbon is much different than that of most metals, and poses unique design challenges. In order to minimize mission risk, the behavior of carbon must be well understood, and components designed within material limitations. Thermal expansion of the thruster structure must be compatible with thermal expansion of the carbon ion optics. Specially designed interfaces may be needed so that grid gap and aperture alignment are not adversely affected by dissimilar material properties within the thruster. The assembled thruster must be robust and tolerant of launch vibration. The following paper lists some of the characteristics of various carbon materials. Several past ion optics designs are discussed, identifying strengths and weaknesses. Electrostatics and material science are not emphasized so much as the mechanical behavior and integration of grid electrodes into an ion thruster.

  19. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    NASA Astrophysics Data System (ADS)

    Horn, K. M.; Doyle, B.; Segal, M. N.; Hamm, R. W.; Adler, R. J.; Glatstein, E.

    1995-12-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery — with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use and innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d( 3He,p) 4 He nuclear reaction. This examination will describe the basic physics associated with this reaction's production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data is also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in "nested"-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output 3He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment.

  20. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    NASA Astrophysics Data System (ADS)

    Doyle, B.; Hamm, R. W.; Adler, R. J.; Glatstein, E.; Horn, K. M.; Segal, M. N.

    1995-12-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery - with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use and innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d(3He,p)4He nuclear reaction. This examination will describe the basic physics associated with this reaction's production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data is also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in 'nested'-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output He3e and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment.>

  1. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    SciTech Connect

    Horn, K.M.; Doyle, B.; Segal, M.N.; Hamm, R.W.; Adler, R.J.; Glatstein, E.

    1995-04-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use, innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d({sup 3}He,p){sup 4}He nuclear reaction. This examination will describe the basic physics associated with this reaction`s production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data are also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in `nested`-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output {sup 3}He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment.

  2. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-01

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 618 eμA under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  3. SU-E-T-770: Tumor Control in Ion Beam Radiotherapy with Different Ions in Presence of Hypoxia

    SciTech Connect

    Attili, A; Giordanengo, S; Torriani, F; Russo, G; Ourhaleb, F; Dalmasso, F; Cirio, R; Battistoni, G; Kraan, A

    2015-06-15

    Purpose: The reduced concentration of oxygen in cells (hypoxia) results in a lower cell death rate after irradiation that can lead to treatment failure. The effect can be expressed by the oxygen enhancement ratio (OER). So far, only few attempts to include OER in treatment planning for ion beam therapy were made, which are based on the dose averaged LET estimates and do not distinguish among ion species and fractionation schemes. To overcome these limitations, we implemented a new OER model and used it to estimate tumor control in clinical cases. Methods: The model, based on the microdosimetric kinetic model, was benchmarked with in-vitro data from different ions irradiation. It was included in the simulation of treatments of a set of clinical cases (glioblastoma) using p, Li, He, C and O ion beams. Tumor Control Probability (TCP) was estimated as a function of oxygen partial pressure, dose per fraction and primary ion type. Results: The modelized OER was found to be strongly dependent on both LET and ion type, and showed a decreasing OER for increasing dose per fraction with a slope that depends on the LET and ion type, in good agreement with the experimental data. In the clinical cases studied, an increase in TCP by increasing ion charge and dose per fraction (more than 30% variation from p to O for moderate hypoxia) was found. Higher OER decrease rates as function of dose per fraction were found for lighter ions (up to 20% varying from 2 to 8 Gy(RBE)). Conclusions: A novel modeling of the OER that explicitly includes the dependence on ion type and dose per fraction was implemented. The model was exploited to evaluate the impact of hypoxia in ion beam radiotherapy, facilitating the identification of the treatment condition optimality, including fractionation scheme and ion type.

  4. (abstract) Unidirectional Carbon/Carbon for Ion Engine Optics

    NASA Technical Reports Server (NTRS)

    Brown, D. Kyle

    1995-01-01

    Conventional ion engine optical grids are made from hydroformed molybdenum. Carbon/carbon has been utilized in place of molybdenum because of its lower sputter yield, which contributes a greatly increased engine life, and for its low cte, which allows more efficient engine operation. The requirements for this material are that it must have high stiffness, very tight dimensional tolerances, and can be optimized for an hexagonal hole pattern with a very high open area friction. The carbon/carbon for this application was fabricated from unidirectional tape prepreg, using pitch fiber, and was processed to a very high temperature. The use of unidirectional tape allowed for a sufficient number of plies to be used to generate a balanced three directional layup within the thickness constraints of the material, as well as providing strength and stiffness over that normally seen with fabric based carbon/carbons.

  5. On the probability of cure for heavy-ion radiotherapy.

    PubMed

    Hanin, Leonid; Zaider, Marco

    2014-07-21

    The probability of a cure in radiation therapy (RT)-viewed as the probability of eventual extinction of all cancer cells-is unobservable, and the only way to compute it is through modeling the dynamics of cancer cell population during and post-treatment. The conundrum at the heart of biophysical models aimed at such prospective calculations is the absence of information on the initial size of the subpopulation of clonogenic cancer cells (also called stem-like cancer cells), that largely determines the outcome of RT, both in an individual and population settings. Other relevant parameters (e.g. potential doubling time, cell loss factor and survival probability as a function of dose) are, at least in principle, amenable to empirical determination. In this article we demonstrate that, for heavy-ion RT, microdosimetric considerations (justifiably ignored in conventional RT) combined with an expression for the clone extinction probability obtained from a mechanistic model of radiation cell survival lead to useful upper bounds on the size of the pre-treatment population of clonogenic cancer cells as well as upper and lower bounds on the cure probability. The main practical impact of these limiting values is the ability to make predictions about the probability of a cure for a given population of patients treated to newer, still unexplored treatment modalities from the empirically determined probability of a cure for the same or similar population resulting from conventional low linear energy transfer (typically photon/electron) RT. We also propose that the current trend to deliver a lower total dose in a smaller number of fractions with larger-than-conventional doses per fraction has physical limits that must be understood before embarking on a particular treatment schedule.

  6. On the probability of cure for heavy-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Hanin, Leonid; Zaider, Marco

    2014-07-01

    The probability of a cure in radiation therapy (RT)—viewed as the probability of eventual extinction of all cancer cells—is unobservable, and the only way to compute it is through modeling the dynamics of cancer cell population during and post-treatment. The conundrum at the heart of biophysical models aimed at such prospective calculations is the absence of information on the initial size of the subpopulation of clonogenic cancer cells (also called stem-like cancer cells), that largely determines the outcome of RT, both in an individual and population settings. Other relevant parameters (e.g. potential doubling time, cell loss factor and survival probability as a function of dose) are, at least in principle, amenable to empirical determination. In this article we demonstrate that, for heavy-ion RT, microdosimetric considerations (justifiably ignored in conventional RT) combined with an expression for the clone extinction probability obtained from a mechanistic model of radiation cell survival lead to useful upper bounds on the size of the pre-treatment population of clonogenic cancer cells as well as upper and lower bounds on the cure probability. The main practical impact of these limiting values is the ability to make predictions about the probability of a cure for a given population of patients treated to newer, still unexplored treatment modalities from the empirically determined probability of a cure for the same or similar population resulting from conventional low linear energy transfer (typically photon/electron) RT. We also propose that the current trend to deliver a lower total dose in a smaller number of fractions with larger-than-conventional doses per fraction has physical limits that must be understood before embarking on a particular treatment schedule.

  7. Indications of Carbon Ion Therapy at CNAO

    SciTech Connect

    Orecchia, Roberto; Rossi, Sandro; Fossati, Piero

    2009-03-10

    CNAO will be a dual center capable of providing therapeutic beams of protons and carbon ions with maximum energy of 400 MeV/u. At the beginning, it will be equipped with three treatment rooms with fixed horizontal and vertical beam lines. In a subsequent phase, two more rooms with a rotating gantry are foreseen. An active spot scanning dose delivery system will be employed. Initially, 80% of the treatments will be carried out with carbon ions. All patients will be treated within clinical trials to assess carbon ion indications with an evidence-based methodology. Seven disease-specific working groups have been developed: lung tumors, liver tumors, sarcomas, head and neck tumors, central nervous system lesions, eye tumors and pediatric tumors. The last two groups will be treated mainly with protons. In the first phase, CNAO will focus on head and neck cancers, treating inoperable, residual or recurrent malignant salivary gland tumors, mucosal melanoma, adenocarcinoma and unfavorably located SCC (nasal and paranasal sinuses). Carbon ions will be employed as a boost in the treatment of locally advanced, poor prognosis, SCC of the hypopharynx and tongue base. Bone and soft tissue sarcomas of the extremity will be treated with a limb-sparing approach, and trunk sarcomas will be treated with exclusive or post-operative irradiation. Skull base tumors (chordoma and chondrosarcoma), recurrent or malignant meningioma and glial tumors will be treated with carbon ions. After sufficient expertise has been gained in coping with organ motion, CNAO will start treating thoracic and abdominal targets. HCC will be treated in inoperable patients with one or more lesions that can be included in a single CTV. Early stage NSCLC will be treated. In the second phase, two more groups on gynecological malignancies and digestive tumors (esophageal cancer, rectal cancer, pancreatic cancer) will be created.

  8. Indications of Carbon Ion Therapy at CNAO

    NASA Astrophysics Data System (ADS)

    Orecchia, Roberto; Rossi, Sandro; Fossati, Piero

    2009-03-01

    CNAO will be a dual center capable of providing therapeutic beams of protons and carbon ions with maximum energy of 400 MeV/u. At the beginning, it will be equipped with three treatment rooms with fixed horizontal and vertical beam lines. In a subsequent phase, two more rooms with a rotating gantry are foreseen. An active spot scanning dose delivery system will be employed. Initially, 80% of the treatments will be carried out with carbon ions. All patients will be treated within clinical trials to assess carbon ion indications with an evidence-based methodology. Seven disease-specific working groups have been developed: lung tumors, liver tumors, sarcomas, head and neck tumors, central nervous system lesions, eye tumors and pediatric tumors. The last two groups will be treated mainly with protons. In the first phase, CNAO will focus on head and neck cancers, treating inoperable, residual or recurrent malignant salivary gland tumors, mucosal melanoma, adenocarcinoma and unfavorably located SCC (nasal and paranasal sinuses). Carbon ions will be employed as a boost in the treatment of locally advanced, poor prognosis, SCC of the hypopharynx and tongue base. Bone and soft tissue sarcomas of the extremity will be treated with a limb-sparing approach, and trunk sarcomas will be treated with exclusive or post-operative irradiation. Skull base tumors (chordoma and chondrosarcoma), recurrent or malignant meningioma and glial tumors will be treated with carbon ions. After sufficient expertise has been gained in coping with organ motion, CNAO will start treating thoracic and abdominal targets. HCC will be treated in inoperable patients with one or more lesions that can be included in a single CTV. Early stage NSCLC will be treated. In the second phase, two more groups on gynecological malignancies and digestive tumors (esophageal cancer, rectal cancer, pancreatic cancer) will be created.

  9. Carbon Mineralization Using Phosphate and Silicate Ions

    NASA Astrophysics Data System (ADS)

    Gokturk, H.

    2013-12-01

    Carbon dioxide (CO2) reduction from combustion of fossil fuels has become an urgent concern for the society due to marked increase in weather related natural disasters and other negative consequences of global warming. CO2 is a highly stable molecule which does not readily interact with other neutral molecules. However it is more responsive to ions due to charge versus quadrupole interaction [1-2]. Ions can be created by dissolving a salt in water and then aerosolizing the solution. This approach gives CO2 molecules a chance to interact with the hydrated salt ions over the large surface area of the aerosol. Ion containing aerosols exist in nature, an example being sea spray particles generated by breaking waves. Such particles contain singly and doubly charged salt ions including Na+, Cl-, Mg++ and SO4--. Depending on the proximity of CO2 to the ion, interaction energy can be significantly higher than the thermal energy of the aerosol. For example, an interaction energy of 0.6 eV is obtained with the sulfate (SO4--) ion when CO2 is the nearest neighbor [2]. In this research interaction between CO2 and ions which carry higher charges are investigated. The molecules selected for the study are triply charged phosphate (PO4---) ions and quadruply charged silicate (SiO4----) ions. Examples of salts which contain such molecules are potassium phosphate (K3PO4) and sodium orthosilicate (Na4SiO4). The research has been carried out with first principle quantum mechanical calculations using the Density Functional Theory method with B3LYP functional and Pople type basis sets augmented with polarization and diffuse functions. Atomic models consist of the selected ions surrounded by water and CO2 molecules. Similar to the results obtained with singly and doubly charged ions [1-2], phosphate and silicate ions attract CO2 molecules. Energy of interaction between the ion and CO2 is 1.6 eV for the phosphate ion and 3.3 eV for the silicate ion. Hence one can expect that the selected

  10. Unexpected radiation laryngeal necrosis after carbon ion therapy using conventional dose fractionation for laryngeal cancer.

    PubMed

    Demizu, Yusuke; Fujii, Osamu; Nagano, Fumiko; Terashima, Kazuki; Jin, Dongcun; Mima, Masayuki; Oda, Naoharu; Takeuchi, Kaoru; Takeda, Makiko; Ito, Kazuyuki; Fuwa, Nobukazu; Okimoto, Tomoaki

    2015-11-01

    Carbon ion therapy is a type of radiotherapy that can deliver high-dose radiation to a tumor while minimizing the dose delivered to organs at risk. Moreover, carbon ions are classified as high linear energy transfer radiation and are expected to be effective for even photon-resistant tumors. A 73-year-old man with glottic squamous cell carcinoma, T3N0M0, refused laryngectomy and received carbon ion therapy of 70 Gy (relative biological effectiveness) in 35 fractions. Three months after the therapy, the patient had an upper airway inflammation, and then laryngeal edema and pain occurred. Five months after the therapy, the airway stenosis was severe and computed tomography showed lack of the left arytenoid cartilage and exacerbation of laryngeal necrosis. Despite the treatment, 5 and a half months after the therapy, the laryngeal edema and necrosis had become even worse and the surrounding mucosa was edematous and pale. Six months after the therapy, pharyngolaryngoesophagectomy and reconstruction with free jejunal autograft were performed. The surgical specimen pathologically showed massive necrosis and no residual tumor. Three years after the carbon ion therapy, he is alive without recurrence. The first reported laryngeal squamous cell carcinoma case treated with carbon ion therapy resulted in an unexpected radiation laryngeal necrosis. Tissue damage caused by carbon ion therapy may be difficult to repair even for radioresistant cartilage; therefore, hollow organs reinforced by cartilage, such as the larynx, may be vulnerable to carbon ion therapy. Caution should be exercised when treating tumors in or adjacent to such organs with carbon ion therapy. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Spot-scanning beam delivery with laterally- and longitudinally-mixed spot size pencil beams in heavy ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Yan, Yuan-Lin; Liu, Xin-Guo; Dai, Zhong-Ying; Ma, Yuan-Yuan; He, Peng-Bo; Shen, Guo-Sheng; Ji, Teng-Fei; Zhang, Hui; Li, Qiang

    2017-09-01

    The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam to irradiate the tumor targets. Here we propose a spot-scanning beam delivery method with laterally- and longitudinally-mixed size pencil beams for heavy ion radiotherapy. This uses pencil beams with a bigger spot size in the lateral direction and wider mini spread-out Bragg peak (mini-SOBP) to irradiate the inner part of a target volume, and pencil beams with a smaller spot size in the lateral direction and narrower mini-SOBP to irradiate the peripheral part of the target volume. Instead of being controlled by the accelerator, the lateral size of the pencil beam was adjusted by inserting Ta scatterers in the beam delivery line. The longitudinal size of the pencil beam (i.e. the width of the mini-SOBP) was adjusted by tilting mini ridge filters along the beam direction. The new spot-scanning beam delivery using carbon ions was investigated theoretically and compared with traditional spot-scanning beam delivery. Our results show that the new spot-scanning beam delivery has smaller lateral penumbra, steeper distal dose fall-off and the dose homogeneity (1-standard deviation/mean) in the target volume is better than 95%. Supported by Key Project of National Natural Science Foundation of China (U1232207), National Key Technology Support Program of the Ministry of Science and Technology of China (2015BAI01B11), National Key Research and Development Program of the Ministry of Science and Technology of China (2016YFC0904602) and National Natural Science Foundation of China (11075191, 11205217, 11475231, 11505249)

  12. The Role of High-Energy Ion-Atom/Molecule Collisions in Radiotherapy

    NASA Astrophysics Data System (ADS)

    Belkić, Dževad

    2014-12-01

    The need for ions in radiotherapy stems from the most favorable localization of the largest energy deposition, precisely at the tumor site with small energy losses away from the target. Such a dose conformity to the target is due to heavy masses of ions that scatter predominantly in the forward direction and lose maximal energy mainly near the end of their path in the vicinity of the Bragg peak. The heavy masses of nuclei preclude noticeable multiple scattering of the primary ion beam. This occurrence is responsible for only about 30% of ion efficiency in killing tumor cells. However, ionization of targets by fast ions yields electrons that might be of sufficient energy to produce further radiation damage. These δ-electrons, alongside radicals produced by ion-water collisions, can accomplish the remaining 70% of tumor cell eradication. Electrons achieve this chiefly through multiple scattering due to their small mass. Therefore, energy depositions by both heavy (nuclei) and light (electrons) particles as well as highly reactive radicals need to be simultaneously transported in Monte Carlo simulations. This threefold transport of particles is yet to be developed for the existing Monte Carlo codes. Critical to accomplishing this key goal is the availability of accurate cross section databases. To this end, the leading continuum distorted wave methodologies are poised to play a pivotal role in predicting energy losses of ions in tissue as discussed in this work.

  13. Comparison of Individual Radiosensitivity to γ-Rays and Carbon Ions

    PubMed Central

    Shim, Grace; Normil, Marie Delna; Testard, Isabelle; Hempel, William M.; Ricoul, Michelle; Sabatier, Laure

    2016-01-01

    Carbon ions are an up-and-coming ion species, currently being used in charged particle radiotherapy. As it is well established that there are considerable interindividual differences in radiosensitivity in the general population that can significantly influence clinical outcomes of radiotherapy, we evaluate the degree of these differences in the context of carbon ion therapy compared with conventional radiotherapy. In this study, we evaluate individual radiosensitivity following exposure to carbon-13 ions or γ-rays in peripheral blood lymphocytes of healthy individuals based on the frequency of ionizing radiation (IR)-induced DNA double strand breaks (DSBs) that was either misrepaired or left unrepaired to form chromosomal aberrations (CAs) (simply referred to here as DSBs for brevity). Levels of DSBs were estimated from the scoring of CAs visualized with telomere/centromere-fluorescence in situ hybridization (TC-FISH). We examine radiosensitivity at the dose of 2 Gy, a routinely administered dose during fractionated radiotherapy, and we determined that a wide range of DSBs were induced by the given dose among healthy individuals, with highly radiosensitive individuals harboring more IR-induced breaks in the genome than radioresistant individuals following exposure to the same dose. Furthermore, we determined the relative effectiveness of carbon irradiation in comparison to γ-irradiation in the induction of DSBs at each studied dose (isodose effect), a quality we term “relative dose effect” (RDE). This ratio is advantageous, as it allows for simple comparison of dose–response curves. At 2 Gy, carbon irradiation was three times more effective in inducing DSBs compared with γ-irradiation (RDE of 3); these results were confirmed using a second cytogenetic technique, multicolor-FISH. We also analyze radiosensitivity at other doses (0.2–15 Gy), to represent hypo- and hyperfractionation doses and determined that RDE is dose dependent: high ratios at low

  14. Comparison of Individual Radiosensitivity to γ-Rays and Carbon Ions.

    PubMed

    Shim, Grace; Normil, Marie Delna; Testard, Isabelle; Hempel, William M; Ricoul, Michelle; Sabatier, Laure

    2016-01-01

    Carbon ions are an up-and-coming ion species, currently being used in charged particle radiotherapy. As it is well established that there are considerable interindividual differences in radiosensitivity in the general population that can significantly influence clinical outcomes of radiotherapy, we evaluate the degree of these differences in the context of carbon ion therapy compared with conventional radiotherapy. In this study, we evaluate individual radiosensitivity following exposure to carbon-13 ions or γ-rays in peripheral blood lymphocytes of healthy individuals based on the frequency of ionizing radiation (IR)-induced DNA double strand breaks (DSBs) that was either misrepaired or left unrepaired to form chromosomal aberrations (CAs) (simply referred to here as DSBs for brevity). Levels of DSBs were estimated from the scoring of CAs visualized with telomere/centromere-fluorescence in situ hybridization (TC-FISH). We examine radiosensitivity at the dose of 2 Gy, a routinely administered dose during fractionated radiotherapy, and we determined that a wide range of DSBs were induced by the given dose among healthy individuals, with highly radiosensitive individuals harboring more IR-induced breaks in the genome than radioresistant individuals following exposure to the same dose. Furthermore, we determined the relative effectiveness of carbon irradiation in comparison to γ-irradiation in the induction of DSBs at each studied dose (isodose effect), a quality we term "relative dose effect" (RDE). This ratio is advantageous, as it allows for simple comparison of dose-response curves. At 2 Gy, carbon irradiation was three times more effective in inducing DSBs compared with γ-irradiation (RDE of 3); these results were confirmed using a second cytogenetic technique, multicolor-FISH. We also analyze radiosensitivity at other doses (0.2-15 Gy), to represent hypo- and hyperfractionation doses and determined that RDE is dose dependent: high ratios at low doses

  15. 15 years experience with helium ion radiotherapy for uvealmelanoma

    SciTech Connect

    Castro, Joseph R.; D.H. Char, P.L. Petti; Daftarii, K.; Quivey,J.M.; Singh, R.P.; Blakeley, E.A.; Phillips, T.L.

    1997-06-01

    Purpose: To review the long-term experience of helium iontherapy as a therapeutic alternative to enucleation for uveal melanoma,particularly with respect to survival, local control, and morbidity.Methods and Materials: 347 patients with uveal melanoma were treated withheluim ion RT from 1978-1992. A nonrandomized dose-searching study wasundertaken, with doses progressively reduced from 80 GyE in fivefractionsto 48 GyE in four fractions, given in 3-15 days, mean of 7days. Results: Local control was achieved in 96 percent of patients, withno difference in the rate of local control being seen at 80, 70, 60, or50 GyE in five fractions. At the lowest dose level of 48 GyE in fourfractions, the local control rate fell to 87 percent. Fifteen of 347patients (4 percent) had local regrowth in the eye requiring enucleation(12 patients), laser (1 patient) or reirradiation (2 patients). The timeof appearance of local regrowth ranged from 4 months to 5 yearsposttreatment, with 85 percent occurring within 3 years. Of the 347patients, 208 are alive as of May 1, 1997. The median follow up of allpatients is 8.5 years, range 1-17 years. Kaplan-Maier (K-M) survival is80 percent at 5 years, 76 percent at 10 years, and 72 percent at 15 yearsposttreatment. Patients with tumors not involving the ciliary body have a15-year K-M survival of 80 percent. The results for patients whose tumorsinvolved the ciliary body are poor, with a 15-year K-M survival of 43percent. Seventy-five percent of patients with tumors at least 3.0 mmfrom the fovea and optic nerve, and initial ultrasound height less than6.0 mm, retained vision of 20/200 or better posttreatment. Patients withtumors larger than 6 mm in thickness, or with tumors lying close to theoptic nerve or fovea, have a reduced chance of retaining useful vision.The enucleation rate is 19 percent, 3 percent for local failure and 16percent because of complications of the helium RT, particularlyneovascular glaucoma, which occurred in 35 percent of

  16. Cellular and molecular portrait of eleven human glioblastoma cell lines under photon and carbon ion irradiation.

    PubMed

    Ferrandon, S; Magné, N; Battiston-Montagne, P; Hau-Desbat, N-H; Diaz, O; Beuve, M; Constanzo, J; Chargari, C; Poncet, D; Chautard, E; Ardail, D; Alphonse, G; Rodriguez-Lafrasse, C

    2015-04-28

    This study aimed to examine the cellular and molecular long-term responses of glioblastomas to radiotherapy and hadrontherapy in order to better understand the biological effects of carbon beams in cancer treatment. Eleven human glioblastoma cell lines, displaying gradual radiosensitivity, were irradiated with photons or carbon ions. Independently of p53 or O(6)-methylguanine-DNA methyltransferase(1) status, all cell lines responded to irradiation by a G2/M phase arrest followed by the appearance of mitotic catastrophe, which was concluded by a ceramide-dependent-apoptotic cell death. Statistical analysis demonstrated that: (i) the SF2(2) and the D10(3) values for photon are correlated with that obtained in response to carbon ions; (ii) regardless of the p53, MGMT status, and radiosensitivity, the release of ceramide is associated with the induction of late apoptosis; and (iii) the appearance of polyploid cells after photon irradiation could predict the Relative Biological Efficiency(4) to carbon ions. This large collection of data should increase our knowledge in glioblastoma radiobiology in order to better understand, and to later individualize, appropriate radiotherapy treatment for patients who are good candidates.

  17. Carbon-based ion and molecular channels

    NASA Astrophysics Data System (ADS)

    Sint, Kyaw; Wang, Boyang; Kral, Petr

    2008-03-01

    We design ion and molecular channels based on layered carboneous materials, with chemically-functionalized pore entrances. Our molecular dynamics simulations demonstrate that these ultra-narrow pores, with diameters around 1 nm, are highly selective to the charges and sizes of the passing (Na^+ and Cl^-) ions and short alkanes. We demonstrate that the molecular flows through these pores can be easily controlled by electrical and mechanical means. These artificial pores could be integrated in fluidic nanodevices and lab-on-a-chip techniques with numerous potential applications. [1] Kyaw Sint, Boyang Wang and Petr Kral, submitted. [2] Boyang Wang and Petr Kral, JACS 128, 15984 (2006).

  18. Protective effects of shikonin on brain injury induced by carbon ion beam irradiation in mice.

    PubMed

    Gan, Lu; Wang, Zhen Hua; Zhang, Hong; Zhou, Rong; Sun, Chao; Liu, Yang; Si, Jing; Liu, Yuan Yuan; Wang, Zhen Guo

    2015-02-01

    Radiation encephalopathy is the main complication of cranial radiotherapy. It can cause necrosis of brain tissue and cognitive dysfunction. Our previous work had proved that a natural antioxidant shikonin possessed protective effect on cerebral ischemic injury. Here we investigated the effects of shikonin on carbon ion beam induced radiation brain injury in mice. Pretreatment with shikonin significantly increased the SOD and CAT activities and the ratio of GSH/GSSG in mouse brain tissues compared with irradiated group (P<0.01), while obviously reduced the MDA and PCO contents and the ROS levels derived from of the brain mitochondria. The shikonin also noticeably improved the spatial memory deficits caused by carbon ion beam irradiation. All results demonstrated that shikonin could improve the irradiated brain injury which might resulted from its modulation effects on the oxidative stress induced by the 12C6+ ion beam.

  19. Overview of recent advances in treatment planning for ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Krämer, Michael; Scifoni, Emanuele; Schmitz, Frederike; Sokol, Olga; Durante, Marco

    2014-10-01

    To achieve practical calculations of dose delivery in ion beam radiotherapy, the physical models of beam propagation need to be properly implemented and supplemented by models describing the complex mechanisms of radiation damage in the biological tissues. TRiP98 is the first and most advanced treatment planning system for particles, in which physical and biological models have been incorporated to develop a clinically applicable tool for dose optimization and delivery. We report our recent advances in TRiP98 code development, in particular towards hypoxia-driven and multi-modal dose optimization. We also discuss the present needs and possible extensions of our models for which input from nanoscale physics is required. Contribution to the Topical Issue "Nano-scale Insights into Ion-beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Paulo Limão-Vieira and Malgorzata Smialek-Telega.

  20. Influence of fragment reaction of relativistic heavy charged particles on heavy-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Matsufuji, Naruhiro; Fukumura, Akifumi; Komori, Masataka; Kanai, Tatsuaki; Kohno, Toshiyuki

    2003-06-01

    The production of projectile fragments is one of the most important, but not yet perfectly understood, problems to be considered when planning for the utilization of high-energy heavy charged particles for radiotherapy. This paper reports our investigation of the fragments' fluence and linear energy transfer (LET) spectra produced from various incident ions using an experimental approach to reveal these physical qualities of the beams. Polymethyl methacrylate, as a substitute for the human body, was used as a target. A ΔE-E counter telescope with a plastic scintillator and a BGO scintillator made it possible to identify the species of fragments based on differences of various elements. By combining a gas-flow proportional counter with a counter telescope system, LET spectra as well as fluence spectra of the fragments were derived for each element down from the primary particles to hydrogen. Among them, the information on hydrogen and helium fragments was derived for the first time. The result revealed that the number of light fragments, such as hydrogen and helium, became larger than the number of primaries in the vicinity of the range end. However, the greater part of the dose delivered to a cell was still governed by the primaries. The calculated result of a simulation used for heavy-ion radiotherapy indicated room for improving the reaction model.

  1. Dose-response of EBT3 radiochromic films to proton and carbon ion clinical beams

    NASA Astrophysics Data System (ADS)

    Castriconi, Roberta; Ciocca, Mario; Mirandola, Alfredo; Sini, Carla; Broggi, Sara; Schwarz, Marco; Fracchiolla, Francesco; Martišíková, Mária; Aricò, Giulia; Mettivier, Giovanni; Russo, Paolo

    2017-01-01

    We investigated the dose-response of the external beam therapy 3 (EBT3) films for proton and carbon ion clinical beams, in comparison with conventional radiotherapy beams; we also measured the film response along the energy deposition-curve in water. We performed measurements at three hadrontherapy centres by delivering monoenergetic pencil beams (protons: 63-230 MeV; carbon ions: 115-400 MeV/u), at 0.4-20 Gy dose to water, in the plateau of the depth-dose curve. We also irradiated the films to clinical MV-photon and electron beams. We placed the EBT3 films in water along the whole depth-dose curve for 148.8 MeV protons and 398.9 MeV/u carbon ions, in comparison with measurements provided by a plane-parallel ionization chamber. For protons, the response of EBT3 in the plateau of the depth-dose curve is not different from that of photons, within experimental uncertainties. For carbon ions, we observed an energy dependent under-response of EBT3 film, from 16% to 29% with respect to photon beams. Moreover, we observed an under-response in the Bragg peak region of about 10% for 148.8 MeV protons and of about 42% for 398.9 MeV/u carbon ions. For proton and carbon ion clinical beams, an under-response occurs at the Bragg peak. For carbon ions, we also observed an under-response of the EBT3 in the plateau of the depth-dose curve. This effect is the highest at the lowest initial energy of the clinical beams, a phenomenon related to the corresponding higher LET in the film sensitive layer. This behavior should be properly modeled when using EBT3 films for accurate 3D dosimetry.

  2. Dose-response of EBT3 radiochromic films to proton and carbon ion clinical beams.

    PubMed

    Castriconi, Roberta; Ciocca, Mario; Mirandola, Alfredo; Sini, Carla; Broggi, Sara; Schwarz, Marco; Fracchiolla, Francesco; Martišíková, Mária; Aricò, Giulia; Mettivier, Giovanni; Russo, Paolo

    2017-01-21

    We investigated the dose-response of the external beam therapy 3 (EBT3) films for proton and carbon ion clinical beams, in comparison with conventional radiotherapy beams; we also measured the film response along the energy deposition-curve in water. We performed measurements at three hadrontherapy centres by delivering monoenergetic pencil beams (protons: 63-230 MeV; carbon ions: 115-400 MeV/u), at 0.4-20 Gy dose to water, in the plateau of the depth-dose curve. We also irradiated the films to clinical MV-photon and electron beams. We placed the EBT3 films in water along the whole depth-dose curve for 148.8 MeV protons and 398.9 MeV/u carbon ions, in comparison with measurements provided by a plane-parallel ionization chamber. For protons, the response of EBT3 in the plateau of the depth-dose curve is not different from that of photons, within experimental uncertainties. For carbon ions, we observed an energy dependent under-response of EBT3 film, from 16% to 29% with respect to photon beams. Moreover, we observed an under-response in the Bragg peak region of about 10% for 148.8 MeV protons and of about 42% for 398.9 MeV/u carbon ions. For proton and carbon ion clinical beams, an under-response occurs at the Bragg peak. For carbon ions, we also observed an under-response of the EBT3 in the plateau of the depth-dose curve. This effect is the highest at the lowest initial energy of the clinical beams, a phenomenon related to the corresponding higher LET in the film sensitive layer. This behavior should be properly modeled when using EBT3 films for accurate 3D dosimetry.

  3. Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality.

    PubMed

    Krämer, Michael; Scifoni, Emanuele; Schuy, Christoph; Rovituso, Marta; Tinganelli, Walter; Maier, Andreas; Kaderka, Robert; Kraft-Weyrather, Wilma; Brons, Stephan; Tessonnier, Thomas; Parodi, Katia; Durante, Marco

    2016-04-01

    Modern facilities for actively scanned ion beam radiotherapy allow in principle the use of helium beams, which could present specific advantages, especially for pediatric tumors. In order to assess the potential use of these beams for radiotherapy, i.e., to create realistic treatment plans, the authors set up a dedicated (4)He beam model, providing base data for their treatment planning system TRiP98, and they have reported that in this work together with its physical and biological validations. A semiempirical beam model for the physical depth dose deposition and the production of nuclear fragments was developed and introduced in TRiP98. For the biological effect calculations the last version of the local effect model was used. The model predictions were experimentally verified at the HIT facility. The primary beam attenuation and the characteristics of secondary charged particles at various depth in water were investigated using (4)He ion beams of 200 MeV/u. The nuclear charge of secondary fragments was identified using a ΔE/E telescope. 3D absorbed dose distributions were measured with pin point ionization chambers and the biological dosimetry experiments were realized irradiating a Chinese hamster ovary cells stack arranged in an extended target. The few experimental data available on basic physical processes are reproduced by their beam model. The experimental verification of absorbed dose distributions in extended target volumes yields an overall agreement, with a slight underestimation of the lateral spread. Cell survival along a 4 cm extended target is reproduced with remarkable accuracy. The authors presented a simple simulation model for therapeutical (4)He beams which they introduced in TRiP98, and which is validated experimentally by means of physical and biological dosimetries. Thus, it is now possible to perform detailed treatment planning studies with (4)He beams, either exclusively or in combination with other ion modalities.

  4. Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality

    SciTech Connect

    Krämer, Michael Scifoni, Emanuele; Schuy, Christoph; Rovituso, Marta; Maier, Andreas; Kaderka, Robert; Kraft-Weyrather, Wilma; Tinganelli, Walter; Durante, Marco; Brons, Stephan; Tessonnier, Thomas; Parodi, Katia

    2016-04-15

    Purpose: Modern facilities for actively scanned ion beam radiotherapy allow in principle the use of helium beams, which could present specific advantages, especially for pediatric tumors. In order to assess the potential use of these beams for radiotherapy, i.e., to create realistic treatment plans, the authors set up a dedicated {sup 4}He beam model, providing base data for their treatment planning system TRiP98, and they have reported that in this work together with its physical and biological validations. Methods: A semiempirical beam model for the physical depth dose deposition and the production of nuclear fragments was developed and introduced in TRiP98. For the biological effect calculations the last version of the local effect model was used. The model predictions were experimentally verified at the HIT facility. The primary beam attenuation and the characteristics of secondary charged particles at various depth in water were investigated using {sup 4}He ion beams of 200 MeV/u. The nuclear charge of secondary fragments was identified using a ΔE/E telescope. 3D absorbed dose distributions were measured with pin point ionization chambers and the biological dosimetry experiments were realized irradiating a Chinese hamster ovary cells stack arranged in an extended target. Results: The few experimental data available on basic physical processes are reproduced by their beam model. The experimental verification of absorbed dose distributions in extended target volumes yields an overall agreement, with a slight underestimation of the lateral spread. Cell survival along a 4 cm extended target is reproduced with remarkable accuracy. Conclusions: The authors presented a simple simulation model for therapeutical {sup 4}He beams which they introduced in TRiP98, and which is validated experimentally by means of physical and biological dosimetries. Thus, it is now possible to perform detailed treatment planning studies with {sup 4}He beams, either exclusively or in

  5. Carbonate ions and arsenic dissolution by groundwater

    USGS Publications Warehouse

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2000-01-01

    Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.The role of bicarbonate in leaching arsenic into groundwater was investigated by conducting batch experiments using core samples of Marshall Sandstone from southeast Michigan and different bicarbonate

  6. Sodium-Ion Storage in Pyroprotein-Based Carbon Nanoplates.

    PubMed

    Yun, Young Soo; Park, Kyu-Young; Lee, Byoungju; Cho, Se Youn; Park, Young-Uk; Hong, Sung Ju; Kim, Byung Hoon; Gwon, Hyeokjo; Kim, Haegyeom; Lee, Sungho; Park, Yung Woo; Jin, Hyoung-Joon; Kang, Kisuk

    2015-11-18

    Pyroprotein-based carbon nanoplates are fabricated from self-assembled silk proteins as a versatile platform to examine sodium-ion storage characteristics in various carbon environments. It is found that, depending on the local carbon structure, sodium ions are stored via chemi-/physisorption, insertion, or nanoclustering of metallic sodium.

  7. Monte Carlo simulation for calculation of fragments produced by 400 MeV/u carbon ion beam in water

    NASA Astrophysics Data System (ADS)

    Ou, Hai-Feng; Zhang, Bin; Zhao, Shu-Jun

    2017-04-01

    Monte Carlo simulation was an important approach to obtain accurate characteristics of radiotherapy. In this work, a 400 MeV/u carbon ion beam incident on water phantom was simulated with Gate/Geant4 tools. The authors obtained the dose distributions of H, He, Li, Be, B, C and their isotopes in water phantom, and drew a conclusion that the dose of 11C was the main reason of causing the embossment of total dose curve around 252 mm depth. The authors also studied detailedly the dose contribution distributions, yield distributions and average energy distributions of all kinds of fragments. The information of four distributions was very meaningful for understanding the effect of fragments in carbon ion beam radiotherapy. The method of this simulation was easy to extend. For example, for obtaining a special result, we may change the particle energy, particle type, target material, target geometry, physics process, detector, etc.

  8. Proteome analysis for profiling infertility markers in male mouse sperm after carbon ion radiation.

    PubMed

    Li, Hong Yan; Zhang, Hong

    2013-04-05

    Ion radiation or radiotherapy is used to treat male patients with oligozoospermia, azoospermia, temporarily infertility, or even permanent infertility. The present study aims to investigate the potential infertility mechanism of sperm in mice after carbon ion radiation (CIR). The caudal epididymal sperm of male mice whole-body irradiated with carbon ion beam (0.5Gy and 4Gy) were used 7 days after irradiation. A two-dimensional gel electrophoresis approach was employed to investigate the changes in protein expression in the caudal edididymal sperm. Spot detection and matching were performed using the PDQuest 8.0 software. The criteria used to select spots for the analysis were more than a threefold difference in protein quantities (normalized spot volume), which allowed the detection of six differentially expressed proteins. Protein identification was performed using MALDI-TOF-TOF. Six specific proteins were identified by searching the NCBI protein sequence database. Among these proteins, HSP 70-2, PLC, GPX4, β-tubulin, and GAPDHS were associated with sperm motility, which can affect fertility. β-tubulin is important in axoneme migration flagellar movement and regulation, and GAPDHS is related to sperm energy supply. We analyzed their expressions using immunoblotting and immunofluorescence. The changes in sperm protein expression after CIR are mainly associated with motility. These proteins are potential markers for the mechanisms of infertility in space or radiotherapy.

  9. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    SciTech Connect

    Rieken, Stefan; Habermehl, Daniel; Wuerth, Lena; Brons, Stephan; Mohr, Angela; Lindel, Katja; Weber, Klaus; Haberer, Thomas; Debus, Juergen; Combs, Stephanie E.

    2012-05-01

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced {alpha}{sub {nu}}{beta}{sub 3} and {alpha}{sub {nu}}{beta}{sub 5} integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration on both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.

  10. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  11. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  12. Visualization of air and metal inhomogeneities in phantoms irradiated by carbon ion beams using prompt secondary ions.

    PubMed

    Gaa, T; Reinhart, M; Hartmann, B; Jakubek, J; Soukup, P; Jäkel, O; Martišíková, M

    2017-06-01

    Non-invasive methods for monitoring of the therapeutic ion beam extension in the patient are desired in order to handle deteriorations of the dose distribution related to changes of the patient geometry. In carbon ion radiotherapy, secondary light ions represent one of potential sources of information about the dose distribution in the irradiated target. The capability to detect range-changing inhomogeneities inside of an otherwise homogeneous phantom, based on single track measurements, is addressed in this paper. Air and stainless steel inhomogeneities, with PMMA equivalent thickness of 10mm and 4.8mm respectively, were inserted into a PMMA-phantom at different positions in depth. Irradiations of the phantom with therapeutic carbon ion pencil beams were performed at the Heidelberg Ion Beam Therapy Center. Tracks of single secondary ions escaping the phantom under irradiation were detected with a pixelized semiconductor detector Timepix. The statistical relevance of the found differences between the track distributions with and without inhomogeneities was evaluated. Measured shifts of the distal edge and changes in the fragmentation probability make the presence of inhomogeneities inserted into the traversed medium detectable for both, 10mm air cavities and 1mm thick stainless steel. Moreover, the method was shown to be sensitive also on their position in the observed body, even when localized behind the Bragg-peak. The presented results demonstrate experimentally, that the method using distributions of single secondary ion tracks is sensitive to the changes of homogeneity of the traversed material for the studied geometries of the target. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Shunting arc plasma source for pure carbon ion beam.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  14. Shunting arc plasma source for pure carbon ion beama)

    NASA Astrophysics Data System (ADS)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm2 at the peak of the pulse.

  15. Fabrication and testing of carbon-carbon grids for ion optics

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Brophy, John R.

    1992-01-01

    Ion optics measuring 16.5 cm in diameter and 1.0 mm in thickness were fabricated from carbon-carbon composites that were woven from a high-tensile-modulus carbon fiber. Plate flatness varied by less than 0.05 mm. Several methods were investigated for forming ion-extraction apertures in the carbon-carbon plates, including laser machining, mechanical drilling, and conventional electric discharge machining. Tests conducted using a quartz dilatometer indicated that the coefficient of thermal expansion of the carbon-carbon plates varied between -0.51 to -1.8 x 10 exp -6/degree C at plate temperatures between 173-773 K. Sputter-erosion experiments indicate that carbon-carbon erodes at a rate approximately 25 percent below molybdenum under the same conditions. These material properties indicate that carbon-carbon may be superior to molybdenum for use as ion optics electrodes for ion engines.

  16. Effects of carbon-ion beam irradiation on the angiogenic response in lung adenocarcinoma A549 cells.

    PubMed

    Liu, Yuanyuan; Liu, Yang; Zhang, Hong; Sun, Chao; Zhao, Qiuyue; Di, Cixia; Li, Hongyan; Gan, Lu; Wang, Yali

    2014-11-01

    Radiotherapy has been focused mainly on killing cancer cells, and little attention has been paid to the process supporting tumor growth and metastasis, including the process of angiogenesis. To investigate the effects of carbon-ion irradiation on angiogenesis in lung cancer cells, we examined the expression of vascular endothelial growth factor and basic fibroblast growth factor in the tumor conditioned medium (TCM) of A549 cells exposed to carbon-ion or X-ray irradiation, as well as endothelial cell growth, invasion, and tube formation induced by TCM. No changes in vascular endothelial growth factor secretion were detected in the TCM of A549 cells exposed to carbon-ion irradiation at 2 or 4 Gy, whereas 1 Gy of irradiation significantly decreased vascular endothelial growth factor and basic fibroblast growth factor levels. Carbon-ion irradiation at 1 Gy inhibited endothelial cell invasion and tube formation. The TCM from A549 cells irradiated with X-ray promoted angiogenesis, whereas the TCM of A549 cells exposed to carbon-ion irradiation at 2 or 4 Gy had no effect. These findings suggest that carbon-ion irradiation at 1 Gy significantly suppressed the process of angiogenesis in vitro by inhibiting endothelial cell invasion and tube formation, which are related to vascular endothelial growth factor and basic fibroblast growth factor production. © 2014 International Federation for Cell Biology.

  17. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions.

    PubMed

    Gwosch, K; Hartmann, B; Jakubek, J; Granja, C; Soukup, P; Jäkel, O; Martišíková, M

    2013-06-07

    Radiotherapy with narrow scanned carbon ion beams enables a highly accurate treatment of tumours while sparing the surrounding healthy tissue. Changes in the patient's geometry can alter the actual ion range in tissue and result in unfavourable changes in the dose distribution. Consequently, it is desired to verify the actual beam delivery within the patient. Real-time and non-invasive measurement methods are preferable. Currently, the only technically feasible method to monitor the delivered dose distribution within the patient is based on tissue activation measurements by means of positron emission tomography (PET). An alternative monitoring method based on tracking of prompt secondary ions leaving a patient irradiated with carbon ion beams has been previously suggested. It is expected to help in overcoming the limitations of the PET-based technique like physiological washout of the beam induced activity, low signal and to allow for real-time measurements. In this paper, measurements of secondary charged particle tracks around a head-sized homogeneous PMMA phantom irradiated with pencil-like carbon ion beams are presented. The investigated energies and beam widths are within the therapeutically used range. The aim of the study is to deduce properties of the primary beam from the distribution of the secondary charged particles. Experiments were performed at the Heidelberg Ion Beam Therapy Center, Germany. The directions of secondary charged particles emerging from the PMMA phantom were measured using an arrangement of two parallel pixelated silicon detectors (Timepix). The distribution of the registered particle tracks was analysed to deduce its dependence on clinically important beam parameters: beam range, width and position. Distinct dependencies of the secondary particle tracks on the properties of the primary carbon ion beam were observed. In the particular experimental set-up used, beam range differences of 1.3 mm were detectable. In addition, variations in

  18. Modelling carcinogenesis after radiotherapy using Poisson statistics: implications for IMRT, protons and ions.

    PubMed

    Jones, Bleddyn

    2009-06-01

    Current technical radiotherapy advances aim to (a) better conform the dose contours to cancers and (b) reduce the integral dose exposure and thereby minimise unnecessary dose exposure to normal tissues unaffected by the cancer. Various types of conformal and intensity modulated radiotherapy (IMRT) using x-rays can achieve (a) while charged particle therapy (CPT)-using proton and ion beams-can achieve both (a) and (b), but at greater financial cost. Not only is the long term risk of radiation related normal tissue complications important, but so is the risk of carcinogenesis. Physical dose distribution plans can be generated to show the differences between the above techniques. IMRT is associated with a dose bath of low to medium dose due to fluence transfer: dose is effectively transferred from designated organs at risk to other areas; thus dose and risk are transferred. Many clinicians are concerned that there may be additional carcinogenesis many years after IMRT. CPT reduces the total energy deposition in the body and offers many potential advantages in terms of the prospects for better quality of life along with cancer cure. With C ions there is a tail of dose beyond the Bragg peaks, due to nuclear fragmentation; this is not found with protons. CPT generally uses higher linear energy transfer (which varies with particle and energy), which carries a higher relative risk of malignant induction, but also of cell death quantified by the relative biological effect concept, so at higher dose levels the frank development of malignancy should be reduced. Standard linear radioprotection models have been used to show a reduction in carcinogenesis risk of between two- and 15-fold depending on the CPT location. But the standard risk models make no allowance for fractionation and some have a dose limit at 4 Gy. Alternatively, tentative application of the linear quadratic model and Poissonian statistics to chromosome breakage and cell kill simultaneously allows estimation of

  19. A semi-analytical radiobiological model may assist treatment planning in light ion radiotherapy.

    PubMed

    Kundrát, Pavel

    2007-12-07

    A semi-analytical model of light ions' Bragg peaks is presented and used in conjunction with a detailed probabilistic radiobiological module to predict the biological effectiveness of light ion irradiation for hadrontherapy applications. The physical Bragg peak model is based on energy-loss calculations with the SRIM code and phenomenological formulae for the energy-loss straggling. Effects of nuclear reactions are accounted for on the level of reducing the number of primary particles only. Reaction products are not followed at all and their contribution to dose deposition is neglected. Beam widening due to multiple scattering and calculations of spread-out Bragg peaks are briefly discussed. With this simple physical model, integral depth-dose distributions are calculated for protons, carbon, oxygen and neon ions. A good agreement with published experimental data is observed for protons and lower energy ions (with ranges in water up to approximately 15 cm), while less satisfactory results are obtained for higher energy ions due to the increased role of nuclear reaction products, neglected in this model. A detailed probabilistic radiobiological module is used to complement the simple physical model and to estimate biological effectiveness along the penetration depth of Bragg peak irradiation. Excellent agreement is found between model predictions and experimental data for carbon beams, indicating potential applications of the present scheme in treatment planning in light ion hadrontherapy. Due to the semi-analytical character of the model, leading to high computational speed, applications are foreseen in particular in the fully biological optimization of multiple irradiation fields and intensity-modulated beams.

  20. The Radiation Enhancement of 15 nm Citrate-Capped Gold Nanoparticles Exposed to 70 keV/μm Carbon Ions.

    PubMed

    Liu, Yan; Liu, Xi; Jin, Xiaodong; He, Pengbo; Zheng, Xiaogang; Ye, Fei; Chen, Weiqiang; Li, Qiang

    2016-03-01

    Radiotherapy is an important modality for tumor treatment. The central goal of radiotherapy is to deliver a therapeutic dose to the tumor as much as possible whilst sparing the surrounding normal tissues. On one hand, heavy ion radiation induces maximum damage at the end of the track (called the Bragg Peak). Hadron therapy based on heavy ions is considered superior to conventional X-rays and γ-rays radiations for tumors sited in sensitive tissues, childhood cases and radioresistant cancers. On the other hand, radiation sensitizers enhanced the radiation effects in tumors by increasing the dose specifically to the tumor cells. Recently, the use of gold nanoparticles as potential tumor selective radio-sensitizers has been proposed as a breakthrough in radiotherapy with conventional radiations. The enhanced radiation effect of heavy ions in tumor by using gold nanoparticles as radio-sensitizer may provide alternative in hadron therapy. In this study, we investigated the radiosensitizing effects of carbon ions with a linear energy transfer of 70 keV/μm in the presence of 15 nm citrate-capped AuNPs. The existing of AuNPs resulted in 5.5-fold enhancement in hydroxyl radical production and 24.5% increment in relative biological effectiveness (RBE) values for carbon-ion-irradiated HeLa cells. The study indicated gold nanoparticles can be used as potential radio-sensitizer in carbon ions therapy.

  1. Fabrication and Optimization of Carbon Nanomaterial-Based Lithium-Ion Battery Anodes

    DTIC Science & Technology

    2012-03-01

    carbons , carbon onions and carbon nanotubes , used in lithium-ion battery electrodes can exhibit a much higher specific...SUBJECT TERMS Lithium-Ion Batteries, Amorphous Carbon , Carbide-Derived Carbon , Carbon Onions, Carbon Nanotubes , Multi-Walled Carbon Nanotubes 15. NUMBER...nanomaterials, such as carbide-derived carbons , carbon onions and carbon nanotubes , used in lithium-ion battery electrodes can exhibit a much

  2. Repair of skin damage during fractionated irradiation with gamma rays and low-LET carbon ions.

    PubMed

    Ando, Koichi; Koike, Sachiko; Uzawa, Akiko; Takai, Nobuhiko; Fukawa, Takeshi; Furusawa, Yoshiya; Aoki, Mizuho; Hirayama, Ryoichi

    2006-06-01

    In clinical use of carbon-ion beams, a deep-seated tumor is irradiated with a Spread-Out Bragg peak (SOBP) with a high-LET feature, whereas surface skin is irradiated with an entrance plateau, the LET of which is lower than that of the peak. The repair kinetics of murine skin damage caused by an entrance plateau of carbon ions was compared with that caused by photons using a scheme of daily fractionated doses followed by a top-up dose. Right hind legs received local irradiations with either 20 keV/microm carbon ions or gamma rays. The skin reaction of the irradiated legs was scored every other day up to Day 35 using a scoring scale that consisted of 10 steps, ranging from 0.5 to 5.0. An isoeffect dose to produce a skin reaction score of 3.0 was used to obtain a total dose and a top-up dose for each fractionation. Dependence on a preceding dose and on the time interval of a top-up dose was examined using gamma rays. For fractionated gamma rays, the total dose linearly increased while the top-up dose linearly decreased with an increase in the number of fractions. The magnitude of damage repair depended on the size of dose per fraction, and was larger for 5.2 Gy than 12.5 Gy. The total dose of carbon ions with 5.2 Gy per fraction did not change till 2 fractions, but abruptly increased at the 3rd fraction. Factors such as rapid repopulation, induced repair and cell cycle synchronization are possible explanations for the abrupt increase. As an abrupt increase/decrease of normal tissue damage could be caused by changing the number of fractions in carbon-ion radiotherapy, we conclude that, unlike photon therapy, skin damage should be carefully studied when the number of fractions is changed in new clinical trials.

  3. Carbon ion fragmentation effects on the nanometric level behind the Bragg peak depth

    NASA Astrophysics Data System (ADS)

    Francis, Z.; Seif, E.; Incerti, S.; Champion, C.; Karamitros, M.; Bernal, M. A.; Ivanchenko, V. N.; Mantero, A.; Tran, H. N.; El Bitar, Z.

    2014-12-01

    In this study, fragmentation yields of carbon therapy beams are estimated using the Geant4 simulation toolkit version 9.5. Simulations are carried out in a step-by-step mode using the Geant4-DNA processes for each of the major contributing fragments. The energy of the initial beam is taken 400 MeV amu-1 as this is the highest energy, which is used for medical accelerators and this would show the integral role of secondary contributions in radiotherapy irradiations. The obtained results showed that 64% of the global dose deposition is initiated by carbon ions, while up to 36% is initiated by the produced fragments including all their isotopes. The energy deposition clustering yields of each of the simulated fragments are then estimated using the DBSCAN clustering algorithm and they are compared to the yields of the incident primary beam.

  4. SU-E-T-601: Patient Specific QA Check for Radiotherapy with Carbon Beam at SAGA HIMAT

    SciTech Connect

    Himukai, T; Tsunashima, Y; Kanazawa, M; Mizota, M; Shioyama, Y; Endo, M

    2015-06-15

    Purpose: To verify a patient specific QA for a prescribed dose per monitor unit (MU) and range check of carbon ion radiotherapy with a beam wobbling method at SAGA HIMAT. Methods: The dose distribution in a water phantom was recalculated with a treatment plan made by XiO-N (Mitsubishi Electric Corporation, Tokyo). The depth dose distributions at central axis were compared with measurements using pinpoint ionization chamber (PTW31014). Measured data were analyzed for dose and distance difference with criteria of 3% and 2mm. To check for the MU and range, analysis data were used at center and distal end of a spread out bragg peak (SOBP) depth, respectively. Results: Treatment plan of 1400 beams in 500 patients were used for analysis. The pass rate of the MU and range was about 98% and 74%, respectively. The rate of both was 73%. The plan data passed only the MU check were verified depth dose profile. The data passed only the range and failed of both were compared depth dose distributions at off axis. If it was failed, we discussed with physicians. Conclusion: Most of patient specific QA check for a prescribed MU and range check at SAGA HIMAT were passed.

  5. Carbon-ion pencil beam scanning for thoracic treatment – initiation report and dose metrics evaluation

    PubMed Central

    Karube, Masataka; Mori, Shinichiro; Tsuji, Hiroshi; Yamamoto, Naoyoshi; Nakajima, Mio; Nakagawa, Keiichi; Kamada, Tadashi

    2016-01-01

    Carbon-ion beam scanning has not previously been used for moving tumor treatments. We have commenced respiratory-gated carbon-ion radiotherapy (CIRT) in the thoracic and abdominal regions under free-breathing conditions as a clinical trial. This study aimed to investigate this treatment in the lungs in comparison with passive scattering CIRT. Five patients had thoracic tumors treated with carbon-ion scanned beams using respiratory gating. We analyzed the actual treatments and calculated passive scattering treatment plans based on the same planning CT. We evaluated tumor size until 3 months post treatment and each treatment plan regarding dose delivered to 95% of the clinical target volume (CTV-D95), mean lung dose, percentage of lung receiving at least 5 Gy (RBE) (Lung-V5), Lung-V10, Lung-V20, heart maximum dose (Dmax), esophagus Dmax, cord Dmax and skin Dmax. Obvious tumor deterioration was not observed up to 3 months post treatment. The dose evaluation metrics were similar item by item between respiratory-gated scanned CIRT and passive scattering CIRT. In conclusion, scanned beam CIRT provided treatments equivalent to passive scattering CIRT for thoracic tumors. Increased sample numbers and longer-term observation are needed. PMID:27380799

  6. Electron string ion sources for carbon ion cancer therapy accelerators

    NASA Astrophysics Data System (ADS)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.

  7. Electron string ion sources for carbon ion cancer therapy accelerators.

    PubMed

    Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C(4+) and C(6+) ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10(10) C(4+) ions per pulse and about 5 × 10(9) C(6+) ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10(11) C(6+) ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the (11)C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C(4+) ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of (11)C, transporting to the tumor with the primary accelerated (11)C(4+) beam, this efficiency is preliminarily considered to be large enough to produce the (11)C(4+) beam from radioactive methane and to inject this beam into synchrotrons.

  8. Carbon Nanotube Anodes Being Evaluated for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Gennett, Tom; VanderWal, Randy L.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center is evaluating the use of carbon nanotubes as anode materials for thin-film lithium-ion (Li) batteries. The motivation for this work lies in the fact that, in contrast to carbon black, directed structured nanotubes and nanofibers offer a superior intercalation media for Li-ion batteries. Carbon lamellas in carbon blacks are circumferentially oriented and block much of the particle interior, rendering much of the matrix useless as intercalation material. Nanofibers, on the other hand, can be grown so as to provide 100-percent accessibility of the entire carbon structure to intercalation. These tubes can be visualized as "rolled-up" sheets of carbon hexagons (see the following figure). One tube is approximately 1/10,000th the diameter of a human hair. In addition, the high accessibility of the structure confers a high mobility to ion-exchange processes, a fundamental for the batteries to respond dynamically because of intercalation.

  9. Modified carbon black materials for lithium-ion batteries

    DOEpatents

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  10. Relative stopping powers for atomic and molecular ions in carbon

    NASA Astrophysics Data System (ADS)

    Steuer, Malcolm F.

    1986-03-01

    Electronic stopping powers of carbon for atomic and molecular nitrogen ions have been calculated using semi-classical free electron scattering from Herman-Skillman potentials, parametrized to include an adjustable exponential screening factor F( tv, Z), representing atomic ions. For molecular ions, aligned along the beam direction and having velocity 1.2 a.u., the stopping powers for individual atomic components were calculated as a function of internuclear separation. Screening factors for the two centers of force were assumed to decrease linearly from the value at zero internuclear separation, equivalent to that of a silicon ion, to that for nitrogen ions at large separations. Results are consistent with the diminishment of average stopping power per atomic ion which has been observed for beam-aligned nitrogen molecular ions. Similar calculations for molecular hydrogen in carbon agree with the enhancement of stopping power which has been observed. Evidence of nonlinear effects is indicated.

  11. Interfacial Li-ion localization in hierarchical carbon anodes

    SciTech Connect

    McNutt, Nicholas W.; Rios, Orlando; Maroulas, Vasileios; Keffer, David J.

    2016-10-24

    An understanding of the nanoscale structure and energetics of carbon composites is critical for their applications in electric energy storage. Here, we study the properties of carbon anodes synthesized from low-cost renewable lignin biopolymers for use in energy storage applications such as Li-ion batteries. The anodes possess both nanoscale and mesoscale order, consisting of carbon nanocrystallites distributed within an amorphous carbon matrix. Molecular dynamics simulations of an experimentally validated model of the anode is used to elucidate the nature of Li-ion storage. We report the discovery of a novel mechanism of Li-ion storage, one in which Li+ is not intercalated between layers of carbon (as is the case in graphitic anodes), but rather is localized at the interface of crystalline carbon domains. In particular, the effects of Li-ion binding energy on the Li-Li, Li-H, and Li-C pair distribution functions are revealed, along with the effect on charge distribution. As a result, the atomic environments surrounding the Li-ions are grouped on the basis of ion energy and then convolved into archetypal structural motifs that reveal deep insight into the geometry of ion localization in disordered systems.

  12. Interfacial Li-ion localization in hierarchical carbon anodes

    DOE PAGES

    McNutt, Nicholas W.; Rios, Orlando; Maroulas, Vasileios; ...

    2016-10-24

    An understanding of the nanoscale structure and energetics of carbon composites is critical for their applications in electric energy storage. Here, we study the properties of carbon anodes synthesized from low-cost renewable lignin biopolymers for use in energy storage applications such as Li-ion batteries. The anodes possess both nanoscale and mesoscale order, consisting of carbon nanocrystallites distributed within an amorphous carbon matrix. Molecular dynamics simulations of an experimentally validated model of the anode is used to elucidate the nature of Li-ion storage. We report the discovery of a novel mechanism of Li-ion storage, one in which Li+ is not intercalatedmore » between layers of carbon (as is the case in graphitic anodes), but rather is localized at the interface of crystalline carbon domains. In particular, the effects of Li-ion binding energy on the Li-Li, Li-H, and Li-C pair distribution functions are revealed, along with the effect on charge distribution. As a result, the atomic environments surrounding the Li-ions are grouped on the basis of ion energy and then convolved into archetypal structural motifs that reveal deep insight into the geometry of ion localization in disordered systems.« less

  13. High Relative Biologic Effectiveness of Carbon Ion Radiation on Induction of Rat Mammary Carcinoma and its Lack of H-ras and Tp53 Mutations

    SciTech Connect

    Imaoka, Tatsuhiko Nishimura, Mayumi; Kakinuma, Shizuko; Hatano, Yukiko; Ohmachi, Yasushi; Yoshinaga, Shinji Ph.D.; Kawano, Akihiro; Maekawa, Akihiko; Shimada, Yoshiya

    2007-09-01

    Purpose: The high relative biologic effectiveness (RBE) of high-linear energy transfer (LET) heavy-ion radiation has enabled powerful radiotherapy. The potential risk of later onset of secondary cancers, however, has not been adequately studied. We undertook the present study to clarify the RBE of therapeutic carbon ion radiation and molecular changes that occur in the rat mammary cancer model. Methods and Materials: We observed 7-8-week-old rats (ACI, F344, Wistar, and Sprague-Dawley) until 1 year of age after irradiation (0.05-2 Gy) with either 290 MeV/u carbon ions with a spread out Bragg peak (LET 40-90 keV/{mu}m) generated from the Heavy-Ion Medical Accelerator in Chiba or {sup 137}Cs {gamma}-rays. Results: Carbon ions significantly induced mammary carcinomas in Sprague-Dawley rats but less so in other strains. The dose-effect relationship for carcinoma incidence in the Sprague-Dawley rats was concave downward, providing an RBE of 2 at a typical therapeutic dose per fraction. In contrast, {approx}10 should be considered for radiation protection at low doses. Immunohistochemically, 14 of 18 carcinomas were positive for estrogen receptor {alpha}. All carcinomas examined were free of common H-ras and Tp53 mutations. Importantly, lung metastasis (7%) was characteristic of carbon ion-irradiated rats. Conclusions: We found clear genetic variability in the susceptibility to carbon ion-induced mammary carcinomas. The high RBE for carbon ion radiation further supports the importance of precise dose localization in radiotherapy. Common point mutations in H-ras and Tp53 were not involved in carbon ion induction of rat mammary carcinomas.

  14. Complex Ion Dynamics in Carbonate Lithium-Ion Battery Electrolytes

    DOE PAGES

    Ong, Mitchell T.; Bhatia, Harsh; Gyulassy, Attila G.; ...

    2017-03-06

    Li-ion battery performance is strongly influenced by ionic conductivity, which depends on the mobility of the Li ions in solution, and is related to their solvation structure. In this work, we have performed first-principles molecular dynamics (FPMD) simulations of a LiPF6 salt solvated in different Li-ion battery organic electrolytes. We employ an analytical method using relative angles from successive time intervals to characterize complex ionic motion in multiple dimensions from our FPMD simulations. We find different characteristics of ionic motion on different time scales. We find that the Li ion exhibits a strong caging effect due to its strong solvationmore » structure, while the counterion, PF6– undergoes more Brownian-like motion. Lastly, our results show that ionic motion can be far from purely diffusive and provide a quantitative characterization of the microscopic motion of ions over different time scales.« less

  15. Electron string ion sources for carbon ion cancer therapy accelerators

    SciTech Connect

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.; Katagiri, K.; Noda, K.

    2015-08-15

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.

  16. Prediction of cellular radiosensitivity from DNA damage induced by gamma-rays and carbon ion irradiation in canine tumor cells.

    PubMed

    Wada, Seiichi; Van Khoa, Tran; Kobayashi, Yasuhiko; Funayama, Tomoo; Ogihara, Kikumi; Ueno, Shunji; Ito, Nobuhiko

    2005-11-01

    Diseases of companion animals are shifting from infectious diseases to neoplasms (cancer), and since radiation therapy is one of the effective choices available for cancer treatment, the application of radiotherapy in veterinary medicine is likely to increase. However tumor tissues have different radiosensitivities, and therefore it is important to determine the intrinsic radiosensitivity of tumors in individual patients in advance of radiotherapy. We have studied the relationship between the surviving cell fraction measured by a clonogenic assay and DNA double strand breaks detected by a comet assay under neutral conditions in three canine tumor cell lines, after gamma-ray and carbon ion irradiation. In all the cell lines, cell death assessed by the clonogenic assay was much higher following irradiation with carbon ions than with gamma-rays. The initial and residual (4 hr) DNA damage due to gamma-ray and carbon ion irradiation were higher in a radiosensitive cell line than in a radioresistant cell line. The surviving cell fraction at 2 Gy (SF2) showed a tendency for correlation with both the initial and residual DNA damage. In particular, the residual damage per Gy was significantly correlated with SF2, regardless of the type of radiation. This indicates that cellular radiosensitivity can be predicted by detection of radiation-induced residual DNA damage.

  17. Deciphering the acute cellular phosphoproteome response to irradiation with X-rays, protons and carbon ions.

    PubMed

    Winter, Martin; Dokic, Ivana; Schlegel, Julian; Warnken, Uwe; Debus, Jürgen; Abdollahi, Amir; Schnölzer, Martina

    2017-03-16

    Radiotherapy is a cornerstone of cancer therapy. The recently established particle therapy with raster-scanning protons and carbon ions landmarks a new era in the field of high-precision cancer medicine. However, molecular mechanisms governing radiation induced intracellular signaling remain elusive. Here, we present the first comprehensive proteomic and phosphoproteomic study applying stable isotope labeling by amino acids in cell culture (SILAC) in combination with high-resolution mass spectrometry to decipher cellular response to irradiation with X-rays, protons and carbon ions. At protein expression level limited alterations were observed 2h post irradiation of human lung adenocarcinoma cells. In contrast, 181 phosphorylation sites were found to be differentially regulated out of which 151 sites were not hitherto attributed to radiation response as revealed by crosscheck with the PhosphoSitePlus database. Radiation-induced phosphorylation of the p(S/T)Q motif was the prevailing regulation pattern affecting proteins involved in DNA damage response signaling. Since radiation doses were selected to produce same level of cell kill and DNA double-strand breakage for each radiation quality, DNA damage responsive phosphorylation sites were regulated to same extent. However, differential phosphorylation between radiation qualities was observed for 55 phosphorylation sites indicating the existence of distinct signaling circuitries induced by X-ray versus particle (proton/carbon) irradiation beyond the canonical DNA damage response. This unexpected finding was confirmed in targeted spike-in experiments using synthetic isotope labeled phosphopeptides. Herewith, we successfully validated uniform DNA damage response signaling coexisting with altered signaling involved in apoptosis and metabolic processes induced by X-ray and particle based treatments. In summary, the comprehensive insight into the radiation-induced phosphoproteome landscape is instructive for the design of

  18. Geant4 simulation of clinical proton and carbon ion beams for the treatment of ocular melanomas with the full 3-D pencil beam scanning system

    SciTech Connect

    Farina, Edoardo; Riccardi, Cristina; Rimoldi, Adele; Tamborini, Aurora; Piersimoni, Pierluigi; Ciocca, Mario

    2015-07-01

    This work investigates the possibility to use carbon ion beams delivered with active scanning modality, for the treatment of ocular melanomas at the Centro Nazionale di Adroterapia Oncologica (CNAO) in Pavia. The radiotherapy with carbon ions offers many advantages with respect to the radiotherapy with protons or photons, such as a higher relative radio-biological effectiveness (RBE) and a dose release better localized to the tumor. The Monte Carlo (MC) Geant4 10.00 patch-03 toolkit is used to reproduce the complete CNAO extraction beam line, including all the active and passive components characterizing it. The simulation of proton and carbon ion beams and radiation scanned field is validated against CNAO experimental data. For the irradiation study of the ocular melanoma an eye-detector, representing a model of a human eye, is implemented in the simulation. Each element of the eye is reproduced with its chemical and physical properties. Inside the eye-detector a realistic tumor volume is placed and used as the irradiation target. A comparison between protons and carbon ions eye irradiations allows to study possible treatment benefits if carbon ions are used instead of protons. (authors)

  19. Implantation of nitrogen, carbon, and phosphorus ions into metals

    SciTech Connect

    Guseva, M.I.; Gordeeva, G.V.

    1987-01-01

    The application of ion implantation for alloying offers a unique opportunity to modify the chemical composition, phase constitution, and microstructure of the surface layers of metals. The authors studied ion implantation of nitrogen and carbon into the surface layers of metallic targets. The phase composition of the implanted layers obtained on the Kh18N10T stainless steel, the refractory molybdenum alloy TsM-6, niobium, and nickel was determined according to the conventional method of recording the x-ray diffraction pattern of the specimens using monochromatic FeK/sub alpha/-radiation on a DRON-2,0 diffractometer. The targets were bombarded at room temperature in an ILU-3 ion accelerator. The implantation of metalloid ions was also conducted with the targets being bombarded with 100-keV phosphorus ions and 40-keV carbon ions.

  20. Carbon ion therapy for advanced sinonasal malignancies: feasibility and acute toxicity

    PubMed Central

    2011-01-01

    Purpose To evaluate feasibility and toxicity of carbon ion therapy for treatment of sinonasal malignancies. First site of treatment failure in malignant tumours of the paranasal sinuses and nasal cavity is mostly in-field, local control hence calls for dose escalation which has so far been hampered by accompanying acute and late toxicity. Raster-scanned carbon ion therapy offers the advantage of sharp dose gradients promising increased dose application without increase of side-effects. Methods Twenty-nine patients with various sinonasal malignancies were treated from 11/2009 to 08/2010. Accompanying toxicity was evaluated according to CTCAE v.4.0. Tumor response was assessed according to RECIST. Results Seventeen patients received treatment as definitive RT, 9 for local relapse, 2 for re-irradiation. All patients had T4 tumours (median CTV1 129.5 cc, CTV2 395.8 cc), mostly originating from the maxillary sinus. Median dose was 73 GyE mostly in mixed beam technique as IMRT plus carbon ion boost. Median follow- up was 5.1 months [range: 2.4 - 10.1 months]. There were 7 cases with grade 3 toxicity (mucositis, dysphagia) but no other higher grade acute reactions; 6 patients developed grade 2 conjunctivits, no case of early visual impairment. Apart from alterations of taste, all symptoms had resolved at 8 weeks post RT. Overall radiological response rate was 50% (CR and PR). Conclusion Carbon ion therapy is feasible; despite high doses, acute reactions were not increased and generally resolved within 8 weeks post radiotherapy. Treatment response is encouraging though follow-up is too short to estimate control rates or evaluate potential late effects. Controlled trials are warranted. PMID:21466696

  1. Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels.

    PubMed

    Amiri, Hasti; Shepard, Kenneth L; Nuckolls, Colin; Hernández Sánchez, Raúl

    2017-02-08

    Here we report on the ion conductance through individual, small diameter single-walled carbon nanotubes. We find that they are mimics of ion channels found in natural systems. We explore the factors governing the ion selectivity and permeation through single-walled carbon nanotubes by considering an electrostatic mechanism built around a simplified version of the Gouy-Chapman theory. We find that the single-walled carbon nanotubes preferentially transported cations and that the cation permeability is size-dependent. The ionic conductance increases as the absolute hydration enthalpy decreases for monovalent cations with similar solid-state radii, hydrated radii, and bulk mobility. Charge screening experiments using either the addition of cationic or anionic polymers, divalent metal cations, or changes in pH reveal the enormous impact of the negatively charged carboxylates at the entrance of the single-walled carbon nanotubes. These observations were modeled in the low-to-medium concentration range (0.1-2.0 M) by an electrostatic mechanism that mimics the behavior observed in many biological ion channel-forming proteins. Moreover, multi-ion conduction in the high concentration range (>2.0 M) further reinforces the similarity between single-walled carbon nanotubes and protein ion channels.

  2. Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels

    PubMed Central

    2017-01-01

    Here we report on the ion conductance through individual, small diameter single-walled carbon nanotubes. We find that they are mimics of ion channels found in natural systems. We explore the factors governing the ion selectivity and permeation through single-walled carbon nanotubes by considering an electrostatic mechanism built around a simplified version of the Gouy–Chapman theory. We find that the single-walled carbon nanotubes preferentially transported cations and that the cation permeability is size-dependent. The ionic conductance increases as the absolute hydration enthalpy decreases for monovalent cations with similar solid-state radii, hydrated radii, and bulk mobility. Charge screening experiments using either the addition of cationic or anionic polymers, divalent metal cations, or changes in pH reveal the enormous impact of the negatively charged carboxylates at the entrance of the single-walled carbon nanotubes. These observations were modeled in the low-to-medium concentration range (0.1–2.0 M) by an electrostatic mechanism that mimics the behavior observed in many biological ion channel-forming proteins. Moreover, multi-ion conduction in the high concentration range (>2.0 M) further reinforces the similarity between single-walled carbon nanotubes and protein ion channels. PMID:28103039

  3. Ion-exchange behavior of alkali metals on treated carbons

    SciTech Connect

    Mohiuddin, G.; Hata, W.Y.; Tolan, J.S.

    1983-01-01

    The ion-exchange behavior of trace quantities of the alkali-metal ions sodium and cesium, on activated carbon impregnated with zirconium phosphate (referred to here as ZrP), was studied. Impregnated carbon had twice as much ion-exchange activity as unimpregnated, oxidized carbon, and 10 times as much as commercial activated carbons. The distribution coefficient of sodium increased with increasing pH; the distribution coefficient of cesium decreased with increasing pH. Sodium and cesium were separated with an electrolytic solution of 0.1 M HCl. Preliminary studies indicated that 0.2 M potassium and cesium can also be separated. Distribution coefficients of the supported ZrP were determined by the elution technique and agreed within 20% of the values for pure ZrP calculated from the literature.

  4. Carbon nanowires generated by ion irradiation of hydrocarbon ices

    NASA Astrophysics Data System (ADS)

    Puglisi, O.; Compagnini, G.; D'Urso, L.; Baratta, G. A.; Palumbo, M. E.; Strazzulla, G.

    2014-05-01

    In this paper we present the formation of carbon nanowires (polyynes and polycumulenes) in the solid state by ion irradiation of frozen hydrocarbons (C6H6 and C2H2). Irradiations have been performed using H+ ions in the 100's keV energy regime using fluences up to 5 × 1014 ions/cm2. Beyond the intrinsic significance of these results in the field of material science, this work has been motivated by the fact that ion beam irradiation of hydrocarbon ices is one of the most important process thought to happen in several extraterrestrial environments where many spectroscopic features of polyyne molecules have been identified.

  5. Analysis of the reliability of the local effect model for the use in carbon ion treatment planning systems.

    PubMed

    Russo, G; Attili, A; Bourhaleb, F; Marchetto, F; Peroni, C; Schmitt, E; Bertrand, D

    2011-02-01

    In radiotherapy with carbon ions, biological effects of treatments have to be predicted. For this purpose, one of the most used models is the local effect model (LEM) developed at the Gesellschaft für Schwerionenforschung (GSI), Germany. At the Istituto Nazionale di Fisica Nucleare, Italy, the reliability of the last published version of LEM (LEM III) in reproducing radiobiological data has been checked under both monoenergetic and spread-out Bragg peak (SOBP) carbon-ion irradiation. The reproduction of the monoenergetic measurements with the LEM was rather successful for some cell lines, while it failed for the less-radioresistant ones. The SOBP experimental trend was predicted by the LEM, but a large shift between model curves and measured points was observed.

  6. Quality of Life in Men Treated With Carbon Ion Therapy for Prostate Cancer

    SciTech Connect

    Wakatsuki, Masaru; Tsuji, Hiroshi; Ishikawa, Hitoshi; Yanagi, Takeshi; Kamada, Tadashi; Nakano, Takashi; Suzuki, Hiroyoshi; Akakura, Koichiro; Shimazaki, Jun; Tsujii, Hirohiko

    2008-11-15

    Purpose: To prospectively assess patient quality of life (QOL) after carbon ion radiotherapy (C-ion RT) for prostate cancer, using established questionnaires. Methods and Material: The subjects were 150 patients who underwent C-ion RT. Of these, 25 patients with low-risk prostate cancer received C-ion RT alone, whereas the remaining 125 patients with a high-risk tumor also received androgen deprivation therapy. Quality of life was assessed using the self-administered Functional Assessment of Cancer Therapy-Prostate (FACT-P) questionnaire in all patients three times. In addition, University of California-Los Angeles Prostate Cancer Index (UCLA-PCI) was conducted in the low-risk patients. Results: The FACT-General (FACT-G) and FACT-P scores at 12 months after treatment averaged over all 150 patients showed no significant change compared with those before C-ion RT. In FACT-P subscales, emotional well-being increased significantly just after and 12 months after treatment. In contrast, physical well-being (PWB) and social/family well-being (S/FWB) decreased significantly at 12 months, whereas the prostate cancer subscale (PCS) decreased significantly just after treatment. Average scores for FACT-G, FACT-P, PWB, S/FWB, and PCS for the 125 patients receiving hormone therapy showed substantial detrimental changes at 12 months. In contrast, those of the 25 low-risk patients who had no hormone therapy showed no significant change. Similarly no significant change in the average of the UCLA-PCI scores in the low-risk patients was seen at 12 months. Conclusions: Average QOL parameters reported by patients with localized prostate cancer treated with C-ion RT, in the absence of hormone therapy, showed no significant decrease 12 months after C-ion RT.

  7. Carbon ions irradiation on nano- and microcrystalline CaSO4 : Dy

    NASA Astrophysics Data System (ADS)

    Salah, Numan

    2008-08-01

    Nanoparticles of CaSO4 : Dy phosphor with a particle size of around 30 nm have been prepared by the chemical co-precipitation technique. Pellet samples of the nanomaterials were irradiated by a 75 MeV C6+ ion beam at the fluence range 1 × 109-1 × 1013 ions cm-2. Thermoluminescence (TL) glow curves of the irradiated samples were recorded and studied. The microcrystalline form of this sample is also included in the study with the aim of reporting a comparative measurement. The TL analysis shows that the glow curve of the nanomaterial has two peaks at around 166 and 210 °C. These peaks are similar to those induced in the microcrystalline sample with a slight difference in their TL response. The second peak is more prominent in the case of the microcrystalline sample at low fluences, while the first one dominates in the nanostructured sample mainly at higher fluences. The TRIM code based on Monte Carlo simulation was also used for calculating some ion beam parameters. Dosimetric properties of the carbon ion beam irradiated materials show that the nanostructure material has excellent features such as a simple glow curve structure and a linear TL response over a wider range than the corresponding microcrystalline sample. These results show that the nanostructure form of CaSO4 : Dy might be useful for detecting the high doses of carbon ions used in radiotherapy. Thermal analysis of the prepared nano- and microcrystalline materials was also done in the range 50-500 °C using thermogravimetry analysis and differential thermal analysis. No phase transitions within this range of heating for both the materials are observed.

  8. Separation of Carbon Dioxide from Flue Gas Using Ion Pumping

    SciTech Connect

    Aines, R; Bourcier, W L; Johnson, M R

    2006-04-21

    We are developing a new way of separating carbon dioxide from flue gas based on ionic pumping of carbonate ions dissolved in water. Instead of relying on large temperature or pressure changes to remove carbon dioxide from solvent used to absorb it from flue gas, the ion pump increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, which can be removed from the downstream side of the ion pump as a nearly pure gas. This novel approach to increasing the concentration of the extracted gas permits new approaches to treating flue gas. The slightly basic water used as the extraction medium is impervious to trace acid gases that destroy existing solvents, and no pre-separation is necessary. The simple, robust nature of the process lends itself to small separation plants. Although the energy cost of the ion pump is significant, we anticipate that it will be compete favorably with the current 35% energy penalty of chemical stripping systems in use at power plants. There is the distinct possibility that this simple method could be significantly more efficient than existing processes.

  9. Carbon ions induce autophagy effectively through stimulating the unfolded protein response and subsequent inhibiting Akt phosphorylation in tumor cells

    PubMed Central

    Jin, Xiaodong; Li, Feifei; Zheng, Xiaogang; Liu, Yan; Hirayama, Ryoichi; Liu, Xiongxiong; Li, Ping; Zhao, Ting; Dai, Zhongying; Li, Qiang

    2015-01-01

    Heavy ion beams have advantages over conventional radiation in radiotherapy due to their superb biological effectiveness and dose conformity. However, little information is currently available concerning the cellular and molecular basis for heavy ion radiation-induced autophagy. In this study, human glioblastoma SHG44 and cervical cancer HeLa cells were irradiated with carbon ions of different linear energy transfers (LETs) and X-rays. Our results revealed increased LC3-II and decreased p62 levels in SHG44 and HeLa cells post-irradiation, indicating marked induction of autophagy. The autophagic level of tumor cells after irradiation increased in a LET-dependent manner and was inversely correlated with the sensitivity to radiations of various qualities. Furthermore, we demonstrated that high-LET carbon ions stimulated the unfolded protein response (UPR) and mediated autophagy via the UPR-eIF2α-CHOP-Akt signaling axis. High-LET carbon ions more severely inhibited Akt-mTOR through UPR to effectively induce autophagy. Thus, the present data could serve as an important radiobiological basis to further understand the molecular mechanisms by which high-LET radiation induces cell death. PMID:26338671

  10. Carbon ions induce autophagy effectively through stimulating the unfolded protein response and subsequent inhibiting Akt phosphorylation in tumor cells.

    PubMed

    Jin, Xiaodong; Li, Feifei; Zheng, Xiaogang; Liu, Yan; Hirayama, Ryoichi; Liu, Xiongxiong; Li, Ping; Zhao, Ting; Dai, Zhongying; Li, Qiang

    2015-09-04

    Heavy ion beams have advantages over conventional radiation in radiotherapy due to their superb biological effectiveness and dose conformity. However, little information is currently available concerning the cellular and molecular basis for heavy ion radiation-induced autophagy. In this study, human glioblastoma SHG44 and cervical cancer HeLa cells were irradiated with carbon ions of different linear energy transfers (LETs) and X-rays. Our results revealed increased LC3-II and decreased p62 levels in SHG44 and HeLa cells post-irradiation, indicating marked induction of autophagy. The autophagic level of tumor cells after irradiation increased in a LET-dependent manner and was inversely correlated with the sensitivity to radiations of various qualities. Furthermore, we demonstrated that high-LET carbon ions stimulated the unfolded protein response (UPR) and mediated autophagy via the UPR-eIF2α-CHOP-Akt signaling axis. High-LET carbon ions more severely inhibited Akt-mTOR through UPR to effectively induce autophagy. Thus, the present data could serve as an important radiobiological basis to further understand the molecular mechanisms by which high-LET radiation induces cell death.

  11. Focused Ion Beam Microscopy of ALH84001 Carbonate Disks

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Clemett, Simon J.; Bazylinski, Dennis A.; Kirschvink, Joseph L.; McKay, David S.; Vali, Hojatollah; Gibson, Everett K., Jr.; Romanek, Christopher S.

    2005-01-01

    Our aim is to understand the mechanism(s) of formation of carbonate assemblages in ALH84001. A prerequisite is that a detailed characterization of the chemical and physical properties of the carbonate be established. We present here analyses by transmission electron microscopy (TEM) of carbonate thin sections produced by both focused ion beam (FIB) sectioning and ultramicrotomy. Our results suggest that the formation of ALH84001 carbonate assemblages were produced by considerably more complex process(es) than simple aqueous precipitation followed by partial thermal decomposition as proposed by other investigators [e.g., 1-3].

  12. Single-ion adsorption and switching in carbon nanotubes

    SciTech Connect

    Bushmaker, Adam W.; Oklejas, Vanessa; Walker, Don; Hopkins, Alan R.; Chen, Jihan; Cronin, Stephen B.

    2016-01-25

    Single-ion detection has, for many years, been the domain of large devices such as the Geiger counter, and studies on interactions of ionized gasses with materials have been limited to large systems. To date, there have been no reports on single gaseous ion interaction with microelectronic devices, and single neutral atom detection techniques have shown only small, barely detectable responses. Here we report the observation of single gaseous ion adsorption on individual carbon nanotubes (CNTs), which, because of the severely restricted one-dimensional current path, experience discrete, quantized resistance increases of over two orders of magnitude. Only positive ions cause changes, by the mechanism of ion potentialinduced carrier depletion, which is supported by density functional and Landauer transport theory. Lastly, our observations reveal a new single-ion/CNT heterostructure with novel electronic properties, and demonstrate that as electronics are ultimately scaled towards the one-dimensional limit, atomic-scale effects become increasingly important.

  13. Single-ion adsorption and switching in carbon nanotubes

    PubMed Central

    Bushmaker, Adam W.; Oklejas, Vanessa; Walker, Don; Hopkins, Alan R.; Chen, Jihan; Cronin, Stephen B.

    2016-01-01

    Single-ion detection has, for many years, been the domain of large devices such as the Geiger counter, and studies on interactions of ionized gasses with materials have been limited to large systems. To date, there have been no reports on single gaseous ion interaction with microelectronic devices, and single neutral atom detection techniques have shown only small, barely detectable responses. Here we report the observation of single gaseous ion adsorption on individual carbon nanotubes (CNTs), which, because of the severely restricted one-dimensional current path, experience discrete, quantized resistance increases of over two orders of magnitude. Only positive ions cause changes, by the mechanism of ion potential-induced carrier depletion, which is supported by density functional and Landauer transport theory. Our observations reveal a new single-ion/CNT heterostructure with novel electronic properties, and demonstrate that as electronics are ultimately scaled towards the one-dimensional limit, atomic-scale effects become increasingly important. PMID:26805462

  14. Commissioning of a conformal irradiation system for heavy-ion radiotherapy using a layer-stacking method

    SciTech Connect

    Kanai, Tatsuaki; Kanematsu, Nobuyuki; Minohara, Shinichi; Komori, Masataka; Torikoshi, Masami; Asakura, Hiroshi; Ikeda, Noritoshi; Uno, Takayuki; Takei, Yuka

    2006-08-15

    The commissioning of conformal radiotherapy system using heavy-ion beams at the Heavy Ion Medical Accelerator in Chiba (HIMAC) is described in detail. The system at HIMAC was upgraded for a clinical trial using a new technique: large spot uniform scanning with conformal layer stacking. The system was developed to localize the irradiation dose to the target volume more effectively than with the old system. With the present passive irradiation method using a ridge filter, a scatterer, a pair of wobbler magnets, and a multileaf collimator, the width of the spread-out Bragg peak (SOBP) in the radiation field could not be changed. With dynamic control of the beam-modifying devices during irradiation, a more conformal radiotherapy could be achieved. In order to safely perform treatments with this conformal therapy, the moving devices should be watched during irradiation and the synchronousness among the devices should be verified. This system, which has to be safe for patient irradiations, was constructed and tested for safety and for the quality of the dose localization realized. Through these commissioning tests, we were successfully able to prepare the conformal technique using layer stacking for patients. Subsequent to commissioning the technique has been applied to patients in clinical trials.

  15. TAS-116, a Novel Hsp90 Inhibitor, Selectively Enhances Radiosensitivity of Human Cancer Cells to X-rays and Carbon Ion Radiation.

    PubMed

    Lee, Younghyun; Sunada, Shigeaki; Hirakawa, Hirokazu; Fujimori, Akira; Nickoloff, Jac A; Okayasu, Ryuichi

    2017-01-01

    Hsp90 inhibitors have been investigated as cancer therapeutics in monotherapy and to augment radiotherapy; however, serious adverse effects of early-generation Hsp90 inhibitors limited their development. TAS-116 is a novel Hsp90 inhibitor with lower adverse effects than other Hsp90 inhibitors, and here, we investigated the radiosensitizing effects of TAS-116 in low linear energy transfer (LET) X-ray and high LET carbon ion-irradiated human cancer cells and mouse tumor xenografts. TAS-116 decreased cell survival of both X-ray and carbon ion-irradiated human cancer cell lines (HeLa and H1299 cells), and similar to other Hsp90 inhibitors, it did not affect radiosensitivity of noncancerous human fibroblasts. TAS-116 increased the number of radiation-induced γ-H2AX foci and delayed the repair of DNA double-strand breaks (DSB). TAS-116 reduced the expression of proteins that mediate repair of DSBs by homologous recombination (RAD51) and nonhomologous end joining (Ku, DNA-PKcs), and suppressed formation of RAD51 foci and phosphorylation/activation of DNA-PKcs. TAS-116 also decreased expression of the cdc25 cell-cycle progression marker, markedly increasing G2-M arrest. Combined treatment of mouse tumor xenografts with carbon ions and TAS-116 showed promising delay in tumor growth compared with either individual treatment. These results demonstrate that TAS-116 radiosensitizes human cancer cells to both X-rays and carbon ions by inhibiting the two major DSB repair pathways, and these effects were accompanied by marked cell-cycle arrest. The promising results of combination TAS-116 + carbon ion radiotherapy of tumor xenografts justify further exploration of TAS-116 as an adjunct to radiotherapy using low or high LET radiation. Mol Cancer Ther; 16(1); 16-24. ©2016 AACR.

  16. Fluoro-Carbonate Solvents for Li-Ion Cells

    SciTech Connect

    NAGASUBRAMANIAN,GANESAN

    1999-09-17

    A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF{sub 6} was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF{sub 6} electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to <5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature.

  17. Carbon Ion Radiation Therapy for Primary Renal Cell Carcinoma: Initial Clinical Experience

    SciTech Connect

    Nomiya, Takuma Tsuji, Hiroshi; Hirasawa, Naoki; Kato, Hiroyuki; Kamada, Tadashi; Mizoe, Junetsu; Kishi, Hirohisa; Kamura, Koichi; Wada, Hitoshi; Nemoto, Kenji; Tsujii, Hirohiko

    2008-11-01

    Purpose: Renal cell carcinoma (RCC) is known as a radioresistant tumor, and there are few reports on radiotherapy for primary RCC. We evaluated the efficacy of carbon ion radiotherapy (CIRT) for patients with RCC. Methods and Materials: Data for patients with RCC who received CIRT were analyzed. A median total dose of 72 GyE (gray equivalents) in 16 fractions was administered without any additional treatment. Clinical stage was determined based on TNM classification by the International Union Against Cancer (UICC). Local recurrence was defined as definite tumor regrowth after treatment. Results: Data for 10 patients were included in the analyses, including 7 patients with Stage I and 3 patients with Stage IV (T4NxM0 or TxN2M0) disease. The median maximum diameter of the tumor was 43 mm (24-120 mm). The median follow-up for surviving patients was 57.5 months (9-111 months). The 5-year local control rate, progression-free survival rate, cause-specific survival rate, and overall survival rates were 100%, 100%, 100%, and 74%, respectively. Interestingly, treated tumors showed very slow shrinkage, and the tumor in 1 case has been shrinking for 9 years. One patient with muscular invasion (T4 tumor) developed Grade 4 skin toxicity, but no other toxicity greater than Grade 2 was observed. Conclusions: This is one of the few reports on curative radiotherapy for primary RCC. The response of the tumor to treatment was uncommon. However despite inclusion of T4 and massive tumors, favorable local controllability has been shown. The results indicate the possibility of radical CIRT, as well as surgery, for RCC.

  18. On the Energetics of Ions in Carbon and Gold Nanotubes.

    PubMed

    Mohammadzadeh, Leila; Goduljan, Aleksej; Juarez, Fernanda; Quaino, Paola; Santos, Elizabeth; Schmickler, Wolfgang

    2016-01-04

    We investigate the insertion of halide and alkali atoms into narrow single-walled carbon nanotubes with diameters <9 Å by density functional theory; both chiral and non-chiral tubes are considered. The atoms are stored in the form of ions; the concomitant charge transfer affects the band structure and makes originally semiconducting tubes conducting. The electrostatic interaction between a charge and the walls of the tube is explicitly calculated. The insertion energies and the positions of the ions are determined by a competition between electrostatic energy and Pauli repulsion. For comparison, we consider ions in gold nanotubes. Alkali ions follow the same principles in gold as in carbon tubes, but chloride is specifically adsorbed inside gold tubes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions

    PubMed Central

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-01-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient’s body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. Inmost cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. PMID:20371908

  20. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    PubMed

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  1. Carbon Ion Irradiated Neural Injury Induced the Peripheral Immune Effects in Vitro or in Vivo.

    PubMed

    Lei, Runhong; Zhao, Tuo; Li, Qiang; Wang, Xiao; Ma, Hong; Deng, Yulin

    2015-11-30

    Carbon ion radiation is a promising treatment for brain cancer; however, the immune system involved long-term systemic effects evoke a concern of complementary and alternative therapies in clinical treatment. To clarify radiotherapy caused fundamental changes in peripheral immune system, examinations were performed based on established models in vitro and in vivo. We found that brain-localized carbon ion radiation of neural cells induced complex changes in the peripheral blood, thymus, and spleen at one, two, and three months after its application. Atrophy, apoptosis, and abnormal T-cell distributions were observed in rats receiving a single high dose of radiation. Radiation downregulated the expression of proteins involved in T-cell development at the transcriptional level and increased the proportion of CD3⁺CD4(-)CD8⁺ T-cells in the thymus and the proportion of CD3⁺CD4⁺CD8(-) T-cells in the spleen. These data show that brain irradiation severely affects the peripheral immune system, even at relatively long times after irradiation. In addition, they provide valuable information that will implement the design of biological-based strategies that will aid brain cancer patients suffering from the long-term side effects of radiation.

  2. Carbon Ion Irradiated Neural Injury Induced the Peripheral Immune Effects in Vitro or in Vivo

    PubMed Central

    Lei, Runhong; Zhao, Tuo; Li, Qiang; Wang, Xiao; Ma, Hong; Deng, Yulin

    2015-01-01

    Carbon ion radiation is a promising treatment for brain cancer; however, the immune system involved long-term systemic effects evoke a concern of complementary and alternative therapies in clinical treatment. To clarify radiotherapy caused fundamental changes in peripheral immune system, examinations were performed based on established models in vitro and in vivo. We found that brain-localized carbon ion radiation of neural cells induced complex changes in the peripheral blood, thymus, and spleen at one, two, and three months after its application. Atrophy, apoptosis, and abnormal T-cell distributions were observed in rats receiving a single high dose of radiation. Radiation downregulated the expression of proteins involved in T-cell development at the transcriptional level and increased the proportion of CD3+CD4−CD8+ T-cells in the thymus and the proportion of CD3+CD4+CD8− T-cells in the spleen. These data show that brain irradiation severely affects the peripheral immune system, even at relatively long times after irradiation. In addition, they provide valuable information that will implement the design of biological-based strategies that will aid brain cancer patients suffering from the long-term side effects of radiation. PMID:26633364

  3. Antiproton induced DNA damage: proton like in flight, carbon-ion like near rest

    PubMed Central

    Kavanagh, J. N.; Currell, F. J.; Timson, D. J.; Savage, K. I.; Richard, D. J.; McMahon, S. J.; Hartley, O.; Cirrone, G. A. P.; Romano, F.; Prise, K. M.; Bassler, N.; Holzscheiter, M. H.; Schettino, G.

    2013-01-01

    Biological validation of new radiotherapy modalities is essential to understand their therapeutic potential. Antiprotons have been proposed for cancer therapy due to enhanced dose deposition provided by antiproton-nucleon annihilation. We assessed cellular DNA damage and relative biological effectiveness (RBE) of a clinically relevant antiproton beam. Despite a modest LET (~19 keV/μm), antiproton spread out Bragg peak (SOBP) irradiation caused significant residual γ-H2AX foci compared to X-ray, proton and antiproton plateau irradiation. RBE of ~1.48 in the SOBP and ~1 in the plateau were measured and used for a qualitative effective dose curve comparison with proton and carbon-ions. Foci in the antiproton SOBP were larger and more structured compared to X-rays, protons and carbon-ions. This is likely due to overlapping particle tracks near the annihilation vertex, creating spatially correlated DNA lesions. No biological effects were observed at 28–42 mm away from the primary beam suggesting minimal risk from long-range secondary particles. PMID:23640660

  4. Development of a facility for high-precision irradiation of cells with carbon ions

    SciTech Connect

    Goethem, Marc-Jan van; Niemantsverdriet, Maarten; Brandenburg, Sytze; Langendijk, Johannes A.; Coppes, Robert P.; Luijk, Peter van

    2011-01-15

    Purpose: Compared to photons, using particle radiation in radiotherapy reduces the dose and irradiated volume of normal tissues, potentially reducing side effects. The biological effect of dose deposited by particles such as carbon ions, however, differs from that of dose deposited by photons. The inaccuracy in models to estimate the biological effects of particle radiation remains the most important source of uncertainties in particle therapy. Improving this requires high-precision studies on biological effects of particle radiation. Therefore, the authors aimed to develop a facility for reproducible and high-precision carbon-ion irradiation of cells in culture. The combined dose nonuniformity in the lateral and longitudinal direction should not exceed {+-}1.5%. Dose to the cells from particles than other carbon ions should not exceed 5%. Methods: A uniform lateral dose distribution was realized using a single scatter foil and quadrupole magnets. A modulator wheel was used to create a uniform longitudinal dose distribution. The choice of beam energy and the optimal design of these components was determined using GEANT4 and SRIM Monte Carlo simulations. Verification of the uniformity of the dose distribution was performed using a scintillating screen (lateral) and a water phantom (longitudinal). The reproducibility of dose delivery between experiments was assessed by repeated measurements of the spatial dose distribution. Moreover, the reproducibility of dose-response measurements was tested by measuring the survival of irradiated HEK293 cells in three independent experiments. Results: The relative contribution of dose from nuclear reaction fragments to the sample was found to be <5% when using 90 MeV/u carbon ions. This energy still allows accurate dosimetry conforming to the IAEA Report TRS-398, facilitating comparison to dose-effect data obtained with other radiation qualities. A 1.3 mm long spread-out Bragg peak with a diameter of 30 mm was created, allowing

  5. Raman spectroscopy of ion-irradiated interplanetary carbon dust analogues

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Mennella, V.; Brucato, J. R.; Colangeli, L.; Leto, G.; Palumbo, M. E.; Strazzulla, G.

    Interplanetary dust particles (IDPs) and meteorites provide an unique opportunity to study extraterrestrial materials in laboratory. Different Raman studies have shown that most of IDPs exhibit the characteristic amorphous carbon Raman feature. Different degrees of order have been recognised in the amorphous carbon phase of IDPs testifying either to different origin or to different processing under different physical conditions (temperature, pressure etc.). This paper presents a comparison between the amorphous carbon Raman features of IDPs, and those of carbon dust analogues obtained in the laboratory by ion irradiation of carbon containing frozen gases and by arc discharge. We propose a possible mechanism able to induce an "evolution" of IDPs. In particular amorphous carbon with different degrees of order could be indicative of different irradiation doses by solar wind particles and fast solar protons, suffered by IDPs in the interplanetary medium before collection in the Earth's atmosphere.

  6. Application of ion beams for polymeric carbon based biomaterials

    NASA Astrophysics Data System (ADS)

    Evelyn, A. L.

    2001-07-01

    Ion beams have been shown to be quite suitable for the modification and analysis of carbon based biomaterials. Glassy polymeric carbon (GPC), made from cured phenolic resins, has a high chemical inertness that makes it useful as a biomaterial in medicine for drug delivery systems and for the manufacture of heart valves and other prosthetic devices. Low and high-energy ion beams have been used, with both partially and fully cured phenolic resins, to enhance biological cell/tissue growth on, and to increase tissue adhesion to GPC surfaces. Samples bombarded with energetic ion beams in the keV to MeV range exhibited increased surface roughness, measured using optical microscopy and atomic force microscopy. Ion beams were also used to perform nuclear reaction analyses of GPC encapsulated drugs for use in internal drug delivery systems. The results from the high energy bombardment were more dramatic and are shown in this paper. The interaction of energetic ions has demonstrated the useful application of ion beams to enhance the properties of carbon-based biomaterials.

  7. Carbon ion irradiation of the human prostate cancer cell line PC3: A whole genome microarray study

    PubMed Central

    SUETENS, ANNELIES; MOREELS, MARJAN; QUINTENS, ROEL; CHIRIOTTI, SABINA; TABURY, KEVIN; MICHAUX, ARLETTE; GRÉGOIRE, VINCENT; BAATOUT, SARAH

    2014-01-01

    Hadrontherapy is a form of external radiation therapy, which uses beams of charged particles such as carbon ions. Compared to conventional radiotherapy with photons, the main advantage of carbon ion therapy is the precise dose localization along with an increased biological effectiveness. The first results obtained from prostate cancer patients treated with carbon ion therapy showed good local tumor control and survival rates. In view of this advanced treatment modality we investigated the effects of irradiation with different beam qualities on gene expression changes in the PC3 prostate adenocarcinoma cell line. For this purpose, PC3 cells were irradiated with various doses (0.0, 0.5 and 2.0 Gy) of carbon ions (LET=33.7 keV/μm) at the beam of the Grand Accélérateur National d’Ions Lourds (Caen, France). Comparative experiments with X-rays were performed at the Belgian Nuclear Research Centre. Genome-wide gene expression was analyzed using microarrays. Our results show a downregulation in many genes involved in cell cycle and cell organization processes after 2.0 Gy irradiation. This effect was more pronounced after carbon ion irradiation compared with X-rays. Furthermore, we found a significant downregulation of many genes related to cell motility. Several of these changes were confirmed using qPCR. In addition, recurrence-free survival analysis of prostate cancer patients based on one of these motility genes (FN1) revealed that patients with low expression levels had a prolonged recurrence-free survival time, indicating that this gene may be a potential prognostic biomarker for prostate cancer. Understanding how different radiation qualities affect the cellular behavior of prostate cancer cells is important to improve the clinical outcome of cancer radiation therapy. PMID:24504141

  8. Carbon ion irradiation of the human prostate cancer cell line PC3: a whole genome microarray study.

    PubMed

    Suetens, Annelies; Moreels, Marjan; Quintens, Roel; Chiriotti, Sabina; Tabury, Kevin; Michaux, Arlette; Grégoire, Vincent; Baatout, Sarah

    2014-04-01

    Hadrontherapy is a form of external radiation therapy, which uses beams of charged particles such as carbon ions. Compared to conventional radiotherapy with photons, the main advantage of carbon ion therapy is the precise dose localization along with an increased biological effectiveness. The first results obtained from prostate cancer patients treated with carbon ion therapy showed good local tumor control and survival rates. In view of this advanced treatment modality we investigated the effects of irradiation with different beam qualities on gene expression changes in the PC3 prostate adenocarcinoma cell line. For this purpose, PC3 cells were irradiated with various doses (0.0, 0.5 and 2.0 Gy) of carbon ions (LET=33.7 keV/µm) at the beam of the Grand Accélérateur National d'Ions Lourds (Caen, France). Comparative experiments with X-rays were performed at the Belgian Nuclear Research Centre. Genome-wide gene expression was analyzed using microarrays. Our results show a downregulation in many genes involved in cell cycle and cell organization processes after 2.0 Gy irradiation. This effect was more pronounced after carbon ion irradiation compared with X-rays. Furthermore, we found a significant downregulation of many genes related to cell motility. Several of these changes were confirmed using qPCR. In addition, recurrence-free survival analysis of prostate cancer patients based on one of these motility genes (FN1) revealed that patients with low expression levels had a prolonged recurrence-free survival time, indicating that this gene may be a potential prognostic biomarker for prostate cancer. Understanding how different radiation qualities affect the cellular behavior of prostate cancer cells is important to improve the clinical outcome of cancer radiation therapy.

  9. Residual chromatin breaks as biodosimetry for cell killing by carbon ions.

    PubMed

    Suzuki, M; Kase, Y; Nakano, T; Kanai, T; Ando, K

    1998-01-01

    We have studied the relationship between cell killing and the induction of residual chromatin breaks on various human cell lines and primary cultured cells obtained by biopsy from patients irradiated with either X-rays or heavy-ion beams to identify potential bio-marker of radiosensitivity for radiation-induced cell killing. The carbon-ion beams were accelerated with the Heavy Ion Medical Accelerator in Chiba (HIMAC). Six primary cultures obtained by biopsy from 6 patients with carcinoma of the cervix were irradiated with two different mono-LET beams (LET = 13 keV/micrometer, 76 keV/micrometer) and 200kV X rays. Residual chromatin breaks were measured by counting the number of non-rejoining chromatin fragments detected by the premature chromosome condensation (PCC) technique after a 24 hour post-irradiation incubation period. The induction rate of residual chromatin breaks per cell per Gy was the highest for 76 keV/micrometer beams on all of the cells. Our results indicated that cell which was more sensitive to the cell killing was similarly more susceptible to induction of residual chromatin breaks. Furthermore there is a good correlation between these two end points in various cell lines and primary cultured cells. This suggests that the detection of residual chromatin breaks by the PCC technique may be useful as a predictive assay of tumor response to cancer radiotherapy.

  10. Residual chromatin breaks as biodosimetry for cell killing by carbon ions

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Kase, Y.; Nakano, T.; Kanai, T.; Ando, K.

    1998-11-01

    We have studied the relationship between cell killing and the induction of residual chromatin breaks on various human cell lines and primary cultured cells obtained by biopsy from patients irradiated with either X-rays or heavy-ion beams to identify potential bio-marker of radiosensitivity for radiation-induced cell killing. The carbon-ion beams were accelerated with the Heavy Ion Medical Accelerator in Chiba (HIMAC). Six primary cultures obtained by biopsy from 6 patients with carcinoma of the cervix were irradiated with two different mono-LET beams (LET = 13 keV/μm, 76 keV/μm) and 200kV X rays. Residual chromatin breaks were measured by counting the number of non-rejoining chromatin fragments detected by the premature chromosome condensation (PCC) technique after a 24 hour post-irradiation incubation period. The induction rate of residual chromatin breaks per cell per Gy was the highest for 76 keV/μm beams on all of the cells. Our results indicated that cell which was more sensitive to the cell killing was similarly more susceptible to induction of residual chromatin breaks. Furthermore there is a good correlation between these two end points in various cell lines and primary cultured cells. This suggests that the detection of residual chromatin breaks by the PCC technique may be useful as a predictive assay of tumor response to cancer radiotherapy.

  11. Ion Irradiation of Carbon Nanotubes: a STM Study

    NASA Astrophysics Data System (ADS)

    Osváth, Z.; Vértesy, G.; Horváth, Z. E.; Gyulai, J.; Biró, L. P.

    2009-03-01

    Multi-walled carbon nanotubes irradiated with Ar+ ions of low (5×1011 ions/cm2) and high (1015 ions/cm2) fluences were investigated by STM. Contrary to the case of low fluence irradiation, the defects produced during the high fluence irradiation could not be observed individually, and the surface of nanotubes became rough. Irradiated nanotubes could be easily bent by the STM tip. However, some nanotubes parts could not be moved, which suggest that these parts were bound to the substrate during irradiation.

  12. Fabrication of Graphene Using Carbon Ion Implantation

    NASA Astrophysics Data System (ADS)

    Colon, Tomeka; Smith, Cydale; Muntele, Claudiu

    2012-02-01

    Graphene is a flat monolayer of carbon atoms tightly packed into a two-dimensional (2D) honeycomb lattice and is a basic building block for graphitic materials of all other dimensionalities. It can be wrapped up into 0D fullerenes, rolled into 1D nanotubes, or stacked into 3D graphite. Graphene's high electrical conductivity and high optical transparency make it a candidate for transparent conducting electrodes, required for such applications as touchscreens, liquid crystal displays, organic photovoltaic cells, and organic light-emitting diodes. In particular, graphene's mechanical strength and flexibility are advantageous compared to indium tin oxide, which is brittle, and graphene films may be deposited from solution over large areas. One method to grow epitaxial graphene is by starting with single crystal silicon carbide (SiC). When SiC is heated under certain conditions, silicon evaporates leaving behind carbon that reorganizes into layers of graphene. Here we report on an alternate method of producing graphene by using low energy carbon implantation in a nickel layer deposited on silicon dioxide mechanical support, followed by heat treatment in a reducing atmosphere to induce carbon migration and self-assembly. We used high resolution RBS and Raman spectroscopy for process and sample characterization. Details will be discussed during the meeting.

  13. Brain Injury After Proton Therapy or Carbon Ion Therapy for Head-and-Neck Cancer and Skull Base Tumors

    SciTech Connect

    Miyawaki, Daisuke Murakami, Masao; Demizu, Yusuke; Sasaki, Ryohei; Niwa, Yasue; Terashima, Kazuki; Nishimura, Hideki; Hishikawa, Yoshio; Sugimura, Kazuro

    2009-10-01

    Purpose: To assess the incidence of early delayed or late morbidity of Brain after particle therapy for skull base tumors and head-and-neck cancers. Methods and Materials: Between May 2001 and December 2005, 59 patients with cancerous invasion of the skull base were treated with proton or carbon ion therapy at the Hyogo Ion Beam Medical Center. Adverse events were assessed according to the magnetic resonance imaging findings (late effects of normal tissue-subjective, objective, management, analytic [LENT-SOMA]) and symptoms (Common Terminology Criteria for Adverse Events [CTCAE], version 3.0). Dose-volume histograms were used to analyze the relationship between the dose and volume of the irradiated brain and the occurrence of brain injury. The median follow-up time was 33 months. Results: Of the 48 patients treated with proton therapy and 11 patients treated with carbon ion radiotherapy, 8 (17%) and 7 (64%), respectively, developed radiation-induced brain changes (RIBCs) on magnetic resonance imaging (LENT-SOMA Grade 1-3). Four patients (7%) had some clinical symptoms, such as vertigo and headache (CTCAE Grade 2) or epilepsy (CTCAE Grade 3). The actuarial occurrence rate of RIBCs at 2 and 3 years was 20% and 39%, respectively, with a significant difference in the incidence between the proton and carbon ion radiotherapy groups. The dose-volume histogram analyses revealed significant differences between Brain lobes with and without RIBCs in the actuarial volume of brain lobes receiving high doses. Conclusion: Particle therapies produced minimal symptomatic brain toxicities, but sequential evaluation with magnetic resonance imaging detected a greater incidence of RIBCs. Significant differences were observed in the irradiated brain volume between Brain lobes with and without RIBCs.

  14. 4D ML reconstruction as a tool for volumetric PET-based treatment verification in ion beam radiotherapy

    SciTech Connect

    De Bernardi, E.; Ricotti, R.; Riboldi, M.; Baroni, G.; Parodi, K.; Gianoli, C.

    2016-02-15

    Purpose: An innovative strategy to improve the sensitivity of positron emission tomography (PET)-based treatment verification in ion beam radiotherapy is proposed. Methods: Low counting statistics PET images acquired during or shortly after the treatment (Measured PET) and a Monte Carlo estimate of the same PET images derived from the treatment plan (Expected PET) are considered as two frames of a 4D dataset. A 4D maximum likelihood reconstruction strategy was adapted to iteratively estimate the annihilation events distribution in a reference frame and the deformation motion fields that map it in the Expected PET and Measured PET frames. The outputs generated by the proposed strategy are as follows: (1) an estimate of the Measured PET with an image quality comparable to the Expected PET and (2) an estimate of the motion field mapping Expected PET to Measured PET. The details of the algorithm are presented and the strategy is preliminarily tested on analytically simulated datasets. Results: The algorithm demonstrates (1) robustness against noise, even in the worst conditions where 1.5 × 10{sup 4} true coincidences and a random fraction of 73% are simulated; (2) a proper sensitivity to different kind and grade of mismatches ranging between 1 and 10 mm; (3) robustness against bias due to incorrect washout modeling in the Monte Carlo simulation up to 1/3 of the original signal amplitude; and (4) an ability to describe the mismatch even in presence of complex annihilation distributions such as those induced by two perpendicular superimposed ion fields. Conclusions: The promising results obtained in this work suggest the applicability of the method as a quantification tool for PET-based treatment verification in ion beam radiotherapy. An extensive assessment of the proposed strategy on real treatment verification data is planned.

  15. Detection of single ion channel activity with carbon nanotubes

    PubMed Central

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level. PMID:25778101

  16. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  17. Vibrational Spectroscopy in Ion-Irradiated Carbon-Based Thin Films

    NASA Astrophysics Data System (ADS)

    Compagnini, Giuseppe; Puglisi, Orazio; Baratta, Giuseppe A.; Strazzulla, Giovanni

    In this work we present and discuss some selected experiments on ion-irradiated carbon-based thin films. Vibrational spectroscopy is used to investigate the materials structure and to explore the mechanisms of ion beam-induced modifications in many carbon solids such as crystalline carbon and carbon alloys, hydrocarbon molecules and exotic carbon species.

  18. Comparison of the Effects of Carbon Ion and Photon Irradiation on the Angiogenic Response in Human Lung Adenocarcinoma Cells

    SciTech Connect

    Kamlah, Florentine; Haenze, Joerg; Arenz, Andrea; Seay, Ulrike; Hasan, Diya; Gottschald, Oana R.; Seeger, Werner; Rose, Frank

    2011-08-01

    Purpose: Radiotherapy resistance is a commonly encountered problem in cancer treatment. In this regard, stabilization of endothelial cells and release of angiogenic factors by cancer cells contribute to this problem. In this study, we used human lung adenocarcinoma (A549) cells to compare the effects of carbon ion and X-ray irradiation on the cells' angiogenic response. Methods and Materials: A549 cells were irradiated with biologically equivalent doses for cell survival of either carbon ions (linear energy transfer, 170 keV/{mu}m; energy of 9.8 MeV/u on target) or X-rays and injected with basement membrane matrix into BALB/c nu/nu mice to generate a plug, allowing quantification of angiogenesis by blood vessel enumeration. The expression of angiogenic factors (VEGF, PlGF, SDF-1, and SCF) was assessed at the mRNA and secreted protein levels by using real-time reverse transcription-PCR and enzyme-linked immunosorbent assay. Signal transduction mediated by stem cell factor (SCF) was assessed by phosphorylation of its receptor c-Kit. For inhibition of SCF/c-Kit signaling, a specific SCF/c-Kit inhibitor (ISCK03) was used. Results: Irradiation of A549 cells with X-rays (6 Gy) but not carbon ions (2 Gy) resulted in a significant increase in blood vessel density (control, 20.71 {+-} 1.55; X-ray, 36.44 {+-} 3.44; carbon ion, 16.33 {+-} 1.03; number per microscopic field). Concordantly, irradiation with X-rays but not with carbon ions increased the expression of SCF and subsequently caused phosphorylation of c-Kit in endothelial cells. ISCK03 treatment of A549 cells irradiated with X-rays (6 Gy) resulted in a significant decrease in blood vessel density (X-ray, 36.44 {+-} 3.44; X-ray and ISCK03, 4.33 {+-} 0.71; number of microscopic field). These data indicate that irradiation of A549 cells with X-rays but not with carbon ions promotes angiogenesis. Conclusions: The present study provides evidence that SCF is an X-ray-induced mediator of angiogenesis in A549 cells, a

  19. Ion beam and plasma methods of producing diamondlike carbon films

    NASA Technical Reports Server (NTRS)

    Swec, Diane M.; Mirtich, Michael J.; Banks, Bruce A.

    1988-01-01

    A variety of plasma and ion beam techniques was employed to generate diamondlike carbon films. These methods included the use of RF sputtering, dc glow discharge, vacuum arc, plasma gun, ion beam sputtering, and both single and dual ion beam deposition. Since films were generated using a wide variety of techniques, the physico-chemical properties of these films varied considerably. In general, these films had characteristics that were desirable in a number of applications. For example, the films generated using both single and dual ion beam systems were evaluated for applications including power electronics as insulated gates and protective coatings on transmitting windows. These films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Nuclear reaction and combustion analysis indicated hydrogen to carbon ratios to be 1.00, which allowed the films to have good transmittance not only in the infrared, but also in the visible. Other evaluated properties of these films include band gap, resistivity, adherence, density, microhardness, and intrinsic stress. The results of these studies and those of the other techniques for depositing diamondlike carbon films are presented.

  20. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  1. Risk factors of late rectal bleeding after carbon ion therapy for prostate cancer

    SciTech Connect

    Ishikawa, Hitoshi; Tsuji, Hiroshi . E-mail: h_tsuji@nirs.go.jp; Kamada, Tadashi; Hirasawa, Naoki; Yanagi, Takeshi; Mizoe, Jun-Etsu; Akakura, Koichiro; Suzuki, Hiroyoshi; Shimazaki, Jun; Tsujii, Hirohiko

    2006-11-15

    Purpose: The aim of this study was to determine the risk factors for late gastrointestinal (GI) morbidity after hypofractionated carbon ion radiotherapy (C-ion RT) for prostate cancer. Methods and Materials: Between April 2000 and November 2003, a Phase II clinical trial of C-ion RT with a total dose of 66 GyE in 20 fractions was performed on 175 patients with prostate cancer, and the correlations of clinical and dosimetric parameters with the incidence of late GI toxicity in 172 patients who survived for more than 18 months were investigated. Results: Although no Grade 3-4 late morbidities of the rectum were observed, Grade 1 and 2 morbidities developed in 23 (13%) and 4 (2%) patients, respectively. Dose-volume histogram analysis revealed that the percentage of rectal volume receiving 50% of the prescribed dose (V50) was significantly higher in patients with rectal toxicity than without toxicity (13.2 {+-} 5.6% with toxicity; 11.4 {+-} 4.0% without toxicity, p = 0.046). Multivariate analysis demonstrated that the use of anticoagulation therapy (p = 0.010) and rectal V50 (p = 0.012) were significant risk factors for the occurrence of Grade 1-2 late GI toxicity. Conclusions: Although C-ion RT with hypofractionation yielded favorable results regarding late GI complication, dosimetric parameter was a very important factor in the occurrence of rectal bleeding after C-ion RT as well as photon beam RT. Our results provide useful information for physicians applying charged particle RT in the treatment of prostate cancer.

  2. Ion Exclusion by Sub 2-nm Carbon Nanotube Pores

    SciTech Connect

    Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-04-09

    Carbon nanotubes offer an outstanding platform for studying molecular transport at nanoscale, and have become promising materials for nanofluidics and membrane technology due to their unique combination of physical, chemical, mechanical, and electronic properties. In particular, both simulations and experiments have proved that fluid flow through carbon nanotubes of nanometer size diameter is exceptionally fast compared to what continuum hydrodynamic theories would predict when applied on this length scale, and also, compared to conventional membranes with pores of similar size, such as zeolites. For a variety of applications such as separation technology, molecular sensing, drug delivery, and biomimetics, selectivity is required together with fast flow. In particular, for water desalination, coupling the enhancement of the water flux with selective ion transport could drastically reduce the cost of brackish and seawater desalting. In this work, we study the ion selectivity of membranes made of aligned double-walled carbon nanotubes with sub-2 nm diameter. Negatively charged groups are introduced at the opening of the carbon nanotubes by oxygen plasma treatment. Reverse osmosis experiments coupled with capillary electrophoresis analysis of permeate and feed show significant anion and cation rejection. Ion exclusion declines by increasing ionic strength (concentration) of the feed and by lowering solution pH; also, the highest rejection is observed for the A{sub m}{sup Z{sub A}} C{sub n}{sup Z{sub C}} salts (A=anion, C=cation, z= valence) with the greatest Z{sub A}/Z{sub C} ratio. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion

  3. Carbon-Based Ion Optics Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Haag, Thomas; Patterson, Michael; Rawlin, Vince; Soulas, George

    2002-01-01

    With recent success of the NSTAR ion thruster on Deep Space 1, there is continued interest in long term, high propellant throughput thrusters to perform energetic missions. This requires flight qualified thrusters that can operate for long periods at high beam density, without degradation in performance resulting from sputter induced grid erosion. Carbon-based materials have shown nearly an order of magnitude improvement in sputter erosion resistance over molybdenum. NASA Glenn Research Center (GRC) has been active over the past several years pursuing carbon-based grid development. In 1995, NASA GRC sponsored work performed by the Jet Propulsion Laboratory to fabricate carbon/carbon composite grids using a machined panel approach. In 1999, a contract was initiated with a commercial vendor to produce carbon/carbon composite grids using a chemical vapor infiltration process. In 2001, NASA GRC purchased pyrolytic carbon grids from a commercial vendor. More recently, a multi-year contract was initiated with North Carolina A&T to develop carbon/carbon composite grids using a resin injection process. The following paper gives a brief overview of these four programs.

  4. Dose- and time-dependent gene expression alterations in prostate and colon cancer cells after in vitro exposure to carbon ion and X-irradiation

    PubMed Central

    Suetens, Annelies; Moreels, Marjan; Quintens, Roel; Soors, Els; Buset, Jasmine; Chiriotti, Sabina; Tabury, Kevin; Gregoire, Vincent; Baatout, Sarah

    2015-01-01

    Hadrontherapy is an advanced form of radiotherapy that uses beams of charged particles (such as protons and carbon ions). Compared with conventional radiotherapy, the main advantages of carbon ion therapy are the precise absorbed dose localization, along with an increased relative biological effectiveness (RBE). This high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. Currently, hadrontherapy is being used for the treatment of specific types of cancer. Previous in vitro studies have shown that, under certain circumstances, exposure to charged particles may inhibit cell motility and migration. In the present study, we investigated the expression of four motility-related genes in prostate (PC3) and colon (Caco-2) cancer cell lines after exposure to different radiation types. Cells were irradiated with various absorbed doses (0, 0.5 and 2 Gy) of accelerated 13C-ions at the GANIL facility (Caen, France) or with X-rays. Clonogenic assays were performed to determine the RBE. RT-qPCR analysis showed dose- and time-dependent changes in the expression of CCDC88A, FN1, MYH9 and ROCK1 in both cell lines. However, whereas in PC3 cells the response to carbon ion irradiation was enhanced compared with X-irradiation, the effect was the opposite in Caco-2 cells, indicating cell-type–specific responses to the different radiation types. PMID:25190155

  5. Spectral properties of ion irradiated carbon rich solids

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Baratta, G.; Brunetto, R.; Garozzo, M.; Kanuchova, Z.

    2009-04-01

    Carbon rich solid materials have been studied before, during, and after ion irradiation (3-400 keV ions) by in situ reflectance spectroscopy (from UV to IR). Frozen hydrocarbons (benzene, methane, butane, acetylene, etc., also mixed with water ice) have been irradiated at low temperature with fast ions. Irradiation causes the formation of many molecular species and of a long chain polymer like material (organic refractory residue). The process mimics what occurs in space because of cosmic ion irradiation of the icy surfaces of some objects in the Solar System. Other irradiated materials include natural bitumens (Asphaltite, kerite) and polymers (i.e. polystyrene). Upon irradiation the originally transparent polymer samples are converted in a material that, already at low doses, strongly absorbs in the UV. Such materials could mimic a kind of organic material (i.e. a spectrally neutral one) freshly exposed at the surface of minor objects in the Solar System because of meteoritic impact.

  6. ION EXCHANGE PERFORMANCE OF TITANOSILICATES, GERMANATES AND CARBON NANOTUBES

    SciTech Connect

    Alsobrook, A. N.; Hobbs, D. T.

    2013-04-24

    This report presents a summary of testing the affinity of titanosilicates (TSP), germanium-substituted titanosilicates (Ge-TSP) and multiwall carbon nanotubes (MWCNT) for lanthanide ions in dilute nitric acid solution. The K-TSP ion exchanger exhibited the highest affinity for lanthanides in dilute nitric acid solutions. The Ge-TSP ion exchanger shows promise as a material with high affinity, but additional tests are needed to confirm the preliminary results. The MWCNT exhibited much lower affinities than the K-TSP in dilute nitric acid solutions. However, the MWCNT are much more chemically stable to concentrated nitric acid solutions and, therefore, may candidates for ion exchange in more concentrated nitric acid solutions. This technical report serves as the deliverable documenting completion of the FY13 research milestone, M4FT-13SR0303061 – measure actinide and lanthanide distribution values in nitric acid solutions with sodium and potassium titanosilicate materials.

  7. Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology.

    PubMed

    Schreiber, Eric C; Chang, Sha X

    2012-08-01

    Microbeam radiation therapy (MRT) is an experimental radiotherapy technique that has shown potent antitumor effects with minimal damage to normal tissue in animal studies. This unique form of radiation is currently only produced in a few large synchrotron accelerator research facilities in the world. To promote widespread translational research on this promising treatment technology we have proposed and are in the initial development stages of a compact MRT system that is based on carbon nanotube field emission x-ray technology. We report on a Monte Carlo based feasibility study of the compact MRT system design. Monte Carlo calculations were performed using EGSnrc-based codes. The proposed small animal research MRT device design includes carbon nanotube cathodes shaped to match the corresponding MRT collimator apertures, a common reflection anode with filter, and a MRT collimator. Each collimator aperture is sized to deliver a beam width ranging from 30 to 200 μm at 18.6 cm source-to-axis distance. Design parameters studied with Monte Carlo include electron energy, cathode design, anode angle, filtration, and collimator design. Calculations were performed for single and multibeam configurations. Increasing the energy from 100 kVp to 160 kVp increased the photon fluence through the collimator by a factor of 1.7. Both energies produced a largely uniform fluence along the long dimension of the microbeam, with 5% decreases in intensity near the edges. The isocentric dose rate for 160 kVp was calculated to be 700 Gy∕min∕A in the center of a 3 cm diameter target. Scatter contributions resulting from collimator size were found to produce only small (<7%) changes in the dose rate for field widths greater than 50 μm. Dose vs depth was weakly dependent on filtration material. The peak-to-valley ratio varied from 10 to 100 as the separation between adjacent microbeams varies from 150 to 1000 μm. Monte Carlo simulations demonstrate that the proposed compact MRT system

  8. Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology

    PubMed Central

    Schreiber, Eric C.; Chang, Sha X.

    2012-01-01

    Purpose: Microbeam radiation therapy (MRT) is an experimental radiotherapy technique that has shown potent antitumor effects with minimal damage to normal tissue in animal studies. This unique form of radiation is currently only produced in a few large synchrotron accelerator research facilities in the world. To promote widespread translational research on this promising treatment technology we have proposed and are in the initial development stages of a compact MRT system that is based on carbon nanotube field emission x-ray technology. We report on a Monte Carlo based feasibility study of the compact MRT system design. Methods: Monte Carlo calculations were performed using EGSnrc-based codes. The proposed small animal research MRT device design includes carbon nanotube cathodes shaped to match the corresponding MRT collimator apertures, a common reflection anode with filter, and a MRT collimator. Each collimator aperture is sized to deliver a beam width ranging from 30 to 200 μm at 18.6 cm source-to-axis distance. Design parameters studied with Monte Carlo include electron energy, cathode design, anode angle, filtration, and collimator design. Calculations were performed for single and multibeam configurations. Results: Increasing the energy from 100 kVp to 160 kVp increased the photon fluence through the collimator by a factor of 1.7. Both energies produced a largely uniform fluence along the long dimension of the microbeam, with 5% decreases in intensity near the edges. The isocentric dose rate for 160 kVp was calculated to be 700 Gy/min/A in the center of a 3 cm diameter target. Scatter contributions resulting from collimator size were found to produce only small (<7%) changes in the dose rate for field widths greater than 50 μm. Dose vs depth was weakly dependent on filtration material. The peak-to-valley ratio varied from 10 to 100 as the separation between adjacent microbeams varies from 150 to 1000 μm. Conclusions: Monte Carlo simulations demonstrate

  9. Design and performance of daily quality assurance system for carbon ion therapy at NIRS

    NASA Astrophysics Data System (ADS)

    Saotome, N.; Furukawa, T.; Hara, Y.; Mizushima, K.; Tansho, R.; Saraya, Y.; Shirai, T.; Noda, K.

    2017-09-01

    At National Institute of Radiological Sciences (NIRS), we have been commissioning a rotating-gantry system for carbon-ion radiotherapy. This rotating gantry can transport heavy ions at 430 MeV/u to an isocenter with irradiation angles of ±180° that can rotate around the patient so that the tumor can be irradiated from any direction. A three-dimensional pencil-beam scanning irradiation system equipped with the rotating gantry enables the optimal use of physical characteristics of carbon ions to provide accurate treatment. To ensure the treatment quality using such a complex system, the calibration of the primary dose monitor, output check, range check, dose rate check, machine safety check, and some mechanical tests should be performed efficiently. For this purpose, we have developed a measurement system dedicated for quality assurance (QA) of this gantry system: the Daily QA system. The system consists of an ionization chamber system and a scintillator system. The ionization chamber system is used for the calibration of the primary dose monitor, output check, and dose rate check, and the scintillator system is used for the range check, isocenter, and gantry angle. The performance of the Daily QA system was verified by a beam test. The stability of the output was within 0.5%, and the range was within 0.5 mm. The coincidence of the coordinates between the patient-positioning system and the irradiation system was verified using the Daily QA system. Our present findings verified that the new Daily QA system for a rotating gantry is capable of verifying the irradiation system with sufficient accuracy.

  10. Influence of Age on the Relative Biological Effectiveness of Carbon Ion Radiation for Induction of Rat Mammary Carcinoma

    SciTech Connect

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Daino, Kazuhiro; Kokubo, Toshiaki; Doi, Kazutaka; Iizuka, Daisuke; Nishimura, Yukiko; Okutani, Tomomi; Takabatake, Masaru; Kakinuma, Shizuko; Shimada, Yoshiya

    2013-03-15

    Purpose: The risk of developing secondary cancer after radiotherapy, especially after treatment of childhood cancers, remains a matter of concern. The high biological effects of carbon-ion radiation have enabled powerful radiotherapy, yet the approach is commonly restricted to the treatment of adults. Susceptibility of the fetus to particle radiation–induced cancer is also unclear. The present study is aimed to investigate the effect of carbon-ion irradiation in childhood on breast carcinogenesis. Methods and Materials: We irradiated female Sprague-Dawley rats of various ages (embryonic days 3, 13, and 17 and 1, 3, 7, and 15 weeks after birth) with {sup 137}Cs γ rays or a 290-MeV/u monoenergetic carbonion beam (linear energy transfer, 13 keV/μm). All animals were screened weekly for mammary carcinoma by palpation until they were 90 weeks old. Results: Irradiation of fetal and mature (15-week-old) rats with either radiation source at a dose of 0.2 or 1 Gy did not substantially increase the hazard ratio compared with the nonirradiated group. Dose responses (0.2-2.0 Gy) to γ rays were similar among the groups of rats irradiated 1, 3, and 7 weeks after birth. The effect of carbon ions increased along with the age at the time of irradiation, indicating relative biological effectiveness values of 0.2 (−0.3, 0.7), 1.3 (1.0, 1.6), and 2.8 (1.8, 3.9) (mean and 95% confidence interval) for animals that were 1, 3, and 7 weeks of age, respectively. Conclusions: Our findings imply that carbonion therapy may be associated with a risk of secondary breast cancer in humans, the extent of which may depend on the age of the patient at the time of irradiation.

  11. Curative treatment of Stage I non-small-cell lung cancer with carbon ion beams using a hypofractionated regimen

    SciTech Connect

    Miyamoto, Tadaaki . E-mail: t_miyamt@nirs.go.jp; Baba, Masayuki; Yamamoto, Naoyoshi; Koto, Masashi; Sugawara, Toshiyuki; Yashiro, Tomoyasu; Kadono, Kennoshuke; Ezawa, Hidefumi; Tsujii, Hirohiko; Mizoe, Jun-Etsu; Yoshikawa, Kyosan; Kandatsu, Susumu; Fujisawa, Takehiko

    2007-03-01

    Purpose: A phase I/II study on carbon ion radiotherapy for Stage I non-small-cell lung cancer (NSCLC) was first conducted between 1994 and 1999 and determined the optimal dose. Second, a Phase II study using the optimal dose was performed. The purpose of the present study was to clarify the local control and 5-year survival rates. Methods and Materials: Between April 1999 and December 2000, 50 patients with 51 primary lesions were treated. Using a fixed dose of 72 GyE in nine fractions over 3 weeks, the primary tumors were irradiated with carbon ion beams alone. The average age of the patients was 74.5 years. Thirty-three (66%) of these were medically inoperable. Local control and survival were determined by using the Kaplan-Meier method and the data were statistically processed by using the log-rank test. Results: All patients were observed for a minimum of 5 years or until death with a median follow-up time of 59.2 months (range, 6.0-83.0 months). The local control rate for all patients was 94.7%. The patients' 5-year cause-specific survival rate was 75.7% (IA: 89.4; IB: 55.1), and overall survival 50.0% (IA: 55.2; IB: 42.9). No toxic reactions in the lung greater than Grade 3 were detected. Conclusions: Carbon ion radiotherapy, a new treatment modality with superior benefits in terms of quality of life and activity of daily living, has been proven as a valid alternative to surgery for Stage I NSCLC and to offer particular benefits, especially for elderly and inoperable patients.

  12. WIMP detection and slow ion dynamics in carbon nanotube arrays.

    PubMed

    Cavoto, G; Cirillo, E N M; Cocina, F; Ferretti, J; Polosa, A D

    2016-01-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs ([Formula: see text] GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency.

  13. Carbon Nanotube Based Deuterium Ion Source for Improved Neutron Generators

    SciTech Connect

    Fink, R. L.; Jiang, N.; Thuesen, L.; Leung, K. N.; Antolak, A. J.

    2009-03-10

    Field ionization uses high electric fields to cause the ionization and emission of ions from the surface of a sharp electrode. We are developing a novel field ionization neutron generator using carbon nanotubes (CNT) to produce the deuterium ion current. The generator consists of three major components: a deuterium ion source made of carbon nanotubes, a smooth negatively-biased target electrode, and a secondary electron suppression system. When a negative high voltage is applied on the target electrode, a high gradient electric field is formed at the tips of the carbon nanotubes. This field is sufficiently strong to create deuterium (D) ions at or near the nanotubes which are accelerated to the target causing D-D reactions to occur and the production of neutrons. A cross magnetic field is used to suppress secondary emission electrons generated on the target surface. We have demonstrated field ionization currents of 70 nA (1 {mu}A/cm{sup 2}) at hydrogen gas pressure of 10 mTorr. We have found that the current scales proportionally with CNT area and also with the gas pressure in the range of 1 mTorr to 10 mTorr. We have demonstrated pulse cut-off times as short as 2 {mu}sec. Finally, we have shown the feasibility of generating neutrons using deuterium gas.

  14. Gated ion transport through dense carbon nanotube membranes.

    PubMed

    Yu, Miao; Funke, Hans H; Falconer, John L; Noble, Richard D

    2010-06-23

    Gated ion diffusion is found widely in hydrophobic biological nanopores, upon changes in ligand binding, temperature, transmembrane voltage, and mechanical stress. Because water is the main media for ion diffusion in these hydrophobic biological pores, ion diffusion behavior through these nanochannels is expected to be influenced significantly when water wettability in hydrophobic biological nanopores is sensitive and changes upon small external changes. Here, we report for the first time that ion diffusion through highly hydrophobic nanopores (approximately 3 nm) showed a gated behavior due to change of water wettability on hydrophobic surface upon small temperature change or ultrasound. Dense carbon nanotube (CNT) membranes with both 3-nm CNTs and 3-nm interstitial pores were prepared by a solvent evaporation process and used as a model system to investigate ion diffusion behavior. Ion diffusion through these membranes exhibited a gated behavior. The ion flux was turned on and off, apparently because the water wettability of CNTs changed. At 298 K, ion diffusion through dense CNT membranes stopped after a few hours, but it dramatically increased when the temperature was increased 20 K or the membrane was subjected to ultrasound. Likewise, water adsorption on dense CNT membranes increased dramatically at a water activity of 0.53 when the temperature increased from 293 to 306 K, indicating capillary condensation. Water adsorption isotherms of dense CNT membranes suggest that the adsorbed water forms a discontinuous phase at 293 K, but it probably forms a continuous layer, probably in the interstitial CNT regions, at higher temperatures. When the ion diffusion channel was opened by a temperature increase or ultrasound, ions diffused through the CNT membranes at a rate similar to bulk diffusion in water. This finding may have implications for using CNT membrane for desalination and water treatment.

  15. Overview summary of clinical heavier-ion progress in Japan

    NASA Astrophysics Data System (ADS)

    Matsufuji, N.

    2017-06-01

    Swift ion beams such as carbon has unique characteristics suitable for treating deep-seated tumours. In Japan, carbon-ion radiotherapy was started in 1994 at Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences and more than 10,000 patients have been treated by Aug. 2016. Clinical outcomes show superior efficacy of carbon ions even against radioresistant tumour while keeping the quality of life at high level, and also the usefulness of hypofractionated irradiation down to the completion of the course of lung-cancer treatment in 1 day. During the decades, the improvement of hardware and software technology such as 3D scanning technique, superconducting rotating gantry or biology model have been carried out aiming at further optimized ion-beam radiotherapy as well as reducing the cost of the facility. The developed technology has been transferred to the following facilities. As of 2016, 5 carbon ion radiotherapy facilities are in operation in Japan.

  16. Study of the magnets used for a mobile isocenter carbon ion gantry.

    PubMed

    Moreno, Jhonnatan Osorio; Pullia, Marco G; Priano, Cristiana; Lante, Valeria; Necchi, Monica M; Savazzi, Simone

    2013-07-01

    A conceptual design of a mobile isocenter carbon ion gantry was carried out in the framework of the Particle Training Network for European Radiotherapy (PARTNER) and Union of Light Ion Centres in Europe (ULICE) projects. To validate the magnets used in this gantry, Finite Element Method (FEM) simulations were performed with COMSOL multiphysics; the purpose was to evaluate the magnetic field quality and the influence of additional support structures for correctors, 90° bending dipole and quadrupoles, both in dynamic and static regimes. Due to the low ramp rates, the dynamic effects do not disturb the homogeneity and the magnetic field level. The differences between the stationary field and the corresponding dynamic field after the end of the ramps are in the order of 10(-4); it implies that the magnets can be operated without significant field lag at the nominal ramp rate. However, even in static regime the magnetic length of corrector magnet decreases by 5% when the rotator mechanical structure is considered. The simulations suggest an optimization phase of the correctors in the rotator.

  17. Study of the magnets used for a mobile isocenter carbon ion gantry

    PubMed Central

    Moreno, Jhonnatan Osorio; Pullia, Marco G.; Priano, Cristiana; Lante, Valeria; Necchi, Monica M.; Savazzi, Simone

    2013-01-01

    A conceptual design of a mobile isocenter carbon ion gantry was carried out in the framework of the Particle Training Network for European Radiotherapy (PARTNER) and Union of Light Ion Centres in Europe (ULICE) projects. To validate the magnets used in this gantry, Finite Element Method (FEM) simulations were performed with COMSOL multiphysics; the purpose was to evaluate the magnetic field quality and the influence of additional support structures for correctors, 90° bending dipole and quadrupoles, both in dynamic and static regimes. Due to the low ramp rates, the dynamic effects do not disturb the homogeneity and the magnetic field level. The differences between the stationary field and the corresponding dynamic field after the end of the ramps are in the order of 10–4; it implies that the magnets can be operated without significant field lag at the nominal ramp rate. However, even in static regime the magnetic length of corrector magnet decreases by 5% when the rotator mechanical structure is considered. The simulations suggest an optimization phase of the correctors in the rotator. PMID:23824120

  18. Proteomic analysis for testis of mice exposed to carbon ion radiation.

    PubMed

    Li, Hongyan; Zhang, Hong; Xie, Yi; He, Yuxuan; Miao, Guoying; Yang, Lina; Di, Cuixia; He, Yang

    2013-08-15

    This paper investigates the mechanism of action of heavy ion radiation (HIR) on mouse testes. The testes of male mice subjected to whole body irradiation with carbon ion beam (0.5 and 4Gy) were analyzed at 7days after irradiation. A two-dimensional gel electrophoresis approach was employed to investigate the alteration of protein expression in the testes. Spot detection and matching were performed using the PDQuest 8.0 software. A difference of more than threefold in protein quantity (normalized spot volume) is the standard for detecting differentially expressed protein spots. A total of 11 differentially expressed proteins were found. Protein identification was performed using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF). Nine specific proteins were identified by searching the protein sequence database of the National Center for Biotechnology Information. These proteins were found involved in molecular chaperones, metabolic enzymes, oxidative stress, sperm function, and spermatogenic cell proliferation. HIR decreased glutathione activity and increased malondialdehyde content in the testes. Given that Pin1 is related to the cell cycle and that proliferation is affected by spermatogenesis, we analyzed testicular histological changes and Pin1 protein expression through immunoblotting and immunofluorescence. Alterations of multiple pathways may be associated with HIR toxicity to the testes. Our findings are essential for studies on the development, biology, and pathology of mouse testes after HIR in space or radiotherapy.

  19. Dual ion beam deposition of carbon films with diamondlike properties

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1984-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamondlike films generated by sputtering a graphite target.

  20. Dual ion beam deposition of carbon films with diamondlike properties

    NASA Astrophysics Data System (ADS)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamondlike films generated by sputtering a graphite target.

  1. A comparative study on the lithium-ion storage performances of carbon nanotubes and tube-in-tube carbon nanotubes.

    PubMed

    Xu, Yi-Jun; Liu, Xi; Cui, Guanglei; Zhu, Bo; Weinberg, Gisela; Schlögl, Robert; Maier, Joachim; Su, Dang Sheng

    2010-03-22

    A comparative study of the electrochemical performances of carbon nanotubes and tube-in-tube carbon nanotubes reveals a dependence effect of lithium-ion storage behavior on the detailed nanostructure of carbon nanotubes. In particular, the impurity that graphitic particles or graphene fragments inherently present in carbon nanotubes plays a crucial role in the lithium-ion storage capacity of the carbon nanotubes. Compared to acid-washed carbon nanotubes, the assembly of graphitic impurity fragments in the tube-in-tube structures hinders lithium-ion diffusion, thus drastically decreasing the rate performance of lithium-ion storage. Significantly, our results indicate that the lithium-ion storage capacity of carbon nanotubes as anode electrodes can be improved or controlled by optimizing the microstructure composition of impurity graphitic nanoparticles or graphene fragments in the matrix of the carbon nanotubes.

  2. The extraction of negative carbon ions from a volume cusp ion source

    NASA Astrophysics Data System (ADS)

    Melanson, Stephane; Dehnel, Morgan; Potkins, Dave; McDonald, Hamish; Hollinger, Craig; Theroux, Joseph; Martin, Jeff; Stewart, Thomas; Jackle, Philip; Philpott, Chris; Jones, Tobin; Kalvas, Taneli; Tarvainen, Olli

    2017-08-01

    Acetylene and carbon dioxide gases are used in a filament-powered volume-cusp ion source to produce negative carbon ions for the purpose of carbon implantation for gettering applications. The beam was extracted to an energy of 25 keV and the composition was analyzed with a spectrometer system consisting of a 90° dipole magnet and a pair of slits. It is found that acetylene produces mostly C2- ions (up to 92 µA), while carbon dioxide produces mostly O- with only trace amounts of C-. Maximum C2- current was achieved with 400 W of arc power and, the beam current and composition were found to be highly dependent on the pressure in the source. The beam properties as a function of source settings are analyzed, and plasma properties are measured with a Langmuir probe. Finally, we describe testing of a new RF H- ion source, found to produce more than 6 mA of CW H- beam.

  3. Ion irradiation of ammonia/carbon dioxide mixtures

    NASA Astrophysics Data System (ADS)

    Lv, X. Y.; Boduch, P.; Ding, J. J.; Domaracka, A.; Langlinay, T.; Palumbo, M. E.; Rothard, H.; Strazzulla, G.

    2013-09-01

    We present new experimental results on the thermal and ion irradiation processing of ammonia/carbon dioxide frozen mixtures. Mixtures deposited at low T (16 K) have then been warmed up to 160 K. During warm up complex chemical reactions occur leading to the formation of new molecules and, in particular, of ammonium carbamate. Other samples have been irradiated with 144 keV S9+ ions. Also in this case new chemical species are formed among which CO and OCN-. The results are discussed in the light of their relevance to understand the effects of different processes going on in the variegated superficial and sub-superficial layers of Enceladus.

  4. Solvation of lithium ion in dimethoxyethane and propylene carbonate

    NASA Astrophysics Data System (ADS)

    Chaban, Vitaly

    2015-07-01

    Solvation of the lithium ion (Li+) in dimethoxyethane (DME) and propylene carbonate (PC) is of scientific significance and urgency in the context of lithium-ion batteries. I report PM7-MD simulations on the composition of Li+ solvation shells (SH) in a few DME/PC mixtures. The equimolar mixture features preferential solvation by PC, in agreement with classical MD studies. However, one DME molecule is always present in the first SH, supplementing the cage formed by five PC molecules. As PC molecules get removed, DME gradually substitutes vacant places. In the PC-poor mixtures, an entire SH is populated by five DME molecules.

  5. Carbon Ion-Irradiated Hepatoma Cells Exhibit Coupling Interplay between Apoptotic Signaling and Morphological and Mechanical Remodeling

    PubMed Central

    Zhang, Baoping; Li, Long; Li, Zhiqiang; Liu, Yang; Zhang, Hong; Wang, Jizeng

    2016-01-01

    A apoptotic model was established based on the results of five hepatocellular carcinoma cell (HCC) lines irradiated with carbon ions to investigate the coupling interplay between apoptotic signaling and morphological and mechanical cellular remodeling. The expression levels of key apoptotic proteins and the changes in morphological characteristics and mechanical properties were systematically examined in the irradiated HCC lines. We observed that caspase-3 was activated and that the Bax/Bcl-2 ratio was significantly increased over time. Cellular morphology and mechanics analyses indicated monotonic decreases in spatial sizes, an increase in surface roughness, a considerable reduction in stiffness, and disassembly of the cytoskeletal architecture. A theoretical model of apoptosis revealed that mechanical changes in cells induce the characteristic cellular budding of apoptotic bodies. Statistical analysis indicated that the projected area, stiffness, and cytoskeletal density of the irradiated cells were positively correlated, whereas stiffness and caspase-3 expression were negatively correlated, suggesting a tight coupling interplay between the cellular structures, mechanical properties, and apoptotic protein levels. These results help to clarify a novel arbitration mechanism of cellular demise induced by carbon ions. This biomechanics strategy for evaluating apoptosis contributes to our understanding of cancer-killing mechanisms in the context of carbon ion radiotherapy. PMID:27731354

  6. Effects of glycine betaine on bone marrow death and intestinal damage by gamma rays and carbon ions.

    PubMed

    Monobe, M; Hamano, N; Sumi, M; Mukai, K; Moritake, T; Anzai, K; Uzawa, A; Ando, K

    2006-01-01

    In this study, we investigated the effects of glycine betaine (GB) on bone marrow death and intestinal damage by gamma rays or carbon ions. C(3)H/He female mice received an i.p.-injection of GB before or after whole-body irradiation with gamma rays or 50 keV microm(-1) carbon ions. The irradiated mice were observed to determine the mortality for 30 days after exposure. Mice were also killed at 3.5 days after the exposure to determine the intestinal damage. The numbers of crypts per transverse circumference were counted using a microscope. For the bone marrow death, GB (93 mg GB per mouse) significantly (p < 0.05) increased the percentage survival for both radiations. For the intestinal damage, GB (93 mg GB per mouse) significantly (p < 0.05) increased the crypt survival for gamma rays, but not for carbon ions. GB might be a potential protector against normal tissue damage as a side effect in radiotherapy.

  7. Tumor control in ion beam radiotherapy with different ions in presence of hypoxia: an oxygen enhancement ratio model based on the microdosimetric kinetic model.

    PubMed

    Strigari, Lidia; Torriani, Francesca; Manganaro, Lorenzo; Inaniwa, Taku; Dalmasso, Federico; Cirio, Roberto; Attili, Andrea

    2017-09-01

    Few attempts to include the oxygen enhancement ratio (OER) in treatment planning for ion beam therapy have been made and systematic studies to evaluate the impact of hypoxia in treatments with beam of different ion species are missing. The radiobiological models used to quantify the OER in such studies are mainly based on the dose-averaged LET estimates and do not explicitly distinguish between ion species and fractionation schemes. In this study a new OER modelling, based on the microdosimetric kinetic model, taking into account the specificity of the different ions, LET spectra, tissues and fractionation schemes, has been developed. The model has been benchmarked with published in-vitro data, HSG, V79 and CHO cells in aerobic and hypoxic conditions, for different ions irradiation. The model has been included in the simulation of treatments for a clinical case (brain tumor) using proton, lithium, helium, carbon and oxygen ion beams. A study of the tumour control probability (TCP) as a function of oxygen partial pressure, dose per fraction and primary ion type has been performed. The modeled OER depends on both LET and ion type, showing also a decrease for increasing dose per fraction with a slope that depends on the LET and ion type, in good agreement with the experimental data. In the investigated clinical case, a significant increase in TCP by increasing ion charge has been found. Higher OER variations as a function of dose per fraction have been also found for low-LET ions (up to 15% varying from 2 to 8 Gy(RBE) for protons). The model could be exploited for the identification of the treatment condition optimality in presence of hypoxia, including fractionation and primary particles selection. © 2017 Institute of Physics and Engineering in Medicine.

  8. Generation and reactivity of yttrium-carbon cluster ions

    SciTech Connect

    Kan, S.Z.; Lee, S.A.; Freiser, B.S.

    1995-12-31

    In 1992, Castleman and coworkers reported the production of the ionic transition metal-carbon clusters, M{sub 8}C{sub 12}{sup +} (M=Ti,V, Zr and Hf). Like the observations of pure carbon clusters such as C{sub 60} and C{sub 70}, these metal-carbon clusters were observed as {open_quotes}magic{close_quotes} peaks in the mass spectra obtained from a supersonic expansion ion source. These intense peaks are indicative of the high stability of these clusters which are proposed to have symmetrical, cagelike structures with the geometry of a pentagonal dodecahedron. M{sub 8}C{sub 12}{sup +} species are thus termed metallo-carbohedrenes, or met-cars for short. Like fullerenes, met-cars are of both fundamental interest and hold promise as a new class of important materials and, hence, have become the focus of both theoretical and experimental investigations. Along with these species, metal-carbon clusters of other stoichiometries such as Ti{sub 8}C{sub 11}{sup +}, Ti{sub 8}C{sub 13}{sup +}, Ti{sub 7}C{sub 12}, V{sub 14}C{sub 13}{sup +}, V{sub 14}C{sub 12}{sup +}, and Nb{sub 4}C{sub 4}{sup +} have also been examined. Here, the authors report on the yttrium-carb system in which a broad range of metal-carbon cluster ions are observed.

  9. Imaging of peripheral-type benzodiazepine receptor in tumor: carbon ion irradiation reduced the uptake of a positron emission tomography ligand [11C]DAC in tumor.

    PubMed

    Yamasaki, Tomoteru; Koike, Sachiko; Hatori, Akiko; Yanamoto, Kazuhiko; Kawamura, Kazunori; Yui, Joji; Kumata, Katsushi; Ando, Koichi; Zhang, Ming-Rong

    2010-01-01

    We aimed to determine the effect of carbon ion irradiation on the uptake of N-benzyl-N-11C-methyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide ([(11)C]DAC), a positron emission tomography (PET) ligand for the peripheral-type benzodiazepine receptor (PBR), in tumor cells and tumor-bearing mice. Spontaneous murine fibrosarcoma (NFSa) cells were implanted into the right hind legs of syngeneic C3H male mice. Conditioning irradiation with 290 MeV/u carbon ions was delivered to the 7- to 8-mm tumors In vitro uptake of [(11)C]DAC was measured in single NFSa cells isolated from NFSa-bearing mice after irradiation. In vivo biodistribution of [(11)C]DAC in NFSa-bearing mice was determined by small animal PET scanning and dissection. In vitro autoradiography was performed using tumor sections prepared from mice after PET scanning. In vitro and in vivo uptake of [(11)C]DAC in single NFSa cells and NFSa-bearing mice was significantly reduced by carbon ion irradiation. The decrease in [(11)C]DAC uptake in the tumor sections was mainly due to the change in PBR expression. In conclusion, [(11)C]DAC PET responded to the change in PBR expression in tumors caused by carbon ion irradiation in this study. Thus, [(11)C]DAC is a promising predictor for evaluating the effect of carbon ion radiotherapy.

  10. Single-ion adsorption and switching in carbon nanotubes

    DOE PAGES

    Bushmaker, Adam W.; Oklejas, Vanessa; Walker, Don; ...

    2016-01-25

    Single-ion detection has, for many years, been the domain of large devices such as the Geiger counter, and studies on interactions of ionized gasses with materials have been limited to large systems. To date, there have been no reports on single gaseous ion interaction with microelectronic devices, and single neutral atom detection techniques have shown only small, barely detectable responses. Here we report the observation of single gaseous ion adsorption on individual carbon nanotubes (CNTs), which, because of the severely restricted one-dimensional current path, experience discrete, quantized resistance increases of over two orders of magnitude. Only positive ions cause changes,more » by the mechanism of ion potentialinduced carrier depletion, which is supported by density functional and Landauer transport theory. Lastly, our observations reveal a new single-ion/CNT heterostructure with novel electronic properties, and demonstrate that as electronics are ultimately scaled towards the one-dimensional limit, atomic-scale effects become increasingly important.« less

  11. Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.

    PubMed

    Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael

    2017-10-11

    Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na(+) ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na(+) ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.

  12. The temperature and carbonate ion influence on Pleistocene high latitude planktonic foraminiferal carbon isotopic records

    NASA Astrophysics Data System (ADS)

    Charles, C.; Foreman, A. D.; Munson, J.; Slowey, N. C.; Hodell, D. A.

    2014-12-01

    Establishing a credible record of the carbon isotopic composition of high latitude surface ocean DIC over ice ages has been an enormous challenge, because the possible archives of this important variable in deep sea sediments all incorporate complex effects of the biomineralization process. For example, culture experiments (by Spero and colleagues) demonstrate a strong temperature and carbonate ion effect on the carbon isotopic composition of G. bulloides--the taxon of planktonic foraminifera that is most abundant in the majority of subpolar sediment sequences. Here we capitalize on the fortuitous observation of exceptionally strong covariation between the oxygen and carbon isotopic composition of G. bulloides in multiple sediment sequences from the Benguela upwelling region. The covariation is most clear during Marine Isotopic Stage 3 (an interval when the isotopic composition of the seawater was least variable) and undoubtedly results from the precipitation of tests under variable conditions of temperature and carbonate ion. The unusually clear isotopic relationship in planktonic foraminifera observed off Namibia constitutes a field calibration of the biomineralization effects observed in culture, and we apply it to previously published high latitude carbon isotopic records throughout the Southern Ocean. We find that many of the excursions toward lower planktonic foraminiferal δ13C that have been interpreted previously as the upwelling of nutrient rich water during deglaciations are better explained as increases in upper ocean temperature and carbonate ion. Conversely, the excursions toward high δ13C during ice age intervals that have been interpreted previously as increased export production (purportedly stimulated by dust) are also better explained by temperature and carbonate ion variability. After removal of the inferred temperature and carbonate ion signal from the planktonic foraminiferal time series, the residual is essentially (but not exactly) the same

  13. Applications of Carbon Nanotubes for Lithium Ion Battery Anodes

    PubMed Central

    Xiong, Zhili; Yun, Young Soo; Jin, Hyoung-Joon

    2013-01-01

    Carbon nanotubes (CNTs) have displayed great potential as anode materials for lithium ion batteries (LIBs) due to their unique structural, mechanical, and electrical properties. The measured reversible lithium ion capacities of CNT-based anodes are considerably improved compared to the conventional graphite-based anodes. Additionally, the opened structure and enriched chirality of CNTs can help to improve the capacity and electrical transport in CNT-based LIBs. Therefore, the modification of CNTs and design of CNT structure provide strategies for improving the performance of CNT-based anodes. CNTs could also be assembled into free-standing electrodes without any binder or current collector, which will lead to increased specific energy density for the overall battery design. In this review, we discuss the mechanism of lithium ion intercalation and diffusion in CNTs, and the influence of different structures and morphologies on their performance as anode materials for LIBs. PMID:28809361

  14. Hexagonal cobalt carbide formed by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Liu, B. X.; Wang, J.; Fang, Z. Z.

    1991-05-01

    Thin films of ferromagnetic metals, i.e., bcc Fe, hcp Co, and fcc Ni, were subjected to 50-keV carbon ion implantation at room temperature. At the dose of 2.5×1017 ions/cm2, the formation of hexagonal Fe3C and Ni3C phases was confirmed by transmission electron microscopy selected area electron diffraction patterns; and more interestingly a similar pattern for Co was also observed for the first time. The phase was identified as hexagonal Co3C with a=2.685 Å and c=4.335 Å based on the spacings and intensities of the diffraction rings. The carbide formation was also confirmed by Auger electron spectra. The stoichiometry of the hexagonal structure may be extended in the range of Co3-2C as estimated from the experiments performed up to the dose of 9×1017 ions/cm2.

  15. He ion irradiation effects on multiwalled carbon nanotubes structure

    NASA Astrophysics Data System (ADS)

    Elsehly, Emad M.; Chechenin, Nikolay G.; Makunin, Alexey V.; Shemukhin, Andrey A.; Motaweh, Hussien A.

    2017-03-01

    Samples of multi-walled carbon nanotubes (MWNTs) were irradiated with 80 keV He ions. Scanning electron microscopy (SEM) inspection showed that the average outer diameters of the tube decreased as a result of ion irradiation. The samples were also characterized using Raman spectrometry by analysis of the intensity of main bands in the spectra of virgin and irradiated MWNT samples. Modifications of the disorder mode (D-band) and the tangential mode (G-band) were studied as a function of irradiation fluences. Raman spectra showed that as the fluence increases, the MWNTs first show disorder due to the produced defects, and then amorphization under still higher fluence of ion irradiation. Thermal and athermal mechanisms of the radiation induced MWNTs modifications are discussed. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu V. Popov, and A.V. Solov'yov.

  16. Optimized Carbonate and Ester-Based Li-Ion Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar

    2008-01-01

    To maintain high conductivity in low temperatures, electrolyte co-solvents have been designed to have a high dielectric constant, low viscosity, adequate coordination behavior, and appropriate liquid ranges and salt solubilities. Electrolytes that contain ester-based co-solvents in large proportion (greater than 50 percent) and ethylene carbonate (EC) in small proportion (less than 20 percent) improve low-temperature performance in MCMB carbon-LiNiCoO2 lithium-ion cells. These co-solvents have been demonstrated to enhance performance, especially at temperatures down to 70 C. Low-viscosity, ester-based co-solvents were incorporated into multi-component electrolytes of the following composition: 1.0 M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (1:1:8 volume percent) [where X = methyl butyrate (MB), ethyl butyrate EB, methyl propionate (MP), or ethyl valerate (EV)]. These electrolyte formulations result in improved low-temperature performance of lithium-ion cells, with dramatic results at temperatures below 40 C.

  17. Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin

    SciTech Connect

    Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

    2013-12-06

    Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

  18. Lithium ion battery peformance of silicon nanowires with carbon skin.

    PubMed

    Bogart, Timothy D; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chongmin; Korgel, Brian A

    2014-01-28

    Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g(-1) for 100 cycles when cycled at C/10 and over 1200 mA h g(-1) when cycled more rapidly at 1C against Li metal. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

  19. Characterization of the optical properties and stability of Presage™ following irradiation with photons and carbon ions.

    PubMed

    Yates, Esben S; Balling, Peter; Petersen, Jørgen B B; Christensen, Mehrnaz N; Skyt, Peter S; Bassler, Niels; Kaiser, Franz-Joachim; Muren, Ludvig P

    2011-08-01

    The on-going development of both intensity-modulated radiotherapy (IMRT), including the more recent intensity-modulated arc therapy, as well as particle beam therapy, has created a clear need for accurate verification of dose distributions in three dimensions (3D). Presage™ is a new 3D dosimetry material that exhibits a radiochromic response when exposed to ionizing radiation. In this study we have 1) developed an improved optical set-up for measurements of changes in OD of Presage™ point dosimeters, 2) investigated the dose response of Presage™ for photons and carbon ions in the therapy range, 3) investigated the dose response of Presage™ for photons in the kGy range and 4) investigated the fading (i.e. bleaching) of Presage™ postirradiation. Presage™ was examined in 1 × 1 × 4.5 cm(3) optical cuvettes; a cuvette holder assured accurate repositioning, and the optical setup included a reference detector to take into account laser intensity fluctuations. The cuvettes were measured pre- and postirradiation for a two week period. A linear response was observed between dose and optical response between 0 Gy and 100 Gy for γ-radiation from Co-60 and for carbon ions (both plateau and SOBP) from 0 to 20 Gy. The dosimeter was found to have a saturation dose of approximately 100 Gy for photons. A linear energy transfer (LET) effect was not observed in the dose response of different LET radiation. The postirradiation change in optical fading was found to be 0.5% ΔOD/day. Our study shows that Presage™ remains a dosimeter of interest for radiation therapy with other particles as well as photons in the therapy dose range.

  20. Development and characterization of a 2D scintillation detector for quality assurance in scanned carbon ion beams

    NASA Astrophysics Data System (ADS)

    Tamborini, A.; Raffaele, L.; Mirandola, A.; Molinelli, S.; Viviani, C.; Spampinato, S.; Ciocca, M.

    2016-04-01

    At the Centro Nazionale di Adroterapia Oncologica (CNAO Foundation), a two-dimensional high resolution scintillating dosimetry system has been developed and tested for daily Quality Assurance measurements (QA) in carbon ion radiotherapy with active scanning technique, for both single pencil beams and scanned fields produced by a synchrotron accelerator. The detector consists of a thin plane organic scintillator (25×25 cm2, 2 mm thick) coupled with a high spatial resolution CCD camera (0.25 mm) in a light-tight box. A dedicated Labview software was developed for image acquisition triggered with the beam extraction, data post-processing and analysis. The scintillator system was preliminary characterized in terms of short-term reproducibility (found to be within±0.5%), linearity with the number of particles (linear fit χ2 = 0.996) and dependence on particle flux (measured to be < 1.5 %). The detector was then tested for single beam spot measurements (Full Width at Half Maximum and position) and for 6×6 cm2 reference scanned field (determination of homogeneity) for carbon ions with energy from 115 MeV/u up to 400 MeV/u. No major differences in the investigated beam parameters measured with scintillator system and the radiochromic EBT3 reference films were observed. The system allows therefore real-time monitoring of the carbon ion beam relevant parameters, with a significant daily time saving with respect to films currently used. The results of this study show the suitability of the scintillation detector for daily QA in a carbon ion facility with an active beam delivery system.

  1. Fluorescent carbon nanoparticles for the fluorescent detection of metal ions.

    PubMed

    Guo, Yongming; Zhang, Lianfeng; Zhang, Shushen; Yang, Yan; Chen, Xihan; Zhang, Mingchao

    2015-01-15

    Fluorescent carbon nanoparticles (F-CNPs) as a new kind of fluorescent nanoparticles, have recently attracted considerable research interest in a wide range of applications due to their low-cost and good biocompatibility. The fluorescent detection of metal ions is one of the most important applications. In this review, we first present the general detection mechanism of F-CNPs for the fluorescent detection of metal ions, including fluorescence turn-off, fluorescence turn-on, fluorescence resonance energy transfer (FRET) and ratiometric response. We then focus on the recent advances of F-CNPs in the fluorescent detection of metal ions, including Hg(2+), Cu(2+), Fe(3+), and other metal ions. Further, we discuss the research trends and future prospects of F-CNPs. We envision that more novel F-CNPs-based nanosensors with more accuracy and robustness will be widely used to assay and remove various metal ions, and there will be more practical applications in coming years. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Adsorption of metal ions by pecan shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-09-01

    The present investigation was undertaken to evaluate the adsorption effectiveness of pecan shell-based granular activated carbons (GACs) in removing metal ions (Cu(2+), Pb(2+), Zn(2+)) commonly found in municipal and industrial wastewater. Pecan shells were activated by phosphoric acid, steam or carbon dioxide activation methods. Metal ion adsorption of shell-based GACs was compared to the metal ion adsorption of a commercial carbon, namely, Calgon's Filtrasorb 200. Adsorption experiments were conducted using solutions containing all three metal ions in order to investigate the competitive effects of the metal ions as would occur in contaminated wastewater. The results obtained from this study showed that acid-activated pecan shell carbon adsorbed more lead ion and zinc ion than any of the other carbons, especially at carbon doses of 0.2-1.0%. However, steam-activated pecan shell carbon adsorbed more copper ion than the other carbons, particularly using carbon doses above 0.2%. In general, Filtrasorb 200 and carbon dioxide-activated pecan shell carbons were poor metal ion adsorbents. The results indicate that acid- and steam-activated pecan shell-based GACs are effective metal ion adsorbents and can potentially replace typical coal-based GACs in treatment of metal contaminated wastewater.

  3. Numerical Modeling of Ion Dynamics in a Carbon Nanotube Field-Ionized Thruster

    DTIC Science & Technology

    2011-12-01

    ION SOURCES Ions may be produced by several methods: photo-ionization, electron bombardment, field ionization, surface ionization, and thermionic ...OF ION DYNAMICS IN A CARBON NANOTUBE FIELD -IONIZED ION THRUSTER by Sarah F. Michael December 2011 Thesis Advisors: Dragoslav Grbovic...December 2011 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Numerical Modeling of Ion Dynamics in a Carbon Nanotube Field

  4. Carbon Ionic Conductors for use in Novel Carbon-Ion Fuel Cells

    SciTech Connect

    Franklin H. Cocks; W. Neal Simmons; Paul A. Klenk

    2005-11-01

    Carbon-consuming fuel cells have many potential advantages, including increased efficiency and reduced pollution in power generation from coal. A large amount of work has already been done on coal fuel cells that utilize yttria-stabilized zirconium carbide as an oxygen-ion superionic membrane material. But high-temperature fuel cells utilizing yttria-stabilized zirconium require partial combustion of coal to carbon monoxide before final oxidation to carbon dioxide occurs via utilization of the oxygen- ion zirconia membrane. A carbon-ion superionic membrane material would enable an entirely new class of carbon fuel cell to be developed, one that would use coal directly as the fuel source, without any intervening combustion process. However, a superionic membrane material for carbon ions has not yet been found. Because no partial combustion of coal would be required, a carbon-ion superionic conductor would allow the direct conversion of coal to electricity and pure CO{sub 2} without the formation of gaseous pollutants. The objective of this research was to investigate ionic lanthanide carbides, which have an unusually high carbon-bond ionicity as potential superionic carbide-ion conductors. A first step in this process is the stabilization of these carbides in the cubic structure, and this stabilization has been achieved via the preparation of pseudobinary lanthanide carbides. The diffusion rates of carbon have been measured in these carbides as stabilized to preserve the high temperature cubic structure down to room temperature. To prepare these new compounds and measure these diffusion rates, a novel, oxide-based preparation method and a new C{sup 13}/C{sup 12} diffusion technique have been developed. The carbon diffusion rates in La{sup 0.5}Er{sup 0.5}C{sub 2}, Ce{sup 0.5}Er{sup 0.5}C{sub 2}, and La{sup 0.5}Y{sup 0.5}C{sub 2}, and Ce{sup 0.5}Tm0.5C{sub 2} modified by the addition of 5 wt %Be{sub 2}C, have been determined at temperatures from 850 C to 1150 C. The

  5. Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  6. Silicon Composite Anode Materials for Lithium Ion Batteries Based on Carbon Cryogels and Carbon Paper

    NASA Technical Reports Server (NTRS)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nanofoams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  7. Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes.

    PubMed

    Licht, Stuart; Douglas, Anna; Ren, Jiawen; Carter, Rachel; Lefler, Matthew; Pint, Cary L

    2016-03-23

    The cost and practicality of greenhouse gas removal processes, which are critical for environmental sustainability, pivot on high-value secondary applications derived from carbon capture and conversion techniques. Using the solar thermal electrochemical process (STEP), ambient CO2 captured in molten lithiated carbonates leads to the production of carbon nanofibers (CNFs) and carbon nanotubes (CNTs) at high yield through electrolysis using inexpensive steel electrodes. These low-cost CO2-derived CNTs and CNFs are demonstrated as high performance energy storage materials in both lithium-ion and sodium-ion batteries. Owing to synthetic control of sp(3) content in the synthesized nanostructures, optimized storage capacities are measured over 370 mAh g(-1) (lithium) and 130 mAh g(-1) (sodium) with no capacity fade under durability tests up to 200 and 600 cycles, respectively. This work demonstrates that ambient CO2, considered as an environmental pollutant, can be attributed economic value in grid-scale and portable energy storage systems with STEP scale-up practicality in the context of combined cycle natural gas electric power generation.

  8. Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes

    PubMed Central

    2016-01-01

    The cost and practicality of greenhouse gas removal processes, which are critical for environmental sustainability, pivot on high-value secondary applications derived from carbon capture and conversion techniques. Using the solar thermal electrochemical process (STEP), ambient CO2 captured in molten lithiated carbonates leads to the production of carbon nanofibers (CNFs) and carbon nanotubes (CNTs) at high yield through electrolysis using inexpensive steel electrodes. These low-cost CO2-derived CNTs and CNFs are demonstrated as high performance energy storage materials in both lithium-ion and sodium-ion batteries. Owing to synthetic control of sp3 content in the synthesized nanostructures, optimized storage capacities are measured over 370 mAh g–1 (lithium) and 130 mAh g–1 (sodium) with no capacity fade under durability tests up to 200 and 600 cycles, respectively. This work demonstrates that ambient CO2, considered as an environmental pollutant, can be attributed economic value in grid-scale and portable energy storage systems with STEP scale-up practicality in the context of combined cycle natural gas electric power generation. PMID:27163042

  9. Operations experience at the Bevalac radiotherapy facility

    SciTech Connect

    Alonso, J.R.; Criswell, T.L.; Howard, J.; Chu, W.T.; Singh, R.P.; Geller, D.; Nyman, M.

    1981-03-01

    During the first years of Bevalac operation the biomedical effort concentrated on radiobiology work, laying the foundation for patient radiotherapy. A dedicated radiotherapy area was created in 1978, and in 1979 full-scale patient treatment was begun. As of now over 500 treatments with carbon, neon and argon beams have been delivered to about 50 patients, some as boosts from other modalities and some as complete heavy ion treatments. Up to 12 patients per day have been treated in this facility. Continuing efforts in refining techniques and operating procedures are increasing efficiency and accuracy of treatments, and are contributing to the alleviation of scheduling difficulties caused by the unique requirements of radiotherapy with human patients.

  10. Formation of high mass carbon cluster ions from laser ablation of polymers and thin carbon films

    NASA Astrophysics Data System (ADS)

    Creasy, William R.; Brenna, J. T.

    1990-02-01

    Three materials were studied by laser ablation/Fourier transform mass spectrometry, using 266 nm laser radiation: a copolymer of ethylene and tetrafluoroethylene (ETFE), polyphenylene sulfide (PPS), and a diamond-like carbon film (DLC). In each case, positive ion mass spectra exhibit primarily even-numbered, high mass carbon clusters (``fullerenes'') of the type previously reported for graphite ablation. In the case of ETFE, a large C+60 peak (``buckminsterfullerene'') was observed. The polymer spectra showed a strong dependence on the number of laser pulses on one spot and the laser power density. For ETFE, the fullerene ion relative intensity first increases and then decreases as a function of the number of laser pulses. For the DLC film, fullerenes are observed with a single laser pulse on a fresh spot of the sample. The results are interpreted in terms of a gas phase growth model for the fullerene ion formation.

  11. Comparison of human chordoma cell-kill for 290 MeV/n carbon ions versus 70 MeV protons in vitro

    PubMed Central

    2013-01-01

    Background While the pace of commissioning of new charged particle radiation therapy facilities is accelerating worldwide, biological data pertaining to chordomas, theoretically and clinically optimally suited targets for particle radiotherapy, are still lacking. In spite of the numerous clinical reports of successful treatment of these malignancies with this modality, the characterization of this malignancy remains hampered by its characteristic slow cell growth, particularly in vitro. Methods Cellular lethality of U-CH1-N cells in response to different qualities of radiation was compared with immediate plating after radiation or as previously reported using the multilayered OptiCell™ system. The OptiCell™ system was used to evaluate cellular lethality over a broad dose-depth deposition range of particle radiation to anatomically mimic the clinical setting. Cells were irradiated with either 290 MeV/n accelerated carbon ions or 70 MeV accelerated protons and photons and evaluated through colony formation assays at a single position or at each depth, depending on the system. Results There was a cell killing of approximately 20–40% for all radiation qualities in the OptiCell™ system in which chordoma cells are herein described as more radiation sensitive than regular colony formation assay. The relative biological effectiveness values were, however, similar in both in vitro systems for any given radiation quality. Relative biological effectiveness values of proton was 0.89, of 13–20 keV/μm carbon ions was 0.85, of 20–30 keV/μm carbon ions was 1.27, and >30 keV/μm carbon ions was 1.69. Carbon-ions killed cells depending on both the dose and the LET, while protons depended on the dose alone in the condition of our study. This is the first report and characterization of a direct comparison between the effects of charged particle carbon ions versus protons for a chordoma cell line in vitro. Our results support a potentially superior therapeutic value

  12. Enhanced Load Transfer in Carbon Nanotube Bundles via Carbon-Ion Bombardment

    NASA Astrophysics Data System (ADS)

    Carpena-Nunez, Jennifer; Hernandez, Jose A.; Siochi, Emilie J.; Kim, Jae-Woo; Fonseca, Luis F.

    2014-03-01

    Carbon Nanotubes (CNTs) are ideal candidates for structural composites due to their high modulus and strength, and low weight and density. However, achieving their exceptional mechanical performance at the macroscale is an ongoing challenge, as individual CNTs within bundles are held together by weak van der Waals forces. The current work aims to address issues related to crosslinking CNTs via carbon-ion irradiation to achieve the mechanical performance promised by CNTs. Samples irradiated with a carbon-ion dose of ~ 1013-1014 cm-2 and kinetic energies ranging from 9-25keV show partial amorphization at the outermost layer of the CNT bundle, as theoretically predicted. Mechanical data collected via in-situ Transmission Electron Microscopy-Atomic Force Microscopy (TEM-AFM) shows an increase in tensile and shear strength for irradiated CNT bundles of ~ 6.6GPa and ~ 100MPa, respectively. The adhesion energy between CNT bundles showed an increase from ~ 0.12-0.48 Jm-2 for pristine CNTs up to ~ 42 Jm-2 for carbon-ion irradiated bundles. In addition, enhanced shear interaction exceeding a strength value of ~ 1GPa was observed when exposed to additional amorphous carbon binding, providing a route for improved adhesion to polymer components used in structural composites. This work was supported by a NASA Space Technology Research Fellowship.

  13. Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping

    PubMed Central

    Friedland, W.; Schmitt, E.; Kundrát, P.; Dingfelder, M.; Baiocco, G.; Barbieri, S.; Ottolenghi, A.

    2017-01-01

    Track structures and resulting DNA damage in human cells have been simulated for hydrogen, helium, carbon, nitrogen, oxygen and neon ions with 0.25–256 MeV/u energy. The needed ion interaction cross sections have been scaled from those of hydrogen; Barkas scaling formula has been refined, extending its applicability down to about 10 keV/u, and validated against established stopping power data. Linear energy transfer (LET) has been scored from energy deposits in a cell nucleus; for very low-energy ions, it has been defined locally within thin slabs. The simulations show that protons and helium ions induce more DNA damage than heavier ions do at the same LET. With increasing LET, less DNA strand breaks are formed per unit dose, but due to their clustering the yields of double-strand breaks (DSB) increase, up to saturation around 300 keV/μm. Also individual DSB tend to cluster; DSB clusters peak around 500 keV/μm, while DSB multiplicities per cluster steadily increase with LET. Remarkably similar to patterns known from cell survival studies, LET-dependencies with pronounced maxima around 100–200 keV/μm occur on nanometre scale for sites that contain one or more DSB, and on micrometre scale for megabasepair-sized DNA fragments. PMID:28345622

  14. Sodium ion insertion in hollow carbon nanowires for battery applications.

    PubMed

    Cao, Yuliang; Xiao, Lifen; Sushko, Maria L; Wang, Wei; Schwenzer, Birgit; Xiao, Jie; Nie, Zimin; Saraf, Laxmikant V; Yang, Zhengguo; Liu, Jun

    2012-07-11

    Hollow carbon nanowires (HCNWs) were prepared through pyrolyzation of a hollow polyaniline nanowire precursor. The HCNWs used as anode material for Na-ion batteries deliver a high reversible capacity of 251 mAh g(-1) and 82.2% capacity retention over 400 charge-discharge cycles between 1.2 and 0.01 V (vs Na(+)/Na) at a constant current of 50 mA g(-1) (0.2 C). Excellent cycling stability is also observed at an even higher charge-discharge rate. A high reversible capacity of 149 mAh g(-1) also can be obtained at a current rate of 500 mA g(-1) (2C). The good Na-ion insertion property is attributed to the short diffusion distance in the HCNWs and the large interlayer distance (0.37 nm) between the graphitic sheets, which agrees with the interlayered distance predicted by theoretical calculations to enable Na-ion insertion in carbon materials.

  15. Coupled Carbonization Strategy toward Advanced Hard Carbon for High-Energy Sodium-Ion Battery.

    PubMed

    Zhang, Huimin; Ming, Hai; Zhang, Wenfeng; Cao, Gaoping; Yang, Yusheng

    2017-07-19

    Sodium-ion batteries (SIBs) are expected to be a promising commercial alternative to lithium-ion batteries for grid electricity storage due to their potential low cost in the near future. Up to the present, the anode material still remains a great challenge for the application of SIBs, especially at room temperature. Graphite has an obvious limitation to store larger radius sodium ions (Na(+)) in comparison with lithium ions (Li(+)), while the hard carbon with large interlayer distance can demonstrate a relatively high storage capability and durable cycle life. However, the disadvantages of low initial Coulombic efficiency (ICE) mainly caused by large surface area and high cost synthetic approach hinder its practical applications. Herein, a new coupled carbonization strategy is presented to prepare a cost-effective hard carbon material by pyrolyzing and carbonizing the mixture of abundant sucrose and phenolic resin. Benefiting from the specialized pyrolysis reaction process and optimized conditions as studied in detail, the hard carbon has an extremely low surface area of 1.54 m(2) g(-1) and high initial Coulombic efficiency of 87%, which have been rarely reported before and enhance the utilization efficiency of Na(+) consumption within the cathode in the future. More importantly, the hard carbon, with a high interlayer distance 3.95 Å, can deliver a higher capacity of 319 mAh g(-1) and maintain a finer capacity retention of 90% over 150 cycles. Besides, a full cell with the configuration of as-prepared hard carbon anode versus an air-stable O3-Na0.9[Cu0.22Fe0.30Mn0.48]O2 cathode is further presented, and it has a high ICE of 80% and energy density of 256 Wh kganode(-1) (vs hard carbon) with reliable cycle performance. The results demonstrate that our synthetic strategy is feasible and extendable, while the tunable carbon-based materials should have wider applications in addition to the attractive properties in Na-ion batteries.

  16. E2F is involved in radioresistance of carbon ion induced apoptosis via Bax/caspase 3 signal pathway in human hepatoma cell.

    PubMed

    Xie, Yi; Si, Jing; Wang, Yu-Pei; Li, Hong-Yan; Di, Cui-Xia; Yan, Jun-Fang; Ye, Yan-Cheng; Zhang, Yan-Shan; Zhang, Hong

    2017-05-13

    Deletion of p53, most common genetic alteration, is observed in human tumors and reported to lead to improve in cell radioresistance. Heavy-ion irradiation (IR) could induce p53(-/-) cancer cells apoptosis. However, little is known regarding the molecular mechanism in this type of cell apoptosis. The present studies have focused on mechanisms state of signaling pathways as an activator of the cell fate decisions induced by heavy ion IR without p53. Carbon ion IR could induce up-regulation of E2F1 expression in cancer cells. This phenomenon was not observed in X-ray IR group. Up-regulation of E2F1 could cause a higher reduction in clonogenic survival, low level of cellular activity, G2 /M phase arrest, promotion of apoptosis rate, up-regulation of phosphor-Rb, Bax, and cleaved-caspase 3 proteins expressions without p53. Changes of E2F1 expressions could partly alter radioresistance in cancer cells. The results were suggested that heavy ion IR could induce p53(-/-) cancer cells apoptosis via E2F1 signal pathway. Our study provides a scientific rationale for the clinical use of heavy ion as radiotherapy in patients with p53-deficient tumors, which are often resistant to radiotherapy. © 2017 Wiley Periodicals, Inc.

  17. Assessment of Early Toxicity and Response in Patients Treated With Proton and Carbon Ion Therapy at the Heidelberg Ion Therapy Center Using the Raster Scanning Technique

    SciTech Connect

    Rieken, Stefan; Habermehl, Daniel; Nikoghosyan, Anna; Jensen, Alexandra; Haberer, Thomas; Jaekel, Oliver; Muenter, Marc W.; Welzel, Thomas; Debus, Juergen; Combs, Stephanie E.

    2011-12-01

    Puropose: To asses early toxicity and response in 118 patients treated with scanned ion beams to validate the safety of intensity-controlled raster scanning at the Heidelberg Ion Therapy Center. Patients and Methods: Between November 2009 and June 2010, we treated 118 patients with proton and carbon ion radiotherapy (RT) using active beam delivery. The main indications included skull base chordomas and chondrosarcomas, salivary gland tumors, and gliomas. We evaluated early toxicity within 6 weeks after RT and the initial clinical and radiologic response for quality assurance in our new facility. Results: In all 118 patients, few side effects were observed, in particular, no high numbers of severe acute toxicity were found. In general, the patients treated with particle therapy alone showed only a few single side effects, mainly Radiation Therapy Oncology Group/Common Terminology Criteria grade 1. The most frequent side effects and cumulative incidence of single side effects were observed in the head-and-neck patients treated with particle therapy as a boost and photon intensity-modulated RT. The toxicities included common radiation-attributed reactions known from photon RT, including mucositis, dysphagia, and skin erythema. The most predominant imaging responses were observed in patients with high-grade gliomas and those with salivary gland tumors. For skull base tumors, imaging showed a stable tumor outline in most patients. Thirteen patients showed improvement of pre-existing clinical symptoms. Conclusions: Side effects related to particle treatment were rare, and the overall tolerability of the treatment was shown. The initial response was promising. The data have confirmed the safe delivery of carbon ions and protons at the newly opened Heidelberg facility.

  18. Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers.

    PubMed

    Crespo, Gastón A; Macho, Santiago; Rius, F Xavier

    2008-02-15

    This study developed a new type of all-solid-state ion-selective electrode based on a transducing layer of a network of single-walled carbon nanotubes. The extraordinary capacity of carbon nanotubes to promote electron transfer between heterogeneous phases made the presence of electroactive polymers or any other ion-to-electron-transfer promoter unnecessary. The new transducer layer was characterized by environmental scanning electron microscopy and electrochemical impedance spectroscopy. The stability of the electrical potential of the new solid-contact electrode was examined by performing current-reversal chronopotentiometry, and the influence of the interfacial water film was assessed by the potentiometric water layer test. The performance of the new electrode was evaluated by determining K+ with an ion-selective membrane that contained the well-known valinomycin ion carrier. The new electrode had a Nernstian slope (58.4 mV/decade), dynamic ranges of four logarithmic units, and selectivities and limits of detection comparable to other solid-contact electrodes. The short response time (less than 10 s for activities higher than 10(-5.5) M) and the stability of the signal over several days makes these new electrodes very promising candidates for attaining true miniaturization.

  19. Fast dose analysis of movement effects during treatments with scanned proton and carbon-ion beams

    NASA Astrophysics Data System (ADS)

    Vignati, A.; Varasteh Anvar, M.; Giordanengo, S.; Monaco, V.; Attili, A.; Donetti, M.; Marchetto, F.; Mas Milian, F.; Ciocca, M.; Russo, G.; Sacchi, R.; Cirio, R.

    2017-01-01

    Charged particle therapy delivered using scanned pencil beams shows the potential to produce better dose conformity than conventional radiotherapy, although the dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of engines to monitor the dose as it is being delivered is highly desirable, in order to enhance the development of adaptive treatment techniques in hadrontherapy. A tool for fast dose distributions analysis is presented, which integrates on GPU a Fast Forward Planning, a Fast Image Deformation algorithm, a fast computation of Gamma-Index and Dose-Volume Histogram. The tool is being interfaced with the Dose Delivery System and the Optical Tracking System of a synchrotron-based facility to investigate the feasibility to quantify, spill by spill, the effects of organ movements on dose distributions during treatment deliveries with protons and carbon-ions. The dose calculation and comparison times for a patient treated with protons on a 61.3 cm3 planning target volume, a CT matrix of 512x512x125 voxels, and a computation matrix of 170x170x125 voxels are within 1 s per spill. In terms of accuracy, the absolute dose differences compared with benchmarked Treatment Planning System results are negligible (<10-4 Gy).

  20. Bystander effect in human hepatoma HepG2 cells caused by medium transfers at different times after high-LET carbon ion irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Qingfeng; Li, Qiang; Jin, Xiaodong; Liu, Xinguo; Dai, Zhongying

    2011-01-01

    Although radiation-induced bystander effects have been well documented in a variety of biological systems, whether irradiated cells have the ability to generate bystander signaling persistently is still unclear and the clinical relevance of bystander effects in radiotherapy remains to be elucidated. This study examines tumor cellular bystander response to autologous medium from cell culture irradiated with high-linear energy transfer (LET) heavy ions at a therapeutically relevant dose in terms of clonogenic cell survival. In vitro experiments were performed using human hepatoma HepG2 cell line exposed to 100 keV/μm carbon ions at a dose of 2 Gy. Two different periods (2 and 12 h) after irradiation, irradiated cell conditioned medium (ICCM) and replenished fresh medium were harvested and then transferred to unirradiated bystander cells. Cellular bystander responses were measured with the different medium transfer protocols. Significant higher survival fractions of unirradiated cells receiving the media from the irradiated cultures at the different times post-irradiation than those of the control were observed. Even replenishing fresh medium for unirradiated cells which had been exposed to the ICCM for 12 h could not prevent the bystander cells from the increased survival fraction. These results suggest that the irradiated cells could release unidentified signal factor(s), which induced the increase in survival fraction for the unirradiated bystander cells, into the media sustainedly and the carbon ions triggered a cascade of signaling events in the irradiated cells rather than secreting the soluble signal factor(s) just at a short period after irradiation. Based on the observations in this study, the importance of bystander effect in clinical radiotherapy was discussed and incorporating the bystander effect into the current radiobiological models, which are applicable to heavy ion radiotherapy, is needed urgently.

  1. Low Energy Sputter Yields for Diamond, Carbon-Carbon Composite, and Molybdenum Subject to Xenon Ion Nombardment

    NASA Technical Reports Server (NTRS)

    Blandino, J.; Goodwin, D.; Garner, C.

    1999-01-01

    Sputter yields have been measured for polycrystalline diamond, single crystal diamond, a carbon-carbon composite, and molybdenum subject to bombardment with xenon. The tests were performed using a 3 cm Kaufman ion source to produce incident ions with energy in the range of 150 - 750 eV and profilometry based technique to measure the amount of sputtered material.

  2. Low Energy Sputter Yields for Diamond, Carbon-Carbon Composite, and Molybdenum Subject to Xenon Ion Nombardment

    NASA Technical Reports Server (NTRS)

    Blandino, J.; Goodwin, D.; Garner, C.

    1999-01-01

    Sputter yields have been measured for polycrystalline diamond, single crystal diamond, a carbon-carbon composite, and molybdenum subject to bombardment with xenon. The tests were performed using a 3 cm Kaufman ion source to produce incident ions with energy in the range of 150 - 750 eV and profilometry based technique to measure the amount of sputtered material.

  3. Performance Characterization and Vibration Testing of 30-cm Carbon-Carbon Ion Optics

    NASA Technical Reports Server (NTRS)

    Steven Snyder, John; Brophy, John R.

    2004-01-01

    Carbon-based ion optics have the potential to significantly increase the operable life and power ranges of ion thrusters because of reduced erosion rates compared to molybdenum optics. The development of 15-cm and larger diameter grids has encountered many problems, however, not the least of which is the ability to pass vibration testing. JPL has recently developed a new generation of 30-cm carbon-carbon ion optics in order to address these problems and demonstrate the viability of the technology. Perveance, electron backstreaming, and screen grid transparency data are presented for two sets of optics. Vibration testing was successfully performed on two different sets of ion optics with no damage and the results of those tests are compared to models of grid vibrational behavior. It will be shown that the vibration model is a conservative predictor of grid response and can accurately describe test results. There was no change in grid alignment as a result of vibration testing and a slight improvement, if any change at all, in optics performance.

  4. The influence of carbon ion irradiation on sweet sorghum seeds

    NASA Astrophysics Data System (ADS)

    Dong, X. C.; Li, W. J.; Liu, Q. F.; He, J. Y.; Yu, L. X.; Zhou, L. B.; Qu, Y.; Xie, H. M.

    2008-01-01

    The aim of this study is to investigate the effects of different doses of 100 MeV/u carbon ions on sweet sorghum seeds in order to improve crop yields and their sugar content. After irradiation, seeds were germinated and grown to 30 days, and others were sown in the field. At the end of harvesting season all planted seeds were picked separately and M2 generations obtained. The differences among the treatments were examined using the RAPD procedure. In the study done by using 38 primers; according to the amplification results, the differences among the various doses treatment were shown.

  5. The Sensitivity of Marine Calcification to carbonate ion concentration

    NASA Astrophysics Data System (ADS)

    Langdon, C.

    2006-12-01

    It is now well established that the rate of calcification of biogenic calcification is a function of the carbonate ion concentration. This relationship has been best established in the case of corals. Data is now available for twelve species. For the purpose of comparison it is convenient to normalize the calcification rates to the rate achieved at the pre-industrial carbonate ion concentration of the surface tropical ocean taken for the purposes of this analysis to be 255 μmol kg-1. If the rates from all the available studies are processed in this way and then regressed against the carbonate ion concentration one obtains that the normalized calcification = -24.5+0.47[CO32-], r#2=0.74. From this relationship one can calculate that at the present time the rate of coral calcification may have declined by 19% relative to the pre-industrial rate and by the end of the century, if pCO2 reaches 700 μatm, it could decline by 54%. This assumes that any rise in sea surface temperature does not have a significant effect on coral calcification. At the present time this is a major source of uncertainty. Several studies show that corals are adapted to the mean annual temperature that they experience and the rate of calcification during the summer is depressed relative to the maximal rates observed during the spring and fall. In this scenario any increase in the mean annual temperature will result in a reduced annual rate of calcification. These studies show that the rate of calcification falls off at the rate of 24±17 % per °C once the temperature exceeds the species thermal optimum. Other studies based on long-lived massive corals widely used in paleo-climate reconstructions exhibit a linear relationship with temperature that shows no sign of tapering off at the highest temperatures for which data are available. At this time we do not know which pattern is more representative of the aggregate response of corals on a typical coral reef. It should not be forgotten that

  6. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    SciTech Connect

    Feng, Kai; Wang, Yibo; Li, Zhuguo; Chu, Paul K.

    2015-08-15

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.

  7. Phase II multi-institutional clinical trial on a new mixed beam RT scheme of IMRT on pelvis combined with a carbon ion boost for high-risk prostate cancer patients.

    PubMed

    Marvaso, Giulia; Jereczek-Fossa, Barbara A; Vischioni, Barbara; Ciardo, Delia; Giandini, Tommaso; Hasegawa, Azusa; Cattani, Federica; Carrara, Mauro; Ciocca, Mario; Bedini, Nice; Villa, Sergio; Morlino, Sara; Russo, Stefania; Zerini, Dario; Colangione, Sarah Pia; Panaino, Costanza Maria Vittoria; Fodor, Cristiana; Santoro, Luigi; Pignoli, Emanuele; Valvo, Francesca; Valdagni, Riccardo; De Cobelli, Ottavio; Orecchia, Roberto

    2017-05-12

    Definition of the optimal treatment schedule for high-risk prostate cancer is under debate. A combination of photon intensity modulated radiotherapy (IMRT) on pelvis with a carbon ion boost might be the optimal treatment scheme to escalate the dose on prostate and deliver curative dose with respect to normal tissue and quality of dose distributions. In fact, carbon ion beams offer the advantage to deliver hypofractionated radiotherapy (RT) using a significantly smaller number of fractions compared to conventional RT without increasing risks of late effects. This study is a prospective phase II clinical trial exploring safety and feasibility of a mixed beam scheme of carbon ion prostate boost followed by photon IMRT on pelvis. The study is designed to enroll 65 patients with localized high-risk prostate cancer at 3 different oncologic hospitals: Istituto Europeo di Oncologia, Fondazione IRCCS Istituto Nazionale dei Tumori, and Centro Nazionale di Adroterapia Oncologica. The primary endpoint is the evaluation of safety and feasibility with acute toxicity scored up to 1 month after the end of RT. Secondary endpoints are treatment early (3 months after the end of RT) and long-term tolerability, quality of life, and efficacy. The study is not yet recruiting; in silico studies are ongoing and we expect to start recruitment by 2017. The present clinical trial aims at improving the current treatment for high-risk prostate cancer, evaluating safety and feasibility of a new RT mixed-beam scheme including photons and carbon ions. Encouraging results are coming from carbon ion facilities worldwide on the treatment of different tumors including prostate cancers. Carbon ions combine physical properties allowing for high dose conformity and advantageous radiobiological characteristics. The proposed mixed beam treatment has the advantage to combine a photon high conformity standard of care IMRT phase with a hypofractionated carbon ion RT boost delivered in a short overall

  8. Future Directions in Ion Beam Therapy

    NASA Astrophysics Data System (ADS)

    Habermehl, Daniel; Combs, Stephanie; Debus, Jürgen

    There is a growing interest in ion beam therapy (IBT) worldwide which has led to an increasing number of new treatment facilities. This development is accompanied by intensive radiobiological, physical and clinical research of both proton therapy (PT) and carbon ion radiotherapy (CIRT). Current developments in IBT with high impact for future challenges will be summarized in this chapter.

  9. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors

    NASA Astrophysics Data System (ADS)

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-01

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ({{\\overline{V}}95} was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  10. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors.

    PubMed

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-21

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ([Formula: see text] was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  11. Robustness of Target Dose Coverage to Motion Uncertainties for Scanned Carbon Ion Beam Tracking Therapy of Moving Tumors

    PubMed Central

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-01-01

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from 6 lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high (V̄95 was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15 degree delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems. PMID:25650520

  12. How unequivocally do ion chromatography experiments determine carbon cluster geometries?

    SciTech Connect

    Strout, D.L.; Book, L.D.; Millam, J.M.; Xu, C.; Scuseria, G.E.

    1994-09-01

    Ion chromatography experiments on carbon clusters have provided a powerful tool for characterizing the products of the laser ablation of graphite. Using this technique, several families of carbon clusters have been observed, and their role in a plausible fullerene formation process has been hypothesized. In this work, we have examined the experimental mobility results from a theoretical perspective. Our most interesting finding is the existence of a family of three-dimensional 2 + 4 cycloaddition products whose members match the experimental mobilities of the so-called `ring III` family over a range of cluster sizes, whereas previous studies have asserted that the `ring III` clusters are planar. In agreement with previous research, we find that the `ring I` and `ring II` families consist of monocyclic and bicycle rings, respectively. However, these families should be broadly defined so as to include ring structures with carbon branches, because short carbon branches have only a negligible effect on cluster mobility. 28 refs., 6 figs., 6 tabs.

  13. EUD-based biological optimization for carbon ion therapy

    SciTech Connect

    Brüningk, Sarah C. Kamp, Florian; Wilkens, Jan J.

    2015-11-15

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalent uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon

  14. Competitive Adsorption of Chloroform and Iron Ion onto Activated Carbon Fiber.

    PubMed

    Uchida; Ito; Kawasaki; Nakamura; Tanada

    1999-12-15

    Chloroform in tap water has been a significant problem because it may be a carcinogenic substituent. Iron ion exists in tap water because of dissolution from iron water pipes. Iron ions in tap water cause discoloration and a bad odor. The isotherms of chloroform and iron ion adsorption onto activated carbon fibers in a single solution (chloroform or iron ion) and in a binary mixture solution (chloroform and iron ion) were investigated to estimate the competitiveness between chloroform and iron ions. The amount of adsorbed iron ions increased with increasing pore volume of the activated carbon fibers, while that of chloroform decreased. The amount of chloroform adsorbed onto the activated carbon fibers in the binary mixture solution was greater than that in the single solution. These results indicate that the adsorption of chloroform and iron ion onto activated carbon fibers could be competitive. Copyright 1999 Academic Press.

  15. Exposure to Carbon Ions Triggers Proinflammatory Signals and Changes in Homeostasis and Epidermal Tissue Organization to a Similar Extent as Photons

    PubMed Central

    Simoniello, Palma; Wiedemann, Julia; Zink, Joana; Thoennes, Eva; Stange, Maike; Layer, Paul G.; Kovacs, Maximilian; Podda, Maurizio; Durante, Marco; Fournier, Claudia

    2016-01-01

    The increasing application of charged particles in radiotherapy requires a deeper understanding of early and late side effects occurring in skin, which is exposed in all radiation treatments. We measured cellular and molecular changes related to the early inflammatory response of human skin irradiated with carbon ions, in particular cell death induction and changes in differentiation and proliferation of epidermal cells during the first days after exposure. Model systems for human skin from healthy donors of different complexity, i.e., keratinocytes, coculture of skin cells, 3D skin equivalents, and skin explants, were used to investigate the alterations induced by carbon ions (spread-out Bragg peak, dose-averaged LET 100 keV/μm) in comparison to X-ray and UV-B exposure. After exposure to ionizing radiation, in none of the model systems, apoptosis/necrosis was observed. Carbon ions triggered inflammatory signaling and accelerated differentiation of keratinocytes to a similar extent as X-rays at the same doses. High doses of carbon ions were more effective than X-rays in reducing proliferation and inducing abnormal differentiation. In contrast, changes identified following low-dose exposure (≤0.5 Gy) were induced more effectively after X-ray exposure, i.e., enhanced proliferation and change in the polarity of basal cells. PMID:26779439

  16. The EGFR mutation status affects the relative biological effectiveness of carbon-ion beams in non-small cell lung carcinoma cells.

    PubMed

    Amornwichet, Napapat; Oike, Takahiro; Shibata, Atsushi; Nirodi, Chaitanya S; Ogiwara, Hideaki; Makino, Haruhiko; Kimura, Yuka; Hirota, Yuka; Isono, Mayu; Yoshida, Yukari; Ohno, Tatsuya; Kohno, Takashi; Nakano, Takashi

    2015-06-11

    Carbon-ion radiotherapy (CIRT) holds promise to treat inoperable locally-advanced non-small cell lung carcinoma (NSCLC), a disease poorly controlled by standard chemoradiotherapy using X-rays. Since CIRT is an extremely limited medical resource, selection of NSCLC patients likely to benefit from it is important; however, biological predictors of response to CIRT are ill-defined. The present study investigated the association between the mutational status of EGFR and KRAS, driver genes frequently mutated in NSCLC, and the relative biological effectiveness (RBE) of carbon-ion beams over X-rays. The assessment of 15 NSCLC lines of different EGFR/KRAS mutational status and that of isogenic NSCLC lines expressing wild-type or mutant EGFR revealed that EGFR-mutant NSCLC cells, but not KRAS-mutant cells, show low RBE. This was attributable to (i) the high X-ray sensitivity of EGFR-mutant cells, since EGFR mutation is associated with a defect in non-homologous end joining, a major pathway for DNA double-strand break (DSB) repair, and (ii) the strong cell-killing effect of carbon-ion beams due to poor repair of carbon-ion beam-induced DSBs regardless of EGFR mutation status. These data highlight the potential of EGFR mutation status as a predictor of response to CIRT, i.e., CIRT may show a high therapeutic index in EGFR mutation-negative NSCLC.

  17. Micronuclei induction in human lymphocytes induced by carbon ions exposion along the penetrate depth of ions in water

    NASA Astrophysics Data System (ADS)

    Wang, Z. Z.; Li, W. J.; Zhi, D. J.; Qu, Y.; Jing, X. G.

    2009-08-01

    Here we used cytokinesis-block micronucleus assay to measure the biological response along the penetrate depth of ions in water in human lymphocytes exposed to 100 MeV/u incident carbon ions in vitro. Polyethylene shielding was used to change the penetration depth of ions in water. A quantitative biological response curve was generated for micronuclei induction. The results showed a marked increase with the penetrate depth of ions in water in the micronuclei formation, which was consistent with a linear-energy-transfer dependent increase in biological effectiveness. The dose-response relationship for MN information was different at different penetrate depth of ions in water, at the 6 and 11.2 mm penetrate depth of ions in water, the dose-response relationships for the micronucleus frequencies induced by carbon ions irradiation were linear; while it was power function at 17.1 mm penetrate depth.

  18. Contributions of secondary fragmentation by carbon ion beams in water phantom: Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Ying, C. K.; Bolst, David; Tran, Linh T.; Guatelli, Susanna; Rosenfeld, A. B.; Kamil, W. A.

    2017-05-01

    Heavy-particle therapy such as carbon ion therapy is currently very popular because of its superior conformality in terms of dose distribution and higher Relative Biological Effectiveness (RBE). However, carbon ion beams produce a complex mixed radiation field, which needs to be fully characterised. In this study, the fragmentation of a 290 MeV/u primary carbon ion beam was studied using the Geant4 Monte Carlo Toolkit. When the primary carbon ion beam interacts with water, secondary light charged particles (H, He, Li, Be, B) and fast neutrons are produced, contributing to the dose, especially after the distal edge of the Bragg peak.

  19. Beam Quality Requirements of Dosage Control in Laser Ion Acceleration for Radiotherapy

    NASA Astrophysics Data System (ADS)

    Su, Jao-Jang; Shao, Xi; Liu, Tung-Chang; Liu, Chuan; Chen, C. D.; Wilks, Scott

    2010-11-01

    Ion beam accelerated by laser solid target interaction has vested interested in medical applications. Particle therapy for cancer treatment is one of the most promising prospects. Typical proton beam energy spread for cancer treatment is Delta E / E ˜ 0.2% for synchrotron accelerator and Delta E / E ˜1% for cyclotron after energy selection system. Passive scattering irradiation mechanism is a common practice to induce SOBP (spread out Bragg peak) for cancer treatment. We examine depth and lateral dose distribution of hardons energized by radiation pressure via various energy selection criteria. Monte Carol codes use PIC simulation results as the input of particle beams. Dose uniformity, distal falloff and lateral penumbra are discussed in related to beam energy spread, emittance and entrance spot size will be presented.

  20. Electrochemical control of ion transport through a mesoporous carbon membrane

    SciTech Connect

    Surwade, Sumedh P; Chai, Songhai; Choi, Jai-Pil; Wang, Xiqing; Lee, Jeseung; Vlassiouk, Ivan V; Mahurin, Shannon Mark; Dai, Sheng

    2014-01-01

    The transport of fluids through nanometer scale channels typically on the order of 1 -100 nm often exhibit unique properties compared to the bulk fluid. These phenomena occur because the channel dimensions and molecular size become comparable to the range of several important forces including electrostatic and van der Waals forces. Small changes in properties such as the electric double layer or surface charge can significantly affect molecular transport through the channels. Based on these emerging properties, a variety of nanofluidic devices such as nanofluidic transistors, nanofluidic diodes or lab-on-a-chip devices have been developed3-7 with a diverse range of applications including water purification, biomolecular sensing, DNA separation, and rectified ion transport. Nanofluidic devices are typically fabricated using expensive lithography techniques or sacrificial templates. Here we report a carbon-based, three-dimensional nanofluidic transport membrane that enables gated, or on/off, control of the transport of organic molecular species and metal ions using an applied electrical potential. In the absence of an applied potential, both cationic and anionic molecules freely diffuse across the membrane via a concentration gradient. However, when an electrochemical potential is applied, the transport of ions through the membrane is inhibited.

  1. Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life.

    PubMed

    Hou, Hongshuai; Banks, Craig E; Jing, Mingjun; Zhang, Yan; Ji, Xiaobo

    2015-12-16

    A new methodology for the synthesis of carbon quantum dots (CQDs) for large production is proposed. The as-obtained CQDs can be transformed into 3D porous carbon frameworks exhibiting superb sodium storage properties with ultralong cycle life and ultrahigh rate capability, comparable to state-of-the-art carbon anode materials for sodium-ion batteries.

  2. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Sierau, B.; Gysel, M.; Laborde, M.; Keller, A.; Kim, J.; Petzold, A.; Onasch, T. B.; Lohmann, U.; Mensah, A. A.

    2013-10-01

    We discuss the major mass spectral features of different types of refractory carbonaceous particles, ionized after laser vapourization with an Aerodyne High-Resolution Soot-Particle Aerosol Mass Spectrometer (SP-AMS). The SP-AMS was operated with a switchable 1064 nm laser and a 600 °C thermal vapourizer, yielding respective measurements of the refractory and non-refractory particle components. Six samples were investigated, all of which were composed primarily of refractory material: fuel-rich and fuel-lean propane/air diffusion-flame combustion particles; graphite-spark-generated particles; a commercial Fullerene-enriched Soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine combustion particles. All samples exhibited a spectrum of carbon-cluster ions Cxn+ in their refractory mass spectrum. Smaller clusters (x<6) were found to dominate the Cxn+ distribution. For Fullerene Soot, fuel-rich-flame particles and spark-generated particles, significant Cxn+ clusters at x≫6 were present, with significant contributions from multiply-charged ions (n>1). In all six cases, the ions C1+ and C3+ contributed over 60% to the total C1ions C1+/C3+ could be used to predict whether significant Cxn+ signals with x>5 were present. When such signals were present, C1+/C3+ was close to 1. When absent, C1+/C3+ was <0.8. This ratio may therefore serve as a proxy to distinguish between the two types of spectra in atmospheric SP-AMS measurements. Significant refractory oxygenated ions such as CO+ and CO2+ were also observed for all samples. We discuss these signals in detail for Regal Black, and describe their formation via decomposition of oxygenated moieties incorporated into the refractory carbon structure. These species may be of importance in atmospheric processes such as water uptake, aging and heterogeneous chemistry.

  3. Electrochemical Intercalation of Lithium Ions into Carbon Nanotube Bundles

    NASA Astrophysics Data System (ADS)

    Allen, J. L.; Sumanasekera, G. U.; Rao, A. M.; Fang, S.; Eklund, P. C.

    1998-03-01

    We have investigated the electrochemical intercalation of lithium ions into ropes of single-walled carbon nanotubes (SWNTs) in a standard three electrode cell. The SWNT mat pressed onto a Pt plate was the working electrode. Lithium was used at both the counter and reference electrodes, and 1M LiAsF6 in ethylene carbonate:diethyl carbonate (1:1 by volume) served as the electrolyte. Raman spectra of the SWNTs were recorded in situ as a function of electrochemical charge using 514.5 nm excitation. During galvanostatic intercalation, we observed a relatively steep decrease in voltage until a plateau at around 1.2 V is reached. We attribute this initial decrease to the intercalation of lithium into SWNT and a concurrent electron doping of the SWNT π band. In the Raman spectrum, as the voltage reaches 1.2 V, the tangential mode frequency down shifted from 1593 cm-1 to 1591 cm-1 consistent with electron addition to the π^* band. We speculate that surface reactions of the lithium doped SWNT and the electrolyte are occuring during the plateau. During the evolution of the plateau, the Raman signal of the tangential mode gradually diminishes without further downshift of the its frequency and eventually disappears completely. Cyclic voltammograms show a minimum at around 1.2 V and peaks at around 0.7 V and 1.7 V. The origin of this structure is not presently understood.

  4. Chromosome aberrations in human lymphocytes from the plateau region of the Bragg curve for a carbon-ion beam

    NASA Astrophysics Data System (ADS)

    Manti, L.; Durante, M.; Grossi, G.; Pugliese, M.; Scampoli, P.; Gialanella, G.

    2007-06-01

    Radiotherapy with high-energy carbon ion beams can be more advantageous compared to photons because of better physical dose distribution and higher biological efficiency in tumour cell sterilization. Despite enhanced normal tissue sparing, damage incurred by normal cells at the beam entrance is unavoidable and may affect the progeny of surviving cells in the form of inheritable cytogenetic alterations. Furthermore, the quality of the beam along the Bragg curve is modified by nuclear fragmentation of projectile and target nuclei in the body. We present an experimental approach based on the use of a polymethylmethacrylate (PMMA) phantom that allows the simultaneous exposure to a particle beam of several biological samples positioned at various depths along the beam path. The device was used to measure the biological effectiveness of a 60 MeV/amu carbon-ion beam at inducing chromosomal aberrations in G0-human peripheral blood lymphocytes. Chromosome spreads were obtained from prematurely condensed cells and all structural aberration types were scored in Fluorescence in situ Hybridization (FISH)-painted chromosomes 1 and 2. Our results show a marked increase with depth in the aberration frequency prior to the Bragg peak, which is consistent with a linear energy transfer (LET)-dependent increase in biological effectiveness.

  5. Competitive adsorption of chloroform and iron ion onto activated carbon fiber

    SciTech Connect

    Uchida, M.; Ito, S.; Kawasaki, N.; Nakamura, T.; Tanada, S.

    1999-12-15

    Chloroform in tap water and groundwater has been a significant problem because it may be a carcinogenic substituent. Iron ions exist in tap water because of dissolution from iron water pipes and cause discoloration and a bad odor. The isotherms of chloroform and iron ion adsorption onto activated carbon fibers in a single solution (chloroform or iron ion) and in a binary mixture solution (chloroform and iron ion) were investigated to estimate the competitiveness between chloroform and iron ions. The amount of adsorbed iron ions increased with increasing pore volume of the activated carbon fibers, while that of chloroform decreased. The amount of chloroform adsorbed onto the activated carbon fibers in the binary mixture solution was greater than that in the single solution. These results indicate that the adsorption of chloroform and iron ion onto activated carbon fibers could be competitive.

  6. Carbon-core silver-shell nanodots as sensitizers for phototherapy and radiotherapy

    NASA Astrophysics Data System (ADS)

    Kleinauskas, Andrius; Rocha, Sandra; Sahu, Sushant; Sun, Ya-Ping; Juzenas, Petras

    2013-08-01

    Spherical carbon nanoparticles (carbon nanodots) with a silver shell were investigated as potential sensitizing agents. The cytotoxicity of the combination of ultraviolet radiation or x-rays with the nanodots was examined in cancer cells in vitro. The cell viability decreased following the exposure to the radiation. The carbon nanodots enhanced the radiation effects by significantly reducing the amount of surviving cells compared to that of the cells exposed only to the radiation. Carbon-core silver-shell nanodots can be proposed as a bimodal sensitization platform for biological and medicinal applications employing non-ionizing or ionizing radiation.

  7. Glutathione depletion and carbon ion radiation potentiate clustered DNA lesions, cell death and prevent chromosomal changes in cancer cells progeny.

    PubMed

    Hanot, Maïté; Boivin, Anthony; Malésys, Céline; Beuve, Michaël; Colliaux, Anthony; Foray, Nicolas; Douki, Thierry; Ardail, Dominique; Rodriguez-Lafrasse, Claire

    2012-01-01

    Poor local control and tumor escape are of major concern in head-and-neck cancers treated by conventional radiotherapy or hadrontherapy. Reduced glutathione (GSH) is suspected of playing an important role in mechanisms leading to radioresistance, and its depletion should enable oxidative stress insult, thereby modifying the nature of DNA lesions and the subsequent chromosomal changes that potentially lead to tumor escape.This study aimed to highlight the impact of a GSH-depletion strategy (dimethylfumarate, and L-buthionine sulfoximine association) combined with carbon ion or X-ray irradiation on types of DNA lesions (sparse or clustered) and the subsequent transmission of chromosomal changes to the progeny in a radioresistant cell line (SQ20B) expressing a high endogenous GSH content. Results are compared with those of a radiosensitive cell line (SCC61) displaying a low endogenous GSH level. DNA damage measurements (γH2AX/comet assay) demonstrated that a transient GSH depletion in resistant SQ20B cells potentiated the effects of irradiation by initially increasing sparse DNA breaks and oxidative lesions after X-ray irradiation, while carbon ion irradiation enhanced the complexity of clustered oxidative damage. Moreover, residual DNA double-strand breaks were measured whatever the radiation qualities. The nature of the initial DNA lesions and amount of residual DNA damage were similar to those observed in sensitive SCC61 cells after both types of irradiation. Misrepaired or unrepaired lesions may lead to chromosomal changes, estimated in cell progeny by the cytome assay. Both types of irradiation induced aberrations in nondepleted resistant SQ20B and sensitive SCC61 cells. The GSH-depletion strategy prevented the transmission of aberrations (complex rearrangements and chromosome break or loss) in radioresistant SQ20B only when associated with carbon ion irradiation. A GSH-depleting strategy combined with hadrontherapy may thus have considerable advantage in the

  8. Glutathione Depletion and Carbon Ion Radiation Potentiate Clustered DNA Lesions, Cell Death and Prevent Chromosomal Changes in Cancer Cells Progeny

    PubMed Central

    Hanot, Maïté; Boivin, Anthony; Malésys, Céline; Beuve, Michaël; Colliaux, Anthony; Foray, Nicolas; Douki, Thierry; Ardail, Dominique; Rodriguez-Lafrasse, Claire

    2012-01-01

    Poor local control and tumor escape are of major concern in head-and-neck cancers treated by conventional radiotherapy or hadrontherapy. Reduced glutathione (GSH) is suspected of playing an important role in mechanisms leading to radioresistance, and its depletion should enable oxidative stress insult, thereby modifying the nature of DNA lesions and the subsequent chromosomal changes that potentially lead to tumor escape. This study aimed to highlight the impact of a GSH-depletion strategy (dimethylfumarate, and l-buthionine sulfoximine association) combined with carbon ion or X-ray irradiation on types of DNA lesions (sparse or clustered) and the subsequent transmission of chromosomal changes to the progeny in a radioresistant cell line (SQ20B) expressing a high endogenous GSH content. Results are compared with those of a radiosensitive cell line (SCC61) displaying a low endogenous GSH level. DNA damage measurements (γH2AX/comet assay) demonstrated that a transient GSH depletion in resistant SQ20B cells potentiated the effects of irradiation by initially increasing sparse DNA breaks and oxidative lesions after X-ray irradiation, while carbon ion irradiation enhanced the complexity of clustered oxidative damage. Moreover, residual DNA double-strand breaks were measured whatever the radiation qualities. The nature of the initial DNA lesions and amount of residual DNA damage were similar to those observed in sensitive SCC61 cells after both types of irradiation. Misrepaired or unrepaired lesions may lead to chromosomal changes, estimated in cell progeny by the cytome assay. Both types of irradiation induced aberrations in nondepleted resistant SQ20B and sensitive SCC61 cells. The GSH-depletion strategy prevented the transmission of aberrations (complex rearrangements and chromosome break or loss) in radioresistant SQ20B only when associated with carbon ion irradiation. A GSH-depleting strategy combined with hadrontherapy may thus have considerable advantage in the

  9. Dose- and time-dependent gene expression alterations in prostate and colon cancer cells after in vitro exposure to carbon ion and X-irradiation.

    PubMed

    Suetens, Annelies; Moreels, Marjan; Quintens, Roel; Soors, Els; Buset, Jasmine; Chiriotti, Sabina; Tabury, Kevin; Gregoire, Vincent; Baatout, Sarah

    2015-01-01

    Hadrontherapy is an advanced form of radiotherapy that uses beams of charged particles (such as protons and carbon ions). Compared with conventional radiotherapy, the main advantages of carbon ion therapy are the precise absorbed dose localization, along with an increased relative biological effectiveness (RBE). This high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. Currently, hadrontherapy is being used for the treatment of specific types of cancer. Previous in vitro studies have shown that, under certain circumstances, exposure to charged particles may inhibit cell motility and migration. In the present study, we investigated the expression of four motility-related genes in prostate (PC3) and colon (Caco-2) cancer cell lines after exposure to different radiation types. Cells were irradiated with various absorbed doses (0, 0.5 and 2 Gy) of accelerated (13)C-ions at the GANIL facility (Caen, France) or with X-rays. Clonogenic assays were performed to determine the RBE. RT-qPCR analysis showed dose- and time-dependent changes in the expression of CCDC88A, FN1, MYH9 and ROCK1 in both cell lines. However, whereas in PC3 cells the response to carbon ion irradiation was enhanced compared with X-irradiation, the effect was the opposite in Caco-2 cells, indicating cell-type-specific responses to the different radiation types. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  10. Carbon ionic diffusion in mixed lanthanide dicarbides for use in novel carbon-ion fuel cells

    NASA Astrophysics Data System (ADS)

    Simmons, Walker Neal

    2001-07-01

    Solid ionic electrolytes are a major concern in fuel cell development, but only a few compounds are known to be superionic. The fluorite structure, in particular, has been the basis for several superionic conductors of F -, I-, and O2- ions. Rare earth carbides of the form LnC2 (where Ln refers to any element of the lanthanide series) have the fluorite structure when they are above their transition temperatures, which vary from 350°C (EuC2 ) to 1450°C (LuC2). The carbon atoms in these compounds reside as anions in tetragonal positions equivalent to the positions of the mobile ions, F- and O2- in the known superionic conductors CaF2 and Zr0.8Y0.2O 2. These cubic lanthanide carbide compounds could potentially be good ionic conductors for carbon. The discovery of a material with a high carbon ion conductivity would be a major scientific advance, opening the possibility of an entirely new class of fuel cells that could convert carbon directly to CO/CO2 and produce electric power without combustion. In order to stabilize the cubic fluorite structure to low temperatures, a mixture of two different lanthanide dicarbides must be formed. The lanthanide carbides having a stabilized fluorite structure that have been produced in this research are mixtures of La0.5Er0.5C2, Ce0.5Er0.5C2, and La0.5Y 0.5C2. Aluminum carbide, Al4C3, has also been investigated as a potential carbon ionic conductor. Although Al4C3 does not possess the fluorite crystal structure, it is of interest because the carbon atoms reside as single 4- ions rather than C22- ion pairs found in most carbides. The lanthanide dicarbides were synthesized by reacting mixtures of Ln 2O3 and amorphous 13C under vacuum at high temperatures (>1600°C), using a number of newly developed synthesis techniques. The diffusion coefficients for La0.5-Er0.5C 2 have been found to be approximately 2.0 • 10-13 cm2/sec at 850°C increasing to 1.7 • 10 -12 cm2/sec at 1150°C, which values are not in the range of superionic

  11. Measurement of large angle fragments induced by 400 MeV n-1 carbon ion beams

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Andrey; Consiglio, Lucia; De Lellis, Giovanni; Di Crescenzo, Antonia; Lauria, Adele; Montesi, Maria Cristina; Patera, Vincenzo; Sirignano, Chiara; Tioukov, Valeri

    2015-09-01

    The use of carbon ion beams in radiotherapy presents significant advantages when compared to traditional x-ray. In fact, carbon ions deposit their energy inside the human body at the end of their range, the Bragg peak. Unlike x-ray beams, where the energy deposition decreases exponentially inside the irradiated volume, the shape of carbon beams is sharp and focused. Advantages are an increased energy released in the cancer volume while minimizing the irradiation to healthy tissues. Currently, the use of carbon beams is limited by the poor knowledge we have about the effects of the secondary fragments on the irradiated tissues. The secondary particles produced and their angular distribution is crucial to determine the global dose deposition. The knowledge of the flux of secondary particles plays a key role in the real time monitoring of the dose profile in hadron therapy. We present a detector based on nuclear emulsions for fragmentation measurements that performs a sub-micrometric tridimensional spatial resolution, excellent multi-particle separation and large angle track recognition. Nuclear emulsions are assembled in order to realize a hybrid detector (emulsion cloud chamber (ECC)) made of 300 μm nuclear emulsion films alternated with lead as passive material. Data reported here have been obtained by exposing two ECC detectors to the fragments produced by a 400 MeV n-1 12C beam on a composite target at the GSI laboratory in Germany. The ECC was exposed inside a more complex detector, named FIRST, in order to collect fragments with a continuous angular distribution in the range 47°-81° with respect to the beam axis. Results on the angular distribution of fragments as well as their momentum estimations are reported here.

  12. Luminescence imaging of water during carbon-ion irradiation for range estimation.

    PubMed

    Yamamoto, Seiichi; Komori, Masataka; Akagi, Takashi; Yamashita, Tomohiro; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri; Toshito, Toshiyuki

    2016-05-01

    The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom's luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  13. Origins of Lithium-Carbon Binding in Carbon-based Lithium-ion Battery Anodes

    NASA Astrophysics Data System (ADS)

    Wood, Brandon; Liu, Yuanyue; Wang, Morris; Yakobson, Boris

    2014-03-01

    Many key performance characteristics of carbon-based lithium-ion battery anodes are determined by the strength of binding between lithium (Li) and sp2 carbon (C). Using extensive density functional theory calculations, we investigate the detailed interaction of Li with a wide variety of sp2 C substrates, including pristine, defective, and strained graphene; planar C clusters; nanotubes; C edges; and multilayer stacks. We find that in almost all cases, the Li-C binding energy scales is determined largely by the work required to fill unoccupied carbon states, suggesting that intrinsic quantum capacitance is important for predicting Li capacity. This allows the binding energy and capacity to be estimated based solely on the electronic structure of the substrate. It also provides a connection to carbon-based supercapacitors, and underscores the role of electronic structure in interfacial electrochemical systems. Implications for improving the effective capacity of carbon-based anodes will be discussed. This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  14. Heavy ion tracks in polycarbonate. Comparison with a heavy ion irradiated model compound (diphenyl carbonate)

    NASA Astrophysics Data System (ADS)

    Ferain, E.; Legras, R.

    1993-09-01

    The chemical modifications induced by energetic heavy ion irradiation of polycarbonate (PC) film are determined by GPC, HPLC, ESR, TGA, IR and UV spectrophotometry. The main results of the irradiation are creation of radicals, chain scission, cross-linking and appearance of new chemical groups in the main polymer chain. As far as the creation of new groups is concerned, they are determined by means of a model compound of PC: the diphenyl carbonate (DPC). The following compounds are identified after energetic heavy ion irradiation of DPC: salicylic acid, phenol, 4,4'-biphenol, 2,4'-biphenol, 2,2'-biphenol, 4-phenoxyphenol, 2-phenoxyphenol, phenyl ether, phenyl benzoate, phenyl salicylate, 2-phenylphenol and 2-phenoxyphenyl benzoate. A similarity between the heavy ion irradiation and a heat treatment has also been established with DPC. On the basis of these results, we try to give an explanation of the preferential attack along the tracks of the irradiated film. Also, an explanation of the well-known beneficial effect of an UV exposition of the irradiated film on the selectivity of this preferential chemical attack is suggested.

  15. Uptake of chloride and carbonate ions by calcium monosulfoaluminate hydrate

    SciTech Connect

    Mesbah, Adel; Cau-dit-Coumes, Celine; Frizon, Fabien

    2012-08-15

    Decommissioning of old nuclear reactors may produce waste streams containing chlorides and carbonates, including radioactive {sup 36}Cl{sup -} and {sup 14}CO{sub 3}{sup 2-}. Their insolubilization by calcium monosulfoaluminate hydrate was investigated. Carbonates were readily depleted from the solution, giving at thermodynamic equilibrium monocarboaluminate, monocarboaluminate + calcite, or calcite only, depending on the initial ratio between the anion and calcium monosulfoaluminate hydrate. Chloride ions reacted more slowly and were precipitated as Kuzel's salt, Kuzel's and Friedel's salts, or Friedel's salt only. Rietveld refinement of X-Ray powder diffraction patterns was successfully used to quantify the phase distributions, which were compared to thermodynamic calculations. Moreover, analysing the lattice parameters of Kuzel's salt as a function of its chloride content showed the occurrence of a restricted solid solution towards the sulfate side with general formula 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}xCaCl{sub 2}{center_dot}(1 - x)CaSO{sub 4}{center_dot}(12 - 2x){center_dot}H{sub 2}O (0.36 {<=} x {<=} 0.50).

  16. Proteomic Analysis Implicates Dominant Alterations of RNA Metabolism and the Proteasome Pathway in the Cellular Response to Carbon-Ion Irradiation

    PubMed Central

    Xie, Da-Fei; Xie, Yi; Liu, Xiao-Dan; Wang, Qi; Sui, Li; Song, Man; Zhang, Hong; Zhou, Jianhua; Zhou, Ping-Kun

    2016-01-01

    Radiotherapy with heavy ions is considered advantageous compared to irradiation with photons due to the characteristics of the Braggs peak and the high linear energy transfer (LET) value. To understand the mechanisms of cellular responses to different LET values and dosages of heavy ion radiation, we analyzed the proteomic profiles of mouse embryo fibroblast MEF cells exposed to two doses from different LET values of heavy ion 12C. Total proteins were extracted from these cells and examined by Q Exactive with Liquid Chromatography (LC)—Electrospray Ionization (ESI) Tandem MS (MS/MS). Using bioinformatics approaches, differentially expressed proteins with 1.5 or 2.0-fold changes between different dosages of exposure were compared. With the higher the dosage and/or LET of ion irradiation, the worse response the cells were in terms of protein expression. For instance, compared to the control (0 Gy), 771 (20.2%) proteins in cells irradiated at 0.2 Gy of carbon-ion radiation with 12.6 keV/μm, 313 proteins (8.2%) in cells irradiated at 2 Gy of carbon-ion radiation with 12.6 keV/μm, and 243 proteins (6.4%) in cells irradiated at 2 Gy of carbon-ion radiation with 31.5 keV/μm exhibited changes of 1.5-fold or greater. Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Munich Information Center for Protein Sequences (MIPS) analysis, and BioCarta analysis all indicated that RNA metabolic processes (RNA splicing, destabilization and deadenylation) and proteasome pathways may play key roles in the cellular response to heavy-ion irradiation. Proteasome pathways ranked highest among all biological processes associated with heavy carbon-ion irradiation. In addition, network analysis revealed that cellular pathways involving proteins such as Col1a1 and Fn1 continued to respond to high dosages of heavy-ion irradiation, suggesting that these pathways still protect cells against damage. However, pathways such as those involving Ikbkg1 responded

  17. Natural variability in the surface ocean carbonate ion concentration

    NASA Astrophysics Data System (ADS)

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-11-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32-]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32-] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32-] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32-] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite) are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32-] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC) in association with El Niño-Southern Oscillation. In the North Pacific, surface [CO32-] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20-30-year periods. North Atlantic [CO32-] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the interpretation of trends

  18. Natural variability in the surface ocean carbonate ion concentration

    NASA Astrophysics Data System (ADS)

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-08-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32-]) on the basis of a long control simulation with a fully-coupled Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32-] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32-] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32-] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite) are already or nearly detectable at the sustained, open-ocean timeseries sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32-] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC) in association with El Niño-Southern Oscillation. In the North Pacific, surface [CO32-] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20-30 year periods. North Atlantic [CO32-] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the

  19. Generation of quasi-monoenergetic carbon ions accelerated parallel to the plane of a sandwich target

    SciTech Connect

    Wang, J. W.; Murakami, M.; Weng, S. M.; Xu, H.; Ju, J. J.; Luan, S. X.; Yu, W.

    2014-12-15

    A new ion acceleration scheme, namely, target parallel Coulomb acceleration, is proposed in which a carbon plate sandwiched between gold layers is irradiated with intense linearly polarized laser pulses. The high electrostatic field generated by the gold ions efficiently accelerates the embedded carbon ions parallel to the plane of the target. The ion beam is found to be collimated by the concave-shaped Coulomb potential. As a result, a quasi-monoenergetic and collimated C{sup 6+}-ion beam with an energy exceeding 10 MeV/nucleon is produced at a laser intensity of 5 × 10{sup 19} W/cm{sup 2}.

  20. Higher Initial DNA Damage and Persistent Cell Cycle Arrest after Carbon Ion Irradiation Compared to X-irradiation in Prostate and Colon Cancer Cells

    PubMed Central

    Suetens, Annelies; Konings, Katrien; Moreels, Marjan; Quintens, Roel; Verslegers, Mieke; Soors, Els; Tabury, Kevin; Grégoire, Vincent; Baatout, Sarah

    2016-01-01

    The use of charged-particle beams, such as carbon ions, is becoming a more and more attractive treatment option for cancer therapy. Given the precise absorbed dose-localization and an increased biological effectiveness, this form of therapy is much more advantageous compared to conventional radiotherapy, and is currently being used for treatment of specific cancer types. The high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. In order to better understand the underlying mechanisms responsible for the increased biological effectiveness, we investigated the DNA damage and repair kinetics and cell cycle progression in two p53 mutant cell lines, more specifically a prostate (PC3) and colon (Caco-2) cancer cell line, after exposure to different radiation qualities. Cells were irradiated with various absorbed doses (0, 0.5, and 2 Gy) of accelerated 13C-ions at the Grand Accélérateur National d’Ions Lourds facility (Caen, France) or with X-rays (0, 0.1, 0.5, 1, 2, and 5 Gy). Microscopic analysis of DNA double-strand breaks showed dose-dependent increases in γ-H2AX foci numbers and foci occupancy after exposure to both types of irradiation, in both cell lines. However, 24 h after exposure, residual damage was more pronounced after lower doses of carbon ion irradiation compared to X-irradiation. Flow cytometric analysis showed that carbon ion irradiation induced a permanent G2/M arrest in PC3 cells at lower doses (2 Gy) compared to X-rays (5 Gy), while in Caco-2 cells the G2/M arrest was transient after irradiation with X-rays (2 and 5 Gy) but persistent after exposure to carbon ions (2 Gy). PMID:27148479

  1. Regeneration of spent powdered activated carbon saturated with inorganic ions by cavitation united with ion exchange method.

    PubMed

    Li, Gang; Gao, Hong; Li, Yansheng; Yang, Huixin

    2011-06-01

    Using ion exchange resin as transfer media, regenerate powdered activated carbon (PAC) adsorbed inorganic ions by cavitation to enhance the transfer; we studied how the regeneration time and the mass ratio of resin and PAC influence the regeneration rate respectively through re-adsorption. The result showed that the effective regeneration of PAC saturated with inorganic ions was above 90% using ion exchange resin as media and transfer carrier, the quantity of PAC did not reduced but activated in the process. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  2. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Sierau, B.; Gysel, M.; Laborde, M.; Keller, A.; Kim, J.; Petzold, A.; Onasch, T. B.; Lohmann, U.; Mensah, A. A.

    2014-03-01

    We discuss the major mass spectral features of different types of refractory carbonaceous particles, ionized after laser vaporization with an Aerodyne high-resolution soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated with a switchable 1064 nm laser and a 600 °C thermal vaporizer, yielding respective measurements of the refractory and non-refractory particle components. Six samples were investigated, all of which were composed primarily of refractory material: fuel-rich and fuel-lean propane/air diffusion-flame combustion particles; graphite-spark-generated particles; a commercial fullerene-enriched soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine combustion particles. All samples exhibited a spectrum of carbon-cluster ions Cxn+ in their refractory mass spectrum. Smaller clusters (x < 6) were found to dominate the Cxn+ distribution. For fullerene soot, fuel-rich-flame particles and spark-generated particles, significant Cxn+ clusters at x ≫ 6 were present, with significant contributions from multiply charged ions (n > 1). In all six cases, the ions C1+ and C3+ contributed over 60% to the total C1ions C1+ / C3+ could be used to predict whether significant Cxn+ signals with x > 5 were present. When such signals were present, C1+ / C3+ was close to 1. When absent, C1+ / C3+ was < 0.8. This ratio may therefore serve as a proxy to distinguish between the two types of spectra in atmospheric SP-AMS measurements. Significant refractory oxygenated ions such as CO+ and CO2+ were also observed for all samples. We discuss these signals in detail for Regal Black, and describe their formation via decomposition of oxygenated moieties incorporated into the refractory carbon structure. These species may be of importance in atmospheric processes such as water uptake and heterogeneous chemistry. If atmospherically stable, these oxidized species may be useful for distinguishing

  3. Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries.

    PubMed

    Chen, Yuming; Li, Xiaoyan; Park, Kyusung; Song, Jie; Hong, Jianhe; Zhou, Limin; Mai, Yiu-Wing; Huang, Haitao; Goodenough, John B

    2013-11-06

    By a novel in situ chemical vapor deposition, activated N-doped hollow carbon-nanotube/carbon-nanofiber composites are prepared having a superhigh specific Brunauer–Emmett–Teller (BET) surface area of 1840 m(2) g(–1) and a total pore volume of 1.21 m(3) g(–1). As an anode, this material has a reversible capacity of ~1150 mAh g(–1) at 0.1 A g(–1) (0.27 C) after 70 cycles. At 8 A g(–1) (21.5 C), a capacity of ~320 mAh g(–1) fades less than 20% after 3500 cycles, which makes it a superior anode material for a Li-ion battery.

  4. Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.

  5. High Temperature Carbonized Grass as a High Performance Sodium Ion Battery Anode.

    PubMed

    Zhang, Fang; Yao, Yonggang; Wan, Jiayu; Henderson, Doug; Zhang, Xiaogang; Hu, Liangbing

    2017-01-11

    Hard carbon is currently considered the most promising anode candidate for room temperature sodium ion batteries because of its relatively high capacity, low cost, and good scalability. In this work, switchgrass as a biomass example was carbonized under an ultrahigh temperature, 2050 °C, induced by Joule heating to create hard carbon anodes for sodium ion batteries. Switchgrass derived carbon materials intrinsically inherit its three-dimensional porous hierarchical architecture, with an average interlayer spacing of 0.376 nm. The larger interlayer spacing than that of graphite allows for the significant Na ion storage performance. Compared to the sample carbonized under 1000 °C, switchgrass derived carbon at 2050 °C induced an improved initial Coulombic efficiency. Additionally, excellent rate capability and superior cycling performance are demonstrated for the switchgrass derived carbon due to the unique high temperature treatment.

  6. Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Jaber-Ansari, Laila

    Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) and graphene have emerged as leading additives for high capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. In this work, the these nanomaterials have been developed and their properties have been fine-tuned to help solve fundamental issues in conventional lithium ion battery electrodes. Towards this end, the application of SWCNTs in lithium-ion anodes has been studied. As-grown SWCNTs possess a distribution of physical and electronic structures, and it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Towards this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations. To understand the interaction of the graphene with lithium ions and electrolyte species during electrochemical we use Raman spectroscopy in a model system of monolayer graphene transferred on a Si(111) substrate and density functional theory (DFT) to investigate defect formation as a function of lithiation. This model system enables the early stages of defect formation to be probed in a manner previously not possible with commonly-used reduced graphene oxide or multilayer graphene substrates. Using ex

  7. Evaluation of the immunological profile of antibody-functionalized metal-filled single-walled carbon nanocapsules for targeted radiotherapy

    PubMed Central

    Perez Ruiz de Garibay, Aritz; Spinato, Cinzia; Klippstein, Rebecca; Bourgognon, Maxime; Martincic, Markus; Pach, Elzbieta; Ballesteros, Belén; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T.; Tobias, Gerard; Bianco, Alberto

    2017-01-01

    This study investigates the immune responses induced by metal-filled single-walled carbon nanotubes (SWCNT) under in vitro, ex vivo and in vivo settings. Either empty amino-functionalized CNTs [SWCNT-NH2 (1)] or samarium chloride-filled amino-functionalized CNTs with [SmCl3@SWCNT-mAb (3)] or without [SmCl3@SWCNT-NH2 (2)] Cetuximab functionalization were tested. Conjugates were added to RAW 264.7 or PBMC cells in a range of 1 μg/ml to 100 μg/ml for 24 h. Cell viability and IL-6/TNFα production were determined by flow cytometry and ELISA. Additionally, the effect of SWCNTs on the number of T lymphocytes, B lymphocytes and monocytes within the PBMC subpopulations was evaluated by immunostaining and flow cytometry. The effect on monocyte number in living mice was assessed after tail vein injection (150 μg of each conjugate per mouse) at 1, 7 and 13 days post-injection. Overall, our study showed that all the conjugates had no significant effect on cell viability of RAW 264.7 but conjugates 1 and 3 led to a slight increase in IL-6/TNFα. All the conjugates resulted in significant reduction in monocyte/macrophage cell numbers within PBMCs in a dose-dependent manner. Interestingly, monocyte depletion was not observed in vivo, suggesting their suitability for future testing in the field of targeted radiotherapy in mice. PMID:28198410

  8. Evaluation of the immunological profile of antibody-functionalized metal-filled single-walled carbon nanocapsules for targeted radiotherapy

    NASA Astrophysics Data System (ADS)

    Perez Ruiz de Garibay, Aritz; Spinato, Cinzia; Klippstein, Rebecca; Bourgognon, Maxime; Martincic, Markus; Pach, Elzbieta; Ballesteros, Belén; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T.; Tobias, Gerard; Bianco, Alberto

    2017-02-01

    This study investigates the immune responses induced by metal-filled single-walled carbon nanotubes (SWCNT) under in vitro, ex vivo and in vivo settings. Either empty amino-functionalized CNTs [SWCNT-NH2 (1)] or samarium chloride-filled amino-functionalized CNTs with [SmCl3@SWCNT-mAb (3)] or without [SmCl3@SWCNT-NH2 (2)] Cetuximab functionalization were tested. Conjugates were added to RAW 264.7 or PBMC cells in a range of 1 μg/ml to 100 μg/ml for 24 h. Cell viability and IL-6/TNFα production were determined by flow cytometry and ELISA. Additionally, the effect of SWCNTs on the number of T lymphocytes, B lymphocytes and monocytes within the PBMC subpopulations was evaluated by immunostaining and flow cytometry. The effect on monocyte number in living mice was assessed after tail vein injection (150 μg of each conjugate per mouse) at 1, 7 and 13 days post-injection. Overall, our study showed that all the conjugates had no significant effect on cell viability of RAW 264.7 but conjugates 1 and 3 led to a slight increase in IL-6/TNFα. All the conjugates resulted in significant reduction in monocyte/macrophage cell numbers within PBMCs in a dose-dependent manner. Interestingly, monocyte depletion was not observed in vivo, suggesting their suitability for future testing in the field of targeted radiotherapy in mice.

  9. Effect of carbon on ion beam mixing of Fe-Ti bilayers

    SciTech Connect

    Hirvonen, J.P.; Nastasi, M.; Lappalainen, R.; Sickafus, K.; Helsinki Univ. . Dept. of Physics; Los Alamos National Lab., NM )

    1989-01-01

    The influence of implanted carbon on ion beam mixing of a Fe-Ti system was investigated. Carbon was introduced into bilayer samples by implanting {sup 13}C isotopes. The implantation energies were selected to set the mean range of carbon ions in either the iron or titanium layer. The effect of implanted carbon on 400 keV Ar ion mixing in the temperature range from 0 to 300{degree}C was studied using Rutherford backscattering spectroscopy at the energy of 5 MeV. Changes in carbon concentration profiles were probed utilizing the resonance of the nuclear reaction {sup 13}C(p,{gamma}){sup 14}N at the proton energy of 1.748 MeV. The measurements revealed that mixing was not affected by carbon implanted into the titanium layer. However, carbon in the iron layer remarkably retarded mixing at all temperatures investigated. Significant changes in carbon depth distributions were observed only when the sample with implanted carbon in the iron layer was mixed at 300{degree}C. These results are explained in terms of the enhanced mobility of carbon in an evaporated iron film which allows segregation to the interface. At low temperatures, however, vacancy-carbon interaction in iron may have a contribution to the retarded ion beam mixing. 19 refs., 3 figs.

  10. [Composition of organic carbon/elemental carbon and water-soluble ions in rice straw burning].

    PubMed

    Hong, Lei; Liu, Gang; Yang, Meng; Xu, Hui; Li, Jiu-hai; Chen, Hui-yu; Huang, Ke; Yang, Wei-zong; Wu, Dan

    2015-01-01

    Six types of rice straw were selected in China in this paper, the homemade biomass combustion devices were used to simulate the outdoor burning. The concentrations of organic carbon (OC), elemental carbon (C) and water-soluble ions in particular matter produced by the flaming and smoldering were analyzed using Thermal Optical Carbon Analyzer (Model 2001A) and Ion Chromatography(ISC 2000/ISC 3000). The results showed that the mean value of OC (EFoc) and EC (EFEC) emission factors were (6.37 +/- 1.86) g x kg(-1) and (1.07 +/- 0.30) g x kg(-1) under the flaming conditions, respectively, while under the smoldering conditions the two mean values were (37.63 +/- 6.26) g x kg(-1) and (4.98 x 1.42) g x kg(-1). PM, OC and EC emitted from the same kind of rice straw had similar change trends. The average values of OC/EC under flaming and smoldering were 5.96 and 7.80, and the value of OC/PM was almost unchanged along with the combustion state. Nevertheless, the values of EC/PM under flaming and smoldering were 0.06-0.08 and 0.08-0.11, respectively. The trend of combustion state could be determined using the ratio of EC/PM and the RZ of emitted OC and EC through those two types of combustion reached 0. 97, which was significantly correlated at the 0. 01 level. Among the anions, Cl- showed the highest concentration, the results indicated that the average value of of Cl- emission factor was (0.246 +/- 0.150) g x kg(-1) under flaming, while it was (0.301 +/- 0.274) g x kg(-1) under smoldering. However, A big difference between flaming and smoldering was found in the average value of K+ emission factor, where (0.118 +/- 0.051) g x kg(-1) of the former was significantly higher than the latter (0.053 +/- 0.031) g x kg(-1). When it came to Na, the result of smoldering was significantly higher than that of flaming. The correlation between water-soluble ions in flaming was more significant than smoldering. Rice straw burning could be distinguished from fossil fuels and some other

  11. Analysis of metabolic washout of positron emitters produced during carbon ion head and neck radiotherapy

    SciTech Connect

    Helmbrecht, Stephan; Enghardt, Wolfgang; Parodi, Katia; Didinger, Bernd; Debus, Jürgen; Kunath, Daniela; Priegnitz, Marlen; Fiedler, Fine

    2013-09-15

    Purpose: Particle Therapy Positron Emission Tomography (PT-PET) is a suitable method for verification of therapeutic dose delivery by measurements of irradiation-induced β{sup +}-activity. Due to metabolic processes in living tissue β{sup +}-emitters can be removed from the place of generation. This washout is a limiting factor for image quality. The purpose of this study is to investigate whether a washout model obtained by animal experiments is applicable to patient data.Methods: A model for the washout has been developed by Mizuno et al. [Phys. Med. Biol. 48(15), 2269–2281 (2003)] and Tomitani et al. [Phys. Med. Biol. 48(7), 875–889 (2003)]. It is based upon measurements in a rabbit in living and dead conditions. This model was modified and applied to PET data acquired during the experimental therapy project at GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany. Three components are expected: A fast one with a half life of 2 s, a medium one in the range of 2–3 min, and a slow component of the order of 2–3 h. Ten patients were selected randomly for investigation of the fast component. To analyze the other two components, 12 one-of-a-kind measurements from a single volunteer patient are available.Results: A fast washout on the time scale of a few seconds was not observed in the patient data. The medium processes showed a mean half life of 155.7 ± 4.6 s. This is in the expected range. Fractions of the activity not influenced by the washout were found.Conclusions: On the time scale of an in-beam or in-room measurement only the medium-time washout processes play a remarkable role. A slow component may be neglected if the measurements do not exceed 20 min after the end of the irradiation. The fast component is not observed due to the low relative blood filled volume in the brain.

  12. Assessment of a carbon fibre MRI flatbed insert for radiotherapy treatment planning.

    PubMed

    Jafar, Maysam M; Reeves, Jonathan; Ruthven, Matthieu A; Dean, Christopher J; MacDougall, Niall D; Tucker, Arthur T; Miquel, Marc E

    2016-06-01

    The purpose of this work was to assess heating and radiofrequency (RF) deposition and image quality effects of a prototype three-section carbon fibre flatbed insert for use in MRI. RF deposition was assessed using two different thermometry techniques, infrared thermometry and Bragg-grating thermometry. Image quality effects were assessed with and without the flatbed insert in place by using mineral oil phantoms and a human subject. Neither technique detected heating of the insert in typical MRI examinations. We found that the insert was less suitable for MRI applications owing to severe RF shielding artefact. For spin-echo (SE), turbo spin-echo (TSE) and gradient-echo sequences, the reduction in signal-to-noise ratio (SNR) was as much as 89% when the insert was in place compared with the standard couch, making it less suitable as a patient-support material. Turning on the MultiTransmit switch together with using the scanner's quadrature body coil improved the reduction in SNR from 89% to 39% for the SE sequence and from 82% to 12% for the TSE sequence. No evidence was found to support reports in the literature that carbon fibre is an unsuitable material for use in MRI because of heating. This study suggests that carbon fibre is less suitable for large-scale MRI applications owing to it causing severe RF shading. Further research is needed to establish the suitability of the flatbed for treatment planning using alternative sequences or whether an alternative carbon fibre composite for large-scale MRI applications or a design that can minimize shielding can be found.

  13. Assessment of a carbon fibre MRI flatbed insert for radiotherapy treatment planning

    PubMed Central

    Reeves, Jonathan; Ruthven, Matthieu A; Dean, Christopher J; MacDougall, Niall D; Tucker, Arthur T; Miquel, Marc E

    2016-01-01

    Objective: The purpose of this work was to assess heating and radiofrequency (RF) deposition and image quality effects of a prototype three-section carbon fibre flatbed insert for use in MRI. Methods: RF deposition was assessed using two different thermometry techniques, infrared thermometry and Bragg-grating thermometry. Image quality effects were assessed with and without the flatbed insert in place by using mineral oil phantoms and a human subject. Results: Neither technique detected heating of the insert in typical MRI examinations. We found that the insert was less suitable for MRI applications owing to severe RF shielding artefact. For spin-echo (SE), turbo spin-echo (TSE) and gradient-echo sequences, the reduction in signal-to-noise ratio (SNR) was as much as 89% when the insert was in place compared with the standard couch, making it less suitable as a patient-support material. Turning on the MultiTransmit switch together with using the scanner's quadrature body coil improved the reduction in SNR from 89% to 39% for the SE sequence and from 82% to 12% for the TSE sequence. Conclusion: No evidence was found to support reports in the literature that carbon fibre is an unsuitable material for use in MRI because of heating. Advances in knowledge: This study suggests that carbon fibre is less suitable for large-scale MRI applications owing to it causing severe RF shading. Further research is needed to establish the suitability of the flatbed for treatment planning using alternative sequences or whether an alternative carbon fibre composite for large-scale MRI applications or a design that can minimize shielding can be found. PMID:27033180

  14. EPR analysis of the effects of accelerated carbon ion and fast neutron irradiations on table sugar.

    PubMed

    Mikou, M; Benzina, S; Bischoff, P; Denis, J M; Gueulette, J

    2009-09-01

    Table sugar samples were irradiated with accelerated carbon ions and fast neutrons. Electron paramagnetic resonance (EPR) analysis performed after the irradiation revealed a complex spectrum similar to that observed after gamma-ray irradiations. The total concentration of the paramagnetic centers induced by accelerated carbon ions and neutrons was proportional to the absorbed dose. Good stability of the produced free radicals was observed for a typical period of sugar storage. Sugar was more sensitive to accelerated carbon ions than to neutrons. The results show that table sugar can be a useful material for dosimetry in the case of a radiation accident.

  15. Carbon-ion beams induce production of an immune mediator protein, high mobility group box 1, at levels comparable with X-ray irradiation

    PubMed Central

    Yoshimoto, Yuya; Oike, Takahiro; Okonogi, Noriyuki; Suzuki, Yoshiyuki; Ando, Ken; Sato, Hiro; Noda, Shin-ei; Isono, Mayu; Mimura, Kousaku; Kono, Koji; Nakano, Takashi

    2015-01-01

    X-ray radiotherapy activates tumor antigen-specific T-cell responses, and increases in the serum levels of high mobility group box 1 (HMGB1) induced by X-ray irradiation play a pivotal role in activating anti-tumor immunity. Here, we examined whether carbon-ion beams, as well as X-rays, can induce HMGB1 release from human cancer cell lines. The study examined five human cancer cell lines: TE2, KYSE70, A549, NCI-H460 and WiDr. The proportion of cells surviving X- or carbon-ion beam irradiation was assessed in a clonogenic assay. The D10, the dose at which 10% of cells survive, was calculated using a linear–quadratic model. HMGB1 levels in the culture supernatants were assessed by an ELISA. The D10 dose for X-rays in TE2, KYSE70, A549, NCI-H460 and WiDr cells was 2.1, 6.7, 8.0, 4.8 and 7.1 Gy, respectively, whereas that for carbon-ion beams was 0.9, 2.5, 2.7, 1.8 and 3.5 Gy, respectively. X-rays and carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of A549, NCI-H460 and WiDr cells at 72 h post-irradiation with a D10 dose. Furthermore, irradiation with X-rays or carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of all five cell lines at 96 h post-irradiation. There was no significant difference in the amount of HMGB1 induced by X-rays and carbon-ion beams at any time-point (except at 96 h for NCI-H460 cells); thus we conclude that comparable levels of HMGB1 were detected after irradiation with iso-survival doses of X-rays and carbon-ion beams. PMID:25755254

  16. Carbon-ion beams induce production of an immune mediator protein, high mobility group box 1, at levels comparable with X-ray irradiation.

    PubMed

    Yoshimoto, Yuya; Oike, Takahiro; Okonogi, Noriyuki; Suzuki, Yoshiyuki; Ando, Ken; Sato, Hiro; Noda, Shin-ei; Isono, Mayu; Mimura, Kousaku; Kono, Koji; Nakano, Takashi

    2015-05-01

    X-ray radiotherapy activates tumor antigen-specific T-cell responses, and increases in the serum levels of high mobility group box 1 (HMGB1) induced by X-ray irradiation play a pivotal role in activating anti-tumor immunity. Here, we examined whether carbon-ion beams, as well as X-rays, can induce HMGB1 release from human cancer cell lines. The study examined five human cancer cell lines: TE2, KYSE70, A549, NCI-H460 and WiDr. The proportion of cells surviving X- or carbon-ion beam irradiation was assessed in a clonogenic assay. The D10, the dose at which 10% of cells survive, was calculated using a linear-quadratic model. HMGB1 levels in the culture supernatants were assessed by an ELISA. The D10 dose for X-rays in TE2, KYSE70, A549, NCI-H460 and WiDr cells was 2.1, 6.7, 8.0, 4.8 and 7.1 Gy, respectively, whereas that for carbon-ion beams was 0.9, 2.5, 2.7, 1.8 and 3.5 Gy, respectively. X-rays and carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of A549, NCI-H460 and WiDr cells at 72 h post-irradiation with a D10 dose. Furthermore, irradiation with X-rays or carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of all five cell lines at 96 h post-irradiation. There was no significant difference in the amount of HMGB1 induced by X-rays and carbon-ion beams at any time-point (except at 96 h for NCI-H460 cells); thus we conclude that comparable levels of HMGB1 were detected after irradiation with iso-survival doses of X-rays and carbon-ion beams.

  17. Transport of Sputtered Carbon During Ground-Based Life Testing of Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Marker, Colin L.; Clemons, Lucas A.; Banks, Bruce A.; Miller, Sharon; Snyder, Aaron; Hung, Ching-Cheh; Karniotis, Christina A.; Waters, Deborah L.

    2005-01-01

    High voltage, high power electron bombardment ion thrusters needed for deep space missions will be required to be operated for long durations in space as well as during ground laboratory life testing. Carbon based ion optics are being considered for such thrusters. The sputter deposition of carbon and arc vaporized carbon flakes from long duration operation of ion thrusters can result in deposition on insulating surfaces, causing them to become conducting. Because the sticking coefficient is less than one, secondary deposition needs to be considered to assure that shorting of critical components does not occur. The sticking coefficient for sputtered carbon and arc vaporized carbon is measured as well as directional ejection distribution data for carbon that does not stick upon first impact.

  18. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    NASA Astrophysics Data System (ADS)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  19. Wake potential of swift ion in amorphous carbon target

    NASA Astrophysics Data System (ADS)

    Al-Bahnam, Nabil janan; Ahmad, Khalid A.; Aboo Al-Numan, Abdullah Ibrahim

    2017-02-01

    The wake potential and wake phenomena for swift proton in an amorphous carbon target were studied by utilising various dielectric function formalisms, including the Drude dielectric function, the Drude-Lorentz dielectric function and quantum dielectric function. The Drude model results exhibited a damped oscillatory behaviour in the longitudinal direction behind the projectile; the pattern of these oscillations decreases exponentially in the transverse direction. In addition, the wake potential extends slightly ahead of the projectile which also depends on the proton coordinate and velocity. The effect of electron binding on the wake potential, characterised by the ratio ωp2 / ω02 = 10 to 0.1, has been studied alongside the Drude-Lorentz dielectric function and quantum dielectric function formalisms; the results evidently show that the wake potential dip depth decreases with more oscillations when the electron density ratio ωp2 / ω02 decreases from 10 to 0.1. One of the primary objectives of the present work is to construct a reasonably realistic procedure for simulating the response of target to swift ions by combining an expression for the induced wake potential along with several important dielectric function models; the aim of this research is to reduce computational complexity without sacrificing accuracy. This is regarded as being an efficient strategy in that it creates suitable computer simulation procedures which are relevant to actual solids. After comparing this method with other models, the main differences and similarities have been noted while the end results have proved encouraging.

  20. Silicon/Carbon Anodes with One-Dimensional Pore Structure for Lithium-Ion Batteries

    DTIC Science & Technology

    2013-08-31

    Connected by Single-Wall Carbon Nanotubes for Sodium Ion Battery Cathodes, Nano Letters 12, 5664, 2012. ( § equal contribution)  Chao Luo,§ Yunhua...is superior to that of those conductive additive-incorporated iron oxide anodes, such as amorphous carbon , graphene as well as carbon nanotubes ...electrochemical performance. The C/S composite cathodes were prepared by mixing C/S powders with carbon black and sodium carboxymethyl cellulose (CMC

  1. Ion beam deposition of amorphous carbon films with diamond like properties

    NASA Technical Reports Server (NTRS)

    Angus, John C.; Mirtich, Michael J.; Wintucky, Edwin G.

    1982-01-01

    Carbon films were deposited on silicon, quartz, and potassium bromide substrates from an ion beam. Growth rates were approximately 0.3 micron/hour. The films were featureless and amorphous and contained only carbon and hydrogen in significant amounts. The density and carbon/hydrogen ratio indicate the film is a hydrogen deficient polymer. One possible structure, consistent with the data, is a random network of methylene linkages and tetrahedrally coordinated carbon atoms.

  2. Carbons for lithium ion cells prepared using sepiolite as an inorganic template.

    SciTech Connect

    Sandi, G.

    1998-12-09

    Carbon anodes for Li ion cells have been prepared by the in situ polymerization of olefins such as propylene and ethylene in the channels of sepiolite clay mineral. Upon dissolution of the inorganic framework, a disordered carbon was obtained. The carbon was tested as anode in coin cells, yielding a reversible capacity of 633 mAh/g, 1.70 times higher than the capacity delivered by graphitic carbon, assuming 100% efficiency. The coulombic efficiency was higher than 90%.

  3. RADIATION CHEMISTRY OF HIGH ENERGY CARBON, NEON AND ARGON IONS: INTEGRAL YIELDS FROM FERROUS SULFATE SOLUTIONS

    SciTech Connect

    Christman, E.A.; Appleby, A.; Jayko, M.

    1980-07-01

    Chemical yields of Fe{sup 3+} have been measured from FeSO{sub 4} solutions irradiated in the presence and absence of oxygen with carbon, neon, and argon ions from the Berkeley Bevalac facility. G(Fe{sup 3+}) decreases with increasing beam penetration and with increasing atomic number of the incident ion. The results are compared with current theoretical expectations of the behavior of these particles in an aqueous absorber. The chemical yields are consistently higher than theoretically predicted, by amounts varying from <6.2% (carbon ions) to <13.2% (argon ions). The additional yields are possibly attributable to fragmentation of the primary particle beams.

  4. Selective removal of carbon-14 from ion exchange resins using supercritical carbon dioxide

    SciTech Connect

    Dias, S.A.; Krasznai, J.P.

    1996-12-31

    Ion exchange resins (IX) are used extensively in CANDU-PHWR (Canada Deuterium Uranium - Pressurized Heavy Water Reactor) and other reactor systems worldwide to remove ionic contaminants from various coolant circuits. Spent IX resins represent a significant volume of low and intermediate level radioactive waste. The presence of long-lived C-14 which is found in significant quantities in IX resins from CANDU reactors, complicates the disposal of these resins. Several experiments were conducted with carbon dioxide under subcritical and supercritical conditions to determine the feasibility of removing C-14 present as carbonate and/or bicarbonate on IX resins. It has been established that resins containing inorganic C-14 undergo rapid isotopic exchange when exposed to inactive carbon dioxide under supercritical conditions. This treatment reduces the C-14 to the limits of detection and leaves other radioisotopes on the resins largely unaffected. This selective and highly efficient means to remove long-lived C-14 activity from CANDU spent IX resins allows the resin waste to be reclassified as low level waste. This lower classification simplifies the handling, transportation and eventual disposal of IX resins which translates to a very significant cost saving. Since the process is selective the C-14 can be enriched and recovered for commercial purposes.

  5. Solvation behavior of carbonate-based electrolytes in sodium ion batteries.

    PubMed

    Cresce, Arthur V; Russell, Selena M; Borodin, Oleg; Allen, Joshua A; Schroeder, Marshall A; Dai, Michael; Peng, Jing; Gobet, Mallory P; Greenbaum, Steven G; Rogers, Reginald E; Xu, Kang

    2016-12-21

    Sodium ion batteries are on the cusp of being a commercially available technology. Compared to lithium ion batteries, sodium ion batteries can potentially offer an attractive dollar-per-kilowatt-hour value, though at the penalty of reduced energy density. As a materials system, sodium ion batteries present a unique opportunity to apply lessons learned in the study of electrolytes for lithium ion batteries; specifically, the behavior of the sodium ion in an organic carbonate solution and the relationship of ion solvation with electrode surface passivation. In this work the Li(+) and Na(+)-based solvates were characterized using electrospray mass spectrometry, infrared and Raman spectroscopy, (17)O, (23)Na and pulse field gradient double-stimulated-echo pulse sequence nuclear magnetic resonance (NMR), and conductivity measurements. Spectroscopic evidence demonstrate that the Li(+) and Na(+) cations share a number of similar ion-solvent interaction trends, such as a preference in the gas and liquid phase for a solvation shell rich in cyclic carbonates over linear carbonates and fluorinated carbonates. However, quite different IR spectra due to the PF6(-) anion interactions with the Na(+) and Li(+) cations were observed and were rationalized with the help of density functional theory (DFT) calculations that were also used to examine the relative free energies of solvates using cluster - continuum models. Ion-solvent distances for Na(+) were longer than Li(+), and Na(+) had a greater tendency towards forming contact pairs compared to Li(+) in linear carbonate solvents. In tests of hard carbon Na-ion batteries, performance was not well correlated to Na(+) solvent preference, leading to the possibility that Na(+) solvent preference may play a reduced role in the passivation of anode surfaces and overall Na-ion battery performance.

  6. Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery.

    PubMed

    Li, Hongbian; Shen, Fei; Luo, Wei; Dai, Jiaqi; Han, Xiaogang; Chen, Yanan; Yao, Yonggang; Zhu, Hongli; Fu, Kun; Hitz, Emily; Hu, Liangbing

    2016-01-27

    A simple one-step thermal pyrolysis route has been developed to prepare carbon membrane from a natural leaf. The carbonized leaf membrane possesses anisotropic surfaces and internal hierarchical porosity, exhibiting a high specific capacity of 360 mAh/g and a high initial Coulombic efficiency of 74.8% as a binder-free, current-collector-free anode for rechargeable sodium ion batteries. Moreover, large-area carbon membranes with low contact resistance are fabricated by simply stacking and carbonizing leaves, a promising strategy toward large-scale sodium-ion battery developments.

  7. Advanced carbon anode materials for lithium ion cells

    NASA Astrophysics Data System (ADS)

    Azuma, Hideto; Imoto, Hiroshi; Yamada, Shin'ichiro; Sekai, Koji

    Three kinds of carbon have been used for commercial cells: graphite, soft carbon and hard carbon. The difference in the structures of these three kinds of carbon is shown clearly using our new model for soft and hard carbon structure. The lithium-doped state of these three kinds of carbon is discussed using the new structural model and published 7Li NMR data. A large reversible capacity is demonstrated in the hard carbons derived from some vegetable fibers. Two mechanisms—one enhancing the adsorbing force of pseudo-metallic lithium atoms and one reducing the repulsion force between doped lithium atoms—which together produce a high reversible capacity, are explained.

  8. Comparison of intensity modulated radiotherapy (IMRT) with intensity modulated particle therapy (IMPT) using fixed beams or an ion gantry for the treatment of patients with skull base meningiomas

    PubMed Central

    2012-01-01

    Background To examine the potential improvement in treatment planning for patients with skull base meningioma using IMRT compared to carbon ion or proton beams with and without a gantry. Methods Five patients originally treated with photon IMRT were selected for the study. Ion beams were chosen using a horizontal beam or an ion gantry. Intensity controlled raster scanning and the intensity modulated particle therapy mode were used for plan optimization. The evaluation included analysis of dose-volume histograms of the target volumes and organs at risk. Results In comparison with carbon and proton beams only with horizontal beams, carbon ion treatment plans could spare the OARs more and concentrated on the target volumes more than proton and photon IMRT treatment plans. Using only a horizontal fixed beam, satisfactory plans could be achieved for skull base tumors. Conclusion The results of the case studies showed that using IMPT has the potential to overcome the lack of a gantry for skull base tumors. Carbon ion plans offered slightly better dose distributions than proton plans, but the differences were not clinically significant with established dose prescription concepts. PMID:22439607

  9. Centrifugally-spun carbon microfibers and porous carbon microfibers as anode materials for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Dirican, Mahmut; Zhang, Xiangwu

    2016-09-01

    Natural abundance and low cost of sodium resources bring forward the sodium-ion batteries as a promising alternative to widely-used lithium-ion batteries. However, insufficient energy density and low cycling stability of current sodium-ion batteries hinder their practical use for next-generation smart power grid and stationary storage applications. Electrospun carbon microfibers have recently been introduced as a high-performance anode material for sodium-ion batteries. However, electrospinning is not feasible for mass production of carbon microfibers due to its complex processing condition, low production rate and high cost. Herein, we report centrifugal spinning, a high-rate and low-cost microfiber production method, as an alternative approach to electrospinning for carbon microfiber production and introduce centrifugally-spun carbon microfibers (CMFs) and porous carbon microfibers (PCMFs) as anode materials for sodium-ion batteries. Electrochemical performance results indicated that the highly porous nature of centrifugally-spun PCMFs led to increased Na+ storage capacity and improved cycling stability. The reversible capacity of centrifugally-spun PCMF anodes at the 200th cycle was 242 mAh g-1, which was much higher than that of centrifugally-spun CMFs (143 mAh g-1). The capacity retention and coulombic efficiency of the centrifugally-spun PCMF anodes were 89.0% and 99.9%, respectively, even at the 200th cycle.

  10. Wafer-scale synthesis of multi-layer graphene by high-temperature carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Kim, Janghyuk; Lee, Geonyeop; Kim, Jihyun

    2015-07-01

    We report on the synthesis of wafer-scale (4 in. in diameter) high-quality multi-layer graphene using high-temperature carbon ion implantation on thin Ni films on a substrate of SiO2/Si. Carbon ions were bombarded at 20 keV and a dose of 1 × 1015 cm-2 onto the surface of the Ni/SiO2/Si substrate at a temperature of 500 °C. This was followed by high-temperature activation annealing (600-900 °C) to form a sp2-bonded honeycomb structure. The effects of post-implantation activation annealing conditions were systematically investigated by micro-Raman spectroscopy and transmission electron microscopy. Carbon ion implantation at elevated temperatures allowed a lower activation annealing temperature for fabricating large-area graphene. Our results indicate that carbon-ion implantation provides a facile and direct route for integrating graphene with Si microelectronics.

  11. Enhancement of electric double layer capacitance of carbon nanotubes by gallium ion irradiation

    SciTech Connect

    Rai, Padmnabh; Pandey, Srikrishna; Menemparabath, Minimol; Sug Kim, Young; Nikolaev, Pavel; Arepalli, Sivaram; Lee, Il Ha

    2011-02-15

    Irradiation by 30 keV Ga{sup +} ions was used to create defects in multiwalled carbon nanotubes. Damage to the graphitic structure of the nanotube wall resulting from ion irradiation was observed by a transmission electron microscope which was accompanied by corresponding changes in Raman spectra. It was found that ion irradiation at 2 x 10{sup 13} ions/cm{sup 2} cumulative dose increases the electric double layer capacitance of a multiwalled carbon nanotube electrode by a factor of 2.3, followed by a decrease and saturation at higher (2 x 10{sup 14} and 4 x 10{sup 14} ions/cm{sup 2}) doses. This might be a trade-off between the enhancement caused by the tip opening and lowering of the capacitance due to amorphization of carbon nanotubes.

  12. Thermal property tuning in aligned carbon nanotube films and random entangled carbon nanotube films by ion irradiation

    SciTech Connect

    Wang, Jing; Chen, Di; Wang, Xuemei; Bykova, Julia S.; Zakhidov, Anvar A.; Shao, Lin

    2015-10-12

    Ion irradiation effects on thermal property changes are compared between aligned carbon nanotube (A-CNT) films and randomly entangled carbon nanotube (R-CNT) films. After H, C, and Fe ion irradiation, a focusing ion beam with sub-mm diameter is used as a heating source, and an infrared signal is recorded to extract thermal conductivity. Ion irradiation decreases thermal conductivity of A-CNT films, but increases that of R-CNT films. We explain the opposite trends by the fact that neighboring CNT bundles are loosely bonded in A-CNT films, which makes it difficult to create inter-tube linkage/bonding upon ion irradiation. In a comparison, in R-CNT films, which have dense tube networking, carbon displacements are easily trapped between touching tubes and act as inter-tube linkage to promote off-axial phonon transport. The enhancement overcomes the phonon transport loss due to phonon-defect scattering along the axial direction. A model is established to explain the dependence of thermal conductivity changes on ion irradiation parameters including ion species, energies, and current.

  13. Luminescence imaging of water during carbon-ion irradiation for range estimation

    SciTech Connect

    Yamamoto, Seiichi Komori, Masataka; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri; Akagi, Takashi; Yamashita, Tomohiro; Toshito, Toshiyuki

    2016-05-15

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  14. Ion chromatography on carbon clad zirconia modified by diazonium chemistry and functionalized latex particles.

    PubMed

    Wahab, M Farooq; Pohl, Christopher A; Lucy, Charles A

    2011-08-07

    This work explores the potential of 3 μm carbon coated zirconia particles as a stationary phase for ion chromatography for the separation of organic acids and inorganic ions. A 4-phenylsulfonic acid functionality is introduced onto the carbon surface by reducing 4-phenylsulfonic acid diazonium chloride with borohydride in the presence of carbon clad zirconia particles. The elemental sulfur analysis gave 132 μeq-SO(3)H/g carbon clad zirconia and 2% S atomic concentration by XPS analysis. The -SO(3)(-) groups serve as electrostatic anchors for latex nanoparticles bearing quaternary triethylamine functional groups. The agglomeration step in 5 × 0.4 cm i.d. columns converts the packed particles into an anion exchanger. The breakthrough curves with nitrate indicate a capacity of 3 μeq/column. Separation of common organic acids and inorganic ions using carbonate eluent and suppressed conductivity detection yield plate heights (H) of 0.023-0.05 mm.

  15. Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions.

    PubMed Central

    Shikazono, Naoya; Yokota, Yukihiko; Kitamura, Satoshi; Suzuki, Chihiro; Watanabe, Hiroshi; Tano, Shigemitsu; Tanaka, Atsushi

    2003-01-01

    Irradiation of Arabidopsis thaliana by carbon ions was carried out to investigate the mutational effect of ion particles in higher plants. Frequencies of embryonic lethals and chlorophyll-deficient mutants were found to be significantly higher after carbon-ion irradiation than after electron irradiation (11-fold and 7.8-fold per unit dose, respectively). To estimate the mutation rate of carbon ions, mutants with no pigments on leaves and stems (tt) and no trichomes on leaves (gl) were isolated at the M2 generation and subjected to analysis. Averaged segregation rate of the backcrossed mutants was 0.25, which suggested that large deletions reducing the viability of the gametophytes were not transmitted, if generated, in most cases. During the isolation of mutants, two new classes of flavonoid mutants (tt18, tt19) were isolated from carbon-ion-mutagenized M2 plants. From PCR and sequence analysis, two of the three tt18 mutant alleles were found to have a small deletion within the LDOX gene and the other was revealed to contain a rearrangement. Using the segregation rates, the mutation rate of carbon ions was estimated to be 17-fold higher than that of electrons. The isolation of novel mutants and the high mutation rate suggest that ion particles can be used as a valuable mutagen for plant genetics. PMID:12702688

  16. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1995-08-22

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  17. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  18. Investigating the Role of Carbonate Ion Concentration on the Magnesium Content of Amorphous Calcium Carbonate

    NASA Astrophysics Data System (ADS)

    Blue, C.; Dove, P. M.; Han, N.

    2011-12-01

    The fields of biomineralization and carbonate geochemistry are undergoing a paradigm shift with the realization that the formation of calcite with diverse compositions and textures can be understood within the framework of multiple pathways to mineralization. Many organisms do not form their skeletons via the classical step-growth process, but instead mineralization occurs through a mesocrystal pathway that begins with the formation of amorphous calcium carbonate (ACC), which subsequently transforms to calcite. Little is known about factors that regulate this type of calcification because the last 50 years of research have focused almost entirely on step-growth processes. In particular, new findings indicate that the chemical signatures and properties of calcites that form via an amorphous pathway are significantly different. Variable temperature has been shown to influence the amount of magnesium that is incorporated into ACC, but the effect of alkalinity has not been constrained. Here, a flow-through method was developed to produce ACC within a geochemically relevant pH range and with a constant supersaturation, and to determine the effect of carbonate ion concentration on magnesium uptake. The experimental approach uses a high precision syringe pump to prepare ACC under specified and constant chemical conditions. This study used two syringes that contained: 1) 100 ml of MgCl2?6H2O and CaCl2?2H2O such that the Mg/Ca ratio is fixed at 5:1 (modern seawater), and 2) 100 ml of 60mM - 400mM NaHCO3. The initial sodium bicarbonate solutions were buffered to a pH of 9.75 using NaOH, and upon mixing with the 5:1 Mg/Ca solution the resulting pH range was 9.2 - 9.7. All experiments were performed at temperatures between 21.5 and 23 degrees Celsius. Solution and solids were collected on 0.20 micron filter paper with a vacuum pump running continuously. Experiments were typically conducted for an hour and a half and all samples were rinsed with distilled deionized water before

  19. Molecular dynamics study of radiation damage and microstructure evolution of zigzag single-walled carbon nanotubes under carbon ion incidence

    NASA Astrophysics Data System (ADS)

    Li, Huan; Tang, Xiaobin; Chen, Feida; Huang, Hai; Liu, Jian; Chen, Da

    2016-07-01

    The radiation damage and microstructure evolution of different zigzag single-walled carbon nanotubes (SWCNTs) were investigated under incident carbon ion by molecular dynamics (MD) simulations. The radiation damage of SWCNTs under incident carbon ion with energy ranging from 25 eV to 1 keV at 300 K showed many differences at different incident sites, and the defect production increased to the maximum value with the increase in incident ion energy, and slightly decreased but stayed fairly stable within the majority of the energy range. The maximum damage of SWCNTs appeared when the incident ion energy reached 200 eV and the level of damage was directly proportional to incident ion fluence. The radiation damage was also studied at 100 K and 700 K and the defect production decreased distinctly with rising temperature because radiation-induced defects would anneal and recombine by saturating dangling bonds and reconstructing carbon network at the higher temperature. Furthermore, the stability of a large-diameter tube surpassed that of a thin one under the same radiation environments.

  20. Poultry litter-based activated carbon for removing heavy metal ions in water.

    PubMed

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  1. Surplus adsorption of bromide ion into π-conjugated carbon nanospaces assisted by proton coadsorption.

    PubMed

    Nishi, Masayasu; Ohkubo, Takahiro; Yamasaki, Masaru; Takagi, Hideyuki; Kuroda, Yasushige

    2017-12-15

    Nanoporous carbons can preferentially adsorb bromide ions from an aqueous solution of alkali metal bromides, even on π-conjugated surfaces. Our results show a new adsorption mechanism whereby coadsorption of protons enhances the adsorption of the anions onto the carbons. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Dosimetric characterization of the iBEAM evo carbon fiber couch for radiotherapy

    SciTech Connect

    Smith, David W.; Christophides, Damianos; Dean, Christopher; Naisbit, Mitchell; Mason, Joshua; Morgan, Andrew

    2010-07-15

    Purpose: This study characterizes the dosimetric properties of the iBEAM evo carbon fiber couch manufactured by Medical Intelligence and examines the accuracy of the CMS XiO and Nucletron Oncentra Masterplan (OMP) treatment planning systems for calculating beam attenuation due to the presence of the couch. Methods: To assess the homogeneity of the couch, it was CT scanned at isocentric height and a number of signal intensity profiles were generated and analyzed. To simplify experimental procedures, surface dose and central axis depth dose measurements were performed in a solid water slab phantom using Gafchromic film for 6 and 10 MV photon beams at gantry angles of 0 deg. (normal incidence), 30 deg., and 60 deg. with an inverted iBEAM couch placed on top of the phantom. Attenuation measurements were performed in a cylindrical solid water phantom with an ionization chamber positioned at the isocenter. Measurements were taken for gantry angles from 0 deg. to 90 deg. in 10 deg. increments for both 6 and 10 MV photon beams. This setup was replicated in the XiO and OMP treatment planning systems. Dose was calculated using the pencil beam, collapsed cone, convolution, and superposition algorithms. Results: The CT scan of the couch showed that it was uniformly constructed. Surface dose increased by (510{+-}30)% for a 6 MV beam and (600{+-}20)% for a 10 MV beam passing through the couch at normal incidence. Obliquely incident beams resulted in a higher surface dose compared to normally incident beams for both open fields and fields with the couch present. Depth dose curves showed that the presence of the couch resulted in an increase in dose in the build up region. For 6 and 10 MV beams incident at 60 deg., nearly all skin sparing was lost. Attenuation measurements derived using the ionization chamber varied from 2.7% (0 deg.) to a maximum of 4.6% (50 deg.) for a 6 MV beam and from 1.9% (0 deg.) to a maximum of 4.0% (50 deg.) for a 10 MV beam. The pencil beam and

  3. Enhancement of SPHK1 in vitro by carbon ion irradiation in oral squamous cell carcinoma

    SciTech Connect

    Higo, Morihiro; Uzawa, Katsuhiro . E-mail: uzawak@faculty.chiba-u.jp; Kawata, Tetsuya; Kato, Yoshikuni; Kouzu, Yukinao; Yamamoto, Nobuharu; Shibahara, Takahiko; Mizoe, Jun-etsu; Ito, Hisao; Tsujii, Hirohiko; Tanzawa, Hideki

    2006-07-01

    Purpose The purpose of this study was to assess the gene expression changes in oral squamous cell carcinoma (OSCC) cells after carbon ion irradiation. Methods and Materials Three OSCC cell lines (HSC2, Ca9-22, and HSC3) were irradiated with accelerated carbon ion beams or X-rays using three different doses. The cellular sensitivities were determined by clonogenic survival assay. To identify genes the expression of which is influenced by carbon ion irradiation in a dose-dependent manner, we performed Affymetrix GeneChip analysis with HG-U133 plus 2.0 arrays containing 54,675 probe sets. The identified genes were analyzed using the Ingenuity Pathway Analysis Tool to investigate the functional network and gene ontology. Changes in mRNA expression in the genes were assessed by real-time reverse transcriptase-polymerase chain reaction. Results We identified 98 genes with expression levels that were altered significantly at least twofold in each of the three carbon-irradiated OSCC cell lines at all dose points compared with nonirradiated control cells. Among these, SPHK1, the expression of which was significantly upregulated by carbon ion irradiation, was modulated little by X-rays. The function of SPHK1 related to cellular growth and proliferation had the highest p value (p = 9.25e-7 to 2.19e-2). Real-time reverse transcriptase-polymerase chain reaction analysis showed significantly elevated SPHK1 expression levels after carbon ion irradiation (p < 0.05), consistent with microarray data. Clonogenic survival assay indicated that carbon ion irradiation could induce cell death in Ca9-22 cells more effectively than X-rays. Conclusions Our findings suggest that SPHK1 helps to elucidate the molecular mechanisms and processes underlying the biologic response to carbon ion beams in OSCC.

  4. Heavy particle radiotherapy: prospects and pitfalls

    SciTech Connect

    Faju, M.R.

    1980-01-01

    The use of heavy particles in radiotherapy of tumor volumes is examined. Particles considered are protons, helium ions, heavy ions, negative pions, and fast neutrons. Advantages and disadvantages are discussed. (ACR)

  5. Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Mochida, Isao; Ku, Cha-Hun; Yoon, Seong-Ho; Korai, Yozo

    The anodic performance of soft carbons prepared from synthetic mesophase pitches by heat-treatment at 500 to 1200°C are investigated in order to clarify their mechanism for the insertion of lithium ions. It is found that the insertion mechanism for soft carbon heat-treated at low temperatures is divided into the following three cases: (i) lithium ions partially charge transferred on the surface of hexagonal planes or in the unstacked carbon layers to be charged and discharged at 0.25 to 0.8 V (Type I); (ii) intercalated into carbon layers up to a higher stage to be charged and discharged at 0.0 to 0.25 V (Type II); (iii) inserted into the microspaces located at the edges of carbon clusters to be charged at 0.0 to 0.1 V and discharged at 0.8 to 2.0 V (Type III). Lithium ions of Types I and II are charged and discharged reversibly, hence, the capacity is stable with cycling. By contrast, the capacity of Type III ions decreases gradually with cycle number. The irreversible charge-discharge and poor cycle stability of Type III ions suggest some chemical reactions during charge-discharge that increase the discharge potential and modify the carbon structure. Bonding of carbon planes at facing edges in the anisotropic carbon may be responsible for the poor cycle stability. The capacity of Type II ions increases gradually with heat-treatment which graphitizes carbon to allow intercalation. By contrast, the capacities of Types I and III ions are decreased gradually and sharply, respectively, by heat-treatment. The progress of graphitization densifies the carbon and reduces the free surface of the hexagonal sheet and the charging to such sites. The performance of Type III ions reflects the characteristic of anisotropic carbon in which the clusters are aligned to have more faced edges than those in isotropic carbon. The heat-treatment combines the edges to enlarge considerably the hexagonal plane in this temperature range.

  6. Tilting of carbon encapsulated metallic nanocolumns in carbon-nickel nanocomposite films by ion beam assisted deposition

    SciTech Connect

    Krause, Matthias; Muecklich, Arndt; Zschornak, Matthias; Wintz, Sebastian; Gemming, Sibylle; Abrasonis, Gintautas; Oates, Thomas W. H.; Luis Endrino, Jose

    2012-07-30

    The influence of assisting low-energy ({approx}50-100 eV) ion irradiation effects on the morphology of C:Ni ({approx}15 at. %) nanocomposite films during ion beam assisted deposition (IBAD) is investigated. It is shown that IBAD promotes the columnar growth of carbon encapsulated metallic nanoparticles. The momentum transfer from assisting ions results in tilting of the columns in relation to the growing film surface. Complex secondary structures are obtained, in which a significant part of the columns grows under local epitaxy via the junction of sequentially deposited thin film fractions. The influence of such anisotropic film morphology on the optical properties is highlighted.

  7. Theoretical study of charge transfer dynamics in collisions of C6+ carbon ions with pyrimidine nucleobases

    NASA Astrophysics Data System (ADS)

    Bacchus-Montabonel, M. C.

    2012-07-01

    A theoretical approach of the charge transfer dynamics induced by collision of C6+ ions with biological targets has been performed in a wide collision energy range by means of ab-initio quantum chemistry molecular methods. The process has been investigated for the target series thymine, uracil and 5-halouracil corresponding to similar molecules with different substituent on carbon C5. Such a study may be related to hadrontherapy treatments by C6+carbon ions and may provide, in particular, information on the radio-sensitivity of the different bases with regard to ion-induced radiation damage. The results have been compared to a previous analysis concerning the collision of C4+ carbon ions with the same biomolecular targets and significant charge effects have been pointed out.

  8. Novel carbon-ion fuel cells. Quarterly technical report, April--June 1996

    SciTech Connect

    Cocks, F.H.

    1996-11-01

    This report presents research to develop a new type of of fuel cell using a solid electrolyte that transports carbon ions. This new class of fuel cell would use solid C dissolved in molten metal (carbide) as a fuel reservoir and anode; thus expensive gas or liquid fuel would not be required. Thermodynamic efficiency of carbon-ion fuel cells is reviewed, as are electrolyte crystal structures (oxide and fluorite carbides). The sequence of laboratory research procedures for developing a solid C-ion electrolyte and to determine the ionic conductivity of C ions therein is outlined; results of the laboratory research to date are summarized, including XRD analysis of crystal structures and transition temperatures of carbides (La, Ce, Be, Al) and SIMS of carbon isotopes.

  9. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    SciTech Connect

    Zhang, Yuxiao; Zhang, Jianming; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. Black-Right-Pointing-Pointer MPCS was covalently modified by cysteine (MPCS-CO-Cys). Black-Right-Pointing-Pointer MPCS-CO-Cys was first time used in electrochemical detection of heavy metal ions. Black-Right-Pointing-Pointer Heavy metal ions such as Pb{sup 2+} and Cd{sup 2+} can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  10. [Involvement of carbonate/bicarbonate ions in the superoxide-generating reaction of adrenaline autoxidation].

    PubMed

    Sirota, T V

    2015-01-01

    An important role of carbonate/bicarbonate ions has been recognized in the superoxide generating reaction of adrenaline autooxidation in an alkaline buffer (a model of quinoid adrenaline oxidation in the body). It is suggested that these ions are directly involved not only in formation of superoxide anion radical (О(2)(-)) but also other radicals derived from the carbonate/bicarbonate buffer. Using various buffers it was shown that the rate of accumulation of adrenochrome, the end product of adrenaline oxidation, and the rate of О(2)(-)· formation depend on concentration of carbonate/bicarbonate ions in the buffer and that these ions significantly accelerate adrenaline autooxidation thus demonstrating prooxidant properties. The detectable amount of diformazan, the product of nitro blue tetrazolium (NBT) reduction, was significantly higher than the amount of adrenochrome formed; taking into consideration the literature data on О(2)(-)· detection by NBT it is suggested that adrenaline autooxidation is accompanied by one-electron reduction not only of oxygen dissolved in the buffer and responsible for superoxide formation but possible carbon dioxide also dissolved in the buffer as well as carbonate/bicarbonate buffer components leading to formation of corresponding radicals. The plots of the dependence of the inhibition of adrenochrome and diformazan formation on the superoxide dismutase concentration have shown that not only superoxide radicals are formed during adrenaline autooxidation. Since carbonate/bicarbonate ions are known to be universally present in the living nature, their involvement in free radical processes proceeding in the organism is discussed.

  11. Carbon Ion Irradiation Effects on Pulsed Laser Deposited Titanium Nitride Thin Films

    NASA Astrophysics Data System (ADS)

    Mahmood, Khaliq; Bashir, Shazia; Akram, Mahreen; Hayat, Asma; Faizan-Ul-Haq; Saadat, Shahzad

    2015-02-01

    Pulse laser deposited thin films of TiN are irradiated by 1 MeV carbon (C+) ions beam for various doses ranging 0.4 to 2.8 × 1014 ions/cm2. Atomic force microscopy (AFM) analysis reveals the formation of hillocks like structures after ion irradiation. X-ray diffraction (XRD) investigations show that the film crystallinity increases for lower doses ranging from 0.4 to 1.2 × 1014 ions/cm2 and decreases for higher doses (2 to 2.8 × 1014 ions/cm2) of ions. No new bands are identified from Raman spectroscopy. However, a noticeable change in microhardness has been observed. The hillock densities as well as hardness are strongly dependent upon ion dose.

  12. Time resolved diagnostics of ions in colliding carbon plasmas

    SciTech Connect

    Singh, Ravi Pratap; Gupta, Shyam L.; Thareja, Raj K.

    2014-11-14

    We report a comparative study of the dynamic behaviour of ions at different pressures in laser ablated colliding and single plasma plumes using 2D imaging, optical emission spectroscopy (OES) and a retarding field analyser (RFA). 2D imaging shows the splitting of plasma plumes due to different velocities of various plasma species. OES shows enhancement in abundance of ionic species with their presence for a longer time in colliding plume. C{sub 2} molecular formation is seen at later time in colliding plume compared to single plume and is attributed to dominating collisional processes in the colliding region of the plumes. The time of flight distribution of ions traced by the RFA shows the variation with change in fluence as well as ambient pressure for both colliding and single plume. Time of flight analysis of ions also shows the appearance of a fast peak in ion signal due to acceleration of ions at larger fluence.

  13. Measurement of The Ion-induced Electron Yields From Thin Carbon Foils For Low-energy Ions

    NASA Astrophysics Data System (ADS)

    Allegrini, F.; Wimmer-Schweingruber, R. F.; Wurz, P.; Hohl, M.; Wieser, M.; Luethi, B.; Bochsler, P.

    Energetic ions passing thin carbon foils cause electron emission from the entrance and exit surface. Carbon foils are used in many Time-Of-Flight (TOF) solar wind mass spectrometers to produce the start pulse for TOF measurements. The number of emitted electrons depends on the energy of the incoming ion, its mass, and other parameters, and is known for only a few elements in the solar wind energy range. This number is of great importance in determining abundance ratios of different ele- ments using measurements of TOF mass spectrometers based on the carbon-foil tech- nique (such as the Ulysses/- and ACE/SWICS instruments, or SOHO/CELIAS/MTOF, -/CTOF, -/STOF, or WIND/MASS, or ACE/SWIMS). We have developed an appara- tus for measuring the ion-induced electron yields. We report measurements of the ion induced electron yields of H, O, N, Ne, Na, Ca, Ar, and Fe in the energy range from 0.15 to 60 keV/u for various foil thicknesses and initial charge states, and compare our results with the literature.

  14. Epidemiological Study of the Incidence of Cancers Eligible for Proton or Carbon Ions Therapy: Methodology and Results of Recruitment Estimation

    PubMed Central

    Patin, Stéphanie; Pommier, Pascal; Yi, Hu; Baron, Marie Hélène; Balosso, Jacques

    2013-01-01

    Context. Hadrontherapy is an innovative form of radiotherapy using beams of protons or carbon ions able to destroy some radio-resistant tumours. Because these tumours are highly specific amongst all cancerous tumours, it is impossible to determine the incidence of these diseases from surveillance registries. Goal. To assess, within the Rhône-Alpes region, the incidence of cancers being hadrontherapy indications. Method. Prospective, multicentre continuous data collection during 1 year, by practitioners participating to multidisciplinary tumor board. Tumours are inoperable, radio resistant, at primary stage of development, or locally recurrent, with low metastatic potential. Results. Study involved 27 healthcare centres, 52 groups of specialist practitioners. The estimated incidence of cancers eligible for hadrontherapy in the Rhône-Alpes region in 2010, that is, for 34 locations in all, is of 8.5/100 000 inhabitants. Appraisal of the low potential of metastatic progression is impeded, because these are rare diseases, whose outcome is unfamiliar to investigators. Conclusion. Future epidemiological studies will need to focus on prognosis and on the metastatic progression rate of these diseases. Indeed, there are few information available on this subject in the literature that could be used to improve preventive measures, medical care, and the surveillance of these rare cancers. PMID:23864858

  15. Epidemiological study of the incidence of cancers eligible for proton or carbon ions therapy: methodology and results of recruitment estimation.

    PubMed

    Patin, Stéphanie; Pommier, Pascal; Yi, Hu; Baron, Marie Hélène; Balosso, Jacques

    2013-01-01

    Context. Hadrontherapy is an innovative form of radiotherapy using beams of protons or carbon ions able to destroy some radio-resistant tumours. Because these tumours are highly specific amongst all cancerous tumours, it is impossible to determine the incidence of these diseases from surveillance registries. Goal. To assess, within the Rhône-Alpes region, the incidence of cancers being hadrontherapy indications. Method. Prospective, multicentre continuous data collection during 1 year, by practitioners participating to multidisciplinary tumor board. Tumours are inoperable, radio resistant, at primary stage of development, or locally recurrent, with low metastatic potential. Results. Study involved 27 healthcare centres, 52 groups of specialist practitioners. The estimated incidence of cancers eligible for hadrontherapy in the Rhône-Alpes region in 2010, that is, for 34 locations in all, is of 8.5/100 000 inhabitants. Appraisal of the low potential of metastatic progression is impeded, because these are rare diseases, whose outcome is unfamiliar to investigators. Conclusion. Future epidemiological studies will need to focus on prognosis and on the metastatic progression rate of these diseases. Indeed, there are few information available on this subject in the literature that could be used to improve preventive measures, medical care, and the surveillance of these rare cancers.

  16. Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent

    SciTech Connect

    Tofighy, Maryam Ahmadzadeh; Mohammadi, Toraj

    2015-08-15

    Highlights: • CNTs–mullite composite was prepared via chemical vapor deposition (CVD) method. • The prepared composite was modified with concentrated nitric acid and chitosan. • The modified CNTs–mullite composites were used as novel adsorbents. • Copper ion removal from water by the prepared adsorbents was performed. • Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. - Abstract: Carbon nanotubes–mullite composite was synthesized by direct growth of carbon nanotubes on mullite particles via chemical vapor deposition method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. The carbon nanotubes–mullite composite was oxidized with concentrated nitric acid and functionalized with chitosan and then used as a novel adsorbent for copper ions removal from water. The results demonstrated that modification with concentrated nitric acid and chitosan improves copper ions adsorption capacity of the prepared composite, significantly. Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. The carbon nanotubes growth on mullite particles to form the carbon nanotubes–mullite composite with further modification is an inherently safe approach for many promising environmental applications to avoid some concerns regarding environment, health and safety. It was found that the modified carbon nanotubes–mullite composite can be considered as an excellent adsorbent for copper ions removal from water.

  17. Adsorption of cadmium ions on oxygen surface sites in activated carbon

    SciTech Connect

    Jia, Y.F.; Thomas, K.M.

    2000-02-08

    Various types of oxygen functional groups were introduced onto the surface of coconut shell derived activated carbon by oxidation using nitric acid. Fourier-transform infrared spectroscopy (FTIR), temperature-programmed desorption (TPD), and selective neutralization were used to characterize the surface oxygen functional groups. The oxidized carbons were also heat treated to provide a suite of carbons where the oxygen functional groups of various thermal stabilities were varied progressively. The adsorption of cadmium ions was enhanced dramatically by oxidation of the carbon. The ratio of released protons to adsorbed cadmium ions on oxidized carbon was approximately 2, indicating cation exchange was involved in the process of adsorption. Na{sup +} exchange studies with the oxidized carbon gave a similar ratio. After heat treatment of the oxidized carbons to remove oxygen functional groups, the ratio of H{sup +} released to Cd{sup 2+} adsorbed and the adsorption capacity decreased significantly. Both reversible and irreversible processes were involved in cadmium ion adsorption with reversible adsorption having higher enthalpy. The irreversible adsorption resulted from cation exchange with carboxylic acid groups, whereas the reversible adsorption probably involved physisorption of the partially hydrated cadmium ion.

  18. Enhanced electron field emission from carbon nanotubes irradiated by energetic C ions.

    PubMed

    Sun, Peng-Cheng; Deng, Jian-Hua; Cheng, Guo-An; Zheng, Rui-Ting; Ping, Zhao-Xia

    2012-08-01

    The field emission performance and structure of the vertically aligned multi-walled carbon nanotube arrays irradiated by energetic C ion with average energy of 40 keV have been investigated. During energetic C ion irradiation, the curves of emission current density versus the applied field of samples shift firstly to low applied fields when the irradiation doses are less than 9.6 x 10(16) cm(-2), and further increase of dose makes the curves reversing to a high applied field, which shows that high dose irradiation in carbon nanotube arrays makes their field emission performance worse. After energetic ion irradiation with a dose of 9.6 x 1016 cm(-2), the turn-on electric field and the threshold electric field of samples decreased from 0.80 and 1.13 V/microm to 0.67 and 0.98 V/microm respectively. Structural analysis of scanning electron microscopy, transmission electron microscopy and Raman spectroscopy indicates that the amorphous carbon nanowire/carbon nanotube hetero nano-structures have been fabricated in the C ion irradiated carbon nanotubes. The enhancement of electron field emission is due to the formation of amorphous carbon nanowires at the tip of carbon nanotube arrays, which is an electron emitting material with low work function.

  19. Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries

    PubMed Central

    2015-01-01

    Na-ion batteries (NIBs) have attracted great attention for scalable electrical energy storage considering the abundance and wide availability of Na resources. However, it remains elusive whether carbon anodes can achieve the similar scale of successes in Na-ion batteries as in Li-ion batteries. Currently, much attention is focused on hard carbon while soft carbon is generally considered a poor choice. In this study, we discover that soft carbon can be a high-rate anode in NIBs if the preparation conditions are carefully chosen. Furthermore, we discover that the turbostratic lattice of soft carbon is electrochemically expandable, where d-spacing rises from 3.6 to 4.2 Å. Such a scale of lattice expansion only due to the Na-ion insertion was not known for carbon materials. It is further learned that portions of such lattice expansion are highly reversible, resulting in excellent cycling performance. Moreover, soft carbon delivers a good capacity at potentials above 0.2 V, which enables an intrinsically dendrite-free anode for NIBs. PMID:27163016

  20. Enabling linear alkyl carbonate electrolytes for high voltage Li-ion cells

    NASA Astrophysics Data System (ADS)

    Xia, Jian; Petibon, Remi; Xiong, Deijun; Ma, Lin; Dahn, J. R.

    2016-10-01

    Some of the problems of current electrolytes for high voltage Li-ion cells originate from ethylene carbonate (EC) which is thought to be an essential electrolyte component for Li-ion cells. Ethylene carbonate-free electrolytes containing 1 M LiPF6 in ethylmethyl carbonate (EMC) with small loadings of vinylene carbonate, fluoroethylene carbonate, or (4R,5S)-4,5-Difluoro-1,3-dioxolan-2-one acting as ;enablers; were developed. These electrolytes used in Li(Ni0.4Mn0.4Co0.2)O2/graphite pouch type Li-ion cells tested at 4.2 V and 4.5 V yielded excellent charge-discharge cycling and storage properties. The results for cells containing linear alkyl carbonate electrolytes with no EC were compared to those of cells with EC-containing electrolytes incorporating additives proven to enhance cyclability of cells. The combination of EMC with appropriate amounts of these enablers yields cells with better performance than cells with EC-containing electrolytes incorporating additives tested to 4.5 V. Further optimizing these linear alkyl carbonate electrolytes with appropriate co-additives may represent a viable path to the successful commercial utilization of NMC/graphite Li-ion cells operated to 4.5 V and above.

  1. Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes

    PubMed Central

    2015-01-01

    Supercapacitors are electrochemical devices which store energy by ion adsorption on the surface of a porous carbon. They are characterized by high power delivery. The use of nanoporous carbon to increase their energy density should not hinder their fast charging. However, the mechanisms for ion transport inside electrified nanopores remain largely unknown. Here we show that the diffusion is characterized by a hierarchy of time scales arising from ion confinement, solvation, and electrosorption effects. By combining electrochemistry experiments with molecular dynamics simulations, we determine the in-pore conductivities and diffusion coefficients and their variations with the applied potential. We show that the diffusion of the ions is slower by 1 order of magnitude compared to the bulk electrolyte. The desolvation of the ions occurs on much faster time scales than electrosorption. PMID:26369420

  2. Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes.

    PubMed

    Pean, Clarisse; Daffos, Barbara; Rotenberg, Benjamin; Levitz, Pierre; Haefele, Matthieu; Taberna, Pierre-Louis; Simon, Patrice; Salanne, Mathieu

    2015-10-07

    Supercapacitors are electrochemical devices which store energy by ion adsorption on the surface of a porous carbon. They are characterized by high power delivery. The use of nanoporous carbon to increase their energy density should not hinder their fast charging. However, the mechanisms for ion transport inside electrified nanopores remain largely unknown. Here we show that the diffusion is characterized by a hierarchy of time scales arising from ion confinement, solvation, and electrosorption effects. By combining electrochemistry experiments with molecular dynamics simulations, we determine the in-pore conductivities and diffusion coefficients and their variations with the applied potential. We show that the diffusion of the ions is slower by 1 order of magnitude compared to the bulk electrolyte. The desolvation of the ions occurs on much faster time scales than electrosorption.

  3. Room temperature diamond-like carbon coatings produced by low energy ion implantation

    NASA Astrophysics Data System (ADS)

    Markwitz, A.; Mohr, B.; Leveneur, J.

    2014-07-01

    Nanometre-smooth diamond-like carbon coatings (DLC) were produced at room temperature with ion implantation using 6 kV C3Hy+ ion beams. Ion beam analysis measurements showed that the coatings contain no heavy Z impurities at the level of 100 ppm, have a homogeneous stoichiometry in depth and a hydrogen concentration of typically 25 at.%. High resolution TEM analysis showed high quality and atomically flat amorphous coatings on wafer silicon. Combined TEM and RBS analysis gave a coating density of 3.25 g cm-3. Raman spectroscopy was performed to probe for sp2/sp3 bonds in the coatings. The results indicate that low energy ion implantation with 6 kV produces hydrogenated amorphous carbon coatings with a sp3 content of about 20%. Results highlight the opportunity of developing room temperature DLC coatings with ion beam technology for industrial applications.

  4. Adsorption of aqueous metal ions on oxygen and nitrogen functionalized nanoporous activated carbons.

    PubMed

    Xiao, B; Thomas, K M

    2005-04-26

    In this study, the adsorption characteristics of two series of oxygen and nitrogen functionalized activated carbons were investigated. These series were a low nitrogen content (approximately 1 wt % daf) carbon series derived from coconut shell and a high nitrogen content (approximately 8 wt % daf) carbon series derived from polyacrylonitrile. In both series, the oxygen contents were varied over the range approximately 2-22 wt % daf. The porous structures of the functionalized activated carbons were characterized using N(2) (77 K) and CO(2) (273 K) adsorption. Only minor changes in the porous structure were observed in both series. This allowed the effect of changes in functional group concentrations on metal ion adsorption to be studied without major influences due to differences in porous structure characteristics. The surface group characteristics were examined by Fourier transform infrared (FTIR) spectroscopy, acid/base titrations, and measurement of the point of zero charge (pH(PZC)). The adsorption of aqueous metal ion species, M(2+)(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M(2+)(aq) metal species adsorbed have a linear relationship for the carbons with pH(PZC) < or = 4.15. Hydrolysis of metal species in solution may affect the adsorption of metal ion species and displacement of protons. In the case of basic carbons, both protons and metal ions are adsorbed on the carbons. The complex nature of competitive adsorption between the proton and metal ion species and the amphoteric character of carbon surfaces are discussed in relation to the mechanism of adsorption.

  5. SU-E-T-518: Investigation of Gold Nanoparticle Radiosensitization for Carbon Ion Therapy

    SciTech Connect

    Lin, Y; Held, K; Paganetti, H; Schuemann, J; McMahon, S

    2015-06-15

    Purpose The aim of this work is to investigate the radiosensitization effect of gold nanoparticles (GNP) in carbon ion irradiation. Nano-scale dosimetric characteristics of GNP interaction with carbon ions as well as the secondary particles generated as a carbon beam traverses the water phantom were studied. Methods Monte Carlo simulations were carried out using TOPAS (Tool for Particle Simulation). First, a water phantom was irradiated by the carbon ion beam and the particle shower spectrum at several depths was recorded in phase spaces. We analyzed the number and energy spectrum of each particle type. Then, the phase spaces obtained from Step 1 were modified to nanometer scale to irradiate a single 50 nm GNP. The secondary electrons that escaped from the GNPs following interactions with each particle type were recorded as phase spaces. The number and energy spectrum of the secondary electrons were studied. The same simulations were repeated replacing the GNPs with water nanoparticles (WNPs) with the same size. The energy absorbed in either GNP or WNP was scored. Results There is a large amount of secondary particles generated through carbon ion beam interaction with the water phantom. Analysis of the secondary electrons generated by the primary particles which escape from the nanoparticle revealed that majority (above 80%) of these electrons were generated by the GNP interaction with Carbon beam itself, making it the biggest contributor to the enhancement. The ratio of the energy absorbed by GNP and WNP is about 8–10 for charged particles and above 3000 for gammas. Conclusion We showed in the study the GNPs may potentially be used to enhance carbon ion therapy, and the main mechanism of enhancement is the interaction with Carbon ion particles itself.

  6. Upcycling of Packing-Peanuts into Carbon Microsheet Anodes for Lithium-Ion Batteries.

    PubMed

    Etacheri, Vinodkumar; Hong, Chulgi Nathan; Pol, Vilas G

    2015-09-15

    Porous carbon microsheet anodes with Li-ion storage capacity exceeding the theoretical limit are for the first time derived from waste packing-peanuts. Crystallinity, surface area, and porosity of these 1 μm thick carbon sheets were tuned by varying the processing temperature. Anodes composed of the carbon sheets outperformed the electrochemical properties of commercial graphitic anode in Li-ion batteries. At a current density of 0.1 C, carbon microsheet anodes exhibited a specific capacity of 420 mAh/g, which is slightly higher than the theoretical capacity of graphite (372 mAh/g) in Li-ion half-cell configurations. At a higher rate of 1 C, carbon sheets retained 4-fold higher specific capacity (220 mAh/g) compared to those of commercial graphitic anode. After 100 charge-discharge cycles at current densities of 0.1 and 0.2 C, optimized carbon sheet anodes retained stable specific capacities of 460 and 370 mAh/g, respectively. Spectroscopic and microscopic investigations proved the structural integrity of these high-performance carbon anodes during numerous charge-discharge cycles. Considerably higher electrochemical performance of the porous carbon microsheets are endorsed to their disorderness that facilitate to store more Li-ions than the theoretical limit, and porous 2-D microstructure enabling fast solid-state Li-ion diffusion and superior interfacial kinetics. The work demonstrated here illustrates an inexpensive and environmentally benign method for the upcycling of packaging materials into functional carbon materials for electrochemical energy storage.

  7. Facile synthesis of carbon dot and residual carbon nanobeads: Implications for ion sensing, medicinal and biological applications.

    PubMed

    Gaddam, Rohit Ranganathan; Mukherjee, Sudip; Punugupati, Neelambaram; Vasudevan, D; Patra, Chitta Ranjan; Narayan, Ramanuj; Vsn Kothapalli, Raju

    2017-04-01

    Synthesis of carbon dots (Cdots) via chemical route involves disintegration of carbon materials into nano-domains, wherein, after extraction of Cdots, the remaining carbon material is discarded. The present work focuses on studying even the leftover carbon residue namely, carbon nanobeads (CNBs) as an equally important material for applications on par with that of carbon dot. It employs oxidative treatment of carbonised gum olibanum resin (GOR) to produce the carbons namely Cdots and CNBs (as the residue). The Cdots (~5-10nm) exhibit blue-green fluorescence with an optical absorption at ~300nm unlike the CNBs (40-50nm) which fail to exhibit fluorescence. The fluorescence behaviour exhibited by Cdots were utilized for heavy metal ion sensing of Pb(2+), Hg(2+) and Cd(2+) ions in aqueous media. Interestingly, both Cdots and CNBs are biocompatible to normal cell lines but cytotoxic to cancer cell lines, observed during several in vitro experiments (cell viability assay, cell cycle assay, apoptosis assay, ROS determination assay, caspase-9 activity assay). Additionally, Cdots exhibit bright green fluorescence in B16F10 cells. The Cdots and CNB's demonstrate multifunctional activities (sensor, cellular imaging and cancer therapy) in biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Highly Porous Carbon with Large Electrochemical Ion Absorption Capability for High-Performance Supercapacitors and Ion Capacitors.

    PubMed

    Wang, Shijie; Wang, Rutao; Zhang, Yabin; Zhang, Li

    2017-08-07

    Carbon-based supercapacitors have attracted extensive attention as the complement to batteries owing to its durable lifespan and superiority in high-power-demand field. However, their widespread use is limited by the low energy storage density; thus, a high-surface-area porous carbon is urgently needed. Herein, a highly porous carbon with a Brunauer-Emmett-Teller specific surface area up to 3643 m<sup>2</sup> g<sup>-1</sup> has been synthesized by chemical activation of resourceful papayas for the first time. This sp<sup>2</sup>-bonded porous carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form narrow mesopores of 2~5 nm in width, which can be systematically tailored with varied activation levels. Two-electrode symmetric supercapacitors constructed by this porous carbon achieve energy density of 8.1 Wh kg<sup>-1</sup> in aqueous electrolyte and 65.5 Wh kg<sup>-1</sup> in ionic-liquid electrolyte. Furthermore, half-cells (<i>vs.</i> Li or Na metal) using this porous carbon as ion sorption cathodes yield high specific capacity, e.g., 51.0 and 39.3 mAh g<sup>-1</sup> in Li<sup>+</sup> and Na<sup>+</sup> based organic electrolyte. These results underscore the possibility of obtaining the porous carbon for high-performance carbon-based supercapacitors and ion capacitors in a readily scalable and economical way. © 2017 IOP Publishing Ltd.

  9. Carbon, nitrogen, and oxygen ion implantation of stainless steel

    SciTech Connect

    Rej, D.J.; Gavrilov, N.V.; Emlin, D.

    1995-12-31

    Ion implantation experiments of C, N, and O into stainless steel have been performed, with beam-line and plasma source ion implantation methods. Acceleration voltages were varied between 27 and 50 kV, with pulsed ion current densities between 1 and 10 mA/cm{sup 2}. Implanted doses ranged from 0.5 to 3 {times} 10{sup 18}cm{sup -2}, while workpiece temperatures were maintained between 25 and 800 C. Implant concentration profiles, microstructure, and surface mechanical properties of the implanted materials are reported.

  10. Metformin enhances the radiosensitivity of human liver cancer cells to γ–rays and carbon ion beams

    PubMed Central

    Kim, Eun Ho; Kim, Mi-Sook; Furusawa, Yoshiya; Uzawa, Akiko; Han, Soorim; Jung, Won-Gyun; Sai, Sei

    2016-01-01

    The purpose of this study was to investigate the effect of metformin on the responses of hepatocellular carcinoma (HCC) cells to γ–rays (low-linear energy transfer (LET) radiation) and carbon-ion beams (high-LET radiation). HCC cells were pretreated with metformin and exposed to a single dose of γ–rays or carbon ion beams. Metformin treatment increased radiation-induced clonogenic cell death, DNA damage, and apoptosis. Carbon ion beams combined with metformin were more effective than carbon ion beams or γ-rays alone at inducing subG1 and decreasing G2/M arrest, reducing the expression of vimentin, enhancing phospho-AMPK expression, and suppressing phospho-mTOR and phospho-Akt. Thus, metformin effectively enhanced the therapeutic effect of radiation with a wide range of LET, in particular carbon ion beams and it may be useful for increasing the clinical efficacy of carbon ion beams. PMID:27802188

  11. Metformin enhances the radiosensitivity of human liver cancer cells to γ-rays and carbon ion beams.

    PubMed

    Kim, Eun Ho; Kim, Mi-Sook; Furusawa, Yoshiya; Uzawa, Akiko; Han, Soorim; Jung, Won-Gyun; Sai, Sei

    2016-12-06

    The purpose of this study was to investigate the effect of metformin on the responses of hepatocellular carcinoma (HCC) cells to γ-rays (low-linear energy transfer (LET) radiation) and carbon-ion beams (high-LET radiation). HCC cells were pretreated with metformin and exposed to a single dose of γ-rays or carbon ion beams. Metformin treatment increased radiation-induced clonogenic cell death, DNA damage, and apoptosis. Carbon ion beams combined with metformin were more effective than carbon ion beams or γ-rays alone at inducing subG1 and decreasing G2/M arrest, reducing the expression of vimentin, enhancing phospho-AMPK expression, and suppressing phospho-mTOR and phospho-Akt. Thus, metformin effectively enhanced the therapeutic effect of radiation with a wide range of LET, in particular carbon ion beams and it may be useful for increasing the clinical efficacy of carbon ion beams.

  12. Ion-radical intermediates of the radiation-chemical transformations of organic carbonates

    NASA Astrophysics Data System (ADS)

    Shiryaeva, Ekaterina S.; Sosulin, Ilya S.; Saenko, Elizaveta V.; Feldman, Vladimir I.

    2016-07-01

    The spectral features and reactions of ion-radical intermediates produced from organic carbonates in low-temperature matrices were investigated by EPR spectroscopy and quantum-chemical calculations. It was shown that radical cations of diethyl carbonate and dimethyl carbonate underwent intramolecular hydrogen transfer to yield alkyl-type species, as was suggested previously. Meanwhile, radical cation of EC demonstrates a ring cleavage even at 77 K, while radical cation of PC is probably intrinsically stable and undergo an ion-molecule reaction with a neighboring neutral molecule in dimers or associates. Radical anions were obtained in glassy matrices of diethyl ether or perdeuteroethanol. The radical anions of linear carbonates show photoinduced fragmentation to yield the corresponding alkyl radicals; such process may also occur directly under radiolysis. Radical anions of cyclic carbonates are relatively stable and yield only trace amounts of fragmentation products under similar conditions.

  13. An activated microporous carbon prepared from phenol-melamine-formaldehyde resin for lithium ion battery anode

    SciTech Connect

    Zhu, Yinhai; Xiang, Xiaoxia; Liu, Enhui; Wu, Yuhu; Xie, Hui; Wu, Zhilian; Tian, Yingying

    2012-08-15

    Highlights: ► Microporous carbon was prepared by chemical activation of phenol-melamine-formaldehyde resin. ► Activation leads to high surface area, well-developed micropores. ► Micropores lead to strong intercalation between carbon and lithium ion. ► Large surface area promotes to improve the lithium storage capacity. -- Abstract: Microporous carbon anode materials were prepared from phenol-melamine-formaldehyde resin by ZnCl{sub 2} and KOH activation. The physicochemical properties of the obtained carbon materials were characterized by scanning electron microscope, X-ray diffraction, Brunauer–Emmett–Teller, and elemental analysis. The electrochemical properties of the microporous carbon as anode materials in lithium ion secondary batteries were evaluated. At a current density of 100 mA g{sup −1}, the carbon without activation shows a first discharge capacity of 515 mAh g{sup −1}. After activation, the capacity improved obviously. The first discharge capacity of the carbon prepared by ZnCl{sub 2} and KOH activation was 1010 and 2085 mAh g{sup −1}, respectively. The reversible capacity of the carbon prepared by KOH activation was still as high as 717 mAh g{sup −1} after 20 cycles, which was much better than that activated by ZnCl{sub 2}. These results demonstrated that it may be a promising candidate as an anode material for lithium ion secondary batteries.

  14. Effects of dose-delivery time structure on biological effectiveness for therapeutic carbon-ion beams evaluated with microdosimetric kinetic model.

    PubMed

    Inaniwa, Taku; Suzuki, Masao; Furukawa, Takuji; Kase, Yuki; Kanematsu, Nobuyuki; Shirai, Toshiyuki; Hawkins, Roland B

    2013-07-01

    Treatment plans of carbon-ion radiotherapy have been made on the assumption that the beams are delivered instantaneously irrespective to the dose delivery time as well as the interruption time. The advanced therapeutic techniques such as a hypofractionation and a respiratory gating usually require more time to deliver a fractioned dose than conventional techniques. The purpose of this study was to investigate the effects of dose-delivery time structure on biological effectiveness in carbon-ion radiotherapy. The rate equations defined in the microdosimetric kinetic model (MKM) for primary lesions caused in the DNA were reanalyzed and applied to continuous or interrupted irradiation with therapeutic carbon-ion beams. The rate constants characterizing the time of the primary nonlethal lesions to repair or to convert to lethal lesion were experimentally determined for human salivary gland (HSG) tumor cells. Treatment plans were made for a patient case on the assumption that the beam is delivered instantaneously. The RBE weighted absorbed doses of 2.65, 3.45 and 6.86 Gy (RBE) was prescribed to the target. These plans were recalculated by varying the dose delivery time and the interruption time ranging from 1-60 min based on the MKM with the determined parameters. The sum of rate constants for nonlethal lesion to repair a and to convert to lethal lesion c, (a + c), is 2.19 ± 0.40 h⁻¹. The biological effectiveness in the target decreases with the dose delivery time T in continuous irradiation compared to the planned one due to the repair of nonlethal lesions during the irradiation. The biological effectiveness in terms of equivalent acute dose decreases to 99.7% and 96.4% for T = 3 and 60 min in 2.65 Gy (RBE), 99.5% and 94.3% in 4.35 Gy (RBE), and 99.4% and 91.7% in 6.86 Gy (RBE), respectively. For all the cases, the decrease of biological effectiveness is larger at the proximal side with low-LET than the distal side with high-LET. Similar reductions of biological

  15. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin

    2016-06-01

    In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.

  16. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.

    2015-07-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25-30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration.

  17. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces

    PubMed Central

    Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.

    2015-01-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25–30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048

  18. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces.

    PubMed

    Dalui, Malay; Wang, W-M; Trivikram, T Madhu; Sarkar, Subhrangsu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J; Ayyub, P; Sheng, Z M; Krishnamurthy, M

    2015-07-08

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈ 0.25 μm) layer of 25-30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2 × 10(18)  W/cm(2). However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration.

  19. Structural and optical properties of 70-keV carbon ion beam synthesized carbon nanoclusters in thermally grown silicon dioxide

    NASA Astrophysics Data System (ADS)

    Poudel, P. R.; Poudel, P. P.; Paramo, J. A.; Strzhemechny, Y. M.; Rout, B.; McDaniel, F. D.

    2014-09-01

    The structural and optical properties of carbon nanoclusters formed in thermally grown silicon dioxide film via the ion beam synthesis process have been investigated. A low-energy (70 keV) carbon ion beam (C-) at a fluence of 3 × 1017 atoms/cm2 was used for implantation into a thermally grown silicon dioxide layer (500 nm thick) on a Si (100) wafer. Several parts of the implanted samples were subsequently annealed in a gas mixture (4 % H2 + 96 % Ar) at 900 °C for different time periods. The as-implanted and annealed samples were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). The carbon ion implantation depth profile was simulated using a widely used Monte Carlo-based simulation code SRIM-2012. Additionally, the elemental depth profile of the implanted carbon along with host elements of silicon and oxygen were simulated using a dynamic ion-solid interaction code T-DYN, which incorporates the effects of the surface sputtering and gradual change in the elemental composition in the implanted layers due to high-fluence ion implantation. The elemental depth profile obtained from the XPS measurements matches closely to the T-DYN predictions. Raman measurements indicate the formation of graphitic phases in the annealed samples. The graphitic peak (G-peak) was found to be increased with the annealing time duration. In the sample annealed for 10 min, the sizes of the carbon nanoclusters were found to be 1-4 nm in diameter using TEM. The PL measurements at room temperature using a 325-nm laser show broad-band emissions in the ultraviolet to visible range in the as-implanted sample. Intense narrow bands along with the broad bands were observed in the annealed samples. The defects present in the as-grown samples along with carbon ion-induced defect centers in the as-implanted samples are the main contributors to the observed

  20. Structural and optical properties of 70-keV carbon ion beam synthesized carbon nanoclusters in thermally grown silicon dioxide

    NASA Astrophysics Data System (ADS)

    Poudel, P. R.; Poudel, P. P.; Paramo, J. A.; Strzhemechny, Y. M.; Rout, B.; McDaniel, F. D.

    2015-02-01

    The structural and optical properties of carbon nanoclusters formed in thermally grown silicon dioxide film via the ion beam synthesis process have been investigated. A low-energy (70 keV) carbon ion beam (C-) at a fluence of 3 × 1017 atoms/cm2 was used for implantation into a thermally grown silicon dioxide layer (500 nm thick) on a Si (100) wafer. Several parts of the implanted samples were subsequently annealed in a gas mixture (4 % H2 + 96 % Ar) at 900 °C for different time periods. The as-implanted and annealed samples were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). The carbon ion implantation depth profile was simulated using a widely used Monte Carlo-based simulation code SRIM-2012. Additionally, the elemental depth profile of the implanted carbon along with host elements of silicon and oxygen were simulated using a dynamic ion-solid interaction code T-DYN, which incorporates the effects of the surface sputtering and gradual change in the elemental composition in the implanted layers due to high-fluence ion implantation. The elemental depth profile obtained from the XPS measurements matches closely to the T-DYN predictions. Raman measurements indicate the formation of graphitic phases in the annealed samples. The graphitic peak (G-peak) was found to be increased with the annealing time duration. In the sample annealed for 10 min, the sizes of the carbon nanoclusters were found to be 1-4 nm in diameter using TEM. The PL measurements at room temperature using a 325-nm laser show broad-band emissions in the ultraviolet to visible range in the as-implanted sample. Intense narrow bands along with the broad bands were observed in the annealed samples. The defects present in the as-grown samples along with carbon ion-induced defect centers in the as-implanted samples are the main contributors to the observed

  1. Early effects of carbon-ion irradiation on murine lymphocytes and thymocytes

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Zhang, Hong; Dang, Bingrong; Bing, Tao; Hao, Jifang; Guo, Hongyun; Wang, Xiaohu

    To estimate the biological risks from space radiation encountered by cosmonauts in outer space, the effects from whole-body exposure to carbon ions or X-rays irradiations at 0, 0.39, 0.55 and 1 Gy at a dose rate of 0.2 Gy/min were investigated in BALB/c mice. The relative thymus and spleen weights were measured at 24 h after exposure, and the cell cycle distribution and percentage of apoptosis of thymocytes and spleen and peripheral blood lymphocytes were determined by flow cytometry. The data showed that exposure to carbon ions delayed cell progression of peripheral blood lymphocytes in S-phase, and delayed thymocytes and spleen lymphocytes in G 0/G 1-phase. Apoptosis of thymocytes and peripheral blood lymphocytes induced by carbon ions increased more rapidly with dose than was the case for X-rays. There were some differences between the relative weight loss of the thymus and the spleen with increasing dose of either carbon ions or X-rays. The results obtained provide evidence of dose- and organ-specific differences induced by carbon ions compared to X-rays, with increased apoptosis in peripheral blood lymphocytes and thymocytes, but not spleen lymphocytes. Our data may suggest that further work would be of interest to estimate risk of changes in immune function during particle radiation exposures in space travel.

  2. Temperature and Carbonate Ion Effects on Elemental Ratios in Benthic Foraminifera

    NASA Astrophysics Data System (ADS)

    Jordan, K. A.; Rosenthal, Y.; Lear, C. H.; Keigwin, L.; Sikes, E. L.

    2006-12-01

    We have assessed temperature and carbonate ion effects on elemental ratios in benthic foraminifera using core top samples from Atlantic (Cape Hatteras Continental Shelf (CHCS) and Norwegian Sea) and Pacific (Indonesia, Hawaii, and New Zealand) depth transects. Our previous studies, based on comparing samples from Little Bahama Banks (LBB), Hawaii, and Indonesia (e.g., Rosenthal et al., 2005, 2006) have shown a significant difference in Mg/Ca ratios of calcitic species (Cibicidoides) and Mg/Ca and Sr/Ca of aragonitic species (Hoeglundina elegans) between sites characterized by the same temperature but different carbonate ion content, thereby suggesting that both variables influence the Mg/Ca and Sr/Ca composition of the foraminifera. It appears, however, that the major difference in these elemental ratios is between the LBB site and all other sites, rather than between the Atlantic and Pacific. The new results from the Atlantic suggest that foraminifera from the LBB transect may be compromised by diagenetic processes, and the carbonate ion effect is substantially smaller than previously thought. This conclusion, based on inter-basinal comparison, is consistent with our data from the homothermal, homosaline Norwegian Sea depth transect, which suggest minimal carbonate ion effect on Mg/Ca in calcitic benthic foraminifera. These data allow us to refine the Mg/Ca-temperature calibration for benthic species and assess temperature and carbonate ion effects on other trace elements (e.g., Li/Ca, B/Ca) under variable oceanographic conditions.

  3. Ultraviolet Spectral Changes in Amorphous Carbon Grains Induced by Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Mennella, V.; Baratta, G. A.; Colangeli, L.; Palumbo, P.; Rotundi, A.; Bussoletti, E.; Strazzulla, G.

    1997-05-01

    Small carbon grains, processed by UV radiation and cosmic rays, have been proposed as carriers of the 217.5 nm bump present in the interstellar extinction curves (Hecht 1986; Sorrell 1990). In this paper, we present the results of an experiment aimed at simulating, in a first approximation, the cosmic-ray irradiation active in space. We have studied the effects induced by 3 keV He+ ions on the UV spectrum of small cosmic analog carbon grains. Two different kinds of grains have been analyzed. They were produced by vapor condensation in hydrogen and argon quenching atmospheres. Spectrophotometric measurements have been carried out on grains as they were produced and after ion irradiation in the spectral range 0.19-2 μm. Relevant UV spectral changes are observed after ion irradiation: while the UV absorption band shifts from 203 to 215 nm in hydrogenated amorphous carbon grains, an opposite trend is observed for the samples produced in the argon atmosphere. In this case the UV band moves from 240 to 218 nm. These spectral changes are well correlated with the optical gap variations and are therefore interpreted in terms of grain microstructure changes induced by the interactions with ions. At the highest ion fluence considered, the two carbons tend to have a similar microstructure, as testified by the UV peak position and optical gap values because of a saturation effect of the two competitive processes, amorphization and graphitization, which occur in carbon samples during ion irradiation (Compagnini & Calcagno 1996). The results of the present experiment suggest that hydrogenated amorphous carbon grains cannot be transformed into graphite grains by cosmic-ray irradiation. Moreover, the efficiency of ion irradiation in destroying well-ordered aromatic structures poses the problem of the survival itself of polycrystalline or pure graphite particles in the interstellar medium.

  4. Mass and charge transport in cyclic carbonates: implications for improved lithium ion battery electrolytes.

    PubMed

    Petrowsky, Matt; Ismail, Mohd; Glatzhofer, Daniel T; Frech, Roger

    2013-05-16

    The compensated Arrhenius formalism (CAF) is applied to conductivity and diffusion data for a family of cyclic carbonates composed of octylene carbonate, decylene carbonate, undecylene carbonate, and dodecylene carbonate. The strong intermolecular interactions in these liquids lead to diffusion activation energies that are higher than those for typical aprotic solvents. The conductivity results show that activation energies are similar between TbaTf and LiTf cyclic carbonate electrolytes. However, the conductivities of the TbaTf solutions are higher than those for the LiTf solutions, and this is attributed to the greater number of charge carriers in the TbaTf electrolytes. These CAF results are then used to give a possible explanation of why the ionic conductivity in lithium ion battery electrolytes is often optimized by mixing a cyclic carbonate with a lower viscosity liquid.

  5. Enhanced sputtering yields of carbon due to accumulation of low-energy Xe ions

    NASA Astrophysics Data System (ADS)

    Kenmotsu, T.; Wada, M.; Hyakutake, T.; Muramoto, T.; Nishida, M.

    2009-05-01

    We have calculated the sputtering yields of carbon and molybdenum under xenon ion bombardment by a Monte Carlo code ACAT which simulates binary collision events in solids. The yields of carbon calculated with ACAT differ from the experimental data below the threshold energy predicted from the semi-empirical formula proposed by Yamamura and Tawara. Meanwhile, the results of ACAT with 14% xenon atoms retained in graphite are in good agreement with the experimental data and the xenon retention in carbon plays an important role in reducing the threshold energy for carbon sputtering. In order to estimate the experimental sputtering yields of carbon, a simplified formula is proposed in the frame of the semi-empirical formula. The formula predicts the yield curve close to the reported sputtering yields of carbon for the condition that carbon target retains 14% xenon atoms.

  6. Determination of carbon distributions in quenched and partitioned microstructures using nanoscale secondary ion mass spectroscopy

    SciTech Connect

    Choi, Kyoo Sil; Zhu, Zihua; Sun, Xin; De Moor, Emmanuel; Taylor, Mark D.; Speer, John; Matlock, David K.

    2015-04-20

    A multi-modal characterization technique, which combines nanoscale secondary ion mass spectroscopy (Nano-SIMS) with a spatial resolution of ~100 nm and electron back scatter diffraction (EBSD) to determine carbon distributions in austenite and martensite in a quenched and partitioned (Q&P) Fe-0.29C-2.95Mn-1.59Si steel is presented. Significant carbon enrichment of austenite was measured with decreased levels of carbon in martensite, supporting the carbon partitioning mechanism. Fresh untempered martensite could be identified, and different degrees of enrichment were observed for blocky and lath austenite.

  7. Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes.

    PubMed

    Crespo, Gastón A; Macho, Santiago; Bobacka, Johan; Rius, F Xavier

    2009-01-15

    Porous carbon materials and carbon nanotubes were recently used as solid contacts in ion-selective electrodes (ISE), and the signal transduction mechanism of these carbon-based materials is therefore of great interest. In this work the ion-to-electron transduction mechanism of carbon nanotubes is studied by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Single-walled carbon nanotubes (SWCNT) are deposited on glassy carbon (GC) disk electrodes by repetitive spraying, resulting in SWCNT layers with thicknesses of 10, 35, and 50 mum. The impedance spectra of these GC/SWCNT electrodes in contact with aqueous electrolyte solution show a very small resistance and a large bulk capacitance that is related to a large effective double layer at the SWCNT/electrolyte interface. Interestingly, the impedance response of GC/SWCNT is very similar to that of poly(3,4-ethylenedioxythiophene) (PEDOT) film electrodes studied earlier under the same experimental conditions. The same equivalent circuit is valid for both types of materials. The reason is that both materials can be described schematically as an asymmetric capacitor where one side is formed by electronic charge (electrons/holes) in the SWCNT wall or along the conjugated polymer chain of PEDOT and the other side is formed by ions (anions/cations) in the solution (or in the ion-selective membrane when used as a solid contact in ISE).

  8. The effect of Argon ion irradiation on the thickness and structure of ultrathin amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Xie, J.; Komvopoulos, K.

    2016-03-01

    Carbon films synthesized by plasma-enhanced chemical vapor deposition (PECVD) and filtered cathodic vacuum arc (FCVA) exhibit a layered structure consisting of a bottom (interface) and a top (surface) layer rich in sp2 atomic carbon bonding and a middle (bulk) layer of much higher sp3 content. Because of significant differences in the composition, structure, and thickness of these layers, decreasing the film thickness may negatively affect its properties. In this study, transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) were used to examine the effect of Ar+ ion irradiation on the structure and thickness of ultrathin films of hydrogenated amorphous carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) deposited by PECVD and FCVA, respectively. The TEM and EELS results show that 2-min ion irradiation decreases the film thickness without markedly changing the film structure and composition, whereas 4-min ion irradiation results in significant film thinning and a moderate decrease of the sp3 content of the bulk layer. This study demonstrates that Ar+ ion irradiation is an effective post-deposition process for reducing the thickness and tuning the structure of ultrathin carbon films. This capability has direct implications in the synthesis of ultrathin protective carbon overcoats for extremely high-density magnetic recording applications.

  9. The effect of Argon ion irradiation on the thickness and structure of ultrathin amorphous carbon films

    SciTech Connect

    Xie, J.; Komvopoulos, K.

    2016-03-07

    Carbon films synthesized by plasma-enhanced chemical vapor deposition (PECVD) and filtered cathodic vacuum arc (FCVA) exhibit a layered structure consisting of a bottom (interface) and a top (surface) layer rich in sp{sup 2} atomic carbon bonding and a middle (bulk) layer of much higher sp{sup 3} content. Because of significant differences in the composition, structure, and thickness of these layers, decreasing the film thickness may negatively affect its properties. In this study, transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) were used to examine the effect of Ar{sup +} ion irradiation on the structure and thickness of ultrathin films of hydrogenated amorphous carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) deposited by PECVD and FCVA, respectively. The TEM and EELS results show that 2-min ion irradiation decreases the film thickness without markedly changing the film structure and composition, whereas 4-min ion irradiation results in significant film thinning and a moderate decrease of the sp{sup 3} content of the bulk layer. This study demonstrates that Ar{sup +} ion irradiation is an effective post-deposition process for reducing the thickness and tuning the structure of ultrathin carbon films. This capability has direct implications in the synthesis of ultrathin protective carbon overcoats for extremely high-density magnetic recording applications.

  10. Carbon nanotube: nanodiamond Li-ion battery cathodes with increased thermal conductivity

    NASA Astrophysics Data System (ADS)

    Salgado, Ruben; Lee, Eungiee; Shevchenko, Elena V.; Balandin, Alexander A.

    2016-10-01

    Prevention of excess heat accumulation within the Li-ion battery cells is a critical design consideration for electronic and photonic device applications. Many existing approaches for heat removal from batteries increase substantially the complexity and overall weight of the battery. Some of us have previously shown a possibility of effective passive thermal management of Li-ion batteries via improvement of thermal conductivity of cathode and anode material1. In this presentation, we report the results of our investigation of the thermal conductivity of various Li-ion cathodes with incorporated carbon nanotubes and nanodiamonds in different layered structures. The cathodes were synthesized using the filtration method, which can be utilized for synthesis of commercial electrode-active materials. The thermal measurements were conducted with the "laser flash" technique. It has been established that the cathode with the carbon nanotubes-LiCo2 and carbon nanotube layered structure possesses the highest in-plane thermal conductivity of 206 W/mK at room temperature. The cathode containing nanodiamonds on carbon nanotubes structure revealed one of the highest cross-plane thermal conductivity values. The in-plane thermal conductivity is up to two orders-of-magnitude greater than that in conventional cathodes based on amorphous carbon. The obtained results demonstrate a potential of carbon nanotube incorporation in cathode materials for the effective thermal management of Li-ion high-powered density batteries.

  11. Study on preparation of Luffa activated carbon and its adsorption of metal ions

    NASA Astrophysics Data System (ADS)

    Zhai, Kuilu; Li, Zichao; Li, Qun

    2017-03-01

    In this paper, loofah was used as raw material and alkali and hydrogen peroxide were used to pre-oxidize. The activated carbon was activated by zinc chloride, and the activated carbon was used to desorb the heavy metal ions nickel and copper. The removal efficiency of heavy metal ions was studied under different conditions. The effects of retinervus Luffae Fructus active carbon adsorption of metal ions on process conditions, including metal ion concentration, reaction temperature, loofah activated carbon types and activated carbon dosage. In the present study, in different strain rate on the loofah sponge material compression tests in a wide range of density from 24 to 64 kg cubic meters. Luffa fibers and followed by carbonization to prepare MCAC KOH activation. MCAC has dense in parallel channels 10 mm in diameter and 4 - 0.3 - 1 mm wall thickness, which is inherited from the native structure of Luffa. Micro and middle holes are formed on the inner surface of the channel wall to form a hierarchical porous structure.

  12. Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping

    DOE PAGES

    Li, Zhifei; Bommier, Clement; Chong, Zhi Sen; ...

    2017-05-23

    Hard carbon is the candidate anode material for the commercialization of Na-ion batteries the batteries that by virtue of being constructed from inexpensive and abundant components open the door for massive scale up of battery-based storage of electrical energy. Holding back the development of these batteries is that a complete understanding of the mechanism of Na-ion storage in hard carbon has remained elusive. Although as an amorphous carbon, hard carbon possesses a subtle and complex structure composed of domains of layered rumpled sheets that have local order resembling graphene within each layer but complete disorder along the c-axis between layers.more » Here, we present two key discoveries: first that characteristics of hard carbon s structure can be modified systematically by heteroatom doping, and second, that these changes greatly affect Na-ion storage properties, which reveal the mechanisms for Na storage in hard carbon. Specifically, P, S and B doping was used to engineer the density of local defects in graphenic layers, and to modify the spacing between the layers. While opening the interlayer spacing through P or S doping extends the low-voltage capacity plateau, and increasing the defect concentration with P or B doping high first sodiation capacity is achieved. Furthermore, we observe that the highly defective B-doped hard carbon suffers a tremendous irreversible capacity in the first desodiation cycle. Our combined first principles calculations and experimental studies revealed a new trapping mechanism, showing that the high binding energies between B-doping induced defects and Na-ions are responsible for the irreversible capacity. The understanding generated in this work provides a totally new set of guiding principles for materials engineers working to optimize hard carbon for Na-ion battery applications.« less

  13. Effect of different ion beam energy on properties of amorphous carbon film fabricated by ion beam sputtering deposition (IBSD)

    NASA Astrophysics Data System (ADS)

    Bai, Lichun; Zhang, Guangan; Wu, Zhiguo; Wang, Jun; Yan, Pengxun

    2011-09-01

    Amorphous carbon (a-C) films were fabricated by ion beam sputtering technique. The influence of sputtering ion beam energy on bonding structure, morphologic, mechanical properties, tribological properties and corrosion resistance of a-C films are investigated systematically. Morphology study shows that lowest surface roughness exists for mid-ion beam energy. Improved adhesion is observed for the films that are prepared under high ion beam energy, attributed to film graphitization, low residual stress and mixed interface. Relatively, a-C films prepared with ion beam energy of 2 keV exhibits optimum sp 3 bond content, mechanical properties and corrosion resistance. It is found that the wear rate of DLC films decrease with increased ion beam energy in general, consistent with the varied trend of the H/ E value which has been regarded as a suitable parameter for predicting wear resistance of the coatings. The correlation of the sp 3 bond fraction in the films estimated from Raman spectroscopy with residual stress, nanohardness and corrosion resistance has been established.

  14. Influence of surface oxidation on ion dynamics and capacitance in porous and nonporous carbon electrodes

    DOE PAGES

    Dyatkin, Boris; Zhang, Yu; Mamontov, Eugene; ...

    2016-04-07

    Here, we investigate the influence of surface chemistry and ion confinement on capacitance and electrosorption dynamics of room-temperature ionic liquids (RTILs) in supercapacitors. Using air oxidation and vacuum annealing, we produced defunctionalized and oxygen-rich surfaces of carbide-derived carbons (CDCs) and graphene nanoplatelets (GNPs). While oxidized surfaces of porous CDCs improve capacitance and rate handling abilities of ions, defunctionalized nonporous GNPs improve charge storage densities on planar electrodes. Quasi-elastic neutron scattering (QENS) and inelastic neutron scattering (INS) probed the structure, dynamics, and orientation of RTIL ions confined in divergently functionalized pores. Oxidized, ionophilic surfaces draw ions closer to pore surfaces andmore » enhance potential-driven ion transport during electrosorption. Molecular dynamics (MD) simulations corroborated experimental data and demonstrated the significance of surface functional groups on ion orientations, accumulation densities, and capacitance.« less

  15. Influence of surface oxidation on ion dynamics and capacitance in porous and nonporous carbon electrodes

    SciTech Connect

    Dyatkin, Boris; Zhang, Yu; Mamontov, Eugene; Kolesnikov, Alexander I.; Cheng, Yongqiang; Meyer, III, Harry M.; Cummings, Peter T.; Gogotsi, Yury G.

    2016-04-07

    Here, we investigate the influence of surface chemistry and ion confinement on capacitance and electrosorption dynamics of room-temperature ionic liquids (RTILs) in supercapacitors. Using air oxidation and vacuum annealing, we produced defunctionalized and oxygen-rich surfaces of carbide-derived carbons (CDCs) and graphene nanoplatelets (GNPs). While oxidized surfaces of porous CDCs improve capacitance and rate handling abilities of ions, defunctionalized nonporous GNPs improve charge storage densities on planar electrodes. Quasi-elastic neutron scattering (QENS) and inelastic neutron scattering (INS) probed the structure, dynamics, and orientation of RTIL ions confined in divergently functionalized pores. Oxidized, ionophilic surfaces draw ions closer to pore surfaces and enhance potential-driven ion transport during electrosorption. Molecular dynamics (MD) simulations corroborated experimental data and demonstrated the significance of surface functional groups on ion orientations, accumulation densities, and capacitance.

  16. A carbon-cluster laser ion source for TRIGA-TRAP

    NASA Astrophysics Data System (ADS)

    Smorra, C.; Blaum, K.; Eberhardt, K.; Eibach, M.; Ketelaer, J.; Ketter, J.; Knuth, K.; Nagy, Sz

    2009-08-01

    A new laser ablation ion source was developed and tested for the Penning trap mass spectrometer TRIGA-TRAP in order to provide carbon-cluster ions for absolute mass calibration. Ions of different cluster sizes up to C+24 were successfully produced, covering the mass range up to the heavy actinide elements. The ions were captured in a Penning trap, and their time-of-flight cyclotron resonances recorded in order to determine their cyclotron frequency. Furthermore, the same ion source was used to produce GdO+ ions from a gadolinium target in sufficient amount for mass spectrometry purposes. The design of the source and its characteristics are presented. This paper comprises partly the PhD theses of J Ketelaer and C Smorra.

  17. Inhibiting autophagy with chloroquine enhances the anti-tumor effect of high-LET carbon ions via ER stress-related apoptosis.

    PubMed

    Zheng, Xiaogang; Jin, Xiaodong; Li, Feifei; Liu, Xiongxiong; Liu, Yan; Ye, Fei; Li, Ping; Zhao, Ting; Li, Qiang

    2017-02-01

    Energetic carbon ions (CI) offer great advantages over conventional radiations such as X- or γ-rays in cancer radiotherapy. High linear energy transfer (LET) CI can induce both endoplasmic reticulum (ER) stress and autophagy in tumor cells under certain circumstances. The molecular connection between ER stress and autophagy in tumor exposed to high-LET radiation and how these two pathways influence the therapeutic effect against tumor remain poorly understood. In this work, we studied the impact of autophagy and apoptosis induced by ER stress following high-LET CI radiation on the radiosensitivity of S180 cells both in vitro and in vivo. In the in vitro experiment, X-rays were also used as a reference radiation. Our results documented that the combination of CI radiation with chloroquine (CQ), a special autophagy inhibitor, produced more pronounced proliferation suppression in S180 cells and xenograft tumors. Co-treatment with CI radiation and CQ could block autophagy through the IRE1/JNK/Beclin-1 axis and enhance apoptotic cell death via the activation of C/EBP homologous protein (CHOP) by the IRE1 pathway rather than PERK in vitro and in vivo. Thus, our study indicates that inhibiting autophagy might be a promising therapeutic strategy in CI radiotherapy via aggravating the ER stress-related apoptosis.

  18. Vertically Aligned Carbon Nanotube Electrodes for Lithium-Ion Batteries

    DTIC Science & Technology

    2011-01-01

    includes, but is not limited to, cobalt oxide [8] and phospho-olivine [9] nanoparticles, cobalt oxide [10] and silicon ∗ Corresponding author. Tel.: +1 937...wpafb.af.mil (M.F. Durstock). [11] nanowires , and iron oxide/copper [12] and tin/copper [13] nanorods. Carbon nanotubes (CNTs) have also been examined as...MWNTs (without any polymeric binders or conduc- tive carbon additives) as the electrodes. A porous polypropylene film infiltrated with a solution of

  19. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    SciTech Connect

    Islam, A. E.; Zakharov, D.; Stach, E. A.; Nikoleav, P.; Amama, P. B.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Maruyama, B.

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  20. Constructing hierarchical sulfur-doped nitrogenous carbon nanosheets for sodium-ion storage.

    PubMed

    Chen, Kejun; Hou, Hongshuai; Huang, Caijin; Ji, Xiaobo; Qiu, Xiaoqing

    2017-09-04

    Hierarchical sulfur-doped nitrogenous carbon (S/NC) and nitrogenous carbon (NC) nanosheets are successfully fabricated by carbonization of their corresponding precursor polymers which are synthesized through the polymerization reaction of dianhydride and multi-amine compounds. The hierarchical S/NC nanosheets deliver much enhanced reversible capacity, compared with the hierarchical NC nanosheets, of 280 mAh g-1 at a current density of 100 mA g-1after 300 cycles. It is found that the introduction of sulfur species in carbon skeleton results in increasing the turbostratic structures, rather than enlarging the interlayer distances, for boosting the specific capacity of sodium-ion storage. The turbostratic structures and sulfur dopant existed in the carbon can offer more active sites for the sodium-ion storage. Carbon-based materials doped with sulfur are capable of improving the sodium-ion storage property, which can broaden the horizon of designing a string of outstanding carbon materials for the future energy storage technologies. © 2017 IOP Publishing Ltd.

  1. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Islam, A. E.; Nikolaev, P.; Amama, P. B.; Zakharov, D.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Stach, E. A.; Maruyama, B.

    2015-09-01

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. With the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  2. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    DOE PAGES

    Islam, A. E.; Zakharov, D.; Stach, E. A.; ...

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only inmore » the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.« less

  3. Electrochemically Controlled Ion-exchange Property of Carbon Nanotubes/Polypyrrole Nanocomposite in Various Electrolyte Solutions

    SciTech Connect

    Choi, Daiwon; Zhu, Chengzhou; Fu, Shaofang; Du, Dan; Engelhard, Mark H.; Lin, Yuehe

    2016-09-15

    The electrochemically controlled ion-exchange properties of multi-wall carbon nanotube (MWNT)/electronically conductive polypyrrole (PPy) polymer composite in the various electrolyte solutions have been investigated. The ion-exchange behavior, rate and capacity of the electrochemically deposited polypyrrole with and without carbon nanotube (CNT) were compared and characterized using cyclic voltammetry (CV), chronoamperometry (CA), electrochemical quartz crystal microbalance (EQCM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It has been found that the presence of carbon nanotube backbone resulted in improvement in ion-exchange rate, stability of polypyrrole, and higher anion loading capacity per PPy due to higher surface area, electronic conductivity, porous structure of thin film, and thinner film thickness providing shorter diffusion path. Chronoamperometric studies show that electrically switched anion exchange could be completed more than 10 times faster than pure PPy thin film. The anion selectivity of CNT/PPy film is demonstrated using X-ray photoelectron spectroscopy (XPS).

  4. Enhancing the performances of Li-ion batteries by carbon-coating: present and future.

    PubMed

    Li, Huiqiao; Zhou, Haoshen

    2012-01-30

    With progress of knowledge of electrode materials, it has been found that their surface structures are of great importance to the electrochemical performance of Li-ion batteries. Carbon coating can effectively increase the electrode conductivity, improve the surface chemistry of the active material, and protect the electrode from direct contact with electrolyte, leading to enhanced cycle life of the batteries. Carbon coating together with nanotechnology provides good conductivity as well as fast Li-ion diffusion, and thus also results in good rate capabilities. The recent development of carbon coating techniques in lithium-ion batteries is discussed with detailed examples of typical cathode and anode materials. The limitation of current technology and future perspective of the new concept of "hybrid coating" are also pointed out.

  5. Effect of trace lanthanum ion on dissolution and crystal growth of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Kamiya, Natsumi; Kagi, Hiroyuki; Tsunomori, Fumiaki; Tsuno, Hiroshi; Notsu, Kenji

    2004-07-01

    Impurity effects of trace lanthanum ion (La 3+) on the dissolution and growth of calcium carbonate were studied with in situ observation techniques. Dissolution kinetics of two polymorphs of calcium carbonate, calcite and vaterite, were investigated by monitoring the pH in the solution with laser-induced fluorescence spectroscopy using a pH-sensitive reagent, seminaphthorhodafluors. No effect on dissolution of vaterite was observed with the spectroscopic observations, whereas calcite dissolution was significantly inhibited by lanthanum ion with concentrations higher than 1 μM. Crystal growth and dissolution processes of calcite under the lanthanum-doped condition were observed by means of atomic force microscopy. Step propagations during crystal growth and dissolution of calcite were inhibited by trace lanthanum ion (5 μM). An insoluble thin layer of lanthanum carbonate deposited on the step site of the calcite surface could be a possible cause of the inhibitions observed both for dissolution and growth.

  6. Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys.

    PubMed

    Poon, R W Y; Yeung, K W K; Liu, X Y; Chu, P K; Chung, C Y; Lu, W W; Cheung, K M C; Chan, D

    2005-05-01

    Nickel-titanium (NiTi) shape memory alloys possess super-elasticity in addition to the well-known shape memory effect and are potentially suitable for orthopedic implants. However, a critical concern is the release of harmful Ni ions from the implants into the living tissues. We propose to enhance the corrosion resistance and other surface and biological properties of NiTi using carbon plasma immersion ion implantation and deposition (PIII&D). Our corrosion and simulated body fluid tests indicate that either an ion-mixed amorphous carbon coating fabricated by PIII&D or direct carbon PIII can drastically improve the corrosion resistance and block the out-diffusion of Ni from the materials. Our tribological tests show that the treated surfaces are mechanically more superior and cytotoxicity tests reveal that both sets of plasma-treated samples favor adhesion and proliferation of osteoblasts.

  7. Removal of Lead (II) Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass

    PubMed Central

    Erdem, Murat; Ucar, Suat; Karagöz, Selhan; Tay, Turgay

    2013-01-01

    The removal of lead (II) ions from aqueous solutions was carried out using an activated carbon prepared from a waste biomass. The effects of various parameters such as pH, contact time, initial concentration